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1 Introduction

1.1 Scope of the thesis

Rationalization of the drug discovery process is crucial to be e par future challenges in
human health care [Tollmaet al, 2001]. Technological developments like combinatorial
synthesis and high-throughput screening (HTS) had a large impatite drug discovery
process: hundreds of thousands up to millions of molecules can be testedbtodaingle
target [Bajorath, 2002]. Despite this large increase in asgmciti?@s such techniques have
not led to an increased number of approved new chemical entitigegeiXu & Agrafiotis,
2002]. One reason for this failure might be grounded in the focus onrlargkers of tested
molecules instead of high quality experiments, i.e. testingrifig¢ molecules. Computer
based methods might provide a means to rationalize these experimeorporating the
challenges provided by the high-throughput experiments [Agragota, 2002; Bleicheet
al., 2003; Bajorath, 2002].

Computational methods for the compilation of molecule-libraries fornpheological
screening are called virtual screening methods [Bohme & Schin&l@80]. Using such
methods one can restrict pharmacological screening to molecittes Wigh probability of
being active instead of testing all molecules accessible. WMtilei scope of this thesis virtual
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screening methods were developed, evaluated and applied with the aantribute to the
rationalization of the drug discovery process.

Virtual screening can either be applied by knowledge of ¢lseptor structure or of
active ligands [Bohm & Schneider, 2000]. The focus of this work was andipased virtual
screening methods for “scaffold hopping” [Schneidéeral, 1999]. the ability to retrieve
molecules that have a different topology compared to known active uiegetn other words
we were interested in methods that were able to retrieveadebvious hits from the vast
chemical space.

The CATS method is such an approach based on an alignment-free topologica
pharmacophore pair description of molecules [Schn&tal, 1999]. Molecules with similar
CATS descriptors are likely to evoke similar biological respanSesxce the binding of a
ligand to a receptor is a three-dimensional interaction, a thneensional extension of such
descriptors is an attractive approach and might improve theyatiilihe descriptor to find
isofunctional molecules.

The first goal of this thesis was to develop and evaluate naNghment-free
pharmacophore pair based descriptors for virtual screening, based twdé-dimensional
conformation of a molecule. Therefore the CATS approach was extaonded three-
dimensional pharmacophore pair descriptor (CATS3D) and a molecultacesinased
descriptor (SURFCATS). These methods were evaluated and optimyzéuk following
retrospective screening experiments:

» Comparison of different similarity metrics and scaling methods

» Dependence on the correct “receptor bound” conformation

» Comparison of the enrichment performance and “scaffold hopping” cdpatatin

CATS and MACCS substructure keys

» Combination of CATS3D with artificial neural networks

The second goal of the thesis was to develop and evaluate -@ithezesional “fuzzy”
pharmacophore model method for virtual screening. The fuzzy descrigtiomolecules
should result in a more general pharmacophore representation wlghh bei favorable to
retrieve isofunctional molecules with new scaffolds. The resuétppyoach was compared to
existing virtual screening methods.

The last goal was to apply the developed virtual screening meginosigectively to
retrieve novel inhibitors for the TAR RNA, the metabotropic glut@m@ceptor 5 and
taspasel. In quest of this goal the methods developed in this Wwesisemployed for a

prospective evaluation. Taspasel could not serve as test cabe fyahd-based methods
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since no inhibitors were known. For this project a homology model derivechabaphore
hypothesis was used for virtual screening, complementing thkodee developed in this

thesis.

1.2 The drug discovery process

The drug discovery and -development process can be illustraeddlye chain (Figure 1.1)
[Bleicheret al, 2003]. The initial step in this process is to identify a tafigeistly a protein)
that is associated with a disease state under consideratiorhaxdoan be modulated to alter
this state. Having identified a target, first hits have to be faumdnolecules which possess a
minimum biological activity. This can be achieved by high-througlsgoeening (HTS) of
large libraries of molecules or by modification of endogenous orpettar's ligands
available from literature or patents. The next step is tleedeaeration where the initial hits
are refined into leads or lead series, variants of prototypicatauiels with a unique core
structure, showing high in-vitro activity, selectivity and ifdis&ucture activity relationships
(SAR). Lead optimization includes further optimization of activéglectivity and of ADME
(absorption, distribution, metabolism and excretion) and toxicity prepeito obtain

molecules appropriate for the clinical trials.

target hit lead lead clinical
identification| generation | generation | optimization | phases

Figure 1.1Drug discovery value chain.

1.3 Chemoinformatics in the drug discovery process

The name “chemoinformatics” was introduced in 1998 for computationtdoate used for
improved decision making in the drug discovery process [Brown, 1998prdiag to the
book “Chemoinformatics” by Gillet and Leach [Leach & Gillet, 20@Bemoinformatics
methods include the handling of chemical libraries, calculatingithgarity and diversity of
compounds, clustering, predictions of properties and structure acgélatjonships. From the
viewpoint of drug design, computational techniques like docking [Kitokieal, 2004],
homology-modeling [Hillischet al, 2004], molecular mechanics [Karplus & McCammon,

2002], quantum chemistry calculations [Clark, 2003] or sequence alignderiiir et al,
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1998] are of relevance, too. These latter techniques are nasstigned to the fields of
computational chemistry or bioinformatics.

Applications of computational approaches were reported for each rstéqe idrug
discovery process. Designing libraries for HTS can be rdizmoh by chemoinformatics
methods [Schneider, 2002; Bajorath, 2002] incorporating “chemogenomicgégstsa
[Schuffenhaueet al, 2003] or ADME and “drug-likeness” considerations [Lipinskial,
1997; Ajayet al, 1998]. In lead optimization incorporation of computational models for
quantitative structure activity relationships (QSAR) or the incapmm of the receptor
structure facilitates the rational improvement of ligands [Kubib993; Hansclet al, 1995;
Kitchenet al, 2004].

1.4 Virtual screening

The number of chemically feasible molecules which could be in iplnwsed as drug
candidates has been estimated to b€°IWalters et al, 1998], which is larger than the
number of atoms in the universe. This number has two main consequastes should be
possible to find a ligand with appropriate characteristics fan éamogical macromolecule.
Second, it is absolutely impossible to test all these ligands experimentally

Virtual screening provides a means to enlarge the number of ledewhich can be
tested for some desired property by several orders of magnitudé& [Kgrafiotis, 2002].
Even though computational prediction of properties will probably neveaaediochemical
measurements, it is much faster. In this way large amounts of maleaunde excluded prior
to pharmacological experiments to avoid a waste of resourcaadi@cules which have a

high probability of not being active.
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Filter Description Library size

10" molecules

One-dimensional Discard molecules with
unfavorable drug-like properties, A
toxic groups, ...

Two-dimensional Selection of topological
similar molecules

Computation Target
speed specificit
Three-dimensional Selection of three-dimensional P P y
similar molecules
Four-dimensional Docking prediction of binding
affinity
v
n molecules

Figure 1.2 Hierarchical virtual screening. Virtual screening campaigres often organized
hierarchically. First simple and computationally fast filtare applied to remove undesired
molecules. Subsequent methods are increasingly accurate, morarpepdeific and often
computationally slower.

In virtual screening campaigns a hierarchical sequence of smecgha complex and
specific methods is often applied [Bleichetral, 2003; Bohm & Schneider, 2000] (Figure
1.2). Starting from a database of molecules (real or virtual mlelecthe first step of a
hierarchical virtual screening is to eliminate all molecwidsch have undesired properties.
These properties could be reactive or toxic groups or a violatitredfipinski “rule of five”
[Lipinski et al, 1997] which was suggested as a rule of thumb assessing the patsitial
bioavailability of a molecule. Another possible approach is to préugctdrug-likeness” or
the “lead-likeness” of molecules to consider only molecules lwpigssess some general
properties derived from the analysis of known drugs or lead molefAyay et al, 1998;
Sadowski & Kubinyi, 1998; Byvatoet al, 2003; Teaguet al, 1999]. Subsequently with
smaller libraries increasingly more target specific andpdational demanding approaches
can be applied. These methods range from similarity seardMitigtf et al, 1998] based on
topological or three-dimensional descriptions of molecules to -thireensional
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pharmacophore searching [GUner, 2000] and docking methods which also incorporate

receptor information [Kitchest al, 2004].

1.5 Molecular similarity

Many virtual screening methods search for molecules which iargars to a reference
molecule of known activity. This approach is called “similarigarghing” [Willett et al,
1998]. Given a suitable definition of similarity it has been demomstrahat similar
molecules have a higher chance of exhibiting a similar biolbgicavity than dissimilar
molecules [Brown & Martin, 1996; Martiet al, 2002]. A quality criterion for a similarity
searching method is the “neighborhood behavior” [Patteetoml, 1996]. A similarity
measure satisfies the neighborhood behavior criterion if modificatibasmolecule, which
lead to small changes in the molecular descriptor resutnall €hanges in the activity and
modifications which lead to large changes in the descriptor rasldtrger changes in the
activity.

No single method is best-suited for all targets and all smalkcules. Molecular
similarity is dependent on the context of the ligands chemoiypeshe receptor [Schneider
& So, 2003; Bender & Glen, 2004]. Different representations of moletutes on different
aspects of molecules and for different ligand-receptor complelrere tare different
interactions which are important for ligand-binding. Employing aieta of different
descriptors increases the probability to have an appropriate moleogtzding suitable for a
problem under consideration [Sheridan & Kearsley, 2002].

One difficulty for molecular similarity considerations is tha “fithess-landscape” of
molecules in drug discovery projects is often found to be multimadalthere are multiple
local optima found [Schneider & So, 2003]. The “fitness-landscape” igefadion of a
molecular descriptor (the landscape) with a desired propertyitiless), which can be e.g.
the binding affinity, selectivity or metabolic stability. An idéatness-landscape” would be
smooth with respect to the neighborhood of molecules. In such a “filaredscape” similar
molecules would exhibit similar properties. “Fitness-landscapgsesenting the QSAR of
molecules in drug discovery projects are believed to be jagdeddioraet al, 2004].
Maggiora compared ideal fithess-landscapes with the hills os&saand realistic fithess-

landscapes with the Bryce Canyon (Figure 1.3) [Maggoed, 2004].
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ideal fitness landscape realistic fitness landscape

Figure 1.3 Fitness-landscapes in drug discovery projects. Ideal fithedsdapes are smooth
and show few local optima. This would support the rational optimizatiomalécules.
Realistic fithess-landscapes are assumed to be jaggedladdvith local optima, which can
render the rational optimization of ligands impossible.

1.6 Scaffold hopping

A naive approach for similarity searching is to compare thkecular connection tables to
assess the similarity between two molecules. Such approaehreseported for searching the
maximum common substructure between two molecules [Raymond &t\WRIR02]. If a
structural element is known to be associated with activity, ott@ecules containing this
substructure can be retrieved and tested for activity [Barnard, 1998tawback of such
methods is the lack of the ability to retrieve molecules vatgdly different topologies. This
ability is called “Scaffold hopping” [Schneidet al, 1999]. Two molecules are considered to
have different scaffolds if they have different topologies [Bdtnal, 2004]. This idea is
based on the concept that drug-like molecules are built up fromffaldq@ramework) and
side-chains (Figure 1.4) [Bemis & Murcko, 1996].

scaffold sidechains

HZN
H2N
m ,, \ ” \/O
O

Figure 1.4. The atoms of a molecule can be separated into scaffold and sidechhe
scaffold determines the pharmacological properties, which can deetty variation of the
sidechains.
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Scaffold hopping is one of the most challenging goals in virtaedesiing. Ideal
virtual screening methods would not only find a maximum number bat alsaximum
diverse set of active compounds from a given chemical subspace. arbeseveral reasons
for seeking a set of diverse structures. Diverse structurestb# medicinal chemist a choice
in terms of chemical accessibility and prospects for lead @atran. Multiple leads
(“backup” leads) lower the chance of drug development attrition @ @d undesirable
ADMET properties [Jenkinst al, 2004]. Furthermore, the creation of intellectual property is
facilitated.

Different virtual screening concepts have been proposed for scaffobiRigofBohm
et al, 2004]. These include three-dimensional pharmacophore models [Good & Mason, 1996;
DeEschet al, 2001], pseudoreceptors [Lloyat al, 2004], protein structure-basel@é novo
design [Schneider & Fechner, 2005; Stahal, 2002], and ligand-based similarity searching
[Willett et al, 1998]. In contrast to the former methods similarity searchifgps®d on the
comparison of descriptor vectors rather than on the alignment of nesdouh reference and
can thus be applied efficiently for large datasets [Widetl, 1998].

From the viewpoint of a “fithess-landscape” the scaffold defthesregion of the
landscape that is accessible using different sidechains. Diffecaffolds might have some
overlapping regions in the “fitness-landscape”, but also some regibice might not be
accessible by other scaffolds. This behavior is especialpcttte if multiobjective “fithess-
landscapes” are considered [Gillettal, 2002]. Drugs have to satisfy many objectives like
tight binding, selectivity or acceptable ADMET properties. Défdr scaffolds provide a
higher chance of finding molecules that can access acceptaptmgein the “fitness-

landscape” for all these objectives.

1.7 The pharmacophore concept

It has long been recognized that some fragments of chemmacules can be mutually
exchanged without much affecting the biological activity. Suclgnfients are called
bioisosteric groups [Patani & LaVoie, 1996]. Bioisosteric groups nmediantical or similar
interactions with the receptor.

Ligand receptor interactions can be clustered into three general groups
“hydrophobic”, “polar positive” and “polar negative” [Horvaghal, 2004]. These groups can
be further broken down into “hydrophobic-alkyl”, “aromatic”, “hydrageond donor”,
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“cation”, “hydrogen-bond acceptor” and “anion”. Various definitions and coatlans of
these groups have been reported as pharmacophore atom-typesatardit¢Guner, 2000;
Bush & Sheridan, 1993; Pickett, 2003]. An object with an associated pharmacdpheris
called a potential pharmacophore point (PPP). PPPs can represestoatianger fragments
of a molecule.

Based on the spatial arrangement of PPPs of a ligand, a pharmadogtaitessis can
be derived. According to the IUPAC definition a pharmacophore isetheemble of steric
and electronic features that is necessary to ensure the ogtipr@molecular interactions
with a specific biological target structure and to triggertgoblock) its biological response”
[Wermuthet al, 1998]. Accordingly to define a pharmacophore, prior knowledge about the
importance of the PPPs of a molecule is needed. A pharmacophore cienivieel from
structure-activity data or from conserved features within aokdigands. Receptor-based
pharmacophores have also been reported [Pickett, 2003].

The most widely used application of pharmacophores is to searcleiomolecules
comprising the pharmacophore. These molecules are expected to kemiéaa biological
effect. If the relevant pharmacophore pattern is not known, one can utilize the
distribution of PPPs of molecules for similarity searching: édales that have similar
distributions of PPPs are likely to have a similar activity (neighborhood pe)cipl

The description of a ligand-receptor interaction by pharmacophores dsude
simplification which does not consider effects like entropy or satiam. Also some groups
like fluorine, which can interact like hydrophobic groups and as lggiirdoond acceptors

[Bobhmet al, 2004] are hard to model correctly by pharmacophore types.

1.8 Representation of molecules

The way the structure of a molecule is encoded has a majoenc# on the way how
molecules can be compared. Molecules can be represented eith&lbgonnection table or
by sets of substructures that are present or absent in the raolEkalfirst representation is
more detailed, but to establish a similarity calculation, molschkeve to be aligned or a
maximum common sub-graph between to molecules has to be calcukbedeet al, 2001,
Willett et al, 1998]. This can be a time-consuming procedure, especially foththe-
dimensional alignment of flexible molecules. The comparison optégence and absence of
substructures can be computed more efficient. Such methods aé ‘Gignment-free”.
Substructure similarity can be calculated on the basis of pmedesubstructure dictionaries
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(e.g. the MACCS keys [MDL Information Systems]) or on the basisolecule-specific
generated substructures (e.g. Daylight fingerprints [Daylighten@cal Information
Systems]). Substructures can be defined as exact chemigaieintés (e.g. MACCS), or
loosely defined like pairs, triplets or quartets of PPPs [Schneidd, 1999; Good & Kuntz,
1995; Masoret al, 1999]. Substructure descriptions like the MACCS keys contain onlly loca
descriptions neglecting the overall topology of the molecule.

Both kinds of molecular encodings are found combined with two-dimensional and
three-dimensional representation of molecules. Two-dimensional topdlogprasentations
of molecules have the advantage that the time-consuming calculatibneefdimensional
conformations for the molecules can be avoided. The stereocheofistiglecules can also
be left aside. On the other hand the binding event is a thremsgiomal interaction between
ligand and receptor. So it should be advantageous to include such inforrnigggonaive
assumption about the three-dimensional conformation of a molecule intieg-pocket
would be that the conformation of the molecule with the lowest intemaigy would be the
most likely to be found in the receptor. However it has been shibainthe “bioactive”
conformation, i.e. the conformation of a molecule bound to the receptorndibrscessarily
correspond either to the global torsion-angle energy minimum ortaéosin-angle energy
minimum at all [Nicklauset al, 1995; Bostronet al, 1998; Perola & Charifson, 2004]. In
practice, this renders the task of finding the “bioactive” con&dion of a molecule to the
computational demanding task of presenting a large number of logyenenformations.
While it is clear that methods, which are based on the ex{iiige-dimensional alignment of
molecules, strictly rely on the presence of a fitting confdiona alignment-free descriptors
have produced reasonable results using only a small set of contorsnati even a single
conformation [Sheridaat al, 1996; Brown & Martin, 1996].

A step further away from the atomic representation of moledsléhe description of
molecules based on their molecular surface. Since the interactwedneligand and receptor
is mediated by the molecular surfaces, surface-based testsi are thought to be more
general than atom based descriptions [Wagehe, 1995; Zamoraet al, 2003, Stiefl &
Baumann, 2003; Clark, 2004]. Field-based methods are another way tovantiem atom-
based description of a molecule [Craratal, 1988; Klebeet al; 1994; Pastoet al, 2000].
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1.9 Autocorrelation descriptors

Spatial autocorrelation is a quantitative measure for the prolyabilitnd objects of defined
properties within a distance of interest [Wagesteal, 1995; Todeschini & Consonni, 2000].
The idea of a molecular descriptor based on the autocorrelationptavae first introduced
into the field of cheminformatics by Morau and Broto in 1980 [Moreaur&td 1980] with
the ATS @Autocorrelation of &opologicalSructure) descriptor. For this approach the atoms
of a molecule were represented by properties like atomic angssrtial charge. The distance
between atoms was measured as the number of bonds betweeasjpeetive atoms
(topological distance).

The ATS descriptor for a given topological distadads calculated by:

A A

ATS =D > 0, 4(Ww,), (Eq. 1.1)

i=1 i=1

wherew is the atomic propertyA is the number of atoms in the moleculgq (Kronecker
delta) evaluates to 1 for all pairs of atoms with distahce

To obtain the full descriptor the ATS autocorrelation is calcdlateer all defined
distances and concatenated to a vect®F, ATS, ATS, ... , ATS}, where D is the
maximum distance considered. Moreau, Broto and Vandycke were al§osthwho applied
this approach to the three-dimensional conformation of a molecule [Meted, 1984]. For
the three-dimensional approach the topological distance was rephateel spatial Euclidean
distance between two atoms. Pairs of atoms were clusteregratps with distances falling
into predefined distance ranges (bins). All atom pairs withinbbmevere treated as having
the same distance. Gasteiger extended this approach to the apai@irrelation of the
partial charges calculated for surface points [Wageteal, 1995]. The resulting vector
values were normalized by dividing the raw counts by the numbatoof pairs in each
distance range.

In 2000 Pastor and coworkers [Pasttr al, 2000] presented GRINDG{id-
IndependenDescriptors), an approach very similar to the autocorrelatisorigors. The
GRIND descriptor is calculated from force field-based intéwacenergies calculated for
GRID [Goodford, 1985] points surrounding a molecule. Instead of summing ppodlicts
of interaction energies for pairs of GRID points within a distarenge, only the most
favorable energy contribution is stored for each distance rangen Giwkescriptor vector,
pairs of grid points can be identified that are responsible for eadnigler value. Such a
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trace back from the descriptor to the underlying pairs of gidts is not amenable to other
autocorrelation approaches.

In 1985 Carhart [Carhast al, 1985] introduced a topological atom pair descriptor
using atom-types instead of atom property values. Each atorsigned to one atom-type
class instead of an atom property value. Atom-types are ddiyéheir element, the number
of neighboring non-hydrogen atoms and their numbett-efectrons. The employment of
these atom-types led to a further distinction of chemical edsnaccording to the atom
environment. Binary values are assigned to each atom, i.e. an aterorddees not have a
specific atom-type. Consequently and in contrast to the Moreau-Brotoagpp the resulting
autocorrelation vector for an atom-type is equivalent to a histogoanting the frequencies
of the atom pairs of the considered atom-type over the differemb-atom distances.
Calculation of the autocorrelation between pairs of atoms of diffexom-types is called
crosscorrelation. The final Carhart descriptor vector consigteeaiutocorrelation vectors for
all atom-types and the crosscorrelation vectors of all pairs of diffe@nttgpes.

In 1996 Sheridan and coworkers [Sheridain al, 1996] were the first to use
pharmacophoric atom-types for an autocorrelation approach. This techniouidepr a
description presumably most relevant to characterize ligand-ogaaggractions in a general
way, allowing for more different but equally interacting molesuio be identified as similar.
In this work Sheridan and coworkers also extended the topologicalrCagproach to the
three-dimensional conformation of molecules. This approach was sdowddl up by a
binary representation of such a descriptor [Brown & Martin, 1996]. In 280& and
Baumann [Stief & Baumann, 2003] reported an autocorrelation approach udeesoints
representing pharmacophoric features.

The work of Schneider and coworkers [Schneieleal, 1999] first focused on the
applicability of the autocorrelation descriptors, in this case top@lbgharmacophores, for
scaffold hopping. The general description of the atoms with pharmacoatwretypes in
combination with the decomposition of molecules into atom-pairs wagnstwbe especially
successful to find new molecules with significant different mdbacscaffold, maintaining

the desired biological effect.

