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1 Introduction 

1.1 Lipoxygenases 

Lipoxygenases (LOs) are dioxygenases that catalyze the conversion of polyunsaturated fatty 

acids, containing a series of cis double bonds, to hydroperoxy fatty acids. They are widely 

expressed in plants, fungi and animals but not in bacteria or yeast. The different enzymes are 

named after the position of the carbon C, which is oxygenated. When necessary the 

stereoconfiguration is specified, e.g. 12R-LO or 12S-LO. Because of the existence of several 

12-lipoxygenases in mammalians, with distinct sequences, catalytic activities and function, 

these are named after the prototypical tissues of their occurrence, e.g. platelet, leukocyte, or 

epidermal 12-LO (Yamamoto et al. 1997).  

Up to date five human LOs are described, the reticulocyte-type 15(S)-LO (Sigal et al. 1988), 

platelet-type 12(S)-LO (Izumi et al. 1990), epidermis-type 12(R)-LO (Boeglin et al. 1998), 

epidermis-type 15(S)-LO (Brash et al. 1997) and 5(S)-LO (Matsumoto et al. 1988). The first 

mammalian LO was identified in 1974 in human platelets by Hamberg et. al. (Hamberg and 

Samuelsson 1974), the 5-LO by Borgeat in 1976 (Borgeat et al. 1976).  

 

1.2 5-Lipoxygenase 

5-Lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid (AA) to 

5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HPETE) and the further 

reaction to the unstable epoxide leukotriene A4 (LTA4), (5(S)-6-oxido-7,9,11-trans-

14-cis-eicosatetraenoic acid (Samuelsson 1983; Ford-Hutchinson 1994; Ford-Hutchinson et 

al. 1994), corresponding to the two distinct enzyme activites – the oxygenase activity and the 

LTA4 synthase activity respectively.  

 

1.2.1 Structure and enzyme activity 

So far no crystal structure of 5-LO exists. Based on the rabbit reticulocyte 15-LO crystal 

structure, as well as in conjunction with primary and secondary structure information, a model 

of 5-LO was predicted. As for all lipoxygenases, the protein consists of a C-terminal catalytic 

domain (aa 115 to 673) and an N-terminal β-barrel domain (aa 1 to 114) (Hammarberg et al. 

2000; Hemak et al. 2002). The C-terminal domain is composed of α-helices and contains the 

catalytic iron, in its inactive ferrous form (Fe2+). The iron acts as electron acceptor and donor 

during the lipoxygenase reaction mechanism. For catalysis, it needs to be restored into the 
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active ferric form by redox reaction with fatty acid hydroperoxides, i.e. 5-HPETE, 12-HPETE 

and 13-hydroperoxyoctadecaenoic acid (Rouzer and Samuelsson 1986; Riendeau et al. 1989; 

Hammarberg et al. 2001). Selenium-dependent glutathione peroxidases (GPx) reduce the 

cellular peroxide content and are therefore potent endogenous suppressors of 5-LO activity 

(Weitzel and Wendel 1993; Werz and Steinhilber 1996). 

The residues essential for iron binding (Zhang et al. 1993; Hammarberg et al. 1995), substrate 

positioning (Gillmor et al. 1997) and nuclear import (Jones et al. 2002; Jones et al. 2003) have 

been identified in the catalytic domain. The catalytic domain represents ∼80% of the 

lipoxygenase mass, but it is the β-barrel region that regulates the action of this domain. 

The β-barrel domain is composed of two 4-stranded antiparallel beta sheets and is one the 

defining members of the PLAT (Polycystin-1, Lipoxygenase, α-Toxin) domain family 

(Bateman and Sandford 1999). This domain shares some common features with C2 domains, 

e.g. calcium-dependent phospholipid binding, but may best be considered a distinct subset of 

the C2 family (Chahinian et al. 2000). Binding of Ca2+ to the 5-LO β-barrel domain leads to 

phosphatidylcholine (PC) selectivity (Kulkarni et al. 2002) and is essential for nuclear 

membrane translocation (Chen and Funk 2001) and membrane association (due to the higher 

PC content).  

Moreover 5-LO contains a functional Src homology (SH)3-binding motif, a short, proline-rich 

region, suggesting a role for 5-LO in tyrosine kinase signalling (Lepley and Fitzpatrick 1994).  

By means of ATP-affinity column chromatography binding of ATP to the residues of Trp75 

and Trp201 has been shown (Wiseman 1989; Denis et al. 1991). Among LOs only 5-LO can 

bind ATP (Zhang et al. 2000) and is activated by nucleotides (Ochi et al. 1983; Falgueyret et 

al. 1995; Noguchi et al. 1996). 

 

1.2.2 Subcellular distribution of 5-LO 

Depending on the cell type 5-LO in resting cells either localizes in the cytosol or within the 

soluble compartment of the nucleus. Upon cell activation the cytosolic enzyme translocates to 

the ER or the outer nuclear membrane, whereas the nuclear enzyme translocates to the inner 

nuclear envelope (Luo et al. 2003). Import of 5-LO depends on both, the nuclear localization 

sequences and the phosphorylation site Ser271 (Luo et al. 2003), association with the nuclear 

membrane depends on calcium binding to the C2-like domain. 
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1.2.3 Phosphorylation of 5-LO 

Protein phosphorylation is a regulatory mechanism for transduction of extracellular signals 

leading to the activation and redistribution of numerous cellular enzymes and transcription 

factors. Recently p38 MAPK-regulated MKs and ERK1/2 have been reported to 

phosphorylate and activate 5-LO (Werz et al. 2000; Werz et al. 2002). Cell stress induced 

Ca2+-independent phosphorylation of 5-LO at Ser271 by MK-2/3. ERK2 can phosphorylate 

5-LO at Ser663 in vitro, also independently of calcium. Both pathways have been shown to be 

involved in the translocation of 5-LO to the nucleus (Lepley and Fitzpatrick 1996; Boden et 

al. 2000).  

stimulus 

LTs

5-LO
(Fe2+)               

GPx

cytosol

nucleus

AA
Ca2+

MAPK

Ca2+

P

5-LO
(Fe2+)               

Ca2+

5-LO
(Fe3+)               

Ca2+

P

unknown
proteins

FLAP

cPLA2

Ca2+
P

AA

P

P

P

P

stimulus 

LTs

5-LO
(Fe2+)               

GPx

cytosol

nucleus

AAAA
Ca2+

MAPKMAPK

Ca2+

PP

5-LO
(Fe2+)               

Ca2+

5-LO
(Fe3+)               

Ca2+Ca2+

PP

unknown
proteins

FLAP

cPLA2

Ca2+
P

AAAA

PP

PP

PP

PP

 

Fig. 1 Activation of 5-lipoxygenase 

The figure above is summarizing the activation of 5-LO in a cellular context. Cell stimuli lead 

to elevated intracellular calcium levels and/or stress induced activation of protein kinases. 

Upon calcium binding and/or phosphorylation, as well as conversion of the inactive ferrous 

iron to its active ferric form by fatty acid hydroperoxides, the activated enzyme translocates to 

the nuclear membrane. There 5-LO colocalizes with cPLA2, FLAP and LTC4S. AA is 

released from phospholipids by cPLA2 and presented by FLAP to 5-LO, initiating the 

leukotriene biosynthesis.  
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1.2.4 Cytosolic phospholiase A2 (cPLA2) 

A critical parameter for 5-LO activity is the availability of substrate. Phospholipase A2 

comprises a superfamily of enzymes that hydrolyse the ester bond of phospholipids at the sn-2 

position (Dennis 1997). Stimulated peritoneal macrophages from cPLA2 knockout mice do 

not produce prostaglandin E2 or leukotriene B4 and C4 (Bonventre et al. 1997; Uozumi et al. 

1997). In leukocytes cytosolic phospholipase A2, a protein of 85 kDa, provides AA for 

leukotriene synthesis, depending on the cell type and stimulus (Leslie 1997). Similar to 5-LO, 

Ca2+ and/or phosphorylation lead to an activation of cPLA2 (Clark et al. 1991; Lin et al. 1993; 

Kramer et al. 1996). 

 

1.2.5 5-Lipoxygenase-activating protein (FLAP)  

FLAP is an 18 kDa membrane-bound protein that was discovered as a target of the LT 

biosynthesis inhibitor MK886 (Miller et al. 1990). MK886 inhibited LT synthesis in intact 

leukocytes, but not in cell homogenates, thus not inhibiting 5-LO enzyme activity itself. In 

cotransfection studies with 5-LO and FLAP, LT synthesis was dependent on the presence of 

FLAP, 5-LO expression alone did not result in any LT production (Dixon et al. 1990). Also 

FLAP-deficient macrophages from knock-out mice failed to produce any leukotrienes (Byrum 

et al. 1997). It was shown, that FLAP can bind AA and serves as an AA transfer protein 

facilitating the substrate presentation for 5-LO (Mancini et al. 1993). A model was proposed 

where AA-binding FLAP forms a heterodimer with 5-LO (Abramovitz et al. 1993), but direct 

binding to 5-LO was never shown. 

 

1.3 Mediators of the 5-LO pathway 

1.3.1 Leukotrienes 

As lipid mediators, leukotrienes are involved in the signaling between cells, in host defence 

and inflammatory response. 5-LO is basically expressed in inflammatory cells such as 

polymorphonuclear cells, leukocytes, eosinophils, monocytes/macrophages, mast cells, 

dendritic cells, and B-lymphocytes. When overproduced, they also contribute to a variety of 

diseases, including asthma (Drazen et al. 1994), fibrosis (Wilborn et al. 1996), atherosclerosis 

(Spanbroek et al. 2003), allergic hyper-responsiveness (Rachelefsky 1997), ulcerative colitis 

(Rachelefsky 1997), psoriasis (Iversen et al. 1997), rheumatoid arthritis (Griffiths et al. 1995) 

and ischemic reperfusion injury (Noiri et al. 2000).  
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After the conversion of AA to 5-HPETE and LTA4, LTA4, depending on the cell type, is 

either converted to LTB4 by LTA4 hydrolase (LTA4H) or conjugated with glutathione by 

LTC4 synthase, forming the cysteinyl leukotriene (CysLT) LTC4. The successive amino 

acid cleavage of LTC4 results in LTD4 and LTE4. Together these cysLTs have been called 

“the slow reacting substance of anaphylaxis” (SRS-A), because of their spasmogenic effects .  
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Fig. 2 The 5-LO pathway 

They lead to smooth muscle contraction (Allen et al. 1992), thus promoting 

bronchoconstriction (Samuelsson 1983). Additionally they promote plasma exudation 

(Dahlen et al. 1981), stimulate mucus secretion (Marom et al. 1982), and recruit eosinophils 

(Michelassi et al. 1982). They are also reported to reduce myocardial contractibility and 

coronoary blood flow (Underwood et al. 1996).  

LTB4 is a potent neutrophil chemoattractant and stimulator of leukocyte adhesion to 

endothelial cells (Samuelsson 1983; Peters-Golden and Brock 2001). In contrast to 5-LO, 

which is only expressed in haematopoetic cells, LTA4H is ubiquitously expressed. During 
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inflammation, LTB4 is produced in all kinds of tissue, due to transcellular metabolism of 

LTA4 (Sala et al. 1996).  

Leukotrienes act at distinct GPCRs. The cysteinyl leukotriene receptors CysLT1 and 

CysLT2 mediate the actions of LTC4 and LTD4. CysLT1 is found on airway smooth muscle 

cells (Lynch et al. 1999) and vascular endothelial cells (Gronert et al. 2001), promoting 

bronchoconstriction. The CysLT2 receptor is detected within pulmonary veins, in spleen, 

Purkinje fibers of the heart and discrete regions of adrenal gland (Heise et al. 2000).  

LTB4 binds with high affinity to the B-LT1 receptor mainly expressed on leukocytes, with 

low affinity to the B-LT2 receptor, which is expressed in wide variety of tissues (Tager and 

Luster 2003). The B-LT1 receptor is reponsible for the chemotactic response to LTB4, 

whereas the function of B-LT2 is still unknown (Yokomizo et al. 2000; Yokomizo et al. 

2001). 

 

1.3.2 Lipoxins 

Besides in the generation of proinflammatory mediators 5-LO is also involved in the 

production of endogenous anti-inflammatory lipid mediators, the lipoxin family (Serhan et al. 

1999). Lipoxins (lipoxygenase interaction products, LXs) are conjugated trihydroxytetraene-

containing eicosanoids (Serhan 2002). They are generated by transcellular biosynthesis during 

cell-cell interaction. In an interplay between activated leukocytes and platelets, leukocyte 

5-LO catalyzes the formation of LTA4 and platelet 12-LO transforms LTA4 to LXA4 and 

LXB4 (Serhan and Sheppard 1990; Serhan and Romano 1995). In epithelial and endothelial 

cells 15-LO generates 15S-HETE and in neutrophils 5-LO proceeds the production to LXs 

(Serhan et al. 1984). The third route in LX production is triggered after aspirin treatment 

(Claria and Serhan 1995). Acetylation of COX2 switches the catalytic activity of COX2 to a 

15-LO, resulting in 15R-HETE, which is further transformed by 5-LO to 15-epi-LXA4 and 

15-epi-LXB4, also called aspirin triggered lipoxins (ATL). The beneficial actions of NSAIDs, 

including prevention of myocardial infarction may be in part due to the biosynthesis of ATL. 

Anti-inflammatory actions of LXs and ATL include inhibition of leukocyte-mediated injury, 

stimulation of macrophages, clearance of apoptotic neutrophils, repression of 

proinflammatory cytokine production, inhibition of cell proliferation and migration and others 

(for detailed review see (McMahon and Godson 2004)). Bioactions of lipoxins are mediated 

either via the GPCR ALXR (Badr et al. 1989; Brady et al. 1990; Maddox et al. 1997; Gronert 

et al. 1998; Bandeira-Melo et al. 2000; McMahon et al. 2000; Gronert et al. 2001; McMahon 
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et al. 2002), with LXA4 as specific ligand, or by competitve antagonism at the Cyc-LT1 

receptor (Badr et al. 1989; McMahon et al. 2000; Gronert et al. 2001). 

 

1.4 Pharmacological inhibitors 

Pharmacological intervention on behalf of LTs is possible during either their formation or via 

receptor antagonism to prevent their biological action.  

Although glucocorticoids have been demonstrated to inhibit phospholipases and eicosanoid 

formation in many experimental setups, high dose glucocorticoid therapy did not significantly 

suppress LT formation (Claesson and Dahlen 1999). 

 

1.4.1 5-LO inhibitors 

5-LO inhibitors can be classified into three different groups, namely redox-active 

compounds, iron-ligand inhibitors with weak redox-active properties and non-redox-type 

inhibitors.  

Redox-active inhibitors reduce the catalytic active ferric iron to the inactive ferrous form 

(Fe2+). This group of inhibitors consists of phenols like nordihydroguaretic acid, caffeic acid, 

or flavonoids and coumarins. Many of these inhibitors show severe side effects like 

methemoglobin formation or are rapidly metabolized (McMillan and Walker 1992; Ford-

Hutchinson et al. 1994). 

The second group of inhibitors, the iron chelating substances, consist of hydroxamic acid 

and N-hydroxy-urea derivatives. Because of the rapid metabolization of the hydroxamate 

group to an inactive carboxylate group, the development of inhibitors was focused on 

N-hydroxy-urea derivates like A-64077 (zileuton). Up to date, zileuton (Zyflo) is the only 

5-LO inhibitor on the market for the treatment of asthma. Only low benefits for the treatment 

of other diseases were observed with zileuton.  

The poor selectivity and low bioavailability of both groups of inhibitors lead to the 

development of non-redox-type inhibitors. These substances contain methoxyalkylthiazol or 

methoxytetrahydropyran structures, competing with AA for the binding site of 5-LO. 

ZD 2138 and ZM 230487 are selective and orally active 5-LO inhibitors (Crawley et al. 

1992). In human leukocytes and whole blood assays LT-biosynthesis was inhibited with IC50 

values of about 20-50 nM (Smith et al. 1995). However, they failed in clinical trials of 

chronic inflammatory diseases (Kusner et al. 1994). Both compounds were less active in cell 

homogenates than in intact cells (Smith et al. 1995). Addition of glutathione or DTT reversed 
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the loss of inhibitory activity, indicating that the peroxide level defines the potency of both 

inhibitors (Werz et al. 1998). In other studies with ZM 230487 or the related Merck 

compound L-739,010, the potency of the inhibitors depended on the stimulus and 

phosphorylation status of 5-LO (Fischer et al. 2003).  

These data suggest, that the inhibitory potency of 5-LO inhibitors depends on the 

physiological conditions 5-LO is activated under. In vitro and ex vivo testing of potential 

5-LO inhibitors should therefore include the different activation pathways of 5-LO, by using 

physiological stimuli and priming agents, leading to either calcium or phosphorylation 

dependent 5-LO activation, as well as consider different peroxide levels within the cells. 

 

1.4.2 Dual COX and 5-LO inhibitors 

Both enzymes are co-expressed and up-regulated during inflammation and their products, i.e. 

PGE2 and LTB4 are elevated in inflammed tissues. So there is much reason to develop 

substances inhibiting both enzymes at the same time. Several substances are currently 

evaluated in experimental setups (RWJ-63556, ER-34122) or clinical trials for different 

inflammatory diseases, including S-2474 against arthritis. One very promising substance is 

Licofelone (ML-3000), a pyrrolizidine derivate and an arachidonic acid mimetic, which has 

already been tested in phase III trials with patients with osteoarthritis. No severe side effects, 

like hepatotoxicity were found and the compound demonstrated an excellent gastrointestinal 

profile, better than NSAIDs and equivalent to selective COX2-inhibitors (Wallace et al. 1994; 

Celotti and Durand 2003; Charlier and Michaux 2003).  

Hyperforin is the major lipophilic constiuent of Hypericum perforatum (St. John´s worth). 

The acylphloroglucinol derivate has recently been demonstrated to inhibit 5-LO in human 

PMNL (IC50 1-2 µM in intact cells) and COX1 in platelets (IC50 0.3 or 3 µM dependent on 

the stimulus). Experiments with crude enzymes revealed that hyperforin acts as an direct 

inhibitor of 5-LO in an uncompetitive manner. The mechanism how 5-LO is inhibited is still 

unkonwn. COX2, 12-LO and 15-LO product formation was not influenced  

 

1.4.3 FLAP inhibitors 

So far MK886, BAY-X-1005, MK-0591 have been designed and their properties and potency 

has been characterized (reviewed in (Devillier et al. 1999; Drazen et al. 1999; Werz 2002)). 

Both MK886 and BAY-X-1005 show impaired efficacy in whool blood assays, probably do 

the presence of exogenous AA (Rouzer et al. 1988; Steinhilber et al. 1993; Werz et al. 1997) 

and the high affinity of the inhibitors to plasma proteins (Charleson et al. 1994).  
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1.4.4 Receptor antagonists 

The orally active Cyc-LT1 antagonists montelukast (Singulair), pranlukast (Ultair) and 

zafirlukast (Accolate) have been tested in several clinical trials and shown to reduce asthma 

exacerbations and to improve pulmonary function (Nathan and Kemp 2001). 

The LTB4 receptor antagonists CP-105.696 and SC-41930 reduce arthritis index and ankle 

bone destruction in IL-1 accelerated collagen-induced arthrithis and reduce artherosclerosis 

lesion progression in mice (Kuwabara et al. 2000; Aiello et al. 2002). 

 

1.5 5-LO gene and protein expression 

The cDNA for the human 5-lipoxygenase was first cloned by Dixon et al. from DMSO 

differentiated HL-60 cells. The cDNA contained a 673 amino acid long open reading frame, 

encoding for a 78 kDa large protein (Dixon et al. 1988). In parallel, Matsumoto could clone 

the cDNA for 5-LO from a lung and placenta λgt11 cDNA library. He described a 34 bp 

5´-noncoding region and a 442 bp 3´ noncoding region (Matsumoto et al. 1988). 

The human 5-LO gene was first characterized by Funk and Hoshiko (Funk et al. 1989). The 

5-LO gene is unique compared to the other human lipoxygenase genes in several respects, 

including its distinct separate chromosomal location, on chromosome 10q11.2 instead of 

17p13, and its size, 4-7 times larger than the other LO genes (Funk et al. 2002). It consists of 

14 exons separated by 13 introns, spanning around 82 kb. The extent of the 5´- and 

3´-regulatory sequences is unknown.  

 

1.5.1 The 5-LO promoter 

The 5´-flanking region has first been characterized by C. Funk and S. Hoshiko (Funk et al. 

1989; Hoshiko et al. 1990). By nuclease S1 protection and primer extension experiments a 

major TIS in leukocytes at –65 in relation to ATG was identified. Other minor transcription 

initiation sites at –107, -97, -89, -62, -66, -35, and –34 were described by the one or other 

method. Alternative transcripts, 3.1, 4.8, 6.4, and 8.6 kb in length instead of 2.7 kb, have been 

reported in brain tumor cells and DMSO differentiated HL-60 cells (Boado et al. 1992), 

possibly due to aberrant splicing events.  

The sequence comprising about 5900 bp upstream of the ATG displayed promoter activity in 

reporter gene assays in both 5-LO negative and 5-LO positive cell lines, HeLa and HL-60 

cells respectively. The promoter study performed by Hoshiko in HeLa cells also revealed two 

positive regulatory sequences (-5900 to –3700 and –931 to –854) and two negative regulatory 
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elements (-3499 to –1557 and –727 to –292). The stretch of –179 to –56 was essential for full 

promoter activity and contained the sequence involved in induction by PMA treatment, as 

well as the 5-tandem consensus Sp1/Egr1 binding site (Sp1 binding to –GGGCGG- and Egr1 

to -GCGGGGGCG-). In gel shifts, Sp1 binding from HeLa cell extracts was shown to the 

DNA stretch –212 to –88 (containing 6 Sp1 consensus binding sites / GC boxes). Different 

bands appeared with a nuclear HL-60 extract. Later it was shown that PMA treatment of 

HUVEC cells triggers Egr1 expression and binding to the 5-tandem Sp1/Egr1 binding site (In 

et al. 1997). 

+1

TIS

N10

N14

N13

N12

N11

inverted repeat 1

inverted repeat 2

GC1

GC7

GC2

GC5GC4

GC6

Egr1

CpG
island

CpG
island

-844 CGCGCGGAAA CCTTCTCCAC ACCCTTCCAG GCATTTGCCC GCCGCGATTC AGAGAGCCGA 

-784 CCCGTGACCC CTGGCCTCCC CTAGACAGCC CCGCATGTCC AGATGTGCCG TCCCGCCTGC 

-724 CTCCCGCGAC CACTGGCCAT CTCTGGGCCT GGGCGCGGTC TCGGCGCCCG CCTGCCCCCG 

-664 CCAGGAGCCG CAGGTCCAGC CAGTGAAGAA GCCCGCGCTG AAGGAGCCTC TGTGCTCCAG 

-604 AATCCATCCT CAGTATCAGC GCTGGGGTGG CCTCCTCCAG GAAGCCCTTC TGATTCTCTC 

-544 ATGGGTCGCT CTTCCTCTGC AGACTCCCGG AGCACCCCTG CTCCAAGTAC CGCAAGTGGC 

-484 ACTGAGAACT TGGGGAGAGC AGAGGCTGTG CCTAGATTTG TAGGGAGTCC CCGCAGCTCC 

-424 ACCCCAGGGC CTACAGGAGC CTGGCCTTGG CGAAGCCGAG GCAGGCAGGC AGGGCAAAGG

-364 GTGGAAGCAA TTCAGGAGAG AACGAGTGAA CGAATGGATG AGGGGTGGCA GCCGAGGTTG 

-304 CCCCAGTCCC CTGGCTGCAG GAACAGACAC CTCGCTGAGG AGAGACCCAG GAGCGAGGCC 

-244 CCTGCCCCGC CCGAGGCGAG GTCCCGCCCA GTCGGCGCCG CGTGAAGAGT GGGAGAGAAG 

-184 TACTGCGGGG GCGGGGGCGG GGGCGGGGGC GGGGGCGGGG GCAGCCGGGA GCCTGGAGCC 

-124 AGACCGGGGC GGGGCCGGGA CCGGGGCCAG GGACCAGTGG TGGGAGGAGG CTGCGGCGCT

- 64 AGATGCGGAC ACCTGGACCG CCGCGCCGAG GCTCCCGGCG CTCGCTGCTC CCGCGGCCCG 

- 4 CGCCATG
+1

TIS

N10

N14

N13

N12

N11

inverted repeat 1

inverted repeat 2

GC1

GC7

GC2

GC5GC4

GC6

Egr1

CpG
island

CpG
island

-844 CGCGCGGAAA CCTTCTCCAC ACCCTTCCAG GCATTTGCCC GCCGCGATTC AGAGAGCCGA 

-784 CCCGTGACCC CTGGCCTCCC CTAGACAGCC CCGCATGTCC AGATGTGCCG TCCCGCCTGC 

-724 CTCCCGCGAC CACTGGCCAT CTCTGGGCCT GGGCGCGGTC TCGGCGCCCG CCTGCCCCCG 

-664 CCAGGAGCCG CAGGTCCAGC CAGTGAAGAA GCCCGCGCTG AAGGAGCCTC TGTGCTCCAG 

-604 AATCCATCCT CAGTATCAGC GCTGGGGTGG CCTCCTCCAG GAAGCCCTTC TGATTCTCTC 

-544 ATGGGTCGCT CTTCCTCTGC AGACTCCCGG AGCACCCCTG CTCCAAGTAC CGCAAGTGGC 

-484 ACTGAGAACT TGGGGAGAGC AGAGGCTGTG CCTAGATTTG TAGGGAGTCC CCGCAGCTCC 

-424 ACCCCAGGGC CTACAGGAGC CTGGCCTTGG CGAAGCCGAG GCAGGCAGGC AGGGCAAAGG

-364 GTGGAAGCAA TTCAGGAGAG AACGAGTGAA CGAATGGATG AGGGGTGGCA GCCGAGGTTG 

-304 CCCCAGTCCC CTGGCTGCAG GAACAGACAC CTCGCTGAGG AGAGACCCAG GAGCGAGGCC 

-244 CCTGCCCCGC CCGAGGCGAG GTCCCGCCCA GTCGGCGCCG CGTGAAGAGT GGGAGAGAAG 

-184 TACTGCGGGG GCGGGGGCGG GGGCGGGGGC GGGGGCGGGG GCAGCCGGGA GCCTGGAGCC 

-124 AGACCGGGGC GGGGCCGGGA CCGGGGCCAG GGACCAGTGG TGGGAGGAGG CTGCGGCGCT

- 64 AGATGCGGAC ACCTGGACCG CCGCGCCGAG GCTCCCGGCG CTCGCTGCTC CCGCGGCCCG 

- 4 CGCCATG

  

NFκBVDRE TGFβRE Sp1ets RBCE

AP2 CTCF

 

Fig. 3 Overview of the proximal 5-LO promoter. Indicated are the different transcription factor 

binding sites, CpG islands and reporter gene constructs (N10, N11, N12, N13). The functional 

significance of the putative binding sites for AP2 (Imagawa et al. 1987), CTCF (Filippova et al. 2002), 

NFκB (Lenardo and Baltimore 1989), RBCE (Kim et al. 1992; Chen et al. 1994), ets/PU.1 (Pahl et al. 

1993; Suzuki et al. 1998; Voo and Skalnik 1999) and the TGFβ response element (Marigo et al. 1994) 

is still unknown. Egr1/Sp1 binding has been shown to GC1, GC2, the 5-tandem binding site, GC4 and 

GC5 (In et al. 1997; Silverman et al. 1998; Dishart et al. 2005). The more distal binding sites are of 

interest for future studies. VDR binding was investigated in (Sorg et al. 2006).  
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The analyzed promoter sequence contains several consensus binding sites for different 

transcription factors, including Sp1, Sp3, Egr1, Egr2, glucocorticoid receptors, NFκB, GATA, 

myb and AP family members (Hoshiko et al. 1990). For not all of them functionality could be 

shown so far. The c-myb protein downregulates 5-LO gene expression and inhibits 

macrophage differentiation (Habenicht et al. 1989). In vitro binding to the consensus motif in 

the 5-LO promoter at –1840 to –1852 (TAACGG) was demonstrated (Ponton et al. 1997). 

Sequence analysis with databases like TRANSFAC suggest the presence of several putative 

response elements for nuclear receptors, including the VDR, retinoid Z receptor α (RZRα) as 

well as the retinoic acid related orphan receptor α(RORα), TGFβ, Smads, ATF-2, hFast-1, 

Oct-1 and p53. Binding of RORα1 and RZRα to a putative RZR RE at -1521 to -1510 has 

been demonstrated before. The promoter activity as well as 5-LO protein expression in 

B-lymphocytes was repressed by melatonin, a ligand of RZRα (Steinhilber et al. 1995).  

The promoter lacks TATA and CCAAT boxes as well as an Inr element. Conspicuous is the 

high GC content and the high number of Sp1 consensus binding sites (GGGCGG). These are 

characteristics of so-called housekeeping genes, being constitutively expressed with little 

regulation. However 5-LO gene expression takes place primarily in cells of myeloid lineage 

and is regulated on multiple levels.  

 

1.5.2 Mouse 5-LO promoter 

In 2001 the mouse 5-lipoxygenase promoter was cloned and characterized (Silverman et al. 

2002). Though different alignment programs failed to align or to find similarities of the 

human and mouse promoter, a few features of both promoters were almost identical. The first 

292 bp were identified as the core promoter region containing a major TIS at -52 bp and three 

minor start sites, comparable to the human promoter. Both promoters lack the TATA motif, 

TFIIB recognition elements or initiator sequences and are GC-rich. They both contain 

Sp1/Sp3, PU.1/SPI-1 and GATA binding sites in similar promoter regions. The only Sp1 

binding site located at -184 bp to –189 bp seems orthologous to the 5-tandem GC box of the 

human promoter (-145 to-179) and mutation of the site also results in a loss of promoter 

activity in reporter gene assay. Sp1 binding, but not Egr1 binding to this site was shown in gel 

shifts. The lack of any Egr1 binding site and functional response of the promoter to Egr1 

over-expression suggest that Sp1 and Sp3 are more important in the regulation of 

5-lipoxygenase than Egr1. GATA binding was not detectable in gel shifts, but PU.1 binding.  
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1.5.3 Naturally occuring mutations of the 5-LO promoter 

Naturally occurring mutations of the 5-tandem Sp1 binding sites within the human 5-LO 

promoter were identified, such as the deletion of one or two, or addition of one GC box within 

the 5-fold Sp1/Egr1 binding motif (In et al. 1997). In reporter gene assays with transfected 

HeLa cells the promoter activity was reduced independently of the genotype of the mutation, 

whereas in SL2 cells, which do not express Sp1 and Egr1, the activity was proportional to the 

number of Sp1/Egr1 sites (In et al. 1997; Silverman et al. 1998). In gel shift assays, binding of 

both transcription factors to the mutated sites was slightly reduced. Binding of recombinant 

Sp1 and Egr1 to the 5-fold GC box (-179 to -147 in relation to ATG, also GC0) was 

demonstrated by DNase I footprints (Silverman et al. 1998). In the same experiments Sp1 

could also protect DNA in the regions covering -117 to -109 (GC4) and -224 to -218 bp 

(GC2) covering two other Sp1 consensus binding sites. No other Egr1 binding sites were 

detected in these experiments. In SL2 cells, the over-expression of Sp1 and Egr1 in 

combination with a reporter gene construct covering the 5-LO promoter from -229 bp up to 

the translational start site resulted in an about 30-fold induction of CAT-activity. Expression 

of Egr1 or Sp1 alone lead to a significantly lower promoter induction. Interestingly, Sp1 over-

expression showed a stronger effect on the promoter construct lacking the 5-fold GC box, 

only covering –129 bp up to the translational start site. The role of the GC-boxes was studied 

more closely in 5-LO positive MM6 cells (Dishart et al. 2005). A new Sp1 binding site close 

to the major transcription site was identified. Incubation with the antibiotic mithramycin, 

which binds to GC-rich sequences, reduced 5-LO expression and activity during 

differentiation in MM6 cells with 1,25(OH)2D3 and TGFβ. In DNase I footprinting Sp1 

binding to the GC-rich parts of the promoter was demonstrated. The levels of Sp1, Sp3 and 

Egr1 did not change upon 1,25(OH)2D3/TGFβ differentiation of the cells, whereas 5-LO 

expression is only found after the differentiation. Together the data suggest that at the early 

time points Sp1/Sp3 and Egr1 are involved in the basal transcriptional regulation of 5-LO, but 

that differentiation with 1,25(OH)2D3/TGFβ also involves another type of mechanism.  

In a study with asthma patients treated with the selective 5-LO inhibitor ABT-761, a zileuton 

derivative, patients carrying a mutation of the 5-tandem site in the 5-LO promoter in both 

alleles showed no response to the anti-asthma treatment. The patients with a 5-fold GC box on 

both alleles showed an average change in the forced expiratory volume in the first second 

(FEV1) of +18.8±3.6%, patients (n=64) carrying both, one mutation and one wild-type site, 

improved by 23.3±6.0% (n=40). The 10 patients with the mutations on both alleles, did not 

benefit from the treatment, indicated by the average change of FEV1 of –1.2±2.9% (Drazen et 
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al. 1999). In further studies with Japanese asthma patients the 5-LO promoter mutations did 

not associate either aspirin-induced (AIA) or aspirin-tolerant asthma (ATA) patient groups 

nor with urinary LTE4 and LTC4S activity (Kawagishi et al. 2002). In a Caucasian population 

the 5-LO Sp1 polymorphism was not associated with asthma or asthma-related phenotypes 

either (Sayers et al. 2003). In a recent study performed within Korean population, no 

significant differences in the frequencies of the 5-LO promoter polymorphisms were observed 

between ASA and AIA patients or the control group, but there was a strong association with 

airway hyperresponsiveness in aspirin-intolerant-asthma patients (Kim et al. 2005).  

Recently clinical, population genetic, cell biological and mouse studies indicate the 

participitation of the 5-LO pathway in atherogenesis. In one study 5-LO promoter genotypes 

were linked to atherosclerosis (Dwyer et al. 2004). In the Los Angeles atherosclerosis study 

the Sp1 promoter polymorphism (for carriers of two variant alleles) was associated with 

increased intima-media thickness. Increased intake of n-3 fatty acids could blunt the effect 

whereas increased intake of AA enhanced the atherogenic effect.  

The results from the Los Angeles atherosclerosis study rather suggest an upregulation of 

5-LO expression, than a down-regulation found in the reporter gene assays due to the 

promoter polymorphism. Possible explanations for this paradoxia are versatile. Transfection 

of HeLa and SL2 cells, both not expressing endogenous 5-LO, may not reflect the in vivo 

process of inflammation. Also other enzymes involved in inflammtory processes like 15-LO 

or COX2, may profit from reduced 5-LO expression and have impact in the promotion of 

atherosclerosis (Cyrus et al. 2001; Burleigh et al. 2002). Also the functionality of 5-LO 

promoter genotypes with respect to LT formation in relevant leukocyte populations has not 

been clearly demonstrated in asthma or cardiovascular disease patients.  

Though the 5 LO promoter contains several features of so-called housekeeping genes 5-LO 

expression occurs in a cell specific manner. The expression is mainly limited to cells derived 

from the bone marrow like granulocytes, monocytes, macrophages, mast cells, and B-

lymphocytes (Steinhilber 1999). Besides relevant levels of 5-LO were detected in epidermal 

Langerhans cells (tissue-like macrophages) (Spanbroek et al. 1998) and cultured human skin 

keratinocytes (Janssen-Timmen et al. 1995). 

 

1.5.4 Stimuli of protein expression 

Different inflammatory stimuli increase 5-LO mRNA levels in leukocytes, e.g. transforming 

growth factor-β (TGFβ), granulocyte-monocyte colony-stimulating factor (GM-CSF), 

interleukin-3, oxidized low-densitiy lipoprotein (LDL), phorbol esters (PMA), 
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Ca2+-ionophores (Silverman and Drazen 1999). In HL-60 cells, a promyeloic leukemia cell 

line, differentiation with DMSO, retinoic acid (RA) or 1,25(OH)2D3 increased 5-LO levels 

(Bennett et al. 1993; Piechele et al. 1993). In the myeloid cell lines, MM6 and HL-60, 

differentiation of the cells with calcitriol (1,25(OH)2D3) and TGFβ results in a strong 

upregulation of 5-LO gene expression, on the level of mRNA, protein and enzyme activity 

(Brungs et al. 1994; 1995). In HL-60 cells treatment with 24 nM of 1,25(OH)2D3 alone 

increased 5-LO mRNA levels 4-fold, the protein amount about 14-fold, protein activity in 

intact cells 14-fold and in cell homogenates 38-fold. TGFβ (1 ng/ml) alone showed no effect, 

but lead to a further increase of 5-LO mRNA, protein and protein activity when combined 

with 1,25(OH)2D3. 

In MM6 cells, differentiated with 50 nM 1,25(OH)2D3 and 1 ng/ml TGFβ, the effects were 

even stronger. The 5-LO mRNA levels increased up to 64-fold, the protein amount 128-fold 

and the protein activity more than 500-fold. Furthermore, it was demonstrated that the 

upregulation of 5-LO mRNA levels depended on protein synthesis, e.g. of transcription 

factors. More detailed investigations on the mRNA level in MM6 cells demonstrated that 

mRNA half-life was not affected by the combined treatment of 1,25(OH)2D3 and TGFβ. By 

exon/intron specific RT-PCR it was further specified that TGFβ and 1,25(OH)2D3 increase 

primary transcripts about 5-fold and mature 5-LO mRNA 42-fold. Cycloheximid inhibited the 

effect of both agents on the maturation, but only the action of TGFβ on the primary 

transcripts, indicating a 1,25(OH)2D3 impact on the transcriptional level in the presence of 

TGFβ induced proteins. On the post-transcriptional level, including transcript elongation 

and/or maturation cycloheximid blocked the effects of both agents (Harle et al. 1998).  

