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Two-dimensional nuclear inertia: Analytical relationships 
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The components of the nuclear inertia tensor, functions of the separation distance R and of the radius of the 
light fragment R 2 ,  BRR(R,R2) ,  BRR2(R ,R2) ,  and BR2R2(R,R2)  are calculated within the Werner-Wheeler 
approximation, by using the parametrization of two intersected symmetric or asymmetric spheres. Analytical 
relationships are derived. When projected to a path R, = R, (R) ,  the reduced mass is obtained at the touching 
point. The two one-dimensional parametrizations with R2 = const, and the volume V 2  = const previously stud- 
ied, are found to be particular cases of the present more general approach. Illustrations for the cold fission, 
cluster radioactivity, and cu decay of 2 5 2 ~ f  are given. 

PACS number(s): 21.60.Ev, 23.70. f j ,  25.85.Ca, 27.90.+b 

I. INTRODUCTION 

One group of methods frequently used to solve quantum 
dynamical problems in many branches of physics and chem- 
istry (e.g., tunneling phenomena in solid-state and nuclear 
physics, mass transfer in nuclear reactions, mass distribu- 
tions in fission, scattering reactions, molecular collisions. 
chemical reaction-rate theory, etc.) [I-31, relies on quasi- 
classical approximation, in which an iniportant quantity is 
the inertia tensor [4]. The components of this tensor are 
strongly dependent on the arbitrarily chosen set of n gener- 
alized coordinates {q , q 2 ,  . . . , q,). 

In the present paper we have in mind possible applica- 
tions for quantum mechanical tunneling in nuclear decay 
processes like cold fission, cluster radioactivities, and a 
emission [5], for which it was repeatedly stressed that a num- 
ber of collective degrees of freedom as low as possible 
should be chosen in order to represent on an axis or in a 
plane the main physical quantities determining the basic fea- 
tures of these phenomena. 

Glas and Mosel [6] have used the distance R and the 
angle q5 to express the kinetic energy in heavy ion collisions. 
Within fragmentation theory of binary Systems [7] the best 
suited deformation coordinates are the fragment separation 
distance q l = R  and the mass asymmetry Parameter 
q2=7=(V1-V2) / (Vl+V2) ,  where V, ( i = l ,  2 )  are the 
volumes of the fragments A I Z ,  (which finally will be the 
daughter nucleus AdZd) and A2Z2 (which becomes the emit- 
ted cluster A,Z, at the touching point configuration). Such 
pairs of collective variables have been used to calculate the 
nuclear inertia for the mass transfer [8-101 in heavy ion 
collisions, by using either the cranking approximation [3] or 
the hydrodynamical approach [10]. 

As a consequence of the assumed incompressibility of 
nuclear matter, the total volume of the fragineilts is con- 
served during the deformation. Also, we are interested to 
study a given exit channel, hence the final value of the mass 
asymmetry, 7,jt = (Ad- A,)IA, is known. The parametrization 
of two intersected spheres with radii R1 and R2 has beeil 
adopted [11] to generate two different sequences of such 
shapes for a given mass asymmetry, with an additional con- 
straint of R, = Re = const ["clusterlike" (CL) shapes] or 

V2 = Vr = const ["more compact" (MC) shapes]. In this way, 
by taking into account the total volume conservation and the 
matching condition in the separation plane, it was possible to 
arrive at a single independent shape variable which could be 
either the separation distance, R, of the geometrical centers 
of the spheres or, z,,-the distance between their centers of 
mass. The Werner-Wheeler approximatioil [12,13] allowed 
us to obtain analytical relationships for the nuclear inertia (a 
scalar in this case) in a wide range of mass asymmetry. 

Our aim at present is to relax the above-mentioned restric- 
tions, leaving both q = R and q 2 =  R2 to vary. We shall show 
that from the general expressions obtained in this way one 
can get the preceding ones by giving the corresponding law 
of variation R2 = R2(R) in the overlapping region of the two 
fragments. Also, another local test is provided by the fact 
that the inertia scalar B(R),  which is the result of projection 
on a general trajectory R 2 =  R2(R), is equal to the reduced 
mass, R(R,) = p, at the touching point R,= R,+ Re . 