1.10 Retrospective and prospective screening

The effectiveness of a virtual screening method can be adsgs$wo ways: retrospective

and prospective screening. Given a reference molecule with known badlogffect,
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retrospective screening quantifies the ability of a method ti@vetmolecules with the same
biological activity from a database containing molecules withouarbiological activities
[Willett et al, 1998; Hertet al, 2004a; Heret al, 2004b; Xu & Agrafiotis, 2002]. Several or
all molecules of selected classes of biological activitiesvautually taken as reference for the
screening. For each individual virtual screening experiment, thecodek remaining in the
database are ranked according to the similarity or distance to trenfenolecule.

A method is considered successful if molecules with the same tethaeizivity (the
“active” molecules) as the reference are statisticallftebescored than molecules with
different annotated activities (“inactive” molecules). A shortcoming wbspective screening
is that it is mostly not known if molecules which are considerectiireafor one receptor are
true inactives or molecules for which the respective activity hats been tested
experimentally. It is likely that the latter situation represents #ienity of cases.

The most rigorous test for a virtual screening method is progpexireening. Only in
this way it is possible test the ability of a method to find naeélve molecules. On the other
hand, prospective screening requires much more effort in time atsdacwkconsequently in
most cases only a smaller number of experiments can be perfoasgiting in a less reliable
statistical assessment of the results. In the worst casedhld lead to a poor rating of a
method which was able to find similar molecules which were wactlue to small
unfavorable interactions to the receptor, like a steric clash &tomethyl group of the
molecule. Consequently it is best to probe a method by both retrospactiverospective

screening to obtain a realistic assessment of its performance.

1.11 Artificial neural networks in virtual screenin g -

machine learning based on molecular representations

Artificial neural networks (ANN) had a large impact on recent druggliesty projects [Zupan
& Gasteiger, 1999; Schneider, 2000; Terflot & Gasteiger, 2001; Livingtohtanallack,
2003]. Applications of ANNs are found for classification, prediction, vizadbn, and
clustering. One can distinguish between supervised methods like feadfanetworks and
unsupervised networks like self-organizing maps (SOM) [Kohonen, 1982]. Ssgwervi
methods establish a relationship between a representation of an abjaterest (e.g. a
molecular descriptor) and an observed response (e.g. a binding afimitglass affiliation).
Unsupervised methods cluster the data based on their representationpafoalar

implementation (SOM) projects a data distribution from a high-dgiemal space (i.e. the
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molecular representation) to a lower dimensional space (e.g-ditmensional for
visualization) [Kohonen, 1982].

In chemoinformatics, supervised ANNs are mainly applied inegtablishment of
quantitative structure activity relationships (QSAR), quantitatisteucture property
relationships (QSPR) or binary classification tasks [Schneider, 2B8INs provide a means
to establish in principle any linear or non-linear relationship éetwdescriptor and observed
data [Zupan & Gasteiger, 1999]. As a drawback, an ANN behaves lidack box: the
modeled relationship between the input variables is difficult toaeixtfLivingstone &
Manallack, 2003]. Applications of supervised neural networks rangedemaral predictions
like drug-likeness [Sadowski & Kubinyi, 1998; Ajat al, 1998] or the identification of
frequent hitters [Rochet al, 2002a] to more specific tasks like the prediction of binding to
the hERG K channel [Rochet al, 2002b] or to cytochrome P450 [Molnar & Keseru, 2002].

Unsupervised SOMs can be used for the projection of data into lowensional
space for visualization. This can be utilized for example to eteldidferent descriptor-
representation of molecules for their suitability to distinguishvéen different classes of
activities [Teckentruget al, 2004]. Comparison of diversity and coverage of chemical space
of chemical databases or combinatorial libraries were algorted for SOMs [Schneider &
Schneider, 2003; Anzaét al, 1998]. A trained SOM can also be used for the prediction of

class affiliation for new molecules [Schneidgal, 2003; Teckentrupt al, 2004].

1.12 Incorporating receptor structure information i nto

virtual screening

The binding-event is an interaction between ligand and receptoqg th&meceptor for virtual
screening should enhance the capability for scaffold hopping in cmopdp ligand-based
methods [Xu & Agrafiotis, 2002; Bohrat al, 2004]. The latter methods are intrinsically
biased towards the chemotypes of the reference molecules. &edoaped ranking of
molecules is independent of reference molecules. Structure-laggedaches provide a
rational basis for the establishment of new interactions betwgandl and receptor, not
realized in known ligands before. Using ligand-based approachesnteractions can only
be found by trial and error. Structure-based virtual screeningutar #om the difficulty in
scoring ligand-receptor complexes correctly [Halpeginal, 2002; Schneider & Bohm,
2002], the flexibility of the receptor upon ligand binding [Teague, 20&3d from

inaccuracies in protein structural models [Davis & Teague, 2003].
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Receptor information can also be exploited for the derivation afnphcophore
models [Pickett, 2003]:

= the alignment of ligands can be calculated on the basis of th@aef@rineberg,

2005].
= promising potential pharmacophore points derived from the receptor can be
incorporated into or solely used for a pharmacophore model [Wolbern§era
2005, Pirarcet al, 2005].
= receptor information can be used to disregard molecules, thatregaeded as
active by other methods, that overlap with receptor atoms [Pickett, 2003].
Following this idea, multiple receptor conformations obtained fromeoubdr dynamics
simulations were used to establish a receptor-based dynamic pbaptmee model, which
was successfully applied for the prediction of new HIV-1 integnmaisibitors [Carlsoret al,
2000].

If no receptor information is available, homology modeling of thepsxr structure
provides an approach for virtual screening [Hilliseh al, 2004; Bissantzt al, 2003;
Grineberg, 2005; Evert al, 2003; Evers & Klabunde, 2005]. Homology modeling is based
on the fact that the sequence of proteins is less conservedhéhsinucture [Chothia & Lesk,
1986, Andreevat al, 2004]. Consequently the structure of a protein can be predicted based
on the structure of a closely related protein. The quality ofrélselting model critically
depends on the sequence similarity of the modeled protein to theateraplcture [Hillisch
et al, 2004].

1.13 The metabotropic glutamate receptor 5 (mGIuR5)

Glutamate is the major excitatory neurotransmitter in theamalian central nervous system
[Conn & Pin, 1997]. The effect of glutamate is mediated by ionotrapit metabotropic
glutamate receptors, via pre- and postsynaptic mechanisms. Thedongiodulating effect
of glutamate is mediated by the metabotropic glutamatpters [Conn & Pin, 1997]. The
family of metabotropic glutamate receptors comprises a sat lefast eight subtypes. These
can be further clustered into three groups on the basis of secgismlegity, pharmacology
and the respective signal transduction mechanism. Group | (mGluRB)aark-coupled to
the activation of phospholipase C, group Il (mGIuR2 and -3) and group @lufR#, -6, -7,
and -8) are negatively coupled to cAMP production [Hermans & Challiss, 2001].
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The mGIuRs belong to family 3 of the G-protein-coupled receptorsCRSP
[Bockaert & Pin, 1999; Fredrikssaat al, 2003]. Other members of family 3 are the GABA
Cd*-sensing, vomeronasal, pheromone and putative taste receptoes &Pijr2003]. GPCRs
are characterized by a general topology of seven transmeenbedices. Class 3 GPCRs
differ from the other GPCR classes by the presence oflditiamal N-terminal extracellular
ligand binding domain, the venus-flytrap module (VFTM), connected toh#mtahelical
domain (HD) via a cystein rich region (Figure 1.5). Othess#a of GPCRs contain ligand
binding regions directly within the seven-transmembrane domain. FEM@RHCRs are found
as homodimers or heterodimers [Rinal, 2003]. Receptor dimerization does also include

dimerization of the venus-flytrap modules [Kunishigtal, 2000].

Venus Flytrap

Module (VFTM) glutamate

allosteric
modulators

Cys-rich
Domain (CRD)

Heptahelical
Domain (HD)

binding site

Figure 1.5 Topology of the metabotropic glutamate receptors. The receptoistofhsan

extracellular venus-flytrap module (PDB code: letw) for glatembinding, and a
heptahelical transmembrane domain (PDB code from the bovine rhodopsinrstrdé38),

which are connected by a Cystein-rich domain. Allosteric modslatund in the
transmembrane domain.
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The activation mechanism of mGIluRs involves several steps. Upon ghetdimnding
the venus-flytrap domain undergoes a large conformational changgngesula closure of
the venus-flytrap [Kunishima et al., 2000]. This leads to a modifikdive orientation of the
two VFTMs of a dimer. The activated dimer complex of the two MBTis assumed to
stabilize the active conformation of the heptahelical domainsegffah, 2004].

Like with many GPCRs, a basal “constitutive activity” can beasured without
ligand binding [Pinet al, 2004]. Agonists like the natural substrate glutamate stabiize t
active state via the VFTM. The “constitutive activity” is nathibited by competitive
antagonists that prevent the VFTM closure [Prezdaal, 1996]. Consequently neither the
active nor the inactive state of the heptahelical domain is predominantly stable

Recently molecules were reported that bind to an allosteric lginsit@ in the
heptahelical domain of mGIuR5 [Gaspareati al, 1999; O’Brienet al, 2003], i.e. in the
region where the ligand binding site is found in the other clagsé®CRs. These molecules
are called “allosteric modulators”. Allosteric antagonistsolwhstabilize the inactive state of
the heptahelical domain are called “inverse agonists”. Such modulatns able to
completely inhibit the “constitutive activity” and the effectagfonist binding in the VFTM
[Gaspariniet al, 1999]. Allosteric modulators which are able to stabilize thvexstate of
the receptor are “positive allosteric modulators”. These molg@alenot activate the receptor
by themselves, but have a potentiating effect on agonist bindingeffécs is assumed to be
caused in a stabilizing effect of the opened VFTM on the inastae of the heptahelical
domain [Pinet al, 2004]. If the VFTM is pruned from the heptahelical domain of mGIuR5,
positive allosteric modulators behave as conventional agonists whilsenagonists shown
antagonistic behavior [Goudet al,, 2004].

Group | mGIuRs provide a great prospect for pharmaceutical apphs. Molecules
antagonizing the function of mGIuR5 have a potential in prevention ofgparanxiety, and
in the treatment of Parkinson’s disease [Spooren & Gasparini, 200hs&we al, 2005]. A
potential role in the treatment of drug dependence has also beerddiirtamuleraet al,
2001]. Activators or potentiators of group | mGIuRs were proposed toehal usthe therapy
of schizophrenia and Alzheimer’s disease [&ial, 2004].

For GPCRs only the crystal structure of rhodopsin in the inactate $ias been
resolved, so far [Palczewskt al, 2000]. Homology models based on this structure were
shown to provide a basis for structure-based virtual screeninGR@R ligands [Evers &
Klebe, 2004; Evers & Klabunde, 2005]. Successful applications of homology-maxkl ba
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virtual screening for family 3 GPCRs have not been reported until adespite the fact that
such models have been published [Pagano et al., 2000; Malberbe 2003]. Many
allosteric modulators of mGIuR1 and mGIuR5 were reported in titeraThis also renders

MGIuURS a target for ligand-based virtual screening and library design.

1.14 RNA drug design and the Tat-TAR RNA interactio n

In recent years it has become clear that RNA is an actigfunctional player of the cell
instead of just a passive vehicle for sequence information [Spegiabl issues on RNA as
drug target]. RNA was found to have enzymatic functionality, e.gsekfesplicing intron of
the Tetrahymena pre-rRNA [Kruget al, 1982] or within the ribosome [Noll&t al, 1992].
Gene regulatory elements on the mRNA can have an effect omatiteeriptional and on
translational level. This effect can be mediated by spe&fNA-protein interactions and
directly by RNA-small molecule interactions [Mandal & Bregk 2004]. Such small
molecules can be the metabolites of the genes under control, e.g.(th@RMine
pyrophosphate) [Winkleet al, 2002a] or FMN (flavin mononucleotide) [Winklet al,
2002b]. With the RNAi mechanism, RNA was also found to participataniti-infective
responses [Dykxhooret al, 2003].

Together with these functionalities it was found that RNA «da ihto complex and
well defined three-dimensional structures. Like within proteins, tlveseplex structures
provide interfaces for specific intermolecular protein-RNA and lismalecule-RNA
interactions. These findings have led to a constantly increagieiggst in RNA as a potential
drug target with a plethora of potential applications [Zaman et al., 2003; Drgtddle2002;
Gallego & Varani, 2001; Sucheck & Wong, 2000], and several natural and syrsimetl|
molecules have been reported to interact specifically with RNA [Hermann,.2003]

In principle it is possible to employ the same approaches féx &MNg discovery as
for molecules targeting proteins [Hermann, 2000]. One differeacde found in the relative
importance of ligand-protein interactions and ligand-RNA intesasti The latter is biased
towards electrostatic and stacking interactions in comparisgmotein-ligand interactions
[Hermann, 2000]. This might raise complications with unspecific bindirggnaiil molecules
that comprise a large number of positive charges. In addition, very grotdvarged ligands
bear the danger of low oral bioavailability [Lipinsk&i al, 1997; Mayer & James, 2004].
Other problems might arise from unspecific stacking of moleoutgsh can lead to toxic
effects from DNA-intercalation [Snydet al, 2004]. Another difference between protein and
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RNA targets is the comparably high flexibility of RNA, espdyg of structures with low
structural complexity like stem-loop RNAs [Schroedeal, 2004]. For these structures it has
been found that different ligands result in ligand-receptor complexéslargely different
conformations of the RNA structure. A recent publication even regp@meRNA sequence
which was able to fold into two completely different tertiamustures with two different
enzymatic activities [Schultes & Bartel, 2000].

Beside these complications a structure-based automated docknogapmcluding a
scoring function optimized for RNA was shown to be useful for finding Isamal enriched
sets of molecules inhibiting the Tat-TAR interaction [Filiketval, 2000; Lindet al, 2002].
Other studies indicated that the inherent flexibility of RN#u&ures might limit the
applicability of entirely structure-based approaches [Wikam 2000; Gallego & Varani,
2001; Leulliot & Varani, 2001].

One of the best characterized RNA-based regulatory systeithe transactivation
response element (TAR) of the HIV mRNA [Karn, 1999]. Specific bindinthe Tat protein
to TAR is essential for virus transcription. Without bound Tat prategnelongation of the
HIV transcript is early aborted due to a poorly processive RNAnpaigse II. Bound Tat
recruits a Tat-associated kinase which activates the RNAmgofse. The activated

polymerase is able to synthesize the remainder of the HIV transcript, [K209].
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Figure 1.6 TAR RNA regulatory element. TAR RNA consists of two steop regions and a
bulge of three nucleotides. The bulge is responsible for the spetdiaction to the Tat
protein, essential for HIV replication.
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The TAR RNA represents a potential target for defeating Bd well as a model
system to deepen the understanding of RNA-small molecul@ati@ns and the development
of drugs for RNA targets in general. The structure of TAR isteef two rigid double strand
stems connected by a flexible bulge of three bases, which provsfescéic binding pocket
for the Tat protein [Karn, 1999] (Figure 1.6). A variety of moleculeseHaeen found that
inhibit the Tat-TAR interaction and consequently virus replicatiBrogyen & Herdewijn,
2002; Krebset al, 2003]. Among these molecules are peptidic derivatives of the binding
motive from Tat like argininamide, antibiotics like neomycin, ancktact small molecules
with non-natural scaffolds. Most classes of bulge-binding ligands, farttwmdtructures have
been determined, bind in distinct regions and stabilize different coafmns of the bulge
[Du et al, 2002].

The availability of a small set of RNA-ligand complex NMRustures renders the
TAR RNA as an interesting target for ligand and structure bastgaliscreening. The
reported problems in RNA docking make the ligand based approach maetiadt at

present.

1.15 Taspasel

Taspasel is a threonine aspartase which catalyzes the protetdgirage of MLL (Mixed-
Linage Leukemia) protein, resulting in its activation [Hse¢fal, 2003]. MLL is required for
the maintenance diOX gene expression in embryogenesis and hematopoiesis. Chromosome
translocations leading to chimera proteins of the N-terminus ofL Mind varying
translocation partners result in human infant leukemia. This affextsociated with an up-
regulation ofHOX genes. Specific inhibition of taspasel might present a possibilttgdd
human infant leukemia [Hsiedt al, 2003].

Taspasel cleaves MLL directly after an aspartate at twiigees with sequences
D/GADD and D/GVDD, respectively. An N-terminal threonine aets an active site
nucleophile for the cleavage reaction. Other known threonine proteastsiad in the 20S
proteasome and the archaea proteasome and the catalytic subtivetEsicherichia coli
(E.coli) HslV [Hsiehet al, 2003]. These proteases are not structurally related to taspasel.

Taspasel reveals sequence similarity to glycosylasparagarabd.-asparaginase,
which also have an N-terminal threonine involved in the reaction anesh.
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Glycosylasparaginases catalyze the cleavage of N-aketggamine-asparagine to 1-amino-
N-acetylglucosamine and aspartate. L-asparaginase cat#igzesnversion of L-asparagine
to L-aspartate. All three classes of proteins are translatesh inactive form. Activation
occurs by an autoproteolysis step catalyzed by the N-terminal threonieé @tlai, 2003].

Inhibitors have not been reported for taspasel, but crystal stauetiavailable for
glycosylasparaginases and L-asparaginases [Oinenhah, 1995; Prahlet al, 2004]. This
renders taspasel a target for homology-model based drug design.



2 Computational Methods

2.1 Correlation-vector based descriptors

Three types of correlation vector descriptors were applied irthbgss, which all belong to
the group of potential pharmacophore point (PPP) pair descriptorsogbhkdical CATS
descriptor [Schneideat al, 1999], the three-dimensional CATS3D descriptor and the surface-
based SURFCATS descriptor (Figure 2.1). Auto- and crosscorrelatioedretall types of
PPPs are transformed into a histogram, counting for the frequericies respective pairs of
PPPs. The pairs of PPPs are further subdivided into distance Vidmati were topological
distances in the two-dimensional case and distance ranges lmagbalimensional case. Each

dimension (“bin”) of the CATS3D CV was calculated according to Equation 2.1.

cv, =szjﬁd , (Eq. 2.1)
i

wherei andj are atom indices] is a distance or a distance ranges the pair of PPP

types of atoms andj, andJ; (Kronecker delta) evaluates to 1 for all pairs of atoms of Type

within the distance rang#

2.1.1 CATS

The CATS (Chemically advanced template search) descriptar t@pological atom-pair
descriptor developed by Schneider and coworkers [Schnetdal, 1999]. The descriptor
consists of the frequencies of pairs of PPPs within defined topalagdjgtances. Distances
were calculated as the shortest paths between two PPPSHHPdistances were considered
from O to 10 bonds.
The PPP definition was as follows: Hydrogen-bond donors were oxyges afddH-

groups and nitrogen atoms of NH- or Ngroups. Hydrogen-bond acceptors were oxygen
atoms and nitrogen atoms not adjacent to a hydrogen atom. Positinagbyed or ionizable

atoms were defined as atoms with a positive charge or nitragems aof an NH-group.
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Negatively charged or ionizable atoms were defined as atathsa negative charge and
carbon, sulfur or phosphorous atoms of a COOH-. SOOH-, or POOH-group. Lipapiims
were chlorine, bromine, or iodine, sulfur atoms adjacent to exaetlycarbon atoms, and
carbon atoms adjacent only to carbon atoms. With this definition atemesassigned to no,
one or two PPP-types. Using 10 topological distances “bins” fdr efathe 15 combinations
of PPPs resulted in a descriptor of 150 dimensions.

The CATS descriptor was calculated with the progspeedcatsdotcolversion 1.02)
by Uli Fechner [Fechneet al, 2003]. Scaling was done with the parameter —d 3, which
corresponds tecaling2in CATS3D (see Section 2.1.2).

H2N
SURFCATS
CATS / lCATS3

O\, d.

Figure 2.1 The CATS-family of descriptors: CATS, CATS3D and SURFCATAI
descriptors are based on a potential pharmacophore (PPP) typptaesof the underlying
molecule. For each descriptor, pairs of PPPs are transformeal eatwelation vector. CATS
is calculated from the topological distances of atom-basedoBiP$2 For CATS3D the spatial
distances between atom-based PPPs are used instead. SURFAETI® t|mtial distances
between PPPs on the contact surface of a molecule. Here theepRRent the atom-types of
the nearest atom to each surface point. Yellow = hydrophobic PBR,=chydrogen-bond
acceptor, magenta = hydrogen-bond donor, blue = cation, white = no pharmacogd®r
assigned.
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2.1.2 CATS3D
The CATS3D descriptor is an extension of the CATS descriptorhnéetdimensional space.
CATS3D was developed and implemented as part of this work. An ovewew the

CATS3D principle is shown in Figure 2.2.
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Figure 2.2 Calculation of the CATS3D correlation vector. Atoms are colocmbraling to
their pharmacophore atom-type (yellow = hydrophobe, cyan = hydtom®h-acceptor).
Distances are measured between all pairs of atoms, and frexpuehpairs are determined
for all pairs of pharmacophoric types and for defined distance sqfigias”). As an example,
a section of the resulting CV representing hydrogen-bond acceptgdrophobe pairs is
shown.

The main difference in the correlation vector representation3@ aonformation in
comparison to a topological representation of a molecule is that stencks between the
atoms are no longer shortest paths. Instead, Euclidean distancesrbativatoms were used.
Distances between atoms are not restricted to integer valuesththuaistances had to be
partitioned into a set of distance bins. Several such binning scheawesbeen proposed
[Wageneret al, 1995; Sheridaret al, 1996; Brown & Martin, 1996]. For CATS3D 20
distance bins that cover distances from 0 to 20 A in steps of 1 & eveployed, i.e. if a pair
of PPPs is found with a distance of 6.17 A it is counted in thé&dim 6 to 7 A. Distances up
to 20 A were considered to include information of most pairs of atortigeidescriptor, even
for large ligands.

For CATS3D the modified PATTY atom-types [Bush & Sheridan, 1993] alviail
with the pH4_aType function in MOE (Molecular Operating Environme@hemical
Computing Group] were used. This function provides six PPP typesndgt), anion (-),
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hydrogen-bond acceptor (A), hydrogen-bond donor (D), polar (P, hydimgeh-acceptor
AND hydrogen-bond donor) and hydrophobic (H). Whereas the topological @A3&iptor
allows assignments of more than a single PPP type to one ator@AtF®3D descriptor
employs a single PPP type per atom.

Using 20 distance bins for each of the 21 possible combinations of RBPegalted
in a descriptor of 420 dimensions. The values of the dimensional weundatad according to
Eq. 2 with the difference that each pair of PPPs was only coantedand pairs of PPPs with

themselves were not considered.

