
Program Equivalence for a Concurrent Lambda
Calculus with Futures

Joachim Niehren1 David Sabel2 Manfred Schmidt-Schauß2

Jan Schwinghammer3

1 INRIA Futurs, Lille, France, Mostrare Project
2 J. W. Goethe-Universität, Frankfurt, Germany

3 Saarland University, Programming Systems Lab, Saarbrücken, Germany

Technical Report Frank-26

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

October 14, 2006

Abstract. Reasoning about the correctness of program transformations
requires a notion of program equivalence. We present an observational
semantics for the concurrent lambda calculus with futures λ(fut), which
formalizes the operational semantics of the programming language Alice
ML. We show that natural program optimizations, as well as partial
evaluation with respect to deterministic rules, are correct for λ(fut). This
relies on a number of fundamental properties that we establish for our
observational semantics.

1 Introduction

Alice ML [16] is a concurrent functional programming language of the ML fam-
ily [3, 10] that is inspired by the concurrent constraint programming language
Mozart-Oz [20]. In this paper we present the first observational semantics for
Alice ML, which is needed to justify correctness of program transformations.

Alice ML features concurrent programming with mixed eager and lazy
threads, which may be distributed in a network transparent fashion. Alice ML
follows the tradition of strong static typing, and extends it with dynamic com-
ponents supporting typed open programming [15]. All synchronization is based
on futures [1], a restricted form of logic variables. Alice ML can express chan-
nels as in the asynchronous π-calculus [9], streams as in dataflow languages, and
JoCaml-like joins [4].

The operational semantics of the Alice ML core language is defined in [12]
by the concurrent lambda calculus with futures λ(fut). This calculus extends on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14502145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

previous lambda calculi with futures [6] that are only intended to model par-
allel execution of purely functional programs, by adding a process level on top
of the call-by-value lambda calculus. Each process consists of a set of concur-
rent threads x⇐e that may eventually assign the value of lambda term e to
future x. The future x itself may occur in the expression e so that recursive
bindings on top level can easily be expressed. Operations that “need” the value
of an undetermined future block until its value becomes available. In contrast,
applications with futures as arguments succeed and may proceed irrespective of
the future’s status. This leads to a convenient form of (automatic) data-driven
synchronization.

Reference cells with atomic value exchange are the only observably non-
deterministic construct of λ(fut). In their presence it becomes more difficult
to argue the correctness of program transformations, as needed for justifying
partial evaluation or future optimisation by touch elimination [6]. Notions of
program equivalence for deterministic languages with reference cells based on
contextual equivalence, as e.g. considered in [13], have to be extended to take
non-determinism and concurrency into account. Most previous work in this area
focuses on process calculi [9, 19] rather than high-level languages, or investi-
gates the theory obtained by encoding lambda calculi into process calculus (for
instance, [18]). In [5, 7], program behavior in fragments of Concurrent ML is
characterized by bisimilarity with respect to a labelled transition system. How-
ever, program equivalences for languages with future-based concurrency, rather
than channels, have not been considered in the literature.

In this paper we present an observational semantics for λ(fut), which defines
two processes to be equivalent if they exhibit the same termination behavior
in all contexts. A successfully terminated process, informally, has no pending
evaluations, and every future x references a non-variable value or a process vari-
able, perhaps through several indirections. Since the calculus is non-deterministic
we combine may- and must-convergence, a modelling technique also used for
lambda-calculi with amb [2, 11, 17]. A process is may-convergent if it has a reduc-
tion to a successfully terminated process; it is must-convergent if every reduction-
descendant is may-convergent. Examples of processes that cannot successfully
terminate include cyclic chains of future-references, deadlock-like situations, and
strongly divergent processes (i.e., those that are not may-convergent).

This definition of observational equivalence treats all “erroneous” processes
as equivalent, and distinguishes processes that may lead to an error from those
that do not. A similar combination of may- and must-convergence is also known
from the use of convex powerdomains in domain-theoretic models [14]. However,
these models are usually far from being fully abstract, and powerdomains by
themselves do not provide for a treatment of concurrency and synchronization,
dynamically created threads and state, or sharing.

By only taking strong divergence into account it follows that every (possibly
non-terminating) λ(fut) process that keeps the chance to successfully terminate
indefinitely is not erroneous. Consequently, whenever a process diverges this is
already witnessed by fair reduction, and hence fair program equivalence agrees
with the unconstrained equivalence (see also [2, 17]).

Program Equivalence for a Concurrent Lambda Calculus with Futures 3

x, y, z ∈ Var
c ∈ Const ::= unit | cell | thread | handle | lazy

e ∈ Exp ::= x | c | λx.e | e1 e2 | exch(e1, e2)
v ∈ Val ::= x | c | λx.e

p ∈ Process ::= p1 | p2 | (νx)p | x c v | x⇐e | y h x | y h • | x
susp⇐= e

Fig. 1. Expressions and processes of λ(fut)

After introducing the lambda calculus λ(fut) and its operational semantics
in the next section, Section 3 defines an observational equivalence on λ(fut) pro-
grams that reflects the non-deterministic reduction. We prove a context lemma
which shows that observations in evaluation contexts suffice to characterize pro-
gram equivalence. Section 4 establishes the correctness of partial evaluation and
several program transformations. In particular, we show that λ(fut) is inter-
nally consistent, in the sense that all deterministic reduction rules can be used
as program transformations. It is also shown that the only potentially non-
deterministic reduction rule – value exchange in cells – is correct if there is no
ambiguous execution possibility. This is the maximal amount of partial evalua-
tion that can be expected for a non-deterministic calculus. Further examples of
transformations that we prove correct include a “garbage collection” rule, “path
compression”, and “deep” beta-reduction. The main tool in proving equivalences,
besides the context lemma, are complete sets of forking and commuting diagrams,
adapted from [8, 17].

2 Lambda(Fut)

We recall the λ(fut) calculus from [12] including lazy futures. We deviate from
loc. cit. by considering an untyped variant, and substituting a sharing beta rule
that lends itself to easier proofs than the usual one. Nevertheless, the full beta
rule will be shown correct in Section 4.
Syntax. The syntax of λ(fut) has two levels, the layer of λ-calculus expressions
e ∈ Exp for sequential functional computation inside of threads, and the layer of
processes p ∈ Process for concurrent computation composing multiple sequential
threads in parallel. It is defined in Fig. 1.

The expressions of λ(fut) are standard λ-terms, new operations are in-
troduced by (higher-order) constants: unit is a dummy value, and constants
thread, lazy and handle serve for introducing futures simultaneously with
threads, suspended computations, or handles that can bind their values, respec-
tively. The constant cell serves for introducing reference cells, and exch(e1, e2)
for an atomic exchange of cell values. Values v are defined as usual in a call-by-
value λ-calculus, and consist of variables, constants and abstractions. Examples
may use syntax sugar, like λ .e instead of λx.e where x does not appear in e.

Processes p are reminiscent of π-calculus terms. They are built from basic
components by parallel composition p1 | p2 and new name operators (νx)p. A

4 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

p1 | p2 ≡ p2 | p1 (p1 | p2) | p3 ≡ p1 | (p2 | p3)

(νx)(νy)p ≡ (νy)(νx)p (νx)(p1) | p2 ≡ (νx)(p1 | p2) if x does not occur in p2

Fig. 2. Structural congruence of processes

structural congruence ≡ on processes is defined as the least congruence relation
containing the identities in Fig. 2. The first two axioms render parallel com-
position associative and commutative. The final scope extrusion rule is used to
extend the scope of a local variable.

A component p is a process without parallel composition or name restrictions.
A component of a process p is a component p1 such that p ≡ (νx)(p1 | p2) for
some variables x and process p2. We distinguish five types of components: a
thread x⇐e is a concurrent component whose evaluation will eventually bind
the future x to the value of expression e unless it diverges or suspends. We call
such variables x concurrent futures. Analogously, a lazy computation x

susp⇐= e
is a component that will eventually bind the (lazy) future x to the value of e,
but only if evaluation is triggered, by some active thread suspending on x. Such
variables x are lazy futures. A cell x c v associates a (memory location) name
x to a value v. A handle component y hx associates a handle y to a future x,
so that y can be used to assign a value to x. We call x a future handled by y,
or more shortly a handled future. Finally, a used handle component y h • means
that y is a handle that has already been used to bind its future. A process p
introduces a variable x if p contains some component of the following form for
some y, e, v.

x⇐e x is a concurrent future (for e)
x

susp⇐= e x is a lazy future (for e)
x c v x is a cell (with content v)
x h y x is an unused handle (for future y)
y hx x is a handled future (handled by y)
x h • x is a used handle

Introduced variables are also called process variables. A process is well-formed
iff it does not introduce any variable twice, and cells x c v contain only values.

Free and bound variables of expressions and processes are defined as usual;
the only scope bearing constructs are λ-binder and new operators (νx). We iden-
tify expressions and processes up to consistent renaming of bound variables. We
write fv(p) and fv(e) for the free variables of a process and expression, respec-
tively, and e[e′/x] for the (capture-free) substitution of e′ for x in e. Whenever
it is appropriate and can be done without ambiguities, we will use the distinct
variable convention, i.e., we assume that all bound variables in expressions and
processes are distinct, and that free variables are distinct from bound variables.
However, at several places in this paper, we have to explicitly take care of the
names of bound variables.