11. MULTIDIMENSIONAL APPROACH 

During the decay process, leading from one parent 
nucleus, AZ, to two different fragments (AdZd-the daugh- 
ter or heavy fragment; AeZ,-the emitted ion or light frag- 
ment), the shape of the system changes continuously. The 
potential energy surface in a multidimensional hyperspace of 
deformation parameters, {q) = q , q 2 ,  . . . ,q,  , gives the gen- 
eralized forces acting on the nucleus. Information concerning 
how the system reacts to these forces is contained in the 
inertia tensor {B„). The contribution of a shape change to 
the kinetic energy of the system at any time, t ,  is expressed 
by 

The inertia tensor with components B„=B,,(q) corre- 
sponds to the variation in time of the nuclear shape. Their 
values depend on the particular choice of deformation coor- 
dinates. On the other hand, for a system with axial symmetry 
relative to the z axis, the kinetic energy of a nonviscous fluid 
is given by 
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Here V is the volume considered to be conserved, 
a= 3rnl(4.rrrO) is the mass density, rn is the nucleon mass, 
V is the velocity, and r ,  = 1.16 fm is the nuclear radius 
constant. 

By assuming irrotational motion (V X V =  rot V =  0 ) ,  the 
velocity field may be derived from a scalar velocity potential 
p, i.e., V =  V  q. From the continuity equation of an incom- 
pressible fluid it follows that the Laplace equation, 
V  * = h <p = 0, should be satisfied with kinematical boundary 
conditions. 

is different from Zero if the origin of z  is not placed in the 
center of mass. Here p, = p,(z) is the nuclear surface equa- 
tion in cylindrical coordinates, with zmi, ,zm„ intercepts on 
the z axis. 

For another Set of deformation parameters {cu} describing 
the same shape, 

expressing the need of a vanishing normal component of the 
velocity at the surface. In this way there is no flow of matter 
through the surface. The surface equation for axially sym- 
metric shapes in cylindrical coordinates (p,<p,z) is written as 
F(r , t ,q)=p-p, (z , t ,q)=O in whichp,  is thevalueofp  on 
the surface. The velocity components, i= dpldz and 
p = dpldp, are both functions of z and p. 

As an approximation to the incompressible irrotational 
flow, one can use the Werner-Wheeler assumption. In this 
approximation the flow is considered to be a motion of cir- 
cular layers of fluid, z is independent of p, and p is linear in 
P: 

The quantities X ,  are calculated separately for the left- and 
right-hand side of the body by requiring a vanishing total 
(convective) time derivative of the fluid volume to the left- 
hand side, or right-hand side of an arbitrary plane normal to 
the z axis: 

In order to get a vanishing normal component of the velocity 
at the surface, one needs 

The functions X ,  and Y i  are found as a sum of two terms for 
the left- (1) and right- ( r )  hand side of the shape. 

After Substitution in the relationship for the kinetic energy 
and comparison with the initial equation for E, we find the 
following equations for the components of the inertia tensor: 

where the correction term B:,(q) due to the center of mass 
motion [11] 

Also, one can define a nuclear inertia scalar B ( s )  along a 
trajectory, given parametrically by the equations q ,  = q , ( s )  , 
( i =  1,2, .  . . , n ) :  

In this way the multidimensional tunneling penetrability can 
be reduced to a one-dimensional problem. When s = R ,  or 
s =z,,  a good test of accuracy of the computations is ob- 
tained at the touching point configurations, where one should 
obtain the reduced mass B(R,)  = p. 

111. TWO-DIMENSIONAL PARAMETRIZATION 
OF INTERSECTED SPHERES 

The surface equation, assuming a rhape of two intersected 
spheres, can be written as 

where R  , R2 are the radii of the two overlapping fragments, 
z ,  is the position of the separation (intersection) plane, and R  
is the distance between the two Centers. 

By taking q ,  = R  and q ,  = R2 as independent deformation 
parameters and placing the origin of coordinates in the center 
of the left-hand side fragment, the limits of integration are 
zm„= - R ,  and z„„= R + R 2 ,  as can be seen in Eq. (11). 
The radius of the heavy fragment will be considered as a 
function of these variables, R  = R  ( R ,  R 2 ) .  The X l 1  quanti- 
ties defined above for the left-hand side fragment are 

and the corresponding Y l i  
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Similarly, for the right-hand side fragment we have i B„(R,R,) B ~ ~ 2 ( R , R 2 )  

X r R 1-- p?,(x)dx= 1 ,  (16) , B ~ 2 ~ ( R , R 2 )  B ~ 2 ~ 2 ( R > R 2 )  

a, 

has the nondiagonal components equal to each other, 
BR2R=BRR2, due to the symmetry property. By taking into 

2R2 
(17) account Eqs. (7),(8), the inertia components have the follow- 

R 2 + i - R  ing form: 

and the corresponding Y,., B„(R,R*)= B:,+ BK,+ B:, 

The tensor of inertia for two independent variables where 

BRR:(R,Rz)= B ~ P R ? +  ~ R R ~ + B K K ~  
R+R2 

= TU/ : : ,  p $ ( x i R x m 2  + + ymy iR2)d :  + VUJ  p : ( x r ~ x f i 2  + i y r ~ y f 1 2 ) d z  
7 7 