Three different scaling methods were implemented for the CATS3D descriptor:
* No scaling (unscaled).
» Division by the number of PPPs of a molecukcélingZ).
» Division of each of the 21 possible pairs of PPPs by the added ocasmhihe two
respective PPPsgtaling2).
Scaling2 was always applied unless otherwise indicatechlinglis the scaling scheme

originally developed for the CATS descriptor.

The CATS3D descriptor was implemented in the softvep@cecatsSpacecatwas
written in the SVL language in MOE [Chemical Computing Group].

Note to the program MOE: all calculations were performed with program versions 2003.02
and 2004.03. To our knowledge there were no differences between the siomwavith an
impact on the calculations in this thesis. Results obtained willereaersions are not

included in this work due to a major revision in the pharmacophore type definitions.

2.1.3 SURFCATS
The SURFCATS approach is a further extension of the CATS3D pbntke interaction
between ligand and receptor is mediated by the surface betweetwahenolecules.
Accordingly it might be advantageous to describe molecules by their spriguerties.

The surface points for the calculation of SURFCATS werentdk@m the molecular
surface which was calculated with the Gauss-Connolly function il M@h a spacing of 2
A. The molecular surface is defined by the inward-facing glaatvirtual probe sphere rolling

on the van der Waals surface of the molecule [Richards, 1977]. Accordhiglsurface
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definition represents the contact space between ligand andaiedeath surface point was
assigned to the PPP type of the nearest atom. Like with CAP83#yual distance bins were
used from 0 to 20 A with a stepsize of 1 A. The SURFCATS CV eedculated exactly like
the CATS3D CV except that surface points were used as PREadind atomsScaling2was
always applied.

The SURFCATS descriptor was implemented in the softwartcats Surfcatswas

written in the SVL language of MOE [Chemical Computing Group].

2.2 Descriptor vector based virtual screening

For descriptor vector-based similarity searching, three distarices were employed: the
Manhattan distance, the Euclidean distance and the Tanimoto syrolaeificient. The first

two metrics express distances, i.e. similar molecules hastandes lower than dissimilar
molecules. For similarity metrics this relation is inverted. dvoid confusion the term
“similarity” will be used for both similarity and distanceetrics. The definitions of the
metrics are given in Table 2.1. Since all CATS derived descsigimntain non-binary data-
values, the continuous version of the Tanimoto coefficient was appliesl.v&rsion of the

Tanimoto coefficient gives identical results for binary-datamére detailed description of

similarity metrics is given in [Willetet al, 1998].

Table 2.1Equations of similarity metrics for continuous variabkesndB are vectors (here:
molecular descriptor representation$)s the total number of vector elemen¢sthe value of
the vector element D g denotes the distance a8 the similarity between objecsandB.
Note that the range of the Tanimoto coefficient is O to 1 ifatttibutes ofA and B are
restricted to non-negative values.

Similarity metric Equation Range
N
Manhattan distance ~ Dag = D [Xa = Xg| 0tooo
i=1
N
Euclidean distance D, =D (%\ =X )’ 0 tooo
i=1

M=

Xia %

N
(XiB )2 - z Xia Xig
i=1

Tanimoto coefficient S, = '

i (%) +

i=1 i

.Ial

-0.333 to +1

M=

1l
[y
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Virtual screening was employed in two ways, using two pragraanklit by Uli Fechner
[Fechneret al, 2003] andSQUIDscreenThe workflow of the two programs is illustrated in
Figure 2.3. Both programs were designed to rank a database of raoléeskriptors
according to the similarity to a reference molecular desetipplying slightly different
virtual screening protocols (Figure 2.3). The output of both programsaisked list for each
reference molecular descriptor and the respective enrichment.f&QUIDscreenis also
able to handle multiple conformations of molecules in the virtuaésorg database. For this
purpose each conformation of a molecule must be encoded separatelyheFresult
SQUIDscreerselects the conformation with the best similarity score. Gibeformations are

discarded from the ranked result list.

ranklt SQUIDscreen

3) virtual screening

4 A
virtual
screening

database

( )
virtual
screening

database

2)

inactives inactives

Figure 2.3 Virtual screening protocols of the programankit and SQUIDscreen ranklt
iteratively takes reference molecules from the pool of axt{\lg¢ of the virtual screening
database, performs virtual screening (2), and returns the refeba&einto the virtual
screening database (3). This procedure is repeated for al anbleculesSQUIDscreen
operates on distinct sets of reference molecules from the vstwakning database. In
SQUIDscreerall reference molecules are iteratively submitted to virtual sargeni

2.2.1 Retrospective screening evaluation
A quantitative measure for the evaluation of virtual screening/tsebased on the obtained
hit-lists is the enrichment factef [Xu & Agrafiotis, 2002]. This index quantifies the ability

of a method to retrieve more active molecules than expected by randosf.iF befined as:
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— Fact Dact
ef = [F] / [D] (Eq.2.2)

whereF,. andD,¢ are the numbers of annotated active molecules in a subset and the
whole database, arféy and Dy, are the total numbers of molecules in the subset and the
whole database respectively. An enrichment factor of 1 corresporadsandom distribution
of active molecules in the ranked database, thus an effective gat@yhore model results in
anefabove 1.

Subsets which were considered for the calculation oétheere the first 1% and the
first 5% of a ranked hit-list from virtual screening. The usaga 5% subset of the hit-lists
results in statistically more significant results. In ra@aplications it is not always possible to
test such large fraction of a database. This is especigligriemt if only small numbers of
active molecules are applied.

2.3 SQUID

SQUID Fuzzy Pharmacophore models approximate the spatiabdigin of pharmacophoric
points in an alignment of molecules by a set of generalizezhpal pharmacophore points
(PPPs) of Gaussian probability densitiddoms in the alignment comprising the same
pharmacophoric features were clustered into PPPs for a marerabeand “fuzzy”
representation of the major characteristics of the alignmeetrddolution of the model was
defined by the cluster radius, which is the parameter thattaffhow strict features are
clustered into PPPs. The ideal resolution of the pharmacophore made&l ha determined
separately for each set of aligned ligands.

Each PPP in the pharmacophore model was represented by four edtribog first
attribute was the pharmacophore type of the atoms which aresesped by the PPP, the
second was the PPP position in 3D space, the third was the standatiodeviwhich
characterized the width of the distribution of the atoms that wareesented by a PPP (in
graphical illustrations of SQUID pharmacophore models visualized by the radius of the
PPPs). The fourth attribute (the conservation weight weighted each PPP by its
conservation among the molecules of the alignment (in graphicalraliasis of SQUID
pharmacophore modelgis visualized by the intensity of the color of a PPP). This dane

under the assumption that more conserved features of a set of nolgiadieg to the same
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receptor with comparable affinity are more important for the bhopdhan less conserved

features.

Assign Determined Local Feature Densities
Atom Types and Cluster Seeds (underlined)

e |

LED =214 LFD =217

Cluster PPPs
Assign Weights Transform into Correlation Vector
W, =05
o=0.5

0.12

0.10 polar
0.08 hydrophobe
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Figure 2.4 Calculation of the SQUID fuzzy pharmacophore correlation vector.
Pharmacophore atom-types are assigned to all atoms ob&a&gned molecules (yellow =
hydrophobe, green = polar). Maxima in the LADed) are determined to be used as cluster
seeds. In this example a cluster radiug ¢f 1.5 A was used. Standard deviations gnd
conservation weightsw) are calculated for each PPP that resulted from the chgste
procedure. Finally distances between all pairs of PPPs arsuredaand the three-
dimensional representation is transformed into a correlation vegtegation 2.5. As an
example, a section of the resulting CV representing polar — hydrophobe pairsms show

2.3.1 Calculation of the SQUID pharmacophore model

A schematic overview of the calculation of a SQUID pharmacophagevés in Figure 2.4.
The starting point was an alignment of known active reference compolssignment of
pharmacophoric types (cation, anion, hydrogen-bond acceptor, hydrogemidnoor polar,
or hydrophobic as defined with the pH4_aType function in MOE [Chen@cahputing
Group]) transformed the alignment into a field of pharmacophoricifesat Maxima in the

local feature densities (LFD) were used as cluster deetlaster the features into PPPs for a
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more general representation of the underlying alignment. For ataomnk of typet in the

alignment the LFD was calculated by

LFD(aton,) = Zmax{ol_ Dz(atOF:L,atonj)}’ (Eq. 2.3)

C

wherei are all atoms of typé in the molecular ensemble,, s the Euclidean distance
between two atoms andis the cluster radius. Positions of atoms of tiyfue which no other
atom of typet within r. was found yielding a higher LFD were taken asteluseeds for PPPs
of type t. All atoms were subsequently clustered to theiarest cluster seed of their
respective type. The geometric center of the atohascluster was taken as the position of the
resulting PPP. The median distance of all atomsribarting to a PPP to the center of the PPP
was taken as the value of the standard deviatiointhe PPP. For this value a minimum of 0.5

A was used. The conservation weights of the PPPs eaculated by

w(PPP Eqg. 2.4
(PPR) = Z no.atomsof PPR (Ea )

m { 1 no.atomsfrom molecule of PPP}
i=1
wherem is the number of molecules in the model. This fiamcreturns a maximum value of
1 for PPPs representing the same number of atansdil molecules of the ensemble and a
minimum of r* for PPPs which consist only of atoms of one mdkecu

For virtual screening the three-dimensional distitm of PPPs was transformed into
a two point PPP-CV (Figure 2.4), arranged exadkly the CATS3D CV. The SQUID CV
represents the three-dimensional distribution aigs&n densities in the form the distribution
of pairs of PPPs over the distance bins and owerfdhture types. The transformation was

calculated according to Equation 2.5.

T Wo Wy _E(Dz(p,q)—centeg)z
CVd no. palr$T) ZZ 2 PQ£\/§T(UD +0_q) eX{ > (o_p +0_q )2 J], (Eq 25)

wherep andq are PPPg] is a distance range (“binY, is the pair of pharmacophoric
types ofp andq (e.g. Figure 2.4p = hydrophobicg = polar),w are the PPP conservation
weights,o is the standard deviation of a PeBntey is the center of the distance ramend
o' (Kronecker delta) evaluates to 1 for all pairsRHPs of typed. D, is the Euclidean
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distance metric. The factor of 0.5 in the sum asalduble counting of pairs. Pairs of PPPs
with themselves were not considered. The valuesaoh dimension were scaled by the total
number of possible pairs of PPPs of the two feataomsidered. Finally the CV was scaled to
a maximum value of 1, i.e. the largest value indbscriptor was scaled to a value of one and
the other values were scaled proportionally. Like CATS3D descriptor, the SQUID CV
consisted of 420 dimensions, representing the shst@nce bins and pairs of atom-types. The
SQUID CV was used to rank molecules encoded with @ATS3D descriptor. When
CATS3D was used to encode molecules for SQUID @aselscreening, the final CATS3D
descriptor vector was also scaled to a maximumevaful.

The calculation of the SQUID CV was done with thegram SQUID which was
written in the SVL language of MOE [Chemical ComipgtGroup].

match
— 1.0 q
S no match
‘D> 081
2 CATS3D
c 0.6
o
rewarding S
contribution D 021
[y
S ol [T
n 0o 2 4 8 8 10 12
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S(a,b) = —1

n

14> (1-a)*b,)
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=" 08 ] ]
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Figure 2.5 The SQUID similarity score. The numerator of tleent describes rewarding
contributions of the score, i.e. CATS3D dimensionsegions with a high probability in the
SQUID correlation vector result in high score (ngtcCATS3D dimensions in low
probability regions have a low impact on that teime match). The term for penalizing
contributions (the denominator) weights CATS3D dasiens by the inverse SQUID vector.
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2.3.2 Virtual Screening

For virtual screening the SQUID CV representatiomswused to weight CATS3D
representations of molecules according to themefis according to their distribution of
pharmacophoric features. The SQUID CV and the CAT&Y/s differ significantly in the
meaning of their content. The SQUID CV describésaad range of descriptor areas which
are favorable for the desired biological activitshile the CATS3D descriptor contains only a
smaller subset of the actual occurrences of atans-pra a specific ligand. Consequently,
similarity metrics like the Euclidean distance be fTanimoto index, which are based on the
assumption that both descriptors, which are to dmapared, represent objects in the same
way, cannot be used to assess the activity of thlecules under consideration. To overcome
this problem a SQUID similarity score was develofteq. 2.6):

N
S,.= ;XiAXiB (Eq. 2.6
AB ~ N , g. 2.6)
1+Z(1_XiA)XiB

i=1

wherexa is the value of theth element of the SQUID C\ is the value of theth
element of a molecule CV amdlis the total number of dimensions. The idea of SIUID
similarity is further illustrated in Figure 2.5. @lvaluexx may be considered as the idealized
probability of the presence of featuresxjg This results in high scores for molecules with
many features in regions of the query descriptoickvinave a high probability. To penalize
the presence of such atom pairs in regions witwagrobability, the denominator weights the
presence of atom pairs with the inverted probaddiof the descriptor of the pharmacophore
model (a value of 1 was added to the denominatawvtad division by zero and high scores
resulting from a very low value in the denominaibthe term).

For virtual screening additional weights (“featiype weights”) were used to weight
the importance of each of the pharmacophoric feattypes (e.g. hydrophobic or hydrogen-
bond donor) in the CV. The sums of the single featype weights were used to weight the
importance of each pair of feature-types in the Tve sum of the probabilities in the CV for
each pair of features over all distance bins wateddo the value of the feature-type weights.
Finally the whole CV was scaled to a maximum olt ivas found that a simple optimization
by permutation of all combinations of the weightues {0.1, 0.2, 0.3, 0.4, 0.5} for each of
the single features and subsequent testing of thegghts in virtual screening was sufficient

to retrieve good virtual screening results.
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Evaluation of the different pharmacophore modeltioled from different cluster-
radii and feature type weights was done with thegmamSQUIDoptwhich is based on the
workflow of the progranS5QUIDscreer(Figure 2.3). INSQUIDoptall pharmacophore model
variants (e.g. models from different cluster ramtiidifferent feature type weights) serve as
references for virtual screening. In this way tligecent models can be prioritized and the
model with the bestf value could be used for further virtual screeningcases where thef
was not discriminative enough to favor one or alss®t of models a more sensitive measure

was used, the enrichment vakeae

evzf(lol—i) ef(1%), (Eq. 2.7)

i=1

whereef(i%) is the enrichment factor for the fingt of the hit-list. This returns the
weighted sum of the enrichment factors of the whilalabase. The smaller the fraction of the
database, the higher is the weight forehe

Virtual screening was performed with the progr&@UIDscreenwhich was written

in C++.

2.4 Methods of Section 4.1: Influence of similarity metrics
and descriptor vector scaling on CATS3D retrospecti ve

screening

Data set
For the retrospective screening experiments the RARlatabase (version 2.1; 4705

molecules) [Schneider & Schneider, 2003] of anmatateference molecules from recent
scientific literature was employed. Twelve differ@on-overlapping subsets of COBRA were
defined as active molecules (used as query) andes@ective remainder of the dataset as
inactive molecules. The sets of actives containedecules that bind to the angiotensin
converting enzyme (ACE, 44 compounds), cyclooxygena (COX2, 93), corticotropin
releasing factor (CRF antagonists, 63), dipeptpbptidase IV (DPP, 25), G-protein coupled
receptors (GPCR, 1642), human immunodeficiency svipuotease (HIVP, 58), matrix
metalloprotease (MMP, 77), neurokinin receptors (MEB8), nuclear receptors (NUC, 211),
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peroxisome proliferator-activated receptor (PPAR), Jbeta-amyloid converting enzyme
(BACE, 44) and thrombin (THR, 188).

For all COBRA molecules hydrogens were added withlFE and single 3D
conformations were calculated with CORINA (versich64) [CORINA]. CATS3D

descriptors were calculated using the three scathgmeso-scaling scalinglandscaling2

Virtual screening
For all 12 activity classes of the COBRA databamed for the three scaling schemes

retrospective screening experiments were performgd the programrankit, using the
Manhattan distance, the Euclidean distance and Téw@moto similarity. The relative
performance of the different parameter sets wassass by enrichment factors.

2.5 Methods of Section 4.2: Impact of conformationa |

flexibility on CATS3D virtual screening

Data set
The PDBbind database [Waeg al, 2004] (version 2002) served as a reference skigbf

quality crystal structures of receptor-bound ligaal the virtual screening experiments. For
retrospective screening we used the COBRA datap@sbneider & Schneider, 2003]
(version 3.12) consisting of 5,376 annotated ligaodmpiled from scientific literature. The
ligands of the PDBbind database were grouped acwprib their target annotation. All
clusters containing less then five ligands were awesd. Clusters were also removed for
which no ligands were found in the COBRA databagib the same target annotation as in
PDBbind. From multiple incidences of identical kg all but the one with the best
resolution were removed. The final set of refereingands consisted of 11 groups (“activity
classes”) with a total number of 177 ligands. Tinalfset of ligands with the corresponding
PDB identifier is given in Table 2.2.

The corresponding set of “active” ligands in the BEIRA database contained 674
molecules, which means that the COBRA databaseaic@a 4,702 additional ligands that
were not considered as “active” in either of theatfivity classes. The final set of annotated
activity classes and their abbreviations were:yddesolinesterase (ACHE, 6 compounds from
PDBbind, 13 compounds from COBRA, overlap: 0), caib anhydrase Il (CAll, 30, 25, 2),
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elastase (ELA, 8, 8, 0), factor Xa (FXA, 5, 226, B)IV-protease (HIVP, 58, 61, 8),
neuraminidase (NEU, 8, 28, 1), protein tyrosineakm c-src (PTK-CSRC, 7, 16, 0), protein
tyrosine phosphatase 1b (PTP1B, 5, 36, 0), strairely (STROL1, 7, 19, 0), thrombin (THR,
32, 194, 10), and urokinase type plasminogen aoti® TPA, 11, 48, 3). Since we were not
interested in the absolute performance of the nigthat in the relative performance using
different degrees of conformational information, eid not remove ligands that were present

in both databases (“overlap”).

Table 2.2. Ligands from the PDBbind dataset selected as eeber molecules for virtual
screening.

Activity class PDB identifier
Acetylcholinesterase 1e66, 1gpk, 1gpn, 1h22, 116t
Carbonic anhydrase i la42, lavn, 1lbcd, 1bnl, 1bm34, 1bnn, 1bng, 1bnt, 1bnu,

1bnv, 1bnw, 1bzm, 1cil, 1cim, 1cin, 1cnw, 1cnx, y,chg45,
1948, 194j, 1940, 1952, 1h4n, 1if7, 1if8, 1okl, dapkydb

Elastase 1lbma, lela, lelb, lelc, leld, lele, Tes,
Factor Xa lezq, 1fOr, 1f0s, 1fjs, 1ksn, 1xka
HIV-protease 1a30, 1a94, laaq, 1ajv, 1ajx, 1bGk1hb6l, 1b6n, 1b60o, 1b6p,

1bdq, 1bwa, 1bwb, 1c70, 1d4k, 1d4l, 1d4y, 1dmpkldg35,
1hbv, 1hih, 1hiv, 1hos, 1hpo, 1hps, 1hpv, 1hpxhlhbtf, 1htg,
1hvh, 1hvi, 1hvj, 1hvl, 1hvr, 1Thwr, 1hxw, lizh, ¥k6Lk6t, 1k6v,
1mtr, 1ody, 1ohr, 1pro, 1gbs, 1gbu, 1sbg, 2bpvy2Baid, 4hvp,
5hvp, 7hvp, 7upj, 8hvp

Neuraminidase 1f8c, 1f8d, 1f8e, 2qwb, 2qwc, 2qvesyf22qwg

Protein tyrosine kinase 1a07, 1a08, 1a09, 1alb, lalc, lale, 1isO

C-Src

Protein tyrosine 1c83, 1c84, 1c87, 1c88, lecv

phosphatase 1b

Stromelysin 1 1b8y, 1caq, 1ciz, 1hfs, 1sIn, lusisn2

Thrombin 1d3d, 1d3p, 1d4p, 1d6w, 1d9i, letr, 18dst, 1937, 1ghv, 1ghy,

19i4, 1gj5, 1kts, 1gbv, 1tmt, 1tom, luvt, 7kme,dadbcu, 1bhx,
1clu, 1clv, 1c4u, 1c4dv, 1c5n, 1c5o, 1fpc, 1jwt, 11 Kk22

Urokinase type 1f5k, 151, 1gi7, 1gi8, 1gi9, 19j7, 19j8, 199, agjlgjc, 1gjd,

plasminogen activator
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Calculation of conformations
Single three-dimensional conformations were catedlavith CORINA [Sadowsket al,

1994] and multiple three-dimensional conformatiarese calculated with ROTATE (version
1.15) [Schwab, 2003], based on the CORINA confoionat Conformations were calculated
for the selected reference molecules from the PBdBliatabase and all molecules from the
COBRA database. For each database single confamsatrere calculated with CORINA. To
restrict the number of possible output conformatidrom ROTATE only the five most
central rotatable bonds were subjected to torsigieavariation, and conformations with an
internal (symbolic) energy of more than 100 kJ/rabbve the lowest-energy conformation
were rejected. The resulting conformations wer¢h&ur clustered in torsion angle space to
obtain only representative conformations. To obwdtabases of different conformational
resolutions (i.e. different numbers of conformasipdifferent thresholds of 120° (resulting
database further referred to as R1), 60° (R2) &idR3) were applied. CATS3D descriptors
were calculated for all four COBRA databases witfetent conformations and the PDBbind
crystal structure conformations usiscpling2

Superposition and calculation of the RMSD
Rigid body superimposition of molecules was perfednto compare two conformations of

one molecule. The similarity of two conformationasaquantified by the RMSD (root mean
square deviation) value of Cartesian atom positidhgs was done with the prograviatch3d
by Jens SadowskiMatch3d takes into account the symmetry of nondistinguishdiut
differently numbered groups (e.g. the two oxygeonet in a carboxylate group) for the
calculation and thereby avoids artificially intrasha high RMSD values. Only non-hydrogen

atoms were considered for the calculation.