Most known biological effects of 1,25(OH)2D3 are “genomic” effects, mediated through 

specific and high affinity binding to the nuclear 1,25(OH)2D3 receptor (VDR). Transcriptional 

transactivation involves the binding of the receptor to a response element in proximity to the 

TIS of a responding gene. The 5-LO promoter contains putative VDREs in the proximal 

promoter area, located at -374 to –327 in relation to ATG (Carlberg 1995). Binding of the 

receptor heterodimer VDR-RXR was demonstrated in vitro, in gel shifts and 

DNase I footprints, as well as in vivo, in chromatin immunoprecipitation assays (ChIP). 

However the elements showed no functionality in response to 1,25(OH)2D3 in transient 

reporter gene studies (Uhl et al. 2002; Sorg et al. 2006), nor did a stably transfected 5-LO 

promoter reporter gene construct comprising –6,144 to +150 in relation to ATG. This finding 

is supporting the results of nuclear run-off assays, in which 1,25(OH)2D3 did not increase 

transcriptional activity (Harle et al. 1999). In a new approach the complete 5-LO gene was 
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screened for putative VDRE. Gel shift studies, reporter gene assays and chromatin 

immunoprecipitation revelead the existance of at least 3 functional VDRE, one located further 

upstream in the promoter (at -2,250), one in intron 4 (at about +42,000) and one in intron 5 (at 

about +50,600), which may cooperatively mediate the 1,25(OH)2D3 response (Seuter et al. 

2006).  

 

1.5.5 DNA methylation and 5-LO 

Expression of several genes with GC-rich promoters has been shown to be regulated by DNA 

methylation. Depending on the GC content GC-rich sequences can be characterized as 

so-called CpG islands, which are of a minimum length of 200 bp, have a minimum 

GC-content of 50% and an observed/expected ratio of GCs greater than 0.6. In housekeeping 

genes CpG islands stay unmethylated, whereas in tissue-specific genes DNA methylation of 

the promoter leads to transcriptional silencing of the gene (Singal and Ginder 1999).  

The 5-LO gene contains at least two CpG islands, covering the proximal promoter area 

-1052 bp to –633 bp and –266 bp to +278 bp in relation to the ATG of 5-LO (compare 

www.ebi.ac.uk/emboss/cpgplot/index.html, examining the sequence of the homo sapiens 

chromosome 10 contig NT_033985 position 3267921 to 3274901).  

Recently it was demonstrated that 5-LO gene expression in the 5-LO negative cell lines U937 

and HL-60TB is linked to DNA methylation of the proximal 5-LO promoter (Uhl et al. 2002). 

Treatment of the cells with the demethylating agent 5-aza-2`-deoxycytidine upregulated the 

5-LO mRNA levels in both cell lines. Subsequent treatment with 1,25(OH)2D3 and TGFβ also 

resulted in prominent 5-LO protein activity. Bisulfite sequencing of genomic DNA of both 

cell lines revealed that the 5-LO core promoter is heavily methylated in both cell lines, but not 

in the  5-LO positive cell line HL-60. AdC partly demethylated the core promoter, thus the 

degree of methylation/demethylation correlates to the level of gene expression. In reporter 

gene assays in vitro methylation of the most active deletion variant N10, comprising the 5-LO 

core promoter region, almost abolished the promoter activity. These data suggest that DNA 

methylation is at least one possible mechanism in the cell specific expression of 5-LO. 

Apparently the regulation by DNA methylation is unrelated to the regulation by TGFβ and 

1,25(OH)2D3 (Uhl et al. 2002). 

Transcriptional repression by DNA methylation can occur on several levels: i) the binding of 

methylation sensitive transcription factors may be inhibited (Watt and Molloy 1988) and/or ii) 

so-called methyl-CpG DNA binding proteins (Boyes and Bird 1991; Hendrich and Bird 1998) 

recognize the methylated sequences and recruit other corepressors like histone and chromatin 
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modifying enzymes, e.g. histone deacetylases (HDAC), transforming the transcriptional 

active chromatin into condensed chromatin (Jones et al. 1998; Nan et al. 1998; Ng et al. 1999; 

Wade et al. 1999; Zhang et al. 1999; Sarraf and Stancheva 2004). Several histone deacetylase 

inhibitors have been identified or synthesized. Trichostatin A (TsA), a hydroxamic acid 

isolated from streptomyces hygroscopius, inhibits HDACs in nanomolar concentrations and 

evokes histone acetylation. After TsA treatment, an upregulation of 5-LO mRNA levels in 

MM6 cells occurs and 5-LO promoter activity is induced in reporter gene assays after 

transient transfection (Klan et al. 2003).  
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Fig. 4 Transcriptional repression by DNA methylation and histone deacetylation. 

TsA also induced promoter activity of in vitro methylated 5-LO reporter gene constructs, but 

it never reached the activity level of the unmethylated and TsA treated constructs, indicating 

that the methylation dominates over the TsA-sensitive histone deacetylation. Other reports 

describe an upregulation of neuronal 5-LO mRNA levels after treatment with valproic acid, 

an other HDAC inhibitor with potential demethylating properties (Phiel et al. 2001; Manev 

and Uz 2002; Detich et al. 2003; Yildirim et al. 2003; Zhang et al. 2004). Together these data 

suggest a link between DNA methylation and chromatin remodeling in the regulation of 5-LO 

transcription (see Fig. 4). 
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1.6 Epigenetic Mechanisms 

In addition to the information encoded by the DNA sequence, so-called epigenetic 

information can be stably inherited through many cell generations.  

 

1.6.1 DNA methylation 

One type of epigenetic information comprises the addition of a methyl group to the 

5´-position of the cytosine ring of CpG dinucleotides, the DNA methylation (Naveh-Many 

and Cedar 1982). About 70% of the CpG dinucleotides are methylated in vertebrates (Ehrlich 

et al. 1982). CpG islands, clusters of CpG dinucleotides, are mainly unmethylated and are 

found in approx. 60% of human promoters (Antequera and Bird 1993). Methylation of 

promoter CpG islands leads to subsequent inactivation of the associated genes. 

 

1.6.1.1 DNA Methyltransferases 

The methylation patterns are introduced by a set of DNA methyltransferases, which are 

subdivided into the two groups of de novo methyltransferases (DNMT3a, DNMT3b) 

introducing cytosine methylation in formerly unmethylated CpGs and the maintenance 

methyltransferase DNMT1, copying an existing methylation pattern during the DNA 

replication from one strand to the other. So far three potential mechanism of triggering de 

novo methylation are understood. First, DNMTs might recognize DNA or chromatin itself, by 

a PWWP domain, a DNA sequence-independent interacting domain (Qiu et al. 2002; 

Shirohzu et al. 2002; Ge et al. 2004). Secondly site-specific transcriptional repressors can 

recruit DNMTs. The myc protein has been described to recruit DNMT3a to the p21 promoter, 

leading to subsequent de novo methylation of the promoter (Fuks et al. 2001; Brenner et al. 

2005). Recently RNAi gene silencing has been linked to DNA methylation. After the 

introduction of double-stranded RNA corresponding to the promoter sequence of a gene, the 

target gene was silenced accompanied by de novo methylation of the promoter sequence 

(Kawasaki and Taira 2004; Morris et al. 2004). Also recruitment of DNMT3A and DNMT3B 

via interaction with the histone methyltransferase SETDB1 (Li et al. 2006) or SUV39H1 

(Fuks et al. 2003) have been described. 

 

1.6.1.2 Methyl-CpG-binding proteins 

The fact that methylated CpG islands are associated with transcriptional repression lead to the  

search for factors being able to read and interpret this epigenetic information. The first protein 
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discovered, to bind to methylated DNA and mediating transcriptional repression was MeCP1, 

methyl-CpG-binding protein 1 (Meehan et al. 1989). Later it was shown, that MeCP1 is a 

protein complex, consisting of MBD2 as the methyl-CpG-binding protein and the chromatin 

remodeling complex Mi2-NuRD, which contains the histone deacetylases HDAC1 and 2, 

MBD3, the chromatin remodeller Mi-2, other proteins like RbAp46/48, metastasis-associated 

protein 2, Sin3a and SAP30 and SAP18 (Feng and Zhang 2001). 

MBD (methyl-CpG-binding domain) proteins selectively bind to methylated DNA and recruit 

chromatin remodelling and transcriptional repressor complexes, thereby establishing a 

repressive chromatin state. So far, there are at least five mammalian MBD proteins: MeCP2, 

MBD1, MBD2, and MBD3 for transcriptional repression and MBD4 (also known as MED1) 

primarily for mismatch repair as a thymine glycosylase (Hendrich and Bird 1998). Sequence 

similarity between MBD proteins is limited to the methyl-binding domain itself. Only MBD2 

and MBD3 display about 70 % sequence similarity. This diversity predicts different functions, 

but biochemical analysis could also show different behavior in the ability to bind to 

methylated DNA. Only MeCP2, MBD1, MBD2 and MBD4 bind to methylated DNA. They 

all drive transcriptional repression due to the presence of a transcriptional repressor domain 

(TRD) interacting with other proteins. 

POZ/BTB ZF ZFZF

MBD CxxC CxxC CxxC TRD
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Fig. 5 Methyl-binding domain proteins. MBD1, 2, 3, 4 and MeCP2 bind to methylated DNA via the 

well conserved methyl-binding-domain (MBD). MBD1 additionally binds to unmethylated DNA via 

one of its zinc-binding domains (CxxC). The transcriptional repression domain (TRD) mediates 

transcriptional silencing due to interaction with corepressors. Because of amino acid changes MBD3 

is unable to bind to methylated DNA and requires interaction with MBD2. MBD4 contains an 

additional glycosylase domain for DNA repair. Kaiso lacks a MBD and binds to unmethylated and 

methylated DNA via the zinc-finger domain (ZF). The POZ domain mediates transcriptional 

repression (Klose and Bird 2006). 
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MeCP2 is able to bind to a single symmetrically methylated CpG (Lewis et al. 1992) and 

mutations within the MBD of MeCP2 causes the Rett syndrome (Amir et al. 1999). Recently 

Klose et. al. found a [A/T]≥4 run close to methylated CpG essential for high-affinity binding at 

selected sites and at known MeCP2 target regions in the Bdnf and Dlx6 genes (Klose et al. 

2005). MeCP2 interacts with the transcriptional repressor complex Sin3 containing histone 

deacetylases (HDAC1/2) (Jones et al. 1998; Nan et al. 1998). The recruitment of HDACs by 

MBD proteins links another epigenetic mechanism of transcriptional regulation with DNA 

methylation, namely histone modifications (for details see below). MeCP2 has also been 

shown to associate with histone methyltransferase activity, targeting Lys9 on the histone H3 

tail, a modification linked to repressed chromatin (Lachner and Jenuwein 2002; Fuks et al. 

2003) and Dnmt1 (Kimura and Shiota 2003). In another study MeCP2 alone was capable of 

mediating chromatin compaction independent of HDAC activity and DNA methylation 

(Georgel et al. 2003). Horike et. al. described a silent-chromatin loop formation by MeCP2, 

which was absent in MeCP2-null mice (Horike et al. 2005) and independent of DNA 

methylation. Also binding of MeCP2 to unmethylated DNA in vitro has been described (von 

Kries et al. 1991; Buhrmester et al. 1995), as well as its capability of repressing transcription 

from both methylated and unmethylated DNA (Meehan et al. 1992; Nan et al. 1997; Kaludov 

and Wolffe 2000). Another group discovered a regulating function of MeCP2 in RNA 

splicing (Young et al. 2005), further suggesting functions besides its role in DNA 

methylation. 

MBD1 binds to symmetrically methylated DNA and is able to repress promoter activity even 

from a 3-kb distance (Ng et al. 2000; Fujita et al. 2003). In addition to the TRD, MBD1 

contains up to three zinc-coordinating CXXC domains, depending on the splice variants. The 

third CXXC domain has been shown to bind specifically to non-methylated CpGs and to 

induce DNA methylation independent transcriptional silencing (Fujita et al. 2000; Jorgensen 

et al. 2004). 

Unlike MBD2 and MeCP2, MBD1 does not appear to interact with HDAC1 or HDAC2, since 

coimmunoprecipitation failed to show an interaction (Ng et al. 2000). Still TsA relieved the 

transcriptional repression. Later it was shown, that MBD1 can interact with the histone 

methyltransferase Suv39h1 and the methyl-lysine binding protein HP1 via its methyl-binding 

domain and that Suv39h1 associates with HDAC1/2 (Fujita et al. 2003).  

In a yeast two-hybrid screening interaction between the transcriptional domain of MBD1 and 

MCAF (MBD1-containing chromatin-associated factor), a cofactor of the histone 

methyltransferase SETDB1, was found (Fujita et al. 2003). MCAF itself contains two 
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conserved domains, one binding MBD1, another binding the transcription factor Sp1. The 

factor seems to facilitate Sp1-mediated transcription, but when binding to MBD1, it blocks 

transcription. MBD1 recruits SETDB1 through interaction with MCAF1 to form 

HP1-condensed heterochromatin (Ichimura et al. 2005). 
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Fig. 6 Different splicing variants of MBD1. 

During S phase of the cell cycle MBD1 has been demonstrated to form a complex with the 

histone H3 K9 methylase, SETDB1, and the chromatin assembly factor CAFp150 , which in 

turn is associating with the DNA replication machinery (Sarraf and Stancheva 2004). This 

may indicate a special role for MBD1 during the cell cycle in linking DNA methylation to 

histone modification and establishment of gene silencing.  

MBD3 is the smallest member of the MBD family. Mammalian MBD3 has lost its ability to 

bind to methylated DNA, due to a mutation of two highly conserved amino acids (Wade et al. 

1999). It is a component of the Mi2-NuRD complex (Zhang et al. 1999), being part of the 

MeCP1 complex, mentioned above. MBD3 is crucial to normal mammalian development, as 

MBD3 knockout mice fail to develop to term (Hendrich et al. 2001).  

MBD4 can bind to methylated DNA, but first seemed not involved in transcriptional  

repression. Instead it plays a role in the repair of methyl-CpG/TpG mismatches that can arise 

from sponaneous deamination (Hendrich et al. 1999). New reports now suggest repressional 

activity for MBD4 at methylated genes (Kondo et al. 2005). Association of MBD4 with the 

methylated promoters of p16INK4α and hMLH1 was demonstrated in vivo. The repression is 

HDAC dependent as HDAC1 and Sin3a directly bind to MBD4. 

Splice variants exist for all MBDs. MBD2 occurs as a full-length protein (MBD2a) and as a 

N-terminal truncation, that arises through the usage of an alternative translational start codon. 

The N-terminus of MBD2, lacking in MBD3, contains a repeat of glycine and arginine 

residues, whose function is still unknown. The truncated MBD2b was reported to demethylate 
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DNA, but these experiments could not be confirmed by others. MBD2 together with MBD3 is 

part of the MeCP1 complex (Bhattacharya SK 1999). 

MBD2 knock out mice displayed a weak phenotype. Overall methylation and imprinting was 

not effected in these mice. In reporter gene assays with mouse fibroblast cell lines, established 

from wildtype and Mbd2-null mice, significantly repression of the was found with the Mbd2 

deficient cell lines, indicating a possible redundancy between MBD proteins in the repression 

of methylated promoters (Hendrich et al. 2001).  

So far no sequence specificity was found for MBD2, giving raise to the question weather 

MBD2 randomly binds to methylated DNA. Sekimata et al could identify a protein binding to 

MBD2, MIZF (MBD2-interacting zinc finger) with a specific 5 bp recognition sequence for 

DNA, CGGAC (Sekimata et al. 2001; Sekimata and Homma 2004). The same motif was 

found in the retinoblastoma gene, in vivo binding of MIZF to the Rb promoter was shown and 

reduction of the Rb promoter activity in reporter gene assays after cotransfection of MIZF 

(Sekimata and Homma 2004). From their experiments it seems reasonable, that MIZF recruits 

MBD2 and potentially the HDAC containing Mi2-NuRD repressor complex to specific target 

sequences and allows sequence-dependent repression.  

Kaiso is a structurally unrelated protein, which has also been shown to bind methylated 

CGCGs (CGCGCCCAAACG) through its three Kruppel-like C2H2 zinc fingers 

(Prokhortchouk et al. 2001). The protein belongs to the family of POZ (pox virus and zinc 

finger) zinc finger transcription factors, which are implicated in development and cancer 

(reviewed in (Bardwell and Treisman 1994; Albagli et al. 1995)). Most family members act as 

transcriptional repressors and are characterized by an N-terminal protein-protein interaction 

POZ domain and a C-terminal DNA-binding domain, that consists of one or more 

Kruppel-like C2H2 zinc fingers. Kaiso was originally discovered in a yeast two-hybrid 

system with p120 as a bait (Daniel and Reynolds 1999). Up to date Kaiso is the only POZ-ZF 

protein that has been shown to have dual specificity DNA binding. It can bind methylated 

CpG dinucleotides or a specific non-methylated DNA sequence (TCCTGCNA), with the 

minimal core sequence CTGCNA, via its zinc fingers 2 and 3 (Daniel et al. 2002). P120 

intervenes with the sequence specific DNA binding ability of Kaiso (Daniel et al. 2002), . 

Recently Kaiso was identified as a component of the human NCoR corepressor complex 

(Yoon et al. 2003) and repression by Kaiso requires the active NCoR complex, which 

associates HDAC3. Furthermore Kaiso can interact with the human enhancer blocker CTCF, 

decreasing the insulator activity of CTCF (Defossez et al. 2005).  
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Besides Kaiso, two so far uncharacterized proteins, ZBTB4 and ZBTB38, containing the 

Kaiso-like zinc fingers, are reported to bind methylated DNA in vitro and in vivo. When 

transfected in mouse cells, they colocalize with foci of heavily methylated satellite DNA. In 

chromatin immunoprecipitation both of these proteins bind to the methylated allele of 

H19/Igf2. They repress the transcription of methylated templates in transfection assays. 

Unlike Kaiso, they can bind single methylated CpGs and are tissue-specifically expressed, 

suggesting non-overlapping functions (Filion et al. 2006). 

 

1.6.2 Histone Code 

The fundamental subunit of chromatin is a nucleosome, consisting of 146 bp of DNA 

wrapped around an octamer of histone proteins, an (H3/H4)2 tetramer assembled with two 

H2A/H2B dimers (Luger 2003). Consecutive nucleosomes form the “beads-on-a-string” fiber 

of 11 nm, which can further be compacted into a 30 nm fiber through the incorporation of 

linker histone H1 protein (Wong et al. 1998; Wolffe 1999).  

The flexible higher order structures of chromatin link to the activation state of chromatin. 

Gene expression occurs at transcriptionally active and structurally accessible states, whereas 

repression is linked to a structurally condensed state. During the last years more and more 

different post-translational modifications of the N-termini of histone proteins have been 

described, among them acetylation of lysines (Grunstein 1997; Sterner and Berger 2000), 

methylation of lysine and arginine residues (Zhang and Reinberg 2001), phosphorylation of 

serine and threonine (Nowak and Corces 2004), ubiquitinylation (Davie and Murphy 1990) 

and sumoylation (Nathan et al. 2003) of lysines, ADP ribosylation (Adamietz and Rudolph 

1984), glycosylation (Liebich et al. 1993), biotinylation (Hymes et al. 1995) and 

carbonylation (Wondrak et al. 2000). These modifications can be highly reversible, such as 

lysine acetylation and serine and threonine phosphorylation, or more stable, such as lysine 

and arginine methylation (Zhang and Reinberg 2001; Lachner and Jenuwein 2002). The 

figure below depicts the variety of modifications of the different residues and the proteins 

with histone-methyltransferase activity (for review see (Margueron et al. 2005)).  

Experimental data suggest, that specific post-translational patterns influence the establishment 

of subsequent modifications on the same histone tail or on neighbouring tails, resulting in 

either an accessible or rather condensed chromatin structure. Following this “histone code” 

hypothesis (Strahl and Allis 2000; Fischle et al. 2003), specific modifications and their 

implications for gene expression have been described. Elevated H3/H4 acetylation levels of a 

gene display transcriptional activity. Furthermore the methylation of H3K4 facilitates 
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subsequent acetylation of H3 and H4 by the acetyltransferase p300. Methylation of H3K9 on 

the other hand inhibits acetylation (Wang et al. 2001) and leads to heterochromatin formation 

(Rea et al. 2000; Bannister et al. 2001; Lachner et al. 2001; Nakayama et al. 2001).  

 

 

Fig. 7 Post-translational modifications of histones. Depicted are phosphorylation, methylation, 

acetylation and ubiquitination sites, as well as the so far known histone methyltransferases and their 

target sites [figure from (Margueron et al. 2005)].  

One explanation of how histone acetylation implicates active gene expression is the change of 

histone charges resulting in different interaction with DNA and other nucleosomes, e.g. 
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elevated acetylation leads to repulsion of DNA entailing a more open chromatin structure. 

Another model involves the interpretation of the histone modifications by effector molecules. 

The chromodomain protein HP1 (heterochromatin protein) exclusively binds to 

di/trimethylated H3K9 (Jacobs and Khorasanizadeh 2002), polycomb protein specifically to 

trimethylated H3K27 (Cao et al. 2002; Wang et al. 2004). These molecules further spread the 

histone code. HP1, e.g. can recruit SUV39H1, a histone methyltransferase, presumably 

methylating the H3 tail of the adjacent nucleosomes, mediating further HP1 binding and 

spreading of heterochromatin (Aagaard et al. 1999). Acetylated histones recruit positive 

effectors of transcription, e.g. components of the basal transcription machinery, and other 

bromodomain proteins (recognizing acetylated lysine) such as p300 and CBP, two histone 

acetyltransferases, possibly further spreading the acetylation marks and open chromatin 

structure (Ragvin et al. 2004).  

Activation

Repression

Activation

Repression

 

Fig. 8 Example of interaction of different histone modifications. Methylation of lysine 4 of histone 

protein H3 facilitates subsequent acetylation of K9, 14, 17 and 23 of H3, as well as acetylation of K5, 

8, 12 and 16 of H4. Acetylation leads to transcriptional activation. Methylation of H3K9 on the other 

hand inhibits subsequent methylation and triggers transcriptional repression [figure from (Margueron 

et al. 2005)]. 

It still remains unclear how cells remember their during the differentiation chosen gene 

expression profile and carry on the information to the next generation after cell division. The 

DNA methylation pattern is inherited by the action of DNMT1, recognizing a hemimethylated 

site and methylating the opposite DNA strand in an appropriate manner. During replication 
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DNA and histones have to be physically separated during the polymerase transit. How the 

distribution of old and new histones to both daughter strands works remains unclear.  

 

1.6.3 The “H3 barcode hypothesis” 

Besides the genetic and histone code, Hake and Allis have recently proposed the “H3 barcode 

hypothesis” (Hake and Allis 2006). The hypothesis is based on the existence of three different  

H3 variants and their possible different biological function. In a study with different 

mammalian cell lines Hake and colleagues could demonstrate that the expression levels of the 

H3 variants varied, independent of cell growth, cell cycle state or chromosomal diploidy, 

suggesting different incorporation patterns during tissue specific differentiation of the cells. 

Additionally the variants carried different post-translational modifications, which are either 

known as marks for transcriptionally active chromatin as for H3.3 (acetlyation of K9, K14, 

K27, K18, K23 and dimethylation of K36, K72) or for silenced chromatin as for H3.2 

(di/trimethylation of K27). H3.1 was enriched in both active and repressive marks (K9 

methylation and K14 acetylation) (Hake et al. 2006).  

 

Fig. 9 Graphical combination of the genetic code, the H3 barcode and the histone code. 

Incorporation of the three different H3 variants separates the genome into active chromatin (H3.3) or 

constitutively repressed (H3.2) or facultative repressed chromatin (H3.1). [figure from (Hake and 

Allis 2006)]. 
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The hypothesis suggests that the incorporation of different H3 variants separates the 

chromatin into active chromatin (incorporation of H3.3), constitutive (H3.2) or facultative 

(H3.1) heterochromatin domains and serves as a long-term epigenetic memory, whereas post-

translational modifications of histone proteins rather influence the regulation of short-term 

gene expression.  

 

1.7 Histone acetylation/deacetylation 

As described above histone proteins are subject to dynamic and reversible lysine acetylation. 

Histone acetyltransferases (HAT) catalyze the transfer of acetyl groups from acetyl-CoA to 

lysine residues of target proteins, while histone deacetylases (HDACs) remove them. 

Acetylation of histone proteins leads to an open and transcriptionally active chromatin 

structure, whereas deacetylation ends in chromatin compaction. Important positions for 

acetylation are lysine 9 (K9) and K14, K17, K23 of H3, and K5, K8, K12, and K16 of H4.  

The acetylation status of proteins can change protein function, e.g. the DNA binding, 

transcriptional activation and repressor activity of transcription factors, stability, nuclear 

localization and coactivator interaction.  

Beside histone proteins, other targets of HATs/HDACs have been identified, suggesting 

substrate and/or function specificity, e.g. transcription factors such as p53 (Juan et al. 2000), 

GATA-1 EKLF, HNF-4, Sp1 and Sp3 (Doetzlhofer et al. 1999; Ammanamanchi et al. 2003), 

structural proteins such as tubulin (Hubbert et al. 2002; Matsuyama et al. 2002; Palazzo et al. 

2003), Hsp70 (Johnson et al. 2002) and Hsp90 (Kovacs et al. 2005; Murphy et al. 2005). Also 

the basal transcription machinery itself is targeted, deacetylation of TAFI68 by mSir2a 

inhibits PolI-dependent transcription (Muth et al. 2001). 

 

1.7.1 HDACs 

According to their yeast counterparts, HDACs are divided into three different classes. Class I 

contains HDACs 1, 2, 3 and 8, homologs of the yeast protein RPD3. HDAC1, 2, 3 are 

ubiquitously expressed, HDAC8 in cells showing smooth muscle differentiation. Class II 

comprises HDACs 4, 5, 6, 7, 9, 10, which are more similar to the yeast histone deacetylase 

(Hda1), and are tissue-specific expressed. Class I and class II HDACs contain the same 

conserved catalytic domain, but class II HDACs are two to three times larger in size than 

class I HDACs. HDAC11 has too low sequence similarity to be classified in either of both 

classes (Gao et al. 2002).  



 Introduction  

27 

Class III members are homologs of the silent information regulator (Sir2), also called 

sirtuins. The sirtuin deacetylases contain a 275 aa catalytic domain, which is unrelated to that 

of HDACs. They require NAD as substrate and operate via a different mechanism (Frye 

2000). Nicotinamide is liberated from NAD+ while the acetyl group of the substrate is 

transferred to cleaved NAD+, generating O-acetyl-ADP-ribose. This class of deacetylases 

appears not to have histones as their primary substrates and is not inhibited by compounds 

that inhibit class I and class II HDACs. Nicotinamide inhibits SIR2 action (Bitterman et al. 

2002; Anderson et al. 2003). 

HDAC1 binds HDAC2 to form the catalytic core of the Sin3, Mi-2/NuRD/NRD and 

CoREST complexes, whereas HDAC3 is the catalytic subunit of the NCoR and SMRT 

complexes (Cress and Seto 2000; Ng and Bird 2000; Grozinger and Schreiber 2002). These 

protein complexes are necessary for HDAC activity (Carmen et al. 1999; Hu et al. 2000; Lee 

et al. 2004) and serve as corepressors for several transcriptional repressors (Zhang et al. 1999; 

Guenther et al. 2001). The class II HDACs 4, 5, and 7 cannot be activated by the 

SMRT/NCoR complex. They are not active deacetylases, but recruit the 

HDAC3/SMRT/NCoR complex (Fischle et al. 2001; Fischle et al. 2002).  
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Fig. 10 Structures of class I/II histonedeacetylases. Class I HDACs are homologs of the yeast protein 

Rpd3, class II HDACs are homologs of the Hda1 yeast protein. They all share the same catalytic 

domain, but class II HDACs are 2-3 times larger than class I HDACs. 

HDAC1, 2, and 3 also cooperate with other chromatin and transcriptional regulators, such as 

ATP-dependent chromatin remodelers (Underhill et al. 2000; Battaglioli et al. 2002; 
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Kuzmichev et al. 2002), DNA methyltransferases (Fuks et al. 2001; Burgers et al. 2002; Di 

Croce et al. 2002), histone methyltransferases (van der Vlag and Otte 1999; Czermin et al. 

2001; Tie et al. 2001) and topoisomerase II (Tsai et al. 2000; Lupo et al. 2001). Except for 

HDAC3 (Fischle et al. 2001; Fischle et al. 2002; Yang et al. 2002), which contains both a 

nuclear import and export signal, all class I HDACs are exclusively located in the nucleus 

(Johnstone 2002). There is evidence that HDAC8 has also other targets than histone proteins. 

The potent HDAC8 inhibitor SB-379278-A did not affect the cellular histone acetylation 

status or SV40 promoter activity in the human colon carcinoma cell line SW620 (Hu et al. 

2003). Waltregny et al. could also show an exclusive expression of HDAC8 in vivo in cells 

showing smooth muscle differentiation (Waltregny et al. 2004).  

HDAC8 associates with the smooth muscle isoform of α-actin in primary human smooth 

muscle cells. So far it is unclear, if HDAC8 deacetylase activity is involved in the regulation 

of any smooth muscle cytoskeletal protein. Repression of HDAC8 expression however, alters 

the morphology of the cells and reduces smooth muscle contractility (Waltregny et al. 2005). 

Class II HDACs are structurally and functionally different from class I HDACs. They are 

divided into two subclasses, IIa (HDAC4, 5, 7, 9) and IIb (HDAC6, 10, 11). IIa members 

interact with transcription factors including MEF2, BCL6, PLZF and TR2, with 

transcriptional corepressors such as NCoR, SMRT, CtBP and with HP1, the 

methyl-lysine-binding protein (Bertos et al. 2001; Fischle et al. 2001; Khochbin et al. 2001; 

Lemercier et al. 2002; McKinsey et al. 2002). Class II HDACs can shuttle between the 

nucleus and the cytosol.  

Class IIa HDACs are regarded as regulators of myogenesis. They bind to the myocyte 

enhancer factor-2 (MEF2) and repress specific gene expression in a calcium-dependent 

manner (Miska et al. 1999; Sparrow et al. 1999; Lu et al. 2000; Youn et al. 2000). Similar to 

class IIa HDACs the transcription factor MEF2 is highly expressed in muscle cells, neural 

cells and T-cells. Upon recruitment of class IIa HDACs, gene expression is repressed. 

Activation by calcium signaling leads to a release of HDACs and activation of transcription 

(Grozinger and Schreiber 2000; McKinsey et al. 2000; Youn et al. 2000). There is also 

evidence for an essential role of MEF2 and HDACs in the development and function of the 

heart. The deletion of HDAC9 in mice leads to cardiac hypertrophy (Zhang et al. 2002). A 

mutation of MEF2A has been linked to human coronary artery disease and myocardial 

infarction (Wang et al. 2003). Class IIa HDAC5 and HDAC9 act as repressors of stress-

induced heart hypertrophy (Chang et al. 2004).  
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HDAC6 is mainly localized in the cytosol. It contains two catalytic domains, both having 

histone deacetylase activity, but only the C-terminal domain is possessing tubulin deacetylase 

activity (Grozinger et al. 1999; Haggarty et al. 2003). HDAC6 functions as a α-tubulin 

deacetylase and regulates microtubule-dependent cell motility (Hubbert et al. 2002; Haggarty 

et al. 2003; Zhang et al. 2003). Additionally it was discovered, that HDAC6 associates with 

ubiquitinated proteins (Seigneurin-Berny et al. 2001; Hook et al. 2002) and is a component of 

the aggresome, where misfolded proteins are processed (Kawaguchi et al. 2003). The tubulin 

activity of HDAC6 is also involved in the regulation of HIV-1 infection and Env-mediated 

syncytia formation. Overexpression of HDAC6 prevented HIV-1 envelope-dependent cell 

fusion and infection without affecting the expression and distribution of HIV-1 receptors 

(Valenzuela-Fernandez et al. 2005). Another protein regulated by reversible acetylation is 

chaperone Hsp90. Inactivation of HDAC6 results in Hsp90 hyperacetylation and the loss of 

chaperone activity. Hsp90 is necessary for the glucocorticoid receptor (GR) to assume its 

competent ligand binding conformation, and hyperacetylation of the heat shock protein results 

in GR defective ligand binding, nuclear translocation and transcriptional activation (Bali et al. 

2005; Kovacs et al. 2005; Murphy et al. 2005).  
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Fig. 11 Various interactions of HDAC proteins. HDAC1 and HDAC2 are found in the three main 

corepressor complexes Sin3, NuRD and CoREST, which are recruited to promoters or DNA binding 

domains of proteins. HDAC1/2 also interact directly with DNA binding proteins such as YY1, Sp1 and 

others. HDAC3, 4, 5, and 7 associate with the NCo/SMRT corepressor complexes, with the MEF2 
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transcription factor family, or the methyl-CpG-binding protein Kaiso. The corepressor complexes 

Sin3, CoRest and Mi-2/NuRD can further associate with MBD proteins, linking again, histone 

deacetylation to DNA methylation. 

 

1.7.2 Regulation of HDAC activity 

As reviewed in (Burke and Baniahmad 2000; Wade 2001; Grozinger and Schreiber 2002; 

Sengupta and Seto 2004) the activity of HDACs is regulated via several mechanism. I) 

HDACs may interact directly with DNA binding proteins, which specifically bind to a certain 

promoter, e.g. HDAC1 and HDAC2 bind to YY1 (Yang et al. 1996), Rb-binding protein 

(Brehm et al. 1998), and Sp1/Sp3 (Sun et al. 2002). II) Instead of direct interaction with a 

DNA binding protein, HDACs can be recruited via protein-protein interaction to a DNA 

binding protein, e.g. as a component of the Sin3a complex. This complex is recruited by 

nuclear hormone receptors in the absence of ligand. Upon ligand binding, the receptor 

changes its confirmation and HATs instead of HDACs form a complex with the receptor. III) 

HDACs and HATs can compete for the same binding site of a transcription factor, e.g. 

HDAC4 and p300 compete for the same binding site of MEF2 (Youn et al. 2000). IV) 

Class II HDACs 4, 5, and 7 shuttle between the nucleus and the cytosol (Grozinger and 

Schreiber 2000). After phosphorylation at their N-termini, binding to MEF is interrupted and 

the proteins are exported from the nucleus (McKinsey et al. 2000). Subsequent recruitment of 

HATs by MEF leads to acetylation and activation of MEF target promoters (Lu et al. 2000). 

V) Post-translational modifications such as phosphorylation, also play an important role in the 

regulation of HDAC activity. Phosphorylation of HDAC1 by CK2 promotes enzymatic 

activity as well as the ability to form protein complexes (Pflum et al. 2001). Also HDAC2 is 

phosphorylated by CK2 (Tsai and Seto 2002), which is necessary for enzymatic activity and 

complex formation with Sin3a and Mi-2/NuRD/NRD. Furthermore Sun et al. could show the 

association of Sp1/Sp3 with HDAC1 and phosphorylated HDAC2 in human breast cancer 

cells (Sun et al. 2002). Phosphorylation of HDAC8 by PKA reduces deacetylase activity and 

leads to H3/H4 hyperacetylation (Lee et al. 2004). Phosphorylation of HDAC4 and 5 inhibits 

binding to MEF and results in nuclear export (Lu et al. 2000; Lu et al. 2000). Besides 

phosphorylation, sumoylation of HDAC1 (Colombo 2002; David et al. 2002), HDAC4, and 

HDAC6 has been described (Kirsh et al. 2002). Though the studies for HDAC1 are 

contradictory, sumoylation of HDAC4 enhances deacetylase activity. Sumoylation of MEF2 

itself inhibits transcription. HDAC4 potentiates sumoylation of MEF2, but is inhibited by the 

sumoylation of HDAC4 itself (Gregoire and Yang 2005). 
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1.7.3 Histone deacetylase inhibitors 

The active site of HDACs I and II consist of a gently curved tubular pocket with a wider 

bottom (Finnin et al. 1999). The removal of the acetyl group occurs via a charge-relay system, 

which requires a Zn2+ ion, bound to the bottom of the pocket, coordinated by several histidine 

and aspartate residues. HDACi function by replacing the Zn2+ ion. TsA is the most potent 

reversible HDACi currently known, with an IC50 in the nanomolar range, perfectly fitting to 

the active site (Yoshida et al. 1990). The hydroamic acid functional group coordinates the 

zinc ion, the aliphatic chain makes van der Waals contacts within the channel leading to the 

catalytic center and the cap group has contact with residues on the rim of the pocket. Class I 

and class II HDACs are all equally sensitive to TsA (Marks et al. 2001; Marmorstein 2001; 

Yoshida et al. 2001; Johnstone 2002). Similar to the natural compound TsA, other 

hydroxamic acid group containing substances have been developed, e.g. suberoyl anilide 

hydroxamic acid (SAHA), NVP-LAQ824, PDX101, oxamflatin and others.  
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Fig. 12 Trichostatin A - Structural properties of HDAC inhibitors. Trichostatin A contains a 

hydroxamic acid functional group, which chelates the zinc ion in the catalytic center of the histone 

deacetylases. The aliphatic chain mimics the lysine and has an optimal length of 5-6 carbons. The cap 

group interacts with the residues surrounding the rim of the catalytic cave. 

