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Coulomb effects on electromagnetic pair production in ultrarelativistic heavy-ion collisions
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We calculate the asymptotic high-energy amplitude for electrons scattering at one ion, as well as at two
colliding ions, by means of perturbation theory. We show that the interaction with orekionalizesand that
the interaction with two ionsausally decouplesVe are able to put previous results on perturbative grounds
and propose further applications for the obtained rules for interactions on the light cone. We discuss the
implications of the eikonal amplitude on the pair production probability in ultrarelativistic peripheral heavy-ion
collisions. In this context the Weizsker-Williams method is shown to be exact in the ultrarelativistic limit,
irrespective of the produced particles’ mass. A new equivalent single-photon distribution is derived, which
correctly accounts for Coulomb distortions. The impact on single-photon induced processes is discussed.
[S1050-294{@9)00602-2

PACS numbeps): 11.80—m, 25.75-q, 12.20-—m

[. INTRODUCTION lytic expressions describing electron-positron pair production
in heavy-ion collisions is motivated by the question whether
At ultrarelativistic energies the theoretical treatment ofCoulomb effects only play an inferior role at high energies.

scattering processes is extremely facilitated. On the on&Uch a conclusion might be drawn from a comparison be-

hand, the relevant equations themselves simplify, whefV&€n second-order perturbation theory resui§ and cal-

terms of orderO(1/y%) become negligible; on the other ﬁ(u):?snflnf]’ ,employing Furry-Sommerfeld-Maue wave func-
hand, the mteracnons simplify due to cgusahty. In that way, 1o easily assess the effects of Coulomb distortions, we
high-energy scattering becomes analytically accessible.

Eikonal imati tical model | ; state the problem in terms of the Weizkar-Williams
Ikonal approximalions or oplical models usually aré 101~ methaq of equivalent quanta. We derive equivalent single-

mulated for scattering of a highly energetic particle at a slow,qion distributions, which correctly account for Coulomb
or static centef1,2]. We present a simple transformation of boundary conditions.

the covariant derivatives, that is used to easily solve the op-
posite case. In this way we can show that matrix de- Il. SCATTERING OF AN ELECTRON
scribing electron scattering at ultrarelativistic pointlike OFF A FAST MOVING SOURCE
charges is determined by the gauge phase leading to the
Dirac equation represented in the temporal gauge. We find
that it naturally exhibits the same form as the well-known We are searching for the asymptotic scattering solution of
eikonal expression, as is expected by Lorentz invariancea Dirac particle from a fast moving Coulomb potential in the
Our results, therefore, coincide with previous calculationdimit of very large collision energy. In the Lorentz gauge the
performed in this reference frani@,4]. Lienard-Wiechert potentials for a point charge moving with
The summation of ladder graphs is showretkonalizeas ~ Uniform velocity 8 in +z direction read
well [6-7]. This was elegantly derived by kinematically de-

A. Transformation of the Dirac equation

coupling the components of the scattering process, and Lor- A= Zay )
entz transforming into the respective rest frarfi@k which 0™ \/ﬁ
inherently contains the advantages of a fast external poten- Y (z=BY" XL
tial. As=BA,. @)

Following a different approach we will exploit the same
advantages. We follow a perturbative approach and directlifhe equation of motion for the scattered particle becomes
approximate the external potential by its asymptotic high- .
energy limit, which amounts to saying that the longitudinal [Yo(id—Ag)+ ¥3(idy+Ag)+ 7, -1V, —m]y=0. (3)
components of the exchanged photons can be discarded. In
doing so, one can directly rederive the amplitude for theWVe setc=7%=1. The charge of the electron was absorbed
scattering at one center and even put the recent result #fto the definition of the potential. We make use of the ex-
Segev and Wellg9] for the scattering amplitude for an elec- terne_ll field approximation, i.e., we assume that the source is
tron moving in the field of two ultrarelativistic colliding ions Not influenced by the scattered particle and moves on a
on perturbative grounds. Moreover, one can go beyond thatraight line. This treatment will be justified if the mass of
scope of their calculations to obtain additional insight.

The derivations in this paper are first formulated for elec-
tron scattering. Employing crossing invariance, they are ex- it should be mentioned, however, that the Coulomb distortions
tended to cover the physically more relevant process ofonsidered in these calculations only account for one ion, whereas
electron-positron pair production. The search for exact anahe second ion enters as a perturbation.
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the source particle is very large. To simplify the Dirac equa-the integral, the limity— o corresponds to sending the upper

tion (3) we use the operator identifst 2] bound of the integral in Eq6) to infinity. Therefore, all of
) ) o B the above applies, giving
(10 Fiaxdn ¢)"= = Hid)"p™* 4
. _ o _ lim Ag=Zad(z—t)Inx?+C'. (10)
to rewrite the covariant derivatives. We must introduce two Y0
fields ¢' and ¢ for the space and the time component of the
vector potentialA#, The Coulomb phasé’ will, in general, depend omandt. It
) can be removed by an additional gauge transformation as is
Ap=idn ¢, easily seen:
, 5
A3: | &Zln ¢, .

~ t - _ -
lp,:eXF( _IJ dtrcr)d/:eJrIZa(}(tz)lnXEw. (11)
The auxiliary fields are determined to be o
¢ The gauge transformatiofll) was first applied by Aichel-
¢(x)=ex;{ _if dt’Ao(x)) (6) burg and Sexl[13]. The removal of the Coulomb phase
- yields a short-range potential allowing for asymptotic plane-
wave solutiongsee Appendix A
For t#z the t and z dependence in both the transverse
¢'=¢7’32 vector potential and the transformed spinbvanish in the
' limit y—o. By inverse transformation we find thé@tsolves

Inserting Eq.(5) into Eq. (3) we arrive at the transformed a free Dirac equation on either side of the light frostz and
Dirac equation can only differ by a phase.

The transformed wave functiofr has the advantage of
being continuous across the surface defined-by. In con-
trast, the wave functios exhibits a discontinuous behavior
at the light front. There is a jump in that component/othat

~ couples toy_ = yo— y3, the matrix structure of the interac-
=0, (7)  tion in the limit y—c. Using this property one directly finds
for y_y at the discontinuity,

and

Yol i+ 3’3( 10,— ——As
By

+5,-(iV, +igrad Ing)—m

where . . I
y_(t—z=0")=e %*"\y_y(t-2z=07), (12

~ . t
= 1///¢=exp(|f dt'Ao>¢- where we ignored the irrelevant constant phasé The
complementy.. ¢ of these spinor components, whefe

The operator identity has led to the elimination of the scalar=27y,—y_= o+ 73, iS continuous at=z. On either side
part of the vector potential, i.e., to the temporal gaulge, of the discontinuity both parts of the spinor are coupled via
=0. This will be of particular importance in Sec. VI. In the the free Dirac equation.

ultrarelativistic limit terms of the orde®(1/y) are neglected By application of the Lehmann-Symanzik-Zimmermann
and we end up with a Dirac equation coupled to areduction formula one finds, in general, that at very large
purely transverse vector potentialA’, =igradIng  Scattering energies tHeoperator is determined by the func-

ot qy i St tion ¢, in which we recognize the well-knowaikonal ex-
=[__dt'grad Ay, which is the negative time integral of the , ) -
/ grad A g g SEressmn. We note that because of the ider{ythis result

transverse electric field. From classical electrodynamics on ds ind dently of th fth .
knows that the time integral of the transverse electric field ig'©'dS Independently of the power of the momentum entering