Virtual screening
The crystal structure conformations of the 11 Igjaslasses were used as references for

retrospective screening of the COBRA database amssiwith different numbers of
conformations, using the prograB8QUIDscreenwith the Manhattan distance. The relative

performance of the different amounts of conformatiavas assessed by enrichment factors.
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2.6 Methods of Section 4.3: Virtual screening and s  caffold
hopping efficiency of alignment-free pharmacophore

pair descriptors

Data set
For the retrospective screening experiments the RAOBatabase (version 2.1) [Schneider &

Schneider, 2003] was employed using the same Bctilasses as in Section 4.1, except that
the two very general classes G-protein coupledptece (GPCR) and nuclear receptors
(NUC) were discarded for the experiments. For tineial screening experiments hydrogens
were added with CLIFF and single 3D conformatiomsencalculated with CORINA (version
2.64) [Sadowski, 1994]. CATS, CATS3D and SURFCATESatiptors were calculated with
scaling2 The MACCS keys were calculated with MOE [Chemi€amputing Group].

Molecular equivalence numbers
Molecular equivalence indices [Xu & Johnson, 2081; & Johnson, 2002] were used to

identify identical scaffolds in molecular databas&be calculations were done with the
program Meqi iolecularequivalenceindices) [Pannanugget Consulting]. Meqi reduces the
molecular representation to the scaffold of a mdke@nd calculates an equivalence number
with a modified version of the Morgan algorithm [Man, 1965]. For the calculation of
equivalence numbers all molecules were preproceassi@ following way in Meqi: First all
hydrogens were stripped off of the molecules. Sécail atoms were transformed into
carbons with the command “Vertex-labeling.list: ‘T Phird, all bonds were transformed to
single bonds with the command “Edge-labeling list: 2 3 4",

Two different definitions of scaffolds were usedr fthe equivalence number
calculation: cyclic system (scaffold) and reducedlic system (reduced scaffold) (Figure
2.6). Scaffolds represent the molecule withoutchdéns, indifferent for types of atoms and
bonds. Scaffolds are chosen with the “Subgraphscli€System” button. Reduced
representations are characterized by a simplifyggresentation of rings, which does not
further discriminate between rings comprised offeddnt numbers of heavy atoms.
Conjugated systems with different numbers of riags not considered as identical. Reduced
representations were obtained with the command dlogy: Reduced”. Exact representations
of rings were used with “Topology: Unchanged”. Qtharameters of the program were held
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constant for all calculations: “Embedding: UnemhetComponents: Group”, “Attachment

type: RingSys”.

Reduced
Scaffold (Sc)  Scaffold (ReSc)

s AT

Figure 2.6  Definition of cyclic system “Scaffold” (Sc) and deced cyclic system
“Reduced Scaffold” (ReSc). In this work we defiride scaffold of a molecule as the side-
chain depleted molecular graph without annotatibmtom-types. A reduced scaffold is a
more general representation which does not disodataibetween rings consisting of different
numbers of heavy atoms, but systems containingereéifit numbers of rings are still not
considered being equal.

Virtual screening
For all 10 activity classes of the COBRA database] for the four molecular descriptors

CATS, CATS3D, SURFACTS and the MACCS keys retroipecscreening experiments

were performed with the programanklt, using the Manhattan distance, the Euclidean
distance and the Tanimoto similarity. The relapegformance of the different parameter sets
was assessed by enrichment factors. To comparernthenment of scaffolds and reduced
scaffolds, enrichment factors were calculated frthra first occurrences of each unique

scaffold and reduced scaffold in the set of aatimdecules.

2.7 Methods of Section 4.4. Prospective screening f or
MGIurR5 allosteric modulators with CATS3D

Data set
A set of seven allosteric inhibitors of mGIuR5 witkported low nanomolar activity was

compiled from scientific and patent literature [Basni et al, 1999; Mutelet al, 2002;
Cosfordet al, 2003; Gaspariret al, 2003] as reference compounds in virtual scregnin
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For prospective screening the Asinex Gold comporwitection [ASINEX] (version
april 2003) was used, which contained 194,563 nuidésc As a pre-screening filter we
selected the 20,000 most “drug-like” compounds ffeatler & Schneider, 2004] in the same
manner as described previously for the SPECS dsgald-conformations of the screening
compounds were calculated in MOE using the MMFF&«d field [Halgren, 1996]. The
results were restricted to a maximum of 20 lowestrgy conformations per molecule.
CATS3D descriptors were calculated with #oaling2option.

For the analysis of the virtual screening resulS S descriptors were calculated with
the progranspeedcatsdotcoffrechneret al, 2003] with default parameters and the MACCS
keys were calculated with MOE [Chemical Computingp].

Alignment of reference molecules
To form a hypothesis about receptor-bound 3D-caonédions of the reference molecules the

flexible alignment tool of MOE was used with detgpédirameters and the MMFF94 forcefield
[Halgren, 1996]. Ligands were successively aligrstdrting with the most rigid molecule to

the most flexible molecule.

Virtual screening
Prospective screening was performed with eacheofd@ference molecules wiBQUIDscreen

using the Manhattan distance.

2.8 Methods of Section 4.5: Prospective screening f or
MGIuRS5 allosteric modulators with an artificial neu ral

network approach based on CATS3D representations

Data sets
For neural network training 68 mGIuR5 allosteridagonists from literature, patents and

from unpublished results of Merz Pharmaceuticald, ¥568 allosteric antagonists of mGIluR1
from patents and literature were used. Moleculas Were not active on either mGIuR5 or
MGIuR1 were compiled from the COBRA database (verd.12) [Schneider & Schneider,
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2003]. From the COBRA database all molecules wemeorved with a substring “mGIuR” in
the identifier.

For all molecules single 3D conformations were dalied with CORINA [Sadowski,
1994]. CATS3D descriptors were calculated wsttaling2 MACCS keys were calculated
with MOE [Chemical Computing Group].

Maximal diverse subset selection
Maximal diverse subsets were selected with the Maxgorithm [Kennard & Stone, 1996].

The algorithm starts with an initial molecule ase thubset selection. Successively, the
molecule from the remaining molecules, which is tdissimilar to the already selected
molecules, is added to the selected molecules pideedure stops, when the desired number
of molecules is selected. For subset selectiorptbgramMaxMinSelectio{Schmuckeret

al.,, 2004] by Michael Schmucker was used, employing tBuclidean distance for
dissimilarity assessment. An extended version efpfogram by Uli Fechner was used which
enables the initialization with a randomly seleatealecule in the selected.

Shannon entropy based variable selection
Selection of variables is important for predicti@SAR results if not all variables in a

descriptor, e.g. all 420 CATS3D dimensions, contaformation which is related with the
prediction problem. Other variables might not shauch or any variance and are though not
useful for predictions either. We used Shannonopgtibased variable selection, which is
based on the Shannon entropy concept formulatéghbypnon in 1963 [Shannon, 1963]. This
concept was shown to be successful in descriptiectsen for classification and QSAR
applications [Stahura et al., 2000; Godden & Bdfgr2003]. The Shannon entropy is a
measure for the distribution of a variable overaage of values. If all possible states of a
variable are equally populated the Shannon entr®@g maximum. If only a single state is
populated, the variable has a minimum of entropgridbles with larger values for the
Shannon entropy are preferred over variables witlet entropy.

The Shannon entropy is defined by Equation 2.8:

N N
SE=-> p log, p, , where p =c/>c . (Eq. 2.8)
i=1 i=1
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pi is the probability of observing a particular dgstr value, falling into a bin. For
continuous variables, the range of values of thecmjator is partitioned intdN equal sized
bins.c; is the number of instances having a descriptare/&lling into bini.

In the formulation of Eqg. 2.8 the Shannon entrapgependent on the number of bins. A bin

number independent formulation is the scaled Shaentropy (Eq. 2.9)

SSE=SFE/log, N . (Eq. 2.9)

The range o§SEis from 0 to 1. For our studies we used 100, defined from the minimum

to the maximum value. Variables were selected wgBE> 0.3.

Autoscaling
Autoscaling was used as a pre-procession steph@iptinciple component analysis. With

autoscaling variables are scaled by their standaxdation, leading to data with zero mean
and unit variance. In this way differences betweganables resulting from different value
ranges and different size ranges are eliminatescaled variable 'xis obtained by Equation
2.10:

. = 19 _
£ =%TX heres = Jn__lz(&k-xk)z_ (Eq. 2.10)
i=1

Xi is the value of th&" dimension of moleculg %, is the mean value of atl ands; is the

standard deviation. Autoscaling results in datdomscscaled to lengtikn—1.

Principle component analysis (PCA)
Principle component analysis is a method to obtantorrelated variables. Correlated

variables of a descriptor introduce a bias for ¢h@sscriptor variables, which can deteriorate
the performance of prediction methods. PCA can hisased for the visualization of high
dimensional data in a two- or three-dimensionardate system.

Uncorrelated variables are obtained by a lineajepton from an originalm-
dimensional space X into a lowétdimensional space S by S = XL. The projectionafnd
by the loadings matrix Lwhich containgl vectors ofm coefficients. The matrix containing

thed new coordinates or variables for each moleculgrablis called the scoring matrix S.
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The principle components (PC) represent the newdauaite system of the projected
variables. The first PC coordinate axis is diregbedallel to the maximum variance of the
distribution of the data points in the original spaAccordingly the first PC explains most of
the variance in the data. The second PC is orthadgorthe first PC and explains most of the
remaining variance of the datm PCs explain the full variance of the data. An ciéint
algorithm for the calculation of the PCs is the NIIS algorithm [Wold, 1966; Wold, 1975],
which was utilized here.

The eigenvalue of a PC is the variance which idaened by the PC. The eigenvalue
is calculated by the sum of the squared loadings@fPC. To obtain a small set of relevant

uncorrelated variables, only PCs with eigenvakiéswere selected.

PCA transforms were calculated with the progranalsippy Alexander Bocker.

Feed-forward artificial neural networks
The most widespread architecture of ANNs is muylétaed feed-forward networks. The non-

linear behavior of multilayered feed-forward neuredtworks enables ANNs to learn in
principle any relationship between input and outfidr our studies we used three layered

fully-connected networks with an input layer, aded layer and an output layer (Figure 2.7).

Input Layer ° a @
" A
OO

Hidden Layer

\'
Output Layer @

Figure 2.7 Three layered feed-forward artificial neural netivd he input layer consists of as
many neurons as the dimensionality of the inpua.dBlhe optimal number of hidden neurons
has to be determined experimentally. The hidderrlegnd the output layer consist of
sigmoidal neuronsw andv are the weights of the input to the hidden neusms from the

hidden neurons to the output neuron, respectiv@lyare the bias values from the hidden

out
layer and? s the bias of the output neuron.
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The output of a three-layered ANN can be exprebydeiquation 2.11:
f(x) =Sigm > v;Sigm > w; —ﬂj]—ﬂ"”‘], (Eq. 2.11)
i=1 i=1

wherew; are the weights from the input to the hidden nesiyg are the weight from the

hidden to the output neurond; are the bias values from the hidden layer &fitl is the bias

of the output neuron. Sigm (Eq. 2.12) is the sigrabfunction

1
1+e*’

Sigm(x) = (Eq. 2.13)

The bias and weight values were determined inimitiga procedure employing a (1)
evolution strategy [Schneider & So, 2003]. Evolotoy strategies (ES) are assumed to be
favorable in comparison to gradient based optimomamethods like the backpropagation
algorithm for optimization tasks in complex multidad fithess-landscapes like found within
drug discovery projects [Schneider & So, 2003].1AX) evolution strategy selects from a
pool of samples only the fittest (the first paraeneh (1,1)), that is used as a parent for the
generation of. offsprings. The parent dies after reproductionisTib assumed to avoid the
selection of local minima solutions. The ES stavih a random set of weights and bias
values and generates a set of children with Gaushsributed variations. At the beginning
of the optimization process, the width of the Garsslistribution (the step -sizg is large to
facilitate the search for the approximate locatadrthe global optimum. As the algorithm
proceeds to the optimumbecomes smaller. This is realized by inclusiothefo values into
the evolutionary optimization.

The evaluation of prediction accuracy of the caatidANNSs in the training was done

by the mean square errd$E function (Eq. 2.14)

2

S
MSE= éz (outpufc“‘a' - outpufes"e“) , (Eq. 2.14)

i=1

where S is the number of data samples. TRKSE quantifies the distance between the

predicted values to the desired values from theitrg samples.
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The accuracy of classification tasks was assessedhé Matthews correlation
coefficient (Eq 2.15):

_ PN-OU
= IN+U)N+0)(P+ U)[P+0)’ (Fq.2.15)

where P is the number of positive correct prediGtiN is the number of negative correct
predictions, O is the number of false-positivesefpvedictions), and U is the number of false-
negatives (underpredictions). The results of ¢heange from -1 to 1. Ac of 1 means a
perfect prediction, ac of O corresponds to a random prediction ard af -1 means a 100%
wrong prediction. A threshold of 0.5 was used &ssify objects as active or inactive for the
calculation of thecc.

A problem in neural network training is overfittir the ANN to the training data.
This results in a loss of generalization for thedaction of new data. The ANN has learnt the
examples but no rules to separate the class ofeactiom inactives. To avoid overfitting the
original dataset is randomly split into trainingdatest data sets. The training set is used for
the training of the ANN and the test set is usedupervise the generalization ability of the
ANN. The training is stopped when the predictiosumacy of the test set starts to decrease
after an initial phase of improvement while thedicgon of the training set still improves.
The random split into training and test data fokalby training is repeated several times to
obtained statistically significant stopping criterirhis procedure is called cross-validation.

The training of ANNs was done with the progrgmofi by Gisbert Schneider
[Schneider & Wrede, 1993]. Ten times cross-valmativas applied splitting the data in
equally sized fractions of 50% / 50%. For the etiolustrategy 500 solutions per generation,
an initial step size of = 1 and a minimal step size @f= 0.001, with a reset step-size of 0.01
were used. The reset step size is the minimum \a@flogfor each new generated child in the
evolution strategy. For the training of classifioattasks active molecules were marked with
a target value of 1 and inactives with a targeti@aif O.

Using a consensus score obtained from an ensenfibdeusal networks has been
shown to improve the quality of predictions in campon with a single ANN [So & Karplus,
1996; Kauffman & Jurs, 2000]. Accordingly averagalues from the scores of multiple

neural networks were used for the prediction opprtes.
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Self organizing maps (SOMSs)
SOMs represent a class of unsupervised neural netwwehich are mainly applied for
clustering, feature extraction and topology presgrprojections [Schneider & So, 2003].
SOMs consist of a single layer of neurons that hlweesame dimensionality as the data
vectors. The two-dimensional distribution of nelwoasembles the distribution of data points
in the original high dimensional space. There igpredicted output value for an input object
but a winner neuron which is most similar to theuinobject. Each neuron represents a
prototype vector for the data objects which are tnsomilar to this neuron. The field within
which data points are assigned to a neuron isctdlie receptive field of this neuron. A
neuron is activated if a data points falls intorgseptive field. The preservation of the data
topology is achieved by the definition of a topoldg the neuron layer. This layer is fitted
onto the original data distribution, preserving thrginal topology of the data. To avoid
boundary problems the maps have a toroidal topology
The training of SOMs was done according to Kohoh@hpnen, 1982]:

(1) Initialize the map withN = N; * N, neuronsci with reference vectorsy, chosen

randomly from the distribution @Y of training patterns. Initialize connections beem
the neurons to form a rectangularx N, grid. The time parameteéis set to O.

(2) Randomly select a training pattérfrom p() as input signal.

(3) Determine the winner neuron with the smallest Eigzin distance to the input signal.

(4) Adapt each neuron in the SOM to the training pattern

(5) Increase the time parametert + 1.

(6) If t < tmax continue with step (2), else terminate.
The adaptation of a neurorto a training patterg is done according to:

w, =w, +Aw, , where

Aw, = £(t)h (¢ -w,).

hrs = eX{—_ Dl(r ’ S)zJ
20(t)?

is the Gaussian neighborhood function around theneri neurons and D; is the

Manhattan distance. The time dependent standardtdevis defined as
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— t/tmax
J(t) - O-initial (innal /O-initial ) '

and the time dependent learning rate is defined as

— t/tmax
£(t) - ginitial (gfinal /£initial ) )

The training of SOMs was calculated with the progrsom_createby Gisbert
Schneider using 5 x 5 = 25 neurofigx = 85000,0initial = 5 andeinitial = 1, andsinitial and
oinitial = (tmax / number of training patterns). Visualization dDMS was done with the

programsom_shovby Gisbert Schneider.

2.9 Methods of Section 4.6: Retrospective evaluatio n of

SQUID fuzzy pharmacophore models

Data set
Pharmacophore models were calculated for COX-2taraimbin on the basis of molecules

which were reported in pharmacophore models forrdspective targets [Palomet al,
2002; Patelet al, 2002]. For calculation of a COX-2 pharmacophoredei, the crystal
structures of COX-2 with the specific inhibitor S68 (1CX2) and the structures of COX-2
with the unspecific inhibitors flurbiprofen (3PGldahd indomethacin (4COX) were used to
model a template alignment for the flexible aligmmef the specific COX-2 inhibitors
rofecoxib and molecule 5 (M5) from Palonedral. [Palomeret al, 2002]. For calculation of
the thrombin pharmacophore model the crystal sirast with PDB codes 1C4V, 1D4P,
1D6W, 1D9l, 1DWD, 1FPC and 1TOM were used [Patedl, 2002].

For retrospective screening we used the COBRA dawaljSchneider & Schneider,
2003] (version 2.1). Two versions were calculatede database with single conformations
was calculated with CORINA [Sadowski, 1994] and ategabase of up to 50 energy
minimized conformations was calculated with MOE [@eal Computing Group] using the
MMFF94 forcefield [Halgren, 1996]. For retrospectigereening the molecules that were
used for the pharmacophore model generation wemeved from the datasets. The resulting

datasets consisted of 92 active molecules and #&ictive molecules for COX-2, and 188
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actives and 4517 inactive compounds for thrombhre TATS3D descriptor for the COBRA

sets was calculated usisgaling2

Alignment of reference molecules
Alignments of inhibitors were either obtained b thexible alignment tool in MOE with

default parameters and the MMFF94 forcefield [Halgd996] or the homology align tool in
MOE using default parameters.

Virtual screening
Virtual screening with SQUID pharmacophore modebsswperformed with the program

SQUIDscreen CATS3D similarity searching was also performedhwBQUIDscreenusing
the Euclidean distance. MOE pharmacophore models waliculated using the PCH_ALL
atom-type scheme, which consists of atom-typegdtionic, anionic, hydrogen-bond donor,
hydrogen-bond acceptor, aromatic ring centers hgddophobic interactions.

2.10 Methods of Section 4.7: Prospective screening for
Inhibitors of the Tat-TAR RNA interaction with a SQ UID
fuzzy pharmacophore model and CATS3D

Data set
Two reference inhibitors for the Tat TAR interactiovere taken from literature:

acetylpromazine [Lindet al, 2002] in the receptor bound conformation from thHIR
structure 1LVJ [Du2002] that served as a templatetfe flexible alignment of CGP40336A
[Hamyet al, 1998].

For the optimization of the “feature-type weighte& two reference ligands, used for
the pharmacophore calculation, were used for rneé@is/e screening in the COBRA database
[Schneider & Schneider, 2003] (version 3.12). Up2td low energy conformations were
calculated with MOE [Chemical Computing Group] faich of the molecules in this database
using the MMFF94 forcefield [Halgren, 1996].

For prospective screening the SPECS database [JPEE® 2003 version) with
229,658 molecules was used. To obtain higher quadgults and to restrict the calculation of
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3D conformations the 20,000 most druglike moleculese selected, as predicted by an
artificial neural network approach [Schneider & Beider, 2004]. For each of these

molecules multiple conformations were calculateM@E like for the COBRA molecules.

Calculation of drug-likeness score
“Drug-likeness” was calculated according to a pdwe described in [Schneider &

Schneider, 2004]. Three parameters were useddardltulation: i) the output (“score”) of an
artificial neural network that was trained to digtilish between “drugs” and “nondrugs”,
based on CATS representations of molecules, iijlipted aqueous solubility [Engkvist &
Wrede, 2002], and iii) calculated polar surfaceaa(EBSA) (ASA P option from MOE).
Subsequent principal component analysis of thisetftimensional “drug-likeness” space was
performed to obtain uncorrelated variables. A ragkbf compounds was performed on the
basis of their distance to “optimal” variable vaué.e., high drug-likeness score; high
solubility value; PSA < 140 A2). A detailed destigm of this procedure is given in
[Schneider & Schneider, 2004].

Alignment of reference molecules
For the alignments of the known reference Tat-TA&raction inhibitors ligands the flexible

alignment tool in MOE was used with default paramsetand the MMFF94 forcefield

[Chemical Computing Group].

Virtual screening
Virtual screening with SQUID pharmacophore modelssvperformed with the program

SQUIDscreen CATS3D similarity searching was performed wBiQUIDscreenusing the
Manhattan distance.
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2.11 Methods of Section 4.8: Prospective screening for
taspasel inhibitors ~ with a  receptor-derived

pharmacophore model

Data set
The sequence of the human taspasel was obtained swiss-prot (entry Q9H6P5).

Homologous crystal structures that were used asplsgen for the homology models
calculation were 1T3M, 2GAW and 1APZ.

For prospective screening the SPECS database [JPEE® 2003 version) with
229,658 molecules was used. To obtain higher quadgults and to restrict the calculation of
3D conformations the database was filtered accgrttirthe Lipinski “rule of five” [Lipinski
et al, 1997] and additional target specific filters prio conformation calculation. For each
of these remaining molecules up to 20 low energyamations were calculated in MOE like
using the MMFF94 forcefield [Halgren, 1996]. Finadli}f bases were protonated and all acids

deprotonated with the MOE database/wash function.

BLAST search
The BLAST J[Altschulet al, 1997] search was performed using the sequentaspésel as

query. The BLOSUM®62 matrix with a gap opening pgnaft1l and a gap extension penalty

of 1 was applied.

Homology modeling
Homology models were calculated with MOE [Chemicahtputing Group]. Sequence and

structure based alignments were calculated wittHin@ology/Align function in MOE, using
the default values (blosum62 substitution matrixhwa gap start panelty of 7 and gap
extention panelty of 1). The visualization of thiggmaments was done with the program
CHROMA [Goodstadt & Ponting, 2001].

Ten models were calculated based on the alignniérg. coordinates of the final
model were calculated as the average of the atardimtes of the intermediate models.
Refinement of the model was done by minimizing sieechains of the models (backbone

atoms were held fixed) with the MMFF94xx forcefieldciuding solvatation to a RMS
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gradient of 0.1. Minimization was done using chicainstraints, i.e. the chirality of the

molecule was held fixed. Results were controllethwhe protein report function of MOE.