The binding operator ν can be seen as defining the observational scope of
variables. Using the distinct variable convention and moving ν-binders to the

Program Equivalence for a Concurrent Lambda Calculus with Futures 5

top-level, a process p that introduces variables x y can be written in the form
(νx)p, where p does not contain further ν-binders. The (free) variables y ∈ y are
interpreted as being directly observable by an external observer. Variables with
a restricted scope may still be observable indirectly.
Operational Semantics. A context is a process with exactly one occurrence
of the hole marker, i.e. the special constant []. The hole marker cannot occur at
the positions that are reserved for variable introduction, and in a cell x c v, the
position of the hole can only be in e for v = λx.e. Let γ be a context, and η be
a term or a process that can be plugged into its hole, then we write γ[η] for the
result of replacing [] in γ by η (possibly capturing free variables of η).

A context C is a context of type expression, i.e., a process where the hole
marker [] occurs in expression position. We call C flat if its hole does not occur
below a lambda binder, and deep otherwise. A context D is a context of type
process, where the hole marker occurs in process position. In Fig. 3 we define
particular flat contexts of type expression that we call evaluation contexts (ECs)
E and future ECs F . ECs encode the standard call-by-value, left-to-right re-
duction strategy, while future ECs control dereferencing operations on futures:
dereferencing is only allowed when the value of the future is needed.

We define the operational semantics of λ(fut) using a (small-step) reduction
denoted by →, or ev−→ in case we want to distinguish it from the general trans-
formations introduced in Section 4. It is the least binary relation on processes
p→ p′ satisfying the rules in Fig. 4.

By rule (thread.new(ev)), evaluation of threadλx.e spawns a new thread
x⇐e, where x may occur in e (so it may be viewed as a recursive equation
x = e, but directed from right to left). Similarly, lazyλx.e creates a new sus-
pended computation x

susp⇐= e. Both dereferencing of fully evaluated futures and
triggering of suspended computations is controlled by the use of contexts F in
(fut.deref(ev)) and (lazy.trigger(ev)), resp. The lazy variant (lbeta(ev))
of beta reduction also takes advantage of this machinery. In (handle.new(ev))
the expression handle λx.λy.e introduces a handle component y hx with static
scope in e; the application y v in (handle.bind(ev)) “consumes” the handle y
and binds x to v, resulting in a used handle y h • and thread x⇐v. Reducing
cell v with rule (cell.new(ev)) creates a new cell z c v with contents v. The
exchange operation exch(z, v′) writes v′ to the cell and returns the previous
contents. Since this is an atomic operation, no other thread can interfere.

Note that reduction for a given process may be non-deterministic. Note also
that reduction preserves well-formedness as well as non-well-formedness. For a
reduction or transformation t, t+, t∗, tε denotes the transitive, reflexive-transitive
and reflexive closure of t, respectively.

Example 2.1. In λ(fut) we can define a binary non-deterministic choice operator
that receives two values as arguments, and non-deterministically selects one of
them. Let K1 = λxλy.x and K2 = λxλy.y, and let choice be

λsλt.let z = cell K1 in let y = thread (λ .exch(z,K2)) in (exch(z,K2)) s t

6 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

ECs E ::= x⇐Ẽ , Ẽ ::= [] | Ẽ e | v Ẽ | exch(Ẽ, e) | exch(v, Ẽ)

Future ECs F ::= x⇐F̃ , F̃ ::= Ẽ[[] v] | Ẽ[exch([], v)]

Process ECs D ::= [] | p |D | D | p | (νx)D

Fig. 3. Evaluation contexts

Reduction rules.

(lbeta(ev)) E[(λy.e) v] −→ (νy)(E[e] | y⇐v)

(thread.new(ev)) E[thread v] −→ (νz)(E[z] | z⇐v z)

(fut.deref(ev)) F [x] |x⇐v −→ F [v] |x⇐v

(handle.new(ev)) E[handle v] −→ (νz)(νz′)(E[v z z′] | z′ h z)

(handle.bind(ev)) E[x v] |x h y −→ E[unit] | y⇐v |x h •
(cell.new(ev)) E[cell v] −→ (νz)(E[z] | z c v)

(cell.exch(ev)) E[exch(z, v1)] | z c v2 −→ E[v2] | z c v1

(lazy.new(ev)) E[lazy v] → (νz)(E[z] | z
susp⇐= v z)

(lazy.trigger(ev)) F [x] |x
susp⇐= e → F [x] |x⇐e

Distinct variable convention. We assume that all processes to which a rules apply
satisfy the distinct variable convention, and that all new binders use fresh variables
(z and z′). Reduction results will then satisfy the distinct variable convention as
well, except for the rule fut.deref(ev) where values with bound variables can get
copied. In this case, α-renaming has to be performed before applying the next rule.

Closure. Rule application is closed under structural congruence and process ECs D.
If p1 ≡ D[p′1], p′1 → p′2, and D[p′2] ≡ p2 then p1 → p2.

Fig. 4. One-step reduction relation of λ(fut) denoted by → or
ev−→

where let is just syntax sugar. One can verify that E[choice v1 v2] | p may reduce
to E[vi] | p | . . ., for any p and i = 1, 2, which is equivalent to E[vi] | p, using
correctness of gc(see Theorem 4.11).

3 Program Equivalence

Two processes are equivalent if it is impossible for an observer to distinguish
them. We model the observer by contexts, which test whether or not a process
in that context may or must terminate successfully.

A process p is successful, i.e. has terminated successfully, iff for ev-
ery component x⇐e of p, the future x is bound (possibly via a chain
x⇐x1 |x1⇐x2 | . . . |xn−1⇐xn) to a non-variable value, a cell, a lazy future, a
handle, or a handled future. For example, x⇐λy.y is successful, while x⇐x (a
“black hole”) and x⇐yx | y⇐xy (a deadlocked process) are not successful.

Program Equivalence for a Concurrent Lambda Calculus with Futures 7

Let p be a process. We say that p is may-convergent (p↓) if there exists a
sequence of reductions p →∗ p′ such that p′ is successful. It is must-convergent
(p⇓) if all reduction descendants p′ of p are may-convergent. This implies that
all irreducible descendants of p must succeed. We say that p is must-divergent
(p⇑) if it has no reduction descendant that succeeds. It is may-divergent (p↑) if
some reduction descendant of p is must-divergent. With Suc(p) (Div(p), resp.)
we denote all sequences of reductions for p that end in a successful process
(must-divergent process, resp.). Note that all processes p satisfy p⇑ ⇔ ¬p↓ and
p↑⇔ ¬p⇓, and that non-well-formed processes are must-divergent.

Lemma 3.1. If p contains a future cycle x1⇐x2 |x2⇐x3 | . . . |xn⇐x1 then
p⇑. In particular, if p↓ then p does not contain such a cycle.

We write ↓ for the set of may-convergent processes, and ⇓ for the set of must-
convergent processes. Let P = ↓ or P = ⇓. We define binary relations ≤P both
for processes and expressions, such that for all p, p′ ∈ Process and e, e ∈ Exp:

p ≤P p′ iff ∀D. D[p] ∈ P ⇒ D[p′] ∈ P
e ≤P e′ iff ∀C. C[e] ∈ P ⇒ C[e′] ∈ P

Note that e ≤P e′ iff C[e] ≤P C[e′] for all C. The contextual preorder ≤ is the
intersection of may- and must-contextual approximation ≤↓ and ≤⇓. Contextual
equivalence ∼ is the equivalence relation ≤ ∩ ≥ induced by the contextual
preorder ≤. It is easy to see that contextual equivalence ∼ on expressions is a
congruence, i.e., ∼ is an equivalence relation such that e ∼ e′ implies C[e] ∼ C[e′]
for all contexts C. Note that neither may- nor must-convergence alone yields a
satisfactory notion of observational equivalence, as the former cannot distinguish
v from choice v⊥ while the latter equates choice v⊥ and ⊥, where v is any value
and ⊥ e.g. represents non-convergence, e.g. a future x with thread x⇐x.

In Appendix B we show a context lemma for processes claiming that for
equivalence proofs we can assume that ν-binders are shifted upwards. Here we
present the more fundamental context lemma for expressions, stating that ECs
provide already enough observations to distinguish observationally nonequivalent
terms. Establishing equivalences is made considerably more tractable by the
context lemma. We define contextual approximations in evaluation contexts for
the set of processes P = ↓ and P = ⇓.

e ≤ev
P e′ iff ∀E∀D : D[E[e]] ∈ P ⇒ D[E[e′]] ∈ P

Proposition 3.2 (Context Lemma). For all e1, e2 ∈ Exp:

e1 ≤ev
↓ e2 and e1 ≤ev

⇓ e2 ⇒ e1 ≤ e2

We only give an outline of the proof here. In a first step, we prove a context
lemma for may-convergence. This requires to generalize to contexts with several
holes. The proof is by induction on the lexicographic measure that counts the
number of steps until successful termination in the first component and the

8 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

number of holes in the second. In a second step the case of must-convergence is
shown by using the validity of the context lemma for may-convergence.

The full proof can be found in Appendix C. In Appendix D we show that
may- and must-convergence do not change if reductions are restricted to be fair.

4 Program Transformations

We present a set of transformation rules that allow for partial evaluation, and
show which of these reduction rules are correct. Most importantly, we show that
call-by-value beta reduction can be performed in arbitrary contexts.