(24) 

in which 

where 
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The following geometrical quantities can be defined: 
D 1 = z , ;  H l = R l - z , ;  D2=R-z , , ;  H 2 = R 2 - 0 , .  By 
substituting Eqs. (12)-(19) into Eqs. (2 1)-(29), and per- 
forming the integrations we obtain for the first component, 
BRR, the contribution of the left-hand side fragment: 

For the right-hand side fragment 

and for the correction term 

Similar calculations for the mixing component, BRR2, lead 
to 

for the heavy fragment contribution, and 

for the light fragment contribution. The correction term is 
expressed as 

For the last diagonal component of inertia, BRZR2, the 
corresponding terms are found to be 

Finally, by summing up the contribution of the two frag- 
ments and the correction term for every of the three tensor 
components, and by taking into account that all lengths are 
expressed in units of the radius of the parent nucleus, 
R,= roA I", we obtain the three components of the inertia 
tensor: 



2640 R. A. GHERGHESCU, W. GREINER, AND D. N. POENARU 

The volumes of the two fragments are given by the fol- 
lowing relationships: 

By using the total volume conservation, V, + V2= V =  const 
(where V = ~ T R ; / ~ ,  Ro is the radius of the parent nucleus), 
and the matching condition in the intersection plane 

we will calculate analytically the two partial derivatives of 
R  , (R ,  R,), according to the theory of implicit functions: 

The involved quantities are 

After performing the calculations, we obtain 

By choosing a trajectory in the plane of the two indepen- 
dent coordinates, R  and R 2  given in a parametric form: 
R2= R 2 ( s ) :  R= R ( s ) ,  and by taking s =  R ,  we can write ac- 
cording to Eq. (10) 

expressing an inertia scalar which is used to calculate the 
tunneling penetrability along this path. In the limit R- tR , ,  
when Hl+O and H2+0, the diagonal component, 
becomes infinitely large. Consequently, for a finite inertia 
scalar B(R,) ,  one has to choose a path R 2 ( R )  fulfilling the 
condition of a vanishing derivative, R;(R,)  = 0, at the touch- 
ing point. 

IV. TWO ONE-DIMENSIONAL SEQUENCE OF SHAPES 
AS PARTICULAR CASES 

We have the possibility to check the validity of the 
general relationships (39)-(41), by comparing, in the 
whole range of R=(R„R, ) ,  where R,=R,-R„, and 
R21 = R 2 ( R I )  is the initial value of R 2 ,  the results for two 
particular one-dimensional configurations mentioned in the 
introduction (MC and CL) with the similar equations previ- 
ously published [ l l ]  assuming only one independent vari- 
able. Also, at the touching point, R  = R„ the inertia scalar 
B ( R )  equates the reduced mass. 

For the particular pararnetnzation with compact shapes, 
there is a second restriction besides V=const, narnely 
V2=const. We have to take into account the Fact that 
R , = R l ( R , R 2 ) ,  in the general case when only the total vol- 
ume is conserved without any other constraint, so that 

The derivative of R 2 ( R )  with respect to R ,  is calculated 
following the same prescription as above, 

The two partial derivatives of R1 with respect to R  and 
R2 are given by Eq. (48). We find for the other terms in the 
above formula 

After replacing these equations in (51) and performing 
calculations, we obtain the derivative of R2 with respect to R  
for the compact shape parametrization: 

which is identical to the corresponding Eq. (21) from [ I  I]. 
By substituting (55) in (39)-(41), the three components of 

the inertia tensor may be written: 



5 2 - TWO-DIMENSIONAL NUCLEAR INERTIA: ANALYTICAL . . . 2641 

where 

and V2 is the volume of the emitted fragment [see Eq. (42)]. 
Now, in the general expression of the total inertia scalar 

(49) we introduce the derivative of R, with respect to R, 
(55), obtained for the compact shape parametrization. We get 
in this way the inertia for V2 = const: 

3 H ~ ( R , + D , ) ( R ~ + D ~ ) ~  3 -- 
4 R + R l + R ,  + 4%- P V?] 

The last term is the correction due to the Center of mass 
motion. One can observe that, during the shape evolution, 
this correction remains constant - 9A ~ 2 / ( 4  T ) ?  = -A;/A. 
The final result for the compact shape is 

where ,UA =A,AdIA is the reduced mass number. This term 
is derived from 3AV2/(4%-) - ~ A V ~ / ( ~ % - ) ~ = A , - A ~ / A  
= P A .  The equation (62) reproduces the formula of inertia 
obtained for MC shapes [ll]. 