Docking
Docking calculations were computed with the progr&®LD [Joneset al, 1997]. For

GOLD, the genetic algorithm parameters were useth whe standard default settings.
Chemscore was applied as fitness function [Eldridgal, 1997]. Early termination was
disabled.

Database filtering
The SPECS database was filtered according to thimdki “rule of five” [Lipinski et al,

1997] and target specific filters, based on the Mi@Ecriptors in Table 2.3. Molecules were
discarded from the SPECS database which satisfiedbdthe criteria based on an extended
version of the “rule of five”: > 500 Da, logP >$%,5 hydrogen-bond donors, > 10 hydrogen-
bond acceptors, > 10 rotatable bonds. Since thiiials were thought to depend on one
acidic group, all molecules with less than one iaaigioup were removed. Molecules with Br,

I, B, P, S- and nitro groups and sulfat as onlglgiracidic group were also removed

Table 2.3.MOE Descriptors

Descriptor name Description

Weight Molecular mass

logP(o/w) logarithm of the octanol / water partitip
coefficient

a_don number of hydrogen-bond donors

a_acc number of hydrogen-bond acceptors

b_rotN number of rotatable bonds

a_nBr number of bromine atoms

a nl number of iodine atoms

a nP number of phosphorus atoms
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Virtual screening
Virtual screening was performed with the MOE pharopdore search tool.



3 Experimental Section

Note: The following methods and experimental praced were not applied by the author of
the thesis. Inclusion of the experimental detasldar the purpose of completeness of the

scientific results.

3.1 Determination of [Csg values for mGIluR

Materials
[3H]-MPEP was obtained from Tocris Cookson (BristdK). MPEP was synthesized for in-

house use as a reference compound according tpg@aiet al, 1999; Sashidat al, 1988].
Test compounds were purchased as dry powder fromE$ Ltd. (Moscow, Russia). The
ASINEX Gold Collection Database was provided by WEXK Ltd. [3H]-MRZ 3415 was
synthesized by Amersham Biosciences (BuckinghamshiK). MRZ 3415 was synthesized
for in-house use as a reference compound by thedrainstitute of Organic Synthesis (Riga,

Latvia).

Membrane preparation
Male Sprague Dawly Rats (approx. 200-250 g) wereesthatized and decapitated.

Forebrains were removed and homogenized (Ultraakur8 strokes, 600 rpm) in 0.32 M
Sucrose. The suspension was centrifuged at 1,5f@0 ¢4 min. using a Centrikon T-2050
Ultracentrifuge (Tegimenta AG, Rotkreuz, SwitzedanSupernatant was removed and
centrifuged at 20,800 g for 20 min. The resultirfjgi was re-suspended in ice-cold distilled
water and centrifuged at 7,600 g for 20 min. Sugkmt and loosely associated flocculent
membrane material (buffy coat) were removed by lgentituration of the pellet and
centrifuged at 75,000 g for 20 min. Supernatant diasarded and the membrane pellet was
resuspended by sonication in Tris-Buffer (5 mM, pH)7and afterwards centrifuged at
75,000 g for 20 min. The last step was repeatedet@nd membranes were re-suspended in
Tris-Buffer (50 mM, pH 7.5).



Experimental Section 53

The concentration of protein was determined bylLthvry protein assay with bovine
serum albumin as a standard. Membranes were stareehfat —24°C, thawed on the day of

the assay and washed again four times at 75,00@pfmin.

All centrifugation steps were carried out at 4°C.

[3H]-MPEP binding

After thawing, membranes were washed four timeh wit-cold binding buffer containing 50
mM Tris-HCI, pH 7.5. Binding assays were performedoam temperature in duplicate using
fixed concentrations of test compound (10 uM). Theag was incubated for 1 h in the
presence of radiotracer (5 nM) and membranes (1./tnh@nd non-specific binding was
estimated using 10 uM MPEP. Binding was terminateddmyd filtration through GF 52
glass-fiber filters (Schleicher&Schuell, Dassel,r@any) using a 1225 Sampling Manifold
(Millipore GmbH, Eschborn, Germany). Filters werestvad twice with ice-cold assay-buffer
and transferred to scintillation vials. After adoit of Ultima-GoldTM MV (Packard
Bioscience, Groningen, The Netherlands) radioagtisollected on the filters was counted in
a 1500 Tri-Carb Packard Scintillation Counter.

[BH]-MRZ 3415 Binding
After thawing, membranes were washed four timeh wit-cold binding buffer containing 50

mM Tris-HCI, pH 7.5. Binding assays were performédoam temperature in quadruplicate
on 96-well format using fixed concentrations oftteempound (10 uM). The assay was
incubated for 1 h in the presence of radiotracaertNl) and membranes (0.8 mg/ml) and non-
specific binding was estimated using 10 uM MRZ 34D&ectly after transferring the
reaction volume onto a 96-well multiscreen platéhvglass fiber filter 0.22 um (Millipore
GmbH, Eschborn, Germany) binding was terminatedapyd filtration using a multiscreen
vacuum manifold (Millipore GmbH, Eschborn, Germanijterwards, filters were washed
four times with ice-cold assay-buffer and Ultimal&idv MV Scintillation Cocktail (Packard
Bioscience, Groningen, The Netherlands) was addédr 14 h — 16 h radioactivity was
counted in a MicroBefaTrilux (Perkin Elmer Life Sciences GmbH, Rodgau-&siteim,

Germany).
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Solubility Determination
40 ul of the stock-solution (10 mM, dimethyl sulfax¢yDMSO) as solvent) of each test

compound were diluted with 1.96 ml DMSO to a finahcentration of 200 uM. 100 pl of
this solution were diluted by addition of 1.99 nil a solvent consisting of methanol and
deionized water (1:1). The resulting solutibnhas a concentration of 10 uM of the test
compound containing 5% DMSO. Soluti@was prepared in the same manner but using
Tris-buffer 50 mM, pH 7.5 as solvent instead of tfethanol/deionized water mixture.

To determine peaks of the different solutions a $#ies 1100 HPLC device with
diode array detector (Agilent Technologies, WaldiomoGermany) was used. Both solutions
flew separately through a SymmetryTM C18 Column @&tCorporation, Milford, MA)
with a average pressure of 190 atmosphere. Thdtingsyeaks of both solutions were
compared at a wavelength where the “area undecuhe” (AUC) of the peak of solutioA
and solutionB respectively displayed a maximum. The AUC of dolutA was defined as

100%-value. Thus, the solubility of each test coommbwas determined as follows:

Solubility[%%] = 2 Csauions x 19 (Eq. 3.1)

'solutionA

ICso-value Estimation
ICs5o values were estimated from the % of control valiuem the scintillation assay with a
four parameter logistic equation. If both the ralijgand and the competitor reversibly bind to

the same binding site, binding at equilibrium falequation 3.2.

100%
y:—x° . (EqQ. 3.2)
1+(-)°
IC,,

If sis assumed to be 1 equation 3.2 can be reforniiiate

X

A00%
y

IC,, = (Eq. 3.3)

wheres = slope factor = 1;

X = concentration of test compound [uM] in the assay
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y = result of the binding assay for the test compiggf of control].

Ki-values were calculated from th€s,-values by the Cheng-Prussof Equation [Cheng &
Prussof, 1973].

(Eq. 3.4)

whereL corresponds to the radio-ligand concentrationkani its dissociation constant.

3.2 Determination of 1Csg values for TAR-RNA

Materials
Argininamide was purchased fro8igma Chemical Corp(St. Louis, USA). The molecules

resulting from virtual screening were purchasednff@PECSDelftechpark, The Netherlands)
as 10 mM stock solutions in DMSO, and diluted fordomg assays with DEPC- treated water
to 1 mM or 100 puM, respectively. Fluorescence bagediny assayé” were performed in 96
well microplates at 37°C. ReaddfluoStar Galaxy (BMG LabtechnologiesOffenburg,
Germany), excitation wavelength 540 nm, emissiorvelength 590 nm. Microplates:
Corning 6860, black, non binding surface. The dye labdlaty.s—sequence fluoresceine—
AAARKKRRQRRRAAAC-rhodamine (1 pM stock solution) wasirchased fronThermo
Electron Corporation(Ulm, Germany). Oligonucleotides were obtainednfr®iospring

(Frankfurt, Germany).

In vitro transcription
Equimolar amounts of T7-primer (5'-TAATACGACTCACTANG-3') and TAR template

(5'-GGCCAGAGAGCTCCCAGGCTCAGATCTGGCCCTATAGTGAGTCGTATA-3Y)

were mixed in TE buffer (10 mM Tris-HCI, 1 mM EDTA;Hp7.4) to give a final
concentration of 50 pmol / pL in a volume of 100. |Alfter heating to 90 °C for 5 minutes,
the reaction was allowed to cool down slowly tomotemperature. Alin vitro transcriptions

were performed with T7 polymerase containing RiboMakarge Scale RNA Production
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Systems Kit (#P1300Promega,Mannheim, Germany) as described by the manufacturer.
Subsequent to transcription the DNA template wasokeed as follows: After heating the
transcription mixture to 95 °C for 5 minutes it wetslled immediately on ice. 10 pL RQ1
DNase buffer Promega and 20 pL RQ1 RNase-free DNase (20Rdpmega were added
and the mix was incubated for 30 minutes at 37F@llowing phenol / chloroform extraction,
RNA was precipitated with 3 volumes of ethanolhe presence of 0.3 M sodium acetate (pH
5.2). The RNA was desalted on a NAPcolumn @mersham Biosciencesreiburg,
Germany). After lyophilisation, the RNA pellet weedissolved in DEPC treated water to a

concentration of 100 uM (stock solution) or 1 uM &fidilution), respectively.

FRET assay
The following stock solutions were used in the gskibeled Tat-peptide (1 uM), TAR-RNA

(1 uM), TK buffer (500 mM Tris-HCI, 200 mM KCI, 0.1%rifon-X 100, pH 7.4). The final
volume per well was 100 pL. The fluorescence okeplat peptide was determined first: 10
ML stock solution of Tat and 10 pL TK buffer weietl up with DEPC treated water to 100
puL. 10 pL of Tat solution, 10 pL of TAR solutiona@ 1 uM), 10 puL TK buffer, and 70 pL
DEPC treated water were then mixed in a second weatheasure the emission of the Tat-
TAR complex. Having established the numbers foe faad for bound peptide, single point
measurements of potential inhibitors were carrietdab concentrations of 1000, 100, and 10
UM by using 10 pL of the stock solutions (10 mM, 1 mavid 100 uM). RNA and peptide
concentrations were kept constant at 100 nM in @adh(10 puL Tat, 10 uL TAR, 10 pL TK
buffer, 10 pL inhibitor, and 60 pL DEPC treated evat Addition of DMSO strongly
increases the fluorescence of rhodamine indepelydémm peptide-RNA binding. To
eliminate this effect, samples of Tat and of TatRrfeach 100 nM) were also measured in
the presence of 10 %, 1 %, or 0.1 % DMSO. Dividimgse numbers by the value obtained in
pure water generated the correction factors. Fonpomunds which showed an inhibitory
effect in the preliminary test, complete titratiomrves were determined from 11 data points.
The molecular concentration at which the fittedatibn curve intersected with the mean value
of the fluorescence counts of the Tat-TAR complae’ ancomplexed Tat was used as the

IC5g value of a molecule.



4 Main Section

The main section is organized in the following w&ections 1-3 cover the retrospective
evaluation of pharmacophore pair descriptors (CATHTS3D and SURFCATS) with

respect to similarity metrics, scaling, multiplenéarmations and scaffold hopping. Sections 4
and 5 cover the SQUID fuzzy pharmacophore modeicgmb, including the evaluation of the
method and a prospective virtual screening for TR inhibitors. Section 6 and 7 report
prospective virtual screening experiments for &fine antagonists of the metabotropic
glutamate receptor 5 using CATS3D similarity searghand an artificial neural network

approach. Section 8 addresses the prospectivealstueening with a ligand- and binding-

site-based pharmacophore model of taspasel.
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4.1 Influence of similarity metrics and descriptor vector

scaling on CATS3D retrospective screening

The CATS3D descriptor is a three-dimensional extensf the topological pharmacophore-
pair CATS descriptor developed by Schneider [Saerat al, 1999] for ligand based virtual
screening. Several parameters can influence tlezteféness of virtual screening. Among
these are the set of reference molecules, the maledescriptor and the similarity metric.
We wanted to test if there are some general optsatings for virtual screening with the
CATS3D descriptor. In detail we wanted to test itiftuence of different similarity indices,
namely the Manhattan distance, the Euclidean distaand the Tanimoto similarity
coefficient (Table 2.1). Further we were interestedhe effect of different scaling schemes
on the performance of the CATS3D descriptor. Thiifferent scaling schemes were tested:

* No scaling (ho-scaling).

» Division by the number of PPPs of a molecukcélingZ).

» Division of each of the 21 possible pairs of PPiP$he added occurrences of the two

respective PPPs (“scaling2”).

No-scalingcorresponds to the histogram of pairs of PPPs imokecule.Scalinglwas the
original scaling scheme reported for the CATS dpsar [Schneideket al, 1999]. The aim of
scalinglis to reduce dissimilarities of molecules basedlifierent molecular sizeScaling2
is an extension of scalingl, first reported for GG8D [Fechnert al, 2003]. The aim of
scaling2is to reduce the bias of highly populated typeBPs (mainly the hydrophobic
PPPs) on the similarity between molecules.

For the retrospective screening experiments we @egdl the COBRA database
(version 2.1) [Schneider & Schneider, 2003] of aatexl reference molecules from recent
scientific literature. Twelve different datasetsrave&compiled from the COBRA database.
These non-overlapping subsets were defined aseantiMecules (used as query) and the
respective remainder of the dataset as inactiveeentds. The sets of actives contained
molecules that bind to angiotensin converting ereyACE, 44 compounds), cyclooxygenase
2 (COX2, 93), corticotropin releasing factor (CRitagonists, 63), dipeptidyl-peptidase 1V
(DPP, 25), G-protein coupled receptors (GPCR, 16#2man immunodeficiency virus
protease (HIVP, 58), matrix metalloprotease (MMP,, fiBurokinin receptors (NK, 188),
nuclear receptors (NUC, 211), peroxisome prolifaraictivated receptor (PPAR, 35), beta-
amyloid converting enzyme (BACE, 44), and throm@liriR, 188). For the virtual screening

experiments single CORINA [Sadowskial, 1994] 3D conformations were used.
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Figure 4.1. Average of the enrichment factors over the 12vagtclasses for the different
scaling methods and similarity metrics from retexdfve screening of the COBRA database.
Blue bars denote 1% enrichment and red bars 5%lemnent factors.

Each of the molecules from the subsets was empl@gedjuery for one virtual
screening experiment. Averages of the enrichmenorfa over all twelve classes are shown in
Figure 4.1 for the first 1% and 5% of the hit-listgpparently the performance of the three
scaling schemes wasaling2> scalingl> no-scaling,independent of the similarity metric
applied. The performance of the similarity metrst®wed no clear ranking. Fap-scaling
and scalingl the Manhattan distance was found to be best. d€ating2 the Tanimoto
coefficient was the best performing similarity nietThe differences between the similarity
metrics were significantly smaller than betweendbaling schemes. The standard deviations
of the averageef values were found to be up to 64 % of the meanesEf(5%) for no-
scalingwith Tanimoto in Figure 4.1). Accordingly the rédsthave to be taken with care. To
assess the significance of the averafgave further investigated the results of the indist
target classes.

The enrichment factors for all classes are giveifable 4.1. For all classes expect
GPCR significantef values were found. GPCR is a very general clagspdsing many

different receptors. Thus a lack of significantiemment is not surprising. NUC, another
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general class, was successful in retrospectiveesicrg. The major trend found for the
averageef values was confirmed. Though large standard dewsitwere also found in the
single activity classes the major trend of the ageref values seems to be confirmed. For
almost all classes the beftvalues for 1% of the hit-list were found wislealing2 Only for
HIVP with Manhattan distance amib-scaling or scalingl, and for NK with Manhattan
distance and the Tanimoto coefficient wiib-scalingresulted in better or equaf values
than for the respective screenings ussngling2 For 5% of the hit-list more examples were
found with equal or betteef values using scaling schemes other tkaaling2 For the

Tanimoto coefficient, this was only found foo-scalingNK.

4.1.1 Conclusion

The impact of different scaling schemaw-{scaling scalingl and scalinggd and
different similarity metrics (Manhattan distance ckean distance, and Tanimoto similarity)
on virtual screening with the CATS3D descriptor wasestigated with retrospective
screening in ten target classes of the COBRA datb@he results suggest a general
preference foiscaling2 (scaling by the added occurrences of the PPP p&csling2was
found to be best for most of the target classesostingly for all further experiments this
scaling scheme was applied. Usisgaling2the Tanimoto coefficient was found to be best.
The differences between the similarity metrics wieng in comparison to the differences
between the scaling schemes. Therefore one costd salggest the use of the Manhattan
distance for the screening of large datasets, sheed/lanhattan distance is the fastest of the
three applied similarity metrics.
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Table 4.1.Retrospective screening results for CATS3D usitfigrént scaling schemes and
similarity metrics. Three scaling schemas-6caling scalingl, andscaling? and the three
similarity metrics Manhattan distance (Manh), Eudidelistance (Euc), and the Tanimoto
similarity (Tani) were applied. Values in brackats standard deviations.

no-scaling scalingl scaling2
% DB Manh Euc Tani Manh Euc Tani Manh Euc Tani
ACE
1 12 (11) 12(10) 12(10) 14 (11) 12 (10) 13 (10) 16 (11) 17 (11) 20(13)
5 4 (3) 4 (3) 4 (4) 5(@3) 5(@3) 5@13) 6 (3) 6 (4) 7 (4)
COX2
1 17 (11) 16 (11) 17 (12) 18 (11) 18(12) 19 (12) 21(12) 20(13) 22(13)
5 7 (4) 6 (3) 7 (4) 8 (4) 7 (4) 7 (4) 9 (4) 8 (4) 9 (4)
CRF
1 19 (11) 15(10) 15 (9) 21(11) 15(9)  15(8) 22 (10) 21(10) 20 (11)
5 8 (3) 6 (3) 6 (3) 9 (3) 73) 73) 10(3) 10(3) 10(3)
DPP
1 13 (8) 9 (6) 9(7) 13(9) 11(8) 11 (8) 16 (11) 16 (12) 15 (13)
5 4(2) 4(2) 4(2) 5(2) 4(2) 3(2) 5 (3) 5 (3) 4 (3)
GPCR
1 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2 (1) 2(1)
5 1 (0) 1 (0) 1 (0) 1(0) 1 (0) 1(0) 1(0) 1(0) 1(0)
HIVP
1 13(8) 13(8) 14(8) 138 13(7) 14(7) 12(8) 15(9) 20 (10)
5 7 (4) 7 (4) 8 (4) 6 (3) 7(3) 8 (3) 5 (3) 7 (4) 9 (4)
MMP
1 7 (5) 5 (4) 5 (4) 7 (5) 5 (4) 6 (4) 10(7) 11(7) 13(8)
5 3(2) 3(2) 3(2) 3(2) 3(2) 3(2) 4(3) 4(2) 5 (3)
NK
1 13(8) 11(7) 12(7) 12(8) 11(7) 12(8) 11(7) 12(8) 15(8)
5 7 (4) 6 (3) 7 (4) 6 (3) 6 (3) 7 (4) 5 (3) 6 (3) 8 (3)
NUC
1 7 (6) 6 (5) 7 (5) 7 (6) 7 (5) 7 (5) 8 (6) 7 (5) 8 (6)
5 4 (3) 3(2) 4(2) 4 (3) 3(2) 4(2) 4 (3) 4 (3) 5 (3)
PPAR
1 7 (5) 5 (4) 4 (5) 7 (6) 5 (5) 6 (5) 9(7) 9 (8) 8 (8)
5 3(2) 2(2) 2(2) 3(2) 2(2) 2(2) 3(2) 3(2) 3(3)
BACE
1 7 (5) 5 (3) 4(2) 8 (6) 6 (4) 5 (4) 12 (10) 12 (10) 11 (9)
5 2(2) 2(1) 2(1) 3(2) 2(1) 2(1) 3(2) 3(3) 4 (3)
THR
1 6 (4) 5(@3) 5(@3) 6 (4) 6 (4) 6 (4) 7 (5) 8 (5) 9 (5)
5 3(2) 3 (1) 3 (1) 3(2) 3(2) 3(2) 3(2) 4(2) 5(2)
average
10.1 8.6 8.8 10.7 9.2 9.6 12.2 12.4 13.5
1% (5.1) 4.7) (5.1) (5.4) (4.9) (5.1) (5.8) (5.6) (6.2)
4.5 4.0 4.3 4.7 4.1 4.3 4.8 5.1 5.7

5% (2.3) 2.2) (2.4) 23)  (2.0) (2.2) (2.5  (2.4) 2.7)
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4.2 Impact of conformational flexibility on CATS3D virtual

screening

Virtual screening methods like docking or three-ginsional pharmacophore searching rely
on the on the “bioactive” conformation of molecules asses the biological effect of a
molecule. Three-dimensional pharmacophore coroglatector methods have been shown to
produce reasonable results using only a small $etooformations or even a single
conformation per molecule [Sheridaetlal, 1996, Brown & Martin, 1996, Section 4.1].

While it is a comparably easy task for small amgidriigands with only few rotatable
bonds to sample the conformational space exhalstitheere are still practical limits in the
number of conformations that can be handled effitjedue to the exponential explosion of
the number of potential conformations with an iasiag number of rotatable bonds [Schwab,
2003]. Accordingly three-dimensional methods whiely only moderately on the presence of
an exact fitting conformer would be interesting ¥otual screening.

In the present study we examined the influencehef incorporation of different
amounts of multiple conformations on the ability tgfe CATS3D approach to find
isofunctional molecules in a retrospective scregnexperiment. Therefore reference
molecules from co-crystal structures were used @srigs for the retrospective virtual
screening experiments. Different numbers of con&dioms were calculated for the virtual
screening database. We compared the effect of tisendifferent virtual screening libraries.