Candidates of transformation rules are collected in Fig. 5. They are
parametrized by strategies strat which fix the contexts in which the rule can
be applied. We assume all transformations to be closed under structural con-
gruence and process ECs. The strategy ev is the reduction strategy of λ(fut). It
permits ECs E for all rules but fut.deref and lazy.trigger where it requires
future ECs F . The strategy f permits all flat contexts, while d insists on deep
contexts. Other strategies can be defined by Boolean combinations, for instance
¬ev∧f. In particular, the strategy with arbitrary contexts is a = f ∨ d.

The first set of transformation rules in Fig. 5 is obtained by lifting reduction
rules of λ(fut) from ECs to contexts permitted by the strategy. The second set is
most important. It contains call-by-value β-reduction in contexts permitted by
the strategy, garbage collection, and deterministic cell exchange. The dereferenc-
ing of values into cells (cell.deref) is included mainly for technical reasons.

Definition 4.1. A transformation t is correct iff (p, p′) ∈ t implies that p ∼ p′.

Proposition 4.2. The following transformations are not correct:
cell.exch(ev), thread.new(¬ev) handle.new(¬ev), handle.bind(¬ev),
cell.new(¬ev), lazy.new(¬ev), and lazy.trigger(f). Also a rule β-cbn
with C[(λx.e) e′] −→ C[e[e′/x]] would be incorrect.

Lemma 4.3. A transformation t that is closed under all contexts D is correct
iff it satisfies p↓⇔ p′↓ and p↑⇔ p′↑ for all pairs (p, p′) ∈ t.

4.1 Correctness of Deterministic Reductions

We show that all deterministic reduction steps of λ(fut) are correct transforma-
tions. This excludes the rule cell.exch(ev), the only source of non-determinism
in λ(fut). The proof relies on the diagrams used in [12] to show the uniform con-
fluence of the fragment of λ(fut) without cell exchange and handle errors.
Let ev be the reduction ev−→ of λ(fut) and p

ev¬er−−−→ p′ iff p
ev−→ p′

and p is may-convergent.

Lemma 4.4. A transformation t on processes that is closed
under D-contexts and subsumed by reduction t ⊆ ev is correct
if it satisfies the forking condition ev−1

¬er ◦ t ⊆ tε ◦ (ev∗)−1.

· t //

ev¬er

��

·

∃ev∗

���
�
�

·
∃tε

//___ ·

Program Equivalence for a Concurrent Lambda Calculus with Futures 9

Lifting reduction to transformation rules.

(lbeta(strat)) C[(λy.e) v] −→ (νy)(C[e] | y⇐v)

(thread.new(strat)) C[thread v] −→ (νz)(C[z] | z⇐v z)

(fut.deref(strat)) C[x] |x⇐v −→ C[v] |x⇐v

(handle.new(strat)) C[handle v] −→ (νz)(νz′)(C[v z z′] | z′ h z)

(handle.bind(strat)) C[x v] | y h x −→ C[unit] | y⇐v |x h •
(cell.new(strat)) C[cell v] −→ (νz)(C[z] | z c v)

(cell.exch(strat)) C[exch(y, v1)] | y c v2 −→ C[v2] | y c v1

(lazy.new(strat)) C[lazy v] → (νz)(C[z] | z
susp⇐= v z)

(lazy.trigger(strat)) C[x] |x
susp⇐= e → C[x] |x⇐e

Call-by-value beta reduction and other deterministic transformations.

(β-cbv(strat)) C[(λx.e) v] −→ C[e[v/x]]

(cell.deref) p | y c x |x⇐v −→ p | y c v |x⇐v

(gc) p | (νy1) . . . (νyn)p′ −→ p
if p′ is successful and y1, . . . , yn contains all process variables of p′

(det.exch) (νx)(y⇐Ẽ[exch(x, v1)] |x c v2) −→ (νx)(y⇐Ẽ[v2] |x c v1)

No capturing. The same conditions as in Fig. 4 are assumed. In addition we assume
that no variables are moved out of their scope or into the scope of some other
binder, i.e., fv(v)∩bv(C) = ∅, and that α-renaming is also done after cell.deref.

Closure. Transformations are always closed under structural congruence and D con-

texts. For all above rules r(strat) we write p1
r(strat)−−−−→ p2 if p1 → p2 by this rule.

Fig. 5. Transformation rules for some strategy strat permitting contexts C

Proof. Since t is closed under D-contexts it suffices to show for all (p, p′) ∈ t that
p and p′ have identical may- and must-convergence behaviour. That p′↓⇒ p↓
and p′↑⇒ p↑ is obvious since t ⊆ ev. We prove the remaining cases:

p↓⇒ p′↓: By induction on the length of R ∈ Suc(p). This length cannot be 0
since t ⊆ ev. We prove the induction step. Note that p is may-convergent since
the reduction sequence exists. Thus, we can apply the forking diagram to the
first reduction step. If the diagram is closed by an =−→ step, then p′↓. Otherwise
the induction hypothesis applies to the result of the first reduction step.

p↑⇒ p′↑: By induction on the length of a minimal reduction sequence R ∈
Div(P). If the length is 0, then p is must-divergent and so p′⇑, since we have
already established p′↓⇒ p↓. Otherwise, p is may-convergent, so that we can
apply the forking diagram. The rest follows from the induction hypothesis. ut

Note that t preserves must-divergence since reduction ev does. If t raises a handle
error, i.e. generates components of the form E[z v1] | z h •, then the result is a
must-divergent process.

Proposition 4.5. All reduction steps of λ(fut) are correct program transforma-
tions except for cell.exch(ev).

10 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

Proof. The diagrams required by Lemma 4.4 can be shown as in [12], with a
slight modification: Instead of call-by-value beta reduction one needs to con-
sider lbeta(ev) and additionally the overlappings with rule cell.new(ev).
Both modifications are easy to handle. The only rule for which some care is
needed is the rule handle.bind(ev). This rule can introduce non-determinism,
but only when raising handle errors which results in a must-divergent process:
a typical counter example is E1[z v1] |E2[z v2] | z h y which has two reducts
E1[unit] | y⇐v1 |E2[z v2] | z h • and E1[z v1] | y⇐v2 |E2[unit] | z h • that can-
not be joined, but both constitute handle-errors. The rule commutes with itself
in case no handle error is raised. ut

4.2 Correctness of lbeta(f), fut.deref(f), gc and det.exch

Lemma 4.6. A transformation t on processes is correct if it satisfies the fol-
lowing three conditions:

· t //

ev

��

·

∃evε

���
�
�

·
∃t∗

//___ ·

(fork) ev−1 ◦ t ⊆ t∗ ◦ (evε)−1

· t //

∃ev∗

���
�
� ·

ev

��
·

∃tε
//___ ·

(commute) t ◦ ev ⊆ ev∗ ◦ tε

(success) for all (p, p′) ∈ t: p is successful iff p′ is successful and (p, p′) 6∈ ev.

Proof. Since t is closed under D-contexts, it is sufficient to show for all p, p′ with
(p, p′) ∈ t that p and p′ have identical may- and must-convergence behaviour.

p↓⇒ p′↓: By induction on the length of R ∈ Suc(p), we show that there exists
R′ ∈ Suc(p′) of smaller or equal length. In the base case of length 0, p is successful
and thus p′ by condition (success). Otherwise consider the first reduction step.
There exists p1 such that p

ev−→ p1 and p1 has a smaller successful reduction
sequence. Thus, we can apply condition (fork) for some p′1 with p′

evε

−−→ p′1 and

p1
t∗−→ p′1. We conclude the proof by induction on the length of p1

t∗−→ p′1. If this
length is 0 then p1 ≡ p′1 so p′ has a successful reduction sequence of length smaller
or equal to that of p. If the length is n, we apply the first induction hypothesis
to the first transformation step, and use the other induction hypothesis for the
remaining sequence of n− 1 transformation steps.

p′↓⇒ p↓: By induction on the length of R ∈ Suc(p′). The case p
ev−→ p′

is obvious, so we can assume (p, p′) /∈ ev. In the base case, this length is 0
so p′ is successful. Assumption (success) implies that p is successful too. For
larger lengths, we can apply the (commute) condition, and then the induction
hypothesis.

p↑⇒ p′↑: By induction on the length of R ∈ Div(p) we show that there exists
R′ ∈ Div(p′) of smaller or equal length. In the base case, p⇑, hence p′⇑ as shown
in case p′↓⇒ p↓. The induction step uses the (fork) diagram.

p′↑⇒ p↑: By induction on the length of R ∈ Div(p′). In the base case, p′

must-diverges and so does p as we showed in case p↓⇒ p′↓. The induction step
relies on the (commute) diagram. ut

Program Equivalence for a Concurrent Lambda Calculus with Futures 11

Definition 4.7. Forking and commuting diagrams for a transformation t are
meta-rewriting rules for some r ⊆ ev, t′ ⊆ t and f being relations on processes.

· t′ //

r
��

·

·
f

@@�
�

�

forking diagram

· t′ //

f ��=
=

= ·
r

��
·

commuting diagram

A set of forking diagrams { r1←− · t1−→ f1−→, . . . ,
rn←− · tn−→ fn−→} is complete

iff for every reduction sequence p1
ev←− p2

t−→ p3 there exists a forking diagram
r−1
i ◦ ti fi with (p1, p2) ∈ r−1

i , (p2, p3) ∈ ti and (p1, p3) ∈ fi.