Despite the differences between B and B„ shown in 
Figs. 1-3 for cold fission with 12?cd light fragment, 4 6 ~ r  
cluster radioactivity, and cr decay of 2 5 2 ~ f ,  the final result of 
the projection on the R2(R) path coincides with the one- 
dimensional B(R), the mixing term, 2Bm2R; being nega- 

tive, due to the sign of the derivative R;. Also, by multipli- 
cation with R; and (R;)?, the last two terms give no 

FIG. 1. The components of the nuclear inertia tensor BKR (top 
left), B„, (top right), and BRiRZ (bottom left), leading to a scalar 
B ( R )  along a path R,(R)  with a negative derivative (bottom right), 
for the cold fission of 2 5 2 ~ f  with lZ2cd light fragment in the param- 
etri~ation of two intersected spheres with V2=const. The one- 
dimensional inertia B (top left), calculated with the Eq. (49), is 
exactl y reproduced. 

contribution at the touching point, in spite of the general 
trend of BRZRZ toward an infinite value when R+R, . 

For clusterlike shapes, R,=const, dR, ldR = 0. Unlike the 
preceding case, where all three components of inertia tensor 
contributed to B(R), now 

FIG. 2. Same quantities as in Fig. 1 ,  for the "Ar cluster emis- 
sion from 2 5 2 ~ f .  
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FIG. 3. Same quantities as in Fig. 1, for the a decay of ' 5 2 ~ f .  

which is again the Same as in Ref. [ l l] .  
The variations with R of B„ equating B(R) ,  and of 

BRR2 for CL shapes, and the Same decay modes like in Figs. 
1-3 are plotted in Fig. 4. The other component BRZRZ shows 
a similar behavior with that of MC shapes. 

By analyzing the formula of the total inertia B ( R ) ,  and 
that of the derivative of R 2  with respect to R ,  we can See that 
at the touching point where H 2 - + 0 ,  we have from Eq. (55)  
( d R 2 ) l ( d R ) = 0  when R - + R , .  In this way the two last 
terms of B ( R ) ,  namely 2BRR2(R,R2) (dR2) I (dR)  and 

B ~ , ~ , ( R , R ~ ) [ ( ~ R ~ ) I ( ~ R ) ] ~  vanish at R = R, . 

FIG. 4. The components of the nuclear inertia tensor BRR equat- 
ing exactly the one-dimensional B (left-hand side) and BRRi [right- 
hand side, giving no contribution to the scalar B(R) owing to the 
vanishing derivative R; = 01, for two-intersected spheres with 
R, = const. The plots refer to the cold fission with 12'cd light frag- 
ment (top), the 4 6 ~ r  cluster radioactivity (middle), and a decay 
(bottom) of 2 5 2 ~ f .  

ACKNOWLEDGMENTS 

This work was supported by the Bundesministerium für 
Forschung und Technologie, Bonn, and the Institute of 
Atomic Physics, Bucharest. D.N.P. received a donation of 
Computer and copying equipment from the Soros Foundation 
for an Open Society. R.A.G. is grateful to the Konferenz der 
Deutschen Akademien der Wissenschaften, Mainz, for a 
grant of a Volkswagenstfiftung fellowship. 

[I] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 
251 (1990). 

[2] M. Razavy and A. Pimpale, Phys. Rep. 168, 305 (1988). 
[3] M. Brack, J. Damgaard, A. Jensen, H. C. Pauli, V. M. Strutin- 

sky, and G. Y. Wong, Rev. Mod. Phys. 44, 320 (1972). 
[4] A. Sobiczewski, Sov. J. Part. Nucl. 10, 1170 (1979). 
[5] D. N. Poenaru and W. Greiner, in Handbook of Nuclear Prop- 

erties, edited by D. N. Poenaru and W. Greiner (Oxford Uni- 
versity Press, Oxford, 1995), p. 131. . 

[6] D. Glas and U. Mosel, Nucl. Phys. A264, 268 (1976). 
[7] J. A. Maruhn, W. Greiner, and W. Scheid, in Heavy Ion Colli- 

sions, edited by R. Bock (North-Holland, Amsterdam, 1980), 

Vol. 2, P. 399. 
[8] 0. Zohni, J. Maruhn, W. Scheid, and W. Greiner, Z. Phys. A 

275, 235 (1975). 
[9] S. Yamaji, K. H. Ziegenhain, H. J. Fink, W. Greiner, and W. 

Scheid, J. Phys. G 3, 1283 (1977). 
[10] H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980). 
[ l l ]  D. N. Poenaru, J. A. Maruhn, W. Greiner, M. Ivascu, D. Ma- 

zilu, and I. Ivascu, Z. Phys. A 333, 291 (1989). 
[12] J. R. Nix, University of California, Report No. UCRL-17958, 

July 1, 1968. 
[13] K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev. C 13, 

2385 (1976). 