A second group of inhibitors comprises short fatty acids, as butyrate, phenylbutyrate and the 

anticonvulsant valproic acid (VPA), which are less efficient inhibitors than TsA with IC50 

values in the millimolar range. Cyclic tetrapeptide antibiotics, including the natural 

compound trapoxin, and benzamides, e.g. MS-275 and Cl-994 (p-N-acetyl dinaline) comprise 

two other groups of inhibitors.  

All HDACs react equally sensitive to the different HDACi. Exceptions are HDAC6, which is 

sensitive to TsA, but not to trapoxin B (Furumai et al. 2001). Class I HDACs are five times 

more efficiently inhibited by VPA, than class II HDACs (Gottlicher et al. 2001). HDAC4 is 

less sensitive to butyrate. The benzamide MS-27-275 preferentially inhibits HDAC1 with an 

IC50 around 0.3 µM, compared to the inhibition of HDAC3 with an IC50 of 8 µM (Hu et al. 

2003). The novel synthetic compounds SK-7041 and SK-7046, with the hydroxamic acid 
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group from TsA and a pyridyl ring from the benzamide MS-275, preferentially target HDAC1 

and HDAC2 (Park et al. 2004).  

Unexpectedly HDACi selectively alter the expression of only 2-10% of genes in cultured 

transformed cells (Van Lint et al. 1996; Mariadason et al. 2000; Glaser et al. 2003; Mitsiades 

et al. 2004). In a newer microarray study with SAHA and depsipepetide the expression of a 

higher number of genes, at least 22%, was regulated by both substances within an 16 h 

interval (Peart et al. 2005). Diverse HDACi seem to activate a common set of genes.  

HDACi induce cancer cell cycle arrest, growth inhibition, differentiation, and programmed 

cell death (Johnstone 2002; Marks et al. 2004; Dokmanovic and Marks 2005). For this reason 

different HDACi are in clinical trials for cancer treatment, among them sodium phenyl-

butyrate, SAHA, LAQ824, depsipeptide, MS-275, Cl-944, yroxamide, PXD101 and valproic 

acid (Dokmanovic and Marks 2005; Liu et al. 2006).  

While all class I and class II HDACs are equally sensitive to TsA, valproic acid 

preferentially inhibits class I HDACs. HDAC2 is about 5-fold more efficiently inhibited than 

HDAC5 and HDAC6 (Gottlicher et al. 2001), HDAC6 and HDAC10 are not inhibited by 

VPA (IC50 > 20 mM) (Gurvich et al. 2004). In contrast to other HDACi, VPA also induces 

proteasomal degradation of HDAC2 (Kramer et al. 2003). Valproic acid has also been shown 

to induce 5-LO expression in murine hippocampus and in the human neuron-like cell lines 

NT2 and NT2-N (Yildirim et al. 2003; Zhang et al. 2004). 

Nicotinamide (vitamin B3), as an inhibitor of class III deacetylases is often used to treat 

anxiety, osteoarthritis and psychosis and is in clinical trials for treatment of cancer and type I 

diabetes (Luo et al. 2001; Vaziri et al. 2001; Bitterman et al. 2002).  

 

1.8 Gene regulation by Sp1 and Sp3 

1.8.1 Structure of Sp transcription factors Sp1 and Sp3  

Sp proteins form a subgroup of Sp/Kruppel-like factors (KLFs). The family of Sp 

transcription factors comprises by now eight members, Sp1 to Sp8, and is characterized by the 

presence of a particular combination of three conserved Cys2His2 zinc fingers at the 

C-terminus, which form the DNA-binding domain of these factors. Sp1 and Sp3 are the best 

examined family members. Besides the zinc fingers Sp1 and the long isoforms of Sp3 contain 

two well conserved N-terminal transcription activation domains, A and B (Courey and Tjian 

1988; Courey et al. 1989; Pascal and Tjian 1991; Suske 1999). The C domain of Sp1 consists 

of highly charged amino acids. The D domain in Sp1 enables the formation of high order 



 Introduction  

33 

complexes and synergistic activation together with the A and B domains and is not found in 

Sp3 (Hagen et al. 1994; Dennig et al. 1996). Whereas Sp1 possesses an N-terminal inhibitory 

domain, the inhibitory domain of Sp3 is close to the zinc finger domain (De Luca et al. 1996; 

Dennig et al. 1996). All Sp proteins contain a N-terminal Sp box, an endoproteolytic cleavage 

site (Su et al. 1999).  
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Fig. 13 Domains of Sp1 and Sp3. (AD) activation domain, (ID) inhibitory domain, (ZF) zinc finger.  

 

1.8.2 DNA affinity 

Sp1 and Sp3 are ubiquitously expressed, Sp4 predominantly in neuronal cells and some 

epithelial cells. Except for Sp2, all family members bind to GC-rich elements such as the 

GC-box (GGGGCGGGG) and the related GT/CACCC-box (GGTGTGGGG), found in 

promoters of housekeeping genes, tissue-specific expressed genes, viral genes and cell cycle 

regulated genes with identical affinity (Hagen et al. 1994; Suske 1999; Black et al. 2001). A 

study demonstrated that Sp1 can also bind to a GC box in a nucleosome, though the binding 

affinity is 10- to 20-fold reduced compared to a naked DNA (Li et al. 1994). 

Sp1 forms a tetramer and then associates with the binding site, thus providing an enlarged 

interface for protein interactions (Mastrangelo et al. 1991). This synergistic transcriptionally 

activation is also seen in promoters with multiple Sp1 binding sites, Sp1 loops intervening 

DNA between distal and proximal promoter sites (Pascal and Tjian 1991; Su et al. 1991). The 

synergistical activation is not exhibited by Sp3 (Yu et al. 2003). Sp3 is unable to form 

oligomers (Mastrangelo et al. 1991; Pascal and Tjian 1991; Yu et al. 2003). On the other 

hand, Sp3 forms more stable complexes at adjacent binding sites than multimeric Sp1-DNA 

complexes and displaces Sp1 from these adjacent binding sites, possibly explaining the 

repressive effects of Sp3 by disturbing Sp1 dependent synergistic transactivation (Yu et al. 

2003). However the p21 promoter contains six Sp1 binding sites and Sp3 activates the 

promoter stronger than Sp1 (Sowa et al. 1999; Gartel et al. 2000).  

Regarding the effects of CpG methylation, the reports are controversial. In some studies DNA 

methylation does not interfere with Sp1 binding (Holler et al. 1988; Clark et al. 1997; Zhu et 

al. 2003), in others CpG methylation reduces Sp1 binding in gel shifts (Clark et al. 1997; 
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Mancini et al. 1999). In the p21 promoter methylation of adjacent residues of the GC box 

reduced Sp1 binding stronger than methylation of the central CpG (Clark et al. 1997; Zhu et 

al. 2003). In reporter gene assays with the p16 and SNRPN promoter, Sp1 cotransfection 

induced promoter activity despite in vitro methylation of the promoter constructs (Fujita et al. 

2000). 

 

1.8.3 Transcriptional control by Sp1/Sp3 

Sp1 and Sp3 may act as negative or positive regulators of gene expression. The general 

mechanism for Sp protein dependent transactivation involves DNA-binding and subsequent 

interaction with components of the basal transcription machinery for constitutive expression 

(Pugh and Tjian 1990; Smale et al. 1990; Tanese et al. 1991; Emami et al. 1998). 

Furthermore, the CRSP complex, “cofactors required for Sp1 activation”, a multiunit cofactor 

complex regulates transcription by mediating signals between enhancer-bound factors and the 

core transcriptional machinery (Ryu and Tjian 1999; Ryu et al. 1999; Taatjes et al. 2002). The 

protein complex consists of subunits, which are shared by other mediator complexes, for 

example the DRIP complex (vitamin D interacting proteins) or the analogous TRAP complex 

(thyroid hormone receptor associated proteins) (Rachez and Freedman 2001). Different 

activators seem to induce different conformational changes upon binding to selective subunits 

of the complex thus allowing promoter selectivity (Taatjes et al. 2004). Also the composition 

of the complex defines its actions, for example, the CRSP/Med2 complex was isolated, 

lacking both subunits Med220 and Med70. The complex was able to potentiate transcription 

in response to Sp1, but not to VDR (Taatjes et al. 2004; Taatjes and Tjian 2004).  

 

1.8.3.1 Expression ratio of Sp1/Sp3 

The most simple mechanism of regulation depends on the relative levels of Sp1 and Sp3 

protein expression. In Caco-2 cells for example, the MAO B promoter is regulated by Sp1 and 

Sp3. Sp3 acts as an repressor on the promoter. With differentiation of Caco-2 cells, Sp3 

expression decreases and MAO-B expression increases (Wong et al. 2003). Similarly the 

human secretin promoter is regulated by the Sp1/Sp3 protein ratio. Higher Sp1 levels induced 

transcription whereas higher Sp3 levels repressed the promoter activity (Pang et al. 2004). 

The basal regulation of 15-lipoxygenase is dependent on Sp1 interaction with the promoter, 

whereas Sp3 decreases promoter activity (Tang et al. 2004).  
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1.8.3.2 Interaction with other proteins 

Since Sp proteins can also interact with multiple other DNA-binding proteins and 

coactivators/corepressors the transcriptional control further strongly depends on the promoter 

and cellular context. This is described by the multiple reports regarding the regulation of the 

p21 promoter by Sp1/Sp3/KLF4 DNA binding to the six proximal GC-rich elements and 

different protein interactions in different cell lines [reviewed in (Safe and Kim 2004)]. 

Amongst others activation of p21 expression was induced by p53 in several cell lines (Zhang 

et al. 2000; Koutsodontis et al. 2001), by calcineurin-induced NFAT1 and NFAT2 (Santini et 

al. 2001), by c-jun in HepG2 cells and repressed in human embryonic epithelial 293 cells all 

via distinct GC-sites within the p21 promoter (Kardassis et al. 1999; Wang et al. 2000).  
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Fig. 14 Multiple regulation of Sp mediated transcriptional control. 

Other transcription factors interacting with Sp1 include Ahr, Arnt, GATA-1, GATA-2, 

GATA-3, NF-YA, VHL, MyoD, PML. HTLF, E2F1, YY1, MDM2, c-jun, AP-2, myc, 

NFAT-1, HD protein, cyclin A, Oct-1, TBP, HNF3, HNF4, p53, MEF2C, SMAD2, SMAD3, 

SMDA4, Msx1, several viral proteins, Rb, E1a, p107, ZBP89, DNMT1 (Song et al. 2001; 

Song et al. 2001), histone modifying proteins such as HDAC1 (Doetzlhofer et al. 1999; Kang 

et al. 2005), p300 (Mastrangelo et al. 1991; Jang and Steinert 2002; Huang et al. 2005) and 

nuclear receptors such as ER, AR, PR, RAR, RXR, PPARγ, VDR, the orphan nuclear 

receptors SF-1 (steroidgenic factor-1) and COUP-TFII (chicken ovalbumin upstream 

promoter transcription factor-II [reviewed in (Safe and Kim 2004)].  

Nuclear receptors instead of binding to their response element, can interact with other 

transcription factors, e.g. Sp1 to activate gene expression. 1,25(OH)2D3 upregulates p27 

expression by inducing complex formation of a VDR/Sp1 complex. Sp1 in this case functions 

as an anchor protein for VDR (Huang et al. 2004; Cheng et al. 2006). 
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Recently an interaction between the corepressors SMRT, NCoR and BCoR has been 

described between the zinc finger domain and the Sp1 inhibitory domain, giving another 

possible explanation for the repressive effects of Sp1 in some contexts (Lee et al. 2005).  

Multiple reports describe the recruitment of HDAC1 and HDAC2 by Sp1 and/or Sp3 to gene 

promoters. The histone deacetylase inhibitor TsA induces expression of the human telomerase 

reverse transcriptase (hTERT) gene (Hou et al. 2002), the human luteinizing hormone 

receptor gene (Zhang and Dufau 2002; 2003), the TGFβ type II receptor (Huang et al. 2005), 

insulin-like growth factor binding protein-3 gene (Choi et al. 2002) and others. The effect is 

usually reversed by mutation of a specific Sp1 binding site in the proximal promoter area. 

TsA treatment leads to a release of HDAC1 and Sp3 from the Sp1/Sp3/HDAC1/p300 

transcriptional complex from the IGFBP-3 promoter in Hep3B cells and increases Sp1 

binding. TsA also induces acetylation (Huang et al. 2005) or phosphorylation of Sp1 (Choi et 

al. 2002).  

 

1.8.3.3 Sp3 

In vivo four isoforms of Sp3 are expressed that differ in the extent of the N-terminal part, 

deriving from alternative translational start sites and not from splicing events. The two slow 

migrating isoforms form bands around 78/80 kDa, lacking the A domain, the long isoforms 

around 115 kDa. None of the isoforms become glycosylated as Sp1, but all become 

sumoylated at lysine 551 within the inhibitory domain of Sp3. Sumoylation renders all 

isoforms inactive (Ross et al. 2002; Sapetschnig et al. 2002; Spengler et al. 2005). The long 

isoforms act as transcriptional activators whereas the small isoforms are inactive (Sapetschnig 

et al. 2004) and can compete with Sp1 binding or promoter-specific transcription factors, 

thereby repressing transcription (Hagen et al. 1994; Kennett et al. 1997; Kumar and Butler 

1997; Majello et al. 1997; Kennett et al. 2002). However it remains unclear why Sp3 acts as 

an activator/repressor on some promoter settings, but not on others.  

 

1.8.3.4 Posttranslational modifications 

Braun et. al. formerly described the acetylation of the same lysine residue of Sp3 that 

becomes sumoylated (Braun et al. 2001). In vitro CBP and p300, but not PCAF could 

acetylate Sp3. Originally the acetylation event was discussed to be involved in the inhibitory 

function of Sp3, since the lysine residue 553 (KEE motif) is essential for silencing function 

(Braun et al. 2001). However in other reports the acetylation of Sp3 increases the 

transactivation activity. E.g. in the late passage of MCF7 cells, Sp3 acted as an transcriptional 
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repressor of the TGFβ receptor expression because of a higher Sp3/Sp1 ratio, whereas 

TsA-induced acetylation of Sp3 recovers TGFβ expression by transactivation of Sp3 

(Ammanamanchi and Brattain 2001; Braun et al. 2001; Ammanamanchi et al. 2003). It is 

possible that acetylation and sumoylation of the same lysine residue regulate Sp3 

transcriptional activity (Ross et al. 2002; Sapetschnig et al. 2002; Sapetschnig et al. 2004; 

Spengler et al. 2005). No phosphorylation of Sp3 has been described so far. 

Phosphorylation of Sp1 can occur at multiple sites by many kinases both in the N- and 

C-terminus. Phosphorylation of Sp1 is induced by various signals including viral infection, 

growth factors, certain drugs, cytokines, mechanical stress, etc (Jackson et al. 1990; Lin et al. 

1997; Chun et al. 1998; Alroy et al. 1999; Black et al. 1999; Ray et al. 1999; Kim and DeLuca 

2002; Pan and Hung 2002; Bonello and Khachigian 2004).  

Phosphorylation by phosphatidylinositol-3-kinase (PI3-K) e.g. increases phosphorylation of 

Sp1 in several prostate cancer cells lines and enhances binding to the promoter of the vascular 

endothelial growth factor (VEGF) (Pore et al. 2004). Phosphorylation by PKA (Lee et al. 

2003), PKC (Rafty and Khachigian 2001), cyclin A-cyclin-dependent kinases (Fojas de Borja 

et al. 2001; Haidweger et al. 2001; Banchio et al. 2004) and mitogen-activated protein kinase 

(Onishi et al. 2001; Milanini-Mongiat et al. 2002) have also been described and linked to 

increased DNA binding and transcription activity of Sp1. As reviewed by Chu et. al 

phosphorylation does not always increase the DNA-binding ability of Sp1 and induced 

transactivation can occur independently of an enhanced DNA-binding affinity (Lin et al. 

1997; Reisinger et al. 2003; Chu and Ferro 2005). Sp1 phosphorylation also increases 

ubiquitinylation and subsequent proteolysis, decreasing Sp1 nulear protein levels (Leggett et 

al. 1995; Mortensen et al. 1997). Since Sp1 can be phosphorylated at various sites or 

combination of sites, phosphorylation leads to a range of changes in protein function, further 

depending on interacting proteins, the promoter and cellular context.  

Similar to Sp3, TsA induced acetylation of Sp1 resulted in increased transcription of the 

TGFβ II receptor (Huang et al. 2005). Trichostatin A treatment altered a multiprotein complex 

consisting of Sp1, NF-Y, HDAC1, p300 and PCAF. Whereas p300 and PCAF recruitment 

was increased, HDAC1 interaction was decreased. The authors could also show, that 

acetylation of Sp1 was dependent on PCAF histone acetyltransferase activity and that PCAF 

can acetylate Sp1 in vivo. Acetylation of Sp1 was also induced after treatment of various 

human cancer cell lines with the DNA topoisomerase II poison TAS-103, but only in p300 

expressing cells. The treatment increased p300 expression and interaction with Sp1, resulting 

in induced promoter activity of the SV40 promoter (Torigoe et al. 2005). In an earlier study it 
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was demonstrated that the acetyltransferase region of p300 interacts with the DNA binding 

domain of Sp1 and stimulates DNA binding of Sp1 rather physically than by acetylation 

(Suzuki et al. 2000).  

Concerning serine/threonine O-linked β-N-acetylglucosamine glycosylation, reports describe 

different consequences for Sp1 function. For example, glycosylation protects from subsequent 

degradation after phosphorylation, indicating a reciprocal relationship between 

phosphorylated and glycosylated Sp1 (Han and Kudlow 1997; Wells et al. 2001; Spengler and 

Brattain 2006). The modification intervenes the Sp1 interaction with TATA-binding protein-

associated factor (TAF110) (Roos et al. 1997) and in some contexts inhibits Sp1-dependent 

transactivation (Yang et al. 2001), in others increases Sp1 transactivation (Roos et al. 1997). 

Recently sumoylation of Sp1 has been described and linked to transcriptional repression of 

Sp1. The sumoylation of lysine 16 inhibits the N-terminal cleavage of Sp1 within a negative 

regulatory domain. The authors suggest an inhibiting role of the non-cleaved Sp1 in 

transcription via recruitment of corepressors to the uncleaved binding domain (Spengler and 

Brattain 2006). 

The multiple interactions of Sp1/Sp3 with other DNA binding proteins, 

coactivators/corepressors, DNA and histone modifying proteins, point out, how complex a 

promoter in a specific cell context may be regulated. 
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2 Aims of the present study 

As outlined in the introduction, the mechanism how 5-LO gene transcription is regulated, is 

not yet fully understood. Besides the prominent upregulation triggered by differentiation of 

cells of myeloid origin by 1,25(OH)2D3 and TGFβ (Brungs et al. 1994; 1995; Harle et al. 

1998; 1999; Uhl et al. 2002; Sorg et al. 2006), which only partly depends on the 

transcriptional level, transcription factors binding to GC-rich sequences including Sp1/Sp3 

and Egr1 (In et al. 1997; Silverman et al. 1998; Dishart et al. 2005), as well as proteins 

involved in the regulation by DNA methylation and histone deacetylation (Uhl et al. 2002; 

Klan et al. 2003), e.g. methyl-CpG-binding proteins and HDACs, are/could be recruited to the 

5-LO promoter under various conditions. 

One aim of this study was to investigate how the histone deacetylase inhibitor TsA induces 

5-LO promoter activity and gene expression. Early studies indicated the presence of relevant 

elements within the core promoter region, possibly Sp1 binding sites (Klan et al. 2003). An 

upregulation of gene expression by histone deacetylase inhibitors suggests the recruitment of 

HDACs, often in combination with HATs, within the proximal promoter area. Treatment with 

HDACi in some cases change the composition of multiprotein-complexes, e.g. consisting of 

Sp1/NF-Y/HDAC1/p300, as shown for the TGFβII receptor (Huang et al. 2005). Also 

posttranslational modifications of transcription factors by HDACs or HATs in response to 

HDACi have been described, e.g. acetylation or phosphorylation of Sp1/Sp3 after TsA 

treatment (Choi et al. 2002; Ammanamanchi et al. 2003; Huang et al. 2005), changing the 

transactivation or binding properties of the transcription factors. 

Since 5-LO expression and DNA methylation of the 5-LO core promoter correlate in 5-LO 

positive and 5-LO negative cell lines (Uhl et al. 2002), proteins involved in the regulation by 

DNA methylation, such as methyl-CpG-binding proteins, should be identified and the 

potential binding sites within the core promoter isolated. In order to investigate the influence 

of DNA methylation on the binding affinity of Sp1, gel shift studies were performed with 

methylated DNA stretches.  
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3 Materials and Methods 

3.1 Cell lines 

Mono-Mac-6 cells 

Human acute monocytic leukemia cell line; differentiation to macrophages possible; cells 

were kindly provided by H. W. L. Ziegler-Heitbrock, Inst. of Immunology, Univ. of Munich. 

The cells show 5-LO expression after differentiation with TGFβ and 1,25(OH)2D3. 

HeLa cells 

Established from human epitheloid cervix carcinoma; later diagnosis changed to adenoma 

carcinoma; cells were obtained from Dr. W. E Müller, Pharmacological Institute, Biocenter, 

Frankfurt. The cells show no 5-LO expression, there is no effect of TGFβ and 1,25(OH)2D3 

treatment on 5-LO expression. 

 

3.2 Cell culture 

Mono Mac 6 cells were cultured in RPMI-1640 medium supplemented with 2 mM Glutamine, 

1 mM sodium pyruvate, 1 x nonessential amino acids, 10 µg/ml insulin, 1 mM oxalacetic 

acid, 100 units/ml penicillin, 100 µg/ml streptomycin and 10% (v/v) fetal bovine serum. Cells 

were maintained at 37 °C in an humified atmosphere of 5% CO2. Cultures were seeded at 

2 x 105 cells/ml. In some experiments TGFβ (2 ng/ml) and 1,25(OH)2D3 (50 nM) were added 

for induction of 5-LO expression and cell differentation. TGFβ1 was purified from outdated 

platelets as described by Werz et. al. (Werz et al. 1996). If indicated, cells were treated 6 h 

with TsA, 330 nM, purchased from Sigma (T8552, solved in ethanol). 

HeLa cells were grown in Dulbecco`s modified Eagle`s medium (DMEM) supplemented with 

10% (v/v) FCS, 100 µg/ml streptomycin and 100 units/ml penicillin. If indicated, cells were 

treated 24 h with TsA, 330 nM, or 24 h with 1 mM valproic acid (Aldrich, Cat.: 22,425-1), or 

with 5 mM nicotinamide (Sigma, solved in DMSO).  

 

3.3 Preparation of whole cell extracts for DNA affinity purification assay 

MM6 cells were seeded at 2 x 105 cells/ml. After 4 days the cells were collected by 

centrifugation at 1200 rpm at RT for 3 min. The pellets were rinsed with PBS (pH 7.4) and 

collected in one falcon tube. Following centrifugation the cells were resuspended in 10 ml of 

NETN buffer (50 mM Tris-HCl pH 8.0, 1 mM EDTA, 120 mM NaCl, 0.25% NP-40) and 

lysed for 15 min on ice. After sonication (3 x 5 sec) and cooling on ice for another 30 min the 
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cell debris was removed through centrifugation (10,000 rpm at 4 °C for 10 min) and the 

supernatant was stored at -70 °C. Protein content was determined with Bradford assay 

(BioRad Protein Assay). 

HeLa cells were seeded 1-2 x 106 cells/180 cm2, equivalent to splitting the cells 1:10 every 4 

days. After 72 h the cells were harvested. For this the cells were washed twice with PBS 

(pH 7.4) at RT, scraped off in PBS buffer and collected in a falcon tube. After centrifugation 

at 1,200  rpm for 3 min, 1 ml of ice-cold NETN buffer per collected dish was added and the 

cells were lysed for 15 min on ice. The cell debris was removed through centrifugation 

(10,000 rpm at 4 °C for 10 min) and the supernatant was stored at -70 °C. 

 

3.4 Preparation of nuclear and cytosolic cell fractions 

To check for protein expression after transfection, cells were harvested and fractionated into 

nuclear and non-nuclear compartments. Adherent HeLa cells were first washed twice with 

PBS (pH 7.4), then scraped off the cell culture dishes and transferred to falcon tubes. After 

centrifugation at 1200 rpm (200 g) at RT for 5 min the pellet is resuspended in 300 µl of 

NP-40 buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1 mM EDTA, 0.1% 

NP-40) containing protease inhibitors (1 mM PMSF, 1 µg/ml STI, 10 mg/ml Leupeptin), 

lysed on ice for 10 min and subsequently centrifuged at 2700 rpm (800 g) at 4 °C for 10 min. 

The supernatant is the cytosolic fraction and stored at –20 °C. The pellet (nuclear fraction) is 

resuspended in 50 µl of TKM buffer (50 mM Tris-HCl pH 7.4, 250 mM Sucrose, 25 mM 

KCl, 5 mM MgCl2, 1 mM EDTA), sonicated for 3 x 5 sec and stored at –20 °C. For Western 

blot analysis usually the nuclear fraction was prepared. Different probes were normalized to 

the cell number of harvested cells, the volumes were adjusted with MQ to a volume of 20 µl, 

5 µl of 5 x Laemmli buffer (250 mM Tris-HCl pH 6.8, 5 mM EDTA, 50% Glycerol, 10% 

SDS, 0.05% BPB, 10% β-Mercaptoethanol) were added and the samples boiled for 5 min at 

95 °C. 

 

3.5 Preparation of nuclear extracts for gel shift assays and DAPA 

Nuclear extracts were prepared according to Shapiro (Shapiro et al. 1988). Depending on the cell 

type and the growth conditions about 0.2 – 1 x 109 cells were harvested by centrifugation at 170 g, 

10 min, 4 °C. Cells were washed twice in cold PBS (pH 7.4). HeLa cells were washed twice with 

ice cold PBS before scraping the cells off the cell culture dishes. The pellet was resuspended in a 

small volume of PBS and centrifuged at 300 g for 10 min, after which the packed cell volume 
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(PCV) was measured. The pellet was resuspended in hypotonic buffer (10 mM HEPES, pH 7.9, 

0.75 mM spermidine, 0.15 mM spermine, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 10 mM 

KCl and Complete Protease Inhibitor Complex (CPIC, Roche) to 5 times the PCV and allowed to 

swell on ice for 10 min. The cells were pelleted by centrifugation at 300 g for 10 min at 4 °C, and 

resuspended in hypotonic buffer (volume corresponding to 2 x PCV). Cells were broken by 

Dounce homogenization: first tight pestle; then loose pestle after adding 0.1 volume of sucrose 

restore buffer (50 mM HEPES, pH 7.9, 0.75 mM spermidine, 0.15 mM spermine, 10 mM KCl, 

0.2 mM EDTA, 1 mM DTT, CPIC, and sucrose 67.5% (w/v)). The broken cells were quickly 

centrifuged at 10,000 rpm for 1 min. The viscous pellet (containing nuclei) was resuspended in 

2.1 ml nuclear resuspension buffer (20 mM HEPES, pH 7.9, 0.75 mM spermidine, 0.15 mM 

spermine, 0.2 mM EDTA, 2 mM EGTA, 2 mM DTT, 25% glycerol, 0.1 volume saturated (at 4 °C) 

ammonium sulfate and CPIC), shaken for 30 min at 4 °C, during this treatment nuclei are 

disrupted. The resulting solution was cleared by centrifugation for 90 min at 150,000 g, and 

nuclear proteins were precipitated with ammonium sulfate (0.39 g/ml, stirred on ice for 20 min). 

The precipitate was collected by centrifugation at 85,000 g for 20 min. The pellet was resuspended 

in 0.6 ml dialysis buffer (20 mM HEPES, pH 7.9, 20 % glycerol, 100 mM KCl, 0.2 mM EDTA, 

0.2 mM EGTA, 2 mM DTT and CPIC) and dialyzed for 2 times 2 h in >200 volumes of dialysis 

buffer. The final nuclear protein extract was stored at –70 °C. 

 

3.6 SDS-PAGE and Western blot 

If not otherwise indicated 10% polyacrylamide gels were run at 170 V for 60 min. Proteins were 

electroblotted onto Millipore Immobilon-FL PVDF membrane using the BioRad Mini Protean 

system. Membranes were blocked in a mixture of Li-Cor Blocking buffer and PBS (1:1) for 1 h at 

RT and then incubated overnight at 4 °C with primary antibody solution. After washing 4 x 5 min 

in PBS-Tween 0.1%, the membranes were incubated 30 min at RT in secondary antibody and 

subsequently washed another four times for 5 min in PBS-Tween 0.1% and finally 5 min in PBS. 

The membranes were scanned in the Li-Cor Odyssey scanner at 169 µm resolution and high 

quality. 

 

Primary antibodies 
Sp1 (sc-059) anti-rabbit, anti-goat 1:1000 Santa Cruz / Heidelberg 

Sp3 (sc-644) anti-rabbit 1:1000 Santa Cruz / Heidelberg 

HDAC2 (sc-7899) anti-rabbit 1:1000 Santa Cruz / Heidelberg 

HDAC3 (sc-11417) anti-rabbit 1:1000 Santa Cruz / Heidelberg 

HDAC8 (sc-17778) anti-rabbit 1:1000 Santa Cruz / Heidelberg 
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p300 (sc-32244) anti-mouse 1:1000 Santa Cruz / Heidelberg 

PCAF (sc-6300) anti-gaot 1:1000 Santa Cruz / Heidelberg 

MBD1 (sc-25262) anti-mouse 1:1000 Santa Cruz / Heidelberg 

MBD2 (sc-9397) anti-goat 1:1000 Santa Cruz / Heidelberg 

MBD3 (sc-9402) anti-goat 1:1000 Santa Cruz / Heidelberg 

MeCP2 (sc-20700) anti-rabbit 1:1000 Santa Cruz / Heidelberg 

Anti-acetyl-Lysine (06-933) anti-rabbit 1:5000 Upstate / Hamburg 

Anti-HDAC1 clone 2E10 (05-614) anti-mouse 1:2000 Upstate / Hamburg 

Anti-MBD2/3 (07-199) anti-rabbit 1:5000 Biomol / Hamburg 

MBD1 (ab3753) anti-rabbit 1:1000 Abcam / UK 

 

Secondary antibodies 
Donkey anti-rabbit (#611-732127) IRDye800CW 1:10000 Rockland 

Donkey anti-goat (#A-21084) Alexa680 1:10000 Molecular Probes 

Goat anti-rabbit (926-32230) IRDye800CW 1:10000 Odyssey InfraredImaging 

Goat anti-mouse (927-30021M) Alexa680 1:10000 Odyssey InfraredImaging 

Goat anti-rabbit (926-32221) IRDye680 1:10000 Odyssey InfraredImaging 

Goat anti-mouse (927-30020R/C) IRDye800CW 1:10000 Odyssey InfraredImaging 

 

3.7 Plasmids 

3.7.1 5-LO promoter reporter gene vectors 

The cloning of the basic 5-LO promoter luciferase reporter gene constructs N0 to N14 was 

done by Niko Klan and is described in (Klan et al. 2003; Sorg et al. 2006). N0 contains the 

promoter region from +53 bp up to -6079 bp in relation to the major transcription initiation 

site (-12 bp to -6144 bp in relation to the ATG). It was cloned by digesting the plasmid K1 

(containing the fragment -6079 to +409 of the 5-LO gene (provided by Shigeru Hoshiko, 

Japan) first with BstEII, subsequently blunting with T4 DNA polymerase, digesting with KpnI 

and finally ligating the obtained fragment into the promoterless luciferase reporter vector 

pGL3Basic (Promega), which was opened with KpnI and SmaI. 

The plasmids N1-N11 were constructed by digestion of N0, using KpnI in combination with 

either AflII (N1), Van911 (N2), NdeI (N3), PvuII (N5), Eco1471 (N6), EcoRI (N7), EcoRV 

(N8), PmeI p(N9), PauI (N10) and BstXI (N11). Overhangs were blunted by T4 DNA 

polymerase and the plasmids religated with T4 DNA ligase. 

Constructs N12 to N16 and GC0 were obtained by PCR deletion using N10 as the template. 

The primers used in the PCR reaction are described in Tab. 1. Following 18 temperature 



 Materials and Methods  

44 

cycles, the PCR product was treated with DpnI, DNA ends were phosphorylated by T4 

polynucleotide kinase and ligated by T4 DNA ligase. 

Several mutations of transcription factor binding sites and methylation sites were introduced 

by site-directed mutagenesis according to the instructions of the QuikChange II site-directed 

mutagenesis kit of Stratagene. The primers used for the PCR reaction had a minimum length 

of 25 bp, a minimum GC content of 40% and an annealing temperature of at least 78 °C, 

carrying the mutation in the middle of the sequence. Primers, if possible, ended with a G or C 

and were purified by HPLC. For the introduction of a point mutation, the PCR reaction was 

run for 12 cycles, for the mutation of several base pairs, for 16 cycles. The PCR product was 

treated with DpnI to digest template DNA and subsequently transformed to supercompetent 

SURE E.coli (Stratagene). The primers used for the different mutations are listed in Tab. 1. 

The following mutations of potential Sp1 binding sites were done by site-directed 

mutagenesis: Mutation of the two proximal GC boxes, GC4 (-113 bp to –118 bp in relation to 

the ATG of 5-LO) and GC box 5 (-78 bp to -83 bp in relation to the ATG of 5-LO) in 

construct N13, the mutation of GC5 in N14, resulting in the reporter gene constructs 

N13GC4, N13GC5, N13GC45 and N14GC5. 

The same single mutations were generated in the larger 5-LO promoter plasmids N10 and 

GC0 (a deletion variant of N10, missing the 5-tandem Sp1 binding site at –147 bp to –176 bp 

in relation to 5-LO), generating the constructs N10GC4, N10GC5, and GC0GC5. 

To produce the plasmids GC0GC4 and GC0GC45 a different cloning strategy was chosen. 

Because of a lack of restriction sites, it was not possible to cut fragments out of the already 

existing mutated plasmids and to religate them into the larger plasmids. For this reason the 

fragments were generated by PCR. Basically, two each other flanking PCR products were 

obtained, one containing the wished mutations of the GC boxes, already introduced in either 

N13GC4 or N13GC45, another containing the adjacent fragment of GC0, needed for the 

ligation into GC0. The plasmid GC0 was opened by the restriction enzymes NotI and NcoI, 

the PCR fragments were digested with either NotI (GC0 as a template) or NcoI 

(N13GC4/N13GC45 as a template), phosphorylated at the blunt ends and ligated both into 

GC0. The primers used for the PCR reaction are shown under “Primers for PCR product 1 

and 2” in Tab. 1 below. 

The triple mutants GC0GC145 and GC0GC245 were obtained using the same strategy, using 

GC0GC1 or GC0GC2 and N13GC45 as templates. GC0GC1245 was generated using 

N10GC12 and N13GC45 as templates. 
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Mutations of the more distal binding sites of Sp1, including the sites from -238 bp to -233 bp 

(GC box 1), -216 bp to -221 bp (GC box 2), -721 bp to -726 bp (GC box 7), -766 bp to 

-771 bp (GC box 6), were introduced into N10 and GC0 using site-directed mutagenesis, 

resulting in the constructs N10GC1, N10GC2, N10GC6, N10GC7 and GC0GC1, GC0GC2. 

Mutations of the two potential Sp1 binding sites GC8 (-887 bp to -892 bp in relation to ATG) 

and GC9 (-1002 bp to -1007 bp) within the reporter gene construct N9 were also introduced 

by site-directed mutagenesis generating the reporter gene constructs N9GC8 with an 

additional BamHI site, N9GC9 with an additional NcoI site and N9GC89 respectively. To 

further introduce the five-fold mutation of GC1, GC2, GC4, GC5 and the deletion of GC0 

into these constructs the BstXI/BglII fragment from construct GC0GC1245 was inserted, 

replacing the natural BstXI/BglII fragments from the plasmids via restriction digest, leading to 

the constructs N9GC01245, N9GC8GC01245, N9GC8GC01245 and N9GC89GC01245. 

The most distal Sp1 binding site (GC box 10, from -1002 bp to -1007 bp) was mutated in N8 

via site-directed mutagenesis resulting in construct N8GC10. 

To investigate the influence of the methylation sites within the proximal promoter area, 

mutations of these sites were introduced into construct N13. Construct N13MutMethIII was 

achieved via site-directed mutagenesis, N13MutMethI and N13MutMethII via two flanking 

PCR products which were cloned into the NotI/NcoI opened plasmid N13. 

Additionally CpG sites within the inverted repeat structure of the proximal 5-LO promoter 

were mutated to check for methylation effects in the secondary DNA structure (Hoshiko et al. 

1990). These mutations were both introduced via site-directed mutagenesis into N13, 

resulting in the reporter gene constructs N13MutInvRep1 and N13MutInvRep2. Primers used 

for the methylation relevant mutations are stated in the table below. 

 

3.7.2 Expression plasmids 

The expression plasmids pETM1, pETM3, pETM4 for the methyl-CpG-binding proteins 

Mbd1 (AF072240, coding for the murine isoform Mbd1a), Mbd2 (AF072243, using the 

second ATG coding for the murine isoform Mbd2b) and Mbd3 (AF072248) of murine origin 

and pCMV-HA-MeCP2 of rat origin (NM_022673) were kindly provided by Adrian Bird, 

University of Edinburgh, UK. H. Leonhardt, from the Max Delbruck center in Berlin, 

Germany, kindly send us the expression plasmid of mouse Dnmt1, pEMT. From M. Szyf, 

McGill University, Montreal we have received pHis-dMTase (human MBD2b) and from 

F. Li, University of Giessen, Germany, the plasmids pcDNA3.1HisDnmt3a and 

pcDNA3.1HisDnmt3b1, containing the murine coding sequences. 
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Plasmid Forward primer for PCR deletion Reversed primer for PCR deletion 

N12 

N13 

N14 

N15 

N16 

GC0 

CGCGTGAAGAGTGGGAGAGAAGTACTGCGG 

CAGCCGGGAGCCTGGAGCCAGACC 

AGGGACCAGTGGTGGGAGGAGGCT 

GCTAGATGCGGACACCTGGACCGC 

GGCTCCCGGCGCTCGCTGCTC 

CAGCCGGGAGCCTGGAGCCAGACC 

TATCGATAGAGAAATGTTCTGGCA 

See N12 

See N12. 

