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Photon-photon interaction in axial channeling 

J. Klenner, J. Augustin, A. Schäfer, and W. Greiner 
Institut für Theoretische Physik, Universität Frankfurt am Main, Postfach 111 932, 

0-60054 Frankfurt am Main, Germany 
(Received 14 July 1993) 

We investigate the possibility that high-energy photons are channeled, when passing through an 
oriented single crystal, due to Delbrück scattering. For this purpose the exact electron propagator for 
the single-string model is constructed. Starting from a separation of variables, we solve the Dirac equa- 
tion for a cylindrical electrostatic potential. The propagator for such external fields is constructed from 
solutions of the radial Dirac equation. This propagator is applied to a calculation of the S matrix for 
Delbrück scattering. We specify the conditions under which photon channeling takes place. Unfor- 
tunately these conditions are only matched for a very small fraction of those photons being produced by 
channeled electrons. 

PACS numberk): 12.20.Ds, 1 l.lO.Qr, 03.65.Pm 

I. INTRODUCTION 

While QED is in general the best tested theory today, 
this is not true for some of its properties, most notably 
for the nonlinear electromagnetic interactions leading, 
e.g., to Delbrück scattering. In fact, the experimental re- 
sults for Delbrück scattering only agree with the theoreti- 
cal predictions for not too heavy atoms [I]. The reason 
for the discrepancies is most likely that present day cal- 
culations only take into account the contributions of 
lowest order in Z. Also, Delbrück scattering is experi- 
mentally very difficult to isolate as it interferes with 
Thomson scattering, Rayleigh scattering, and giant di- 
pole scattering. Thus one has to conclude that the non- 
perturbative nonlinear effects of QED are presently hard- 
ly tested at all. There even has been much speculation 
about exotic nonperturbative effects in connection with 
the sharp electron-positron resonances observed at the 
Gesellschaft für Schwerionenforschung (Darmstadt); for 
a review see [2] and references therein. While none of 
these speculations should be taken too seriously they 
show how little is known about this sector of QED. It 
would therefore be very interesting to test such nonlinear 
and nonperturbative effects under different conditions, 
namely, for a photon under channeling conditions. With 
the latter we mean a photon moving very fast and very 
close to a string of atoms in an oriented single crystal. 
Then the virtual electron and positron coupling to the 
photon interact with the collective field of the whole row 
of atoms, an interaction that becomes highly nonpertur- 
bative for sufficiently large photon momentum. Due to 
this photon-photon interaction it might even happen that 
a fast photon under such conditions is channeled. We 
Want to answer the question whether this actually can 
happen and if yes under which conditions. Far from be- 
ing a purely academic question a favorable result could 
Open most interesting perspectives for photon-photon 
physics. As argued in [3] one could make two electron 
beams collide under channeling conditions. If photons 
get bound to the channeling axes under such conditions 
this could dramatically increase the rates for photon- 
photon collisions. 

11. AXIAL CHANNELING AND THE SINGLE- 
STRING MODEL 

During the Passage of high-energy particles through 
oriented single crystals a variety of nonperturbative phe- 
nomena occurs if the particles move parallel to a crystal 
axis or plane. These are called channeling phenomena. 
The basic mechanism is that a beam of charged incident 
particles nearly parallel to a symmetry axis or plane of 
the target crystal is scattered by collective interaction 
with whole axes or planes. 

A lot of literature on this subject exists; e.g., [4-71, and 
references therein. We refer to them for the definition 
and determination of quantities like critical angles or 
channeling radiation spectra. We give only a brief 
heuristic motivation of the single-string model. If a parti- 
cle moves parallel to an axis of atoms in a single crystal, 
the individual atomic potentials can be substituted by the 
averaged potential, neglecting the periodic oscillations in 
the direction of the motion. This leads to a cylindrical 
potential for every axis. The superposition of ail these 
so-called string potentials gives the continuum model. 
For the string potential mainly two expressions are used. 
First the Lindhard potential, derived from a Thomas- 
Fermi-like atomic potential, and second the Doyle- 
Turner potential, a sum of Gaussian curves fitted to rela- 
tivistic calculations of electron scattering factors [8]: 

Here Z1 is the projectile's charge, d the distance between 
two atoms of one row, ao the Bohr radius, R 2  describes 
the size of thermal vibration in the transverse plane, and 
the constants a i ,  Bi are tabulated for different targets [5]. 
(The Doyle-Turner potential for an electron channeling 
along the ( 110) axis in a germanium target at room tem- 
perature is shown in Fig. 2.) 

