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Ionization, pair creation, and electron excitations in relativistic heavy-ion collisions are investigated in 
the framework of the coupled-channel formalisrn. Collisions between heavy projectiles and pb8*+ are 
considered for various bombarding energies in the region E =500 up to 2000 MeV/u. Useful symmetry 
relations for the matrix elements are derived and the influence of gauge transformations onto the 
coupled-channel equations is explored. 
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I. INTRODUCTION 

In  recent years a new generation of particle accelerator 
has been constructed. Heavy ions can be accelerated to 
relativistic energies and for the near future a further in- 
crease in performance is expected. Relativistic heavy-ion 
collisions provide a tool for the investigation of electrons 
in extremely strong electromagnetic fields. The compar- 
ison of theoretical and experimental results allows for a 
test of quantum electrodynamics under these extreme 
conditions. 

In this paper atomic physics effects in relativistic 
heavy-ion collisions are studied [I]. Predominantly we 
consider collisions with finite impact parameter in which 
the nuclei do not touch. In Fig. 1 the spectrum of the 
Dirac equation is depicted. Above the boundary 
E = + m c 2  and below the boundary E = -mc the con- 
tinua are located. In the gap in between, some bound 
states are indicated. In the hole picture it is assumed that 
in the ground state all the states of the negative-energy 
continuum are occupied by electrons. Removing such an 
electron implies that the remaining hole is interpreted as 
a positron. 

Some possible excitations are depicted schematically in 
Fig. 1: (1) excitation of an electron from one bound state 
into another bound state with lower binding energy; ( 2 )  
ionization of an originally bound electron; (3) excitation 
of an electron from the negative-energy continuum into a 

bound state. The remaining hole is interpreted as a posi- 
tron. The created electron is captured in the bound state 
(pair production with capture). (4) Excitation of an elec- 
tron from the negative-energy continuum into the 
positive-energy continuum. As in case (3) this is the 
creation of an electron-positron pair, but the final state of 
the electron is in the continuum (direct pair creation). 

One additional process is missing in this figure, namely, 
the capture of an electron initially bound to the target by 
the impinging projectile. In this paper we will concen- 
trate on excitation, ionization, and pair creation with 
capture. 

Similar calculations are performed by various other au- 
thors [2-61. The main differences consist in the chosen 
basis set and in the methods employed to determine the 
matrix elements. Former calculations also employed per- 
turbation theory in different forms [6- 131. For collision 
Systems with low-Z projectiles these calculations yield re- 
liable results when compared with experimental data. 

A series of experiments has been published by Mey- 
erhof, Anholt, and CO-workers. They investigated ioniza- 
tion cross sections [7,14,15], charge states of the projec- 
tile after the collision [16], and charge exchange [17]. 
Unfortunately, the atomic physics experiments in the en- 
ergy region around E = 1 GeV/u supply only total cross 
sections [18,19]. More selective differential cross sections 
with respect to the impact parameter or the ion scatter- 
ing angle are still missing. 

In Sec. I1 we present the formalism of the coupled- 
channel equations that we used throughout our calcula- 
tions. Th; evaluation of the potential matrix elements 
and their symmetries are emphasized. The subsequent 
section treats the numerical results, in particular the 
comparison of the outcome of perturbation theory, with 
results of the coupled-channel calculations for ionization 
and pair creation. The question of gauge invariance is 
considered in Sec. IV. Finally, Sec. V contains a brief 
Summary. 

11. THEORY 
FIG. 1. Spectrum of the Dirac equation. Indicated are possi- 

ble atomic excitations: (1) excitation, (2) ionization, (3) pair In order to calculate electron excitation and ionization 
creation with capture, and (4) direct pair creation. as well as pair creation, we want to solve the time- 
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dependent Dirac equation 

where R ( t )  denotes the time-dependent position of the 
projectile. Here we have used the semiclassical approxi- 
mation (SCA) [20-221, where the nuclei are assumed to 
move on classical trajectories. 

Equation (1) is a partial differential equation in four di- 
mensions. The direct solution requires considerable nu- 
merical effort. In central heavy-ion collisions the cylin- 
drical symmetry reduces the problem to two spatial coor- 
dinates. For excitation and ionization such a calculation 
has been performed by Becker et al. [23], where the 
differential Operators were replaced by finite differences. 
An extension to pair creation is presented by Thiel et al. 
[24]. One difficulty in performing this procedure is intro- 
duced by the finite grid size and by the finite number of 
grid points. 

Here we will apply a different method that has already 
been employed for nonrelativistic collisions. The wave 
function is expanded into a complete basis set 

+ i ( r , t i =  $ a k i ( t > d k < r i e x p i - i ~ k t i  . (2) 
k 

The subscript i of the wave function indicates different 
possible initial conditions: 

Usuallz, thz tot$ Hamiltonian is split into two contribu- 
tions H = Ho + V. Choosing the eigenstates of the unper- 
turbed Hamiltonian H ,  as basis states, i.e., 

the basis wave functions are orthonormal 

For very fast collisions we will employ the atomic basis. 
The unperturbed Hamiltonian consists only of the kinetic 
energy and of the target potential 

reliable tool. In first-order perturbation theory the am- 
plitude after the collision ( t  + cc, ) reads 

Since the potential depends linearly on the projectile 
charge Z„ the perturbative probabilities and Cross sec- 
tions depend quadratically on the projectile charge. 

For our calculations it is very important that unitarity 
remains conserved during the time evolution. This is not 
fulfilled in perturbation theory. Thus it may happen that 
perturbation theory results in excitation probabilities 
greater than unity, which is physically meaningless. 

A Hermitian potential matrix, i.e., Vfj = Vif, guaran- 
tees the conservation of probability in the framework of 
coupled-channel calculations. Even the orthonormality 
of the wave functions remains conserved during the time 
evolution. 

A. Projectile potential 

In order to solve the coupled-channel equations (7) we 
need the matrix elements (c$~ / P $ k  ) .  First we want to 
determine the projectile potential. In relativistic heavy- 
ion collisions a straight line is a good approximation for 
the trajectory of the projectile [25,26]. Likewise, we may 
assume that the target remains fixed at the origin of the 
coordinate system. 