See N12 

See N12 

CCGCAGTACTTCTCTCCCACTCTTCACGCG 

Plasmid Forw. primer for site-directed mutagenesis Rev. primer for site-directed mutagenesis 

N13GC4 

N13GC5 

N13GC45 

N14GC5 

N10GC1 

N10GC2 

N10GC12 

N10GC4 

N10GC5 

N10GC6 

N10GC7 

GC0GC1 

GC0GC2 

GC0GC5 

N9GC8 

N9GC9 

N9GC89 

N8GC10 

N13MutInvRep1 

N13MutInvRep2 

N13MutMethIII 

AGCCAGACCGGCCCGGGGCCGGG 

GGACCAGTGTGCCAGGAGGCTGCGGC 

see N13GC5; N13GC4 as template 

see N13GC5 

GCCCCTGCCCCGGGCGAGGCGAG 

GAGGCGAGGTCCCGGGCAGTCGGCG 

see N10GC2; N10GC1 as template 

see N13GC4 

see N13GC5 

CGACCCGTGACCCCTGGCCTGAGGTAGACAGCCC 

CGTCCCGCCTGCCCGGGGCGACCACTGGC 

see N10GC1 

see N10GC2 

see N13GC5 

GAGGCGGGCGCCAGGAGTGGATCCGAACCTGGG 

CCCAGCCGCGGGAAGCCATGGAGGAGCGCGC 

see N9GC8 

GACTTCACATCCCCGGGATCCCACGCACGGTGAGC 

CTCTATCG ATACAGCTGGGAGCCTGGAGCC 

CGAGGCTCCCGACCCTCGCTGCTC 

CAGACTGGGGCGGGGCTGGGACCTGGGCCAG 

CCCGGCCCCGGGCCGGTCTGGCT 

GCCGCAGCCTCCTGGCACCACTGGTCC 

see N13GC5; N13GC4 as template 

see N13GC5 

CTCGCCTCGCCCGGGGCAGGGGC 

CGCCGACTGCCCGGGACCTCGCCTC 

see N10GC2; N10GC1 as template 

see N13GC4 

see N13GC5 

GGGCTGTCTACCTCAGGCCAGGGGTCACGGGTCG 

GCCAGTGGTCGCCCCGGGCAGGCGGGACG 

see N10GC1 

see N10GC2 

see N13GC5 

CCCAGGTTCGGATCCACTCCTGGCGCCCGCCTC 

GCGCGCTCCTCCATGGCTTCCCGCGGCTGGG 

see N9GC8 

GCTCACCGTGCGTGGGATCCCGGGGATGTGAAGTC 

GGCTCCAGGCTCCCAGCTGTATCGATAGAG 

GAGCAGCGAGGGTCGGGAGCCTCG 

CTGGCCCAGGTCCCAGCCCCGCCCCAGTCTG 

Plasmid Primer for flanking PCR product 1  Primer for flanking PCR product 2  

GC0GC4 

 

 

GC0GC45 

 

 

GC0GC12 

 

 

GC0GC145 

 

 

GC0GC245 

 

 

GC0GC1245 

 

 

N13MutMethII 

Template: GC0 

for TCGGTGCGGGCCTCTTCGCTATTACGCCAG 

rev CCGCAGTACTTCTCTCCCACTCTTCACGCG 

Template: GC0 

see GC0GC4 

see GC0GC4 

Template: N10GC12 

see GC0GC4 

see GC0GC4 

Template: GC0GC1 

see GC0GC4 

see GC0GC4 

Template: GC0GC2 

see GC0GC4 

see GC0GC4 

Template N10GC12 

see GC0GC4 

see GC0GC4 

Template N13 

Template: N13GC4 

for CAGCCGGGAGCCTGGAGCCAGACCG 

rev CCAGGAACCAGGGCGTATCT 

Template: N13GC45 

see GC0GC4 

see GC0GC4 

Template: N13 

see GC0GC4 

see GC0GC4 

Template: N13GC45 

see GC0GC4 

see GC0GC4 

Template: N13GC45 

see GC0GC4 

see GC0GC4 

Template N10GC12 

see GC0GC4 

see GC0GC4 

Template N13 
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N13MutMethI 

 

 

for TCGGTGCGGGCCTCTTCGCTATTACGCCAG 

rev ACCACAGCCTCCTCCCACCACTGGTC 

Template N13 

for TCGGTGCGGGCCTCTTCGCTATTACGCCAG 

rev CAGCAGTCCAGGTGTCCACATCTAG 

for GCTAGATGCGGACACCTGGACCGCC 

rev GCCAACCGAACGGACATTTC 

Template N13 

for TGCTGAGGCTCCCGGCGCTTGCTGCTCC 

rev CCAGGAACCAGGGCGTATCT 

 Forward primer for oligo insertion Reversed primer for oligo insertion 

pSG5mcsNEU AATTCCCATGGCATGCGGATCCGGTACCACT 

AGTCCCGGGA 

GATCTCCCGGGACTAGTGGTACCGGATCCGCA 

TGCCATGGG 

 Forward primer for PCR amplification Reversed primer for PCR amplification 

pSG5HDAC1 

pSG5Hdac2m 

pSG5HDAC2h 

pSG5HDAC3 

pSG5HDAC8 

pSG5Mbd1m 

 

pSG5Mbd2m 

pSG5Mbd3m 

pSG5Dnmt1m 

pSG5DNMT3b1 

TCCCCCGGGATGGCGCAGACGGCAGGGCAC 

TCCCCCGGGATGGCGTACAGTCAAGGAGGCGG 

TCCCCCGGGATGGCGTACATGCAAGGAGGCGC 

CGGGATCCCCATGGCCAAGACCGTGGCC 

CGGAATTCATGGAGGAGCCGGAGGAACCG 

TCCGGAATTCATGGCTGAGTCCTGGCAGGACT 

 

TCCGGAATTCGCCATGGACTGCCCGGCCCTCCC 

TCCGGAATTCATGGAGCGGAAGAGGTGGGAGTGCC 

AGGAATGGCAGACTCAAATAGATCCCCAAGATC 

TCCGGAATTCCAGGAAACAATGAAGGGAGACAGCAG

GGAAGATCTTCAGGCCAACTTGACCTCCTCCTTG 

GAAGATCTTCAGGGGTTGCTGAGCTGTTCTG 

GAAGATCTTCAGGGGTTGCTGAGCTGTTCTG 

GGACTAGTCCACTCTTAAATCTCCACATCGCTTTCC 

CCCAAGCTTCTAGACCACATGCTTCAGATTCCCTTTG 

TGGAAGATCTCTCTCCTACAAAACTTCTTCTTTCAAC 

TGC 

TGGAAGATCTTGCACTGCACCGGAAGGGCCCTGC 

TGGAAGATCTCTACACTCGCTCTGGCTCCGGCTCTTC 

CTAGTCCTTGGTAGCAGCCTCCTCTTTTGC 

GCGGATCCCTATTCACAGGCAAAGTAGTCCTTCAACG 

Tab. 1 Primers used for cloning. All oligonucleotides were synthesized by Sigma-Genosys 

(Steinheim). 

 

Further on, different plasmids expressing histone deacetylases (human HDAC1, HDAC3 

[pcDNAFlagHDAC3], HDAC8, as well as mouse Hdac2 [pME18S-HDAC2] ) were kindly 

provided by E. Seto, from the H. Lee Moffit Cancer Center, University of South Florida, 

USA. pEVR2/CMV-Sp1, pRC/CMV-Sp3 and pRC/CMV-Sp4 were a gift of by G. Suske, 

University of Marburg, Germany. 

For co-expression studies together with 5-LO promoter reporter gene constructs it was 

reasonable to use expression plasmids with the same vector background. For this reason the 

expression plasmids were cloned into the high copy expression vector pSG5 from Stratagene, 

containing a SV40 promoter. First the multiple cloning site of the pSG5 vector was extended. 

For this the pSG5VDR plasmid ( a gift of C. Carlberg, University of Kuopio, Finland, 

containing the vitamin D receptor coding sequence) was opened with EcoRI and BglII and a 

double stranded oligo filling up the EcoRI and BglII site, and additionally containing 

restriction sites for NcoI, BamHI, KpnI, SpeI, and SmaI was ligated into the backbone of the 

plasmid.  
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Fig. 15 Extention of the multiple cloning site of pSG5mcsNEU 

PCR fragments covering the coding sequences of human HDAC1 (Acc. No. NM_004964), 

HDAC3 (Acc. No. NM_003883) and HDAC8 (Acc. No. NM_018486) were respectively 

inserted via the restriction sites SmaI/BglII, BamHI/SpeI and EcoRI/HindIII into 

pSG5mcsNeu. Human HDAC2 (Acc. No. NM_001527) was cloned from HeLa cDNA using 

SmaI and BglII for inserting the PCR fragment into pSG5mcsNeu.  

The coding sequence of Dnmt1 (Acc. No. AF175432) was amplified by PCR and introduced 

via the SmaI site into the pSG5mcsNEU. Dnmt3b1 (Acc. No. AF068626) were subcloned via 

PCR amplification into pSG5mcsNeu using EcoRI and BamHI sites. Murine Dnmt3a 

(Acc. No. AF068625) was excised from pSX173 with XbaI and BamHI and ligated to the 

pSG5mcs opened with SpeI and BamHI. 

The coding sequences of the murine methyl-CpG-binding proteins were also introduced into 

pSG5mcsNeu using PCR amplification and the restriction sites of EcoRI and BglII in the mcs. 

The HA-tagged MeCP2 cds (Acc. No. NM_022673) was excised from pCMV-HA-MeCP2 

with EcoRI and ligated into the EcoRI opened pSG5mcsNeu vector, resulting in 

pSG5mcsMeCP2. 

Plasmid sequences were confirmed by DNA sequencing. Restrictions enzymes were 

purchased from either MBI Fermentas, New England Biolabs or Promega, Pfu DNA 

Polymerase from Promega, T4 DNA Ligase from NEB and T4 Polynukleotide Kinase from 

MBI Fermentas. 

 

3.8 Preparation of plasmid DNA 

Larger amounts of plasmid DNA, especially for transfections, were prepared using the 

Nucleobond AX 2000-System (Macherey-Nagel). According to the manufacturer 500 ml of 

bacterial culture is harvested. After lysing the cells by a NaOH/SDS solution, chromosomal 

DNA and proteins are precipitated with a potassium acetate solution and the plasmid DNA is 

further purified via a silica based anion exchange chromatography. 
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3.9 In vitro methylation  

Plasmid DNA or PCR products were incubated over night at 37 °C with HpaII methylase., 

M. HhaI, M. SssI or the combination of M. HpaII and M. HhaI at 0.8 unit/µg pDNA in either 

50 mM Tris-HCl, 5 mM 2-Mercaptoethanol, 10 mM EDTA, pH 7.5, for the methylation with 

M. HpaII or M. HhaI, or 10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl2, 1 mM DTT, pH 7.9, 

for the methylation with M. SssI each supplemented with 800 µM of S-adenosylmethionine. 

Complete methylation was confirmed by either HhaI, HpaII of BstUI restriction digest of the 

plasmids. For transfections the methylated pDNA was purified by phenol-chloroform 

extraction, PCR products by NucleoSpin® Extract columns (Macherey-Nagel). HpaII 

methylase was purchased from MBI Fermentas, HhaI M. and SssI M. from New England 

Biolabs. 

 

3.9.1 Phenol-Chloroform extraction 

The methylation reaction is supplemented with 50 µl of 3 M sodium acetate and adjusted with 

MQ to a total volume of 500 µl. An equal volume of phenol (pH 7.6-8.0, equilibrated with TE 

buffer), chloroform and isoamylcalcohol (25:24:1) is added. The mixture is vortexed for 

1 min and centrifuged for 5 min at 12,000 g. The upper, aqueous phase is transferred to a 

fresh tube and an equal volume of chloroform and isoamyl alcohol (24:1) is added. The 

mixture is vortexed for 30 sec and centrifuged at 12,000 g for 2 min. The upper phase is 

transferred to a fresh tube again, the same volume of ice-cold isopropyl alcohol is added to 

precipitate the DNA. For complete precipitation the samples are incubated at –20 °C for 1 h 

and centrifuged at 4 °C for 45 min at 12,000 g. The pellet is rinsed with ice-cold ethanol 

(70%) and dried in the laminar flow. Finally the pellet is solved in 50 µl sterile MQ. 

 

3.10 Transfection methods 

3.10.1 Lipofection of HeLa cells 

Before transfection, cells were plated into a 24-well tissue culture plate at a density of 4 x 104 

cells per well for 24 h, so that 60-80% of the cells were confluent at the time of transfection. 

Plasmid DNA of the luciferase reporter gene construct (0.4 µg) and internal standard 

pCMVSEAP (0.02 µg) were diluted into 50 µl of serum free DMEM and incubated with 

Plus reagent (Invitrogen) for 15 min. Precomplexed plasmid DNA was mixed with 25 µl of 

1:50 in serum free DMEM diluted Lipofectin reagent (Invitrogen) and incubated for 30 min 
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at room temperature. Meanwhile the medium of the cells was replaced by 200 µl of fresh 

serum free medium and the DNA-PLUS-Lipofectin reagent complex was added to the cells 

and incubated for 3 or 5 h at 37 °C in 5% CO2. Then 1 ml of medium containing 15% (v/v) 

FCS was added. 24 h after transfection the medium was removed, replaced by 100 µl of 

DMEM medium and luciferase activity was determined. 

 

3.10.2 Calcium phosphate transfection method for HeLa cells 

For reporter gene assays cells were, 24 h prior to transfection, plated into a 24-well tissue 

culture plate at a densitiy of 4 x 104  cells per well, so that 60-80% of the cells were confluent 

at the time of transfection. For the transfection 0.8 µg plasmid DNA of the luciferase reporter 

gene construct, and 0.02 µg of internal standard pCMVSEAP were used per well. For the 

preparation of the precipitate 20 µg of the reporter gene plasmid and 0.5 µg of pCMVSEAP 

were diluted in 450 µl of sterile MQ and mixed with 50 µl of 2.5 M CaCl2 solution. The 

mixture is then added dropwise (within 1 min) to 500 µl of HeBS buffer pH 7.08 (50 mM 

HEPES, 28 mM NaCl, 1.5 mM Na2HPO4) while bubbling air into the suspension in order to 

mix instantly DNA and phosphate buffer. After another min of incubation time 40 µl of the 

calcium phosphate-DNA precipitation per well are added to the cells. The medium was 

changed 16 h after transfection. Usually 24 h later the cells were harvested. The medium was 

again changed, 100 µl of fresh medium were added and luciferase activity was determined. If 

at all, cells were incubated directly after changing the medium.  

 

3.10.3 Electroporation of MM6 cells 

According to Niko Klan (Klan and Steinhilber 2003), 48 h to 72 h before transfection, cells 

were split to 2 x 105 cells/ml and cultured at 37 °C in an humified atmosphere of 5% CO2. At 

the time of transfection, cells were harvested by centrifugation at 1200 rpm for 5 min at RT 

and washed twice with RPMI-1640, containing neither FCS nor other additives. Then cells 

were resuspended at a density of 40 x 106 cells/ml in RPMI-1640 medium without any 

additives. 0.3 ml of cell suspension were placed into a 0.4 cm electroporation cuvette. 40 µg 

of plasmid DNA (reporter gene construct) and 1 µg of internal standard (pCMVSEAP) were 

dissolved in water to a final volume of 30 µl and added to the cell suspension. Cells and 

plasmids were preincubated for 5 min at RT before electroporation at 975 µF and 200 V in the 

Biorad Gene Pulser II. Immediately after the pulse, the cuvettes were placed on ice for 

20 min. Finally the transfected cells were transferred to 10 ml of cell culture medium. Cells 

were harvested 6 h later, since the Luciferase signal peaked at 6 h after transfection. 
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3.11 Reporter gene assays 

To determine the activity of the different 5-LO promoter constructs under various conditions 

cell lysates were assayed for luciferase activity by measuring light emission in a Microlumat 

Plus LB96V EG&G Berthold Luminometer. The light emission was integrated for 5 sec when 

measuring the luciferase signal whereas the signal of the internal standard (SEAP activity) 

was only integrated for one sec. Considering different transfection efficiencies the luciferase 

activity was normalized to the SEAP activity.  

 

3.11.1 Luciferase assay 

MM6 cells were harvested 6 hours after transfection, emptying the cell culture flasks into 

10 ml falcon tubes, centrifuging the cells for 2 min at 1200 rpm at RT. Due to increased cell 

death after the stressing electroporation procedure highest luciferase signals are achieved after 

6 h after transfection and are decreasing when cells are collected at later times. 33 µl of the 

medium is saved for the SEAP assay, the rest of the medium is decanted and the falcons are 

put upside down on a cellulose to dry the pellets. Cells are resuspended in 100 µl of PBS and 

lysed in 100 µl of lysis buffer of the Steady- or Bright-Glow luciferase assay system 

(Promega) containing the luciferase substrate luciferin, which is converted by 

Firefly-luciferase to oxyluciferin under the emission of light. The lysated cells are transferred 

to a white 96 well plate, which is measured in the luminometer. 

HeLa cells are harvested, if not otherwise indicated, 24 h after removing the Calcium 

phosphate precipitation and changing the medium. 33 µl of medium are saved for the SEAP 

assay. Then, the medium is replaced by 100 µl of fresh HeLa medium, 100 µl of lysis buffer 

are added and the procedure is followed as described above for the MM6 cells. 

 

3.11.2 SEAP (Secreted Placental Alkaline Phosphatase) assay  

The activity of the internal standard was determined using the Phospha-LightTM system kit 

from Applied Biosystems. According to the manufacturers recommendations 33 µl of the 

medium of the transfected cells are mixed with 100 µl of dilution buffer and incubated at 

65 °C for 30 min to heat inactivate endogenous alkaline phosphatases. To measure the activity 

of the transfected SEAP, 50 µl of the conditioned medium are transferred to a 96 well plate, 

preincubated for 5 min at RT with 50 µl assay buffer (containing inhibitors for endogenous 

alkaline phosphatases) and finally incubated for 20 min with 50 µl of  reaction buffer 
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containing the Tropix CSPD® chemoluminescent substrate for the secreted alkaline 

phosphatase. Light emission is measured and the signal is integrated for one sec. 

 

3.12 Gel shifts 

All oligonucleotides were synthesized by Sigma-Genosys (Steinheim). For methylation 

studies, either the inner CpG dinucleotide was methylated at the 5´-position of the cytosine or 

CpG dinucleotides surrounding the Sp1 binding sites were methylated . Oligos were dissolved 

in sterile MQ at 100 µM concentrations. For annealing, 1 µl the forward and 1 µl of the 

complementary reversed strand oligo were mixed in 98 µl MQ and heated up to 95 °C for 

5 min, then the probes were cooled down at 0.02 °C/sec to room temperature. 

3.5 µl of the double-stranded oligonucleotides were labeled at the 5´-ends using 

T4 polynucleotide kinase in 20 µl of reaction volume containing 10 µCi of [γ-32P]-ATP (GE 

Healthcare). After stopping the reaction with 29 µl of TE buffer pH 8.0, 1 µl of EDTA pH 8.0 

(0.5 M) and heat inactivation at 68 °C the radio-labeled double-stranded oligonucleotides 

were purified through G-25 microspin columns (GE-Healthcare), and stored at –20 °C. 

1-10 µg of nuclear extract, and/or Sp1 protein (150-300 ng, Promega) were preincubated in 

binding buffer (50 mM Tris-HCl, 2.5 mM DTT, 250 mM NaCl, 5 mM MgCl2, 2.5 mM 

EDTA, 20% glycerol) for 10 min at RT before the labeled oligonucleotide probe (40,000 cpm 

to 150,000 cpm; as indicated in the figures) was added to a total reaction volume of 20 µl. For 

competition studies, a 100-fold molar excess of unlabeled oligonucleotide was added to the 

reaction mixture prior to the addition of radio-labeled probe. EMSA reactions were resolved 

on 4-20% pre-run (200 V for 60 min in an ice bath) nondenaturing polyacrylamide TBE gels 

(BioRad premade) which were electrophoresed at 100 V for 110 min in an ice bath. Gels were 

dried under vacuum before exposure, or exposed directly to Fuji Super RX film at –20 °C or 

to a FLA 3000 imaging plate at RT for the indicated exposure times. 

 

Forward strands of EMSA probes 5´ to 3´  

CTGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCAG 5 x GC box 
CTGCGGGGGOGGGGGOGGGGGOGGGGGOGGGGGOGGGGGCAG 5 x GC box methylated  
CAGACCGGGGCGGGGCCGGGACCGGGGC Consensus Sp1 site / GC box 4 
CAGACOGGGGCGGGGCOGGGACOGGGGC Consensus Sp1 site / GC box 4 methylated around 

the Sp1 binding motif 
CAGACCGGGGOGGGGCCGGGACCGGGGC Consensus Sp1 site / GC box 4 methylated within 

the Sp1 binding motif 
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GACCGGGGCCAGGGACCAGTGGTGGGAGGAGGCTGCGGCGC Non-consensus Sp1 site / GC box 5 41 bp 

GACOGGGGCCAGGGACCAGTGGTGGGAGGAGGCTGOGGOGC Non-consensus Sp1 site / GC box 5 41 bp 

methylated around the Sp1 binding motif 
AGTGGTGGGAGGAGGCTGCGGCGCT Non-consensus Sp1 site / GC box 5 20 bp 
GATCGAACTGACCGCCCGCGGCCCGT Ap2 binding site as unspecific competitor 
ATTCGATCGGGGCGGGGCGAGC classical Sp1 binding motif as specific competitor  

Tab. 2 Forward strands of EMSA probes 5´ to 3´ 

 

3.13 DNA affinity purification assays (DAPA) 

This assay is based on the immobilization of protein-DNA complexes via binding of a 

biotinylated oligonuceotide to a streptavidin matrix. Oligonucleotides, only the forward strand 

was biotinylated at the 5´-end, were synthesized by Sigma-Genosys (Steinheim). Sense and 

antisense oligonucleotides were dissolved in 10-fold annealing buffer (0.5 M NaCl, 0.2 M 

Tris-HCl pH 8.0) to an end concentration of 50 µM, heated for 5 min at 95°C and annealed by 

decreasing the temperature down to RT in steps of 0.02°C/sec.  

200 µl of whole cell extract were incubated with 200 µl of binding buffer H (100 mM KCl, 

20 mM HEPES [pH 7.8], 20% glycerol, 1 mM DTT, 0.1% NP40) and 2 µl of the biotinylated 

double-stranded oligo mixture for one hour on ice. After adding 50 µl of equilibrated 

streptavidin-coupled agarose beads (Sigma, S1638) incubation was continued for 30 min at 

4 °C on a spinning wheel. The beads were washed four times with 500 µl of binding buffer by 

swaying the tubes 6-8 times and finally boiled with 20 µl of MQ and 5 µl of 5 x Laemmli 

sample buffer (250 mM Tris-HCl pH 6.8, 5 mM EDTA, 50% Glycerol, 10% SDS, 0.05% 

BPB, 10% β-Mercaptoethanol). The proteins were separated via SDS-PAGE.  

 

Forward strands of DAPA probes 5´ to 3´  

CTGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCAG 5 x GC box 
CAGACCGGGGCGGGGCCGGGACCGGGGC Consensus Sp1 site / GC box 4 
CAGACCATCTGCAGCCCGGGACCGGGGC Consensus Sp1 site / GC box 4 mutated 

GACCGGGGCCAGGGACCAGTGGTGGGAGGAGGCTGCGGCGC Non-consensus Sp1 site / GC box 5  
GACCGGGGCCAGGGACCAGTGGTGATCTGCAGCTGCGGCGC Non-consensus Sp1 site / GC box 5 mutated 

Tab. 3 Forward strands of DAPA probes 
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3.14 Chromatin immunoprecipitation assay (ChIP) 

ChIP assays were performed as described by Väisänen (Vaisanen et al. 2005). In brief, 

nuclear proteins were crosslinked to genomic DNA by adding formaldehyde directly to the 

medium to a final concentration of 1% (v/v), for 10 min at 37°C. Cross-linking was stopped 

by adding glycine to a final concentration of 0.125 M and incubating at room temperature for 

five minutes on a rocking platform. The medium was removed and the cells were washed 

twice with ice-cold PBS (140 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM 

Na2HPO4⋅2H2O). 

After lysis in Pipes buffer (5 mM Pipes (pH 8.0), 85 mM KCL, 0.5% NP-40 plus protease 

inhibitors) and SDS buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl (pH 8.1) plus protease 

inhibitors) cells were sonicated to DNA fragments of 300-1000 bp in length. The cellular 

debris was removed by centrifugation and the lysates were diluted 1:10 (v/v) in ChIP dilution 

buffer (16.7 mM Tris-HCl (pH 8.1), 0,01% (w/v) SDS, 1.1% (v/v), Triton X-100, 1.2 mM 

EDTA, 16.7 mM NaCl, protease inhibitors). 

To remove unspecific background, the chromatin suspensions were incubated with a salmon 

sperm DNA / protein A agarose slurry (Upstate Biotechnology, Lake Placid, NY, USA) at 

4°C for 30 min with agitation. The samples were centrifuged and the recovered chromatin 

solutions were incubated over night at 4°C with 5 µl of the indicated antibodies. The immuno-

complexes were collected with 60 µl of protein A agarose slurry at 4°C for two hours with 

rotation. The beads were pelleted by centrifugation at 4°C for one minute at 100g and washed 

sequentially for five minutes by rotation with 1 ml of the following buffers: low-salt wash 

buffer (20 mM Tris-HCl (pH 8.1), 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 150 mM 

NaCl), high-salt wash buffer (20 mM Tris-HCl (pH8.1), 0.1% SDS. 1% Triton X-100, 2 mM 

EDTA, 500 mM NaCl) and LiCl wash buffer (10 mM Tris-HCl (pH 8.1), 0.25 mM LiCl, 

1% (v/v) Nonidet P-40, 1% (w/v) sodium deoxycholate, 1 mM EDTA). Before elution the 

beads were washed twice with TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) The 

immuno-complexes were then eluted by adding 250 µl of elution buffer (1% SDS, 100 mM 

NaHCO3) and incubated at room temperature for 15 min with rotation. After centrifugation, 

the supernatant was collected and the elution was repeated. The supernatants were combined 

and the cross-linking was reversed by adding NaCl to final concentration of 200 mM and 

incubating at 65°C overnight. The remaining proteins were digested by adding proteinase K 

(final concentration 40 µg/ml) and incubation at 45°C for one hour. The DNA was recovered 

by extraction with phenol/chloroform/isoamyl alcohol (25:24:1, by volume) and precipitated 
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with 0.1 volume of 3 M sodium acetate (pH 5.2) and two volumes of ethanol using glycogen 

as a carrier.  

Subsequently, the immuno-precipitated genomic DNA was used as a template for PCR. 10 ng 

of each immunoprecipitated DNA was used as template for the PCR reactions with the 

following profile: preincubation at 94°C for 5 min, 40 cycles denaturation at 95°C for 

30 seconds, annealing at primer-specific temperature for 30 seconds and elongation at 72°C 

for 30 seconds, with one final incubation at 72°C for ten minutes. The PCR products, loaded 

with SybrGreen, were separated by electrophoresis through 2.0% agarose and the gel images 

scanned on a Fuji FLA3000 reader. Antibodies for Sp1, [(H-225) sc-14027], Sp3 [(D-20) 

sc-644] and RNA polymerase II [polII (n-20) sc-899] were purchased from Santa Cruz 

Biotechnology, Heidelberg. Antibody for acetylated histone H4 from Upstate, Lake Placid, 

H4 #06-866. PCR reactions were run in an IQ-cycler, Biorad, Hercules (USA). 

 

PCR primer sequences  Location within the 5-LO promoter  

(in relation to 5-LO TIS) 

5´-CACAAACCCAAGACAGTATGAGGAGATG-3´ 

5´-CACGGGTCGGCTCTCTGAATCG-3´ 

-1049 to -714 

5´-CGATTCAGAGAGCCGACCCGTG-3´ 

5´-CTTCCACCCTTTGCCCTGCCTG-3´ 

-735 to -292 

5´-GCAGGCAGGCAGGGCAAAGGGTGGAAG-3´ 

5´-AGCAGCGAGCGCCGGGAG-3´ 

-318 to +52 

5´-AGGAACAGACACCTCGCTGAGGAG-3´ 

5´-GAGGCTGAGGTAGATGTAGTCGTCAGTG-3´ 

-219 to +143 

Tab. 4 PCR primer sequences for ChIP and their location within the 5-LO promoter 
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4 Results 

4.1 Regulation of 5-LO gene expression by histone deacetylation 

4.1.1 5-LO promoter activity is induced by the histone deacetylase inhibitor TsA 

In Mono Mac 6 (MM6) cells 5-lipoxygenase mRNA levels are induced 10.6-fold after 

treatment with the histone deacetylase inhibitor trichostatin A (TsA). In reporter gene assays 

we could also show that TsA induces 5-LO promoter activity, both in HeLa and in MM6 

cells, independent of transforming growth factor (TGFβ) and 1,25-dihydroxyvitamin D3 

(1,25(OH)2D3) (Klan et al. 2003). Since the activity of the core promoter fragment N10, 

comprising the region -843 bp to -12 bp (in relation to the 5-LO ATG), was strongly induced 

by TsA, successive deletion variants, of the 5-LO promoter, N11 to N16, were transfected 

into HeLa cells and stimulated with TsA for 24 h, in order to identify the region entailing 

HDAC activity. 

-96bp-294bp -143bp-206bp-6144bp

N0 N11 N12 N13 N14

-843bp

N10

GGGCGG 
GGGAGG Sp1 binding sites

TISGC1 GC2 GC5GC4GC0

-843bp (∆ -258bp to -96bp)

N10∆GC

-258bp to -96bp

N15

GC6 GC7 GC1

 

Fig. 16 Schematic overview of the 5-LO promoter and reporter gene deletion variants. The largest 

reporter gene construct N0 comprises the sequence -6144 bp to –12 bp of the 5-LO promoter sequence 

in relation to the ATG of 5-LO. The most active promoter construct is the plasmid N10, containing 

eight consensus Sp1 binding sites and three non-consensus binding sites. N10∆GC is a special 

deletion variant of N10, lacking the central Sp1 binding sites. Further depicted are successive deletion 

variants of the promoter construct N10, differing in size and GC box content. N15, the smallest 

construct depicted, just covers the major transcription initiation site (TIS). 

N11 is still containing the sequences –294 bp to –12 bp, N12 –206 bp to –12 bp, N13 –143 bp 

to –12 bp, N14 –96 bp to –12, N15 –67 bp to –12 bp (just comprising the major transcription 

initiation site), and N16, lacking the TIS, only comprising the sequence from –35 bp to –12 bp 
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(all in relation to the 5-LO ATG). N10∆GC (also N10dGC) is a deletion variant of N10 

lacking the sequences –258 bp to –96 bp, including the central Sp1/Egr1 binding sites 

(compare the chart of Fig. 16). The reporter gene data show an induction of the larger 

promoter constructs N10, N11, N12 and N13, whereas the smaller constructs, N14 to N16, do 

not respond to the histone deacetylase inhibitor treatment (see Fig. 17).  

Fig. 17 Induction of 5-LO promoter activity of successive deletion variants by TsA in reporter 

assays in HeLa cells. The cells were seeded in 24 well plates and transfected with 0.8 µg of the 

promoter luciferase reporter gene constructs together with receptor expression vectors pSG5hRXR 

and pSG5hVDR (0.1 µg each) and 0.02 µg of pCMVSEAP per well by calcium phosphate method. The 

medium was changed 16 h after transfection and the cells were incubated either with solvent or with 

TsA (330 nM) for 24 h. Then luciferase activity was determined. Each experiment was performed in 

triplicates. Results are presented as mean + SE of three independent experiments after normalization 

for transfection effeciency by cotransfection of pCMVSEAP. A: Relative activity in untreated cells B: 

Inductions by TsA, expressed with respect to the untreated and transfected cells. 

It is possible, that the loss of induction by TsA is due to the loss of promoter function, since 

the shorter reporter gene constructs only have weak promoter activity. Nevertheless, construct 

N14 is still 5-fold more active than the promoterless construct pGl3Basic.  

 

4.1.2 Mutations of Sp1 binding sites relieve the response to TsA 

Besides in length, the deletion variants also differ in their content of Sp1 binding sites. In 

silico analysis of of the 5-LO promoter reveals eight different consensus binding sites within 

the proximal promoter area of –294 bp. Sp1 binding to and transactivation of the proximal 

promoter area has been shown in DNase I footprints and gel shift assays for the stretches 

-179 bp to -147 bp (containing the 5xGC box), -224 bp to -218 bp (GC2),  -118 bp to -109 bp 
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(GC4) and -85 bp and -66 bp (GC5) as well as in reporter gene assays (In et al. 1997; 

Silverman et al. 1998; Dishart et al. 2005).  

In different genes, e.g. p21, TGFβ type II receptor, induction of promoter activity by TsA has 

been linked to Sp1 binding sites within the promoter sequence (Sowa et al. 1997; 

Ammanamanchi and Brattain 2001; Ammanamanchi et al. 2003). Reporter gene assays with 

the 5-LO constructs suggest, that the response to TsA is dependent on an element still present 

in construct N13, comprising  -143 bp to –12 bp in relation to the 5-LO ATG, but not in the 

shorter construct N14, comprising only –96 bp to –12 bp. For this reason mutations of the two 

Sp1 binding sites, GC box 4 (still present in N13, but not in N14) and GC box 5 (still present 

in N14), have been introduced via site-directed mutagenesis into the minimal promoter 

constructs N13 and N14. The resulting plasmids N13GC4 (GC box 4 is mutated), N13GC5 

(mutated GC box 5), the double mutated construct N13GC45 and N14GC5 have been 

transfected into HeLa cells and their activity as well as their response to TsA have been 

measured (see Fig. 18).  

x-fold induction by TsA
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Fig. 18 Point mutations of Sp1 binding sites relieve response of 5-LO promoter constructs to the 

histone deacetylase inhibitor TsA in HeLa cells. The cells were transfected by the calcium phosphate 

precipitation method with the wild–type or mutated reporter gene constructs (0.8 µg of reporter gene 

construct, 0.02 µg of pCMVSEAP per well). The medium was changed 16 h after transfection and the 

cells were incubated either with solvent or TsA (330 nM) for 24 h. Then, luciferase activity was 

determined. Each experiment was performed in triplicates. Results are presented as mean + SE of six 

independent experiments after normalization for transfection effeciency. Inductions are expressed with 

respect to the untreated cells. 

Trichostatin A induces the promoter activity of plasmid N10 up to 34.8-fold. Construct GC0, 

lacking the 5-fold GC box, is slightly less induced, 28.0-fold, and the shorter deletion variant 

N13, also lacking the tandemized GC box, in these experiments is strongly induced up to 
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61.0-fold. The mutation of GC box 4 in N13GC4 attenuates the response to TsA comparable 

to the level of the shorter construct N14, lacking GC box 4 at all (inductions 2.8-fold and 

3.9-fold respectively). Mutation of GC box 5 also strongly decreases the activating effect of 

TsA, but not to the same extent (8.9-fold induction of N13GC5). Looking at the activity of the 

constructs itself (without TsA treatment, see Fig. 19) mutation of GC box 4 almost reduces 

the promoter activity to the level of the promoterless pGl3Basic construct. Mutation of GC5 

enhances promoter activity 2.1-fold, the double mutation results in a loss of promoter activity. 

When the cells are treated with TsA, mutation of GC box 4 in N13 again abolishes promoter 

activity, mutation of GC5 also reduces promoter activity (3.2-fold).  
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Fig. 19 Relative activity of the GC box-mutated constructs N13 and N14 in HeLa cells. The cells 

were transfected by the calcium phosphate precipitation method with the wild–type or point mutated 

reporter gene constructs (0.8 µg of reporter gene construct, 0.02 µg of pCMVSEAP per well). The 

medium was changed 16 h after transfection and the cells were incubated either with solvent or with 

TsA (330 nM) for 24 h. Then luciferase activity was determined. Each experiment was performed in 

triplicates. Results are presented as mean + SE of six independent experiments after normalization for 

transfection effeciency. Inductions are expressed with respect to the untreated cells. 

From these data we conclude, that the proximal Sp1 binding sites GC4 and GC5 recruit 

HDAC activity. In the minimal promoter construct N13, GC box 4 is an activating element, 

whereas GC box 5 has repressing features. It seems, that in HeLa cells an transcriptional 

activator preferably binds to GC box 4, whereas some repressor is recruited to GC box 5. 