At this point we have to decide what effects should be 
investigated. For example, negative projectiles flying 
nearly parallel to the axes with low transverse energy can 
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FIG. 1. Delbrück scattering. 

be bound to one particular axis, this means string, be- 
cause of the positive charges of the nuclei. Therefore it is 
intuitively permitted to neglect all other but the one 
string of interest, leading to the cylindrical single-string 
model, called SSM in the following. 

On the other hand, positive projectiles with low trans- 
Verse energy can be bound in the transverse plane be- 
tween some strings. This channeling effect has recently 
been used to bend high-energy Proton beams 191, but for 
these particles the SSM is not a good description of the 
crystal, because they are captured by several strings. 

The situation for photons is unclear. So far nobody 
has studied the effects of photon-photon interactions in 
detail. However, if the bremsstrahlung photons emitted 
by channeled electrons were to be channeled too, this 
could be used to obtain high photon-photon luminosities 
[3]. This more practical motivation and the principal 
question of photon channeling induced us to investigate 
that possibility within the SSM. 

The basic process for the scattering of photons by an 
external field, called Delbrück scattering, is shown in Fig. 
1. The photon is scattered via the interaction of virtual 
electron positron pairs with the external field. 

Since the interaction of the charged particles is maxi- 
mal for maximal electric field it is permissible to calculate 
the Cross section within the SSM and sum up all contri- 
butions of different strin4s. (See Fig. 2, the maximal elec- 
tric field is at p=O. 125 A, a small quantity compared to 
the distances between two axes.) 

For our calculation we take plane waves for the pho- 
tons and the exact electron propagators for the fermions 
of the loop. This corresponds to lowest order in a and in- 
cludes all orders in the external field. 

The Doyle-Turner potential has a certain similarity to 
a cut-off Coulomb potential as shown in Fig. 2. Intuitive- 
ly one would say that the description in terms of a 
Coulomb-like potential would give the Same order of 
magnitude for the S matrix of Delbrück scattering. The 

.- Doyle-Turner 
- - Cut-off Coulomb 

I , . , . ,  

FIG. 2. Doyle-Turner potential and a cut-off Coulomb poten- 
tial; see text. 

description in terms of a Coulomb-like potential has the 
advantage that the solutions of the Dirac equation are 
given analytically in terms of Bessel and Whittaker func- 
tions. 

The calculation of matrix elements of the resolvent 
operator showed that the propagators in the two different 
descriptions are numerically similar [10]. For our prob- 
lern it turned out that the Coulomb description is not 
very helpful, since Bessel and Whittaker functions are not 
easy to calculate numerically for the specific Parameters 
and arguments needed. We therefore used the frame of 
the SSM with the above described Doyle-Turner poten- 
tial for the ( 110) axis in germanium at roorn tempera- 
ture and calculated the propagators numerically. 

111. DIRAC EQUATION IN CYLINDRICAL 
COORDINATES 

To describe QED effects in the SSM we need to solve 
the Dirac equation for a cylindrical potential AP 
=( A ' ( ~ ) , O ) .  This is done according to the more general 
considerations in [ l  1,121. 

With the electron's charge q = - / e  / the Dirac equation 
for an external field reads-we use f i=c = l  and the 
Dirac representation for the y matrices [13]: 

For the SSM we have qAo(p)= V(p) and after multiplica- 
tion with yO, ( 2 )  simplifies to 

First we substitute the corresponding expression in 
a„ a„ a, for the Cartesian operator y .V. Our second step 
is to make a nonunitary transformation of the resulting 
equation. The operator of this transformation, namely, 

is not unitary owing to the factor V;, which is intro- 
duced for later convenience. (Note that the volume ele- 
ment in cylindrical coordinates read p d p  dq, dz.) With 

we are led to 

The next step is to write an equation with a once more 
transformed wave function \V' and a transformed opera- 
tor, expressed as a sum of two operators K ,  and K„ de- 
pending only on p, 9, and z, respectively: 
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Since we want to separate the variables we demand that 
the commutator of these two operators vanish. 