The coordinate system is chosen so that the projectile 
moves parallel to the z axis and the X-z plane is the 
scattering plane (see Fig. 2). The projectile potential as 
Seen by an observer in the target system is determined by 
a Lorentz transformation. In the inertial system of the 
projectile the projectile potential is simply a Coulomb po- 
tential 

where 

denotes the distance from the projectile as seen in the 
~ h e  projectileApotential is thought 0f as the perturbing projectile System. Primed quantities are rneasured in the 
potential V. is inde~endent  of time arid are the projectile System. The transformation of the potentials 
basis states. ~onsequent ly ,  0nly the matrix elements of (9) into the target frame yields the Lienard-Wiechert- 
the projectile potential Vp result in transitions between „tentials ,271 

L 2 

the states and we obtain for the coupled-channel equa- 
L 

tions 

~ ~ ~ = i z a ~ , ( t ) ( 4 ~  lPI$/, > e ~ ~ [ i ( ~ ~ - ~ ~ ) t ]  . (7) ZP üp 
k tt 

The basis contains only target-centered states, which do 
not allow for the description of charge exchange. To take 
also these channels into account requires a basis set ex- 
tended by projectile-centered states. But target- and 
projectile-centered states are not orthonormal to each 
other and therefore a modified form of the coupled chan- 
nels has to be utilized [4]. In this paper we will not inves- FIG. 2. Coordinate System used in our calculations. The 
tigate charge-exchange processes. projectile moves within the X-z plane along a straight line with 

For weak potentials V perturbation theory might be a distance b parallel to the z axis. 
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For completeness we write the total Hamiltonian 

A=a.$+ß^+ V,+ PP 

For the target we assumed the potential of a fully ionized 
pointlike nucleus with the charge Z T .  Equivalently we 
can employ a screened target potential. 

For the calculation of the matrix elements the quantity 

is expanded into a multipole series. The electron and nu- 
clear coordinates are r'= (X , Y ,  yz ) and R'= ( b ,  0, yvp t  ), 
respectively. The components of r' in spherical polar 
coordinates read 

The function h ( 8 )  is defined by Eq. (14). Now the mul- 
tipole expansion reads 

h 

where R' and P', respectively, denote the directions of the 
vectors R' and r'. The function g ,  is defined by 

I 

B. Matrix elements 

In this subsection the matrix elements ( 1 > will 
be evaluated. Due to the spherical symmetric target po- 
tential the atomic basis functions can be represented in 
the form 

with real radial functions u ( r  ) and u ( r  1. The continua 
are discretized by the use of relativistic wave packets [28] 

where $4 r ,  E ) is the exact continuum eigenstate of Ao for 
the energy E. Since many continuum wave functions 
+ ( r , E )  with different wavelengths interfere, the wave 
packets $k ( r  fall off faster as a function of r. 

First we want to consider the electric matrix elements. 
After inserting the multipole expansion (161, except for 
the factor ( - Y z p e 2 ) ,  the matrix elements read 

with gL defined by (17). Choosing theAx-z plane as the transformed the multipoles into the same system. This 
scattering plane the azimuthal angle of R' is Zero and the leads to a Lorentz contraction of the unit sphere and thus 
complex conjugation of the corresponding spherical har- the multipoles are now defined on the surface of an oblate 
monic may be omitted. ellipsoid in the target frame. Consequently, the transi- 

Originally the multipoles were defined on the surface of tion from the inner region of the multipole expansion to 
the unit sphere in the projectile frame. Since the basis the outer region takes place on this ellipsoid surface. 
wave functions are defined in the target system, we This situation is depicted in Fig. 3. 
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FIG. 3. Depicted are different regions of the multipole ex- 
pansion. The boundary between both regions is located on the 
marked ellipsoid. On this boundary the explicit form of the 
multipole expansion changes. The inner region inside the 
sphere with radius R'/y is indicated as well as the outer region 
outside the sphere with radius R ' .  In these two cases the 
classification is independent of the polar angle, while in the re- 
gion between these radii it depends on the angle 8. 

The boundary between both regions is at  r = R 1 / h ( 0 )  
and thus varies between the values r  = R 1 / y  and r = R 1 .  
Therefore inside the sphere with radius R ' / y  we are- 
independent of the angle-in the inner region, while out- 
side the sphere with radius R' we are always in the outer 
region. Only between these radii does the classification 
depend on the polar angle. 

Due to the distinction in the definition of the function 
gL the radial and the angular integration do not separate 
in the intermediate region. This is different from the 
nonrelativistic case. Thus in this region a two- 
dimensional integral has to be computed. gL ( r ,  0  ) factor- 
izes in the regions r  < R ' / y  as well as r  > R' and thus the 
integrations separate here. 

We rewrite the matrix element 

with 

9 f l , L M ( ~ ' ) = J m d r ~ ( r ) ~ $ f K , L , w ( r )  o . (22) 

Here the abbreviation 

and the angular integral 

have been introduced. In (24) we defined the angular 
function w t j K i L  M ,  which is given by 

The integration over p yields the usual addition rule for 
the magnetic quantum numbers, which is well known 
from the nonrelativistic description. Therefore, in Eq. 
(21) the sum over M  may be omitted when M = p f  - p i  is 
substituted. Also, the parity fulfills the Same selection 
rule as in the nonrelativistic case. The parity of 
Y„( 0', p)  equals the parity of Y„( 0 ,  p ), since 
0 ' ( ~ - 0 ) = ~ - 0 ' ( 0 ) .  In addition, h ( 6 )  has even parity: 
h ( ~ - 0 ) = h  ( 0 ) .  It follows that the integrals over the an- 
gle vanish if l f  + 1, + L =O (mod 2) .  Otherwise it is 
sufficient to integrate from 0 to ?7/2 and to double the in- 
tegral afterwards. 

It is worthwhile to note that even in the regions 
r  < R  ' / y  and r  > R  ', where the integrals separate, the 
standard triangle rule is violated in the relativistic case. 
In the nonrelativistic case only those L values contribute 
that fulfill 1 jf - ji 1 5 L 5 1 jf + ji 1 .  On the other hand, for 
relativistic velocities all values L =O.  . . ffi contribute 
P91. 

Now we turn the discussion to the analogous expres- 
sioris for the magnetic matrix elements 

with 

Note that in coritrast to the electric matrix elements, the 
matrix ¿i3 couples upper and lower components of the 
spinors. This leads to the sign combinations of the K sub- 
scripts of W A .  These quantities are defined by the angu- 
lar integral 

with the corresponding angular function 

The factor 2m results from the relation 
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In addition, due to the Kronecker 6 the sum over m '  
could be easily performed. 

We deduce from Eqs. (21) and (26) that the electric ma- 
trix element is real, while the magnetic matrix element is 
purely imaginary: 

Finally, we want to discuss some symmetry relations of 
the matrix elements. The explicit use of these symmetry 
relations considerably lowers the computational effort 
and the Storage requirements for the matrix elements. 