After the treatment with the histone deacetylase inhibitor TsA the formerly repressive 

function of GC box 5 is reversed into an activating function. 
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4.1.3 Response to TsA in a larger promoter context  

The same mutations of the Sp1 binding sites GC4 and GC5 were cloned into the larger and 

most active 5-LO promoter construct N10, to investigate the relevance and functionality of 

these sites in a larger promoter context. In addition to GC4, GC5, and the 5-fold GC box, N10 

contains several more putative Sp1 binding sites (compare Fig. 3 page 9). The consensus 

motifs GC1 (-133 to -139 bp) and GC2 (-116 to -139 in relation to 5-LO ATG), still present in 

the CpG island comprising the core promoter region, and two non-consensus motifs in the 

distal CpG island, GC6 (-770 to -765) and GC7 (-720 to -725) were also introduced into N10, 

resulting in the constructs N10GC6, N10GC7, N10GC1 and N10GC2. GC0 lacks the 5-fold 

GC box. Sp1 binding to element GC2 had been demonstrated before in DNase I footprints 

(Silverman et al. 1998). 
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Fig. 20 Mutation of Sp1 binding sites in the reporter gene construct N10 and their response to TsA. 

HeLa cells were transfected by the calcium phosphate precipitation method with the wild–type or 

mutated reporter gene constructs (0.8 µg of reporter gene construct, 0.02 µg of pCMVSEAP per well). 

The medium was changed 16 h after transfection and the cells were incubated either with solvent or 

TsA (330 nM) for 24 h. Then luciferase activity was determined. Each experiment was performed in 

triplicates. Results are presented as mean + SE of five independent experiments after normalization 

for transfection effeciency. Inductions are expressed with respect to the untreated cells. 

The mutation of the different GC boxes within the larger promoter context of construct N10 

showed weaker influence on the response to TsA than in the minimal promoter plasmid N13 

(see Fig. 20). The mutations of GC7 and GC1 do not efficiently influence the promoter 

response to TsA. Mutation of the distal non-consensus sites GC6 and especially of the 

proximal site GC5 even increase the effect of TsA. Only the deletion of the 5-tandem GC box 

and mutation of GC box 4 decrease the response to the histone deacetylase inhibitor (42% and 
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11% respectively). In the larger promoter context the impact of discrete Sp1 binding sites is 

less pronounced than in the minimal promoter context of N13. 
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Fig. 21 Relative activity of the GC box-mutated constructs cloned from N10. HeLa cells were 

transfected by the calcium phosphate precipitation method with the wild–type or mutated reporter 

gene constructs (0.8 µg of reporter gene construct, 0.02 µg of pCMVSEAP per well). The medium was 

changed 16 h after transfection and the cells were incubated either with solvent or TsA (330 nM) for 

24 h. Then luciferase activity was determined. Each experiment was performed in triplicates. Results 

are presented as mean + SE of five independent experiments after normalization for transfection 

effeciency.  

The relative activity of the mutated constructs is only reduced, when GC4, GC5 and GC1 are 

mutated (44%, 54%, 40% respectively; with TsA treatment 35%, 56%, 31%, 46% (GC0) 

repectively). Also in the larger promoter context GC box 4 is necessary for the full promoter 

activity. In contrast to the data with the mutated sites in N13, in N10 also GC box 5 and 

GC box 1 are important for full promoter activity. 

 

4.1.4 Investigations on the role of particular Sp1 binding sites 

In order to examine the interdependence of discrete Sp1 binding sites, the particular mutations 

were combined in the reporter gene construct GC0, already lacking the 5-tandem GC box. 

The combination of different mutations in the complete construct N10 was impossible to 

accomplish, due to the presence of the 5-fold GC box, the resulting high GC content and the 

lack of restriction sites. 

The generated constructs were termed according to the mutations carrying, e.g. GC0GC4 is 

equivalent to construct GC0 with an additional mutation in GC box 4. GC0GC12 is 

equivalent to GC0, holding extra mutations in the binding sites GC 1 and GC 2. The plasmids 
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were transfected into HeLa cells and the promoter activity was determined in the luciferase 

assay (see Fig. 22).  

In these experiments the deletion of the 5-fold GC box significantly decreased the promoter 

activity, which was not the case in an other series of experiments. Mutations of any other Sp1 

binding site further reduced the promoter activity, especially the mutation of GC4. The 

combination of two and more mutated binding site resulted finally in a complete loss of 

promoter activity (compare GC0GC1245). 
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Fig. 22 Mutation of Sp1 binding sites in the reporter gene construct GC0, relative activity and 

response to TsA. HeLa cells were transfected by the calcium phosphate precipitation method with the 

wild–type or mutated reporter gene constructs (0.8 µg of reporter gene construct, 0.02 µg of 

pCMVSEAP per well). The medium was changed 16 h after transfection and the cells were incubated 

either with solvent or TsA (330 nM) for 24 h. Then luciferase activity was determined. Each 

experiment was performed in triplicates. Results are presented as mean + SE of three independent 

experiments after normalization for transfection effeciency. Inductions are expressed with respect to 

the untreated cells. A: x-fold induction by TsA, B and C RLUs without and with TsA treatment 

respectively. 
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The response to trichostatin A was reduced strongest when GC4 was additionally mutated. 

The combined mutations of GC4 and GC5 further decreased the effect of TsA, any extra 

mutation eliminates the effect.  

Together these results underline the importance of GC box 4 for the full promoter activity of 

5-LO in HeLa cells in the minimal construct N13 and in the larger promoter constructs N10 

and GC0, as well as the relevance of this site in respect to the recruitment of histone 

deacetylase activity. The results also suggest an additive effect of the particular sites in the 

promoter activation, independent of any stimulus. 

 

4.1.5 Reporter gene assays with mutated constructs in MM6 cells  

The same experiments were performed in the 5-LO expressing cell line Mono Mac 6, to 

investigate the influence of the cellular context on the promoter activity and the response to 

the histone deacetylase inhibitor TsA. Mutation of the GC boxes GC1, GC2 and GC5 in 

construct N10 do not influence the response of the 5-LO promoter to TsA. Mutation of GC4 

strongly reduces the induction by TsA, so does the deletion of the tandem GC box, but to a 

lesser extent (58% versus 32%). These data are in accordance with the results achieved in 

HeLa cells (compare Fig. 23 with Fig. 20). 
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Fig. 23 Induction of 5-LO promoter constructs by histone deacetylase inhibitor trichostatin A in 

MM6 cells. 72 h before transfection cells were seeded at 2 x 105 cells/ml. For the electroporation 

procedure the cells were suspended at a density of 40 x 106 cells/ml in RPMI-1640 medium without 

any additives. 0.3 ml of the cells suspension were placed into a 0.4 cm electroporation cuvette. 40 µg 

of reporter gene plasmid and 1 µg of internal standard pCMVSEAP were dissolved in MQ and added 

to the suspension. Electroporation was performed in a Biorad Gene Pulser at 975 µF and 200 V. The 

transfected cells were transferred to 10 ml of cell culture medium and incubated with 330 nM TsA. 
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After 6 h, the cells were harvested and luciferase activity was determined. Each experiment was 

performed in triplicates. Results are presented as mean + SE of 2-4 independent experiments after 

normalization for transfection efficiency. Inductions are expressed with respect to the transfected but 

untreated cells. 

Looking at the minimal promoter constructs, in MM6 cells, TsA induces the shortest construct 

N14 to the same extent as construct N13 (see Fig. 23). This finding is in contrast to HeLa 

cells, in which N13 is 15.6 x higher induced than N14 (compare Fig. 20). The higher 

induction in HeLa cells is probably caused by the different incubation times used for the two 

cell lines. Mono Mac 6 cells could only be incubated with TsA for 6 h (due to the low 

survival rate of the cells after the electroporation procedure and the fast decay of luciferase 

activity), whereas HeLa cells were incubated for 24 h before the promoter activity was 

determined. As in HeLa cells, the mutation of GC4 in construct N13 attenuates the TsA 

response, but in contrast to, the mutation of GC5 does not alter the TsA response. 

Interestingly the same mutation in N14 leads to a loss of induction by TsA. Also in contrast to 

the results obtained in HeLa cells, both GC boxes are required for full promoter activity in 

N13, irrespective to the treatment with the histone deacetylase inhibitor (see Fig. 24). 
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Fig. 24 Relative promoter activity of mutated construct N13 in MM6 cells. The electroporation 

procedure was performed as described in Fig. 23. Each experiment was performed in triplicates. 

Results are presented as mean + SE of 3 independent experiments after normalization for transfection 

effeciency.  

 

Within the larger promoter context of construct N10 the mutation of GC box 4 does not result 

in a decrease of promoter activity. Only after treatment with TsA the activity is significantly 

reduced, when GC box 4 is mutated. 
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Fig. 25 Relative promoter activity of mutated construct N10 in MM6 cells. The electroporation 

procedure was performed as described in Fig. 23. Each experiment was performed in triplicates. 

Results are presented as mean + SE of 2-4 independent experiments after normalization for 

transfection effeciency.  

 

These results suggest a similar role for GC box 4 in both cell lines. Possibly other factors are 

recruited to the non-consensus site GC5, whose presence in MM6 cells is also necessary for 

full promoter activity. 

 

4.1.6 Activity and TsA response of more distal promoter parts 

Reporter gene assays with successive deletion variants of the 5-LO promoter revealed 

positively and negatively regulated DNA stretches (Hoshiko et al. 1990; Sorg et al. 2006). In 

HeLa cells as in MM6 cells, N10 displays the highest promoter activity. The promoter activity 

of construct N9 (the next larger reporter gene construct, extended by 135 bp, see Fig. 26) is 

already decreased by 50% compared to the activity of N10. This part of the 5-LO promoter 

sequence is part of a second CpG island, including two more potential Sp1 binding sites, GC8 

and GC9. Activity and response of the plasmids N7, N8 and N9 to the histone deacetylase 

inhibitor TsA were determined in reporter gene studies. These experiments were only 

performed in HeLa cells. 
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Fig. 26 Schematic overview of the reporter gene constructs N7, N8 and N9. Covered by these 

plasmids are more distal promoter parts. In the distal end of N10 starts a second CpG island, 

containing additional Sp1 binding sites. CpG islands are characterized by an above average 

GC content, a minimum length of 200 bp and an observed/expected presence of CpG greater than 0.6. 

The distal extension of the promoter plasmids reduces promoter activity (see Fig. 27). N9 

already looses 50% of the promoter activity of N10. N8 and N7 display comparable promoter 

acitivity to N9, indicating the presence of repressive elements within the promoter extension 

of N9, comprising an additional sequence of 135 bp compared to N10. Additional treatment 

of the less active promoter plasmids with TsA results in an increase of promoter activtiy, and 

suggests recruitment of HDAC activity in this promoter region. However their promoter 

activity does not reach the level of N10 (data not shown). 
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Fig. 27 Relative activtiy and response to TsA of the reporter gene constructs N7, N8 and N9. HeLa 

cells were transfected by the calcium phosphate precipitation method (0.8 µg of reporter gene 

construct, 0.02 µg of pCMVSEAP per well). The medium was changed 16 h after transfection and the 

cells were incubated either with solvent or TsA (330 nM) for 24 h. Then luciferase activity was 

determined. Each experiment was performed in triplicates. Results are presented as mean + SE of 
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three independent experiments after normalization for transfection effeciency. Inductions are 

expressed with respect to the transfected but untreated cells. 

To examine the influence of the two potential GC boxes in construct N9, both sites were 

mutated to inhibit transcription factor binding. Both mutations resulted in a decrease of 

promoter activity, indicating their activating character (see Fig. 28).  
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Fig. 28 Mutation of Sp1 binding sites in the reporter gene construct N9 reduces promoter activtiy 

and enhances the response to TsA. HeLa cells were transfected by the calcium phosphate 

precipitation method (0.8 µg of reporter gene construct, 0.02 µg of pCMVSEAP per well). The 

medium was changed 16 h after transfection and the cells were incubated either with solvent or TsA 

(330 nM) for 24 h. Then luciferase activity was determined. Each experiment was performed in 

triplicates. Results are presented as mean + SE of three independent experiments after normalization 

for transfection effeciency. Inductions are expressed with respect to the transfected but untreated cells. 

 

Additional deletion of the 5-fold GC box and the other proximal Sp1 binding sites GC1, GC2, 

GC4 and GC5 in construct N9GC01245, reduced promoter activity almost to the level of the 

promoterless plasmid pGl3Basic. (N9GC01245: 25 RLUs, pGl3Basic: 6 RLUs; N9: 188 

RLUs). The single mutations of GC8 and GC9 rather increased the promoter response to TsA, 

whereas the mutation of the proximal sites (GC0GC1245) abolished the induction by TsA. 

These results underline the importance of the proximal GC boxes for basal and induced 

promoter activity. The elements GC8 and GC9 do not seem to be responsible for the 

repressive effects of construct N9, nor do they seem to recruit HDAC activity. 
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4.1.7 Time dependent induction of promoter activity after TsA treatment 

HeLa cells were transfected with the highly inducible reporter gene plasmids N10 and N13, as 

well as with the promoterless luciferase construct pGl3Basic and the SV40 promoter 

containing plasmid pGl3Prom as a positive control. After the removal of the calcium 

phosphate precipitate, the cells were incubated with or without 330 nM trichostatin A for 

either 4 h, 8 h, 12 h of 24 h. Then the promoter activity was determined.  
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Fig. 29 Time dependent induction of promoter activity in reporter assays after TsA treatment. HeLa 

cells were transfected by the calcium phosphate precipitation method (0.8 µg of reporter gene 

construct, 0.02 µg of pCMVSEAP per well). The medium was changed 16 h after transfection and the 

cells were incubated either with solvent (A) or TsA (330 nM) for 4 h, 8 h, 12 h or 24 h (B). Then 

luciferase activity was determined. Each experiment was performed in triplicates. Results are 

presented as mean + SE of three independent experiments after normalization for transfection 

effeciency. Inductions are expressed in respect to untreated cells (C). 
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Without TsA treatment promoter activity is steadily decreasing. When the cells were 

incubated with TsA the basal level of activity is highly increased already after 4 h, then the 

activity starts to decay. After 24 h, construct N10 and pGl3Prom, containing multiple Sp1 

binding sites (8 versus 6) gain back their full activity, but not the minimal construct N13. 

These data indicate an early activation of the 5-LO promoter and prolonged transcriptional 

activity after HDACi treatment. 

 

4.1.8 Effects of valproic acid and nicotinamide on 5-LO promoter activity 

As outlined in the introduction, three different families of histone deacetylases are 

distinguished. Class I HDACs consist of HDAC1, 2, 3 and 8; whereas class II consists of 

HDAC4, 5, 6, 7, 9, 10 and 11. Members of a third class, also called sirtuins, are structurally 

unrelated to the human class I and class II HDACs and consist of homologues of the highly 

conserved yeast Sir2 protein, NAD+-dependent deacetylases. Nicotinamide, a product of the 

Sir2 deacetylation reaction, is an inhibitor of Sir2 activity, both in vivo and in vitro.  

The activity of class I and class II HDACs is inhibited, amongst others, by hydroxamic and 

short-chain fatty acids. The hydroxamic acid trichostatin A inhibits class I and class II 

HDACs, whereas the short-chain fatty acid valproic acid preferentially inhibits class I HDACs 

(Gottlicher et al. 2001; Gurvich et al. 2004).  

In order to identify the histone deacetylases involved in the regulation of the 5-LO promoter, 

the three inhibitors were tested in reporter gene assay (see Fig. 30 A). The 5-LO promoter 

construct N10 was transfected into HeLa cells and either incubated together with 330 nM 

TsA, 1 mM VPA (IC50 in HeLa cells ∼1 mM, data not shown) or 5 mM Nicotinamide for 

24 h.  

TsA activated the 5-LO promoter strongest, 14-fold after 24 h, followed by valproic acid, 

8-fold. Nicotinamide showed no effect (1.5-fold). Since VPA also significantly induces 5-LO 

promoter activity, the recruitment of class I HDACs seems evident, whereas the recruitment 

of sirtuins is beyond question. In the next experiment, the effect of VPA on the different 

deletion variants and mutants of construct N13 were tested. 
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Fig. 30 Effect of different histone deacetylase inhibitors on 5-LO promoter activity. HeLa cells were 

transfected by the calcium phosphate precipitation method (0.8 µg of reporter gene construct N10, 

0.02 µg of pCMVSEAP per well). The medium was changed 16 h after transfection and the cells were 

incubated either with DMSO, TsA (330 nM), NA (5 mM) or VPA (1 mM) for 24 h. Then luciferase 

activity was determined. Each experiment was performed in triplicates. Results are presented as mean 

+ SE of 3-4 independent experiments after normalization for transfection effeciency. Inductions are 

expressed in respect to untreated cells. A: Reporter gene construct N10 was transfected into HeLa 

cells and incubated with the different HDAC inhibitors. B: The indicated plasmids were transfected 

and cells were incubated with 1 mM VPA. 

The single mutation of GC box 4 in N13GC4 and the mutation of both GC boxes reduced the 

activation by valproic acid down to the level of the promoterless plasmid pGl3Basic, 

comparable to the former experiments in HeLa cells (see Fig. 18). The mutation of GC5 had 

no infuence on basal of induced promoter activity (data not shown). 

 

4.1.9 Protein expression of Sp1 and Sp3 in HeLa and MM6 cells 

Whole cellular protein extracts of TsA treated and untreated HeLa and MM6 cells were 

prepared and examined by Western blot analysis, as described in “Materials and Methods” 3.3 

and 3.6. The protein expression of both transcription factors was unchanged after HDACi 

treatment in both cell lines. 
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Fig. 31 Endogenous protein expression of Sp1 and Sp3 in HeLa and MM6 cells. The cells were 

treated with or without 330 nM TsA for 24h before cell harvest. The preparation of the cell extracts is 

described in 3.3. The protein content was determined with Bradford assay and same amounts of 

treated and untreated extracts (10 µg) were loaded for SDS-PAGE and Western blot analysis (see 

3.6). Antibodies: anti-rabbit anti-Sp1 and anti-rabbit anti-Sp3. 

 

4.1.10 Coexpression studies with Sp1 and Sp3 in reporter gene assay 

Since the activating effect of the histone deacetylase inhibitors is related to the presence of 

two Sp1 binding sites, GC4 and GC5, binding of Sp1 and Sp3 to the different mutants of the 

5-LO promoter reporter gene construct N13 was tested. For this, expression plasmids for 

human Sp1 and Sp3 were cotransfected together with the promoter plasmids into HeLa cells 

and the promoter activity was determined. We expected a further increase of promoter activity 

at least by Sp1 since activation by this transcription factor has been shown before in SL2 

cells, which lack endogenous Sp1 or Sp3 expression.  

In HeLa cells, the cotransfection of Sp1 or Sp3 alone did not change promoter activity, which 

may be due to the high endogenous expression levels of both proteins. On the other hand 

promoter activity of construct N13 was induced after the cotransfection, when the cells were 

additionally treated with the histone deacetylase inhibitor trichostatin A, suggesting that TsA 

somehow enhances the binding or the transactivation by Sp1 and to a lesser degree by Sp3. In 

these experiments both proteins act as activators on the 5-LO gene expressionl. Sp3 in these 

experiments does not compete with Sp1 binding. 
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Fig. 32 Cotransfection of Sp1 and Sp3 to 5-LO promoter constructs. HeLa cells were transfected by 

the calcium phosphate precipitation method with 0.8 µg of the indicated promoter plasmids and 0.1 µg 

of either the empty pCMV construct or the expression plasmids pCMVSp1 or/and pCMVSp3. The 

medium was changed 16 h after transfection and the cells were incubated either with solvent or TsA 

(330 nM) for 24 h. Then luciferase activity was determined. Each experiment was performed in 

triplicates. Results are presented as mean + SE of 3 independent experiments after normalization for 

transfection effeciency by cotransfection of pCMVSEAP.  

The promoter activity of the mutant N13GC4 is strongest induced after Sp1 cotransfection 

when the cells are treated with TsA, 11.7-fold, followed by N13GC5, 4.5-fold, and N14, 

3.9-fold. The effects on N13 and N10 are much weaker, 3.0-fold and 1.4-fold induction by 

Sp1 cotransfection respectively. Protein overexpression was checked in Western blot analysis 

(data not shown).  
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Fig. 33 x-fold induction by Sp1/Sp3 cotransfection. Experiments were performed as described above 

in Fig. 32. 
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4.1.11 Effect of TsA on DNA binding affinity of Sp1 and Sp3 

Since the endogenous expression levels of the transcription factors Sp1 and Sp3 were not 

influenced by the treatment with the histone deacetylase inhibitor TsA, it was of interest to 

examine their binding affinities in response to TsA. A DNA affinity purification assay was 

established and binding of Sp1 and Sp3 to the proximal GC boxes including the 5-fold 

tandemized GC box, the consensus site GC4 and the non-consensus site GC5 was analyzed. 

Specific protein binding to the probes was checked by mutating the GC boxes and by 

incubating the cell extract only with beads (without a DNA probe).  

 

Forward strands of DAPA probes 5´ to 3´  

CTGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCAG 5 x GC box 5xGC 
CAGACCGGGGCGGGGCCGGGACCGGGGC Consensus Sp1 site / GC box 4 GC4 
CAGACCATCTGCAGCCCGGGACCGGGGC Consensus Sp1 site / GC box 4 mutated GC4M
GACCGGGGCCAGGGACCAGTGGTGGGAGGAGGCTGCGGCGC Non-consensus Sp1 site / GC box 5  GC5 
GACCGGGGCCAGGGACCAGTGGTGATCTGCAGCTGCGGCGC Non-consensus Sp1 site / GC box 5 

mutated 

GC5M

Tab. 5 DNA probes used in DNA affinity purification assay. Five different probes were investigated 

covering the proximal Sp1 binding sites of the 5-LO promoter. Depicted are the forward strands of the 

probes; 5xGC, covering the 5-fold GC box, GC4, covering the consensus binding site, GC4M, 

covering the mutated GC box 4, GC5 and GC5M, covering the non-consensus binding site either with 

the wild-type or mutated sequence. 

 

2 µl of biotinylated DNA probes were incubated with 200 µl of whole cellular extract in 

200 µl of binding buffer H (100 mM KCl, 20 mM HEPES [pH 7.8] 20% glycerol, 1 mM 

DTT, 0.1% NP40) on ice for 1 h. Then 50 µl of streptavidin-coupled agarose beads (Sigma) 

were added to the mixture and incubated on a spinning wheel for another 30 min at 4°C. After 

washing the beads four times with 500 µl of binding buffer H the probes were boiled with 

20 µl of MQ and 5 µl of 5x laemmli sample buffer (250 mM Tris-HCl pH 6.8, 5 mM EDTA, 

50% Glycerol, 10% SDS, 0.05% BPB, 10% β-mercaptoethanol). The supernatant containing 

the proteins were separated by SDS-PAGE. The use of nuclear extracts instead of the 

whole-cell extracts resulted in unspecific protein binding. 
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Fig. 34 Principle of DNA affinity purification assay. Biotinylated DNA probes, either 

oligonucleotides or PCR fragments, are incubated with cellular extract. Depending on the protocol 

whole-cell extracts or nuclear cell extracts can be utilized. DNA binding proteins theoretically recruit  

cofactors. When these DNA-protein complexes have formed, the binding reaction is incubated with the 

streptavidin-coupled matrix, e.g. with agarose beads. This step is followed by washing steps with 

binding buffer, in order to reduce unspecific protein binding. To improve the specificity of protein 

binding, different salt concentrations, tensides or competitor DNA, such as salmon sperm DNA or 

synthetic polymers like poly(dA-dT)•poly(dA-dT), can be added to the binding reaction itself or to the 

washing steps. The proteins specifically binding can either be eluted from the beads, also using 

different salt concentrations or the complete mixture can be boiled with leammli buffer. The captured 

proteins are separated and identified by SDS-PAGE. 

 

The binding affinity of Sp1 in this assay neither with HeLa cell extract nor with MM6 cell 

extract seemed to be changed after the treatment with the histone deacetylase inhibitor (see 

Fig. 35). In HeLa cells the binding of Sp1 to the non-consensus binding site is less prominent 

than to the other sites, but independently of trichostatin A treatment. The DNA affinity of Sp3 

was also unchanged after HDACi treatment and did not differ between the probes (see Fig. 

36). 
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Fig. 35 DNA affinity purification assay with HeLa and MM6 cell extracts for Sp1. 200 µl of 

whole-cell extract were incubated with 200 µl of binding buffer H and 2 µl of double-stranded 

biotinylated oligonucleotides for one hour on ice. The cell extracts were gained as described in 

“Materials and Methods”. The cells were either treated with TsA (330 nM) for 24h or with solvent. 

After adding 50 µl of equilibrated streptavidin-coupled agarose beads, the incubation was continued 

on a spinning wheel for 30 min at 4°C. The beads were washed four times with 500 µl of binding 

buffer and after taking off the supernatant the samples were boiled with 25 µl of 1x Laemmli sample 

buffer for 5 min at 95 °C. The DNA-binding proteins were separated by SDS-PAGE and analyzed by 

Western blot for the presence of Sp1. One representative example of at least two independent 

experiments is shown. 5xGC: 5-fold GC box as DNA probe; GC4: GC box 4 as probe; GC4M: DNA 

probe covering the mutated Sp1 binding site GC4; GC5 and GC5M respectively. M: All Blue Protein 

Marker (Biorad); ZE: sample of whole-cell extract, used in the DAPA; NE: nuclear extract; B: beads 

only. 
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Fig. 36 DAPA with HeLa and MM6 cell extracts for Sp3. The assay procedure is described in Fig. 

35. The DNA-binding proteins from the supernatant were separated by SDS-PAGE and analyzed by 

Western blot for the presence of Sp3. One representative example of at least two independent 

experiments is shown. 5xGC: 5fold GC box as DNA probe; GC4: GC box 4 as probe; GC4M: DNA 

probe covering the mutated Sp1 binding site GC4; GC5 and GC5M respectively. M: All Blue Protein 

Marker (Biorad); ZE: sample of whole-cell extract, used in the DAPA; NE: nuclear extract; B: beads 

only. 

 

4.1.12 In vivo binding of Sp1 and Sp3 to the 5-LO promoter in MM6 cells  

In chromatin immunoprecipitation (ChIP) assays the effect of TsA on the histone acetylation 

status of the 5-LO promoter and the in vivo binding of RNA polymerase II, Sp1 and Sp3 cells 

was examined in MM6 cells. These data were kindly provided by Dr. Sabine Seuter. Since the 

promoter activity in the reporter gene assays highly depends upon the proximal GC-rich 

sequences containing most Sp1 binding sites, ChIP analysis focused on the first 1000 bp just 

upstream of the TIS. 

ChIP assays were performed as described by Väisänen (Vaisanen et al. 2005). In brief, 

nuclear proteins were crosslinked to genomic DNA by adding formaldehyde directly to the 

medium (1%, 10 min at 37°C). After lysation in Pipes buffer (5 mM Pipes pH 8.0, 85 mM 

KCL, 0.5% NP-40 plus protease inhibitors) and SDS buffer (1% SDS, 10 mM EDTA, 50 mM 

Tris-HCl, pH 8.1 plus protease inhibitors) cells were sonicated to DNA fragments of 

300-1000 bp in length. The chromatin was then diluted in ChIP dilution buffer. After 

incubating the chromatin resuspensions with a salmon sperm DNA / protein A agarose slurry 

to remove unspecific background the recovered chromatin solutions were incubated over 

night at 4°C with the indicated antibodies. The immuno-complexes were collected with 
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protein A agarose slurry. The beads were pelleted, washed with increasing salt concentrations 

and finally the immuno-complexes were eluted. The crosslink was reversed and the remaining 

proteins digested by adding proteinase K.  

Genomic DNA fragments were recovered using phenol-chloroform extraction. Subsequently 

the immuno-precipitated genomic DNA was used as a template for PCR. The amount of 

generated PCR product reflects the abundance of DNA binding proteins. The PCR products, 

loaded with SybrGreen, were separated by electrophoresis through 2.0% agarose and the gel 

images scanned on a Fuji FLA3000 reader (for a more detailed description of the procedure 

and the primer sequences used for the PCR reaction see 3.14 in “Meterials and Methods”). 
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Fig. 37 Chromatin immunoprecipitation assay of the 5-LO promoter in MM6 cells. A: Depicted are 

the gel scans of the obtained PCR products covering the proximal promoter region after 

immunoprecipitation with the antibodies against RNA polymerase II, the transcription factors Sp1 and 

Sp3 as well as with an antibody against acetylated histone H4 protein, giving information about the 

activation status of the promoter. As controls, PCRs were run with DNA from recovered chromatin 

directly after reversing the cross-linking (input bands), after precipitation with IgG (IgG bands), and 

after immunoprecipitation without any antibody (no ab bands) to exclude unspecific bands. B: The 

four regions examined in the ChIP are equivalent to the GC rich proximal promoter area, containing 
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several Sp1/Sp3 binding sites. Please note, that the numbering is in relation to the major TIS (=+1) of 

the 5-LO promoter and not in relation to ATG. 

 

The high acetylation status of histone H4 (acetylation of K5, K8, K12, K16), without any TsA 

treatment indicates an open and transcriptional active chromatin structure of the 5-LO gene 

promoter area. Nevertheless the 5-LO mRNA expression level in MM6 cells without any 

treatment is very low (Klan et al. 2003). RNA polymerase II binding within the examined area 

increases clearly already after 6 h of TsA treatment and exists without any treatment only in 

the area surrounding the TIS (-318 to +52 bp). Sp1 binding seems to decrease in the two distal 

promoter parts, whereas the binding in the proximal areas increases with time. Sp3 behaves 

similarly, within the most distal area the protein slightly looses its affinity, whereas in all 

other regions the binding is strongly enhanced. 

From these in vivo data we can conclude that in MM6 cells, TsA treatment does not increase 

the acetylation status of the 5-LO promoter and the relaxation state of chromatin, but clearly 

enhances Sp1 and Sp3 binding, especially within the area surrounding the TIS, including the 

proximal GC boxes 1, 2, 4, 5 and the tandemized box. Due to the high GC content of the 

proximal 5-LO promoter, it was not possible to investigate binding to more precise regions or 

even discrete Sp1 binding sites. Nevertheless, the data also show in vivo binding of Sp1 and 

Sp3 to the more distal promoter parts including the putative binding sites GC6, GC7, GC8, 

GC9 and others. 

 

4.1.13 Cotransfection of expression plasmids of class I HDACs 

In coimmunoprecipitation studies complex forming between Sp1 and HDAC1 and HDAC2 

has been shown in different cell lines, e.g. in the pancreatic cancer cell lines BxPC-3, MIA 

PaCa-2 cells (Zhao et al. 2003), and in UK Pan-1 cells (Huang et al. 2005). The same 

publications also suggest a disruption of this complex after treatment with the histone 

deacetylase inhibitor TsA. Preliminary data by C. Katryniok proofed the recruitment of 

HDAC1 and HDAC2 by Sp1 both in HeLa and in MM6 cells, but TsA treatment does not 

alter the complex formation. She also investigated, a possible interaction between Sp3, 

HDAC1 and HDAC2 in HeLa and in MM6 cells. In both cell lines HDAC1 

coimmunoprecipitated with HDAC2, but none of both proteins with Sp3. 

An other approach to verify the recruitment of preferentially class I HDACs are coexpression 

studies with 5-LO reporter gene constructs. Expression plasmids containing the human 

HDAC1, HDAC2, HDAC3, HDAC8 were cotransfected with the promoter plasmid N13, 
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containing the TsA responding Sp1 binding sites GC4 and GC5, into HeLa cells. To assure 

sufficient amounts of Sp1 protein in the cells, the expression plasmid for human Sp1 was 

additionally transfected. In HeLa cells, HDAC1, 2 and 3 are expressed endogenously, 

whereas HDAC8 is not (data not shown). Protein expression after transfection was checked 

by Western blot analysis (data not shown). 

Fig. 38 Cotransfection of HDACs: Relative activity of N13. Hela cells were transfected by the 

calcium phosphate precipitation method with 0.8 µg of reporter gene construct N13, with 0.1 µg of 

pEVR2/CMV-Sp1 or empty pCMV and with 0.1 µg of expression plasmids for the human class I 

histone deacetylases or the empty control plasmid pSG5. 16 h after transfection the medium was 

changed and the cells were treated with solvent of trichostatin A (330 nM) for 24 h. Then luciferase 

activity was determined. Results are presented as mean + SE of 3 independent experiments after 

normalization for transfection effeciency.  

In untreated cells the additional cotransfection of the histone deacetylases interestingly 

resulted in an increase of promoter activity and not as assumed in a reduction. This effect was 

independent of Sp1 cotransfection. When the cells were treated with the histone deacetylase 

inhibitor the activating effect of the cotransfection was relieved and as shown before the 

transactivation by Sp1 was induced. These data do not provide any evidence that class I 

HDACs are directly recruited to the proximal 5-LO promoter.  

 

4.1.14 DNA affinity purification assay: Possible recruitment of HDACs and HATs 

An other experimental approach to investigate the recruitment of HDACs to the 5-LO 

promoter was achieved by DNA affinity purification assays. The same assay conditions used 

to show specific Sp1 and Sp3 binding were applied and the recruitment to oligonucleotides 

covering GC box 4 and GC box 5, or containing the mutated Sp1 binding sites was 

investigated. Additional to the recruitment of HDACs, the potential binding of histone 
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acetyltransferases (HATs) was investigated. Interaction between Sp1 and p300 has been 

described in Hep3B cells at the IGFBP-3 promoter (Choi et al. 2002), between Sp1, p300 and 

PCAF in Mia, PaCa-2 and UK Pan-1 cells (Huang et al. 2005). p
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Fig. 39 DNA affinity purification assay with HeLa cell extracts. 200 µl of whole-cell extract were 

incubated with 200 µl of binding buffer H and 2 µl of double-stranded biotinylated oligonucleotides 

for one hour on ice. The cell extracts were gained as described in 3.3 in “Materials and Methods”. 

The cells were either treated with TsA (330 nM) for 24 h or with solvent. After adding 50 µl of 

equilibrated streptavidin-coupled agarose beads, the incubation was continued on a spinning wheel 

for 30 min at 4 °C. The beads were washed four times with 500 µl of binding buffer and after taking of 

the supernatant boiled with 25 µl of 1x Laemmli sample buffer for 5 min at 95 °C. The DNA-binding 

proteins and potential coactivators or corepressors from the supernatant were separated by 

SDS-PAGE and analyzed by Western blot with the indicated antibodies. One representative example 

of at least two independent experiments is shown. GC4: GC box 4 as probe; GC4M: DNA probe 

covering the mutated Sp1 binding site GC4; GC5 and GC5M respectively. M: All Blue Protein Marker 

(Biorad;) NE: nuclear cell extract. Antibodies: anti-mouse anti-HDAC1 clone 2E10, anti-rabbit 

anti-HDAC2, anti-rabbit anti-HDAC3, anti-mouse anti-HDAC8; anti-mouse anti-p300, anti-goat 

anti-PCAF.  

Under the specific binding conditions applied in this assay, originally chosen to proof Sp1 and 

Sp3 binding, neither p300 nor the histone acetyltransferase PCAF was recruited to the 
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different oligonucleotides. Also the identification of HDAC1, HDAC3 and HDAC8 failed in 

this assay. The only evidence for other protein binding eventually by Sp1 or Sp3 could be 

presented for HDAC2. However, recruitment of HDAC2 appeared not to be specific, since it 

was found binding to the wild-type probes as well as to the mutated probes and even only to 

the agarose beads. It seems that the binding conditions for each protein have to be adjusted to 

proof specific DNA binding or recruitment by DNA-binding proteins. 

 

4.1.15 Investigations on the acetylation status of Sp1 and Sp3 

Inhibition of histone deacetylases shifts the balance from histone deacetylase acitvity towards 

higher histone acetyltransferase activity. Histone acetyltransferases, such as CBP/p300, 

PCAF, GCN5, do not only acetylate histone proteins, but also transcription factors, including 

p53, GATA-1, YY1, STAT3 NF-κB and others [reviewed in (Glozak et al. 2005)]. The 

acetylation of Sp1 eventually results in an increased DNA binding affinity as well as in a 

higher transactivation activity [reviewed in (Li et al. 2004)]. The acetylation of Sp3 renders 

the transcription factor a transcriptional activator in the regulation of TGFβ type II receptor 

(Ammanamanchi and Brattain 2001; Ammanamanchi et al. 2003). In the assumption, Sp1/Sp3 

might be acetylated upon TsA treatment, I applied the DNA affinity purification assay to 

investigate the acetylation status of Sp1 and Sp3 after binding to the 5-LO promoter probes. 

In the Western blot analysis of the fished proteins, I first detected the transcription factor 

binding, then incubated the extensively washed membrane with the anti-acetyl-lysine 

antibody and the equivalent second antibody.  
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Fig. 40 DNA affinity purification assay for Sp3 with MM6 cell extract. 200 µl of whole-cell extract 

were incubated with 200 µl of binding buffer H and 2 µl of double-stranded biotinylated 

oligonucleotides for one hour on ice. The cell extracts were gained as described in “Materials and 

Methods”. The cells were either treated with TsA (330 nM) for 24 h or with solvent. After adding 50 µl 

of equilibrated streptavidin-coupled agarose beads, the incubation was continued on a spinning wheel 
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for 30 min at 4 °C. The beads were washed four times with 500 µl of binding buffer and after taking 

off the supernatant the samples were boiled with 25 µl of 1x Laemmli sample buffer for 5 min at 95 °C. 

The DNA-binding proteins were separated by SDS-PAGE and analyzed by Western blot for the 

presence of Sp3 (anti-rabbit, sc-644, Santa Cruz). Then, the membrane was incubated with 

anti-acetyl-lysine antibody (anti-rabbit anti-acetyl-lysine #06-933, Upstate) to check for acetylated 

protein binding. 5xGC: 5-fold GC box as DNA probe; GC4: GC box 4 as probe; GC4M: DNA probe 

covering the mutated Sp1 binding site GC4; GC5 and GC5M respectively. M: All Blue Protein Marker 

(Biorad); ZE: sample of whole-cell extract, used in the DAPA; NE: nuclear extract; B: beads only. 
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Fig. 41 DNA affinity purification assay for Sp3 and acetylated Sp3 protein with HeLa cell extract. 