For this new equation to be equivalent with (6) we 
make the ansatz 

~ , = ( - i y ~ a , + m , J r  , (8) 

Q - + ~ ' = r - l @ ,  

with a 4x4 matrix I?. The vanishing commutator in (7) 
leads to several equations determining r, with the solu- 
tion 

1 2 0  r = Y  Y Y . (9)  

In the representation (8) the operators K, and K, mix the 
upper and lower components of the spinor Y'. This un- 
pleasant feature is removed by the unitary transformation 

The transformed operators are given by 

(1 1 )  

K , - P K ; = ~ ~ ~ , + ~ , ~ ~ ~ ~ .  

Since the commutator of K; and Ki vanishes too, we 
make the following ansatz: 

[K;,K,']=O=K;Y, = -ieY, and KiY, = +ieY, , 

(12) 

with a wave function Y,,, consisting of a plane wave in 
the z direction, a phase factor containing the angular 
momentum p (see below), and a spinor depending on p: 

After a short calculation this leads to the following rela- 
tions: 

and the radial Dirac equation for a cylindrical electro- 
static potential 

Here sm, = E =  f + rn; denotes the transverse mass 
m , multiplied by s = f 1. The meaning of this constant 
will be briefly discussed below. Before noting the wave 
function, we Want to emphasize that this radial equation 
is essentially the same asfor spherically symmetric poten- 
t ia l~.  

With U being a solution to the radial equation (15) the 
solution Y of the Dirac equation (3) is given by the fol- 
lowing expression: 

There are three constants appearing in the derivation of 
Eqs. (15) and (16), which we Want to assign to physical 
quantities: 

(i) Y is obviously an eigenfunction of J,=-ia, 
+ ( i  /2 )y ly2, the operator of total angular momentum in 
the z direction, with p as an eigenvalue. (Observe that 
[H,J,]=O). For Dirac particles p can take half integer 
values 

P = * + ,  f+ , *+ ,... . (17) 

(ii) m, = + l / p ;  + me plays the role of the mass for the 
transverse motion. It is an interesting detail that in the 
radial equation (15) this mass is multiplied by the sign 
factor s. 

(iii) The factor s always occurring in the combination 
sm, has no direct physical interpretation, but in the non- 
relativistic and in the ultrarelativistic limit s = if 1 gives 
the z component of the electron's spin. \y is the ei en- B function of the operator L = ( 1 /ml )( - ia, + m, y 5), 
[H, I:] = 0, with eigenvalue s. 

Finally we want to note that every solution is character- 
ized by four quantum numbers, namely, the total energy 
E, the longitudinal momentum p„ the total angular 
momentum in the z direction p ,  and the "spin" variable s. 

IV. EXACT ELECTRON PROPAGATOR 

Now we are able to calculate the exact electron propa- 
gator SF in a cylindrical external electrostatic field, as 
shown in Fig. 3. SF Sums up the interaction of the elec- 
tron with the external field to all orders. 

Mathematically SF is given as the Green function of 
the Dirac operator including the external field [13], 

FIG. 3. Diagrammatic representation of SF. 



and by a Fourier transform it is related to the resolvent products of eigenfunctions, with a representing all quan- 
or the Green function G: tum numbers 

The contour C, of integration in the plane of complex Following the idea of [14] for spherically symmetric po- 
energy determines the vacuum. For our purposes it is tential~ we take (20) seriously, working out the product 
the usual Feynman contour as used for the free propaga- \VV' and combining all terms depending on p,pf to four 
tor. Formally the resolvent G is given by a sum over unknown functions k,(p,pl): 

The 34. are 2 X 2 matrices given by 

and P denotes a 4 x 4  matrix just permuting the second 
and third component, 

Putting this ansatz for G into Eqs. (18) and (19) for S, 
gives the following equation for the unknown functions 
k . . .  