First we study the behavior of when exchanging 
i-f, 

Using the symmetry relations of the Clebsch-Gordan 
coefficients and of the spherical harmonics contained in 
(251, we derive 

The analogous result for the magnetic matrix elements 
reads 

These expressions may be inserted into the expansions 
(2 1) and (26) and we obtain 

and 

With (31) we conclude for the total matrix element 

Since P is a Hermitian Operator, this result is quite 
reasonable. 

One additional symmetry is provided by simultaneous- 
ly changing the sign of the magnetic quantum numbers: 

A  Only the angular functions W: K,,L,M and wKfK,,LM con- 
f 

tain the magnetic quantum numbers via the Clebsch- 
Gordan coefficients. The angular functions correspond- 
ing to the changed quantum numbers according to (38) in 
the following are marked by a tilde. For the transformed 
angular functions we find 

Combining all signs and using 

results in 

( SgIIKf f SgnK, ) /2  + I 
= ( - I )  W ?  ~!L,p,,-p, 

f 

(42) 

and hence, 

For the magnetic matrix elements the analogous expres- 
sion reads 

- A  ( s g n ~  f s g n r ,  i / 2  
wKfK,~,-pf+p, = ( - I )  I W K , . K , L . ~ L ~ - ~ ,  . (44) 

From Eq. (27) we know that C A  contains the functions 
W with negative K~ or K ~ .  This minus sign may be 
pulled out and leads to an additional minus sign: 

Finally we consider the operation of time reversal: 
t + - t. Using this symmetry it is possible to calculate 
and to Store only the matrix elements for the incoming 
projehile trajectory. Only the spherical harmonic 
YLM(R1)= YL,M(6Rt) in Eqs. (21) and (26) are influenced 
by time reversal. Applying time reversal the spherical 
harmonic transforms according to YLM(r-OR,) 
=(  - 1 )L - M ~ L M ( ~ ' ) .  For all contributing L the value of 
( -- 1 )L -M is the same due to L = I f  - I ,  (mod 2). With 
M = p f  -pi, we finally get 

Again the calculation is analogous for the magnetic ma- 
trix element. Because of L =If - l, + 1 (mod 2)  an addi- 
tional minus sign arises: 

The results for the electric and magnetic matrix elements 
may be combined to 

I - I t  +~lf-;li 
V ( - t ) = ( - 1 )  f 

f i  V > ( ? ) .  (48) 
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C. Adiabatic initial conditions the fact that the numerical intenration starts at  the finite 

The coupled-channel equations (7) have to be solved 
with the initial conditions (3). For the numerical solution 
we employ the method of Shampine and Gordon [30], 
which is a modified Adams-Moulton predictor-corrector 
method of variable order with variable step size. 

For test purposes we solved the coupled-channel equa- 
tions for the system Pb-Pb with the bombarding energy 
E = 500 MeV/u and impact parameter b = 100 fm. The 
basis consists of the 10 deepest bound states, i.e., the K 
and L shell, and 60 continuim states. As an initial condi- 
tion we consider a single electron in the 1s state with 
p= -+. The result of this calculation is represented in 
Fig. 4(a). Just after the beginning of the integration the 
main contribution to the continuum channels Sterns from 
the state with E = l . l ,  K=-2,  ,U=-+. Later on the 
probability for the electron to be in the initial state de- 
creases while the probability for the electron to be excited 
or  to be ionized increases. The excitations are maximal 
around the distance of closest approach at  t =O. The oc- 
cupation probabilities during the collision are not observ- 
able experimentally. Only the occupations for t -t cc are 
observable, e.g., by measuring the energy distribution of 
the 6 electrons. 

Considering Fig. 4(a) strong oscillations of the occupa- 
tion probabilities for t <O are noticed. These are due to 

FIG. 4. Solution of the coupled-channel equations for the 
system Pb-Pb at a bombarding energy E = 5 0 0  MeV/u and im- 
pact parameter b = 100 fm. The squared absolute values of the 
amplitudes laf,„ I 2  are shown as a function of the collision time 
t. t is given by multiples of the unit 1.29X 1 0 - ~ '  sec. Note the 
strong excitation around the distance of closest approach at 
t -0. Full lines: 1s state and sum over all continuum states, re- 
spectively; dashed line: continuum state with E = 1.1, K =  -2, 
P = - + ;  dotted line: continuum state with E=1 .5 ,  K =  -2, 
p =  - f . (a) Initial condition a,, = 6 (b) Using adiabatic ini- 
tial conditions ihe oscillations almost disappear. 

- 
time -T,# - W ,  when the projectile is far away. In Fig. 
5 we depict the complex probability amplitude during a 
short period after -To for the dominant continuum 
states with E = 1 . 1  and K= - 2, p= - t. The amplitude 
follows a spiral curve starting at  the origin. 

For this early time the projectile is far away and the in- 
teraction is very weak. Thus we can apply perturbation 
theory; i.e., we Set ak, = s k i .  Now the coupled-channel 
equations simply read 

Initially, the matrix element changes very slowly in time 
and we may consider it to be constant. Hence Eq. (49) 
can be integrated and for f # i  we get 

The time-dependent phase factor leads to a circular 
motion in the complex plane, which is broadened by the 
slowly increasing matrix element. The additional term in 
the curly brackets guarantees the initial condition 
a f l (  t = - T. ) =O. But just this term is responsible for the 
shift of the origin of the complex plane from the mid- 
point of the spiral curve to the starting point. Calculat- 
ing the squared absolute value of the complex amplitude, 
the value decreases after every revolution because the 
starting point is nearly reached. The frequency of these 
oscillations equals the energy difference w = Ef -E, .  

This is clearly seen for the depicted continuum states 
in Fig. 4(a). Taking into account the energy of the 1s 
state, E, -0.8 mc2, we get TE2.rr/w -21 and T =9,  re- 
spectively for the cycle time of the oscillations. This is in 
fair agreement with the results as displayed in Fig. 4(a). 

Instead of suddenly turning on the potential at  

FIG. 5. Complex probability amplitude for the continuum 
state with E = 1.1 and K =  -2, p= - for the Same system as in 
Fig. 4. The spiraling curve results from the complex phase fac- 
tor in the coupled-channel equations. 
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t = -T, we now assume that the interaction has in- 
creased very slowly, i.e., adiabatically, from Zero in such 
a way that a single spiral revolution cannot be dis- 
tinguished from a true circle. In this case the origin of 
the complex plane and the midpoints of the circles coin- 
cide and thus the term exp[- i (Ef-Ei)T, ]  has to be 
omitted. Hence the adiabatic initial conditions read 

Afterwards the total probability has to be normalized to 
unity. 