A set of commuting diagrams { t1−→ · r1−→ f1−→, . . . ,
tn−→ · rn−→ fn−→} is com-

plete iff for every reduction sequence p1
t−→ p2

ev−→ p3 there exists a commuting
diagram ti ◦ ri fi with (p1, p2) ∈ ti, (p2, p3) ∈ ri and (p1, p3) ∈ fi.

Lemma 4.8. Let p1, p2 be two configurations with p1
lbeta(¬ev∧a)−−−−−−−−→ p2. Then p1

is successful iff p2 is successful.

Lemma 4.9. A complete set of forking diagrams for lbeta(f) and a complete
set of commuting diagrams for lbeta(¬ev∧f) are:

·
lbeta(f) //

r
��

·
r

���
�

·
lbeta(f)

//____ ·

for every reduction r

·
lbeta(¬ev∧f)//

r
���
� ·

r
��

·
lbeta(¬ev∧f)

//____ ·

for every reduction r

·
lbeta(¬ev∧f)//

r
���
� ·

r

��

·

lbeta(ev) &&MMMMM

·
for r ∈ {lbeta(ev), lazy.trigger(ev)}

Proposition 4.10. lbeta(f) is a correct transformation.

Proof. From Lemma 4.6 which is applicable by Lemmas 4.8 and 4.9 and from
the fact that lbeta(ev) ◦ ev ⊆ ev∗. ut

Theorem 4.11. gc is a correct program transformation.

Proof. This follows by Lemma 4.6, since gc has no influence on reduction se-
quences, i.e. ev−1 ◦gc ⊆ gc◦ev−1 and gc◦ev ⊆ ev◦gc and since the conditions
ensure that there is no interference with the success of processes. ut

In the same way it follows that:

Theorem 4.12. det.exch is a correct program transformation.

Lemma 4.13. Let p1, p2 be processes with p1
fut.deref(¬ev∧a)−−−−−−−−−−−→ p2 or

p1
cell.deref−−−−−−−→ p2, then p1 is successful iff p2 is successful.

12 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

Lemma 4.14. The forking and commuting diagrams for cell.deref can be
read off the following diagrams:

· cell.deref//

r
��

·
r

��
·
cell.deref

// ·
for every reduction r

· cell.deref//

cell.exch(ev)
��

·
cell.exch(ev)

��
·
fut.deref(f)

// ·

Lemma 4.15. A complete set of forking (commuting, resp.) diagrams for
fut.deref(f) (fut.deref(¬ev∧f), resp.) can be read off the following diagrams:

·
fut.deref(ev)

��

fut.deref(f) // ·
fut.deref(ev)

���
�

·
fut.deref(f)

//______ ·
fut.deref(f)

//______ ·

fut.deref(f) copies a variable

·
r

��

fut.deref(f)// ·
r

���
�

·
fut.deref(f)

//____ ·

for every reduction r

·
cell.exch(ev)

��

fut.deref(f)// ·
cell.exch(ev)

���
�

·
cell.deref

//____ ·

·
cell.exch(ev)

���
�

fut.deref(f∧¬ev)// ·
cell.exch(ev)

��
·
cell.deref

//____ ·

·
fut.deref(¬ev∧f)//

fut.deref(ev)
���
� ·

fut.deref(ev)

��

·
fut.deref(ev)

���
�

·
fut.deref(¬ev∧f)

//____ ·

where fut.deref(¬ev∧f)

copies a variable

·
fut.deref(¬ev∧f)//

r
���
� ·

r

��

·

fut.deref(ev) %%KKKKK

·
r ∈ {thread.new(ev),

handle.new(ev),

lazy.trigger(ev)}

·
r

���
�

fut.deref(¬ev∧f)// ·
r

��
·

fut.deref(¬ev∧f)
//____ ·

for every

reduction r

Proposition 4.16. fut.deref(f) and cell.deref are correct transforma-
tions.

Proof. From Lemma 4.6 which is applicable by combining the diagrams of Lem-
mas 4.14, 4.13 and 4.15 and the fact that fut.deref(ev) ◦ ev ⊆ ev∗. ut

4.3 Correctness of fut.deref(d) and β-cbv(a)

We strengthen this result for fut.deref(f) in order to prove the correctness of
fut.deref(d) wrt. suitable measures on terms and sequences of reductions.

Definition 4.17. Let p be a process with p ≡ x1⇐x2 |x2⇐x3 | . . . xn⇐t | p′

where t is not a variable and the chain of variables is maximal. Then the measure
cl : Var → N0 is defined as cl(x1) := n. If the chain contains a chain of cyclic
thread components xi⇐xi+1 | . . . |xj⇐xi then cl(x1) is undefined. The measure
#varf : Process→ N0 is defined as follows: Let p be a process, then #varf(p) is
the sum of cl(x) of all occurrences of variables x in p, where the occurrence of x
is inside a flat context.

Program Equivalence for a Concurrent Lambda Calculus with Futures 13

Let R = p0
ev−→ p1 . . .

ev−→ pn be a sequence of reductions. Then rl(R) is the
number of reductions of R, i.e. rl(R) = n, and rl¬fut.deref(ev)(R) is the number
of reductions r of R with r 6⊆ fut.deref(ev).

Lemma 4.18. Let p, p′ be two processes with p
fut.deref(f)−−−−−−−−→ p′.

i) If there exists R ∈ Suc(p) (R ∈ Div(p), resp.) then there exists R′ ∈ Suc(p′)
(R′ ∈ Div(p), resp.) with rl(R′) ≤ rl(R).

ii) If there exists R′ ∈ Suc(p′) (R′ ∈ Div(p′), resp.) then there exists R ∈ Suc(p)
(R ∈ Div(p), resp.) with rl¬fut.deref(ev)(R) ≤ rl¬fut.deref(ev)(R′).

Proof. Follows by inspecting the forking and commuting diagrams for
fut.deref(f) that are used for the construction of the reduction sequences. ut

Lemma 4.19. If p is a process without cyclic chains of threads, then every
fut.deref(d) transformation preserves the measure #varf .

Lemma 4.20. Complete sets of forking and commuting diagrams for
fut.deref(d) can be read off the following diagrams for all reductions r:

·
fut.deref(d)//

r
��

·
r

��
·

fut.deref(d)
// ·

·
fut.deref(d)//

lbeta(ev)
��

·
lbeta(ev)

��
·

fut.deref(f)
// ·

·
fut.deref(d) //

fut.deref(ev)
��

·
fut.deref(ev)

��
·
fut.deref(d)

// ·
fut.deref(d)

// ·

Proposition 4.21. The transformation fut.deref(d) is correct.

Proof. Let p1
fut.deref(d)−−−−−−−−→ p2. We split the proof into four parts:

p1↓⇒ p2↓: Let R ∈ Suc(p1). We show by induction on l = rl(R) that there
also exists R′ ∈ Suc(p2) with length ≤ l.

Lemma 4.13 implies that the base case holds. Now let l > 0. Then we can
apply one of the forking diagrams of Lemma 4.20 to a suffix of the sequence
R←− p1

fut.deref(d)−−−−−−−−→ p2 and then use the induction hypothesis. For the second
diagram of Lemma 4.20 we apply Lemma 4.18, and for the last diagram we
apply the induction hypothesis twice.

p2 ↓⇒ p1 ↓: We use the (lexicographically ordered) measure (µ1, µ2) on

reduction sequences of the form p1
fut.deref(a)−−−−−−−−→ p2

R−→ with R ∈ Suc(p2),
µ1 = rl¬fut.deref(ev)(R), and µ2 = #varf(p2). Note that µ2 is defined, since by
Lemma 3.1 the corresponding process does not contain a cyclic chain of threads.

Let R ∈ Suc(p2). We show by induction on (µ1, µ2) that there exists R′ ∈
Suc(p1) with rl¬fut.deref(ev)(R′) ≤ rl¬fut.deref(ev)(R).

For the base case let (µ1, µ2) = (0, 0). Then Lemma 4.19 implies that R must
be empty. Hence, p2 is a successful process and Lemma 4.13 shows the claim.
For the induction step let (µ1, µ2) > (0, 0). We apply a commuting diagram from

Lemma 4.20 to the sequence p1
fut.deref(d)−−−−−−−−→ p2

R−→.

14 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

- If the first diagram is applicable, and the first reduction of R is a
fut.deref(ev) then µ1 is unchanged, but µ2 is strictly decreased. Otherwise
µ1 is strictly decreased. Hence we can apply the induction hypothesis.

- In case of the second diagram, µ1 is strictly decreased and Lemma 4.18 shows
the existence of R′ with rl¬fut.deref(ev)(R′) ≤ rl¬fut.deref(ev)(R).

- In case of the last diagram we can apply the induction hypothesis twice,
since fut.deref(ev) decreases the measure µ2 and leaves µ1 unchanged and
a fut.deref(d) transformation does not change µ2 (see Lemma 4.19).