In the respective wave equation. For that reason the expres-

given by . ; . .

sions for theS matrices for, e.g., spinor or scalar particles

" v only differ by an overall factof14]. We see that the obtained
d“i: _zza_Lz_ (8 S operator is a unitary operator since it is connected to the

— BX| gauge phaseb. It agrees with the first term of the Magnus

o expansion of the time-evolution operafdi5], since in the
This implies that ultrarelativistic limit the considered gauge-transformed inter-
. 1 action is compressed to an infinitely short time span. In fact
f mthO:EZ“ Inx?+C. (9)

f The effect of the potentigll0) also can be described within the

C is an infinite quantity, which expresses the divergence 0Aichelburg-SexI metri¢4,13]. Two field-free regions of space-time

the phases in Coulomb scaftering. Using Ea}saand(l) _'t _'S meet atz=t, such thafthe superscripts> and < denotet>z and
easy to show that the transverse vector poteAtialexhibits respectively, X =xX=, 27=2"— Zalp_Inx%, =t
) 1 18 ] - \ s

a Heaviside step function dependencé(t—z)x, /x> inthe ~ — Zalp_Inx . The result(12) is then easily obtained by simply
limit of very large y. Sincet and y enter symmetrically in  substituting the above expressions into the plane wave at
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the first-order Magnus expansion, i.e., the eikonal approxi- P i i v
mation, sufficiently describes the scattering process as long é é é
k- PSkE kKL KD e S pk™

as the duration of the electromagnetic interactigp
~X, Iy is short compared to the typical transition time for
the scattering procesgans~ 1/|E¢—Ej|~1/w. The condi- FIG. 1. Scattering of an electron at an external potential.
tion can be cast in the form, <y/w. It is trivially fulfilled
at infinite scattering energies, and the eikonal approximation . :
becomes exact. At finitg, we have to consider an adequate Here we used the invariant squariad m9mentum trarsfer
screening of large transverse separations. We will elaborate (P’ —P)?, which approaches~ —(p’, —p_)? in the limit
this condition and the cutoff in Sec. VIl and in Appendix A. Y—%*.
Let us explicitly write down an expression for tisema-
trix, which follows from the above reasoning. The left-hand
side of Eq.(12) can be expanded in plane waves. Since we
consider scattering at the negative light front, we must sub- |n this section we want to derive the eikonal form of the
stitute  d®x—dx,d’x, [16] and accordingly d°p  matrix via perturbation theory. Several approximations are
—dp_d?p, . The expansion coefficient gives tiematrix — necessary to obtain the eikonal form, namely, the neglect of
for electron scattering in momentum spageandp’ denote  the longitudinal components of the photon momentum, the
the initial and final momentum conservation of the photon light cone momentum, as well as
the simplification of the matrix structure of the interaction
_ - [5]. The calculation shows that these approximations are the
S(p’,p)=2m8(p_ —p_)[Fpp(e 2*IN*i~1) counterparts of the requirement of a negligible longitudinal
vector potential and the step function dependence of the
transverse vector potential. Having this in mind we directly
use the asymptotic high-energy expression of the potential.
We then evaluate the terms of the perturbation series for the
(13 external-field scattering problem depicted by the Feynman

B. Perturbative approach

+(2mP(P L — )] %ﬁp')%u(p»

PoPo

u denotes the electron unit spinor, which is normalized ac9raPhs of Fig. 1. o o
. — . : The potential entering into our calculations is of the form
cording tou(p)u(p)=1. F, , abbreviates the Fourier trans-

form with respect to the transverse coordinates, taken at the
momentum o', —p,) Ag(X)=As(X)=8(z—t)V, (X,). (16)

Forp(f(X,))= f d2x, e M TPOR(X ). (14)

We note that the negative light-cone momentpm=p, In the following calculations it will not be necessary to
—p3 is conserved in the scattering. The positive light conespecify the explicit form oV, (x,). Problems arising from
momentump ., = py+ P3 is fixed by the mass shell condition the logarithmic potential obtained in the last section will be
p.p_=m’+ 5f . Equation(13) represents a well-known re- dlscpssed in Sec. IV._ The Feynr_nan propagator describing
sult that was previously derived in, e.§L,4,3,9. The first the internal electron lines reads in terms of light-cone and
term in the square brackets in E4.3) corresponds to th& transverse momenta

matrix. The exact amplitude for electron scattering at an ul-

trarelativistic pointlike charge, moving intz direction,

therefore, reads

) -2 — ~ —
App=2m8(pL—p_)Fprple 2" —1)u(p’)y_u(p) B
_ YoPo— ¥y-P—M+le
an2zasy —p L FA71Z0) A
=—| —P) - =——— ~ ~ - >
mLaop-—P t I'(1+iZa) _%(’Y—p++?’+p—)_7¢'pL+m (17
XeiZaln(—t/A)U(p/),}iu(p). (15) p+p,—pf—m2+ie .

S _ The amplitude for electron scattering in first-order perturba-
3Note the striking similarity between E¢L5) and the nonrelativ- tion theory is

istic (Schradingep amplitude for Coulomb scatterird.7],

o) L o
f()=— 1 k glilkin sirP62. Aprp:(Zﬂ')(_UfS(pL_p—)Fp'p(VL(XL))U(p')qu(p)-

6 i (18)
2, _ _
2k smz2 |1+ k)

with the squared momentum transfdreing proportional to sfg/2.  In second-order perturbation theory the amplitude reads
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dk, dk_d%k Lt
(2 _ + = 20 _i)2i _
Ap'p—f(zT(Zﬂ) (—i)id(k-—p-) /
X 8(pl—k_ - Frol V. (X \
e e Sl VL) \ :
R ‘/b' z
XFpnd V(X ) Ju(p’)y-u(p)
X,
=(2m)(=i)28(p. —p-) A B
X %Fp,p[Vf()i)]U(p’)a/,u(p). (19 FIG. 2. Trajectories of two lightlike ions colliding with an im-

_ _ _ ~ pact parameteﬁ. Thex, axis symbolically denotes the transverse
The k. integral in Eq.(19) drops out using the symbolic pjane. Theh dependence of Eq27) is absorbed in the definitions

substitution of VAB(x,).
- - r . 1-iaZ
1U(k+i€)—P(1k)—imd(k) (20) TP —p)=m (1_"”2){ 4 . (25

F(iaZ) \(5,L_5L)2

since the principal value integr® vanishes. It is interesting
to note that the simple structure of the res(li8) and(19) is
retained if one goes to higher orders of perturbation theor
Thenth-order amplitude factorizes into— 1 integrals of the
form (19), which leads to

The cross section for this scattering process is found to be
exactly the Mott formula for Coulomb scattering of ultrarela-
Yiivistic electrons at a static source, Lorentz transformed into
the electron’s rest frame. Such kind of agreement between
the exact result and the first-order perturbation theory is also
found in the nonrelativistic case, and is known as one of the

A —(2m)(=i)"s(p. —p )iF V(X)) peculiarities of the Coulomb field.
PP T Tl PR The well-established eikonalization of the scattering am-
— .~ plitude and thus the reduction to Mott’s result imply that in
xu(p")y-u(p). (2D the high-energy limit the electron and the positron Coulomb
] ) ) o ) scattering cross section become identical. This behavior of
This result is obtained by symmetrizing the-1 integrals  he cross section at ultrarelativistic energies confirms the Po-
over the positive light cone momenta yielding the expression,eranchuk theorerfiL8].
(—i2m)""Yn!I;8(k') [5]. This corresponds to reconsider-  The scattering process can be described in terms of the

ing the different time orderings and finally dividing by to  single exchange of an “effective photon” according to the
prevent double counting. This symmetrization procedure dimodified potentialsee alsd19])

rectly shows that the principal value terms in E20) do not

contribute.
Using Eq.(21) the perturbation series can be summed up 2iZa
to yield the result Ag(X)=Ag(X)= §(z—t)[(x—) - 1}. (26)
L
App=2m3(p" —p-)T(p', —P)U(P)y-u(p). (22 lIl. SOLUTION IN THE FIELD

OF TWO COLLIDING IONS

In the c.m. frame, the potential of two ultrarelativistic
colliding ions A and B moving in +z and — z direction, cf.