In Fig. 4(b) the outcome of a coupled-channel calcula- 
tion using the adiabatic initial conditions is displayed. It 
is the same calculation as in Fig. 4(a), but using the initial 
conditions (5 1). Apparently the oscillations almost disap- 
peared. Nevertheless, the probabilities for t -L W remain 
almost unchanged by these initial conditions. Of Course, 
the shift of the starting point of the integration toward 
earlier times results in a similar disappearance of these 
oscillations. By the use of adiabatic initial conditions we 
avoid the calculation of the corresponding matrix ele- 
ments. 

111. NUMERICAL RESULTS 

The methods as described in the preceding section will 
be applied to physical problems of current interest. We 
calculate ionization and pair-creation probabilities in rel- 
ativistic heavy-ion collisions. In particular we compare 
the results of coupled-channel calculations with the out- 
come of perturbation theory. 

In order to calculate ionization probabilities and Cross 
sections we have to solve the coupled-channel equations 
using a basis that contains bound states as well as contin- 
uum states. A t  a first glance it seems that the influence of 
the states of the negative-energy continuum is negligible. 
But it turns out that there can be clear differencei be- 
tween calculations that neglect the negative-energy states 
and calculations using a basis enlarged by the negative- 
energy continuum. 

We start our investigations by considering the ioniza- 
tion of a K-shell electron. For this purpose the coupled- 
channel equations (7) are solved with the initial condi- 
tions 

or with the adiabatic initial conditions. 
The ionization probability is just the probability for the 

electron to be after the collision in one of the continuum 
channels of positive energy, thus [3 1-33] 

Usually the K shell is occupied by two electrons. Thus, 
the mean number of electrons ionized per collision from 
the K shell can be calculated by simply multiplying the 
probability (53) by 2. Since up to two electrons may be 

ionized in a single collision, this is no longer a probability 
normalized to unity. 

These considerations are only true if the target is total- 
ly ionized except for the K shell. If not, we have to calcu- 
late the probability for the coincident observation of the 
ionized electron with the hole in the K shell. This corre- 
lated probability is given in [32,33]. 

In Fig. 6 we show a comparison between results from 
first-order perturbation theory and coupled-channel cal- 
culations. It concerns the collision system pb8 '++Z,  
with projectile charges up to the end of the periodic sys- 
tem. As already mentioned, the ionization probability in 
perturbation theory scales with z;. In  order to facilitate 
the comparison the probabilities were divided by z;. 
Therefore the ionization probabilities given by perturba- 
tion theory are simply represented by horizontal straight 
lines. 

Apparently the results of the coupled-channel equa- 
tions approach continuously the perturbative result for 
Z ,  -0. For larger nuclear charges the ionization proba- 
bility increases first over the perturbative probability and 
reaches a maximum at  Zp -50. For even larger Z, the 
probability decreases again. 

The proportionality of the perturbative probability 
with Z; for sufficiently large Zp leads to a violation of un- 
itarity, i.e., to probabilities larger than unity. However, 
unitarity is conserved in coupled-channel calculations. 
Thus for large projectile charges the probability has to 
decrease under the perturbative probability. Unity, like- 
wise divided by z;, is plotted in the figure as a full line. 
Probabilities that do not violate unitarity thus have to 
remain under this line. 

Two calculations with different basis sets are depicted 
in Fig. 6. The first basis set contains the 22 deepest 
bound states as well as the states of the positive-energy 
continuum with energies between 1.1 mc2 and 3.5 mc2 
and angular momentum quantum numbers K between -2 
and i -2.  The second basis set in addition contains the 
analogous states of the negative-energy continuum. 

FIG. 6. K-shell ionization rate vs Z,  for the Systems 
Pbs'+ + Zp at the bombarding energy E = 1200 MeV/u and im- 
pact parameter b=20 fm. The probability is divided by z;, 
which is the scaling behavior of perturbation theory. A: 
Without negative-energy continuum; CI : negative-energy contin- 
uum included; full line: unitarity limit. 
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Though the excitation of the additional states can be 
neglected for t + m, they clearly affect the ionization 
probability. For the considered collision system the ion- 
ization rate is reduced by up to 30% when the negative- 
energy states are included. 

This effect is caused by the fact that at the distance of 
closest. approach of the projectile, strong transitions into 
both continua occur. In particular, the excitation of 
states of the negative-energy continuum is just one order 
of magnitude lower than that of states of the positive- 
energy continuum. The difference between both continua 
arises during the outgoing part of the projectile's trajecto- 
ry. The occupation of the ionization channels does not 
change considerably after the distance of closest ap- 
proach, while the occupation probability of the channels 
of the negative-energy continuum decreases by nearly 
two orders of magnitude. Obviously the excitation of the 
ionization channels is disturbed by the negative-energy 
channels just at that collision time when the~strongest G- 
citations occur. For more details cf. Fig. 12(c). 

In Fig. 7 the Z,-dependent K-shell ionization probabil- 
ity is depicted for two different bombarding energies 
E = 5 0 0  and E = 1200 MeV/u. For higher energies the 
ionization rate decreases. This is in agreement with cal- 
culations by Amundsen and Aashamar [10], who ascer- 
tained that for small impact parameters the ionization 
rate decreases for bombarding energies in the range 
around 1 GeV/u, while for higher energies the rate be- 
Comes constant with corrections of the order (lny 

We also briefly discuss L-shell ionization. Here we re- 
strict ourselves to the L, subshell, which consists merely 
of the 2s states. The performed calculations are com- 
pletely analogous to those for the K-shell ionization. We 
only have to choose the 2s state as the initial state. The 
corresponding result is also presented in Fig. 7. In con- 
trast to nonrelativistic collisions these calculated data 
demonstrate that the L-shell ionization rate is by a factor 
of 3 lower than the K-shell ionization rate. 

Now we want to study the dependence of the ioniza- 
tion rate with respect to the impact parameter. Figure 8 

FIG. 7. K- and L-shell ionization rate vs Z, for the Systems 
pbslf +Zp with impact parameter b=20 fm. The probability is 
divided by Zi,  the scaling behavior of perturbation theory. 0: 
K-shell ionization for E = 500 MeV/u; 0 : K-shell ionization for 
E = 1200 MeV/u; A: L-shell ionization for E = 1200 MeV/u; 
full line: unitarity limit. 