In any case, the constructed reduction sequence satisfies rl¬fut.deref(ev)(R′) ≤
rl¬fut.deref(ev)(R).

p1↑⇒ p2↑: This follows by induction on the length of a sequence R ∈ Div(p1)
and by using the forking diagrams. The base case follows from the previous case,
p2↓⇒ p1↓. The induction step is analogous to the first case of the proof.

p2↑⇒ p1↑: This follows by induction on the measure (µ1, µ2) where µ1 =
rl¬fut.deref(ev)(R) with R ∈ Div(p2) being a shortest sequence of reductions and
µ2 = #varf(p2). Note that µ2 may be undefined, but only for the last contractum
of R, since R is a shortest sequence. Moreover, it is necessary to observe that
fut.deref(d) does not introduce cyclic chains of threads. The base case, i.e.
p2⇑ follows from the first case of the proof, p1↓⇒ p2↓. The induction step is
analogous to the second case, using the commuting diagrams. ut

Theorem 4.22. fut.deref(a) is a correct program transformation.

Theorem 4.23. β-cbv(a) is a correct program transformation.

Proof. By the context lemma it suffices to show that β-cbv(f) is correct. In

all flat contexts C, the transformation C[(λx.e) v]
β-cbv(f)−−−−−→ C[e[v/x]] can be

replaced by the sequence of transformations

C[(λx.e) v]
lbeta(f)−−−−−→ (νx) C[e] |x⇐v

fut.deref(a)−−−−−−−−→
∗

(νx) C[e[v/x]] |x⇐v
gc−→ C[e[v/x]]

Since we have shown that lbeta(f), fut.deref(a) and gc are correct in Theo-
rems 4.11 and 4.22 and Proposition 4.10, respectively, the result follows. ut

Theorem 4.24. Path compression, (νy)(x⇐y | y⇐v) −→ x⇐v where y /∈ fv(v),
is correct.

The theorems also imply that the following equivalence holds, which is not
covered by the congruence property: v1 ∼ v2 =⇒ p |x c v1 ∼ p |x c v2, which
follows from the equivalence p | ((νy)(x c y | y⇐v)) ∼ p |x c v.

5 Conclusions and Outlook

We have presented an observational equivalence for λ(fut) programs, which al-
lows us to reason about the correctness of transformations of stateful and concur-
rent computations, as found in the Alice ML core language [16, 12]. Specifically,

Program Equivalence for a Concurrent Lambda Calculus with Futures 15

we have proved correctness of partial evaluation with respect to this seman-
tics. Equivalences like garbage collection and path compression are interesting,
as they open the possibility of proving the actual Alice ML garbage collector
correct. More generally, the framework developed in this paper can serve as the
foundation for static analyses of higher-order concurrent languages like Alice ML.

The main tools to derive equivalences are a context lemma, and finding cer-
tain (complete sets of) rewrite rules on reduction sequences, called commuting
and forking diagrams. The latter are adapted from [8, 17]; although the details
differ, this technique appears both flexible and robust.
Future Work. We plan to investigate static analyses for λ(fut), e.g. an adapta-
tion of the calculus where touch optimization can be investigated [6]. Applying
the correctness-criterion of must- and may-convergence to optimizations of the
reduction strategy also deserves further work.

References

1. Henry Baker and Carl Hewitt. The incremental garbage collection of processes.
ACM Sigplan Notices, 12:55–59, August 1977.

2. Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the representation
of McCarthy’s amb in the pi-calculus. Theor. Comp. Sci., 330(3):439–473, 2005.

3. Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano. Developing Applica-
tions With Objective Caml. O’Reilly, 2000.

4. Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for Objective-
Caml. In First International Symposium on Agent Systems and Applications
(ASA’99)/Third International Symposium on Mobile Agents (MA’99), 1999.

5. William Ferreira, Matthew Hennessy, and Alan Jeffrey. A theory of weak bisimu-
lation for Core CML. Journal of Functional Programming, 8(5):447–491, 1998.

6. Cormac Flanagan and Matthias Felleisen. The semantics of future and an appli-
cation. Journal of Functional Programming, 9(1):1–31, 1999.

7. Alan Jeffrey and Julian Rathke. A theory of bisimulation for a fragment of con-
current ML with local names. Theor. Comp. Sci., 323(1-3):1–48, 2004.

8. Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic call-by-need
lambda calculus. In ICFP 1998, pages 324–335. ACM Press, 1998.

9. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, May 1999.

10. Robin Milner, Mads Tofte, Robert Harper, and David B. MacQueen. The Standard
ML Programming Language (Revised). MIT Press, 1997.

11. A. K. Moran. Call-by-name, Call-by-need, and McCarthy’s Amb. PhD thesis,
Gothenburg, Sweden, 1998.

12. Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda
calculus with futures. Theor. Comp. Sci., 2006.

13. Andrew M. Pitts. Operational semantics and program equivalence. In J. T.
O’Donnell, editor, Applied Semantics, volume 2395 of Lecture Notes in Computer
Science, pages 378–412. Springer-Verlag, 2002.

14. Gordon D. Plotkin. A powerdomain construction. SIAM Journal of Computing,
5(3):452–487, 1976.

15. Andreas Rossberg. The missing link: dynamic components for ML. In 11th Int.
Conf. on Functional Programming, pages 99–110, 2006.

16 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

16. Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert
Smolka. Alice Through the Looking Glass, volume 5 of TFP, pages 79–96. 2006.

17. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus with
locally bottom-avoiding choice: Context lemma and correctness of transformations.
Frank Report 24, Institut für Informatik, J.W. Goethe-Universität Frankfurt, 2006.

18. Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information
and Computation, 111:120–153, 1994.

19. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

20. Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer
Science Today, volume 1000 of LNCS, pages 324–343. Springer, 1995.

Program Equivalence for a Concurrent Lambda Calculus with Futures 17

A An Inference System for Well-Formedness

Fig. 6 presents an inference system for well-formed processes. A judgment X `
p : Y means that Y is the set of process variables introduced by p and X is (a
superset of) the set of all other free variables in p.1 The rules ensure that all
process variables are introduced exactly once. p is well-formed iff there are sets
of variables X, Y such that X ` p : Y .

X] Y2 ` p1 : Y1 X] Y1 ` p2 : Y2

X ` p1 | p2 : Y1] Y2

X] {x} ⊇ fv(v)

X ` x c v : {x}

X ` p : Y

X ` (νx)p : Y \ {x}

X] {x} ⊇ fv(e)

X ` x⇐e : {x}

X] {x} ⊇ fv(e)

X ` x
susp⇐= e : {x}

x, y /∈ X

X ` y h x : {x, y}

y /∈ X

X ` y h • : {y}

Fig. 6. Well-formedness

Lemma A.1. Well-formedness is preserved by reduction.

Proof. One first proves that well-formedness is closed under structural congru-
ence and replacement of well-formed subconfigurations. More precisely, X ` p :
Y and p ≡ p′ implies X ` p′ : Y , and for all process EC’s D, if X ` D[p] : Y then
there exists X ′, Y ′ such that X ′ ` p : Y ′ and X ` D[p′] : Y for all X ′ ` p′ : Y ′. It
is also not hard to see that if X ` p : Y and Z is disjoint Y , then X ∪Z ` p : Y .
Also note that for all Ẽ and e, fv(Ẽ[e]) ⊇ fv(e) (since in ECs the holes are not
in the scope of binders), and for all e′, one has fv(Ẽ[e′]) ⊆ fv(Ẽ[e]) ∪ fv(e′).

Suppose X ` p : Y for some X, Y , and p→ p′. The proof that X ` p′ : Y is
now by a case distinction on the axioms and rules in Fig. 4. We only consider the
case of (lbeta(ev)), the other cases are similar: By assumption, X ` E[(λz.e) v] :
Y where E = x⇐Ẽ, so that fv(Ẽ[(λz.e) v]) ⊆ X]{x} and Y = {x} by the well-
formedness rules. By the above observations, fv((λz.e) v) ⊆ X]{x} which yields
fv(Ẽ[e]) ⊆ X]{x}]{z} since, by the distinct variable convention, we may assume
that z is fresh. Thus, X]{z} ` E[e] : {x}. Moreover, fv(v) ⊆ X]{x}]{z} so that
X] {x} ` z⇐v : {z}. Using the well-formedness rule for parallel composition,
this entails X ` E[e] | z⇐v : {x, z} from which X ` p′ : Y follows by an
application of the well-formedness rule for new name restriction. ut

1 The judgements are like the typing judgments from [12] but without type informa-
tion.

18 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

B Prenex-Context Lemma for Processes

This section proves a context lemma for processes, mainly that we do not have
to check all possibilities of ν-nesting.

A process context D is called prenex, iff it is of the form (νx1) . . . (νxn)D′

such that D′ does not contain further ν-binders. A prenex process context D is
called ν-closed iff every process variable in D is bound by a top-level ν-binder,
and a process context D is called ν-open (open), iff there are no ν-binders.

Lemma B.1. Let p1, p2 be processes. Then p1 ∼ p2 iff p1ρ ∼ p2ρ where ρ is a
renaming of bound process variables that does not provoke any name clashes.

Lemma B.2. Let p1, p2 be processes. Then p1 ≤ p2 iff all prenex process con-
texts D satisfy D[p1]↓ ⇒ D[p2]↓ and D[p1]⇓ ⇒ D[p2]⇓.