' I  ' 

From [15] we know a solution to (24) in terms of solu- 
tions of the radial Dirac equation. If V and W denote 
solutions of (15) for complex energy C, regular at the ori- 
gin and infinity, respectively, one representation for the 
radial Green functions is given by 

K(6) is the Wronskian of V and W, and is independent of 
P:  

For practical calculations it should be noticed that the 
functions k,, for -p,  - S  are simply related to that for 
+/L, +s: 

For the calculation of Delbrück scattering we need 
another property of V and W. For p >> 1 they asymptoti- 
cally behave like 

with an effective mass M for the propagation in the radial 
direction. (We take the Square root with non-negative 
real part.) With two new spinors, 

the radial Green function reads 

In this form the exponentially damped propagation for 
"massive particles" is shown explicitly. 

At this point a serious problem occurs when using the 
Coulomb-like potential. Since M = w / 2  >> 1 for our pur- 
poses, we need asymptotic expansions for the solutions of 
the radial Dirac equation, taking into account the ex- 
ponential behavior. There exist formulas of this kind, but 
they do not work for radii p= 1 A or bigger [10]. 
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This section is devoted to the calculation of S matrix 
elements of Delbrück scattering in the SSM with the pre- 
viously defined Doyle-Turner potential. From quantum 
field theory we know the S matrix elements, 

S ,=sd4x ld4x2(  f I : ( @ A U ~ ) ( X ~  ) ( @ A ~ i ) ( x , ) : / i )  

where the Dirac fields @,@ are Operators in the external 
field. The initial and final photon states 1 i ), 1 f ) are 
represented by plane waves, each one with two transverse 
polarization vectors 

E ~ ~ ) = w ~ ~ ( o , ~ , , , o ,  -k l )  , 

E{~)=(O,O,  1,O) , 

wi =mf W denotes the energy of incoming and outgoing 
photons. Since it is scattered off an external static field 
the energy is conserved. In addition to longitudinal com- 
ponent kll  and therefore the absolute value kl  of the 
transverse photon momentum are conserved too. The 
only possible effect of the scattering process is a rotation 
of the transverse photon momentum in the k, - k, plane 
by an angle 4. 

The plane waves can be expanded in Bessel functions 
using 

+ m  
;X cosa = 2 i m e i m a ~ m ( x ) ,  

m=-J) 

and after some algebra the following equation for S is de- 
rived: 

Primed and unprimed quantities refer to the propagators SF(x2 ,xI )  and S F ( ~ 1 , ~ 2 ) ,  respectively, and Vp is the normali- 
zation volume for the electromagnetic field. The polarizations of initial and final photons are numbered by hi,hJ. With 
the following abbreviations, 

pzp; + ss ' m  ,m ; P* P: PzP;+~s fmlm;  -m: 
Tl  = 9 T 2 = ~ + ~  9 T3= 

ss'm ,m + me sslm,m; 
7 

k,=k,(pl,p2) , k; =k;(pz,pl) , 

the "reduced matrix elements" are given by 
I f 



Before presenting numerical results and physical con- 
clusions in the next section we briefly outline some 
mathematical and numerical aspects of the calculations. 

(i) In Fig. 1 the graphic representation of the scattering 
amplitude shows that it implicitly contains the contribu- 
tion of the vacuum polarization without a coupling to the 
external field. For different initial and final states this 
contribution is Zero. However, numerically this represen- 
tation of Zero converges very slowly in terms of the sums 
and integrals in (34), and it is convenient to substract the 
free contribution in the reduced matrix elements: 

(ii) In Sec. IV it was shown that the radial propagation 
is damped by a factor exp[- ( M  +M')  lp2-pl I]. Conse- 
quently the main contribution to the radial integrals 
comes from values of p, and C minimizing Re(M + M 1 ) ,  
I Im(M+M1) .  

(iii) For the incident angles under consideration, i.e., in 
the range from 1 to 10 prad, the photon waves are direct- 
ed nearly parallel to the z axis and the sum over angular 
momenta converges well. From the explicit form of the 

it can be Seen that the terms with small p-p ' l  

dokinate the Sums over angular momenta, where the 
terms with Ip-prI=l are about one order of magnitude 
bigger than the next ones, reflecting the spin-1 character 
of the photon. 

(iv) The sum over "spins" s,s' can be done by means of 
Eq. (27). 