FIG. 8. Dependence of the ionization rate on the impact pa- 
rameter for the collision system Pb-Pb at (from top to bottom) 
E =2000, E = 1200, and E = 500 MeV/u. The results for the 
lower energies are multiplied by 0.1 and 0.01, respectively. Full 
lines: coupled-channel calculations; dotted lines: perturbation 
theory. 

shows an exponential decreasing behavior of the ioniza- 
tion rate when the impact parameter is increased. This 
holds true in perturbation theory as well as for coupled- 
channel calculations and for all bombarding energies 
E = 500, E = 1200, and E = 2000 MeV/u. 

Figure 9 displays the 6 electron spectra from Pb-Pb 
collisions with E =2000 MeV/u with impact parameter 
b=10,  b=210, and b=810 fm. As a function of elec- 
tron energy the spectra decrease exponentially. This de- 
crease is considerably stronger for larger impact parame- 
ters. 

Obviously the used basis contains the energetically 
most important channels. The restriction to states with 
angular momentum quantum numbers K =  -2. . . + 2  
seems to be more stringent. We presume that the results 
will be modified by the addition of further angular mo- 
menta. Unfortunately, due to Computer time and Storage 
reasons it is not possible to enlarge the employed basis 
considerably. 

A. Electron excitation 

The excitation into higher bound states is calculated in 
the Same manner as the ionization; we merely substitute a 
bound state for the final state. The comparison between 
ionization and excitation of the 2s as well as of the 3s 
state is displayed in Fig. 10 for the system Pb-Pb at 2000 
MeV/u. For large impact parameters the rates decrease, 
but for the ionization probability the decrease is weaker 
than for the transitions to bound states. This is readily 
understood since the used localized wave packets dimin- 
ish as l / r2 ,  while the bound states exhibit a much 
stronger exponential decline. 

The results of coupled-channel calculations show a 
weaker decrease for the excitation of bound states than 
perturbation theory does. This might be explained by 
multistep processes, in which, e.g., the 2s states is excited 
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indirectly via the continuum states, which are more 
strongly excited. In fact, for very small impact parame- 
ters, we note a slight increase of the probabilities. 

Finally, in Fig. 11 we analyze the various spin contri- 
butions by depicting the ratio of spin flip to non-spin-flip 
contributions. For central collision~ ( b  = 0 )  the projectile 
potential contairis only angular momenta with M =O. 
Due to the additive behavior of the magnetic quantum 
numbers a spin flip is not possible and the ratio diverges. 
By increasing the impact parameter, the spin flip becomes 
more and more probable. 

B. Pair creation 

In the framework of our formalism, pair creation can 
be regarded as the excitation of an electron from the 
negative-energy continuum into a bound state (pair 
creation with capture) or  into a state of the positive- 
energy continuum (direct pair creation). Thus the basis 
that should be used to  describe this process has to  con- 
tain the negative-energy continuum in an appropriate 
manner. 

We make explicit use of the time reversal invariance. 
As a consequence, a single coupled-channel calculation is 
sufficient for the calculation of the pair-creation probabil- 
ity with capture of the electron into the K shell of the tar- 
get. 

0.5 1.0 1.5 

E (MeV) 
The dependence of ionization and pair-creation chan- 

nels on collision time is represented in Fig. 12 assuming 
different approximations. Figure 12(a) shows the resu6 

FIG. 9. 6-electron spectrum for the collision system Pb-Pb at of perturbation theory, while Figs. 12(b) and 12(c) display 
E=2000 MeV/u and impact parameter (a) b=10 fm; (b) results of coupled-channel calculations. In Fig. 12(b) the 
b =210 fm; and (C) b = 810 fm. The lines display the probability continuum-continuum interactions are neglected, while 
for the excitation into a wave-packet state with the width 
AE =0.2 mc2. The full curve at the top represents the sum over in Fig. 12(c) all couplings are included. During the in- 

all angular momenta, while the other curves show the contribu- coming Part of the trajectory9 differentes between the 

tions of the direrent angular momenta. Dashed line: K= - various approximations are hardly visible. Not until 

full line; K= + 1; dash-dotted line: K =  -2; dotted line: K= +2 ,  t =O, when strong excitations occur, do  deviations be- 
come recognizable. In particular, for the pair creation, 
relatively large differentes are visible during the outgoing 

FIG. 10. Excitation of the bound 2s state (dashed line) and 3s 
state (dotted line), compared with the excitation of continuum 
states (full line) for the system Pb-Pb at E=2000 MeV/u. The 
lines marked by circles, triangles, and Squares are calculated us- 
ing the coupled-channel equations, while the other lines 
represent the result of perturbation theory. 

FIG. 11. Ratio of excitations without spin flip and excita- 
tions with spin flip P( ? ) / P (  I ) for the states 2s (dashed) and 3s 
(dash-dotted) at a bombarding energy E=2000 MeV/u in the 
system p-Pb. Due to the low projectile charge, perturbation 
theory has been used. The full line represents the same calcula- 
tion for the 2s states at E =500 MeV/u. 
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FIG. 12. Excitation of ionization and pair-creation channels 
during a Pb-Pb collision with E = 1200 MeV/u and b =20 fm. 
The time t is given in natural units defined by Zi=c=m = 1. 
Full line: 1s state; dashed line: ionization; dash-dotted line: 
pair creation. (a) Perturbation theory; (b) coupled-channel cal- 
culations, continuum-continuum couplings neglected; and (C) 

coupled-channel calculations, all couplings included. 

part of the trajectory. Using perturbation theory, the ex- 
citation decreases very rnuch after t = O  and finally ap- 
proaches a low level. However, in the coupled-channel 
calculations the pair creation decreases much less after 
the collision and remains more than one order of magni- 
tude above the outcome of perturbation theory. 

Comparing both coupled-channel calculations demon- 
strates that the continuum-continuum couplings are not 
responsible for this effect. Rather it seems that the ap- 
proximation a „, „ = 1 that forms the basis of perturbation 
theory is-due to excitation of higher bound states and 
ionization channels-no longer justified. The depopula- 
tion of the 1s state during the collision is responsible for 
the fact that the probability that flowed into the positron 
channels cannot flow back cornpletely. 

The transition from the validity region of perturbation 
theory to the nonperturbative behavior [1,34,35] can be 
deduced by varying the projectile's charge. This is ac- 
cornplished in Fig. 13. The probabilities are divided by 
z;, the scaling behavior in perturbation theory, as in Fig. 
6. 

Obviously also the pair-creation probability ap- 
proaches continuously the perturbative value for Z, -0. 