The PDBbind database [Waegal, 2004] (version 2002) served as a reference set of
high-quality crystal structures of receptor-bouigdds for the virtual screening experiments.
For retrospective screening we used the COBRA dataljSchneider & Schneider, 2003]
(version 3.12) consisting of 5,376 annotated ligaodmpiled from scientific literature. The
ligands of the PDBbind database were grouped amgprib their target annotation. All
clusters containing less then five ligands were awesd. Clusters were also removed for
which no ligands were found in the COBRA databagib the same target annotation as in
PDBbind. From multiple incidences of identical Igis all but the one with the best
resolution were removed. The final set of refereligands consisted of 11 groups (“activity
classes”) with a total number of 177 ligands. Theesponding set of “active” ligands in the
COBRA database contained 674 molecules, which mehat the COBRA database
contained 4,702 additional ligands that were natsatered as “active” in either of the 11
activity classes. The final set of annotated aftivilasses and their abbreviations were:
acetylcholinesterase (ACHE, 6 compounds from PD&bit8 compounds from COBRA,
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overlap: 0), carbonic anhydrase Il (CAll, 30, 25, dastase (ELA, 8, 8, 0), factor Xa (FXA,
5, 226, 5), HIV-protease (HIVP, 58, 61, 8), neunaicase (NEU, 8, 28, 1), protein tyrosine
kinase c-src (PTK-CSRC, 7, 16, 0), protein tyrospi®sphatase 1b (PTP1B, 5, 36, 0),
stromelysin 1 (STRO1, 7, 19, 0), thrombin (THR, 3®4, 10), and urokinase type
plasminogen activator (UTPA, 11, 48, 3). Since werevnot interested in the absolute
performance of the method, but in the relative grenbince using different degrees of
conformational information, we did not remove liganthat were present in both databases
(“overlap”). An overview over the average number rotatable bonds and the average
molecular weights of the activity classes is giweTable 4.2. Before further procession of
the data all molecules were neutralized with apsaniritten in the SVL-language of MOE
[Chemical Computing Group].

Table 4.2. Average number of rotatable bonds and moleculaghwef the activity classes.
Values in brackets are standard deviations.

PDBbind COBRA
Activity Rotatable Molecular Rotatable Molecular
class bonds weight bonds weight
ACHE 6.7 (5.8) 334 (116) 8.2(4.5) 253(81)
CAll 7.2(3.5) 321(84) 7.3(3.0) 366 (100)
ELA 16.4 (3.2) 545 (60) 10.9 (4.2) 431 (126)
FXA 11.0 (5.3) 435 (29) 12.0 (5.7) 489 (82)
HIVP 21.7(9.7) 637 (116) 19.3(6.2) 614 (116)
NEU 12.9 (1.4) 305 (20) 12.6 (7.7) 320 (130)
PTK-CSRC  24.9 (3.4) 557 (64) 7.6(3.2) 444 (80)
PTP1B 6.0 (0.0) 277 (34) 10.2 (6.4) 464 (150)
STRO1 12.9 (6.4) 487 (108) 17.1 (5.6) 489 (106)
THR 10.7 (5.0) 423 (125) 15.4 (5.1) 500 (107)
UTPA 6.6 (1.9) 294 (86) 10.2 (5.8) 165 (116)
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4.2.1 Calculation of conformations for the PDBbind dataset and the
COBRA database

Conformations were calculated for the selectedreefse molecules from the PDBbind
database and all molecules from the COBRA datab&se. each database single
conformations were calculated with CORINA. To riestthe number of possible output
conformations from ROTATE only the five most cehtratatable bonds were subjected to
torsion angle variation, and conformations withimternal (symbolic) energy of more than
100 kJ/mol above the lowest-energy conformatiorewejected. The resulting conformations
were classified after the calculation in torsiomlanspace by applying different thresholds to

further reduce the number of conformers.

e)

SO
f& %600

Figure 4.2. The torsion angle. a) — f) Example of the torsamgle variation of the central

rotatable bond of butane in steps of 60°. b), d) §ncorrespond to minima in the torsion
energy; a), ¢) and f) correspond to unfavorabléestavith maxima in the torsion angle
energy. @) illustrates the five innermost rotatabtends of the Factor Xa inhibitor Fxv673
(Roman letters at the bonds in dark grey), thatwesed for the conformation generation with
ROTRATE.
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Table 4.3.Average number of conformations per molecule dated for 11 activity classes.
Multiple conformations were calculated with the doling thresholds for the classification in
torsion angle space: R1: 120 °, R2: 60° and R3: 45°

PDBbind COBRA

ﬁ‘l‘;tsi‘gty RL R2 R3 RL R2 R3
ACHE 17 107 192 15 107 208
CAIl 35 189 313 31 220 389
ELA 38 349 515 28 270 549
FXA 38 384 690 39 328 594
HIVP 29 301 56.4 28 289 514
NEU 20 245 451 24 100 352
PTK-CSRC 2.6 267 48.0 40 219 414
PTP1B 40 146 256 32 254 46.9
STRO1 34 354 649 32 310 556
THR 35 265 49.6 34 343 636
UTPA 33 110 192 33 228 480
Average 3.1 247 43.6 3.1 25.1 46.9

For the final classification we used torsion artglesholds of 120° (resulting database further
referred to as R1), 60° (R2) and 45° (R3). Tab gives an overview over the average
number of conformations that were calculated pdemude for the different activity classes of
both datasets. On average approximately three ooafons were generated for each
molecule in the R1 datasets, roughly 25 conformatio the R2 and about 45 conformations
per molecule in the R3 datasets. For some of theitggcclasses (e.g. PTP1B, UTPA) the
number of conformations differed significantly been the reference dataset and the COBRA
database. Since the number of possible conformmi®mainly determined by the number
bonds which were rotated, this difference indicales the topological similarity between the

entries of these classes was low.
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Table 4.4. Average best RMSD of the calculated conformatioos thhe reference
conformations of the PDBbind molecules. Improverseate given for usage of multiple
conformations in comparison to the RMSD obtainechvaitsingle CORINA conformation.
The improvement (Rx, x=1,2,3) was calculated by RMSD (CORINA confation) /
RMSD (best Rx conformation). Values in bracketsstamdard deviations.

Improvement over

RMSD in A CORINA

Activity CORINA RI1 R2 R3 I(R1) 1(R2) I (R3)
class

ACHE 15(18) 11(L2) 07(07) 07(08) 1421 20
CAIl 11(04) 09(0.4) 08(04) 08(04) 1214 15
ELA 22(04) 16(03) 14(04) 13(04) 14 .61 17
FXA 20(04) 17(04) 1002 08(02 12 .12 25
HIVP 31(0.8) 26(09 22(07) 2107 1214 15
NEU 1.0(06) 12(0.4) 08(05 08(05 09 31 13

PTK-CSRC  2.2(05) 22(0.2) 1.8(.1) 18(0.1) 10 1.2 1.2

PTP1B 0.9(0.2) 05(0.1) 0.4(0.1) 0.4(0.0) 1621 24
STRO1 2.1(0.8) 15(0.7) 12(0.6) 1.2(0.6) 1417 18
THR 1.9(0.9) 1.4(0.8 1.2(0.7) 1.1(0.7) 14 61 17
UTPA 0.9(0.5) 05(0.4) 04(0.3) 0.4(0.2) 1.7 23 2.4

1.3 1.7 1.8

Average 1707 14(06) 1106 1005 ‘go 04 (05

4.2.2 Reproducing the crystal-structure conformatio ns of reference

ligands

In order to assess the reproduction of the recdpmiond conformations of the PDBbind
reference ligands we calculated the RMSD value bfgaherated conformations to their
corresponding experimentally determined geomethe flesults of the calculation are shown
in Table 4.4. In a recent publication [Bostrém, 2p@&n RMSD of less than 0.5 A to the
reference conformation was considered as a suctigssfproduced conformation. According
to this threshold, only for two activity classesTEAB, UTPA) the bioactive conformation
could be reproduced, even with the R3 databaseicamg the largest number of calculated

conformations. Applying a less stringent RMSD ciiterof 1 A, the CORINA conformations
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already reproduced the bioactive conformation fweé of the eleven activity classes (NEU,
PTP1B, UTPA). For six activity classes the bioaetoonformation could be reproduced in
the R3 database. The best RMSD values were founBTBrB and UTPA, the two classes
with the minimum of rotatable bonds of 6 and 6.5awarage (Table 4.2), using the maximum
of conformations. Only for two classes RMSD valuashér than 1.3 A were obtained: for
HIVP and PTK-CSRC, the two classes with the largeshber of rotatable bonds (21.7 for
HIVP, 24.9 for PTK-CSRC). Interestingly, the largesmprovement using more
conformations could be obtained for Factor Xa iftbils (FXA) which have 11 rotatable
bonds on average (Table 4.2). For UTPA and PTPI8 dbcond- and the third-best
improvement were found. The smallest improvemers afatained for PTK-CSRC, which is
probably caused by the fact that not all rotorsengiocessed for the generation of multiple
conformations and these two classes had the mdgicdl bonds that were not rotated.

Figure 4.3. Superposition of the CORINA conformation (red) dahd best R3 conformation
(green) of the Factor Xa inhibitor Fxv673 (PDB cdd€SN) to the reference conformation
from the crystal structure.

An example of the Factor Xa inhibitor Fxv673 (PDBde 1KSN) CORINA
conformation (red) and the best R3 conformatioedg) superimposed onto the reference is
shown in Figure 4.3. The bound ligand conformatias a central kink that is not found in the
geometrically more stretched CORINA conformatioM®D = 2.3 A). The best ROTATE
conformation reproduced the kink which resulted an improved RMSD of 1.1 A.
Summarizing, using more conformations resulted itower RMSD, and in most cases

conformations were found close to the receptor-dazonformation.
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4.2.3 Retrospective screening

In order to determine the impact of multiple confations on 3D similarity searching the
presumable “bioactive” conformations of the refeeeriigands selected from the PDBbind
database were used to screen the COBRA databalsgaftils with similar biological activity.
The results of the retrospective screening expearisn@are compiled in Table 4.5. Most
reference classes were able to significantly erthietfirst percent of the ranked database with
molecules from the same activity class. Surprisinfglr PTK-CSRC and PTP1B no actives at
all were found in the top 1% of the ranked datab&secomparison to the other activity
classes significant differences in the average raundd rotatable bonds and the average
molecular weight of the reference molecules andntioéecules from the COBRA database
can be found (Table 4.2). This indicates that thand sets from the two databases differed
from each other and were therefore not considesdsinilar” by the virtual screening
method.

For probing the impact of multiple conformationsr feimilarity searching with
CAT3D correlation vectors we were interested in thgrovement of using multiple
conformations over single conformations and not josthe overall performance of each
class. Interestingly, while significant improvememas observed for several of the activity
classes, on average no significant improvementeéneinrichment factor was observed when
multiple conformations were incorporated. The latgenprovement was observed for FXA
and THR yielding an enrichment factor of 1.8 for R@d R3, respectively. For the other
activity classes much smaller improvements wereaetl. For ACHE even a significant
deterioration was observed. In all cases no laifference in theef between R2 and R3 was
observed.

Furthermore, no obvious correlation between therawgment of the RMSD from
Table 4.4 and the improvement in similarity seargh(Table 4.5) was found. Figure 4.4
shows the plots of the enrichment factors versas#st RMSD values to the receptor-bound
(bioactive) conformation found in the various canfational ensembles (single CORINA
conformation, R1, R2, and R3) for the differentiatt classes. For example for UTPA, for
which the RMSD could be largely improved for the RiD®I dataset, the usage of multiple
conformations for COBRA led only to a small imprawent for R3. On the other hand, FXA
resulted in the largest improvement in both RMSD ianeinrichment. HIVP and STROL, the
two classes with the most rotatable bonds in theBR® dataset, showed nearly no

improvement for R3. In R1 both classes even shaavethall deterioration in thef. This is
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likely to be due to the rotation of only the fivenermost rotatable bonds in the molecules.
This limitation seems to prevent the reproductibthe crystal structure, i.e. the presumably
“bioactive” conformation. This substantiates thesefvation in the previous experiment
where the two classes with more than 20 rotatabtel® resulted in the two largest RMSD
values (HIVP and PTK-CSRC in Table 4.4). Regardheef values, both HIVP and STRO1
performed well, even with a single conformationcomtrast, THR, which ranked third in the
number of rotatable bonds in the COBRA databasgrawed significantly with more
conformations (Table 4.5, Figure 4.3). For ELA wih average number of 11.9 rotatable
bonds in the COBRA database (Table 4.2), the emecth did not increase although the
RMSD to the receptor-bound conformation was lowefein 2.2 A (CORINA single
conformation) to 1.3 A (R3 database).

Table 4.5.Result of the retrospective screening of the CORR#abase with the PDBbind
reference structures. Enrichment factors were ttled for the first percent of the ranked
databases. The improveménRx, x=1,2,3) was calculated lgy (best Rx conformation) &f
(CORINA conformation. Values in brackets are staddkeviations.

) Improvement over
Enrichment factor ¥

CORINA
Activity CORINA R1 R2 R3 IRL) 1(R2) I(R3)
class
ACHE 51(40) 2539 1331 1330 05 03 03
CAIl 38(40) 45(39) 46(40) 46(47) 12 12 12
ELA 16(4.4) 16(44) 16(44) 16 (4.4) 10 01 10
FXA 48(24) 70(23) 85(23) 87(25) 15 81 18
HIVP 122 (11.8) 11.4 (11.2) 13.2 (13.1) 13.3(133) 09 11 11
NEU 222 (10.5) 21.3 (11.0) 23.5(10.0) 22.1(10.3) 1.0 1.1 1.0
PTK-CSRC  0.0(0.0) 00(0.0) 00(00) 00(0.0) - i i
PTP1B 0.0(0.0) 00(0.0) 00(00) 0.0/(0.0) i -
STRO1 9.0(89) 67(7.2) 82(9.0) 90(10.7) 70. 09 1.0
THR 29(7) 40(48 52(58 53(5.8) 14 81 18
UTPA 49(58) 66(84) 62(89)  6.0(89) 1313 12
Average 6.0(65) 60(6.1) 6.6(69) 6.5 (6.6) 1('01_3) 1(01 " (16.14)
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Figure 4.4. Enrichment factors, ef (cf. Table 4.5), versus llest RMSD values, obtained
with the four conformational ensembles (CORINA, R2, and R3; cf. Table 4.4) for each of
the activity classes. ACHE: acetylcholinesteras&ll:GCarbonic anhydrase I, ELA: elastase,
FXA: factor Xa, HIVP: HIV-protease, NEU: neuramiagk, PTK-CSRC: protein tyrosine
kinase c-src, PTP1B: protein tyrosine phosphatas&TRO: stromelysin 1, THR: thrombin,
UTPA: urokinase type plasminogen activator.

To find an explanation for the low impact of muléipconformations on similarity
searching, we further investigated the Manhattatadces of the molecules obtained from
different conformational samplings to the referemoelecules. In Table 4.6 the average
Manhattan distances from the best scoring confoomatof all active molecules from the
COBRA database to the reference molecules are g@ely an average improvement of 1.1
was found using R3 in comparison to the COBRA confiiions. For comparison the average
Manhattan distances of the 10 best scoring inacfregs each virtual screening experiment
to the respective reference molecular descriptergiven in Table 4.7. Again an average
improvement of 1.1 was found using R3 instead glsi COBRA conformations. For ACHE

no improvement was found for the active moleculesasmall improvement of 1.1 (I(R3))
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was found for the inactives. This explains the dased enrichment factor for ACHE using

multiple conformations.

Table 4.6. Average Manhattan distances of the actives frotmQOBRA database to the
reference molecules from the PDBbind database. ifffpgovement! (Rx, x=1,2,3) was
calculated by average distance (Rx) / average mtistd CORINA). Values in brackets are
standard deviations.

Average Manhattan distance to the reference  Improvement over

molecules CORINA

Activity CORINA R1 R2 R3 IR 1(R2) I(R3)
class

ACHE 95(38 9438 9238 9238 1010 10
CAll 103(32) 100(31) 97@3.1) 9631 0Ll 11 11
ELA 10.7(2.4) 103(22) 100(22) 99(22) 01. 1.1 1.1
FXA 124(35) 11.9(35) 114(34) 113(35 .01 11 1.1
HIVP 153 (4.4) 149 (44) 142(45) 141(45) 1.0 11 1.1
NEU 99(28 96(27) 9327 9227 10 11 1.1

PTK-CSRC  13.2(2.7) 12.6(2.6) 12.0(25 11.8)2. 1.0 11 11

PTP1B 14.4 (3.9) 13.7(4.0) 131(4.1) 1304111 11 11
STRO1 19.8 (4.8) 19.0(4.8) 18.7(4.8) 187(48)1.0 1.1 1.1
THR 12.7(35) 123(3.3) 120(3.2) 120(3.1) .01 1.1 1.1
UTPA 11.1(4.0) 10.8(3.9) 105(3.8) 105(3.8) 1.0 1.1 1.1

12.7 (3.0) 12.2(28) 11.8(28) 11.8(28 1011 11

Average (0.0) (0.0) (0.0)

4.2.4 Conclusion

Investigating the impact of multiple conformaticors 3D similarity searching with CATS3D,
it was demonstrated that using only a single conédion per molecule already resulted in
significant enrichment of actives. This observatisas also made for ligand classes with
many rotatable bonds. On average these resultadidignificantly improve using multiple
conformations. Nevertheless, for some classes d¢écules considerable improvement in the

enrichment of active molecules was observed. Furtbee, no clear correlation between the
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improvement of the enrichment factor and the imprognt of the RMSD to the bioactive
conformation could be derived when screening withT63D correlation vectors. It was
found that the Manhattan distance of single con&dioms did not change significantly using
more conformations. This was observed for molecul#s the same activity as well as for
false-positives. Since the calculation of multipnformations is computationally expensive
it seems to be preferential to use single confdonatfor large databases, e.g. virtual
combinatorial libraries, for a first-pass virtuaresen. Single conformations can be computed
efficiently with CORINA, even for large databasés.a second screening round, e.g. with
smaller databases or flexible ligands, it can berthwhile considering multiple

conformations.

Table 4.7.Average Manhattan distances of the best inacfroes the COBRA database to
the references molecules from the PDBbind databidse= 10 best scoring inactive molecules
from each retrospective screening experiment weeel as inactives. The improvemeRx,
x=1,2,3) was calculated by average distance (Rayetage distance (CORINA). Values in
brackets are standard deviations.

Average Manhattan distance to the reference Improvement over

molecules CORINA
g;i‘éity CORINA R1 R2 R3 I (R1) 1(R2) |(R3)
ACHE 57(2.7) 53(26) 51(26) 5.0(2.6) 11 1.1 11
CAll 55(1.9) 53(1.9) 51(1.9) 5.1(L.9) 10 1.1 1.1
ELA 6.2(1.5) 5.8(1.4) 54(14) 53(L4) 11 11 1.2
FXA 78(22) 761 7321 7222 10 11 1.1
HIVP 105(3.4) 101(3.3) 96(3.2) 95(2) 01. 1.1 1.1
NEU 72(1.1) 7.0(1.0) 65(11) 6.4 (L1) 10 11 1.1

PTK-CSRC  7.9(2.0) 751 71(1.9 7019 11 11 1.1

PTP1B 75(26) 7.2(2.6) 6.8(25) 6.7(2.4) 1011 11
STRO1 14.8 (4.0) 14.4(3.9) 13.8(4.0) 137(3.9)1.0 1.1 1.1
THR 6.3(0.6) 6.2(0.6) 6.0(0.6) 5.9(0.6) 10 11 11
UTPA 51(15) 49(1.4) 4714 4.7(1.4) 1.0 1.1 1.1

77(28) 7427 1.0(26) 7.0(256) 1.0 1.1 1.1

Average (0.0) (0.0) (0.0)
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4.3 Virtual screening and scaffold hopping efficien cy of

alignment-free pharmacophore pair descriptors

Manipulating living systems at the molecular levehuires profound knowledge of the
variability of small molecule effectors that prowok particular cellular response. Medicinal
chemistry relies on libraries of molecular problesttcan be rationally designed to contain a
desired degree of chemotype diversity. Despitetgré@ances in the field of virtual screening
and rational compound library design, “scaffold-bimg” remains a challenging goal
[Schneider & Fechner, 2005]. The concept of scadffedpping aims at finding isofunctional
but structurally dissimilar molecular entities [8elderet al, 1999, Schneideet al, 2000;
Bohm et al, 2004, Jenkingt al, 2004]. Ideal screening methods that perform ssfaé
scaffold-hops would not only find a maximum numbeit also a maximally diverse set of
active compounds from a given chemical subspacéy Omtil recently, the focus in the
development and evaluation of virtual screeningho@$ has often been purely on the
retrieval of large numbers of “active” moleculesirrespective of the number of retrieved
chemotypes. This has led to the impression thah@madstemploying a low level of abstraction
from the molecular structure, e.g. substructurgdiprints, are among the most efficient
ligand-based virtual screening methods [Brown & Martl996; Hertet al, 2004b]. In
contrast to substructure-based molecular descsiptggharmacophore models and
physicochemical metrics represent a comparably kegiel of abstraction from chemical
structure. Consequently, such methods have beernogedpfor screening library design
relying on their scaffold-hopping potential [Schoemiet al, 1999; Schneideet al, 2000;
Matter, 1997; Neeruret al, 2002]. In this study we compared the scaffoldgiog efficiency

of similarity searching with topological, three-dinsional and molecular surface-based
pharmacophore pair descriptors and a substrudngerprint method.

Similarity searching is founded on the similarityingiple which states that similar
molecules exhibit similar biological effects [Jobns& Maggiora, 1990]. A straightforward
approach for similarity searching is to compare ¢benection tables to assess the similarity
between two molecules. Such methods include suttsteu fingerprints like the MACCS
keys [MDL Information Systems] which are based ormaotxchemical substructures.
Substructure matching approaches were reported @nong the most successful for virtual
screening [Brown & Martin, 1996; Hedt al, 2004b]. The classification of intermolecular
interactions into general pharmacophore types pgesvia means to obtain a more general

description of the underlying chemotypes of molesulSchneideet al, 2000; Mason &
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Good, 2001]. Three such descriptors were emplopethis work: the topological CATS
descriptor [Schneideet al 1999; Fechneet al, 2003], the three-dimensional CATS3D
descriptor, and the molecular surface based SURECdscriptor.

Molecular representations that are grounded on -tlireensional conformations like
molecular surface-based descriptors are indeperfdemt the molecular connectivity and
should have a favorable scaffold-hopping poterfBainder & Glen, 2004; Clark, 2004]. For
comparison with a conceptually different descriptbe MACCS keys were used as
implemented in MOE.