Here we defined the momentum transfer function

Fig. 2, reads
TP’ L —Pu)=Fprple™ Vo)1) (23
Ags(X)=8(z=)VA(X, ) = 8(z+VE(x,). (2D
with
+ oo . . . . .
Z oy i The identity(4) can also be applied to potentials given by
Vi) J—oo dtAg(X); @, superposition as is easily verified,

this result reproduces the eikonal form. o n 1 ) 1
For V,(x,)=ZaInx?,7(p', —p,) reads[see Eq.(15) 10,71 2, <9x|n¢i) :(H ¢i) (i) (H ¢i) :
and Appendix D (28)
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Py x P’ Here we have already added both possible time orderihgs.
1 = y and 7z are the momentum transfer functions defined in Eq.
ék' ék"ék'k ép"k (23) for the interactions with iorA andB, respectively. The
A B B A single-ion scattering amplitudes have already been sub-

tracted since they do not contribute to pair production which
FIG. 3. Same as Fig. 1 but considering two iohsandB as s finally envisaged. According to the shift theorem for Fou-
externaI_S(_)urces. This diagram does not contribute in the highrier transforms, the whole impact parameter dependence of
energy limit. the momentum transfer functiafy (see Fig. 2is expressed
by the factore'("Pr k1P Expression(30) can also be de-
Since in the case of E(27) we have two discontinuities, the fived by using the discontinuous behavior of the wave func-
asymptotic solution is not obtained as easily as in Sec. Il Ation at the light frontssee Appendix Band corresponds to
It has been obtained recently by Segev and Wi A  the result of Segev and Well9].
slightly modified derivation is shown in Appendix B. To understand the decoupling property, one has to con-
It is found that the two ions couple to distinct componentssider the Dirac matrix structure of the potential. To this end
of the electron spinor. We show in this section how thiswe write the Dirac equation in the following form:
behavior follows from perturbation theory and how it is in-
terpreted consistently. .
We have to consider several new diagrams describing the ; S S _ N a4 nn _
alternate interaction of the electron Withgboth ions. We ?ind [10iF @1V =yom= (1% Baz)Aoly=0, @D
that the contribution to the amplitude from an arbitrary num-

ber of interactions with one ion, which are sandwiched beyyhere the sign depends upon the direction of motionAgd
tween interactions with the other igesee Fig. 3, vanishes. is given by Eq.(1). In the limit B—1 the operators (1

The reason is that we end up with an integral of the form + Ba,)I2 become orthogonal projection operat@. The
*Ba, :

dk. action of these operators becomes clear if one recalls the
A~f = — = =0, standard form of Lorentz transformatiof48] in spinor
(ktpi_ki_mz—i_i6)(ktpit_k,f_m2+i6) space rﬁ ] P
(29 ’
. . . . Iy = (i14)o, ap
which vanishes since the contour can be closed in the upper gr(x')=e"" (), (32

half plane, where the integrand is analytic. The integral runs
over the positive(negative light cone momentum, if the i ~A A
sandwiched photons mediate between the electron and tN{'eT® oap=(1/2)[va,75]. The exponent represents the
ion moving in the— z(+z) direction. The two factors in the Product of the rapidity vectoy times the generators of the
denominator stem from those electron propagators that ardeorentz transformation. For a boost in thez direction Eq.
adjacent to the outer, enveloping, photoks.andk’, cor- (32 simplifies to
respond to the transverse photon momenta that are trans-
ferred to these electron lines. . y v\

In the ultrarelativistic limit the electron will, therefore, z//’(x’)ze(y’z)“zw(x):cosr( —)[1—tam‘(§) az} P(X).

interact with the ions separatelgee Fig. 4. The separate 2 33
interactions of the electron with the two ioMsand B are
linked in the following way:
42K A Lorentz-transformed vector acting in spinor space can
tot L S @ > Lk \@i(—p k)b therefore directly be obtained by the Lorentz transformation
N = | ——=Ta(p' L —K)Ta(—p,+k,)e(TPLTkD y y
PP j (21)2 a(Pemk)Ta( =Pt k) (32) accounting for the vectorial nature of the transformed
object with a factor 2 in the exponent. See, for example, the
. oK 4 vem ac_tlon of the retarded Coulomb potentiél) on Dirac
x| up)——— 7’2 — . u(p) spinors, Eq(3D).
Pip-—ki—m+ie The operators ( a,) are thus 1y times a Lorentz trans-
A L. R formation with effectively infinite rapidity. These operators
Lup) —a,-(p . +p' -k )+ym . ( )) project the Dirac spinors onto causally disconnected sub-
up)— S —Y-UP) |- spaces of the Hilbert space. Therefore it is causally impos-
PLp.— (PP’ —k )P —mP+ie P P y mb

sible for the Dirac spinor to communicate alternately with
(30 both ions. Since the matrix structure of the true interaction is

. given by (1* Bas)~(1* a3) T as/2y?, the leading correc-
tions to this behavior are suppressed withy?1/
; é é é é é Due to this causal decoupling property, the exact expres-
A A 5 - sions for the interaction of an electron with two colliding
ultrarelativistic ions maintains the structure of the two-

FIG. 4. Class of Feynman graphs contributing in the high-photon graph, containing, however, the exchange of effective
energy limit. photons according to E¢26).

P

A
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IV. MATHEMATICAL DISCUSSION The error that is made in the naive calculation corre-

In the previous sections the potential of a fast movingsfponds to the neglection of the Coulomb boundary condi-

charge has been substituted by its asymptotic high-energb'ﬁns' This is seen as follows: We rewrite the logarithm as

expression. From a mathemati¢ahd also a physicapoint e time integral over the gauge-transformed Coulomb po-
of view this is a problematic limit, since the required trans-{€ntia! (see Appendix I Recall that the gauge transforma-

formation is not an element of the Lorentz group. Further-lion removes an infinite quantity, vyhich is relatgd to the di-

more, the potentiall), a bounded operator in Hilbert space, Vergent Coulomb phase. The Fourier transform is then found

gets transformed into an unbounded operator, and finally tht be[21,22

number of spatial dimensions gets reduced from three to two.
The ansatz directly reflects the approximations made by

Chang and Md5] who neglected the longitudinal compo-

nents of the photon momentum, giving tidefunctions for

the respective conserved light cone momenta. The above

mentioned problems emerge here in the fact that the longi-

d?x, e ke Xinx?

tudinal components of the photon momentum never really 1 9
. ) - . )72

vanish. | = lim 47| ——— + 762K )In| = | |, (35)
All approximations allow the well-known conclusion that A0 k2 +\?2 A

the eikonal expression can be regarded as the contribution of
all ladder diagrams in the high-energy limit and that it is
completely compatible with a perturbative calculation. In
view of this result it should not be surprising that it is pos-