Proof. We prove only the nontrivial direction. Assume the lemma is false: I.e.
the condition for prenex process contexts holds, and there is a process context
D, and p1, p2, such that D[p1]↓ but not D[p2]↓, or D[p1]↓, D[p2]↓, D[p1]⇓, but
not D[p2]⇓. We show that in this case there is also a prenex process context Dst

with this property. We show how to move the ν-binders in D to the toplevel.
In the case D = (νx)p3 | D′[], we can also use D′′ = (νx′)p3[x′/x] | D′[], if
x occurs as a free process variable in p1, p2, and x′ is a fresh variable. Then the
may- and must-convergence behavior of D′′[p1] and D[p1] is equivalent, as well as
that of D′′[p2] and D[p2], by Lemma B.1. The second case is D = (νx)D′[] | p3,
where x is contained in p3 and also in p1 or p2. In this case we obtain a new
counterexample with D′′ = (νx′)D′[x′/x][] | p3 and p′1 = p1[x′/x], p′2 =
p2[x′/x]. Now we can move ν upwards, obtaining a new counterexample with
D′′′ = (νx′)(D′[x′/x][] | p3).

The other cases of moving ν to the top are trivial. Finally, we obtain a
counterexample to the assumed condition, which is impossible. Hence the lemma
holds. ut

Now we show that we can further specialize the test:

Lemma B.3. Let p1, p2 be processes. Then p1 ≤ p2 iff all prenex ν-closed pro-
cess contexts D satisfy D[p1]↓ ⇒ D[p2]↓ and D[p1]⇓ ⇒ D[p2]⇓.

Proof. If we proceed as in the previous proof, it is sufficient to argue that the
may- and must-convergence behavior does not change if a top-level ν-binder is
added. This is obvious, since reduction under ν-binders is always possible. ut

The same reasoning shows that also the following holds:

Lemma B.4. Let p1, p2 be processes. Then p1 ≤ p2 iff all prenex ν-open process
contexts D satisfy D[p1]↓ ⇒ D[p2]↓ and D[p1]⇓ ⇒ D[p2]⇓.

In summary, these results show that we can more or less ignore the top-level
ν-binders in the process contexts in further reasoning.

Program Equivalence for a Concurrent Lambda Calculus with Futures 19

C Context Lemma for Expressions

The context lemma for expressions says that ECs provide enough observations
to distinguish inequivalent expressions. It talks about the relations

e ≤ev
↓ e′ iff ∀E∀D : D[E[e]]↓ ⇒ D[E[e′]]↓

e ≤ev
⇓ e′ iff ∀E∀D : D[E[e]]⇓ ⇒ D[E[e′]]⇓

Proposition C.1 (Context Lemma for ≤↓). For all expressions e1, e2:

e1 ≤ev
↓ e2 ⇒ e1 ≤↓ e2

This will follow from Lemma C.4. In a first step, we have to generalize the context
lemma for expressions to multicontexts, which may have more than one hole, or
none at all. A multicontext M with n holes is a process that permits additional
constants []1, . . . , []n for marking holes in expression positions, each of which
occurs exactly once. We write M [e1, . . . , en] for the process obtained by replacing
[]i by ei for all 1 ≤ i ≤ n. Note that e.g. the terms D[C1[[]1] | . . . |Cn[[]n]]]
are multicontexts with n holes. For instance, if M is z c λx.([]1 []2) | y⇐[]3 then
M [x, y, z] becomes z c λx.x y | y⇐z We assume [] = []1 so that standard contexts
C become multicontexts. The i-th hole of a multicontext M is in EC position
if M [e1, . . . , ei−1, [], ei+1, . . . , en] is a (process) EC of the form D[E] for some
expressions e1, . . . , en.

Lemma C.2. If the i-th hole of M is in EC position then there exists an index j
such that M [e1, . . . , ej−1, [], ej+1, . . . , en] is an EC for all expressions e1, . . . , en.

Proof. We prove the corresponding property for expression multicontexts, by an
induction on such contexts M̃ . In the case where n ≤ 1 the proposition clearly
holds. So suppose M̃ has at least two holes. Then either M̃ is of the form λx.M̃1

or M̃1 M̃2 or exch(M̃1, M̃2). We may assume without loss of generality that
for some 1 ≤ k ≤ n, M̃1 is a multicontext over holes []1, . . . , []k, and M̃2 is a
multicontext over []k+1, . . . , []n; otherwise we rename the holes accordingly.

- The case λx.M̃1 is not possible, since every instantiation of n − 1 holes of
M1 yields a deep context. In particular, this cannot be an EC.

- In the case M̃1 M̃2, we distinguish two subcases: First, if there exist
e1, . . . , ek and 1 ≤ i ≤ k such that M̃1[e1, . . . , ei−1, [], ei+1, . . . , ek] is an
EC, then by induction hypothesis there exists 1 ≤ j ≤ k such that
M̃1[e′1, . . . , e

′
j−1, [], e

′
j+1, . . . , e

′
k] is an EC for all e′1, . . . , e

′
k. Therefore, by def-

inition of ECs and assumption M̃ = M̃1 M̃2, M̃ [e′1, . . . , e
′
j−1, [], e

′
j+1, . . . , e

′
n]

Êis an EC for all e′1, . . . , e
′
n.

Second, if for all e1, . . . , ek and 1 ≤ i ≤ k, M̃1[e1, . . . , ei−1, [], ei+1, . . . , ek]
is not an EC then for all e′1, . . . , e

′
k, M̃1[e′1, . . . , e

′
k] ∈ Val, for oth-

erwise there is no instantiation of M̃ = M̃1 M̃2 that yields an EC,
contradicting the assumption. Moreover, by assumption we have that
M̃2[ek+1, . . . , ei−1, [], ei+1, . . . , en] is an EC, for some ek+1, . . . , en and k+1 ≤
i ≤ n. By induction hypothesis and M̃ = M̃1 M̃2, there exists k + 1 ≤ j ≤ n
such that M̃ [e′1, . . . , e

′
j−1, [], e

′
j+1, . . . , e

′
n] is an EC for all e′1, . . . , e

′
n.

20 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

- The case exch(M̃1, M̃2) is similar.

The statement of the lemma follows from this result by an induction on the
structure of (process) multicontexts M . ut

A redex R in a multicontext M is an EC D[E] or future EC D[F] in M
to which some reduction rule applies. If e = e1, . . . , en is a sequence and I ∈
{1, . . . , n}∗ a sequence of indices of length m then we write eI for the sequence
ei1 , . . . , eim where I = i1, . . . , im. We write []I for the sequence of hole markers
[]i1 , . . . , []im .

Lemma C.3. Let M be a deep multicontext with n holes (i.e., all n holes are
below abstractions) and R be a redex of M , such that there is a reduction r−→ at
R. Then there exists a multicontext M ′ with n′ holes and a sequence of indices
I ∈ {1, . . . , n}∗ of length n′, such that if e and e′ are any two sequences of
expressions of length n, there is a renaming ρ such that

M [e]→ p at R ⇒ p≡M ′[eρI] ∧ M [e′]→M ′[e′ρ
I
] at R

for all processes p.

Proof. We treat only the two cases of the rules lbeta(ev) and fut.deref(ev).
We start with the rule lbeta(ev). Let the redex R be D[E] and the term filling
this context be (λz.e) v. Since M is deep, the holes of M must either lie inside
D, E, e, or v. Let I1, I2, I3, I4 be the sequence of numbers of holes in D, E, e,
and v respectively, from the left to the right. Then we have

M [e] ≡ D[eI1 , E[eI2 , (λz.e[eI3]) v[eI4]]]
p ≡ D[eI1 , (νz)(E[eI2 , e[eI3]] | z⇐v[eI4])]

We can thus define the multicontext M ′ by D[[]I1 , (νz)(E[[]I2 , e[[]I3]] | z⇐v[[]I4])]
and set the sequence I to I = 1, . . . , n = I1, I2, I3, I4. The required renaming ρ
is the identity.

Only the case of fut.deref(ev) needs a proper renaming, since a value is
copied and some parameters ei occurring in this value may get copied, too. Let
the redex R be D[F] of M , x the future that is dereferenced, and v its value.
Since M is deep, the holes of M must either lie inside D, F , or v. Let I1, I2, I3

be the sequence of numbers of holes in D, F , and v respectively, from the left
to the right. Then the following holds:

M [e] ≡ D[eI1 , F [eI2 , x] |x⇐v[eI3]]
p ≡ D[eI1 , F [eI2 , v[eI3]] |x⇐v[eI3]]

In a subsequent renaming step the thread x⇐v[eI3] will be renamed in order to
satisfy the distinct variable convention. The renamings can be partitioned into
renamings that are local to e or renamings in v, such that no hole is in the
scope of the renamed variable. The interesting cases are the renamings of bound
variables in v such that a hole in v is in the scope of such a variable. Since the

Program Equivalence for a Concurrent Lambda Calculus with Futures 21

distinct variable convention was assumed to hold before the reduction, we can
write ρ for the whole renaming (assuming that for non-renamed parts we have
the identity). This means that we have renamed v[eI3] into vρ[eρI3]. Moreover,
the renaming can be chosen such that its codomain is disjoint from the finitely
many variables occuring in e′. It is then clear that

M [e′]→ D[e′
I1

, F [e′
I2

, v[e′
I3]] |x⇐vρ[e′ρ

I3]] at R

We can now define the multicontext M ′ by D[[]I1 , F [[]I2 , v[[]I′3]] |x⇐(vρ)[[]I3]]
where I ′3 = n + 1, . . . , n + |I3| and set the sequence I to I = I1, I2, I3, I

′
3 =

1, . . . , n + |I3| where the holes with indices in I3 get copied, and where eρ and
e′ρ, resp., are used as parameters. ut

Lemma C.4 (Generalized context lemma for may-convergence). For
n ≥ 0 and e1, . . . , en and e′1, . . . , e

′
n possibly empty sequences of expressions:

(∀1 ≤ i ≤ n : ei ≤ev
↓ e′i) ⇒ ∀M : M [e1, . . . , en]↓ =⇒ M [e′1, . . . , e

′
n]↓

Proof. Let M [e1, . . . , en]↓. We use induction on the following lexicographic or-
dering of pairs (l, n), where

1. l is the length of a shortest succeeding sequence of reductions starting with
M [e1, . . . , en], and

2. n is the number of holes in M .