DAPA and Western blot analysis were performed as described in Fig. 40. 

 

As in the experiments before, in HeLa and in MM6 cells, trichostatin A did not influence the 

binding of Sp3 to the different GC boxes of the proximal 5-LO promoter. The incubation with 

the anti-acetyl-lysine antibody did not change the signals of the Sp3 bands from the pulldown, 

but intensified a band overlapping the migration band of the smaller isoforms from the cell 

extracts itself. However, this finding was independent of TsA treatment of the cell extracts. 
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Fig. 42 DNA purification affinity assay for Sp1 with MM6 cell extract. DAPA and Western blot 

analysis were performed as described in Fig. 40. Antibodies: anti-rabbit anti-Sp1, sc-059 (Santa 

Cruz); anti-rabbit anti-acetyl-lysine, #06-933 (Upstate). 
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The same experiment was repeated and instead of Sp3, Sp1 was detected. Sp1 binding was 

not influenced by TsA. After incubating the membrane with the anti-acetyl-lysine antibody, 

additional bands appeared in lanes of the cell extracts, as well as in the lanes of the pulled 

samples. Nevertheless, these bands did not overlap with Sp1 and did also appear in the 

negative control (beads only), therefore resulting from some unspecific protein binding to the 

agarose beads.  
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4.2 Regulation of the 5-lipoxygenase promoter by DNA methylation 

The expression of 5-lipoxygenase in myeloid cell lines is regulated by DNA methylation, as 

was shown by Uhl and Klan et al. (2002). In the 5-LO negative cell lines U937 and HL-60TB 

the 5-LO promoter was heavily methylated within the proximal promoter region, whereas it 

was completely unmethylated in the 5-LO positive cell line HL-60. Treatement of U937 and 

HL-60TB cells with the DNA methylase inhibitor AdC (5-aza-2`-deoxycytidine) could induce 

5-LO expression and led to a demethylation of the promoter as shown by bisulfite sequencing. 

Both in HeLa (5-LO negative) and in MM6 cells (5-LO positive), reporter gene constructs of 

the 5-LO core promoter showed strong activity, which was almost abolished after in vitro 

methylation with SssI methylase, recognizing and methylating all CpG dinucleotides. 

 

4.2.1 DNA methylation reduces promoter activity in reporter gene studies 

In order to localize relevant methylation or transcription factor binding sites within the core 

region of the 5-LO promoter which could be involved in the repression of promoter activity 

by DNA methylation, reporter gene constructs differing in length and CpG dinucleotide 

content were in vitro methylated, purified by phenol-chloroform extraction and transfected 

into HeLa cells. Besides SssI methylase recognizing all potential CpG dinucleotides, 

M. HpaII and M. HhaI were used for methylation (as well as their combination), only 

partially methylating the promoter because of their more specific recognition sites,  -CCGG- 

and –CGCG-, respectively. 8 h after the calcium phosphate transfection, the medium was 

changed, cells were incubated with either ethanol or trichostatin A (330 nM) for 24 h and 

reporter gene activity was determined. 

As in former experiments, in vitro methylation led to a strong reduction of 5-LO promoter 

activity. Methylation with SssI methylase reduces promoter activity to the level of the 

promoterless reporter gene plasmid pGl3Basic. Also M. HpaII and M. HhaI inhibit promoter 

activity, though to a lesser extent. Besides pGl3Basic as negative control, pGl3Prom was used 

as positive control. The reporter gene plasmid contains pGl3Basic as backbone (as the 5-LO 

constructs) and the SV40 (simian virus) promoter instead of the 5-LO promoter. Since this 

promoter lacks HpaII and HhaI methylation sites, one should expect no alterations in 

promoter activity after methylation with M. HpaII and M. HhaI. Nevertheless, HpaII 

methylation leads to a significant decrease of promoter activity of pGl3Prom (16.7–fold), 

indicating, that methylation of the plasmid backbone can influence promoter activity too, 

possibly via action of methyl-CpG-binding proteins from more distal plasmid parts.  
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Methylation of all CpG dinucleotides by SssI methylase showed the strongest repression of 

promoter activity, 50.8-fold for the largest construct N10, comprising –778 bp to +53 bp in  
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Fig. 43 DNA methylation reduces promoter activity in reporter gene assays. After in vitro 

methylation with HpaII, HhaI or SssI methylase, plasmids were transfected into HeLa cells by the 

calcium phosphate method. Medium was changed 8 h after transfection, Reporter gene activity was 

measured 24 h later. Each experiment was performed in triplicates. Results are presented as mean 

+ SE of three independent experiments after normalization for transfection effeciency by 

cotransfection of pCMVSEAP. Reductions are expressed with respect to unmethylated plasmids. 

 

relation to the major TIS, 63.3-fold, 41.6-fold, 35.1-fold, 21–fold for N11, N12, N13 and N14 

respectively, and only 4-fold and 2.2-fold for the minimal promoter constructs N15 and N16. 

The smaller the deletion variants are, the smaller is the loss of promoter activity caused by the 

different methylation patterns (N14 to N16). This may be due to the basically lower promoter 

activity of the shorter constructs, the adjusting ratio of the number of methylation sites for the 

different methylases or may indicate the special relevance of the methylation sites within the 

proximal promoter area.  

 

Plasmid Promoter 

HpaII M. sites / 

x-fold reduction 

HhaI M. sites / 

x-fold reduction 

SssI M. sites /  

x-fold reduction 

N10 -843 bp to –12 bp      6 / 11.6* 10 / 5.2*     64 / 50.8* 

N11 -294 bp to –12 bp   5 / 8.5* 4 / 6.1     31 / 63.3* 

N12 -206 bp to –12 bp      5 / 11.2**      3 / 10.8**      21 / 41.6** 

N13 -143 bp to –12 bp  5 / 9.1*  3 / 23.4    15 / 35.1* 
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N14 -96 bp to –12 bp 1 / 9.4  3 / 20.7  10 / 21.0 

N15 -67 bp to –12 bp 1 / 3.2 2 / 2.7 8 / 4.0 

N16 -34 bp to –12 bp 1 / 2.1 1 / 1.8 3 / 2.2 

pGl3Prom SV40    0 / 16.7* 0 / 5.5  10 / 58.5* 

 

Tab. 6 Depicted are the number of methylation sites and the x-fold reduction caused by the specific 

methylation patterns. The data were achieved in the same experiments as in Fig 43. Reductions are 

expressed with respect to unmethylated plasmids. *, P<0.05 **, P<0.01, by paired two-sided 

Student´s t test. The positions of the promoter sequences included in the different plasmids are in 

relation to the 5-LO ATG. 

 

4.2.2 Reduction of promoter activity correlates with methylated CpG sites 

In the larger luciferase reporter gene constructs (N10, N11, N12, and N13) the decrease in 

promoter activity is dependent on the number of methylated CpGs within the promoter region. 

Fig. 44 is showing the correlation between the number of methylation sites and the reduction 

by DNA methylation. Clearly the reduction in promoter activity is increasing with the number 

of methylation sites. 
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Fig. 44 The reduction in promoter activity of the larger promoter constructs N10, N11, N12 and 

N13 correlates with the number of methylation sites. Data were achieved in the same experiments as 

in Fig.43. Plotted are x-fold reductions in relation to the number of methylation sites. The linear 

regression line was drawn through the origin. 
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4.2.3 TsA induces 5-LO promoter activity dependent on the degree of methylation 

In vivo, so-called methyl-CpG-binding proteins can bind to methylated DNA sequences and 

either directly or indirectly recruit histone deacetylases. As mentioned before, endogenous 

5-LO gene expression in MM6 cells is induced after TsA treatment (Klan et al. 2003). So far 

no studies concerning the methylation status of the 5-LO promoter in MM6 cells exist. Since 

treatment with 1,25(OH)2D3 and TGFβ strongly induces the protein expression in MM6 cells, 

but not in U937 or HL-60-TB cells (in both cells lines the promoter is methylated), we assume 

that the promoter is not methylated in MM6 cells. In order to investigate, if DNA methylation 

promotes recruitment of HDACs to the 5-LO promoter, HeLa cells were additionally 

stimulated with TsA when transfected with the methylated promoter constructs.  
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Fig. 45 TsA induces promoter activity of unmethylated and partially methylated reporter gene 

constructs. After in vitro methylation with HpaII, HhaI or SssI methylase, plasmids were transfected 

into HeLa cells by the calcium phosphate method. Medium was changed 8 h after transfection, cells 

were incubted with TsA 330 nM for 24 h. Each experiment was performed in triplicates. Results are 
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presented as mean + SE of at three independent experiments after normalization for transfection 

effeciency by cotransfection of pCMVSEAP. Inductions by TsA are expressed with respect to untreated 

cells (A,B). C: relative promoter activites after TsA treatment. 

Promoter activity of the larger unmethylated promoter constructs N10 to N13 is increased 

after treatment with TsA, whereas the small constructs N14, N15 and N16 are not affected. 

This finding locates the effect of TsA to the more distal promoter area upstream of N14. 

Complete DNA methylation is abolishing promoter activity as well as any induction by TsA. 

Either TsA treatment alone is not sufficient to reactivate the promoter or the regulation is 

independent of any HDAC recruitment at this state of methylation.  

Partial methylation of the promoter fragments by M. HpaII and M. HhaI on the other hand 

stimulates activation by the histone deacetylase inhibitor, indicating a recruitment of HDACs 

to the promoter and the potential of activation of the promoter. Still, the methylated constructs 

never reach the original promoter activity of the unmethylated constructs.  

 

4.2.4 Cotransfection of different methyl-CpG-binding proteins  

Methylated DNA is recognized by methyl-CpG-binding proteins (MBD proteins). In order to 

identify MBD proteins binding to the 5-LO promoter, we intensified reporter gene assays. In 

cotransfection studies with methylated promoter plasmids and expression plasmids for murine 

Mbd1, Mbd2, Mbd3 and rat MeCP2, we expected the methyl-CpG-binding proteins to further 

reduce promoter activity, either by competing with other transcription factors or by 

recruitment of corepressors, including HDACs. The coding sequences of the different MBDs 

were cloned into pSG5, to ensure the same expression levels of the different proteins (for 

details see “Materials and Methods”, 3.7.2). Protein expression was controlled by Western 

blot analysis. We could not detect endogenous MBD1 or MeCP2 in HeLa cells. 
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Fig. 46 Protein overexpression of methyl-CpG-binding proteins in HeLa cells. 24 h before 

transfection, HeLa cells were seeded in 14.5 cm ∅  dishes, so that 60-80% of the cells were confluent 



 Results  

89 

at the time of transfection. Cells were either transfected with 50 µg of pSG5mock per dish or with 

25 µg or 50 µg of expression plasmid pSG5Mbd1, pSG5Mbd2, pSG5Mbd3 or pSG5MeCP2 by calcium 

phosphate transfection. 16 h after transfection the medium was changed, 24 h later the cells were 

harvested and fractionated into the cytosolic and nuclear compartments, as described in “Materials 

and Methods”, 3.4. For SDS-PAGE and Western blot analysis the different probes were normalized to 

the cell number of harvested cells. The nuclear fractions were blotted. 

In the reporter gene assays with methylated construct N10, only the cotransfection with Mbd1 

leads to a further reduction in promoter activity. The effect is strongest after HpaII 

methylation, but also exists after methylation with M. HhaI and M. SssI, see Fig. 47. The 

same is true for construct N13, indicating a possible binding site within this proximal 

promoter region.
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Fig. 47 Relative Activíty of methylated reporter gene constructs N10 and N13 cotransfected with 

methyl-CpG-binding proteins. After in vitro methylation of the reporter gene plasmids and 

purification with phenol-chloroform extraction, the constructs were transfected into HeLa cells by 

calcium phosphate method. The cells were seeded in 24 well plates and transfected with 0.8 µg of the 
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methylated reporter gene plasmids with 0.02 µg of pCMVSEAP and 0.1 µg of the expression plasmids. 

Medium was changed 8 h after transfection, cells were incubted with solvent or TsA, 330 nM, for 24 h. 

Each experiment was performed in triplicates. Results are presented as mean + SE of three 

independent experiments after normalization for transfection effeciency by cotransfection of 

pCMVSEAP. This time, luciferase activity was determined using the Bright Glow Luciferase Assay 

System (Promega), ensuring higher activities (about 10-fold) of the methylated constructs, due to the 

different buffer conditions during the luciferase assay. Also RLUs had to be normalized to pGl3Basic 

because the cotransfection caused backbone effects on pGl3Basic. 

Additional treatment of the cells with TsA does not relieve the reduction in promoter activity 

caused by Mbd1. This finding is according to (Fujita et al. 2003), suggesting an alternative 

pathway in the repression by Mbd1 independent of HDACs. Interestingly, when the cells are 

treated with the histone deacetylase inhibitor TsA Mbd2 decreases the promoter activity. 

 

4.2.5 Mutation of methylation sites within the proximal promoter of 5-LO 

Observations so far suggest the presence of relevant methylation sites and a possible 

recruitment of Mbd1 to the proximal promoter area covered in the reporter gene construct 

N13.  
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Fig. 48 Schematic overview of the proximal 5-LO promoter covered by the reporter gene constructs 

N13 and N14. Depicted are the different methylation sites for M. SssI, M. HpaII and M. HhaI, the 

inverted repeats and the Sp1 binding sites. 

To identify the potential binding site for Mbd1, different methylation sites within N13 were 

mutated to inhibit methylation and binding of Mbd1. Construct N13 lacks the 5-fold GC box, 
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but still contains the two Sp1 binding sites, GC box 4 and GC box 5. Additionally, two 

inverted repeats are present in this proximal promoter area, whose functions are still unclear. 

The HpaII methylation sites were of special interest, since Mbd1 cotransfection showed its 

strongest effects when the reporter gene constructs were methylated with M. HpaII (mutations 

in N13Rep1, N13Rep2 and N13MMIII). In gel shift assays, methylation of the HpaII sites 

around GC box 4 diminished Sp1 binding (see Fig. 54), but binding of other nuclear, so far 

unknown proteins was enhanced (mutated in N13MutMethIII). Methylation of the HhaI site 

between GC box 5 rather increased Sp1 binding, no additional protein binding was seen 

(mutated in N13MutMethII). The relevance of the sites surrounding the TIS or within the 

inverted repeats shall be investigated by the mutations in N13MutMethI, N13InvRep1 and 

N13InvRep2. 

HpaII methylation site
HhaI methylation site
SssI methylation site

N13 N14

N13MutMeth I

N13MutMeth II

N13MutMeth III

N13MutInvRep1

N13MutInvRep2

N13/N14

TIS

 

Fig. 49 Mutations of the different methylation sites within N13. In N13MutInvRep1 and 

N13MutInvRep2 methylation sites within the sequences of the inverted repeast were point mutated. In 

the constructs N13MutMethI – III methylation sites of larger stretches of the promoter were mutated, 

including the HpaII sites surrounding GC box 4, the methylation sites surrounding GC box 5 and the 

methylation sites surrounding the transcription start site. 
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Since the mutations could also affect basal promoter activity, by disabling transcription factor 

binding, changes in promoter activity of the unmethylated constructs have to be considered. 

The point mutation of the HpaII methylation site within the inverted repeat 1 sequence 

significantly reduces the promoter activity, as well as the mutation of the sites beside 

GC box 5 in N13MutMethII (N13MMII). The other mutations do not significantly change 

promoter activity. Also, the different mutations show no significant changes in response to 

TsA treatment, underlining the dependency of the TsA effect on only GC box 4. 
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Fig. 50 Relative Activity of the mutated, but unmethylated N13 constructs. HeLa cells were seeded in 

24 well plates and transfected with 0.8 µg of the purified plasmids with 0.02 µg of pCMVSEAP by 

calcium phosphate method. The medium was changed 8 h after transfection. Cells were incubated with 

TsA (330 nM) or ethanol. 24 h later, the reporter gene activity was determined. Each experiment was 

performed in triplicates. Results are presented as mean + SE of three independent experiments after  

normalization for transfection effeciency by pCMVSEAP. *, P<0.05 **, P<0.01, by paired two-sided 

Student´s t test. 
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Fig. 51 X-fold reduction by DNA methylation of the different mutated N13 constructs. After in vitro 

methylation with M. HpaII, M. HhaI or M. SssI the plasmids were purified using phenol-chloroform 

extraction. HeLa cells were seeded in 24 well plates and transfected with 0.8 µg of the purified 

plasmids with 0.02 µg of pCMVSEAP by calcium phosphate method. The medium was changed 8 h 

after transfection. Cells were incubated with TsA (330 nM) or ethanol. 24 h later, the reporter gene 

activity was determined. Each experiment was performed in triplicates. Results are presented as mean 

+ SE of three independent experiments after normalization for transfection effeciency by pCMVSEAP. 

*, P<0.05 **, P<0.01, by paired two-sided Student´s t test. 

 

Methylation of the plasmids itself reduces promoter activity. In respect to the different 

mutations, reduction of promoter activity by HhaI methylation does only significantly differ 

between the constructs N13 and N13MutMethIII (N13MMIII). 

Also the mutations in N13Rep1 and N13MutMethII (N13MMII) are releasing the repressive 

effects of DNA methylation by M. HpaII, and in N13Rep2, carrying a mutation of the HpaII 

site upstream of the TIS, HpaII methylation even further reduces promoter activity. Only the 

mutations in N13MMII do significantly decrease the reduction by SssI methylation compared 

to N13.  

The additional cotransfection of the expression plasmid of the murine CpG-binding protein 

Mbd1 leads to a further decrease in promoter activity of the unmethylated and methylated 

constructs. Mbd1 strongly effects HpaII methylated constructs, though SssI methylation and 

coexpression of Mbd1 together have the biggest impact on promoter activity. In comparison 

to N13, Mbd1 significantly reduces promoter activtiy of N14 (**) when the plasmids were 

methylated with M. HpaII (*, P<0.05 **, P<0.01, by paired two-sided Student´s t test), but 

not of the other constructs. 
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Fig. 52 X-fold reduction by Mbd1 cotransfection. Mbd1 alone reduces promoter activity of 

unmethylated and methylated mutated N13 constructs. Mbd1 enhances promoter repression by 

DNA methylation. After in vitro methylation with M. HpaII, M. HhaI or M. SssI the plasmids were 

purified using phenol-chloroform extraction. HeLa cells were seeded in 24 well plates and transfected 

with 0.8 µg of the purified plasmids with 0.02 µg of pCMVSEAP and 0.1 µg of pSG5mock or 

pSG5Mbd1 by the calcium phosphate method. The medium was changed 8 h after transfection. 24 h 

later, the reporter gene activity was determined. Each experiment was performed in triplicates. 

Results are presented as mean + SE of three independent experiments after normalization for 

transfection effeciency by pCMVSEAP.  

 

4.2.6 Influence of DNA methylation on in vitro Sp1 binding 

Within the proximal 5-LO promoter area three different Sp1 binding sites exist. For all of 

them, in vitro binding of Sp1 has been shown before (In et al. 1997; Silverman et al. 1998; 

Dishart et al. 2005). Mutation or deletion of theses sites results in a loss of promoter activity 

in reporter gene assays (see Fig. 22). As outlined in the introduction (see page 33) different 

studies have shown interference between DNA methylation and Sp1 binding. In some cases 

the binding of Sp1 to methylated Sp1 binding sites was reduced, in others methylation of 

adjacent sites diminished binding of the transcription factor, or methylation showed no 

influence at all.  

 



 Results  

95 

gtactgcgggggcgggggcgggggcgggggcgggggcgggggcagccggg

agcctggagccagaccggggcggggccgggaccggggccagggaccagtg

gtgggaggaggctgcggcgctagatgcggacacctggaccgccgcgccga 

ggctcccggcgctcgctgctcc

N13

N14

5-LO 5xGC oligo

5-LO Non-cons. oligo

5-LO Cons. oligo

HpaII M. –CCGG–
HhaI M. –GCGC–
SssI M.  –CG–

Inverted repeat 1

Inverted repeat 2

TIS

gtactgcgggggcgggggcgggggcgggggcgggggcgggggcagccggg

agcctggagccagaccggggcggggccgggaccggggccagggaccagtg

gtgggaggaggctgcggcgctagatgcggacacctggaccgccgcgccga 

ggctcccggcgctcgctgctcc

N13

N14

5-LO 5xGC oligo

5-LO Non-cons. oligo

5-LO Cons. oligo

HpaII M. –CCGG–
HhaI M. –GCGC–
SssI M.  –CG–

Inverted repeat 1

Inverted repeat 2

TIS

 

Fig. 53 Overview of the proximal 5-LO promoter sequence and oligonucleotides used as probes in 

gel shift assays. To test the influence of DNA methylation on Sp1 binding within the 5-LO promoter 

context, three different oligonucleotides were designed, covering the three proximal Sp1 binding sites: 

the 5 x GC oligo, the consensus oligo and the non-consensus oligo, indicated by the grey boxes. Parts 

of the consensus and non-consensus oligos are overlapping. In the 5 x GC oligo, all five GC boxes 

were methylated. Methylation of the consensus oligo is possible at three M. HpaII methylation sites 

surrounding GC box 4 and within the binding site itself. The non-consensus oligo was methylated at 

both ends, equivalent to a methylation by M. HpaII and M. HhaI. 

 

In order to investigate the influence of DNA methylation on Sp1 binding sites of the 5-LO 

promoter, oligonucleotides covering the different sites were ordered and binding to the 

unmodified or methylated probes was tested in gel shift assays. Either the CpG dinucleotides 

of the core binding site/s itself were methylated or the CpGs surrounding the GC boxes were 

methylated. Following this guideline, the 5 x GC oligo was either synthesized completely 

unmethylated, or all five CpG dinucletides within the five Sp1 core motifs were methylated at 

the 5´ position of the cytosines. Fig. 53 and Tab. 7 below depict the location of the probes 

within the 5-LO promoter and the relevant sequences modified by DNA methylation. 

 

Forward strand of double-stranded probes 5´ to 3´  

CTGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCGGGGGCAG 5 x GC oligo, covering 5 x GC box, unmethylated 
CTGCGGGGGOGGGGGOGGGGGOGGGGGOGGGGGOGGGGGCAG 5 x GC SssI M. oligo, all Sp1 sites methylated  
CAGACCGGGGCGGGGCCGGGACCGGGGC Consensus oligo, covering GC box 4 
CAGACOGGGGCGGGGCOGGGACOGGGGC Consensus HpaII M., methylated around 
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GC box 4 (three HpaII M. sites) 
CAGACCGGGGOGGGGCCGGGACCGGGGC Consensus SssI M., methylated within the Sp1 

binding motif itself 
GACCGGGGCCAGGGACCAGTGGTGGGAGGAGGCTGCGGCGC Non-consensus oligo, Sp1 site / GC box 5, 41 bp 

GACOGGGGCCAGGGACCAGTGGTGGGAGGAGGCTGOGGOGC Non-consensus H/H, Sp1 site / GC box 5, 41 bp, 

methylated around the Sp1 binding motif (HpaII 

and HhaI M. site) 
AGTGGTGGGAGGAGGCTGCGGCGCT Non-consensus 20 bp, Sp1 site / GC box 5, 

Missing the HpaII M. site 
GATCGAACTGACCGCCCGCGGCCCGT Unspecific competitor, Ap2 binding site 
ATTCGATCGGGGCGGGGCGAGC Specific competitor, classical Sp1 binding motif  

Tab. 7 Sequences of the forward strands of the equivalent gel shift probes. “O” represents a 

methylated cytosine of a CpG dinucleotide. 

The consensus oligo was tested either completely unmodified, methylated within the GC box 

(GC box 4 in reporter gene assays), or with the three HpaII M. sites surrounding the GC box. 

In case of the last Sp1 binding site (GC box 5 in reporter gene assays) a methylation of the 

transcription factor binding site itself is not possible, since the sequence covers a 

non-consensus binding motif -GGGAGG-. Nevertheless the methylation of the residues 

within the HpaII M. and HhaI M. sites surrounding the binding site was possible. As an 

additional control, a shorter version of the non-consensus oligo was used, only 20 bp long, 

missing the HpaII M. site. 

After annealing the single-stranded primers (for details see “Materials and Methods”, 

page 52), oligonucleotides were labeled at the 5´-ends using T4 polynucleotide kinase. 

Radiolabelled double-stranded oligos then were purified with Microspin G-25 columns 

(Amersham Biosciences) and stored at –20 °C. 1.25 µg to 10 µg of nuclear extract and/or Sp1 

protein (150-300 ng) was incubated with labelled oligonucleotide probe in binding buffer 

(50 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 2.5 mM EDTA, 2.5 mM DTT, 250 mM NaCl, 20% 

glycerol) and 0.5 µg poly(dAdT)•poly(dAdT) for 30 min at RT in a total reaction volume of 

20 µl. For competition studies a 25-, 50- or 100-fold molar excess of unlabelled Sp1 

consensus oligonucleotide (purchased from Promega) was added to the reaction mixture prior 

to the addition of radiolabelled probe. The reactions were usually resolved on 4-20% pre-run 

non-denaturating polyacrylamide TBE gels (BioRad premade) which were electrophoresed at 

100 V for 110 min. Gels were dried under vacuum before exposure, or exposed directly to 

Fuji Super RX film at –20 °C or to a FLA 3000 imaging plate at RT for the indicated 

exposure times. 
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4.2.7 Sp1 binding to the methylated consensus binding site is diminished 

In the first experiments I determined if Sp1 binding to the consensus binding site (GC box 4) 

was influenced by DNA methylation. 2.5 µg or 5.0 µg of NE of MM6 cells shifted the 

unmethylated probe and three bands appeared (arrowheads, see Fig. 54). All three complexes 

could be competed out by the cold competitor (lanes 4 and 5). Recombinant Sp1 protein alone 

or mixed with 2.5 µg of nuclear extract produced an even more prominent band (lane 6 and 

lane 7), running on the height of the slowest migrating band, shifted with only nuclear extract. 
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Fig. 54 Gel Shifts with the unmethylated and methylated consensus oligo comprising GC box 4. 

After the labeling with 32P-ATP and T4 Polynucleotide Kinase the unmethylated or methylated probes 

were incubated with 2.5 or 5.0 µg of nuclear extract generated from MM6 cells. For competition 

studies specific competitor in 50- or 100-fold excess was added to the incubation mixture. Binding of 

recombinant Sp1 protein to the probes was checked either in combination with nuclear extract or 

alone. 240,000 cpm of the different probes were used for the binding reactions, the gel was directly 

exposed to Fuji Super RX film at –20 °C for 2 h. * band generated with Sp1 recombinant protein. 

 

Nuclear extract shifted the consensus HpaII M. probe, methylated around the Sp1 binding 

motif, even resulting in a stronger band pattern (lanes 9-11). The slowest migrating band 

almost disappeared, the faster complexes became more evident, indicating binding of other 



 Results  

98 

proteins than Sp1. These effects were even more prominent with the consensus SssI M. probe, 

in which the Sp1 binding motif itself is methylated (lanes 13-15). Recombinant Sp1 binding 

clearly decreased with methylation.  
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Fig. 55 Gel Shifts with the unmethylated/methylated consensus oligo, comprising GC box 4, using 

nuclear extract of HeLa cells. A, B, C: After the labeling, the probes were incubated with 5.0 µg or 

10.0 µg of nuclear extract generated from HeLa cells. For competition studies specific competitor in 

50- or 100-fold excess was added to the incubation mixture. Binding of recombinant Sp1 protein to the 

probes was checked either in combination with nuclear extract or alone. 240,000 cpm of the different 

probes were used for the binding reactions, the gel was directly exposed to Fuji Super RX film at 

-20°C for 1 h. * band generated with Sp1 recombinant protein. Presented are the results from two 

different experiments, A versus B and C (B unmethylated probe, C methylated probe). 

 

The same experiment was repeated with nuclear extract from HeLa cells (see Fig. 55). The 

same bands appeared (indicated by arrowheads), which could be competed out by the specific 

Sp1/Sp3 competitor, for the unmethylated probe (A, lane 4 and 5). Again, methylation of the 

probes clearly decreased Sp1 binding (compare A, lanes 7, 11, 15), and the faster migrating 

bands were enhanced. In a second experiment (B and C), the fastest migrating band could not 
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be competed out by the specific Sp1 competitor (B, lane 6), indicating protein binding other 

than any Sp1 family member, even to the non-methylated probe. Interestingly this band was 

strongly enhanced, when the probe was methylated and when competitor was added to the 

binding reaction (see fig. C). 

 

4.2.8 Sp1 binding to the non-consensus binding site increases with methylation 

Concerning the non-consensus Sp1 binding site, results from EMSA look quite different. The 

increasing amounts of nuclear extract only slightly lead to increased protein binding with the 

non-methylated probe. Only a faint shift appeared on the migration level comparable with 

recombinant Sp1 protein (indicated by the asterisk), but two strong bands on a faster level 

(indicated by arrowheads). Competition with specific unlabeled Sp1 competitor enhanced the 

middle band, instead of diminishing the signal, indicating that Sp1 is not dominating in this 

protein-DNA complex. Also the binding of recombinant Sp1 protein to the non-consensus 

probe is weak and is increased when the probe is methylated (compare lane 5 and lane 11).  
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Fig. 56 Gel Shifts with the unmethylated and methylated non-consensus oligo comprising GC box 5. 

After labeling, the probes were incubated with 2.5 µg, 5.0 µg or 10.0 µg of nuclear extract generated 
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from HeLa cells. For competition studies specific competitor in 100-fold excess was added to the 

reaction mixture. Binding of recombinant Sp1 protein to the probes was checked without addition of 

nuclear extract. 250,000 cpm of the different probes were used for the binding reactions, the gel (5% 

TBE) was directly exposed to Fuji Super RX film at -20°C for 1 h. * band generated with recombinant 

Sp1. 

In a control experiment the binding of Sp1 to a shorter probe (non-consensus 20 bp), also 

containing the non-consensus motif was tested (see Fig. 57). Clearly the binding of the 

recombinant protein is more efficient to the shorter probe (compare lane 4 and lane 8), 

suggesting some hindrance of protein binding to the longer probe.  
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Fig. 57 Gel Shifts with oligonucleotides covering the non-consensus Sp1 binding site (GC-box 5). 

After end-labeling the double-stranded oligos with 32P-ATP and T4 Polynucleotide Kinase, the probes 

were incubated at RT for 30 min either with nuclear extract from HeLa cells or with recombinant Sp1 

protein. 250,000 cpm of the different probes were used for the binding reactions, the gel (5% TBE) 

was directly exposed to Fuji Super RX film at -20°C for 1h. 
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4.2.9 Sp1 binding to the 5-fold GC box is attenuated by DNA methylation 

Finally protein binding to the 5-fold GC box was examined (see Fig. 58). With 10 µg and 

20 µg of HeLa nuclear extract three bands shifted with the non-methylated probe. Adding an 

excess of specific Sp1 competitor only competed the slowest band out (lanes 4, 5). Cold probe 

competed all bands out, excluding unspecific protein binding (lane 6). The addition of 

recombinant Sp1 protein to the binding reaction in combination with nuclear extract slightly 

enhanced the slowest migrating band (lane 7). Sp1 alone resulted in a distinct band (lane 8), 

on about the same level as the slow migrating band. Nuclear extract in combination with the 

methylated probe resulted in about five protein-DNA complexes (indicated by the 

arrowheads), the highest comparable to recombinant Sp1 binding (lane 10). The competition 

with specific Sp1 competitor enhanced the three fastest complexes (lane 12) and abrogated the 

slow migrating complexes, indicating again other protein binding than Sp1 or Sp1 family 

members. Sp1 binding itself is strongly diminished to the methylated band (lane 15). Similar 

results were achieved with MM6 extracts (data not shown). 
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Fig. 58 Sp1 binding to the 5-fold GC box. After end-labeling the double-stranded oligos with 32P-ATP 

and T4 Polynucleotide Kinase, the probes were incubated at RT for 30 min either with nuclear extract 
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from HeLa cells or with recombinant Sp1 protein. 120,000 cpm of the different probes were used for 

the binding reactions, the gel was directly exposed to a FLA 3000 imaging plate for 17 h at RT. * band 

generated with recombinant Sp1. 

To conclude from theses experiments, Sp1 binding to the methylated consensus binding site is 

attenuated, but still possible. Additionally, methylation induces the binding of an unidentified 

protein. Methylation of the 5-fold GC box results in the same effects, Sp1 binding is 

diminished and binding of an unknown protein enhanced. In case of the non-consensus 

binding site, Sp1 binding is increased upon methylation of surrounding residues, rather due to 

secondary effects, like interference with other transcription factor binding or changes in the 

secondary structure of DNA. Sadly supershift experiments with Sp1 or Sp3 antibody did not 

work. To reveal what other proteins besides Sp1 bind to the different probes, especially after 

DNA methylation, gel shift assays including supershift studies with antibodies against MBD 

proteins should be performed.  
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5 Discussion 

5.1 Regulation of 5-LO gene expression by histone deacetylation  

The 5-LO promoter lacks TATA and CCAAT boxes as well as an Inr element (Hoshiko et al. 

1990). As underlined by the presence of two CpG islands covering the proximal promoter 

area and the major transcription start site, the promoter is highly GC-rich (compare Fig. 3 

page 10). Several Sp1 binding sites, including a 5-fold tandemized Sp1/Egr1 element, convey 

basal promoter activity (In et al. 1997; Silverman et al. 1998; Dishart et al. 2005). Though 

carrying these characteristics of so-called housekeeping genes, 5-LO is tissue-specifically 

expressed, mainly in cells of myeloid origin (Steinhilber 1999). Recent results suggest that 

DNA methylation is involved in the tissue-specific expression pattern of 5-LO or at least in 

the loss of 5-LO expression in myeloid cancer cell lines HL-60TB and U937. TGFβ and 

1,25(OH)2D3 induce 5-LO expression in the monocytic cancer cell line MM6 and HL-60, but 

not in HL-60TB, a subtype of HL-60 cells characterized by the lack of 5-LO expression, or in 

U937 cells. Since in these cell lines the 5-LO promoter is heavily methylated, it seems that 

demethylation is a prerequisite for 5-LO expression and TGFβ/1,25(OH)2D3 treatment alone 

cannot induce expression (Uhl et al. 2002; Klan et al. 2003).  

DNA methylation and histone modifications of the nucleosomal core histone proteins H3 and 

H4 interact in the transcriptional shut down of genes. Methyl-CpG-binding domain proteins 

bind to methylated DNA sequences and recruit corepressor complexes including HDACs 

(Jones et al. 1998; Nan et al. 1998) or associate with histone methyltransferases (Sarraf and 

Stancheva 2004). Also direct interaction between the de novo DNA methyltransferase 

DNMT3a and HDAC1 have been reported (Fuks et al. 2001), as well as complex formation 

between DNMT1, HDAC1, Rb and E2F1 (Robertson et al. 2000) and between DNMT1 and 

HDAC2 (Rountree et al. 2000). The histone methyltransferase ESET/SETDB1 can repress 

transcription in a HMT activity-independent manner by associating with HDAC1/2 (Yang et 

al. 2003). Not only DNA methylation triggers histone modifications, such as deacetylation, 

but also histone modifications trigger DNA methylation and so far it is not clear what happens 

first. Studies in Neurospora and Arabidopsis indicate, that histone methylation directs DNA 

methylation (Tamaru and Selker 2001; Jackson et al. 2002; Tamaru et al. 2003). Methylation 

of lysine 9 of histone H3 induces DNA methylation in mice at pericentric heterochromatin 

(Lehnertz et al. 2003). After targeted gene disruption of DNA methyltransferases, the tumor 

suppressor gene p16 was reactivated after promoter demethylation in the HCT116 cell line. 

After several cell passages the gene was silenced again, independently of DNA methylation, 
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but associated with H3K9 methylation (Bachman et al. 2003). Only in even later passages the 

gene was remethylated. Recently the interaction between the histone methyltransferase 

SETDB1 and the DNA methyltransferase DNMT3a was described (Li et al. 2006). Mutskov 

studied the events involved in the silencing of transgenes. He describes early loss of 

acetylation of H3 and H3K4 methylation, which leads to gene repression. Later H3K9 

becomes methylated followed by DNA methylation of the transgene (Mutskov and Felsenfeld 

2004). Also the promoter of the tumor supressor gene RASSF1A in human mammary 

epithelial cells is silenced after initial histone inactivation followed by DNA methylation 

(Strunnikova et al. 2005).  

These links between DNA methylation and histone modifications suggest a similar interaction 

of both pathways in the regulation of 5-LO gene expression. In the hippocampus of mice and 

in human Caco-2 cells, a colon carcinoma cell line, valproic acid and butyrate, two short 

fatty-acid histone deacetylase inhibitors, induced 5-LO mRNA expression (Wachtershauser et 

al. 2000; Yildirim et al. 2003). In MM6 and HeLa cells, the potent inhibitor trichostatin A 

induced 5-LO gene expression in reporter gene assays of non-methylated and in vitro 

methylated plasmids. Also the mRNA level of 5-LO in MM6 cells is increased after TsA 

treatment, though to a lesser extent as after differentiation with TGFβ/1,25(OH)2D3 for four 

days, (11- versus 43-fold). In order to identify the region responsible for the strong induction 

of 5-LO promoter activity in reporter gene assays, successive deletion variants of the most 

active reporter gene construct N10 were transfected into HeLa cells and the effect of TsA was 

investigated. Clearly the larger constructs N10 (-843 bp to –12 bp in relation to ATG), N11, 

N12 and N13 were induced by the HDACi TsA (4- to 6-fold) (Klan et al. 2003), whereas the 

shorter constructs N14 (-96 bp tp –12 bp) to N16 were not. Since N13 (-143 bp to –12 bp) 

already lacks the 5-fold tandemized GC box, TsA independently of this element induces 5-LO 

promoter activity. Besides in length, N13 and N14 differ in the presence of two functional 

Sp1 binding sites, termed GC4 and GC5. GC4 represents a consensus Sp1 binding site 

(5´-GGGCGGG-3´), whereas GC5 comprises the non-consensus motif (5´-GGGAGG-3´). 