. ) s . i DO \ith N=w/y,u=2/eC. The correct treatment of this result
sible (in principle) to regain the first-order perturbation

th f the ekonal . again requires the limit to be taken after integrating the ex-
elggeror:zwe(\a/:rl ?Q:t ?ﬁ(grertll?Pt;ative derivation did notpression with a test function. The second term on the right-
' ' P hand side arises from the gauge transformation applied to the

requir t i ither a transver rt of the interac- . . . .
ti%?]u :r Lljtss gxf)ﬁgii fgoiri eei t?an?fosrme S':I'eh g e;irs(t) D oiEr}1t meaicpotennal and thus accounts for the Coulomb distortions. Dis-

serve to generalize the validity of the result to any functionCardlng the sgcond term an.d taking the limit Q|rectly again
~ . . . . leads to the discussed fortuitous agreement with the Fourier
V,(x,). The Fourier transform in two dimensions of the

: L o ..~ transform of the retarded Coulomb potential.
considered logarithmic potential is, however, a nontrivial .
; In view of these results, one may conclude that the correct
procedure. For that reason the deduction of the small-

coupling limit (Za—0) of Eq. (15) must be treated with small-coupling limit of the scattering_amplitude in momen-

special care. tum space cannot be found b_y a naive Taylor expansion of
To calculate the small-coupling limit, one may recall thatt_he Fourier transfor_med‘ matrix and c_loes not agree ‘_N'th

although two-dimensional massless fields are ill-defined obfirst-order perturbation theory. According to H§S) this is

jects, the exponential of these fields is not. Naive TaylorSIMPly based on the fact that the gauge transformed potential

expansion of the Fourier transformed eikonal amplitudecorrectly accounts for Coulomb boundary conditions.

does, however, not yield the Fourier transform of the loga- In the following we want to investigate how the correct

rithm as the linear term. This peculiarity is due to the facttreatment of Coulomb boundary conditions in all orders of

that the linearity of the Fourier transform is strictly guaran-perturbation theory influences the cross section of the scat-

teed only for the action on finite sums. In the case of artering process.

infinite series like the Taylor expansion of the exponential

function, Taylor expansion and Fourier transformation do

not commute. Although it is therefore not justified to identify

the different terms of the Taylor expansion with the Fourier

transforms of the powers of the _Iogarithm, thg first term cor- V. IMPLICATIONS ON THE PAIR-PRODUCTION

responds to the high-energy limit of the Fourier transform of CROSS SECTION

the retarded Coulomb potential, but this is rather accidental.

rithl;lne\i/r?r;[vr\]/ile(jsi,rsﬁet:;o%c:rf; Eguczll;ra\it:lzgsg;/rmra?/flotrhleggr?- !n the field of two u_ItrareIatiyistic colliding pointlike nu-

sion of the eikonal amplitude, but the linliz— 0 has to be clei, the exact scattering amplitude was shown to retain the

takenafter having integrated the expression with a test func-Structure of the second-order perturbative result, due to the
tion [20] causal decoupling property. Each interaction can be de-

scribed by the modified potenti§26). Accounting for both
time orderings, the amplitude is given by E§0).
We now use the crossing invariance of the amplitude to
J' d2x. e~ KL% | x2 apply the obtained result to electron-positron pair produc-
L L tion. The initial electron four momentump has then to be
replaced by the negative final positron momentyr»

d [ F(l—iaZ)/ 4\ 17ieZ —pP. The final electron momentum will be denoted py
= lim — — — (34  =p° With Eq.(30) we obtain for the pair-production prob-
2 L
iZa—0 d(lZa){ I'(iaz) \kl ability
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do

4o _ e mdp®  md®pP
d%b

PP (2m)%E® (2r)%EP

mdp® md®pP [ d%k, [ dk] . . I I Lo o
— _ L ’ (ki =k, )-b
~ 2mEe (277)3Epf (277)2] (277)27—5(pf k) Z5(pf =K ) Za(k, +pP) TA (k] +pP)e'te

— —a, K, +yom —a, - (—pP+pe—K )+ yom .
x| u(p) a K 7o _ il F} Fii 1) T Y0 5 u(=pP)
pepf —(—pP+pf—k)?-mP+ie

—pip‘i—kf—m2+ie&*u(_ppHape)—

— —a, k' +yom

—ay(—pPApe—K)+yom .
x| u(p®) (=PI +pl—k)+

Y. u(—pP)+u(p® — _u(—p?) | . (36
pip‘i—k’i—mzﬂeﬁ( P (p)—pe_pﬂ—(—p%pi—ki)z—mzﬂey (=) 39

The integration over impact parameter yields the pair-production cross section. Duea%(lfhp— IZL) function arising
from theb integration, a further momentum integral can be performed, leaving

- N > > [— _(; IZ +'}/0m ~
Ta(p$ —K )2 Talk +pD)[?| u(p®) S u(—pP
| Za(pT — KL)% Za(k.+p})[*| u(p }—pipri—kf—mz-i—ieh (=p?)

md®p®  mad’pP f d?k,
0‘:

(27)3E® (2m)3EP) (27)?
2

—a,(—pP AP —K )t yom .
L (=pi+pr —k)+ S u(—p?)| (37

+u(p®)

—pepR—(—pP+pt—k )2-m’+tie

Thus, upon integration over the whole impact parameter VI. EQUIVALENT-PHOTON APPROXIMATION

plane, the phases that are present in the individual scattering In first-order perturbation theory the pair production prob-

amplitudes{see Eq.(15_)] ca_mcel. Consequently, in the limit ability, i.e., the impact parameter differential cross section,
y—oo, the cross section is found to reduce to the lowest-

order perturbation theory result, the two-photon graph. Thi has been evaluated using analytical methi@#§ or Monte

behavior naturally explaing3] the experimentally observed a_rlo mte_gratlor[28]._ ConS|de_r|ng, however, the fuI_I Inter-
action as in the previous section, the exact evaluation of Eq.

[24]. It also implies that no asymmetries should occur inq%@ will require extensive numerical efforts, due to the os-
elec.tron and positron spectra cillating phases contained iA To get a simple estimate of
b P ' the solution, we intend to study the behavior of the cross

Equation(37) is strictly valid only for pointlike ions and it ; . .
. I o section, both impact parameter dependent and impact param-
includes arbitrarily close collisions. The focus on electro- . . - -
magnetic reactions in peripheral heavy-ion collisions implieseter. integrated, in th_e Wei ) r-\_N|II|_ams method Of. :
quivalent photons. This approximation is based on the simi-

a restricted range of impact parameters with a lower bound ". ; .