The claim holds for all pairs (l, 0), since if M has no holes there is nothing to
show. Now, let (l, n) > (0, 0). For the induction step, we assume the claim holds
for all pairs (l′, n′) that are strictly smaller than (l, n). We assume ∀1 ≤ i ≤ n :
ei ≤ev

↓ e′i and let M be a multicontext with n holes such that M [e1, . . . , en] l−→ p
for some successful p. There are two cases:

- At least one hole of M is in EC position. Let this be the hole
be in position 1 ≤ i ≤ n. Let M1 be the multicontext with
n − 1 holes defined by M1 ≡ M [[]1, . . . , []i−1, ei, []i+1, . . . , []n]. Hence
M1[e1, . . . , ei−1, ei+1, . . . , en] ↓ so that the induction hypothesis yields
M1[e′1, . . . , e

′
i−1, e

′
i+1, . . . , e

′
n] ↓. By Lemma C.2 there exists an EC D′[E′]

such that D′[E′] ≡M [e′1, . . . , e
′
i−1, []i, e

′
i+1, . . . , e

′
n]. Thus, D′[Ẽ′[ei]]↓ so that

D′[E′[e′i]]↓ by assumption. The latter is M [e′1, . . . , e
′
n]↓.

- No hole of M is in EC position. If l = 0, then M [e1, . . . , en] is successful, so
M [e′1, . . . , e

′
n] is successful, too. Hence M [e′1, . . . , e

′
n]↓. If l > 0 then the first

reduction step of l−→ does also apply to M [e′1, . . . , e
′
n].

Lemma C.3 shows that this reduction can only modify the context M , in
that there exists a multicontext M ′ and a sequence of indices I ∈ {1, . . . , n}∗
such that the result of the first reduction step of M [e] is M ′[eρI] where
e = e1, . . . , en, and M [e′] → M ′[e′ρ

I
] for the same renaming ρ, where e′ =

e′1, . . . , e
′
n Note that M ′ may have more holes than M . We can apply the

induction hypothesis to M ′[eρI] nevertheless, since there is a reduction of
length l− 1 to a successful process, and the hypotheses eiρ ≤ev

↓ e′iρ still hold
for all parameters of M ′. ut

22 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

Proposition C.5 (Context Lemma). For all e1, e2 ∈ Exp:

e1 ≤ev
↓ e2 and e1 ≤ev

⇓ e2 ⇒ e1 ≤ e2

Proof. The part for may-convergence follows from Proposition C.1. For the re-
maining part, we prove the claim that for all n ≥ 0 and sequences e1, . . . , en,
e′1, . . . , e

′
n,

∀1 ≤ i ≤ n : ei ≤ev
↓ e′i ∧ ei ≤ev

⇓ e′i ⇒ (∀M : M [e′1, . . . , e
′
n]↑ ⇒ M [e1, . . . , en]↑)

The lemma then follows using the remarks on the relations on may- and must-
convergence and divergence in Section 3. We prove the claim by induction on
lexicographically ordered pairs (l, n) where

1. l is the length of a shortest sequence of reductions starting with M [e′1, . . . , e
′
n]

that ends in a process p with p⇑, and
2. n is the number of holes in M .

If M has no holes there is nothing to show.
Now let (l, n) > (0, 0). We analyze the two cases:

- At least one hole of M is in EC position. Then the same arguments as in
the first part of the proof of Lemma C.4 show the claim.

- No hole of M is in EC position. If l > 0 then again the argumentation of
part 2 of the proof of Lemma C.4 is used.
The remaining case is l = 0, i.e., M [e′1, . . . , e

′
n]⇑. We have to show that

M [e′1, . . . , e
′
n]⇑ ⇒ M [e1, . . . , en] ↑. Using the relations between may- and

must-convergence and must- and may-divergence, respectively, stated in Sec-
tion 3, an equivalent claim is M [e1, . . . , en]⇓ ⇒ M [e′1, . . . , e

′
n]↓. Using the

precondition and Lemma C.4 we have M [e1, . . . , en] ↓ ⇒ M [e′1, . . . , e
′
n] ↓.

Since obviously M [e1, . . . , en]⇓ implies M [e1, . . . , en]↓, the claim follows. ut

D Fairness

We show that may- and must-convergence do not change if reductions are re-
stricted to be fair. Fairness is a property of reduction strategies, which we trans-
late into a property of reduction sequences. It is necessary to speak of “the same
redex” after some reductions. To this end we use a labelled reduction to identify
the redex before and after reductions. Here by a redex we mean the expression
in an E or F -context in the left process of the reduction rules in Fig. 4, with the
exception of lazy.trigger(ev), where we mean the right (suspended) process.

Definition D.1. A reduction sequence R starting from p is fair iff every redex
is eventually reduced after a finite number of reductions of R. For a process p
we define p↓fair iff there is a fair reduction from p to a successful process, and
p⇓fair iff for every reduction p −→∗ p′, we have p′↓fair .

Program Equivalence for a Concurrent Lambda Calculus with Futures 23

In general, different notions of fairness are conceivable. For instance, in Weak
and strong fairness in CCS Costa & Stirling discuss several variants for Milner’s
CCS, which give rise to subtly differing views of fair reductions. Compared to
CCS reduction, λ(fut) processes are more well-behaved in that (1) there is no
internal non-determinism within threads (cf. the CCS process a.p+b.p′), and (2)
a reduction that is enabled in p but where the redex is not contracted in p→ p′

remains enabled in p′ (unlike (a.p1 | a.p2 | a.p3) \ a in CCS).
Since the definition of fair only excludes certain infinite reductions and the

notion of may- and must-convergence is founded on finite reductions, the follow-
ing is obvious:

Proposition D.2. Let p be a process. Then p↓⇔ p↓fair and p⇓⇔ p⇓fair .

In contrast to other calculi, which may remove redexes without reduction,
the reductions of λ(fut) never remove redexes without reducing them:

Lemma D.3. Let p be a process with p↓, and let p −→ p′ be a reduction. If p
contains a redex that is not reduced in p −→ p′, then that redex also appears in p′.

The only case in the proof where it is not obvious that an unreduced redex is
inherited is handle.bind(ev). In fact this is false whenever a handle can be used
by two redexes, but then the process is easily seen to be must-divergent.

We give two examples of must-convergent processes with infinite reductions
(but where the possibility of successful termination is preserved). In the first
example the infinite reduction is fair. In contrast, the infinite reductions in the
second example are not fair.

Example D.4. Let p be z⇐y y | y⇐λx.choice (λ .unit) (λ .x x)unit, with choice
as in Example 2.1. Either a successful process is reached, if (λ .unit) is selected,
or the process z⇐xx |x⇐y | y⇐λx.choice (λ .unit) (λ .x x) | p′ is reached af-
ter some reduction steps. This is a must-convergent process, and the infinite
reductions are fair.

Example D.5. Let K1! = λx.λy.(xunit) and K2 = λxλy.y. Let p the process
x1⇐y y | z c K1! |x2⇐exch(z,K2) | y⇐λx.exch(z,K1!) (λ .(xx))unit which is
must-convergent. There is a reduction to a successful process that first applies
cell.exch(ev) (so that the z-cell contains K2), and subsequently reduces the
x1-thread to unit. In contrast, the unfair reduction never puts K2 into the z-cell
but always exchanges K1! with K1!.

E Incorrectness of Transformations

Let I = λx.x. We prove Lemma 4.2 by giving counter-examples for every rule.
For notational simplicity, we omit the ν-binders.

thread.new(a): Let p1 be the process y⇐λx.(thread I). Thus, p1⇓ as it is
already successful. Transforming it using thread.new(a) gives a process p2,
y⇐λx.z | z⇐(I z), which reduces to y⇐λx.z | z⇐u |u⇐z, which is clearly
must-divergent because of the cyclic subprocess, hence p2↑ follows.

24 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

handle.new(a): Let p1 be

y⇐λx.handle(λu1λu2.u2 unit) |x1⇐y unit |x2⇐y unit.