Sp1 binding to both sites was verified in gel shift assays, as well as in DNase I footprints 

(Hoshiko et al. 1990; In et al. 1997; Silverman et al. 1998; Dishart et al. 2005). Furthermore 

mutations of the Sp1 binding sites caused a reduction of promoter activity in reporter gene 

assays in MM6 cells, indicating their functionality in basal promoter activity (Dishart et al. 

2005). Several reports have described the recruitment of HDAC activity by transcription 

factors, including Sp1 and Sp3. The p21 gene expression is upregulated by the HDACi 

superoylanilide hydroxamic acid in NIH3T3 cells (Xiao et al. 1999). Both Sp1 and Sp3 
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binding to a proximal GC site are required for this upregulation, whereas in human 

osteosarcoma cells MG63 Sp3 alone mediates the TsA response (Sowa et al. 1999). One 

proximal Sp1 binding site in the human luteinizing hormone receptor (hLHR) gene promoter 

recruits a histone deacetylase-mSin3A complex (Zhang and Dufau 2002). Often the GC site 

involved in the HDACi response, usually a proximal Sp1 binding site, also participates in the 

regulation of basal promoter activity.  

Mutational analysis in reporter gene assays indeed confirmed the involvement of Sp1/Sp3 

binding sites in the regulation of the 5-LO promoter by the histone deacetylase inhibitor TsA. 

Mutation of GC4 in the still highly inducible construct N13, attenuated the response to TsA 

comparable to the response of construct N14. Mutation of GC5 was less efficient. The double 

mutation completely eliminated the reponse to TsA, indicating an interaction between both 

sites. The fact that the mutation of GC4 without any treatment reduces promoter activity in 

HeLa cells, whereas mutation of GC5 rather activates promoter activity, suggests recruitment 

of some kind of repressor by GC5-binding factors. TsA treatment in HeLa cells reverses the 

repressing function of GC5, indicating the recruitment of HDAC activity via this binding site. 

Since the TsA response depends on GC4, it is resonable that the recruited HDAC(s) somehow 

influence GC4-binding factors. 

The influence of the particular binding sites was subsequently investigated in the larger 

promoter context of the most active reporter gene construct N10. In this promoter context the 

single GC box mutations were relatively insufficient in suppressing the TsA effect. The 

mutation of GC4, having the strongest impact in the shorter construct N13 decreased the TsA 

triggered promoter activation only by 11%, compared to 95% in construct N13. The deletion 

of the tandem GC box (GC0) reduced the TsA response after all by 42%. The data indicate a 

cooperation for HDAC recruitment between the discrete GC sites in the intact promoter 

context. However mutations of GC box 4, GC5 and GC1 reduce promoter activity by up to 

54%, independent of TsA treatment, thus underlining their relevance in basal 5-LO promoter 

activity.  

Successive combinatorial mutation of the separate Sp1 binding sites in construct GC0, already 

lacking the five tandemized GC box, revealed the importance and additive influence of each 

site for full promoter activity. The mutation of each site resulted in a decrease of promoter 

activity and the mutation of several sites at once enhanced this effect in an additive matter. 

Only mutation of GC5 alone did not change the promoter activity. The combined mutations of 

the proximal sites GC1, GC2, GC4, GC5 and the additional deletion of GC0 in the construct 

N9, containing parts of a second CpG island with more potential Sp1/Sp3 binding sites, were 
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sufficient to abolish the promoter activity of this construct, giving further evidence of the 

necessity of the proximal GC sites for basal activity. The double mutation of GC4 and GC5 

introduced into GC0 strongly attenuated the inducing effect of TsA by about 82% 

emphasizing their relevance in HDAC recruitment (compare Fig. 20 page 60).  

Reporter gene analysis in MM6 cells, showed similar results. The mutation of GC4 alone, 

both in the minimal and larger promoter context, neutralized the activating effects of TsA. In 

MM6 cells both GC box 4 and GC box 5 revealed activating properties independently of 

HDACi treatment. Possibly HDACs and HATs are recruited at the same time to establish 

dynamic histone acetylation of promoter-bound histones. Acetylation of histone proteins is a 

dynamic process, regulated by the opposing effects of HATs and HDACs. For about 15% of 

the core histones rapid acetylation and deacetylation occurs (t1/2 = 7 min for monoacetylated 

histone H4 and t1/2 = 3-7 min for deacetylation). Other core histone proteins are acetylated 

and deacetylated at a slower rate of t1/2 = 200-300 min and t1/2 = 30 min respectively (Davie 

1997). 

In MM6 cells, the histone acetyltransferases as activating factors could overbalance HDACs, 

whereas in HeLa cells, HDACs tip the scales in the promoter regulation. As examined in 

ChIP assay the high acetylation degree of histone H4 in MM6 cells even without any TsA 

treatment supports the idea of histone acetyltransferase activity dominating over HDAC 

activity (compare Fig. 37 page 77). So far no studies exist on the histone acetylation status of 

the 5-LO gene in HeLa cells. The DNA methylation status of the 5-LO promoter in MM6 or 

HeLa cells is still unclear. However since 5-LO gene expression in MM6 cells is inducible 

with 1,25(OH)2D3 and TGFβ, but not in HeLa cells, we assume a methylation free promoter 

sequence in MM6 cells and a methylated sequence in the 5-LO negative HeLa cell line.  

In MM6 and HeLa cells the 5-LO promoter contains two negatively regulated stretches, one 

covering the sequence -5396 to –4895 and the other –914 to –779 bp in relation to the major 

TIS (Sorg et al. 2006). The second area overlaps with the more distal CpG island in the 

reporter gene construct N9. TsA treatment induces the promoter activity of N9, but does not 

completely overcome the repressive character of this promoter region. Mutation of the two 

GC boxes present in the additional promoter sequence of this construct reduces promoter 

activity, but does not relieve the response to TsA, whereas the deletion/mutation of the 

proximal sites GC0, GC1, GC2, GC4 and GC5 (see construct N9GC01245) clearly abolishes 

the effect. This finding demonstrates, that HDACs are rather recruited to the proximal than to 

the distal promoter area and further suggests involvement of other repressors in the distal 

promoter area. 
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Since the protein levels of Sp1 and Sp3 in HeLa and MM6 cells did not change upon TsA 

treatment, the effect of their transactivation activity was investigated by cotransfection of Sp1 

and Sp3 with the 5-LO promoter mutants (Fig. 32 page 72). The cotransfection alone did not 

influence promoter activity, maybe due to already high endogenous Sp1 and Sp3 protein 

levels. Only with TsA treatment, both proteins induced the promoter activity of construct 

N13, indicating direct influence of TsA treatment on the transactivation capability of Sp1 and 

Sp3, possibly by posttranslational modifications or changing interacting protein partners. 

Interestingly neither Sp1 nor Sp3 could induce the promoter activity of N10, independently of 

TsA treatment. Sp1 and Sp3 only seem to influence the two proximal GC sites in front of the 

TIS. Regarding the different GC box mutants of N13, promoter activity was reduced after 

mutation of either GC box, but stronger activated by cotransfection than N13 itself. When 

GC4, the activating element in HeLa cells, was mutated, Sp1 cotransfection showed the 

strongest impact in relative promoter activation (11.7-fold induction). Possibly Sp1/Sp3 

compete with a repressor binding to GC box 5.  

In vitro binding of Sp1 and Sp3 to the 5-fold GC box, GC4 and GC5 was unchanged after 

HDACi treatment as investigated in DAPA. However, in vivo binding of Sp1 and Sp3 

increased upon TsA treatment, especially in the proximal promoter area, containing the 

elements investigated in DAPA. In chromatin immunoprecipitation assays the acetylation 

status of the 5-LO promoter, RNA polymerase II binding, Sp1 and Sp3 binding were 

investigated in MM6 cells after TsA treatment. Especially in the promoter area containing all 

proximal GC sites binding of Sp1 and Sp3 is increased. Sp1 does not seem to associate with 

the more distal regions (-1049 to -318), whereas Sp3 does very well, also without HDACi 

treatment (compare Fig. 37 page 77).  

The divergence between in vitro and in vivo binding affinities of Sp1 and Sp3 to the 5-LO 

promoter after TsA treatment might be explained by changes in chromatin structure, such as 

acetylation of H3 and H4, resulting in a more relaxed chromatin structure facilitating Sp1 and 

Sp3 binding. Interestingly already in untreated Mono Mac 6 cells the examined promoter 

region contains heavily acetylated nucleosomal histone protein H4. Unlikely TsA renders the 

chromatin structure even more accessible for transcription factor binding. It has been 

demonstrated that acetylation to 46% of maximal site occupancy was sufficient to stimulate 

transcription by RNA polymerase III (Tse et al. 1998). However RNA polymerase II binding 

is clearly increased after TsA treatment and spreads to the more distal promoter parts, 

including the negatively regulated promoter area present in the reporter gene construct N9. 

The acetylation status of H3 remains to be investigated.  
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Since the 5-LO promoter lacks TATAA or CCAAT boxes and only contains an initiator-like 

sequence, Sp1 is likely the driving force in recruiting the basal transcription machinery in this 

promoter context (Dishart et al. 2005). Increased in vivo binding of Sp1 would subsequently  

explain the increased RNA polymerase II binding and the observed rise in promoter activity 

in reporter gene assays as well as in 5-LO mRNA levels. So far it is not clear, if Sp3 is also 

able to attract the basal transcription machinery, but surely Sp3 could recruit coactivators such 

as HATs. Also the cotransfection studies, though performed in HeLa cells, suggest only 

activating functions of both Sp1 and Sp3. Sadly these ChIP data cannot discriminate protein 

binding to the single GC boxes. ChIP assays with stably transfected mutated promoter 

constructs could help to identify specific transcription factor binding (Banchio et al. 2004).  

The high number and proximity of the different Sp1 binding sites just upstream of the major 

transcriptional start site of the 5-LO promoter suggests an interaction between the factors 

binding to these sites. Especially for Sp1 synergistic activation by oligomerization has been 

described (Mastrangelo et al. 1991). Sp1 may not only provide a platform for the basal 

transcription machinery, but also for corepressor/coactivator complexes until different stimuli 

cause transcriptional initiation. Only recently, the interaction between the zinc-finger domain 

of Sp1 and the corepressors NCoR, SMRT and BCoR has been described (Lee et al. 2005). 

Sp1 sites have also been found to be involved in tissue-specific gene expression. For example 

the expression of CD14 in monocyte/macrophages is mediated by Sp1 (Zhang et al. 1994). 

Sp1 also regulates the myeloid-restricted expression of the human haematopoietic cell kinase 

(Hauses et al. 1998). Interestingly Sp1 can loop DNA between distal and proximal promoter 

sites (Pascal and Tjian 1991; Yu et al. 2003). In MM6 cells 5-LO gene expression is strongly 

induced after differentiation of the cells to macrophages with 1,25(OH)2D3/TGFβ (mRNA 

levels increase 43-fold after 24h treatment). In reporter gene assays though, 

1,25(OH)2D3/TGFβ failed to induce 5-LO promoter activity (Klan et al. 2003). Only the 

incorporation of the 5-LO coding sequence into the reporter gene constructs alone 

(pGL-ba-cdsInJM) or together with the promoter (pN10-cdsInJM; the effect is even enhanced 

when introns J and M are included) led to a significant stimulation by 1,25(OH)2D3 and 

TGFβ, 28-fold and 14-fold respectively (unpublished data from our lab). Interestingly the 

addition of TsA to 1,25(OH)2D3/TGFβ reduced the stimulation in the reporter gene assays 

(2.3-fold and 5.5-fold respectively for pN10-cdsInJM and pGl3-ba-cdsInJM) as well as at the 

mRNA level (16-fold). On the other hand the strong induction of the promoter activity by 

TsA is abolished by the presence of the cds. However, Seuter et al. could also show that Sp1 

cotransfection, but not Sp3 cotransfection reestablished the TsA induced activity in reporter 
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gene assays (3.2- versus 8.9-fold induction for pN10-cdsInJM without/with Sp1 

cotransfection). ChIP assays further revealed simultaneous in vivo binding of the VDR and 

RNA polymerase II to the proximal promoter area (-220 bp to +142 bp) of the 5-LO gene, 

lacking any VDRE surrounding the TIS, after 1,25(OH)2D3 stimulation (Seuter et al. 2006). 

Other studies have shown that 1,25(OH)2D3 induces complex formation between Sp1 and 

VDR at the p27 promoter and stimulates transactivation via a Sp1 consensus site within the 

promoter area (Huang et al. 2004; Cheng et al. 2006). Nevertheless the p27 promoter alone is 

1,25(OH)2D3 inducible in reporter gene studies. In experiments with the mutated proximal 

GC boxes GC4 and GC5 of the 5-LO promoter in pN10-cdsInJM did not reduce the 

1,25(OH)2D3/TGFβ induction (data not shown), indicating no interaction between the Sp1 

sites and a possible downstream enhancer in the 5-LO cds. The possible competitive 

activation of 5-LO by TsA and 1,25(OH)2D3/TGFβ cannot simply be explained by changes in 

chromatin structure, since histone protein H4 is already heavily acetylated in untreated MM6 

cells, which do not express 5-LO (see Fig. 37 page 77). Both agents 1,25(OH)2D3 and TsA 

stimulate RNA polymerase II binding to the proximal promoter area, but this effect does not 

explain, why TsA decreases 1,25(OH)2D3/TGFβ induced 5-LO gene expression (Seuter et al. 

2006).  

A possible link between the TsA and TGFβ/1,25(OH)2D3 mediated induction of 5-LO 

expression could be the regulation of Smad 7 by acetylation/deacetylation. TGFβ signaling is 

mediated through the Smad family of transcription factors. Acetylation of the inhibitory 

Smad 7 by p300 leads to increased protein stability by preventing the ubiquitination of 

overlapping lysines and subsequent protein degradation (Gronroos et al. 2002). After TGFβ 

stimulation Smad 7 translocates to the activated TGFβ receptors at the plasma membrane 

together with the Smurf E3-ubiquitin ligase. The Smurf-Smad 7 complex blocks the 

interaction between the receptor-activated Smads and the receptor, thus blocking TGFβ 

induction. HDAC1 and HDAC3 strongly bind to Smad 7, HDAC2 weakly (Simonsson et al. 

2005). Deacetylation by HDACs increases the degradation of Smad 7. Hence HDACi 

treatment would possibly counteract TGFβ induction, explaining why the combination of TsA 

and 1,25(OH)2D3/TGFβ results in a lower 5-LO gene expression than 1,25(OH)2D3/TGFβ 

alone. 

HDACi as well as 1,25(OH)2D3 induce cell differentiation. Differentiation of monocytes to 

macrophages is accompanied by an upregulation of 5-LO activity and protein expression. 

Also the platelet-activating factor acetylhydrolase gene is upregulated during the maturation 

of primary human monocytes into macrophages, a process, which is associated with an 
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increase of Sp1 and Sp3 DNA-binding activity to the promoter (Wu et al. 2003). Sp1 and Sp3 

also activate the expression of the myeloid-restricted integrin genes CD11b and CD11c in 

differentiating monocytes (Chen et al. 1993; Noti et al. 1996; Noti 1997).  

In HL-60 and MM6 cells, a differentiation inducer, such as 1,25(OH)2D3, is necessary to 

upregulate 5-LO expression (Brungs et al. 1994; 1995). In MM6 cells the maximal 

upregulation of 5-LO primary transcripts already occurs after 8 h of treatment. For this, both 

agents are required and protein expression induced by TGFβ is involved (Harle et al. 1998). 

In order to achieve increased 5-LO protein activity at least 48 h treatment is necessary. In vivo 

binding of Sp1 and Sp3 to the 5-LO promoter is already induced after 6 h of TsA treatment in 

MM6 cells. Also the reporter gene data suggest an early activation of the promoter (compare 

Fig. 29 page 68). After 4 h of TsA treatment N10 is activated 3.9-fold. However TsA does not 

change the protein levels of Sp1, Sp3, HDAC1 or HDAC2 (Fig. 31 page 71). If 

1,25(OH)2D3/TGFβ would exert their activating effect simply by increasing Sp1/Sp3 binding 

to the proximal 5-LO promoter, the treatment would also increase promoter activity in 

reporter gene assays, which is not the case. In a study performed by Dishart, Sp1/Sp3 protein 

levels and their DNA binding affinity in MM6 cells did not alter after 1,25(OH)2D3/TGFβ 

treatment (Dishart et al. 2005). 

Factors binding to GC4 and GC5, likely Sp1 as well as Sp3, recruit HDAC activity towards 

the 5-LO promoter as demonstrated in reporter gene assays. In order to identify the HDACs 

recruited to the promoter, the effects of another HDACi were investigated. VPA preferentially 

inhibits class I HDACs, at least HDAC2 is 5-fold more efficiently inhibited than HDAC5 and 

HDAC6 (Gottlicher et al. 2001). In contrast to TsA, VPA also induces the proteasomal 

degradation of HDAC2 (Kramer et al. 2003). In the reporter gene study with the 5-LO 

construct N10 VPA evoked similar effects as TsA. Maybe due to the lower specificity of VPA 

in comparison to TsA (IC50 ∼1 mM versus 37 nM, unpublished data and (Klan et al. 2003)) 

the promoter activation was less pronounced. Clearly nicotinamide, a class III HDAC 

inihibitor did not influence 5-LO promoter activity.  

Most likely rather HDAC1, 2 or 3 are recruited to the 5-LO promoter than class II HDACs. 

All class I HDACs, except for HDAC8 are involved in transcriptional regulation. Several 

reports describe the interaction between Sp1 and HDAC1 or HDAC2 and their recruitment to 

different promoters (Sowa et al. 1997; Sowa et al. 1999; Xiao et al. 1999; Hou et al. 2002). 

HDAC1 association with the p21 (Gui et al. 2004) and metallothionein I promoter (Ghoshal et 

al. 2002) is inhibited by HDACi. A new study could show that in human colon cancer cells 

the p21 promoter is regulated by multiple HDACs including HDAC1, 2 and 3 (Wilson et al. 
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2006). The TsA inducible gdf11 promoter on the other hand is exclusivley regulated by 

HDAC3 (Zhang et al. 2004). For catalytic activity HDAC3 exists in a complex with the 

nuclear receptor corepressors NCoR/SMRT (Guenther et al. 2001). HDAC1 and HDAC2 

together form the catalytic core of mSin3a, Mi2/NuRD/NRD and CoREST complexes (Cress 

and Seto 2000; Ng and Bird 2000; Grozinger and Schreiber 2002).  

In cotransfection studies with the different class I HDACs, HDAC1, 2, 3 and 8, the potential 

repressors rather activated the promoter construct N13 (Fig. 38 page 79). Similarly in 

cotransfection studies with the human gdf11 promoter, also performed in HeLa cells, all 

cotransfected histone deacetylases induced promoter activity, except for HDAC3, later 

identified as the recruited corepressor of gdf11 promoter activity (Zhang et al. 2004). There 

are cases, where HDACs appear to be required for gene activation. For example, TsA 

decreases CD9 expression in macrophages (Wang et al. 2002) or expression of Hmga2 protein 

in HeLa, NIH3T3 and F9 cells (Ferguson et al. 2003). Thus indirect effects may account for 

the activating function of HDACs in these cotransfection experiments. 

TsA treatment relieved the activition by HDAC1, 2 and 3. As in the experiments before, 

HDACi treatment induced transactivation by Sp1. Interestingly cotransfection of HDAC2 and 

HDAC8 enhanced this effect. It is hard to draw any conclusion from this experiment. The 

expression pattern of HDAC8, which was so far only detected in smooth muscle cells, and its 

potential role in regulation of smooth muscle cytoskeletal proteins rather excludes this protein 

as a potential regulator of 5-LO promoter activity (Waltregny et al. 2004; Waltregny et al. 

2005). In concomitant Western blot analysis HDAC8 could not be detected in HeLa cells, 

whereas all other class I HDACs were expressed.  

Sadly HDAC1 recruitment could not be demonstrated in DNA affinity purification assays, 

neither with HeLa nor MM6 cell extracts. Though HDAC2 binding to GC4 and GC5 was 

detected, the conditions used to screen for Sp1/Sp3 binding were not strict enough to show 

distinct association of HDAC2 to the separate probes. Instead HDAC2 already showed 

affinity to the beads only. HDAC3 and HDAC8 could not be detected at all. siRNA in 

combination with reporter gene assays would be a nice approach to investigate the 

recruitment of HDACs to the proximal Sp1 binding sites. Subsequently in ChIP experiments 

in vivo binding should be examined.  

Histone acetyltransferases and histone deacetylases usually function in an equilibrium. Often 

HATs and HDACs are recruited simultaneously. HDACi treatment in these cases shifts the 

balance towards enhanced HAT activity. As known for HDACs, HATs not only target histone 

proteins but also transcription factors, including Sp1 and Sp3. Since TsA induced in vivo 
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binding of Sp1 and Sp3, posttranslational modifications might play a role in the increased 

binding and/or transactivation activity. Acetylation of Sp1/Sp3 or phosphorylation of Sp1 

after TsA treatment has been described. In case of the IGFBP-3 promoter TsA treament 

released Sp3 and HDAC1 from a protein complex consisting of Sp1/Sp3/HDAC1/p300. TsA 

treatment furthermore induced phosphorylation of Sp1 and Sp1 binding was enhanced in gel 

shifts (Choi et al. 2002). However it was not shown, that phospho-Sp1 binding itself is 

increased or how TsA triggers phosphorylation. At the TGFβ type II receptor, TsA leads to 

the release of HDAC1 from a NF-Y/Sp1/HDAC1 protein complex with subsequent 

recruitment of p300 and PCAF with concomitant acetylation of Sp1 depending on PCAF 

acetyltransferase activity (Huang et al. 2005). HDAC1 is also released from the p21 and 

metallothionein I promoter after TsA treatment (Ghoshal et al. 2002; Gui et al. 2004). 

HDAC1 directly interacts with the zinc-finger DNA binding domains of Sp1 and interferes 

with the recognition of GC-boxes (Kang et al. 2005). Similarly p300 interaction with the 

DNA binding domain of the transcription factor Sp1 has been described. Despite acetylation 

of Sp1 by the acetyltransferase domain of p300 the pure physical interaction with p300 

stimulated the DNA binding activity of Sp1 (Suzuki et al. 2000). DNA binding of Sp1 on the 

other hand inhibited the p300 interaction. Also the interaction between the inhibitory domain 

and DNA binding domain of Sp1 with the nuclear corepressors SMRT, NCoR and BCoR has 

previously been described. The same group also suggests a modulation of this interaction by 

MEK (Lee et al. 2005), but by phosphorylation of the corepressor molecules. 

Many hematopoietic transcription factors are reversible acetylated. Acetylation can influence 

DNA binding, transcription activation, repressor activity, protein-protein interactions and 

protein stability (reviewed in (Glozak et al. 2005). The regulation of transcription factors by 

acetylation/deacetylation may influence tissue-specific and lineage-specific gene expression. 

Sadly the binding of acetylated Sp1 or Sp3 in DNA affinity purification assays could not be 

demonstrated. Possibly the affected protein amounts are not detectable in this assay.  

Immunoprecipitation studies performed in our lab to identify increased acetylation of Sp1 or 

Sp3 did not produce repeatable results. This may be due to too low specificity of the 

acetyl-lysine antibody. Furthermore the antibody may just not recognize the acetylated lysine 

in our context.  

In summary, TsA treatment induces 5-LO promoter activity and 5-LO mRNA levels. The data 

so far available suggest that increased in vivo binding of Sp1 and Sp3 to the proximal 

promoter with subsequent or concomitant RNA polymerase II binding are responsible for the 

upregulated gene transcription. Recruitment of HDACs or HATs via the Sp1 binding sites 
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GC4 or GC5 could not be demonstrated. Therefore it was not possible to show TsA induced 

variances in recruited protein complexes. We could not demonstrate TsA induced post-

translational modifications of Sp1 or Sp3 either, such as acetylation. However increased 

acetylation of histone H4 protein, resulting in a transcriptional more accessible chromatin 

structure at least in MM6 cells does not seem the reason for increased Sp1/Sp3 binding as 

indicated by the already high basal acetylation status of H4 protein surrounding the 5-LO 

promoter. TsA does not alter the expression levels of Sp1/Sp3 either.  

In future studies HDAC and HAT recruitment, as well as the association of corepressor 

complexes, such as NCoR, mSin3A, SMRT and BCoR should be studied. It would be of 

interest to improve the DAPA conditions in order to show specific HDAC2 recruitment. With 

re-ChIP analysis also the in-vivo interaction between Sp1 and i.e. HDACs or possible VDR 

and Smads could be investigated. 1,25(OH)2D3/TGFβ effects on Sp1 and Sp3 in vivo binding 

should be investigated, to rule out or proof interacting pathways in 5-LO regulation. 

 

5.2 Regulation of the 5-LO promoter by DNA methylation 

As already outlined in the first part of the discussion 5-LO gene transcription is regulated by 

DNA methylation and the recruitment of histone deacetylases. Uhl and Klan could show that 

treatment of the 5-LO negative cell lines HL-60TB and U937 with the DNA 

methyltransferase inhibitor 5-aza-2`-deoxcytidine (AdC) demethylated the 5-LO promoter 

and induced 5-LO gene expression (Uhl et al. 2002). Concurrently in vitro methylation of 

5-LO reporter gene plasmids strongly reduced the promoter activity in MM6 and HeLa cells 

(Klan et al. 2003). TsA treatment partially reversed the methylation dependent promoter 

repression, but the promoter activity never reached the level of the unmethylated plasmids.  

These first experiments demonstrated a role of DNA methylation in the regulation of 5-LO, 

but did not further investigate the DNA sequences or proteins involved in this mechanism, 

such as methyl-CpG-binding proteins (MBDs), DNA methyltransferases (DNMTs) or histone 

modifying enzymes such as HDACs. 

In the further study we focused on identifying relevant DNA sequences in the regulation by 

DNA methylation within the core promoter, comprising the sequence -778 bp to +53 bp in 

relation to the major TIS, present in the most active reporter gene construct N10, and its 

successive deletion variants N11 to N16. The data indicate that the more sites become 

methylated, the lower is the promoter activity of the reporter gene constructs. Complete 

methylation by in vitro methylation with SssI methylase abolishes promoter activity, partial 

methylation by M. HpaII or M. HhaI recognizing more distinct methylation sites, –CCGG- 
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and  -CGCG- respectively, strongly reduced promoter activity (about 12-fold, 5-fold after 

HpaII and HhaI methylation, respectively and 51-fold after SssI methylation). It seems, that in 

the shorter deletion variants N14 to N16 the different methylation patterns have similar 

impacts on promoter activity, either due to the adjusting ratio of methylation sites or the 

special relevance of particular sites within this proximal promoter area. However, since the 

promoter activity was only significantly decreased in the larger deletion variants N10 to N13, 

it remains speculative to assume special sites within the promoter region of N14. Also the 

plasmid backbone may influence the promoter activity, indicated by the methylation effects of 

M. HpaII on the control plasmid pGl3Prom, lacking any recognition site for this methylase 

within the sequence of the SV40 promoter, but showing a strong reduction in promoter 

activity (about 17-fold). MBDs binding to distal plasmid parts outside of the promoter area 

could influence promoter activity. Regulation from about 3 kb far distal sites have been 

described for MBD1 (Fujita et al. 2003). Also mutation of a putative MBD1 binding site in an 

FGF2-luciferase reporter construct did not relieve the repressing effect (Jorgensen et al. 

2004), suggesting that other CpGs may instead attract the MBD1 protein. 

Since DNA methylation often involves HDAC recruitment, we tested TsA treatment on in 

vitro methylated plasmids. Clearly, the treatment cannot reverse the repressing effect of the 

methylation on the promoter activity, indicating additional repressing mechanisms besides 

HDAC recruitment, i.e subsequent chromatin condensation, histone H3K9 methylation and 

HP1 binding (compare Fig. 45 C page 87). Studies with transiently and stably transfected 

promoter constructs did not show differences in HDAC recruitment, suggesting the formation 

of some kind of minichromatin of the transfected plasmids (Ishizuka and Lazar 2003; Zhang 

et al. 2004). However after HpaII and HhaI methylation the induction by TsA is enhanced 

compared to the unmethylated plasmids (for example 17-fold versus 68–fold for N10 after 

HpaII methylation), suggesting increased HDAC recruitment. The complete methylation by 

M. SssI abolishes promoter activity and inducibility by TsA. DNA methylation at this stage 

dominates over histone acetylation/deacetylation. 

In a cotransfection study with murine Mbd1, Mbd2, Mbd3 and rat MeCP2, only Mbd1 further 

reduced 5-LO promoter activity, most effectively after HpaII methylation, both in N10 and 

the shorter deletion variant N13. TsA did not relieve the repressing effects, indicating other 

repressive mechanisms involved besides histone deacetylation. Repression by the TRD of 

MBD proteins is variably sensitive to TsA, indicating that HDAC activity is not consistently 

involved in the regulation by MBDs (Ng et al. 2000; Fujita et al. 2003). Whereas 

MBD2/MBD3, as well as MeCP2 are associated with HDAC activity in the corepressor 
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complexes mSin3a and Mi2-NuRD (Nan et al. 1998; Ng et al. 1999), MBD1 does not 

coimmunoprecipitate with HDAC1. MBD1 is capable of binding to both methylated and 

unmethylated promoters (Fujita et al. 2000; Ng et al. 2000). In gel shifts MBD1 binds to a 

single symmetrically methylated CpG site, containing a –CCGG- site, equivalent to the motif 

recognized by HpaII methylase (Hendrich and Bird 1998). An other study demonstrated that 

MBD1 preferentially binds to densely methylated DNA fragments (Fujita et al. 1999). The 

interaction with non-methylated DNA depends on a third zinc-coordinating CXXC domain, 

which is not present in all MBD1 splice variants (Fujita et al. 1999; Jorgensen et al. 2004), 

whereas interaction with methylated DNA is mediated by the methyl-CpG-binding domain 

alone. Interestingly MBD1 can repress promoter activity from far distances (Fujita et al. 

2003), eventually making it difficult to identify specific DNA sequences within in vitro 

methylated plasmids. Recently the interaction between MBD1 and MCAF1 has been 

described (Fujita et al. 2003). In the absence of MBD1 MCAF1 acts as an transcriptional 

activator, which interacts with Sp1. MBD1 inhibits this interaction and interferes with the 

Sp1-mediated transactivation. Furthermore the MBD1-MCAF1 complex associates with 

SETDB1, a histone methyltransferase, facilitating the formation of heterochromatin (Sarraf 

and Stancheva 2004; Ichimura et al. 2005). Sp1-activated transcription of methylated p16 and 

SNRPN promoters was inhibited by all MBD1 isoforms. The isoforms MBD1v1 and 

MBD1v2 carrying the CXXC3 domain also reduced Sp1-activated transcription from the 

unmethylated promoters (Fujita et al. 1999).  

According to these reports MBD1 seems as the ideal candidate to initiate transcriptional 

repression of the 5-LO promoter. Interacting with MCAF1, MBD1 would interfere with Sp1 

induced promoter activity. Subsequent recruitment of the histone methyltransferase SETDB1 

may induce DNA methylation and heterochromatin formation by HP1 binding (Ichimura et al. 

2005). Also the presence of the MCAF1-Sp1 complex in HeLa cells has been demonstrated 

by Fujita (Fujita et al. 2003).  

Mbd1 reduces the promoter activity in both reporter gene constructs N10 and N13, especially 

after in vitro methylation. Only in combination with TsA treatment the unmethylated 

constructs are influenced by Mbd1. However, also the murine isoform Mbd1a, which was 

cotransfected, binds to unmethylated DNA (Jorgensen et al. 2004). Maybe HDAC recruitment 

by Sp1 via GC box 4 interferes with Mbd1 binding. The strong reduction in promoter activity 

by Mbd1 cotransfection after HpaII methylation suggests a special relevance of the 

recognition motif –CCGG-. Since the effect occurred within the shorter deletion variant N13, 

further mutational study of the potential CpG sites of this promoter part was performed. If 
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possible, CpGs were mutated to TpG, thus preventing methylation of the cytosine (see Tab. 1 

at page 47 for the exact primer sequences).  

Unexpectedly the point mutation within the inverted repeat structure beside the 5-fold 

GC-box (N13MutInvRep1), indeed containing a –CCGG- methylation site, strongly reduced 

the promoter activity of N13 already in an unmethylated state. Apart from this mutation, only 

the elimination of the GC box 5 flanking methylation sites in N13MutMethII, including a 

HhaI methylation site, significantly reduced the promoter activity of the unmethylated 

construct. In the context of increased Sp1 binding in gel shifts after methylation of exactly 

these adjacent CpG sites (compare Fig. 56 page 105), it is reasonable that the same sites are of 

relevance for promoter activity in an unmethylated state. The impact of the point mutation in 

N13Rep1 remains unexplainable. So far, the role of the inverted repeat structure in the 5-LO 

promoter is unknown and the sequence does not contain a known putative response element 

for any transcription factor. However the intact structure of this element seems to be 

important for full promoter activity. None of the mutations changed the TsA response in the 

unmethylated state, underlining the role of GC4 in recruiting HDAC activity (compare Fig. 50 

page 92).  

Other HpaII methylation sites were mutated within construct N13MutMethIII and 

N13MutMethInvRep2. After in vitro methylation with M. HpaII the methylation triggered 

reduction of promoter activity was relieved in construct N13Rep1 and N13MMII. Since both 

constructs already displayed impaired promoter activity in an unmethylated state, the reduced 

impact of DNA methylation on their activity may just reflect their already low basal activity, 

but does not completely exclude a potential role in DNA methylation. Only the mutation of 

the HpaII methylation sites in N13MMIII significantly relieved the methylation triggered 

repression, but only after HhaI methylation, which should not be affected by the mutation of 

an HpaII site (compare Fig. 51 B page 93).  

The additional cotransfection of Mbd1 further reduced the promoter activity of the mutants, 

but was not significantly changed by any mutation. Possibly Mbd1 alternatively from sites 

outside the promoter region represses the promoter activity, as described by Fujita (Fujita et 

al. 2003). Under these circumstances it is hard to draw any conclusion from the mutational 

analysis. Also the endogenous expression of MBD proteins may interfere with the 

overexpression of Mbd1 and conceal cotransfection effects. 

N13 also contains a potential MIZF (MBD2-interacting zinc finger) recognition sequence 

-CGGAC- (at position +7 to +11 bp in relation to TIS), which is mutated in construct 

N13MMI (Sekimata et al. 2001; Sekimata and Homma 2004). MIZF recruits MBD2 and 
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potentially the HDAC containing Mi2-NuRD complex to specific target genes and allows 

sequence-dependent repression by MBD2. However, the mutation of this motif to  -TGGAC- 

has no impact on the methylation effect, nor on the TsA response. The two so far known 

recognition sites for Kaiso, -CGCGCCCAAACG- serves as a recognition motif in a 

methylated state and –CTGCNA- in an unmethylated state, are not present in N13. However 

the minimal recognition motif  -CTGCNA- is present in the 5-LO promoter sequence at 

-418 bp to –423 bp in relation to the TIS (also comprised in construct N10) and has to be 

considered in further studies. Apart from Kaiso, ZBTB4 and ZBTB38, two other members of 

the BTB/POZ transcription factor family, have been identified as CpG binding proteins. Both 

zinc-finger containing proteins can bind to a single methylated CpG residue. ZBTB4 

recognizes the extended Kaiso binding site –TCCTGCNA-, whereas ZBTB38 binds to the E-

box -CACCTG- (Filion et al. 2006). The ZBTB4 motif is not detectable within the 5-LO 

promoter region, but the E-box element is found at several positions (+26 to +31, -3031 to 

-3026, -3777 to -3772 on the direct strand and on the complementary strand at –3174 to 

-3169,  -1039 to –1034 in relation to the 5-LO TIS). 

The cotransfection study and mutational analysis present some evidence that MBDs, possibly 

MBD1, could be recruited to the proximal 5-LO promoter. However, no direct interaction in 

gel shifts or even in ChIP assays has so far been presented. The gel shifts performed with in 

vitro methylated probes (discussed below) clearly indicate additional protein binding to the 

methylated probes, especially when HpaII recognition sites are methylated. Unfortunately 

supershift studies have not been performed yet to eventually identify MBD1 recruitment. Also 

DNA affinity purification assays failed to proof any MBD recruitment to the in vitro 

methylated promoter sequence of N13, probably due to the experimental conditions and low 

MBD protein abundance in HeLa cells. Even with nuclear extracts Western blot analysis 

revealed only faint protein bands.  

Since the basal and TsA induced promoter activity depends on Sp1/Sp3 binding, the influence 

of DNA methylation on Sp1 binding was investigated. The experiments as in the methylation 

study focused on the proximal promoter area, which contains three functional Sp1 binding 

sites. At least in vitro Sp1 binding to the 5-fold GC box, GC box 4 and GC box 5 has been 

shown in gel shifts and/or DNase I footprints (In et al. 1997; Silverman et al. 1998; Dishart et 

al. 2005). In vivo binding of Sp1 and Sp3 covering the same promoter area was demonstrated 

in ChIP assays (compare Fig. 37 page 77 ).  