b=r,trg, I, andrg being the radii of the ions. Therefore arity between the fields of a fast moving charge and a swarm
C AT B At th tB i q isheral collision of real photons moving in beam direction. It approximately
N experiments that are triggered on peripheral co ISIOnSt:orresponds to the first-order Born approximation in the tem-

effects of the Coulomp distortions described by the phase "E)oral gauge: Only the transverse part of the interaction is
Eq. (15) should be visible. . considered—the longitudinal part is suppressed by*3
The eikonal approximatiofnd thus the cross sectiols 5 the vertex function is evaluated on shekt 0, i.e., for
known to become energy independent in the ultrarelativistic,, 555 ,med real photon. Rewriting the exact cross section in
limit [25]. This dependence is restored by accounting for thgg 5 of the real-photon cross section, the whole information
correct transverse momentum range, which is restricted by, + the scattering potential, which can be the retarded
the validity of Eq.(A8). This condition read$26] (see Ap-  couiomb potential or the modified potentié26), respec-
pendix A tively, is then contained in the distribution function of the
equivalent photons(w). Roughly speaking, this photon dis-
tribution function is determined by the squared absolute
> w value of the Fourier-transformed potentigh temporal
Ky [>—. (38) . .
04 gauge. An obvious advantage of casting the exchange of
effective photons according to E(R6) in the Weizsaker-
Williams form is that any difference between the second-
Such a low-momentum cutoff is also necessary to cure therder perturbative result and the exact calculation will be
IR divergence that arises from integrating over the poles ofolely generated by differences between the equivalent pho-
the momentum transfer functiorsin Egs. (30) or (37). ton distributions.
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The Weizsaker-Williams approximation is applicable if nyw) x Compton x nye) Bremsstrahlung x nye)
the exchanged momentum meets the following conditions %j (e; % f
[29]: s x
0 . a) b)
Y FIG. 5. The two possible distinct processes that can be used to

describe electron-positron production in heavy-ion collision. One or
both ultrarelativistic ions can be replaced by an equivalent photon
R distribution. If the bremsstrahlung proce@s is calculated in one
Kk, [<o<my. ion’s rest frame, the electron must be assumed ultrarelativistic, to

. . yield agreement wittta).
The upper bounds mainly stem from the requirement that

|k?| is negligible compared togk=m?, such that the inter- e .
mediate propagators of the scattered particles can be approi?-q photon is “soft Compa_red to the tlme_s_cale of the scat-
tering. Coulomb effects arise, if one explicitly accounts for

mated by those describing the interaction with real photonst.h finite int tion ti ther in th tteri b
The particle’s rest mass in E9) is, however, a conserva- € finite interaction ime, either in the scattering process by

tive upper bound and the equivalent photon method is no(l:qrrecting the eikonal_ formula or by keeping.the eikonal am-
strictly invalid for [k?|~m?. Note that for the approximate plitude for the scattering process but assuming a Rutherford-
calculations in{10], the transverse mass, of the scattered deflected trajectory for the photon emiss|@8]. Corrections

particle instead om was taken as the upper bound for Eq. to the eikonal fo_rmula account for higher o_rder_s of, 9., the
(39 Magnus expansiofil5], which is an expansion in the inter-

Since the exact amplitude takes the eikonal form, we mus"f‘CgOTl time 7 allrttr)]und ct:he llnstsn'[f?n(ious 'ntﬁr.?(t:;mﬁ 1y f
emphasize the following: The expansion of the ultrarelativ-_ n general these Loulomb etiects vanish It th€ energy o

istic scattering amplitude in powers of the transferred mo—the. emitted photon is too smgll to resolve detz?uls of t.h(.—:‘ scat-
mentum vyields, as the leading term, the eikonal expressioPFrlng Process, and'the rec0|l_ (?f the electron is negligible.
(describing the minimal deflection from the initial straight- ¢ Tr?l applyhthte Wt?]IZSKerTIW:CIItlﬁ_ms rrlnfthod tott}’;]e brems-b
line trajectory [1,6]. Its perturbation-theoretical derivation strahiung photon, the recoll of thiS pnoton must, however, be

requires that the quadratic terrk% are negligible relative to assumed neghglple. Th_e Sma” momentum tyansfer IS In turn
ensured by the eikonalization of the scattering process.

the terms P,k in the denominators of the propagators, where The equivalent single-photon distribution functions

k is any partial sum of the internal momenfd. The exact ; . .
validity of the eikonal formula, therefore, implies that at in- Nag(w) of the ionsA andB are given by the Poynting vector

finite scattering energies the transferred momentkfh is
always smaller tham? (irrespective of the value af). This
agrees with the theoretical observation that at high energies 1 .
particles are predominantly scattered into a cone with open- n(w)= mf d?x, |S(w)|
ing angle #~1/y, corresponding to momentum transfers
|[k?|~m?. The main contributions to the cross section are 1 ) .
thus expected from spatial distances larger or equal to the = %J d*x, [grad Ag(w,x, ).
Compton wavelength of the particle.
Moreover, the longitudinal part of the interaction vanishes
identically in the limity—oo. Hence the applicability condi-
tions of the Weizseker-Williams approximation are trivially A, is the scalar part of the retarded Coulomb potential. For
fulfilled in the limit y—o0.° the case they are determined from the effective potential
We have the freedom to apply this method to the interac{26); they read
tion of the electron with both nuclei, giving two possibilities
(see Fig. 5. The two possible calculational schemes agree,
since in(b) the bremsstrahlung emission and the scattering at

and

1-iZa . 2
the external potential decouple. This is due to the factthat =~ 1 "k dk |k 47T (~iZa)
the region in which the ultrarelativistic electron “feels” the ™ @)= 5~ f K0k L7z K2 T(iZa)

external field is infinitely thin and any frequency of the emit-

(40)

mTw w

27%a (my)
= In
4From the asymmetry of electron and positron spectra produced in
S(200 GeVh)+Au collisions, the mean transverse distance from
the target ion was deduced to be approximately two Compton wave-
lengths[24]. The collision energy corresponds tg~10 in the  The lower bound of the integral is taken from the condition
center-of-speed system. (38). The upper bound, the electron rest mass, is imposed by
SJust as the eikonal formula, the Weizkar-Williams approxima-  Eq. (39). The prefactor arises from properly rewriting the
tion can be viewed as the leading term of an expansion in powers afross section{37) in terms of the real photon cross section
k?/m? [30]. The validity of the eikonal expression then automati- (i.e., the Compton cross sectiomnd photon distribution

cally implies the validity of the Weizsker-Williams method. functions.
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The photon distribution (40) coincides with the [33]. In this respect the electron is an exception, since all
equivalent-photon distribution obtained from the Coulombother particles have Compton wavelengths smaller or com-
potential to logarithmic accurad29] and is not changed by parable to the nuclear size. To present the calculations in a

the higher-order effects. uniform manner, we use the form factor of the nucleus to
suppress large momenta.
VIl. IMPACT-PARAMETER-DEPENDENT The impact-parameter-dependent cross section for particle
CROSS SECTION production, described in the equivalent photon method, reads
[31]

In [31] the impact-parameter-dependent equivalent-
photon method has been developed. Using similar methods
we can extend this treatment to the exact calculation, based do
on the modified potentia(26). To this end we have to —
modify the integrands in Eq36) such that they account for d*b
the limited momentum range specified in EG33) and(39).
The cutoff of low transverse momenta according to Eq. +nL(wl,w2,5)gzv(wl,w2)] (43
(38 6can be achieved by the following replacement in Eq.
(15):

=f dwlf dwz[nH(wl,wZ,B)UW(wl,wz)

f= — K2 w_z_lzz (41) with the two-photon distribution functionls”,l(wl,wz,ﬁ).