Reduction of p1 creates two handles and then terminates with a successful
process, thus p1⇓. In the case it is transformed, we obtain p2,

y⇐λx.((λu1λu2.u2 unit) y1 y2) | y2 h y1 |x1⇐y unit |x2⇐y unit

which will lead to a handle-error, i.e., p2 is must-divergent.
handle.bind(a): Consider the process p1,

m⇐λx.y unit |n⇐y unit | y h z

which is may- and must-convergent, whereas transformation results in p2:

m⇐λx.unit |n⇐y unit | y h • | z⇐unit

Note that p2 is not successful but also not reducible. Hence p2 is must-
divergent.

cell.new(a): Applied within an abstraction, it is possible to share values,
which are otherwise unshared, for instance let p1, p2 be the following pro-
cesses:

p1 ≡ z⇐λz.(cell I)
| x1⇐(exch((z unit),unit))unit
| x2⇐(exch((z unit),unit))unit

p2 ≡ z⇐λz.w
| w c I
| x1⇐(exch((z unit),unit))unit
| x2⇐(exch(((z unit),unit))unit

Process p2 evolves from p1 by applying cell.new(a). We observe that p1⇓,
since both exch-operations use their own cells and both will read the identity
I. On the other hand, p2 ⇑ since the exch-operations use the same cell,
so that the thread performing the second exchange remains stuck with an
application of the form unit unit.

cell.exch(ev): The transformation is clearly not correct, since it can
non-deterministically choose which exchange-operation to do first. The
program x⇐exch(y,unit) | z⇐exch(y,unit) | y c x is may-convergent: af-
ter two reductions, the result is x⇐unit | z⇐x | y cunit. Using the
other possibility as transformation, a must-divergent program results:
x⇐x | z⇐exch(y,unit) | y cunit.

lazy.new(a): This rule is not correct inside abstractions, since there may be
a sharing/desharing conflict: Let p1 be

y c I |w⇐λx.lazy(λz.exch(y,unit)) |w2⇐(w unit) (w unit)unit

Program Equivalence for a Concurrent Lambda Calculus with Futures 25

Applying lazy.new(a) results in a process p2,

p2 ≡ y c I
| w⇐λx.w′

| w′ susp⇐= (λz.exch(y,unit))w′

| w2⇐(w unit) (w unit)unit

Note that p2 ⇑, since only one exch-operation is performed (reading the
identity I), whereas p1 does not converge, since two exchange-operations are
performed, and thus one of these results in unit.

lazy.trigger(f): This transformation is not correct in arbitrary contexts,
since it would force evaluation. An easy counterexample is y⇐x |x

susp⇐= x
which is convergent (it is successful), but becomes must-divergent after forc-
ing the evaluation (because of the cyclic x⇐x).

F Examples for the Forking and Commuting Diagrams

Lemmas 4.9, 4.15, and 4.20 follow by analyzing all overlappings of the corre-
sponding transformation with reductions. In this section we give typical example
cases for the non-trivial diagrams.

F.1 Diagrams for lbeta(¬ev∧f)

The non-trivial cases occur when an lbeta(¬ev∧f) becomes a reduction
lbeta(ev), as expressed by the diagram

·
lbeta(¬ev∧f)//

r
���
� ·

r

��

·

lbeta(ev) &&MMMMM

·
This case may occur if r is a lazy.trigger(ev) reduction, and if the redex of
the transformation lbeta(¬ev∧f) is inside a lazy future that gets triggered. An-
other case is that r is an lbeta(ev) reduction, e.g.

y⇐((λx.x) y) ((λz.z) unit)
lbeta(¬ev∧f) //

r
���
�

y⇐((λx.x) y) z | z⇐unit

r

��

y⇐x ((λz.z) unit) |x⇐y

lbeta(ev) ,,XXXXXXXXX

y⇐x z |x⇐y | z⇐unit

26 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

F.2 Diagrams for cell.deref

· cell.deref//

r
��

·
r

��
·
cell.deref

// ·
for every reduction r

· cell.deref//

cell.exch(ev)
��

·
cell.exch(ev)

��
·
fut.deref(f)

// ·

Cases for the first diagram are obvious. An example for the second diagram is:

z⇐exch(x, y) |x c v | v⇐w
cell.deref//

cell.exch(ev)
��

z⇐exch(x, y) |x c w | v⇐w

cell.exch(ev)
��

z⇐v |x c y | v⇐w
fut.deref(f)

// z⇐w |x c y | v⇐w

F.3 Diagrams for fut.deref(f) and fut.deref(¬ev∧f)

We show typical examples for the diagrams of Lemma 4.15.

·
fut.deref(ev)

��

fut.deref(f) // ·
fut.deref(ev)

���
�

·
fut.deref(f)

//____ ·
fut.deref(f)

//____ ·

·
fut.deref(¬ev∧f)//

fut.deref(ev)
���
� ·

fut.deref(ev)

��

·
fut.deref(ev)

���
�

·
fut.deref(¬ev∧f)

//____ ·

A typical example for both diagrams is:

x⇐y a | y⇐v | v⇐w
fut.deref(f) //

fut.deref(ev)
��

x⇐y a | y⇐w | v⇐w

fut.deref(ev)
��

x⇐v a | y⇐v | v⇐w
fut.deref(ev)

// x⇐w a | y⇐v | v⇐w
fut.deref(f)

// x⇐w a | y⇐w | v⇐w

We now examine the following four diagrams:

·
r

��

fut.deref(f)// ·
r

���
�

·
fut.deref(f)

//____ ·

·
r

���
�

fut.deref(¬ev∧f)// ·
r

��
·

fut.deref(¬ev∧f)
//____ ·

for every reduction r for every reduction r

·
cell.exch(ev)

��

fut.deref(f)// ·
cell.exch(ev)

���
�

·
cell.deref

//____ ·

·
cell.exch(ev)

���
�

fut.deref(f∧¬ev)// ·
cell.exch(ev)

��
·
cell.deref

//____ ·
Beside simple commuting cases, where the transformation and the standard

reduction do not influence each other, there are cases where the target of the
dereferencing operation moves from a thread to a lazy thread or to a cell and
vice versa. We show two examples:

Program Equivalence for a Concurrent Lambda Calculus with Futures 27

x⇐exch(y, z) | y c v2 | z⇐v1

fut.deref(f) //

cell.exch(ev)
��

x⇐exch(y, v1) | y c v2 | z⇐v1

cell.exch(ev)
��

x⇐v2 | y c z | z⇐v1 cell.deref
// x⇐v2 | y c v1 | z⇐v1

y⇐(x w) |x
susp⇐= z | z⇐v

fut.deref(f) //

lazy.trigger(ev)

��

y⇐(x w) |x
susp⇐= v | z⇐v

lazy.trigger(ev)

��
y⇐(x w) |x⇐z | z⇐v

fut.deref(f)
// y⇐(x w) |x⇐v | z⇐v

We now look at the diagram

·
fut.deref(¬ev∧f)//

r
���
� ·

r

��

·

fut.deref(ev) %%KKKKK

·
for r ∈ {thread.new(ev),handle.new(ev), lazy.trigger(ev)}

We illustrate all three cases by examples:

z⇐threadx |x⇐v
fut.deref(f)//

thread.new(ev)
��

z⇐thread v |x⇐v

thread.new(ev)

��

z⇐y | y⇐(xy) |x⇐v

fut.deref(ev) **VVVVVVVVVVVVV

z⇐y | y⇐(vy) |x⇐v

z⇐handlex |x⇐v
fut.deref(f)//

handle.new(ev)
��

z⇐handle v |x⇐v

handle.new(ev)

��

z⇐x y z1 | z h y1 |x⇐v

fut.deref(ev) ++WWWWWWWWWWWWWW

z⇐v y z1 | z h y1 |x⇐v

y
susp⇐= (x v1) |x⇐w | z⇐(y v2)

fut.deref(f)//

lazy.trigger(ev)

��

y
susp⇐= (w v1) |x⇐w | z⇐(y v2)

lazy.trigger(ev)

��

y⇐(x v1) |x⇐w | z⇐(y v2)

fut.deref(ev) ,,XXXXXXXXXXXXXXXXX

y⇐(w v1) |x⇐w | z⇐(y v2)

28 J. Niehren, D. Sabel, M. Schmidt-Schauß, J. Schwinghammer

F.4 Diagrams for fut.deref(d)

·
fut.deref(d)//

r
��

·
r

��
·

fut.deref(d)
// ·

·
fut.deref(d)//

lbeta(ev)

��

·
lbeta(ev)

��
·

fut.deref(f)
// ·

for every reduction r

The first diagram has the same special cases as the diagram for fut.deref(f).
The second diagram shows the only case where the target of a dereferencing
operation is inside the body of an abstraction, but this is no longer the case
after applying a standard reduction. An example for this case is:

y⇐(λx.(w z)) u | z⇐v
fut.deref(d) //

lbeta(ev)
��

y⇐(λx.(w v)) u | z⇐v

lbeta(ev)
��

y⇐(w z) |x⇐u | z⇐v
fut.deref(f)

// y⇐(w v)) |x⇐u | z⇐v

The last diagram is:

·
fut.deref(d) //

fut.deref(ev)
��

·
fut.deref(ev)

��
·

fut.deref(d)
// ·

fut.deref(d)
// ·

An example for this case is:

x⇐(w z) |w⇐λz1.y | y⇐v
fut.deref(d) //

fut.deref(ev)
��

x⇐(w z) |w⇐λz1.v | y⇐v

fut.deref(ev)
��

x⇐((λz1.y) z) |w⇐λz1.y | y⇐v

fut.deref(d) **UUUUUUUUUUUU
x⇐((λz1.v) z) |w⇐λz1.v | y⇐v

x⇐((λz1.y) z) |w⇐λz1.v | y⇐v
fut.deref(d)

44iiiiiiiiiiii