Concerning Sp1-binding controversial studies exist, describing either impaired association 

with DNA after methylation or no influence of the DNA modification (Holler et al. 1988; 
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Clark et al. 1997; Fujita et al. 2000; Zhu et al. 2003). For example, in reporter gene assays 

with p16 and SNRPN promoter constructs the cotransfection of Sp1 even enhanced the 

promoter activity after in vitro methylation (Fujita et al. 2000). However complete 

methylation of 5-LO promoter constructs with SssI methylase abolishes promoter activity 

(Uhl et al. 2002; Klan et al. 2003), suggesting that Sp1/Sp3 binding and transactivation is 

inhibited. 

The gel shifts performed with nuclear extracts from HeLa and MM6 cells and the three 

different 5-LO promoter probes indicate differential binding characteristics of Sp1 depending 

on the surrounding promoter context and the complexity of the GC box. Clearly Sp1 binding 

to the 5-fold GC box and the consensus motif GC4 is impaired, when surrounding 

methylation sites are methylated, and almost abolished, when the GC box itself becomes 

methylated (compare Fig. 54 lanes 6, 10 and 14 and Fig. 58 lane 8 and 15). The slowest 

migrating band appears to be formed by Sp1 binding, since recombinant Sp1 protein shows 

the same migration height (compare Fig. 54 lane 3 and lane 6). Sadly supershift experiments 

did not work, thus it was not possible to identify the two faster migrating bands. Presumably 

these bands consist of the different Sp3 isoforms, since in other studies with HeLa cells the 

same gel shift patterns are produced and the bands disappear, when specific competitor is 

added (Zhu et al. 2003). Also Sp1 and Sp3 binding to all three sites has been demonstrated in 

DAPA. Both, methylation around GC4 (equivalent to in vitro HpaII methylation) and 

methylation of the site itself, lead to recruitment of an unidentified protein or protein 

complex. Mutation of the same sites in the reporter gene study (compare Fig. 51, construct 

N13MMIII) did not alter promoter activity after in vitro methylation.  

Looking at the 5-fold GC box, the recombinant Sp1 shift completely disappears when the 

probe is methylated (compare lane 8 and lane 15 in Fig. 58 page 101). However the Sp1 band 

produced with nuclear extract is hardly recognizable. The specific competitor does not 

completely prevent protein binding to this site, indicating some kind of competition between 

DNA binding proteins. In this case it is reasonable that Egr1 competes with Sp1 binding. Egr1 

binding to the 5-fold GC box has been demonstrated before (Silverman et al. 1998). No other 

Egr1 binding site within the proximal 5-LO promoter was identified in the same study. Since 

the consensus binding site for Egr1 is –GCGGGGGCG- the specific competitor used in our 

gel shift experiments would not reduce Egr1 binding. The addition of the specific competitor 

even produces a more distinct band, when the probe is methylated. However only a supershift 

would help to identify the new band. So far it is unclear if Egr1 binding is influenced by DNA 



 Discussion  

119 

methylation. If the slower migrating bands are really produced by Sp3 binding, Sp3 seems to 

bind better to the 5-fold GC box than to the consensus motif GC4.  

Interestingly, Sp1 binding to the non-consensus motif is increased after methylation of the 

surrounding CpG sites (see Fig. 56 and Fig. 57). However to both the unmethylated and 

methylated probe rather Sp3 seems to bind than Sp1. Also other than Sp protein binding to 

this site is demonstrated, since the competitor does not relieve the signal of the faster 

migrating bands.  

From these data it is clear, that DNA methylation, depending on its degree, at least reduces 

(HpaII and HhaI methylation) if not abolishes promoter activity (SssI methylation). At least 

during the establishment of complete DNA methylation HDAC activity is involved, indicated 

by the increased effects of the histone deacetylase inhibitor TsA on promoter activity after 

partial methylation by HpaII and HhaI. Later or after complete methylation TsA does not 

reverse the repressing effect of DNA methylation anymore, being in line with the idea, that 

DNA methylation is the final step in transcriptional shut down.  

The gel shifts demonstrate, that DNA methylation interferes with Sp1 binding to the 

activating binding sites GC4 and the 5-fold GC box. Additionally so far unidentified protein 

binding is enhanced after methylation most prominently to GC4. The methylation around 

GC5 induces Sp1 binding to this site, but Sp1 does not seem to be the major factor binding to 

this site.  

The cotransfection study suggests an involvement of MBD1 in the regulation of the 5-LO 

promoter. However the data do not provide clear evidence of a specific binding site. 

Supershift studies in combination with ChIP assays also proving in vivo binding should be 

performed in the future.  
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6 Summary 

5-LO is the key enzyme in the biosynthesis of proinflammatory leukotrienes, converting 

arachidonic acid to 5-HPETE, and in a second step 5-HPETE to leukotriene A4. Apart from 

the multiple regulation mechanisms on the enzyme level, also regulation of 5-LO gene 

expression is far more complex than originally expected. Although the 5-LO promoter 

possesses characteristics of so-called housekeeping genes, such as lack of TATA/CCAAT 

boxes and existence of several Sp1 binding sites, the 5-LO gene is tissue-specifically 

expressed in primarily immune competent cells of myeloid origin including granulocytes, 

monocytes, macrophages, mast cells and B-lymphocytes. So far two major mechanisms of 

5-LO gene regulation have been identified, but are far from understood. 5-LO gene expression 

in MM6 and HL-60 cells is strongly induced after differentiation of the cells with TGFβ and 

1,25(OH)2D3. Up to now, it is unclear how both agents exactly stimulate expression. It seems 

that improved transcript elongation and maturation are involved. In some monocytic cancer 

cell lines, such as HL-60-TB and U937, TGFβ and 1,25(OH)2D3 treatment are not able to 

activate 5-LO gene transcription. It was demonstrated, that in these cell lines the 5-LO core 

promoter is heavily methylated and that only demethylation by the DNA methyltransferase 

inhibitor 5-aza-2`-deoxycytidine (Adc) upregulated the 5-LO mRNA levels. It was also 

shown that the histone deacetylase inhibitor TsA could induce 5-LO mRNA levels, but only 

in 1,25(OH)2D3/TGFβ inducible MM6 cells. Interestingly the 1,25(OH)2D3/TGFβ effect on 

5-LO expression is reduced, when combined with TsA. Already from these previous data one 

can assume multiple regulatory mechanisms on the transcriptional level of 5-LO, from the 

complete shut down of 5-LO gene expression by DNA methylation to facultative and to 

induced 5-LO gene transcription involving epigenetic mechanisms and 

differentiation-induced upregulation by 1,25(OH)2D3/TGFβ. The work presented here focused 

on the regulation of the 5-LO promoter by DNA methylation and histone deacetylation.  

In the first part of my studies, the upregulation of 5-LO mRNA levels by the histone 

deacetylase inhibitor TsA was investigated. Reporter gene assays revealed that 5-LO 

promoter activity is strongly induced after 24 h treatment with 330 nM TsA (construct N10 up 

to 35-fold in HeLa cells). The effect is dependent on the presence of the proximal Sp1 binding 

site GC4 (-53 bp to –48 bp in relation to the major TIS) in both HeLa and MM6 cells. In vitro 

binding of the transcription factor Sp1 to this site has been demonstrated in gel shift assays 

and DNase I footprints. Mutation of the binding site resulted in a loss of basal promoter 

activity in both 5-LO negative HeLa cells and in 5-LO positive MM6 cells, as well as in the 
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loss of TsA inducibility. The mutational study of different Sp1 binding sites in a larger 

promoter context revealed the interaction or respectively the additive effect of the multiple 

Sp1 binding sites of the 5-LO promoter on basal as well as on TsA upregulated promoter 

activity. However, GC4 seems to be of special relevance for both the basal promoter activity, 

possibly recruiting the basal transcription machinery, as well as for the TsA induced 

upregulation of 5-LO promoter activity. TsA does not alter the protein expression levels of 

Sp1 and Sp3 as investigated in Western blot analysis, neither in HeLa nor in MM6 cells. DNA 

affinity purification assays revealed that TsA had no effect on the DNA affinity of Sp1 or 

Sp3. In vitro binding of both Sp1 and Sp3 to the 5-fold GC box, GC4 and GC5 was 

demonstrated by DAPA analysis, but histone deacetylase inhibition did not change the 

associated protein amounts. Finally, in vivo binding of Sp1 and Sp3 was investigated in 

chromatin immunoprecipitation assay (ChIP) in MM6 cells. TsA clearly induced the 

association of both proteins to the promoter area surrounding the TIS. Upon TsA treatment 

also RNA polymerase II binding to the area surrounding the TIS (-318 to +52 bp) was 

increased and even initiated in the more distal promoter parts –1049 to –292 bp, which are 

negatively regulated in reporter gene assays. Interestingly histone H4 is already highly 

acetylated without TsA treatment and the acetylation status of H4 remains unchanged after 

histone deacetylase inhibition, indicating an open chromatin structure of the 5-LO gene in 

MM6 cells. In a cotransfection study with Sp1 and Sp3, the transactivating potential of factors 

was investigated and in accordance with the ChIP data, Sp1 and Sp3 increased the promoter 

activity, but only after TsA treatment. 

Since alterations in chromatin structure do not seem to be the reason for increased Sp1/Sp3 

binding to the 5-LO promoter, we assumed that TsA might trigger post-translational 

modifications of the transcription factors, such as acetylation, which in some cases facilitated 

DNA binding or transactivation. However in DNA affinity purification assays, I could not 

show increased binding of acetylated Sp1 or Sp3, not even identify the acetylation at all. 

Immunoprecipitation studies in our lab so far could not demonstrate an increase in Sp1 or Sp3 

acetylation either. 

In order to identify the HDAC activity recruited by the Sp1/Sp3 binding sites, we also 

performed DAPA, HDAC2 association was detected, but unspecifically. No other HDAC 

recruitment could be demonstrated, nor association of the histone acetyltransferases p300 or 

PCAF. At least in immunoprecipitation studies performed in our lab interaction between Sp1 

and HDAC1 as well with HDAC2 was demonstrated. TsA did not alter the association 

though.  
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In gel shift assays, the influence of DNA methylation on Sp1 binding was investigated. The 

results indicate different roles for the three proximal promoter sites. Whereas Sp1 binding to 

the 5-fold GC box and GC4 is impaired by DNA methylation, binding to GC5 is even 

increased. The data also indicate, that possibly rather Sp3 than Sp1 is recruited to this 

non-consensus binding site independent of the methylation state. However, so far no 

supershift experiments were performed to prove Sp3 binding. Interestingly, DNA methylation 

not only decreases Sp1 binding to GC4 and the tandemized GC box, but also leads to 

prominent association of so far unidentified protein to thess promoter regions. A 

cotransfection study with methylated 5-LO promoter constructs and the murine 

methyl-CpG-binding proteins suggest MBD1 involvement in the regulation of the 5-LO 

promoter. A following mutational analysis of the different methylation sites within the 

proximal promoter area (-78 bp to +53 bp in relation to TIS) could not relieve the repressive 

effect of Mbd1 cotransfection. Thus it was not possible to identify a specific binding site for 

Mbd1. The reporter gene assays with in vitro methylated promoter constructs demonstrated 

increased HDAC recruitment after partial promoter methylation and complete loss of 

promoter activtiy after complete methylation. Since in gel shifts Sp1 binding is inhibited by 

DNA methylation, at least to the 5-fold GC box and the activating element GC4, and similarly 

the mutation/deletion of the same sites strongly reduces or inhibits promoter activity, it is 

likely to assume, that the loss of promoter activity after in vitro methylation is in the first 

place due to impaired Sp1/Sp3 binding. In future studies it would be of strong interest to 

investigate Sp1/Sp3 in vivo binding in a methylated 5-LO promoter area. Together the data 

underline the importance and complexity of Sp1/Sp3 binding to the GC-rich sites in the 

regulation of 5-LO promoter activity in response to the histone deacetylase inhibitor TsA as 

well as in respect to DNA methylation.  
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7 Zusammenfassung 

Die 5-Lipoxygenase ist das Schlüsselenzym in der Leukotrienbiosynthese. Sie katalysiert den 

Einbau von molekularem Sauerstoff in Arachidonsäure zur 5-HPETE (5(S)-Hydroxyperoxy-

6-trans-8, 11, 14-cis-eicosatetraensäure) und in einer weiteren Reaktion den Umbau der 

5-HPETE zum instabilen Epoxid Leukotrien A4 (LTA4). Neben den vielfältigen 

Regulationswegen auf Enzymebene, gestaltet sich auch die Regulation der 

5-LO-Genexpression weit komplexer als zunächst erwartet. Obwohl der 5-LO-Promotor 

einige Eigenschaften von sogenannten Haushaltsgenen aufweist, wie das Fehlen einer TATA- 

oder CCAAT-Box und das Vorhandensein zahlreicher Sp1-Bindungsstellen, wird die 

5-Lipoxygenase zelltyp-spezifisch exprimiert, vorwiegend in immunkompetenten Zellen wie 

Granulozyten, Monozyten, Makrophagen, Mastzellen und B-Lymphozyten. Bisher konnten 

zwei wichtige Mechanismen der 5-LO-Genregulation beschrieben werden, die induzierte 

Genexpression nach Vitamin D3- und TGFβ-Behandlung, sowie die epigenetische Regulation 

durch DNA-Methylierung.  

In den beiden Krebszelllinien, MM6 und HL-60, nimmt die 5-LO-mRNA-Menge nach 

Differenzierung der Zellen mit 1,25(OH)2D3 (Vitamin D3) und TGFβ dramatisch zu (43-fach 

nach 24-stündiger Behandlung in MM6-Zellen). Bisher ist allerdings unklar, wie die beiden 

Agenzien die Expression stimulieren. Zumindest scheinen sowohl die Transkriptions-

elongation als auch die mRNA-Reifung involviert zu sein.  

In anderen monozytären Krebszelllinien dagegen, U937 und HL-60TB, konnten TGFβ und 

1,25(OH)2D3 die 5-LO-Transkription nicht aktivieren. Im gleichen Zusammenhang konnte 

gezeigt werden, dass die DNA des 5-LO-Kernpromotors in diesen 5-LO negativen Zelllinien 

stark methyliert vorliegt. Nur nach einer Demethylierung des Promotors mit 

5-Azadeoxycytidin konnte die 5-LO-mRNA-Menge durch 1,25(OH)2D3/TGFβ gesteigert 

werden.  

Auch die Behandlung mit dem Histondeacetylase-Hemmer Trichostatin A (TsA) erhöht die 

5-LO-mRNA-Menge (11-fach), allerdings nur in 1,25(OH)2D3/TGFβ-induzierbaren 

MM6-Zellen. Unerwarteter weise führt die Kombination von TsA und 1,25(OH)2D3/TGFβ im 

Vergleich zu 1,25(OH)2D3/TGFβ alleine zu einer verringerten 5-LO-Expression (17-fach 

versus 43-fach).  

Diese Daten zeigen, wie vielfältig die 5-LO-Transkription reguliert wird, ausgehend von der 

völligen Stilllegung des Gens, über eine fakultative bis hin zur induzierbaren Genaktivierung, 

die sowohl epigenetische Mechanismen als auch eine 1,25(OH)2D3/TGFβ-abhängige 
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Induktion einschließen. Die hier präsentierte Arbeit legt ihren Schwerpunkt auf die 

Untersuchung der Regulation des 5-LO-Promotors durch DNA-Methylierung und 

Histondeacetylierung.  

Der erste Teil befasst sich mit dem Einfluss des Histondeacetylase-Hemmers TsA auf die 

5-LO-Genexpression. In Reportergenstudien zeigte sich, dass die 5-LO-Promotoraktivität 

nach einer 24-stündigen Behandlung mit TsA stark induziert wurde, 35-fach für das 

Promotorkonstrukt N10 ( -778 bp bis +53 bp in Bezug auf den Haupttranskriptionsstart der 

5-LO) in 5-LO-negativen HeLa-Zellen, 6-fach in 5-LO-exprimierenden MM6-Zellen. Auch 

die 5´-Promotordeletionsvarianten N11, N12 und N13 zeigen eine erhöhte Promotoraktivität 

im Reportergenassay nach TsA-Behandlung. Erst das Minimalkonstrukt N14 (-31 bp bis 

+53 bp in Relation zum Transkriptionsstart) reagiert nicht mehr auf eine Hemmung der 

Histondeacetylierung. Im Unterschied zum Reportergenplasmid N14, enthält N13 (-78 bp bis 

53 bp) eine weitere Sp1-Bindungsstelle, die GC-Box 4 (-53 bp bis –48 bp in Relation zum 

Transkriptionsstart). 

In-vitro wurde die Bindung des Transkriptionsfaktors Sp1 an dieses Element bereits in 

EMSAs und DNase I-Footprints gezeigt. Die Mutation der Bindungsstelle im 

Promotorkonstrukt N13 führt sowohl zum Verlust der basalen Promoteraktivität als auch der 

TsA-Induzierbarkeit sowohl in 5-LO-negativen HeLa-Zellen als auch in 5-LO-positiven 

MM6-Zellen. Eine Mutationsanalyse in einem größeren Promotorkontext verdeutlicht sowohl 

bei der Regulation der basalen als auch der TsA-induzierten Aktivität das Zusammenspiel 

bzw. den additiven Effekt der einzelnen Sp1-Bindungsstellen im 5-LO-Promotor. Außer der 

GC-Box 4 enthält der 5-LO-Promotor im Bereich –294 bp bis +53 bp weitere acht 

Sp1-Bindungsmotive, darunter eine 5-fach GC-Box. Die additive Mutation/Deletion dieser 

proximalen GC-Boxen GC1, GC2, GC4, GC5 und der 5-fach GC-Box im sonst aktivsten 

Promotorkonstrukt N10 heben die Promotoraktivität völlig auf. Allerdings haben die 

einzelnen Mutationen der Sp1-Bindungsstellen bei intakter 5-fach GC-Box im Konstrukt N10 

deutlich weniger Einfluss auf die basale Promotoraktivität und Induzierbarkeit durch TsA, als 

bei Deletion der 5-fach GC-box in dem Konstrukt GC0, was auf ein Zusammenspiel der 

einzelnen Elemente hindeutet. Trotzdem zeigt gerade die GC-Box 4 auch im größeren 

Promotorkontext einen besonderen Stellenwert sowohl für die basale Aktivität, 

möglicherweise durch die Rekrutierung der basalen Transkriptionsmaschinerie, als auch für 

die TsA-induzierte Hochregulation der 5-LO Promotoraktivität.  

TsA zeigt weder in HeLa- noch in MM6-Zellen einen Einfluss auf die Proteinexpression von 

Sp1 und Sp3. Mittels einem „DNA Affinitäts- und Aufreinigungsassay” (DAPA) wurde die 
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in-vitro Bindung von Sp1 und Sp3 an die verschiedenen proximalen Sp1-Bindungsstellen im 

5-LO Promotor, die 5-fach GC-Box, die GC-Box 4 und GC-Box 5 nachgewiesen. TsA zeigte 

in diesen Versuchen keinen Einfluss auf die Bindungsaffinitäten von Sp1 und Sp3.  

Wenn Sp1 und Sp3 mit den N13-GC-Mutanten im Reportergenassay kotransfiziert wurden, 

zeigte sich nur unter TsA-Behandlung eine Steigerung der 5-LO-Promotoraktivität, besonders 

wenn GC-Box 4 oder GC-Box 5 alleine mutiert waren (jeweils 11,7-fach und 4,5-fach), was 

auf eine Interaktion der beiden Bindungsstellen hindeutet. Der unmutierte Minimalpromotor 

in N13 wird durch Sp1 nur 3-fach induziert. Die Sp3-Expression zeigte keine nennenswerten 

Effekte, führte aber auch zu keiner Erniedrigung der Sp1-induzierten Promotoraktivität durch 

eine mögliche Kompetition, wenn beide Expressionsplasmide kombiniert wurden.  

Schließlich wurde die in-vivo Bindung von Sp1 und Sp3 in Chromatin-

Immunopräzipitationsstudien in Abhängigkeit von TsA untersucht. TsA induzierte deutlich 

die Sp1- und die Sp3-Bindung in den untersuchten MM6-Zellen, besonders im proximalen 

Promotorbereich von –318 bp bis +52 bp, der alle proximalen GC-Boxen und den 

Transkriptionsstart umfasst. Neben einer Zunahme der Sp1 und Sp3- Bindung induziert TsA 

auch die Rekrutierung der RNA-Polymerase II, auffälligerweise auch in den distalen 

Promoterarealen, die sich im Reportergenassay als negativ regulierte Bereiche erwiesen haben 

(-1049 bp bis –292 bp). Interessanterweise zeigt TsA keinen Einfluss auf den 

Histonacetylierungsgrad des 5-LO-Promotors. Selbst in unbehandelten MM6-Zellen zeigt sich 

bereits eine prägnante Acetylierung von Histon H4. 

Es ist daher anzunehmen, dass in dieser Zelllinie die Chromatinstruktur auch ohne 

TsA-Behandlung weitgehend offen und daher leicht zugänglich für Transkriptionsfaktoren 

und die RNA-Polymerase II ist. Im Reportergenassay aktivieren Sp1 und Sp3 den 

5-LO-Promotor, allerdings nur nach einer TsA-Behandlung der transfizierten Zellen. Da im 

ChIP-Versuch die Sp1/Sp3-Bindung unter TsA zunimmt, liegt die Vermutung nahe, dass TsA 

die Promoter-Aktivität durch eine Verbesserung der Sp1/Sp3-Bindung induziert.  

Da Veränderungen der Chromatinstruktur, zumindest bzgl. der Histonacetylierung, nicht der 

Grund für eine verstärkte Sp1/Sp3-Bindung zu sein scheinen, nahmen wir mögliche 

posttranslationale Veränderungen von Sp1 und/oder Sp3, wie z. B. eine Acetylierung an, die 

in einigen Fällen die DNA-Affinität oder die Transaktivierung dieser Transkriptionsfaktoren 

erhöht. Leider konnte diese Annahme nicht bestätigt werden. Im DAPA ließ sich keine 

Bindung von acetyliertem Sp1 oder Sp3 nachweisen. Mit Hilfe der Immunpräzipitation 

konnte zwar eine Acetylierung von beiden Transkriptionsfaktoren gezeigt werden, aber keine 

Zunahme von acetyliertem Sp1 oder Sp3 nach TsA-Behandlung der Zellen.  
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Die TsA-vermittelte Induktion der 5-LO-Promotoraktivität und Genexpression deutet auf eine 

Rekrutierung von Histondeacetylasen hin. Die Daten der Mutationsanalyse im 

Reportergenassay zeigen, dass TsA seinen Effekt vorwiegend über die GC-Box 4 ausübt. 

Mittels DAPA sollte festgestellt werden, welche Histondeacetylase über diese 

Sp1-Bindungsstelle rekrutiert wird. Außerdem wurde eine mögliche Bindung an die 5-fach 

GC-Box und an GC-Box 5 untersucht. Sp1 und Sp3 binden an alle drei proximalen 

GC-Boxen etwa gleich stark, unabhängig von einer TsA-Behandlung. Leider konnte keine 

spezifische Rekrutierung von Klasse I-HDACs (HDAC1, 2, 3 und 8) gezeigt werden. 

HDAC1, 3 und 8 ließen sich nicht nachweisen und HDAC2 assoziert mit allen Proben, auch 

der Negativkontrolle ohne DNA-Sonde. Auch die Detektion der Histonacetyltransferasen 

p300 und PCAF scheiterte in diesen Versuchen. Leider zeigte auch die Kotransfektion von 

HDAC1, 2, 3 und 8 nicht die erwartete Abnahme der 5-LO-Promotoraktivität im 

Reportergenassay unabhängig von einer TsA-Behandlung sowie einer Sp1-Kotransfektion.  

Aus den bisherigen Daten lässt sich zusammenfassend sagen, dass die TsA-vermittelte 

Erhöhung der 5-LO-mRNA Menge sowie die gesteigerte Promotoraktivität in MM6-Zellen 

wohl durch eine verbesserte in-vivo Bindung des Transkriptionsfaktors Sp1, sowie eine 

vermehrte Rekrutierung der RNA Polymerase II vermittelt wird. Leider konnte bisher nicht 

direkt nachgewiesen werden, ob und welche Histondeacetylasen oder auch 

Histoneacetyltransferasen vom 5-LO-Promotor rekrutiert werden.  

Im zweiten Teil der Arbeit sollten Promotorsequenzen im 5-LO-Promotor ausfindig gemacht 

werden, die eine Rolle in der Regulation der 5-LO-Transkription durch DNA-Methylierung 

spielen. Die mögliche Rekrutierung von Methyl-CpG-bindenden Proteinen, sowie der 

Einfluss der DNA-Methylierung auf die Sp1-Bindung sollten näher beleuchtet werden. 

In Reportergenstudien wurde zunächst der Effekt einer in-vitro Methylierung auf die 

Promotoraktivität verschiedener 5-LO-Reportergenplasmide untersucht. Dabei zeigte sich, 

dass eine Methylierung aller CpG-Stellen des hochaktiven Reportergenkonstruktes N10 zu 

einer totalen Aufhebung der Promotoraktivität führt (51-fache Reduktion der 

Promotoraktivität). Auch eine partielle Methylierung des Promotors durch Methylasen mit 

spezifischerem Erkennungsmotiv senkt die Promotoraktivität signifikant (12-fach bzw. 

5-fach). Die Reduktion der Promotoraktivität korreliert mit der Anzahl der methylierten 

CpG-Stellen, wie sich auch bei einer Methylierung der Deletionsvarianten N11, N12 und N13 

zeigt.  

Die Reportergenassays zeigten auch eine verstärkte Rekrutierung von HDAC-Aktivität 

zumindest bei partieller Methylierung des Promotors und einen totalen Verlust an 



 Zusammenfassung  

127 

Induzierbarkeit durch den Histonedeacetylase-Inhibitor TsA bei Methylierung aller 

CpG-Dinukleotide. Da DNA-Methylierung und Histondeacetylierung in der Regel Hand in 

Hand gehen, ist eine verstärkte Rekrutierung von HDACs wahrscheinlich. Nach vollständiger 

Methylierung des Promotors kann TsA durch eine Änderung des Histonacetylierungsgrades 

aber anscheinend die Promotoraktivität nicht mehr induzieren. 

In EMSAs wurde der Einfluss der DNA-Methylierung auf die Sp1-Bindung untersucht. Die 

Ergebnisse deuten auf verschiedene Funktionen der drei proximalen Bindungsstellen im 

Zusammenhang mit einer DNA-Methylierung. Während die Sp1-Bindung an die 5-fach 

GC-Box und GC-Box 4 infolge der DNA-Methylierung abnimmt, stimuliert die Methylierung 

benachbarter CpG-Stellen die Bindung von Sp1 an GC-Box 5. Interessanterweise verhindert 

die DNA-Methylierung nicht nur die Sp1-Bindung an GC4 und die Tandem-GC-Box, sondern 

fördert deutlich die Proteinbindung eines bisher unidentifizierten Proteins. Die 

Kotransfektionsstudie mit in-vitro methylierten 5-LO-Promotorkonstrukten und den murinen 

Methyl-CpG-Bindungsproteinen weist auf eine Rekrutierung von MBD1 hin. Allerdings 

konnte in Mutationsstudien keine direkte Bindungsstelle für MBD1 ausgemacht werden und 

die durch die Mbd1-Kotransfektion vermittelte Reduktion der Promoteraktivität nicht 

aufgehoben werden. Durch Supershiftexperimente im EMSA und ChIP-Versuche sollte die 

mögliche MBD1-Bindung nachgeprüft werden.  

Da in den EMSAs die Sp1-Bindung durch DNA-Methylierung verhindert wird, zumindest an 

die aktivierenden Elemente, die 5-fach-GC-Box und die GC-Box-4, und eine Mutation bzw. 

Deletion der gleichen Sp1-Bindungsstellen im Reportergenassay zu einem Verlust der 

Promotoraktivität führt, ist es wahrscheinlich, dass die in-vitro Methylierung schon durch die 

verhinderte Sp1/Sp3-Bindung zu einer Senkung der Promotoraktivität führt. Es wäre von 

Interesse in der Zukunft die in-vivo-Bindung von Sp1/Sp3 am methylierten 5-LO-Promotor 

zu untersuchen.  

Zusammenfassend unterstreichen die Daten, wie wichtig und komplex die Sp1/Sp3-Bindung 

an die verschiedenen GC-reichen Sequenzen des 5-LO Promotors ist, sowohl in Bezug auf die 

Regulation durch den Histondeacetylase-Hemmer TsA, als auch in Bezug auf die Regulation 

durch DNA-Methylierung. 
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8 Abbreviations 

14-3-3  14-3-3 protein recognition site 
1,25(OH)2D3 1,25-dihydroxyvitamin D3 (calcitriol/1,25-dihydroxycholecalciferol) 
AA  arachidonic acid 
aa  amino acid 
AD  activation domain 
AdC  5-aza-2`-deoxycytidine 
AIA  aspirin-induced asthma 
ALXR  lipoxin A4 receptor 
AP-1/2  activating protein-1/2 
AR  androgen receptor 
ATA  aspirin-tolerant asthma 
ATF  activating transcription factor, also CREB 
ATG  translational start codon 
ATL  aspirin-triggered lipoxins 
ATP  adenosine triphosphate 
B  beads 
bp  base pair(s) 
BCL6  B-cell CLL/lymphoma 6 zinc finger protein 
BLT  leukotriene B4 receptor 
BTB  broad complex, tramtrack and bric-a-bric domain, also POZ domain 
BxPC-3 pancreatic carcinoma cell line 
Caco-2 human Caucasian colon adenocarcinoma cells 
CAT  chloramphenicol acetyl transferase assay 
CBP  CREB binding protein 
cDNA  copy DNA 
cds  coding sequence  
ChIP  chromatin immunoprecipitation assay 
CK2  casein kinase 2 
CLP  coactosin-like protein 
CMV  cytomegalie virus 
COX  cyclooxygenase 
COUP-TFII chicken ovalbumin upstream promoter transcription factor-II 
cPLA2  cytosolic phospholipase A2 
CREB  cAMP regulatory element-binding protein/cAMP-regulated enhancer 

binding protein 
CRSP  cofactors required for Sp1 activation 
CtBP  C-terminal binding protein 
CTCF  CCCTC-binding factor, zinc finger protein 
Cys  cysteine 
CysLT  cysteinyl leukotriene  
DAPA  DNA affinity purification assay 
DBD  DNA-binding domain 
DMSO dimethylsulfoxide 
DNA  desoxyribonucleic acid 
DNase I desoxyribonuclease I 
DNMT DNA methyltransferase 
DRIP  vitamin D receptor interacting proteins 
DTT  dithiothreitol  
EGFR  epidermal growth factor receptor 
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Egr1  early-growth response factor-1 
EKLF  erythroid Kruppel-like factor 
EMSA  electrophoretic mobility shift assays 
ER  estrogen receptor 
ER  endoplasmic reticulum 
ERK  extracellular signal-regulated kinase 
FCS  fetal calf serum 
FEV  forced expiratory volume 
FLAP  5-lipoxygenase activating protein 
GATA  transcription factor binding to (A/T)GATA(A/G) 
GCN5  histone acetyltransferase, general control of amino-acid synthesis 5 
GM-CSF granulocyte macrophage colony stimulating factor 
GPCR  G protein coupled receptor 
GPx  glutathione peroxidase 
GR  glucocorticoid receptor 
Grb-2  growth factor receptor-bound protein 2 
GRIP-1 glucocorticoid receptor-interacting protein-1 
GSH  glutathione 
GST  glutathione S-transferase 
H  histone 
H3K9  histone 3 lysine 9 
HAT  histone acetyl transferase 
HCT116 human colon carcinoma cell line 
HDAC  histone deacetylase 
HDACi HDAC inhibitor 
HeLa cells epithelial cells derived from a cervix carcinoma 
HepG2 human hepatoma cell line 
Hep3B  human hepatoma cell line 
His  histidine 
HL-60 cells human promyeloic leukemic cell line 
HL-60TB HL-60 cells negative for 5-LO 
hLHR  human lueinizing hormone receptor 
HMT  histone methyltransferase 
HNF-4  hepatocyte nuclear factor 4 
HP1  heterochromatin-associated protein 1 
H(P)ETE hydro(peroxy)eicosatetraenoic acid 
HpODE hydroperoxyoctadecaenoic acid 
Hsp  heat shock protein 
HTERT human telomerase reverse transcriptase 
HUB  HDAC6-, USP3-, BRAP2-related finger 
HUVEC human umbilical vein endothelial cells 
IC50  half maximal inhibitory concentration 
ID  inhibitory domain 
IGFBP3 Insulin-like growth factor binding protein-3 
IL  interleukin 
Ile  isoleucine 
InvRep inverted repeat 
JNK  c-jun NH2-terminal kinase 
K  lysine 
kb  kilobase 
kDa  kilo Dalton 
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KLF  Kruppel like factor 
KO  knock out 
L  leucine 
LBD  ligand binding domain 
LDL  low-density binding protein 
LO  lipoxygenase 
LRD  ligand recognition domain 
LT(R)  leukotriene (receptor) 
LTA4H leukotriene A4 hydrolase 
LTC4S leukotriene C4 synthase 
LX(R)  lipoxin (receptor) 
Lys  lysine 
MAPK mitogen-activated protein kinase 
MBD(P) methyl-cytosine-binding domain (protein) 
MCAF MBD1-containing chromatin-associated factor 
MCF-7 human mammary gland epithelial cells 
mcs  multiple cloning site 
MeCP  methyl-CpG-binding protein 
MEF2  myocyte enhancer factor-2 
MEK  MAPK kinase 
MG63  human osteoblast-like cell line 
Mi2  SWI2/SNF2 type helicase 
MIA PaCa-2 pancreatic carcinoma cell line 
MIZF  MBD2-interacting zinc finger  
MM6 cells Mono Mac 6 cells 
mRNA messenger RNA 
NA  nicotinamide 
NCoR  nuclear receptor corepressor 
NE  nuclear extract 
NES  nuclear export signal 
NF-1  nuclear factor 1 
NFAT  nuclear factor of activated T-cells 
NF-Y  nuclear factor Y or CCAAT-binding protien 
NFκB  nuclear factor of κ-light polypeptide gene enhancer in B cells 
NIH3T3 mouse fibroblast cell line 
NLS  nuclear localization sequence 
NO  nitric oxide 
NR  nuclear receptor 
NSAID non-steroidal anti-inflammatory drug 
NuRD  nucleosome remodeling histone deacetylase complex 
Oct-1  octamer binding transcription factor 
oxoETE oxoeicosatetraenoic acid 
PAF  platelet-activating factor 
PBS  phosphate buffered saline 
PC  phosphatidylcholine 
PCAF  p300/CBP-associated factor 
PCNA  proliferating cell nuclear antigen 
PCR  polymerase chain reaction 
PG  prostaglandin 
PI 3-K  phosphatidylinositol 3-kinase 
PK  protein kinase  
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PL  phospholipase 
PLAT  Polycystin-1, Lipoxygenase, α-Toxin 
PMA  phorbol-12-myristate-13-acetate 
PML  promyelocytic leukemia 
PMT  posttranslational histone modification 
PMNL  polymorphonuclear leukocyte 
PMSF  phenylmethansulfonylfluoride 
POZ  poxvirus and zinc finger domain, also BTB domain 
PPAR  peroxisome proliferator activated receptor 
PR  progesterone receptor 
pre-mRNA precursor-mRNA 
RA  retinoic acid 
RAR  retinoic acid receptor 
Rb  retinoblastoma protein 
RBCE  retinoblastoma control element 
RE  response element 
REST  repressor element 1 silencing transcription factor 
RLU  relative light unit 
RNA  ribonucleic acid 
RNAi  RNA interference 
ROR  retinoid orphan receptor 
ROS  reactive oxygen species 
RT-PCR reverse transcription-polymerase chain reaction 
RXRα  retinoid X receptor alpha 
RZR  retinoid Z receptor 
S  serine 
SAH  S-adenosylhomocysteine 
SAM  S-adenosylmethionine 
SBE  Smad binding element 
SE  standard error 
SE14  Ser-Glu-containing tetradecapeptide repeat 
SEAP  secreted alkaline phosphatase 
Ser  serine 
SF-1  steroidgenic factor-1 
SH3  src-homology 
Sin3  SWI independent 
SIR  silent information regulator 
siRNA  small interfering RNA 
Ski  Sloan-Kettering Institute oncoprotein 
SKIP  Ski-interacting protein 
SL2  macrophage-like drosophila melanogaster cells 
Smad  Sma and Mad related protein 
SMRT  silencing mediator for retinoic acid and thyroid hormone receptors 
SMURF Smad ubiquitylation regulatory factor 
SNF  sucrose non-fermenter 
SNRNP small nuclear ribonucleoprotein polypetide N 
Sp1  serum protein1/specific protein1/selective promoter factor1 
sPLA2  secretory phospholipase A2 
SRC-1  steroid receptor coactivator-1 
STAT  signal transducers and activators of transcription 
STI  soybean trypsin inhibitor 
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SUMO sumoylation signal 
SV-40  simian virus-40 
SW620 human colon carcinoma cell line 
SWI  mating type switch 
TAFII  TATA-binding protein associated factor II 
TBP  TATA-binding protein 
TF  transcription factor 
TFIIB  transcription factor IIB 
TGFβ  transforming growth factor beta 
TGFβR TGFβ receptor 
TNFα  tumor necrosis factor alpha 
TGFβRE TGFβ responsive element 
TIS  transcription initiation site 
TRD  transcriptional repression domain 
Trp  tryptophane 
TsA  Trichostatin A 
TSS  translation start site 
U937 cells human lymphoma cell line 
UK Pan-1 pancreatic adenocarcinoma cell line 
UTR  untranslated region 
VDR  vitamin D receptor 
VDRE  vitamin D response element 
VPA  valproic acid 
w/o  without 
YY1  Yin-Yan-1 
ZBZB  zinc finger and BTB containing factor 
ZE  cell extract 
ZF  zinc finger 
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