L V2 L The elementary two-photon cross sections and the two-
photon distribution functions explicitly account for the par-
This substitution suppresses small transverse momenta legel or orthogonal orientation of the photon polarizations
strongly than a strict cutoff d, = w/y. It assumes the suf- denoted by the indicefs and L, respectively. Since we did
ficient accuracy of the eikonal amplitude forylih the near ~ not integrate over the impact parameter plane, which would
vicinity of 1/y=0, which is guaranteed by the possibility to have implied the averaging over the photon polarizations, the
continuously extend the eikonal formula towards finitand ~ explicit occurrence of the photon polarizations in the impact-
larget. parameter-dependent cross section is expected. The functions

We briefly comment on a possible alternative cutoff pro—n”u(wl,wz,ﬁ) can be expressed in terms of single-photon
cedure implemented in coordinate space. One might introdistribution functionsn(w,b), depending on the transverse
duce a Yukawa-type screening of large transverse distancggparation:
achieved by damping the modified potenti@b) with the
factore™ ¢, In accordance with thk, cutoff, the parameter
€ can be set to the value/ y; see[26] for a similar regular-

= [ e - R
ization. In momentum space this leads to the effective poten- Nj(wy,2,b) f dx,n(w1,x, ~b) n(wz,X,)

tial
(X, —b)-x, |2
><( ;) , (44)
2 _ X, = bl|x|
A(k) = (277) 5(k_)mr(2(l— | aZ))
><P1_2iaz[e(62+kf)_1/2], (42) nl(wliwzib):JdeLn(wl,XL—b) N(w,,X, )
> e >\ 2
whereP,_,;,z denotes a Legendre function. This expression x( (Xf _ b} >iX¢ (45)
resembles the propagator of a photon with masidowever, |x, —b||x,]|
the last two factors in Eq42) change the character of the
amplitude significantly and cannot be motivated physically.
In the ultraviolet region, in accordance with the exact va-with

lidity of the eikonal formula at ultrarelativiastic energies, the
transferred momenta are restricted by the conditjkfi ’
<m?. They are, however, in any case cut off naturally, if Z%a| (= 2 F(kf+w2/72)
one introduces a form factor to account for the finite exten- n(“”xi):% f = (k2 +wz/72)1—i2a‘]1(xi ki)
sion of the nuclei. Thus, large momenta have to be cut off at + (46)

k., ~1/r~, wherer. is the larger value of either the nuclear
radius or the Compton wavelength of the scattered particle
J, is a Bessel function. The functiof denotes the charge
form factor of the nucleus.
Note that for the Schidinger case, the exact validity of the ei- For a pointlike charge K=1), the photon distribution
konal formula can be proven for a certain off-shell domain of thefunction can be calculated analytically. For the Coulomb po-
momentum transfer for the whole energy pld8&]. tential and the modified potential we obtain
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z2 x, \]? _
il 1 - retarded Coulomb potential
? 'y2 Y
N(w,X, )= (47)
. Z’a o

modified potential 26).

Kitiza(@X; 1y) 2
I'li—-iZa)

77_2 ,y2

K, is a modified Bessel function. For small arguments of theeffects. Due to the complicated convolution of the single-
Bessel function one can use the asymptotic expre§&igh  photon distribution functions in Eq&44) and(45), effects on
the two-photon distribution functions are not obvious. For
K, (2)~il(v)(iz2)". (48 large distancex, >b, however, one directly finds an en-
hancement of the equivalent two-photon numbers.

Therefore, forob<< y and assuming pointlike charges, the
photon distribution function$47) nearly completely agree. VIIl. SUMMARY
We have numerically evaluated the photon distribution . ) . . )
function (46) for an extended nucleus, using a Gaussian form I tlh'S_PaEerf_Wﬁj héflVe investigated the SEattenngV\(/)f IrD]lrac
2 _ a-Q%(2Q}) i _ . _ particles in the field of one or two moving charges. We have
factor F(Q%)=e o with Q=60 MeV, which ap found that the eikonal expression for the scattering amplitude

proximately describes a Pb nucle{]. Figure 6 shows a becomes exact in the ultrarelativistic limi{-0). This was

comparison between the photon distribution functions forShoWn by either summing the berturbation series or b
both, pointlike nuclei F=1) and extended nuclei using ei- y g P y

ther the retarded Coulomb potential or the modified potenti i ?]ttc ?rlgr%t p(l:l;: ;\I/:(\)/[%szaéi[)thjsﬁ]elt%fgr}[?gggfgrcr);zgté?ll opefhe
(26), which represents the exact calculation. At small dis- 9 . S g . P
sented in Sec. Il A. At ultrarelativistic energies one can ne-

tances up to a few multiples of the nuclear radius, the modi: lect the sauared momenturm transdrrelative to the term
fied potential gives a smaller number of equivalent photon K in theqdenominator of the propacator of the scattered
than the pure Coulomb potential. For large distances or larg PiX propagator .
photon energies, Eq48) loses its validity and the modified partlcle: As a consequence, the appllc_ab|l|ty condlt[ons of
potential gives a larger number of photons than the Coulomﬁ)h(.a Welzsa_ker—W|II|ams method are fulfilled aut_omat|cally
—irrespective of the mass of the scattered particle.

potential (see Fig. J. According to Bq.(47) the ratio of the Furthermore, the exact validity of the eikonal formula for

photon numbers generated of the Coulomb potential and the L : .
modified potential at large arguments is given by ultrarelativistic scattering processes confirms the Pomeran-

chuk theorem, stating that the cross sections for antiparticle
and particle scattering at a given target become identical in
(49  the ultrarelativistic limit. One can describe the exact interac-

Ne(w, X, ) T
sinf(7Za) tion as the exchange of an effective photon, according to a

v —i 2_
and(w,XL)—>|F(1 iZa)
The impact-parameter-dependent two-photon distribution | ¢
functions have to be corrected according to Ef), thus
correcting the pair production probabilit¢3) for Coulomb

—
(=%
7

3L
10 Gaussian Formfactor /:i 1.4
—— Modified Potential )
-------- Retarded Coulomb Potential \3/ ..
Pointlike Charge é 12
----- Modified Potential E
----- Retarded Coulomb Potential q
-~ 1.0
3 o)
o 3
3 N
2 2os
oy
Nd Te—
§ e 0.6
Nk \‘-T‘_'\_\‘
e 04 . . - .
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T X, [fm]
FIG. 7. The ratio of the equivalent photon numbers of the pure
- - ; - - - Coulomb potential,nc(w,x,), and the photon numbers of the
40 60 80 100 120 140 P clwx)) P

modified potential,n.,,{ w,X,), calculated for a lead nucleug (

=82). At small transverse distances, one finds a deviation of up to
FIG. 6. The single-photon distribution function for various pho- 70% for small photon energies. Far outside the nucleus, the photon

ton energiegindicated in the plgtas a function of the transverse distribution functions are given by E¢7). For large distances, i.e.,

distance from the ultrarelativistic charge. The calculations are donéarge arguments in Eq(47), one asymptotically findsic/npoq

for lead ions £=82) at LHC energies¥=3000). —0.578[see Eq(49)].

x; [fm]
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modified, effective potential. The cross section, as a peculiarAs motivated in Sec. Il AC is determined by the principal

ity of the Coulomb interaction, becomes identical to the Mottvalue of the infinite time integral, so th&t can be inferred

result. Due to the discussed causal decoupling property, th® be

exact pair production amplitude in the field of two ultrarela-

tivistic colliding (pointlike) nuclei was shown to retain the , 1

structure of the second-order perturbative result. It can, ¢'= |z—t]

therefore, be treated like a two-photon process with a modi-

fied potential. As in the case of single scattering, the crossvhere we had to requirg>x, /|z— gt|.

section reduces to the second-order perturbative rE2it An attempt to derive the limit by means of Fourier trans-

which was evaluated ifi10]. This allows for two conclu- formation of Eq.(1) with respect toz was presented if3].

sions: (i) The production rate scales with the square of theThe Fourier transform reads

target and the projectile chardg4,23. (ii) Asymmetries in

the electron and positron spectra should not occur. f pdez 1
Z w

—8(z—t)In(v?), (A2)

Note, however, that the presented formalism is valid only =e‘“’ﬁtf dzd®?