( V )  The contour C, should be rotated to the imaginary 
axis to improve the convergence of the integration. 
This has to be done with care, since the cuts and poles of 

have to be circumvented. For this purpose we 
remember the properties of G(x1,x2,f) as a function of 
complex energy 6. G is a meromorphic function with 
branch cuts for real f, f /  > m„ and simple poles for 
[=Ea,  with E, the total energy of a bound state with 
quantum numbers a .  Since G has real values for real 5, 
where defined, it obeys the reflection principle of 
Schwarz, 

The reduced matrix element is given by products of the 
form 

and the cuts and poles of 8 are lying at the places 
sketched in Fig. 4. The lines represent the cuts and the 
crosses stand for the bound states. The thick lines give 
the new contour, split into five Parts. The paths C, and 
C s  give the contribution of the imaginary axis, 

Jc, + c5 s (g idg=  J i W [ s ( g i -  o 

where the integrand can be simplified by observing 
k;(<)= k i j ( < * ) .  The integrals over C 2  and C4 are closely 

P- t 
X X X X X  

R e ( i )  

FIG. 4. Deformed contour of integration in the complex 
plane. 

related too, and in a symbolic notation one gets 

with a =min(O,m; -U). The last contribution comes 
from the closed integral around the shifted poles of 
bound states. Using the form (20) of G and Cauchy's 
theorem, the following expression remains: 

Here the sum is over all bound states in the primed quan- 
tities and EI,  E,,,~;) is the radial propagator given 
by (25) with v-tu and w+u, K ( f l ) =  1, where the nor- 
malized spinor u describes a bound state with quantum 
numbers a', especially the total energy E,, . Note that for 
the Doyle-Turner potential the sum in (47) involves only 
a finite number of bound states for given pl,p:. This is in 
contrast to a description in terms of a Coulomb-like po- 
tential, where the sum is infinite not only in p'. 

(iv) Since we are first of all interested in the order of 
magnitude of Delbrück scattering, we do not calculate 
S f i  with high accuracy. The error in the absolute values 
of the results, however, should not be larger than 20%. 
The accuracy could be improved by investing much more 
Computer time, but our results prove already that photon 
channeling is exceedingly weak, such that it seems un- 
reasonable to invest much more effort to improve accura- 
CY. 

Now we come to the results of the calculations. In Fig. 
5 the squared S matrix for an incident photon of 5 GeV 
energy is shown. The incident angle is I)= 1 prad, and 
sum and average over initial and final polarizations is to 
be understood. Interestingly we have a periodic function 
of the "scattering angle" 4 in the transverse momentum 
plane, and this shape is similar for all values of w and I). 

The periodicity of / S  1 '  in 4 is an interesting property, 
implying that the photon is preferably scattered in for- 
ward direction or is "bounced" by the string. 
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P- 

0 5 10 15 20 25 30 35 
W (GeV) 

FIG. 5. Squared S matrix in dependence of 4; See text. FIG. 6. Dependence of @ on photon energy o; incident angle 
$= 1 prad. 

VI. AXIAL PHOTON CHANNELING 

With the S matrix, calculated in the last section, we are 
able to evaluate a differential cross section per unit length 
of scattering the initial photon into a group of final states 
within the interval [4, t$+d#]: 

To derive a probability, the cross section has to be divid- 
ed by the area covered by one ch~nnel  when "looking" at 
the front of the crystal Ac = 7.6 A ~ .  

Next we have to multiply with a typical length L,. 
This is chosen to be 

kll L,=D-, (49) 
k L 

where D -0.2338 is the transverse distance from the z 
axis, where the potential has reached the value V(O)/e. 
Since the main contribution in the radial integrals Fomes 
from the radii of maximal electric field, p-0. 125 A, this 
seems to be a reasonable estimate. Finally we multiply 
the derived probability with 4 and integrate over the 
range of angles. The result is an average angle of rotation 
for the transverse photon momentum 

With this formula we derived rotation angles for various 
photon energies and incident angles. Before presenting 
the numerical results we first Want to give an intuitive 
description of our criteria for the occurrence of photon 
channeling . 