To assess the degree of scaffold-hopping, one defste the term “scaffold”. Here,
we followed the concept of Xu and Johnson employiregsoftware suite Megi [Pannanugget
Consulting L. L. C.], which has recently been dedidor the analysis of chemical libraries
[Xu & Johnson, 2001; Xu & Johnson, 2002]. Two diffiet definitions of a scaffold were
applied: cyclic system (“Scaffold”, Sc) and reduosdlic system (“Reduced Scaffold, ReSc)
(Figure 2.6). In Meqgi, each molecular topology ise@fied by a particulamolecular
equivalenceindex (meqi) which is used to distinguish betwedfedint scaffolds and reduced
scaffolds.

Ligands from ten different target classes from @@BRA database [Schneider &
Schneider, 2003] of annotated ligands were usedefe&yence for retrospective virtual
screening: angiotensin converting enzyme (ACE, ddhpounds, 28 scaffolds, 17 reduced
scaffolds), cyclooxygenase 2 (COX2, 94, 27, l4)ticotropin releasing factor (CRF
antagonists, 63, 33, 23), dipeptidyl-peptidase WP, 25, 13, 7), human immunodeficiency
virus protease (HIVP, 58, 46, 31), matrix metal@pmase (MMP, 77, 47, 19), neurokinin
receptors (NK, 118, 65, 49), peroxisome proliferatctivated receptor (PPAR, 35, 29, 17),
beta-amyloid converting enzyme (BACE, 44, 13, I#)d thrombin (THR, 188, 100, 36).
According to the number of scaffolds and reduceaffsltls in relation to the number of
molecules the datasets range from sets with a daffadd diversity (e.g. COX2) to sets with a
large relative scaffold diversity (e.g. PPAR, HIVPJhe complete COBRA database
contained 1,628 different scaffolds and 637 distireduced scaffolds. For retrospective
screening each molecule from each target classakas iteratively as the reference molecule
for a virtual screening experiment, where all otimerlecules were ranked according to their
similarity to the reference molecule. For quangfion of “similarity” three similarity indices

were employed: Manhattan distance, Euclidean distaarad Tanimoto similarity (Table 2.1).
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To summarize: For the retrospective screening éxgets we employed ten different
datasets, four descriptors (CATS, CATS3D, SURFCAWBCCS), and three molecular
representations (atomic, scaffold, and reducedadakpresentation).
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Figure 4.5. Average relative performance for the first 5% o%érligand classes from the
COBRA database. Comparison of the performance of RMIBCCATS, CATS3D and
SURFCATS for molecules, scaffolds (Sc) and redusedffolds (ReSc). Three similarity
metrics were applied: the Tanimoto similarity, tBaclidean distance and the Manhattan
distance.
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The average relative performance of the four metHodthe first 5% of the database
over the ten activity classes is summarized in feigu5. The relative performance of one
particular method within one activity class wasimed as theef yielded with this method
divided by the averagef of the four methods (using the same similarityexyd The influence
of different similarity indices on the overall eciiment was low, for most parts
indistinguishable within the standard deviations: &l molecular representations the order of
the methods in terms of the enrichment factorghertop 5% of the hit-lists was found to be
MACCS > CATS > CATS3D = SURFCATS when looking at #éneerage values only. With
regard to the enrichment of scaffolds and reducedffdds CATS, CATS3D and
SURFCATS slightly improved in comparison to the MAEKeys.

Table 4.8. Enrichment factors of different molecular repraadons (“Molecules”,
“Scaffolds”, “Reduced Scaffolds”) over the activitassesef values are given for the first
1% and 5% of the hit-lists. The Tanimoto coeffitieas used to rank the molecules.

Molecules
% DB MACCS CATS CATS3D SURFCATS
ACE
1 22 (11) 23 (13) 20 (13) 21 (15)
5 9(4) 11 (5) 7(4) 8(4)
COX2
1 27 (17) 14 (9) 22 (13) 19 (11)
5 11 (6) 5(3) 9(4) 8(4)
CRF
1 28 (15) 13 (8) 20 (11) 16 (10)
5 12 (4) 7(3) 10 (3) 9(3)
DPP
1 21 (14) 12 (9) 15 (13) 13 (10)
5 6 (4) 4(4) 4 (3) 3(2)
HIVP
1 14 (7) 24 (11) 19 (10) 20 (11)
5 6 (2) 11 (3) 9(4) 9(4)
MMP
1 13(9) 12 (7) 13 (8) 12 (9)
5 5(3) 5(2) 5(3) 5(3)
NK
1 9(6) 8(4) 15 ( 8) 9(6)
5 5(2) 5(2) 7(3) 5(3)
PPAR
1 17 (17) 17 (12) 8(8) 10 ( 8)
5 5(4) 6(3) 3(3) 4(2)
BACE
1 13 (10) 12 (10) 11 (9) 6 (5)
5 6 (4) 4(3) 4(3) 3(2)
THR
1 12 (6) 14 (7) 9(5) 8(5)
5 6 (2) 9(4) 5(2) 5(3)

((continued below))
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Scaffolds Reduced Scaffolds
% DB MACCS CATS CATS3D SURFCATS MACCS CATS CATS3D  SURFCATS
ACE
1 22 (11) 27 (12) 21(11) 20(10) 25(12) 29(12) 23(10) 22(8)
5 9(3) 12 (3) 7(2) 8(3) 9(3) 11 (3) 8(3) 8(2)
COX2
1 27 (15) 16 ( 8) 23(9) 21(10) 33(15) 20 (10) 25(10) 26 (11)
5 10 (4) 5(2) 8(3) 8(3) 10 (3) 6(2) 8(2) 9(3)
CRF
1 24(12) 16 (10) 22(12) 17 (10) 28 (13) 19(11) 23(11) 19(12)
5 11 (4) 7(4) 10 (3) 9(3) 11 (4) 7(3) 9(3) 8(3)
DPP-IV
1 21(13) 12(8) 16(12) 14(12) 24(12) 18(11) 23(15) 20(16)
5 7(4) 6 (5) 4(3) 4(2) 9 (5 7(4) 6(4) 5(3)
HIVP
1 15 ( 8) 26 (13) 22(12) 23(13) 21(11) 34 (15) 28 (15) 31 (16)
5 6 (3) 11 (4) 10(4) 10(4) 8 (3) 13 (4) 11 (4) 11 (4)
MMP
1 17 (11) 15(9) 16 (11) 16 (12) 24 (14) 24 (12) 24 (13) 23 (13)
5 6 (3) 6(3) 6(3) 7(4) 8 (3) 8(3) 8(3) 8(4)
NK
1 10 (6) 9(4) 16(8) 10(6) 12 (6) 11 (5) 16 ( 8) 11(7)
5 5(2) 5(2) 8(3) 6(3) 6 (2) 6(2) 8(3) 6(3)
PPAR
1 16 (14) 17(11) 8(8) 10(8) 19 (16) 23(14) 10(9) 14 (10)
5 5(@3) 6(3) 3(2) 4(2) 7(4) 8(3) 4(2) 5(2)
BACE
1 14 (9) 14 (10) 12(7) 8(5) 15(9) 16 (11) 13 (8) 9(6)
5 4 (3) 4(2) 4(2) 3(2) 4 (3) 5(3) 4(2) 3(2)
THR
1 15 ( 6) 19 (9) 12(7) 11(7) 19 ( 8) 28 (12) 19 (9) 18 (9)
5 7(2) 10 (4) 6 (3) 6 (3) 8 (3) 11 (4) 8(3) 7(3)

An explanation for the high performance of the MACKEys in scaffold enrichment
might be that the connectivity of the substructusasot accounted for by this descriptor. This
can lead to an effective retrieval of moleculeshwstightly different scaffolds but similar
side-chain decoration. Does this finding justife ttonclusion that substructure fingerprints
are best-suited for the purpose of scaffold-hoppiiig find an answer to this question, a
more detailed analysis was performed looking ondghechment of the individual activity
classes. We calculategef values for all ten different classes, yielded wikie Tanimoto
coefficient (Table 4.8; results for the Manhattastalice and the Euclidean distance can be
found in Appendix 6.1). None of the descriptorsf@ened generally superior to the other
descriptors within the error bars. Judging from d@verage values only, MACCS performed
best for COX2, CRF, and DPP for full molecules,fidds and reduced scaffolds. CATS
performed best for ACE, HIVP and THR, and CATS3Dr fdK in all molecular
representations. SURFCATS was not found to be fmesany one class. However, each
descriptor of the CATS family was found to be betiean the other family members for some

ligand classes. This underlines the dependendeeadescriptor performance on the screening
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database. In other words, there isgtobally best descriptor. It has to be stressed that this
interpretation has limited relevance due to thgdastandard deviations and represents trends
only. Further investigations with additional deptors and metrics, and larger high-quality

drug databases will be needed to scrutinize thedegs.
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Figure 4.6. Scaffold diversity of the ligand classes. The hitg is given by the number of
scaffolds (light gray) or reduced scaffolds (dar&yj relative to the number of molecules in a
data set. With enrichment factors for the first BMACCS performed best fort he classes
COX2, CRF and DPP, CATS performed best for theselssACE, HIVP and THR and
CATS3D performed best for NK.

Figure 4.6 shows the fraction of scaffolds and ceduscaffolds found in the ten
ligand classes. For the classes preferred by MAGE&verage fraction of scaffolds was 0.44
(x 0.13) and the average fraction of reduced stidfovas 0.27 (x 0.11). For CATS the
fractions were 0.65 (£ 0.13) and 0.37 (£ 0.17), 8ordCATS3D 0.55 and 0.42, respectively.
One might speculate that MACCS performed best igsels with low numbers of different
topologies, i.e. low scaffold diversity. CATS andATS3D performed best in classes
revealing a high degree of scaffold diversity. Wnaude that pharmacophore descriptors
might be more suited for designing diverse compolilbgiries compared to substructure

fingerprints. Still one must be aware that thesellte are comparable within the error margin.
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In an earlier publication we reported that diffdrelescriptors are often found to
retrieve different molecules, despite having eqmachment factors [Fechnet al, 2003]. In
the present study we witness a similar situatiescdptors complement each other in the
retrieval of different scaffolds and reduced sdaqTable 4.9).

Table 4.9.0verlap of the results for pairs of descriptorshia first 5% of the hit-list. Shown
are the average numbers over all ten classesr#vwed scaffold representations which were
found by both methods. The numbers on the diag{stadwn in bold) are the average
numbers of scaffolds found with the respective dptwr. The employed similarity index was
the Tanimoto coefficient.

Scaffold representations

Descriptor MACCS CATS CATS3D SURFCATS
MACCS 13.8
CATS 8.6 154
CATS3D 8.2 9.3 13.2
SURFCATS 7.7 8.9 9.8 12.9

Reduced Scaffold representations

Descriptor MACCS CATS CATS3D SURFCATS
MACCS 8.9
CATS 6.1 9.8
CATS3D 5.8 6.5 8.7
SURFCATS 5.3 6.1 6.5 8.1

Two of the virtual hit-lists were further investigd: the results for the COX-2
inhibitors celecoxib (Figure 4.7) and rofecoxibdgie 4.8). For each scaffold class, the best-
ranking hits were surveyed. Although the two refiee=molecules share a common reduced
scaffold different scaffold classes were retrieweddifferent ranking positions. Again, the
four similarity searching methods differed in thalility to retrieve diverse scaffold which
results in a complementation of the methods. Thisame is remarkable especially because

of the striking relatedness of the query structures
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The two reduced scaffolds that were found exclugivath the MACCS keys for
rofecoxib (ReSc classes 6 and 7) reflect that MAGE include no direct information of
the size of the retrieved molecules. These molscuoight have been rejected by the other
methods due to their large size. Large reducedddafwere also found with CATS for
celecoxib (ReSc class 2), which might have resuheah the restriction of the descriptor to a
maximal path length of 10 bonds. Such a cut-offhhige inappropriate for a database with
potentially long ligands and respective pharmacoghosuch as those annotated to HIVP,

MMP, and PPAR — particularly in prospective screens

4.3.1 Conclusion
Concluding, we found that both substructure fingetp (MACCS) and

pharmacophore-pair descriptors (CATS) are suitedrdtrospective scaffold retrieval. For
more diverse ligand classes the pharmacophore-ba&SAdS descriptors slightly
outperformed substructure (MACCS) keys as an aveteggel. The fact that structurally
focused collections of pharmacologically active pounds are typically employed for
retrospective screening studies might explain thHeeno found high performance of
substructure keys or related descriptors. Our tesuiggest that for the particular purpose of
scaffold-hopping a reasonable strategy might beuse more generalizing molecular
representations like pharmacophore descriptors. uBleeof several complementing methods
can also be recommended for the purpose of scafimiging. We hope that our study will

stimulate further investigations on this importagic of medicinal chemistry.
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4.4 Prospective  screening for mGIlurR5  allosteric
modulators with CATS3D

Allosteric modulators for the metabotropic glutaeaeceptor 5 are a promising class of
molecules for addressing several disorders of thetral nervous system [Hermans &
Challiss, 2001]. Being part of the pharmaceutio&tresting class of GPCRs, for which rare
receptor structure information is available, mGluR5an ideal target to test ligand based

virtual screening approaches.
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Figure 4.9. Allosteric mGIuR5 antagonists.

First selective allosteric antagonists for mGIluREB-1751 ¢.4.1) and SIB-1893
(4.4.2, were published in 1999 [Varnest al, 1999]. SIB-1751 was identified by high-
throughput screening (HTS), and SIB-1893 resulteinfa UNITY search for analogues
[Varney et al, 1999]. In phosphoinositol (PI) hydrolysis ass#ys two molecules revealed
ICsp values of 3.1 uM and 2.3 puM, respectively. Chemieaiation of SIB-1893 resulted in
the much more potent highly selective mGIuR5 ant&jo2-methyl-6-(phenylethynyl)-
pyridine (MPEP 4.4.3 Figure 4.9) with aiCso of 36 nM in Pl hydrolysis assays [Gasparini
et al, 1999]. Several MPEP-analoguds4(4-4.4.9 Figure 4.9) 4: Cosfordet al, 2003;5-8:
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Mutel et al, 2002;9: Gaspariniet al, 2003] with reported low nanomolar activity haweeh
published in the scientific and patent literaturees then. Nonetheless, the mode of action of
these ligands is not completely understood. Regmiidlications of MPEP and MPEP
derivatives also reported off-target activity [Cosfordet al, 2003;5-8: Mutel et al, 2002;9:
Gaspariniet al, 2003] and a short plasma half life [Andersaral, 2003]. In particular, the
latter could be attributed to potential metabatistability of the ethynyl linker.

Pharmacophore-based similarity searching has bemrem to be suited for finding
new ligands which exhibit similar biological actyibut are based on a different chemical
scaffold [Bohm & Schneider, 2000]. Using a set nbwn specific allosteric antagonists of
MGIUR5 @.4.34.4.9 [Gaspariniet al, 1999; Cosfordet al, 2003; Mutelet al, 2002;
Gaspariniet al, 2003], which were compiled from scientific andeyd literature, as a query
we applied a hierarchical, ligand-based virtualesoing approach to identify novel
compounds accomplishing mGIuR5 modulation. Firstdaug-likeness” estimation by an
artificial neural network system was employed foegereening to focus only on molecules
with a predicted “drug-like” structure [Schneider &chneider, 2004]. For subsequent
similarity searching we used the CATS3D descriptor.

Figure 4.10. Flexible pharmacophore-based alignment of referemolecules4.4.34.4.9
Red: oxygen; blue: nitrogen; yellow: sulfur; gragrbon.

To form a hypothesis about receptor-bound 3D-conédions 0f4.4.34.4.9we used
the flexible alignment tool of MOE (Figure 4.10).ghinds were successively aligned from
4.4.3t0 4.4.9 and conformations were chosen based on existiogvlenige among the best
ranked results. Moleculé.4.9 was manually adjusted to fit to the alignment, ilee angle
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between the two planes of the ring systems was#2° (Merz, unpublished results). These
individual 3D conformations served as query striegdor CATS3D similarity searching.

In search for new ligands we virtually screenedAkmex Gold compound collection,
version of April 2003 [ASINEX], which contained 1863 molecules. As a pre-screening
filter we selected the 20,000 most “drug-like” campds as described previously [Schneider
& Schneider, 2004]. The result of this procedura ba seen, e.g., for the neural network
prediction: the average drug-likeness score ottmaplete Asinex Gold collection according
to the artificial neural network was 0.36 € 0.28), for our screening set the score was 0.60
(o= 0.23) (higher values indicate more “drug-likedlecules).

3D-conformations of the screening compounds weteutzded in MOE using the
MMFF94 force field. The results were restricted tomaximum of 20 lowest energy
conformations per molecule. Similarity between #aldase entry and a reference molecule
was expressed by the Manhattan distance. Sepanaitardy searches were performed with
each of the molecule$.4.34.4.9 and 27 of the top-scoring molecules (Figure 4\g&)e
selected for experimental testing. Molecules wexeseh which had low Manhattan distances
to one of the reference molecules and which wetaawsimilar to the previously selected
molecules, as judged by visual inspection from alinieal chemistry perspective (Table
4.10).

Table 4.10.Results of virtual screening and the binding assay

Most Virtual Screening Binding Assay
Molecule similar Rank CATS3D CATS2D MACCS KimGIuR5  K; mGIuR1 Selectivity
no. reference  (CATS3D) Manhattan Manhattan  Tanimoto (M) (LM) (Ki mGIuR1 /
molecule distance distance  similarity Ki mGIuR5)
10 3 1 0.68 2.85 0.21 24 > 100 >4.2
11 3 4 0.88 2.2 0.2 > 100 63 <0.6
12 3 5 0.94 5.03 0.17 > 100 41 <04
13 3 6 0.95 3.79 0.22 > 100 > 100 1
14 3 7 1.02 2.64 0.17 > 100 > 100 1
15 3 17 1.12 3.06 0.24 > 100 > 100 1
16 4 1 1.52 2.54 0.35 > 100 > 100 1
17 4 3 1.67 5.27 0.22 > 100 > 100 1
18 4 4 1.67 2.34 0.34 > 100 > 100 1
19 4 6 1.73 1.88 0.25 > 100 > 100 1
20 5 3 2.14 1.79 0.42 > 100 > 100 1
21 5 7 2.22 1.79 0.36 > 100 >100 1
22 5 38 2.52 2.66 0.38 41 64 1.6
23 6 5 1.41 2.23 0.48 33 61 1.8
24 6 6 1.45 1.91 0.31 12 17 1.5
25 7 2 1.55 2.69 0.38 35 > 100 >29
26 7 3 1.56 241 0.39 > 100 > 100 1
27 7 5 1.6 2.62 0.53 >100 14 <0.14
28 8 2 0.79 5.49 0.38 > 100 > 100 1
29 8 7 0.91 5.37 0.24 > 100 > 100 1
30 8 9 1 5.37 0.31 40 > 100 2.54
31 8 12 1.14 4.81 0.28 > 100 > 100 1
32 8 36 1.3 5.33 0.2 14 45 3.2
33 9 1 1.49 2.19 0.46 63 > 100 >1.6
34 9 2 1.54 1.94 0.45 38 > 100 >2.7
35 9 5 1.59 2.59 0.46 > 100 > 100 1
36 9 7 1.64 6.63 0.46 > 100 > 100 1
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Figure 4.11.Molecules selected from CATS3D virtual screening.
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To estimate the degree of “scaffold-hopping” we pamed the average distance of
each moleculel.4.104.4.36t0 its respective nearest reference =) compound with the
average distance between the reference moledue34.4.9 (<D,s>). Three such indices
were employed: the CATS3D Manhattan distance, tiplégical CATS2D Manhattan
distance, and the substructure-based MACCS keymi@ni similarity from MOE. While the
average CATS3D distance of the library compoundsthieir reference molecules was
significantly smaller in comparison to the averaigance between the reference molecules
(<Dyip> = 1.41 (= 0.45); <R = 2.66 (x 0.89)), <> was only marginally smaller than
<Dye> for CATS2D (3.31 (= 1.48) vs. 3.6 (£ 1.4)). Withe MACCS keys <> was smaller
than <D (0.33 (£ 0.11) vs. 0.39 (x 0.15)), indicating eeater similarity among the
reference set than between the virtual screenitg dnd the reference molecules. This
demonstrates that the compiled library containdfalcs which are different from the
references (as estimated by MACCS substructureeffiprqnts) but are still considered
isofunctional by the CATS pharmacophore approaches.

In vitro binding studies for mGIuR5 were performed on tlasi® of a [BHIMPEP
displacement assay. Estimatedpt/alues for the ligands were made from measurenagras
fixed concentration of 10 uM. Selectivity of thedigds versus mGIuR1, the most similar
receptor to mGIuR5 within the mGIuR familyas assessed by a displacement assay with the
Merz proprietary selective mGIluR1 antagonist MRZ 34d4e molecules4.4.1Q 4.4.22
4.4.23 4.4.24 4.4.25 4.4.3Q 4.4.32 4.4.33 4.4.39) exhibited aK; value below 70 uM for
MGIuUR5 (Table 4.10), with structuse4.10being the most selective inhibitor. With our assay
system we determinedka of 12.5 nM for MPEP on mGIuRb5.