,2 o2

if the produced particles are fast with respect to both nuclei: X1 X
Therefore, the observel®4] asymmetry at small electron (Z—,Bt)2+—2 22+ -
and positron momenta remains unaffected by these consider- Y Y
ations. R

We applied the Weizsker-Williams approach to pair Yoo ot w|x, |e®
production using the modified potenti@6), which correctly — —2€'“In 2—7 :
accounts for the Coulomb boundary conditions. In this way (A3)
we derive an equivalent-photon distribution, which directly
reveals the effects of Coulomb distortions. The impact-The quantityC here denotes Euler’'s constant. Naive applica-
parameter-dependent single-photon distribution calculatetion of the textbook formuld38] for the inverse Fourier
with the modified potential shows deviations from the transformation of this expression
equivalent photon distribution function obtained from the re-
tarded Coulomb potential. For a lead nucleusL&tC) ener- f %In|k|e”‘x:
gies we find deviations up to 70% at small separations and 2
approximately 40% at large separations from the ion.

The pair-production probability is subject to changes duevould give
to the modified photon numbers at given impact parameters
and photon energies. The perturbation theoretical probabil- . 1 1
ity, as calculated here, rather represents the average number lim — = .
of produced pairs and exceeds unity at sufficiently small im- B—1 xf 2=t
pact parameters. The “true” pair-production probability has (Z—t)2+—2
to be corrected by the vacuum-to-vacuum amplitude, which Y
in turn can be calculated from the perturbative pair-
production probability{36,37. This nontrivial influence of
Coulomb effects on the pair-production cross section is th
subject of further studies.

1
L A

(A5)

Equation(A4) is, however, valid only up to arbitrary mul-
éiples of 8(x). The validity of Eq.(A3), however, as well
demands the conditiop> wX .

It is possible to find a gauge transformation that removes
both the long-range potential |2~t| as well as §(z

ACKNOWLEDGMENTS —t)In(7?), see Eq(A2). This is achieved by the gauge trans-
formation[13]
U.E. would like to thank S.J. Chang for helpful com-
ments, and D. Schwarz and F. Constantinescu for stimulating o = elZanly(z= B+ 1+ ¥ 2= p0% (AB)

discussions. This work was supported by the Deutsche For-
Schungsgemeinschdﬂ’)FG) within Project No. Gr-243/44-2. The gauge-transformed potentia| reads

APPENDIX A: ULTRARELATIVISTIC LIMIT A= — Loy Lt A7)
OF THE POTENTIAL \/yz(z—[g’t)2+>?f VyA(z—B)%+1
In this section we want to discuss the lingt—1 of the R
potential(1). From Sec. Il A we expect the asymptotic form @nd has the ultrarelativistic lim[t3,39
of the potential to be ) -
limAg=Zad(z—1t)In(x7). (A8)
B—1
-1 . . .
lim ———=48(z—t)In(x>)+C". (Al) The appearance of the logarithm follows immediately
B—1 )Zi from the inhomogeneous Maxwell equation in the Lorentz
(z—t)%+— gauge, which reduces to a two-dimensional Poisson equation
2

vy in the limit 8— 1.
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The gauge transformatig@\6) has the advantage to yield
a short-range potential that allows for asymptotic plane-wave
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0, y =(ia, -V, ~yom. . (B6)

solutions. For this reason it was used to obtain a faster con-

vergence in coupled channel calculatiga§)].

APPENDIX B: SOLUTION OF THE DIRAC EQUATION
IN THE FIELD OF COLLIDING IONS

The Dirac equation for an electron moving in the field of

two ultrarelativistic colliding ionsA and B reads
[3(-i0, +y.id, )+iy, -V, —m—3y (7 )V}
=37+ 8(7)VE1Y=0, (B1)

where we used light cone variables = (t£z)/2. One di-
rectly finds thatax_zp is discontinuous atr_ through the

action of ionA and .. ¢ is discontinuous at. =0 through
the action of ionB, respectively.

We introducey.=(1*+ &Z)w and use Z=¢_+¢, to
formulate the problem as follows:

10, —8(r VB, +(ia, -V, — yom)yr_

——[id, —8(r VMY —(ia, -V, — yom) s |
(82)

where Eq.(B1) has been multiplied by %,. By using the

standard representation of Dirac matrices and rearranging th(%) and (B5) for 7,

four equationgB2), one obtains

1 0| . (0 0} .
o o (9~ drVE+| ], —s(r)Vh)

01 (0 -0
—m(l o) T1%x o, O)
0 —ioy\ |~
Hia o) =0, (B3)
where
Y1t s
~ | Y2 s
¥= h—s |’
Yot iy

corresponding to an isomorphic linear transformat{@n
with the matrix

A= (B4)

1 O'Z)
1 -0,/

SinceA is a bijection, each side of E¢B2) has to be zero.
Off the light fronts we, therefore, have the two equations

9, pe=(ia -V, = yomy-, (B5)

According to Eq.(12) the discontinuities at the light fronts
are described by

Y (1-=0")=¢"x ) yp_(7-=07),

'J/—(T+:0+):¢B(XL)'/’+(T—:07)-

¢ and ¢® are defined by Eq6) using the scalar parts of the
potentials of the ion#\ andB. Let us study the spino¢ ., ,
evaluated at the surface, =0":

>

.= V _
w+<r+=0*>=¢8”'“p+y°ml/f,<r+=0*>. 87)

In the regiont_>0 the electron already has interacted with
ion A and we can write

>

e 'V
1p+(7+=0+,7,>0)=¢B¢Amp+wn(l_az)‘//p,

(B8)

where ¢, is the incoming plane wave with momentupn
This relation also can be obtained immediately from Egs.
and 7_>0. The operatoid, in Eq.
(B5) has been replaced by its eigenvalue, the incoming
negative light cone momentum. This is possible sipceis
conserved in the interaction with ioA. The expansion of

¥ (7.=0%) in the plane-wave basis reads

l//+(7'+:0+v7'—>0)

dp.d?p, . . \ﬁ
=| —————B(p’,p)e P+7T-FPL- Xy [—y ,
J (27 (p’.p) o0 (p)
(B9)

where we substituted®p’ —dp/.d?p| [16]. According to
Eq. (B7) the expansion coefficients are

m * RV
B(p'.p) \ﬁum):f dT—f A%, ePs =P g
Po 0

ia, -V, —yom
X;%$_(T+:Oi,7_>0).

. (B10)

In the regionr_>0, 7, <0 the wave function/_ is a freely
propagating wave packet with a fixed light cone momentum
p_ and a superposition of transverse momeﬁga The
mass-shell condition requirgs_ p+=ﬁf+m2. In this way
¢_(7,<0,7_>0) can be obtained fromy_(7,.<0,7_
=0"). We have
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d2q q2+m2 e fact that the derivations are valid for arbitrary transverse
the fact that the d t lid f bit t
z,/;,(q-,>o)=f iz ex;{ —ji = T_—ip_7, parts of the potential, can be used to calculate the electron-
(2m) P- positron pair production for a field configuration, which cor-

responds to the channeling of an ion in a crystal.
.. . We use the equal speed system; the crystal is moving in
+iqi-xl> f d?x| eX L (PL=AL) A the —z direction. The crystal layers have a spatial distance
aéz. In the ultrarelativistic case, the electron again interacts
with the ion and the crystal layers separately and we get
X (1—a,) \/Eu(p), (B11) simple time orderings of the intergction. Fo_r the sake of sim-
Po plicity we formulate the perturbative description of the suc-
cessive interactions of the electron with both the ion and the
_ crystal layers directly with modified potentials of the form
which leads to (26). One then obtains for the interaction with two neighbor-
ing crystal layers the integral

\/EUT(p’)B(p’ P) \/EU(D)
p T VP S(p'p)=—i8(p} —p,)eP-a2

’
0

=—if d"‘%jdzx,ei;u.@_r;rﬁ(ﬁg dekdzki u(p')y:u(p)
(2,”_)2 L (271-)2 kf'f‘mz ie
k_— +—
k. k.