FIG. 13. Pair-creation probability with capture of the elec- 
tron into the K shell (full line) and in the L, shell (dashed line) 
of the target as function of the charge of the projectile. The sys- 
tem is Pba2+ + Z p  at a bombarding energy E = 1200 MeV/u and 
impact Parameter b =20 fm. The probability is divided by the 
scaling behavior of perturbation theory z:. 

But with an increasing nuclear charge of the projectile, 
the probability for the creation of an electron-positron 
pair rises very fast over the result of perturbation theory 
[1,35]. A t  Zp =92, i.e., for a totally ionized uraniurn nu- 
cleus as projectile, the result from the coupled-channel 
calculation is nearly two orders of magnitude above the 
corresponding result of perturbation theory. Strayer 
et al. solved the time-dependent Dirac equation on a grid 
using B splines and likewise found-in the case of muon 
pair production-large deviations frorn perturbation 
theory [34]. 

For the energies investigated in this paper, the pair- 
creation probabilities are relatively srnall. This probabili- 
ty increases at  higher bombarding energy and finally also 
violates unitarity. But these high energies cannot be han- 
dled by the present coupled-channel calculations employ- 
ing the basis as indicated above. Nevertheless, Best, 
Greiner, and Soff [36] showed that the violation of unitar- 
ity in these cases does not prohibit the application of per- 
turbative rnethods. Instead, the sum of the squared arn- 
plitudes can be interpreted as the rnean number of pro- 
duced pairs, which of Course is not normalized to unity. 

Now we want to expand the investigation to negative 
projectile charges, i.e., to antinuclei. Experimentally, this 
appears highly unrealistic, since at  present it is not possi- 
ble to produce heavy antinuclei, not to mention a beam of 
antinuclei. Antiprotons are accessible, but the charge 
is-as for protons-so small that the difference with 
perturbation-theory calculations is negligible. However, 
from a theoretical point of view it is interesting to explore 
how ionization and pair creation behave for large nega- 
tive projectile charges in order to point out the influence 
of strong Coulomb field effects. First results are given in 
Fig. 14. The ionization probability falls rnore and more 
below the result of perturbation theory, while the proba- 
bility for pair creation decreases only slightly below the 
perturbative result and then remains constant (remember 
the scaling with 1 /z;). 
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FIG. 14. K-shell ionization and pair-creation probability 
with capture into the K shell of the target as function of the pro- 
jectile charge Z, for the system Pb+Z, at the bombarding ener- 
gy E=1200 MeV/u and impact parameter b=20 fm. The 
probability has been divided by 2;. Dash-dotted line: ioniza- 
tion probability; dashed line: pair-creation probability; full line: 
unitarity limit. 

Finally, in Fig. 15 we display the dependence of pair 
creation with capture in the K shell on the impact param- 
eter b. For small impact Parameters the large deviation 
of perturbation theory from the results of the coupled- 
channel calculation is recovered. The difference de- 
creases fast with larger impact parameter and practically 
vanishes at about 600 fm. For b > 600 fm it is known 
from analytical calculations using perturbation theory 
that the pair-creation rate decreases almost exponentially 
i371. 

For the calculation of pair creation with capture of the 
electron in the K shell a single coupled-channel calcula- 
tion was sufficient. The calculation of direct pair creation 
is more time consuming since every state of the positive- 
energy continuum may serve as the final state. We have 
to perform a full coupled-channel calculation for each 
basis state of the positive-energy continuum. For reasons 
of computer time we could not take into account all con- 
tinuum states. Instead, we restricted ourselves to a few 

FIG. 15. Pair creation with capture with respect to the im- 
pact parameter for the system Pb-Pb, E = 1200 MeV/u. Dashed 
line: coupled-channel calculations; full line: perturbation 
theory. 

FIG. 16. Direct pair-creation probability vs Z, for the sys- 
tem Pb-Pb, bomberding energy E = 1200 MeV/u, and impact 
parameter b = 10 fm. Five electron states of the upper continu- 
um are chosen. Full line: Capture into the K shell; dash-dotted 
line: electron energy Ee = 1.1 mc2; dashed line: electron ener- 
gy E -=1.5 mc2; 0: K=-l; V: K= f 1; *: K = - 2 ;  +: 
K =  + 2. 

continuum states with positive energy. Thus, the results 
correspond to a multiple differential Cross section. 

In the first place we Want to know whether the nonper- 
turbative behavior of pair creation with capture can be 
found again for direct pair creation. Figure 16 demon- 
strates that this holds true. The increase over 
perturbation-theory data is different for different states, 
but amounts to more than one order of magnitude in all 
considered cases. This increase is weakest for the highest 
angular momenta and energies. 

IV. COUPLED-CHANNEL EQUATIONS 
AND GAUGE TRANSFORMATIONS 

The Dirac equation is invariant under local gauge 
transformations when the minimal coupling is used for 
the coupling to the electromagnetic field. A local gauge 
transformation of the complex phase of the wave function 
causes additional terms in the Dirac equation due to the 
derivative Operators in the Hamiltonian. These addition- 
al terms are canceled by the gauge transformation of the 
electromagnetic potentials. Of Course, observables are 
not changed by this procedure. 

Now we want to  investigate the influence of a gauge 
transformation onto the coupled-channel equations. I t  
should be clear that the description of an electron by a 
complete set of basis states is gauge invariant, since this is 
ari equivalent representation of the Dirac equation. But 
the question arises whether the results depend on the 
chosen gauge when using a truncated basis Set or  even 
perturbation theory. 

Two different requirements for gauge invariance of the 
coupled-channel equations can be distinguished. The 
stronger requirement for manifest gauge invariance 
means that all amplitudes ai a t  every time step are in- 
dependent of the gauge. The second requirement- 
which is weaker-we call "asymptotic gauge invari- 
ance." 
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In this case it is merely required that, e.g., in a heavy- 
ion collision the coefficients a i  are independent of the 
gauge for t-.i W ,  when the perturbing fields vanish. 
For this it has to be assumed that at the time t + + m ,  
when the a i  are compared, a fixed gauge is given. But 
only for vanishing fields a certain gauge is distinguished 
from all the others, namely A@=O. This is fulfilled in the 
case of a heavy-ion collision for t + t W .  But this condi- 
tion is not fulfilled in every case, e.g., in an electromag- 
netic wave of infinite extension (atom in a laser field). 