The important question for us is whether the photon 
stays close to one string, i.e., in the string field, rather 
than how large an angle it is scattered during its passage 
through the target crystal. The latter would get contri- 
butions from independent scatterings at different strings. 
To be bound at one string the photon should at least re- 
Verse its momentum before it could leave the string po- 
tential. Therefore photon channeling cannot take place if 
@ <<2lr. On the other hand, channeling becomes possi- 
ble if @ is becoming large, @ >>2n-. One should not take 
this picture too literally, because in the continuum 
description we have neglected the z dependence of the po- 

tential. In a real crystal the photon can change ki l  as well 
as k „  not only the direction of k, in the transverse plane. 
However, our results should give the correct order of 
magnitude and thus should allow one to decide whether a 
photon can be channeled. 

In Fig. 6 the dependence of @ on the photon energy is 
shown for an incident angle of $= 1 prad. The diamonds 
mark the results of the calculation and the curve is a fit to 
the data points, showing that @ is softly decreasing with 
energy w. The absolute values of @ are lying in the re- 
gion of mrad, implying that no channeling effect for these 
photons can be expected. At this point a short remark on 
the Compton scattering of the photons should be made. 
A simple estimate, multiplying the total Compton cross 
sections for one electron with the number of target atoms 
per length L, and with Z, =32, shows that for the ener- 
gies under consideration Compton scattering can be 
neglected. 

Figure 7 shows @ as a function of the incident angle $ 
for the energy 0 = 5  GeV. The data points are fitted very 
well by a line proportional to $-I. This dependence 
means that only photons with very small incident angles 
$ << 1 prad could be channeled. These results can be ap- 
plied to bremsstrahlung photons that are emitted by axi- 
ally channeled electrons. In Fig. 8 the distribution in $ 
of these photons for an incident electron of 50 GeV is 
shown, calculated within the SSM [16]. It is determined 
after a passage of 1 mm through the crystal, and the 
number of photons are summed up for three intervals of 
energy o. As expected, the distribution in $ becomes 
narrower for higher photon energies. The most interest- 
ing detail in our context is that for angles $ 5 25 prad no 

FIG. 7. @ as a function of incident angle $, with CO= 5 GeV. 



FIG. 8. Angular distribution for bremsstrahlung photons of 
an electron with initial energy of 50 GeV; See text. 

significant number of photons is emitted. Remembering 
the results for @ = @ ( U , + )  we conclude that no channel- 
ing effect for bremsstrahlung photons can be expected. 

Our results imply that photons are not channeled for 
attainable energies. Q, does not increase strongly with en- 
ergy, showing that the nonperturbative QED effects en- 
countered in channeling are qualitatively different from 
those in, e.g., strong Coulomb fields [17,18]. Pair 
creation in channeling is then no sign of overcriticality. 
To  elucidate this point let us analyze the electromagnetic 
field experienced by an electron with half the photon en- 
ergy (see Fig. 9). 

Obviously both the electric and magnetic field grow 
with the Lorentz factor y ,  of the electron. [For w=25 
GeV one has, e.g., y ,  =(  12.5 GeVV(O.5 MeV) 
-2.5 X 104.] Thus the electromagnetic interaction be- 
Comes completely nonperturbative and the electric fields 
alone become overcritical. However, simultaneously the 
magnetic field, which is proportional to y ,  too, reduces 
the radial mobility of electrons and positrons. Their 
"Landau orbit" has a width of - 1 /B. Both effects seem 
to cancel numerically. With this interpretation in mind 
and based on our numerical results we conclude that pho- 
ton channeling does not occur for any reasonable energy. 
We do not believe that any improvement of the calcula- 
tion, e.g., by taking the periodic oscillations in the z 
direction into account, can change this conclusion. 

FIG. 9. Electromagnetic fields affecting an electron; See text. 

VII. SUMMARY 

We have derived the exact electron propagator for axi- 
al channeling. This propagator can be used to calculate 
any QED process for the channeling situation; e.g., radia- 
tive corrections, photon splitting, etc. We used this prop- 
agator to calculate the interaction of a high-energy pho- 
ton with the collective electromagnetic field of an orient- 
ed single crystal. We give numerical results for the aver- 
age scattering angle as a function of incident angle and 
photon energy up to 25 GeV. We find that photons can 
indeed be channeled if they are sufficiently close to a 
channeling axis and their transverse momentum with 
respect to this axis is sufficiently small. The photons pro- 
duced during high-energy electron channeling have, how- 
ever, rather large transverse momentum and are pro- 
duced relatively far from the channeling axes such that 
no appreciable channeling should take place. 
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