R m
XJ dleelxi'(piiql)(ﬁA—,UT(p’)

H . Ci+ = . Ci N
PoPo xe k-a2F (e VL 1(><L))|:kp(ef|vl (1))

-G d?k kZ +m?
@ -Gutym . =2m8(p! —pﬂf—Lepo— -
o p —_miric - PP (B12) : (2m)? 2p!,

!

L Cisns G-
+7 a Fp/k(67IVL 1(X)ka(67IVL (Xi))

Note that the lower boundary of the integration is 0, since
we inserted the expression ¢f for 7_>0.

Together with the corresponding term for the reverse or- XU(p’)aqu(p), a>0, e—0. (C1)
der of interactions with the two ions, EqB12) is the S
matrix for an electron scattered at the light fronts, first de-
rived by Segev and Wellf9] in an elegant way using the

Civi/a . . .
transformation Eq(BA4). HereV '*!(x,) denotes the eikonal for the interaction of the

electron with theith crystal layer, which will contain a su-
perposition of atomic scattering centers. For0 (reverse
direction of electron motionthe integral vanishes, which
expresses that the electron cannot interact alternately with
neighboring crystal layers, due to causality.

The causal decoupling of interactions with sources mov- If the electron interacts with the channeled ion between
ing on the positive and negative light cone, respectively, andhteracting with two distinct crystal layers, we get

APPENDIX C: SOLUTION IN THE FIELD
OF CHANNELED IONS

ivf”l@)]

d?k, d?k| exp(ip’a/2){exd —i(k?*+m?)al/(2p,)]—exd —i(k’?> +m?)a/(2p’ )]} -
S(p/p):f _ Fowle
(2m)* pi(K2+m?)—p,(k'2+m?) —ie(p.—p.)

Cas G L - 5. . ~
XFiol e ViR Lo Vi Tu(p! ) (— ey K+ yom) (— e Ky + yom) v, u(p). (C2
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Successive interactions with different crystal layers factorize
and any scattering process including intermediate interaction

with the channeled ion gives the same amplitude.

Using the functional relatiof28) directly gives the above
perturbative results: If both ion& and B move on positive
light cones separated by the spatial distaaég, we obtain
for the interacting part of the spina#,

Yi(7.—al2=0")

= My, (7. —al2=0")

gi+m’a o
-1 D, 5 Pr7_+10, X,

dZQL
=P e
¢ f(Z’n')z X

5= ~ m
xfdzxie'xr<prqﬂ¢5(1+az)\/p—u(p). (C3
0

The expansion off, in plane waves at the point, =a/2

+0* yields theS matrix of this process in momentum space

d2
S(p’.p)=2wi6(p;—p+)fﬁ

[ 9f+m? p’
xXexpl1| — +—1]a
2p, 2

X f dleebzi '((L*F;'ﬂqu

m
VPoPo

X f dZXLebZL'(’SL_dL)¢B

xuf(p")(1+ a,)u(p) (C4
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2
lim Ao(k)z—(Zﬂ')ZZa&(kO—kg)E—z. (D3)

B—1 L

The last expression reflects the observation that in the
high-energy limit the longitudinal componerks andk. of
the photon momentum can be dropped.

After having performed the gauge transformatiokt)
and taken the limity—«, the potential to be transformed is
expression(A8). Grignani and Mintche\f20] have shown
that it is wrong to identify the Fourier transform of E@\8)
with Eq. (D3) or with the regulated expression Ef(+ u?)
with a regulating mass inserted by hand.

Calculating the time integral &4, in the exponent of the
eikonal expression, using E¢D1), and inserting a photon
massu as above, one finds

J dtAs=Za In(x?)+ZalimIn u? (D4)
o 40
with 1/2e® absorbed in u as in [3]. The term

lim,_oZaln w2 is the divergent constard introduced in
Sec. Il A. It is interesting to note that this introduction of an
infrared regulating photon mass does not yield a regularized
expression for the eikonal amplitude.

One may attempt to calculate the two-dimensional Fourier
transform of Eq(A8) from a Taylor expansion in powers of
iZa of the momentum transfer functio (23), which for

Vl(fl)=2a Inif is given by the following closed expres-
sion:

1-iaZ
) I'’(1-iaz)sin(miaZ) (D5)

2
i
i
—
I
—_
|
N

in accordance with Eq(C1). F(1-iaz) 4\ '
Further studies will have to show how these consider- =T Taz) |2 (D6)
ations can be put to use for the calculation of pair creation in L
channeling. _ .
The first terms of the Taylor expansion read
APPENDIX D: THE PHOTON PROPAGATOR -,
AT HIGH COLLISION ENERGIES - . 1 . ) |n(kl/4)+C
Tk )~+4miaZ +a4n(iaZ)————
The four-dimensional Fourier transform of the retarded N KT
potential(1) reads 0,22 - )
. In“(k{/4)+4C In(k{/4)+4C
+2m(iaZ)® = +
) —Zavy k?
Ag(k)= J dxelkx
(D7)

VyA(z— )2 +x2

=—(2m)*Zad(ko— BK3) 2 :
—3) +k?
Y

(D1)

which has the following low- and high-velocity limits:

2

lim Ag(k)= —(277)22a5(k0)|k|2,

B—0

(D2)

The second term would then correspond to the desired Fou-
rier transform, the third term correspondingly to the Fourier
transform of the square of the potentiaAB), which has to be
compared with the result of Torgersfa.

This is, however, not justified, since the linearity of the
Fourier transform is only guaranteed for finite sums and
causes problems when applied to infinite series like the Tay-
lor expansion of the exponential function. To get the correct
result for the exact two-dimensional Euclidean photon propa-
gator, the limitiZa—0 in
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)liaZ

2y ik, X[ |0 w2
J'dxle L% In Xt

o d [ ra-iaz)| 4
= fim d(iZa)| " T(ia2) \i2

(D8)

has to be taken after having integrated the result with a test

function [20]. Performing the limit without this precaution
gives the wrong resulD3).

Another form of the correct Fourier transform was de-
rived in [21,22. We obtain the equivalent form from the
gauged potentiad (A7). Since

- Y

+
\/'yzt2+ 1

€
|nxf=|imf dt
y—wt 7€ \/'y2t2+xf

(e is arbitrary but finit¢ and

(D9)
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Y _ Y
Ve Nyl

J’ dtdZXLeiwtikl»ZL(

1

2
w N
Y

we find, by direct substitution,

— 4 —27752(I2L)K0(%) , (D10

-1

Xinx? = lim 4 I
+A
L

A—0

f d?x, e~k

2
2l o1

+78%(k,)In N

with N=w/y, u=2/e°. The limit has to be treated in the
same way as in EqD8).
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