We start with the expansion of a wave function in 
terms of a complete basis Set { 4k 1 .  After a gauge trans- 
formation we have 

Now there are two possibilities: We may transform a k  as 
well as d k .  If the a k  shall remain unchanged we have to 
write 

and since the basis functions dL are eigenstates of H,,, 

Now the coefficients are independent of the chosen gauge 
and thus can be considered as probability amplitudes 
without any difficulties concerning their interpretation. 
We get the manifest gauge invariant formulation of the 
coupled-channel equations when all quantities are written 
from the beginning in a gauge invariant manner [38,39]. 
In this case it results that Ho has to contain the spatial 
components of the electromagnetic potential. Thus the 
manifest gauge invariance leads to a complicated form of 
Ho and a complicated calculation of the basis wave func- 
tions. Different aspects and examples of gauge transfor- 
mations from this point of view are discussed in a series 
of publications by Kobe and co-workers [40-431. 

But the manifest gauge invariance is not necessary and 
H, can be chosen in such a way that the basis states are 
easy to calculate and constant in time. Then the 
coefficients a k  in Eq. (54) have to be transformed. In the 
following we want to investigate whether in this case the 
asymptotic gauge invariance remains fulfilled [44]. 

A. Perturbation theory 

The coupled-channel equations read 

with the electromagnetic potentials ?=e& A- eV and 
the energy difference AEfk=Ef  -Ek .  Inserting the 
gauge transformed electromagnetic potentials 

we get 

In order to simplify this expression, we first consider the 
matrix element 

In the following we require 

This boundary condition causes a vanishing surface in- 
tegral in (60). Using the continuity equation of the tran- 
sition currents of the stationary basis wave functions 4 k ,  

we proceed 

(4, l i ? ' v x 1 4 ~  ) = i h ~ , k  J d ~ $ l 4 k ~ ~ i ~ ~ ~ k ( 4 ~  I ~ / d k  ) . 

(63) 

Thus it follows 

This relation is inserted in (59) and results in 

Since the additional term from the gauge transformation 
is a total time derivative, we derive the result that in 
first-order perturbation theory 

a j ( t =  o o ) = a f ( t = m  for ~ ( t = i w ) = O  (66) 

is valid, i.e., the asymptotic gauge invariance is fulfilled. 
We already mentioned that for a complete set of basis 

states the coupled-channel equations are asymptotically 
gauge independent. Rumrich, Soff, and Greiner [44] 
proved this explicitly in the representation of the coupled 
channels. In  addition, an example has been given for the 
gauge dependence when using a truncated basis. 

B. Gauge transformation of the target potential 

Now we want to discuss a slightly different point of 
view. Instead of transforming the projectile potential ac- 
cording to Eq. (581, 

P'= ?-hP= P-ea .vX-ea tx  , 

likewise we %ay transform the target potential that is 
contained in Ho: 

i ? h = H o - ~ Y .  (67) 

If at  the same time the basis wave functions are changed 
according to 

the Dirac equation for the basis states remains un- 
changed: 
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Thus the only effect for the coupled-channel equations (7) 
is a substitution of the basis wave functions by the 
transformed wave functions 4'. But d' differs from 4 only 
by a phase factor that is the Same for all basis states and 
thus cancels in the matrix elements: 

Therefore a gauge transformation of the target potential 
does not influence the coupled-channel equations at all 
and thus may be ignored. But in principle the initial con- 
ditions have to be changed according to 

which in general is possible only in a complete basis set. 
But requiring the initial conditions (61) for the gauge 
f i e l d , ~ e h a v e + ~ ( t + - m ) = $ : ( t - - c o ) a n d a l s o  thein-  
itial conditions remain unchanged. 

Now we turn to an alternative description of (projec- 
tile) gauge transformations and show the connection to 
target gauge transformations and to chazgeshf the basis 
Set. We split the total Hamiltonian H =Ho+ V in a 
different way: 

where 

The transition from Ao to I?; is just a target gauge trans- 
formation and thus may be omitted without changing the 
equations. What remains is a gauge transformation of 
the projectile potential, which we already considered in 
detail. 

Thus a projectile gauge transformation may be con- 
sidered as the change of the basis by a (space and time 
dependent) phase factor 

This again elucidates the fact that only for a complete 
basis Set the coupled-channel equations are gauge invari- 
ant. Only in the case of a complete basis set does the 
transition to another basis not change anything at  all. 

C. Coulomb boundary conditions 

Toshima and Eichler [45] demonstrated that the basis 
wave functions for the coupled-channel equations can be 
modified in such a way that .the resulting interactions be- 
tween these basis states become short-range interactions. 
The necessary modifications of the wave functions [45] 

with 

and 

obviously is just described by a gauge transformation as 
also pointed out in [6]. 

Toshima and Eichler [45] solved the coupled-channel 
equations, taking into account the Coulomb boundary 
conditions. Their result clearly shows a reduced interac- 
tion range compared with calculations not taking into ac- 
Count these boundary conditions. With first-order per- 
turbation theory the result for t --+ m remains unchanged. 
This is in agreement with our more general examination 
of the influence of gauge transformation on perturbation 
theory. 

In addition to the reduction of the interaction range 
the result of the coupled-channel calculation displays 
large differences of the occupation probabilities for 
t + m. This is due to the incompleteness of the used 
basis, since in a complete basis the result is independent 
of the basis. 

V. SUMMARY AND CONCLUSION 

In this paper we presented coupled-channel calcula- 
tions for the nonperturbative description of relativistic 
heavy-ion collisions. The time-dependent Dirac equation 
has been solved by expanding the wave function into the 
atomic basis set and the resulting system of ordinary cou- 
pled differential equations is solved numerically. The an- 
gular integrals of the required matrix elements have to be 
calculated by numerical quadrature. For the matrix ele- 
ments one should exploit the symmetry relations derived 
in Sec. 11. 

The most important result deduced from the coupled- 
channel calculations is that the probability for the 
creation of an electron-positron pair during the collision 
is strongly underestimated by first-order perturbation 
theory. A t  a first glance this is amazing since the proba- 
bility is small compared with unity. The breakdown of 
perturbation theory is caused by the depopulation of the 
initial state by ionization and excitation. 

Concerning gauge transformations we demonstrated 
that results obtained from perturbation theory remain 
unchanged under gauge transformations. However, the 
solution of the coupled-channel equations is gauge invari- 
ant only in the case of a complete basis Set. Since the use 
of Coulomb boundary conditions represents a specific 
gauge, differences compared with calculations that do  not 
include these boundary conditions [45] are caused by the 
incompleteness of the employed basis. 



228 K. RUMRICH, G. SOFF, AND W. GREINER 0 

[I] K.  Rumrich, K. Momberger, G. Soff, W. Greiner, N. 
Grün, and W. Scheid, Phys. Rev. Lett. 66, 2613 (1991). 

[2] U. Becker, N. Grün, K. Momberger, and W. Scheid, 
Atomic Processes in Relativistic Heavy Ion Collisions, Vol. 
153 of NATO Advanced Study Institute, Series B: Phys- 
ics, edited by W. Greiner (Plenum, New York, 1987), p. 
609. 

[3] K.  Momberger, N. Grün, W. Scheid, and U. Becker, J. 
Phys. B 23, 2293 (1990). 

[4] N. Toshima and J. Eichler, Phys. Rev. A 38,2305 (1988). 
[5] N. Toshima and J. Eichler, Phys. Rev. A 40, 125 (1989). 
161 J. Eichler, Phys. Rep. 193, 167 (1990). 
[7] R. Anholt, S. Nagamiya, J. 0. Rasmussen, H. Bowman, J. 

G. Ioannou-Yannou, and E. Rauscher, Phys. Rev. A 14, 
2103 (1976). 

[8] D.  M. Davidovic, B. L. Moiseiwitsch, and P. H. Nor- 
rington, J. Phys. B 11, 847 (1978). 

[9] R. Anholt, Phys. Rev. A 19, 1004 (1979). 
[10] P. A. Amundsen, and K. Aashamar, J. Phys. B 14, 4047 

(1981). 
[ l l ]  S. R .  Valluri, U. Becker, N. Grün, and W. Scheid, J. Phys. 

B 17, 4359 (1984). 
[12] R. Anholt, Phys. Rev. A 31, 3579 (1985). 
[13] H.  Gould, Lawrence Berkeley Laboratory Report No. 

LBL-18593, 1984 (unpublished). 
[14] R. Anholt, W. E. Meyerhof, Ch. Stoller, E. Moreiizoni, S. 

A. Andriamonje, J. D. Molitoris, 0 .  K. Baker, D. H. H. 
Hoffmann, H. Bowman, J.-S. Xu, Z.-Z. Xu, K. Franke], D. 
Murphy, K. Crowe, J. 0. Rasmussen, Phys. Rev. A 30, 
2234 (1984). 

[15] R. Anholt, W. E. Meyerhof, H. Gould, Ch. Munger, J. 
Alonso, P. Thieberger, and H. E. Wegner, Phys. Rev. A 
32, 3302 (1985). 

[16] R. Anholt, W. E. Meyerhof, X.-Y. Xu, H. Gould, B. Fein- 
berg, R. J. McDonald, H. E. Wegner, and P. Thieberger, 
Phys. Rev. A 36, 1586 (1987). 

[17] W. E. Meyerhof, R. Anholt, J. Eichler, H. Gould, Ch. 
Munger, J. Alonso, P. Thieberger, and H. E. Wegner, 
Phys. Rev. A 32, 3291 (1985). 

[18] S. Kelbch, J. Ullrich, W. Rauch, H. Schmidt-Böcking, M. 
Horbatsch, R. M. Dreizler, S. Hagmann, R. Anholt, A. S. 
Schlachter, A. Müller, P. Richard, Ch. Stoller, C. L. 
Cocke, R. Mann, W. E. Meyerhof, and J. D. Rasmussen, 
J. Phys. B 19, L47 (1986). 

[19] H. Berg, R. Dörner, C. Kelbch, S. Kelbch, J. Ullrich, S. 
Hagmann, P. Richard, H. Schmidt-Böcking, A. S. 
Schlachter, M. Prior, H. J. Crawford, J. M. Engelage, I. 

Flores, D. H. Loyd, J. Pedersen, and R. E. Olson, J. Phys. 
B 21, 3929 (1988). 

[20] J. Bang and J. M. Hansteen, Mat. Fys. Medd. Dan. Vid. 
Selsk. 31, 13 (1959). 

[21] R. K.  Smith, B. Müller, and W. Greiner, J. Phys. B 8, 75 
( 1975). 

[22] J. S. Briggs, Rep. Prog. Phys. 39,217 (1976). 
[23] U. Becker, N. Grün, W. Scheid, and G. Soff, Phys. Rev. 

Lett. 56, 2016 (1986). 
[24] J. Thiel, A. Bunker, K. Momberger, N. Grün, and W. 

Scheid, Phys. Rev. A 46, 2607 (1992). 
[25] R. Matzdorf, G. Soff, and G.  Mehler, Z. Phys. D 6 ,  5 

(1987). 
[26] R. Matzdorf, B. Fricke, and G.  Soff, Z. Phys. D 17, 233 

(1990). 
[27] J. D. Jackson, Classical Electrodynamics (Wiley, New 

York, 1983). 
[28] H.-J. Bär and G .  Soff, Physica 128C, 225 (1985). 
[29] G. Mehler, G. Soff, K. Rumrich, and W. Greiner, Z. Phys. 

D 13, 193 (1989). 
[30] L. F. Shampine and M. K.  Gordon, Computer Solutions of 

Ordinary Differential Equations: The Initial Value Prob- 
lem (Freeman, San Francisco, 1975). 

[31] J. F. Reading, Phys. Rev. A 8, 3262 (1973). 
[32] J. Reinhardt, B. Müller, W. Greiner, and G.  Soff, Phys. 

Rev. Lett. 43, 1307 (1979). 
[33] G.  Soff, J. Reinhardt, B. Müller, and W. Greiner, Z. Phys. 

A 294, 137 (1980). 
[34] M. R. Strayer, C. Bottcher, V. E. Oberacker, and A. S. 

Umar, Phys. Rev. A 41, 1399 (1990). 
[35] K. Momberger, N. Grün, and W. Scheid, Z. Phys. D 18, 

133 (1991). 
[36] Ch. Best, W. Greiner, and G.  Soff, Phys. Rev. A 46, 261 

(1992). 
[37] K. Momberger (unpublished). 
[38] D. H. Kobe and A. L. Smirl, Am. J. Phys. 46,624 (1978). 
[39] K.-H. Yang, Ann. Phys. 101, 62 (1976). 
[40] D. H. Kobe, E. C.-T. Wen, and K.-H. Yang, Phys. Rev. D 

26, 1927 (1982). 
[41] D. H. Kobe and P. K.  Kennedy, J. Phys. B 16, L443 

(1983). 
[42] D. H. Kobe and K.-H. Yang, Am. J. Phys. 51,163 (1983). 
[43] D. H. Kobe and S. M. Golshan, J. Phys. A 20,2813 (1987). 
[44] K. Rumrich, G. Soff, and W. Greiner, Phys. Lett. A 149, 

17 (1990). 
[45] N. Toshima and J .  Eichler, Phys. Rev. A 42, 3896 (1990). 