The predicted rank-order of the tested library courmgs does not correlate with
binding affinity (Table 4.10). It is evident thdtet Manhattan distance, which was used for
compound prioritization, does not distinguish betwenolecular attributes that are relevant or
irrelevant for a particular receptor-ligand intdrac. Furthermore, the small list of virtual hits

that was compiled for each reference molecule prtsva sound statistical evaluation.
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a)

Figure 4.12. Flexible alignment of the most potent found mGluRBdulators to the
alignment of reference moleculds4.34.4.9 (green). Alignments are shown for @x.23
4.4.244.4.254.4.32 (b)4.4.1Q (c)4.4.334.4.34 (d)4.4.22

The best found nine molecules were aligned to ¢ference molecule alignment with
the MOE flexible alignment tool (Figure 4.12).4.23 4.4.24 4.4.25 4.4.32fitted well into
the reference alignment (Figure 4.12a) with th@igrbup of each molecule superposed onto
the pyridine nitrogen as a hydrogen-bond accepibstgute, and the various linker moieties
aligned to the triple bond linkers of the MPEP datives. For4.4.30a comparable binding
mode might be anticipated, which was not foundHgyftexible alignment since MOE did not
recognize the oxazolidine oxygen 4#.30as a potential hydrogen-bond acceptor. Based on
the alignment it cannot be decided whether molecdld.1Q 4.4.33 4.4.34 and 4.4.22
(Figure 4.12b-d) were actually aligned in a reabtmdashion. For these molecules large
substructure elements were placed in the MPEP lirdgion which we assume to bind to into
a narrow part of the receptor binding pocket. To swrprise4.4.28and4.4.31-- analogs of
ligands4.4.10and4.4.30— showed to be inactive. For both molecules tfisce might be

explained by steric restrictions in the receptor.
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The selectivity of the hits was low. Compoushd.27was even found to be a potent
and selective binder of mGluR1. This might indictite existence of similar binding pockets
in both receptor subtypes. Overlap of the bindingkets for antagonists of both receptor
subtypes has already been shown [Paganal, 2000].Similar binding pockets are further
supported by the weaker mGIuR1 selective bintldrll which is similar t04.4.23 4.4.24
and4.4.25.These are more selective towards mGIuR5. Compduhd4was inactive in both
mMGIuR1 and mGIuRS5 binding studies, although it rigé regarded as a close analogue of
4.4.11 A higher selectivity of the compounds might baiaged by incorporation of selective
molecules acting on mGIuR1 in the virtual screemngcedure. These might be used as an
anti-target in additional similarity searching exipeents. Molecules with a high similarity to
MGIuUR5 ligands and a low similarity to mGIuR1 liggnmight exhibit a better selectivity
profile.

A challenging goal of pharmacophore-based simylasearching is “scaffold-
hopping”. This aim was clearly met in this studgofunctional alternatives to the MPEP
scaffold were found, which provide several starfpoints for lead structure development. As
an important outcome, the metabolically unstahigesbond linker present in the MPEP-
derived reference molecules is substituted by uaralternatives in the compounds that were
selected by virtual screening. Noteworthy, the deddond linker 0f4.4.23 4.4.24 and
4.4.32is structurally identical to the one present iB-3B93 and similar to the linker type of
SIB-1757, both of which were not present in thesrefice collection (Figure 4.9). Some of
the tested compoundd.4.12 4.4.13 4.4.15 resemble structural similarity to the recently
reported mGIuR5 antagoniét4.37[Wanget al, 2004] (Figure 4.13), that was found by HTS.
This further underlines the ability of the CATS3ppaoach to find isofunctional but
structurally different scaffolds. Molecue4.38 a recently reported mGIluR5 antagonist with
a tetrazole linker (Figure 4.13) [Roppeal, 2004], shows that more voluminous groups like
in 4.4.22might also be allowed in the linker region, assugran identical binding mode. The
novel scaffolds of compoundd.4.33 and 4.4.34 present a promising opportunity for
straightforward combinatorial design with the aorsignificantly improve binding behavior.

One possible reason for the low selectivitydof.23 4.4.24 4.4.25and4.4.32might
be due to the replacement of the SIB-1893 pyridipea keto-group. While the hydrogen-
bond acceptor functionality of the pyridine is ntained, the substitution results in a loss of
possible steric and stacking interactions. Thesdirigs indicate that the receptor subtype
selectivity of MPEP-like mGIuR5 antagonists might based on steric ott-n stacking

interactions mediated by the pyridine ring. Refeeemoleculet.4.9 which lacks an aromatic
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ring, supports the hypothesis that a defined stetieraction in the region of the MPEP

pyridine might be sufficient for selectivity.
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Figure 4.13.Recently reported mGIluR5 antagonists with newfelzis.

4.4.1 Conclusion

Summarizing, it has been demonstrated that phanph@ace-based similarity searching can
lead to novel, isofunctional molecular scaffoldsttlprovide a basis for lead structure
development. The target was an allosteric binditg) &f a pharmacologically challenging
GPCR. Although homology-based models of the MPERBibgpocket have been published
recently [Paganet al, 2000, Malherbet al, 2003], successful virtual screening exploiting
this information has not been reported until novhe Tentirely ligand-based CATS3D
approach can thus be seen as a working alterrtativeore demanding structure-based design

techniques with the main aim to develop novel leates.
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4.5 Prospective  screening for mGIuR5  allosteric
modulators with an artificial neural network approa ch

based on CATS3D representations

Artificial neural networks (ANN) are an attractit@ol for the identification of molecules with
a desired biological activity. In this section wseed an ensemble of ANNs and self organizing
maps (SOMs) to find new specific and diverse allistantagonists of mGIuR5. The
following setup was employed (Figure 4.14):

1. 10 ANNSs were trained on the prediction of mGluRB\iy.

2. Two ANNSs were trained on the selectivity againstlof.

3. Self organizing maps were used to select repredemtaubsets of the predicted virtual

hits for pharmacological characterization.

ANN ensemble for ~ ANN ensemble for  SOM selection of
mGIuRS5 likeness mGIuR5 /mGIluR1  representatives
selectivity

_—" CATS3D
\

MACCS
CATS3D CATS3D

Figure 4.14.Combination of supervised and unsupervised agilficeural networks for the
compilation of a focused diverse mGIuR5 library.eTiocus is realized with ensembles of
supervised feed-forward networks for the predictmhgeneral “mGIluR5-likeness” and
“mGIuR5 vs. mGIuR1 selectivity”. Diversity is obtead with unsupervised self organizing
map (SOM) selection of representative subsets ob#st fraction of hits from the previous

steps.

Many allosteric antagonists of mGIuR5 have been rdest in patents and in

scientific literature. However the structural clkesof ligands are very dissimilar and it is
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unclear how the classes are related to each ottwer the view of the binding mode in the
receptor. The availability of many different actinelecules is a genuine starting point for a
machine learning algorithm. On the other hand, maik different binding modes and
different sub-pockets in the binding site of théigands might hamper such an approach,
where all ligands are considered as active. Thgirodf the activity data from different assay
systems as well as the absence of an obvious atiginai the ligands renders a classification
method more appropriate than an approach for tedigiron of inhibition constants. Artificial
neural networks (ANN) have been shown to be sutesscomplex classification tasks in
drug discovery related projects. Our aim was taaterea prediction tool to identify new
molecules with specific mMGIUR5 allosteric modulatativity. Using CATS3D as molecular
descriptor, the inherent suitability of this deptwr for scaffold hopping should further
support this goal.

For this approach we combined supervised and unggpd ANNs. First, ensembles
of supervised ANNs were trained to separate modscwhich possess mGIuR5 allosteric
antagonist activity (“mGIuR5-likeness”) from moldes without that property and from
molecules with mGIuR1 allosteric antagonist acfiviSecond, unsupervised ANNs, self
organizing maps (SOMs), were used to cluster thé $@wing molecules and to retrieve
representative subsets for experimental testinge®by an approach was reported combining
self organizing maps (SOMs) with feed-forward neuetiwvorks [Giniet al, 2004]. In these
studies SOMs were used as a pre-processing toblgtecsimilar molecules. For each of the
clusters separate neural networks were trained.selhmethods obtained an improved
prediction accuracy of activities of molecules simeural networks were trained on similarly
acting molecules in comparison to a single ANNnedi on all molecules [Girat al, 2004].
This approach is similar to the approach of coymtgyagation networks [Zupan & Gasteiger,
1999]. Counterpropagation networks consist of o@®1Sayer, that is trained unsupervised,
and an additional output layer for the predictiéroloservables, that is trained in a supervised
manner. However for such an approach sufficiersttgeé datasets are crucial for a successful
training of the large number of neural networks. domparison to our approach this
combination of unsupervised and supervised newVorks results in a set of local models
with the aim of the highest possible predictionusacy. Our approach results in a global
model with the aim to identify properties of actiwelecules and to find novel structural
clusters which were not identified before.

In a recent article it was stated that the sintyanf molecules with predicted

properties to the training set is a good indic&oithe accuracy of the prediction [Sheridzn
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al., 2004]. We were interested if this relation wedound for our ANN SOM combination
approach, namely if there were more moleculesenatd from SOM neurons containing

molecules from the training set in comparison toraes without training molecules, or not.

4.5.1 Training of feedforward ANNs

Neural networks were trained on two classificat@sks. One set of ANNs was trained on the
distinction between mGIuR5 allosteric antagonigigilier referred to as “actives”) from other

molecules (further referred to as “inactives”). Amer set of ANNs was trained on the

distinction between actives and mGIuR1 allosteritagonists (further referred to as “side-
actives”), the most similar receptor to mGIuRS5. Tfaéning set for the actives consisted of 68
MGIuUR5 allosteric antagonists from literature, pggeand from unpublished molecules from
Merz Pharmaceuticals GmbH (Frankfurt). The sidevastiset consisted of 158 allosteric
antagonists of mGIuR1 from patents and literatimactives were compiled from the COBRA

database. The training procedure of ANNs requipgsaimately equally sized fractions of

molecules form two classes. To obtain a reasorsstgling of the molecules of the COBRA

database, five different training sets of 100 malies were compiled using the MaxMin

algorithm [Kennard & Stone, 1996] for maximal disersubset selection. The dissimilarity
was calculated based on the CATS3D descriptor.

For the training of neural networks with the aimdiscriminate between actives and
inactives all five COBRA subsets were merged witle set of 68 actives, resulting in five
data sets of 168 molecules. For all five sets aflables from the CATS3D descriptor with a
scaled Shannon entropy (Eq. 2.8) of less than @B weliminated, leading to 75 to 79
remaining variables. The resulting datasets at@dureferred to with M5vsCOMGIURS vs
COBRA set 1), M5vsCO2, M5vsCO3, M5vsCO4 and M5vsCO5. Table 4.lMegjian
overview over the selected variables for the data. She selection differed only in few cases
for variables describing larger distances. Varigbtecluding cation- and anion-interactions
were not selected since all molecules were nemé@lbefore descriptor calculation.

Training with uncorrelated variables can result improved prediction quality
[Schneider & So, 2003]. To test this hypothesis dar classification tasks we calculated
uncorrelated versions of M5vsCO1 to M5vsCO5. All abkes were autoscaled and a
principle component analysis (PCA) was performedl principle components with
eigenvalues above or equal to 1 were used for durtfalculations. This resulted in ten
principle components for each of the data sets.fiMeeresulting data sets with uncorrelated
variables are further referred to as M5vsCOlpca, @®#pca, ..., M5vsCO5pca. The
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percentages of explained variance of the first pwociple components were 69.8 % and 11.1
%, 70.3 % and 10.9 %, 69.2 % and 11.6 %, 70.2 %1&nd %, and 70.0 % and 11.0 %,
respectively. Accordingly in all five data sets mdhan 80 % of the variance is explained by
the first two principle components. This indicatduht the variables of the CATS3D
descriptor were highly correlated for the descoiptof these data sets. Projections of actives
and inactives using the first 2 principle composervealed that the CATS3D description

seemed to be appropriate to separate active mekefoim inactive molecules (Figure 4.15).

Table 4.11 Variables selected by scaled Shannon entropyhtodifferent data sets.
The variables are coded in the following way: €4. 3-11 means that all polar — hydrogen
bond-acceptor bins with distance ranges from 2, ®® 4, ... , 10 to 11 A are selected. P =
polar, A = hydrogen-bond acceptor, D = hydrogenebdonor, H = hydrophobic.

selected
M5vsCO1 M5vsCO2 M5vsCO3 M5vsCO4 M5BvsCO5  MbvsMl

descriptors

PA 3-11 3-12 3-10 3-12 3-10
PH 2-15 2-16 2-15 2-15 2-15
DA 3-9 3-9 3-7 3-9 3-9
DH 2-13 2-13 2-14 2-14 2-14 3-7
AA 3-8 3-9 3-8 3-10 3-8
AH 2-15 2-15 2-14 2-15 2-15 2-13
HH 2-17 2-17 2-17 2-17 2-17 2-14
total

number 77 79 75 79 77 29

For the training of neural networks to discriminatetween actives and side-actives
the datasets of 68 actives and 158 side-actives merged. Variables with a scaled Shannon
entropy below 0.3 were eliminated, resulting inr@Maining variables. This dataset is further
referred to as M5vsMIn{GIuR5 vs. mGluR1). Due to the smaller variation of the molecules
in this data set in comparison to the COBRA subsetsmaller number of variables were
selected having entropies above 0.3. Details osd¢lerted variables are shown in Table 4.11.
Uncorrelated variables were obtained by autoscading subsequent PCA. The resulting

dataset is further referred to as M5vsM1pca. Sevartiple components were found with
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eigenvalues above 1. The first PC explained 59.@n%hthe second PC explained 17.4 % of

the variance in the data.
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Figure 4.15. Principle component projection of the data setsdufor the training of the
supervised neural networks. Five datasets were @sedmGIuR5-likeness” prediction
(M5vsCO1, ..., M5vsCO5) and one dataset was used fer “thGIuUR5 vs. mGIuR1
selectivity” prediction (M5vsM1). White dots represesctives and black dots represent
inactives or side-actives.
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The projection of the first two principle comporens shown in Figure 4.15. It is
apparent that mGIuR5 and mGIuR1 were not easilgradybe by a linear function. However
both subsets form several clusters and shouldftrerbe separable by a non-linear classifier
like ANN. On the other hand some of the regionsriapewhich supports the results from
Section 4.4, that selectivity between the two @ads determined by small variations of the

ligands, which are not yet clearly understood.

Table 4.12 Results of the 10-fold cross-validation for M5vsCt® M5vsCO5. The average
cc values for the training- and test-sets were catedl after 100 steps of training. Selected
nets are printed in bold. Standard deviations arengn brackets.

M5vsCO1 M5vsCO2 M5vsCO3 M5vsCO4 M5vsCO5
no.
hidden train test train test train test train test train test
neurons

1 0.98 0.79 0.97 0.78 0.98 0.80 0.99 0.83 1(0) 0.84
(0.03) (0.06) (0.04) (0.05) (0.03) (0.09) (0.02) (0.06) (0.05)

2 0.99 0.84 1(0) 0.85 0.99 0.87 1(0.01) 0.86 1(0) 0.83
(0.01) (0.06) (0.06) (0.01) (0.04) (0.03) (0.07)

3 1(0) 0.83 1(0) 0.86 1(0) 0.86 1(0.01) 0.84 1(0) 0.85
(0.07) (0.04) (0.07) (0.08) (0.07)

4 1(0) 0.86 1(0) 0.87 1(0) 0.88 1(0) 0.86 1(0) 0.88
(0.06) (0.08) (0.05) (0.07) (0.04)

5 1(0) 0.86 1(0) 0.87 1(0) 0.85 1(0) 0.88 1(0) 0.85
(0.06) (0.06) (0.05) (0.04) (0.05)

6 1(0) 0.86 1(0) 0.83 1(0) 0.85 1(0) 0.86 1(0) 0.89
(0.06) (0.04) (0.05) (0.05) (0.03)

7 1(0) 0.87 1(0) 0.84 1(0) 0.91 1(0) 0.84 1(0) 0.88
(0.05) (0.07) (0.03) (0.08) (0.05)

8 1(0) 0.86 1(0) 0.85 1(0) 0.88 1(0) 0.84 1(0) 0.88
(0.05) (0.06) (0.04) (0.05) (0.05)

9 1(0) 0.87 1(0) 0.88 1(0) 0.89 1(0) 0.83 1(0) 0.87
(0.03) (0.04) (0.03) (0.06) (0.06)

10 1(0) 0.88 1(0) 0.86 1(0) 0.91 1(0) 0.85 1(0) 0.86
(0.02) (0.06) (0.04) (0.05) (0.07)

11 1(0) 0.85 1(0) 0.85 1(0) 0.89 1(0) 0.88 1(0) 0.89
(0.05) (0.06) (0.06) (0.05) (0.03)

12 1(0) 0.85 1(0) 0.87 1(0) 0.89 1(0) 0.84 1(0) 0.90
(0.03) (0.07) (0.04) (0.06) (0.04)

13 1(0) 0.85 1(0) 0.86 1(0) 0.90 1(0) 0.85 1(0) 0.89
(0.05) (0.06) (0.04) (0.05) (0.04)

All twelve described data sets were employed fertthining of neural networks. The
optimal number of hidden neurons and the optimahloer of training steps had to be
determined for each of the twelve datasets. Sewerabers of hidden neurons were tested for
each of the datasets with ten-fold cross-validatimoss-validation was employed by random

division of the datasets into equal sized fractiohgaining and test data. This procedure was
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repeated ten times to obtain an estimation of nétwerformance. A number of 100 steps
were used for the training. In preliminary trainiegperiments 100 steps seemed to be a
reasonable compromise between a sufficiently lamg@mber of training steps to extract the
underlying structure activity relationship and dva&ning of the neural networks, which

prevents generalization of the predictions.

Table 4.13 Results of the 10 fold cross-validation for M5vsip@a to M5vsCO5p. The
averagecc values for the training- and test-sets were catedl after 100 steps of training.
Selected nets are printed in bold. Standard dewvistare given in brackets.

M5vsCOlpca M5vsCO2pca M5vsCO3pca M5vsCO4pca M5vsCO5pca

no.

hidden train test train test train test train test train test

neurons

1 0.95 0.79 0.97 0.84 0.97 0.82 0.97 0.78 0.97 0.80
(0.02) (0.05) (0.02) (0.04) (0.02) (0.05) (0.05) (0.05) (0.03) (0.06)

2 0.99 0.83 0.98 0.87 1(0) 0.85 0.99 0.82 1 0.87
(0.02) (0.08) (0.02) (0.07) (0.06) (0.02) (0.05) (0.01) (0.06)

3 1(0.01) 0.81 0.99 0.83 1 0.86 1(0) 0.85 0.99 0.82
(0.08) (0.02) (0.07) (0.01) (0.06) (0.06) (0.01) (0.06)

4 1(0) 0.84 1(0) 0.87 1(0) 0.88 1 0.84 1(0) 0.83
(0.05) (0.06) (0.03) (0.01) (0.06) (0.06)

5 1(0.01) 0.82 1 0.87 1(0) 0.90 1(0) 0.85 1(0) 0.85
(0.07) (0.01) (0.04) (0.03) (0.05) (0.06)

6 1(0) 0.86 1(0) 0.86 1(0) 0.91 1(0) 0.84 1(0) 0.87
(0.04) (0.06) (0.03) (0.04) (0.06)

7 1(0) 0.89 1(0) 0.84 1(0) 0.92 1(0) 0.85 1(0) 0.86
(0.03) (0.06) (0.05) (0.05) (0.06)

8 1(0) 0.85 1 0.87 1(0) 0.91 1(0) 0.84 1(0) 0.85
(0.05) (0.01) (0.04) (0.04) (0.05) (0.05)

Table 4.14 Results of the 10 fold cross-validation for M5vsMhd M5vsM1pca. The
averagecc values for the training- and test-sets were catedl after 100 steps of training.
Selected nets are printed in bold. Standard dewvistare given in brackets.

M5vsM1 M5vsM1pca
no. hidden train test train test
neurons
1 0.99 (0.02) 0.87 (0.05) 0.96 (0.02) 0.8 (0.05)
2 1(0.01) 0.88 (0.03) 0.98 (0.02) 0.81 (0.06)
3 1(0.01) 0.89 (0.05) 0.96 (0.02) 0.84 (0.07)
4 1(0.01) 0.88 (0.04) 0.98 (0.02) 0.83 (0.05)
5 0.99 (0.01) 0.91 (0.02) 0.99 (0.01) 0.78 (0.06)
6 1(0.01) 0.88 (0.04) 0.99 (0.02) 0.79 (0.08)
7 1(0.01) 0.88 (0.05)
8 0.98 (0.02) 0.9 (0.04)
9 0.99 (0.01) 0.89 (0.05)
10 0.99 (0.01) 0.9 (0.04)
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The evaluation of different number of hidden nesréor the ANN training is given in
detail in Tables 4.12, 4.13, and 4.14. In all agfiivactive classification networks the test data
was 100% correctly predicted employing more thao tw three hidden neurons. For the
actives/side-actives networks this was not truendJtarger numbers of hidden neurons did
not always lead to 100% prediction accuracy. THfece might be grounded on neural
network training using too few training steps ortba complexity of the separation task.

ANNs were selected with the best Matthexesn the training and the test data. In the
case that more than one network obtained equatbesiues, the net with the lowest number
of hidden neurons was selected. Employing the Bmstd number of hidden neurons,
successful predictions of the test sets were obtiainith Matthews coefficients equal or
larger than 0.84 for all test data sets. For thBvew/inactives separation only small
differences in the test data prediction accuracsevieund between the raw descriptor values
and the uncorrelated variables (best found Matthaws 0.91 vs. 0.92 for the test data). For
the actives/side-actives separation, the raw dascrivalues performed better than the
uncorrelated variables (best found Matthews= 0.91 vs. 0.84 for the test data). This might
be caused by the difference of the classificatasktA general classification task applied to
relatively easily separable data like with the agiinactives classification might profit or at
least not be hampered by a more general data patisanwith uncorrelated variables. For the
specific and complex separation of actives and-aadees details of the descriptors might
have played a role, which were lost in the uncatesl variables. Additionally, more
descriptor variables automatically lead to a besegparation between data classes, but also

favors overfitting of the descriptor values to tieserved data.

Active vs. inactive prediction Active vs. side-active prediction
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Figure 4.16.Frequency of predicted score values for the mddsoof the Enamine database.
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For each data set for actives/inactives classifinathe parameters of the best
performing model with the minimum number of hiddesurons were selected for the final
training. The selected nets are printed in boldTables 4.12, 4.13 and 4.14. For the
actives/side-actives classification ANNs with umetated variables were not used. Instead
two nets with two and five hidden neurons were cteté with the original variables. Final
neural networks were trained using the full dates seith the given number of hidden

neurons.

4.5.2 Prediction of allosteric mGIuR5 modulators

For prospective virtual screening we used the dealf the commercial molecule-supplier
Enamine [Enamine], which consisted of 1,022,483atwles. For each neural network the
molecules were processed like the training dak:stime variables were selected as for the
training data. When necessary, autoscaling and ®Re&# applied using the means, standard
deviations and transformation matrices from théning data sets. Consensus scores were
obtained by calculation of the average values ef tdtn ANNs for the actives-inactives
classification and for the two ANNs for the activade-actives classification. A histogram of
the two distributions of the score values is shawfigure 4.16. Interestingly the scores for
the actives/inactives classification did not exceedalue of 0.89 for the Enamine dataset.
This was an effect of the ensemble neural netwostame score that was applied for the
prediction. One of the trained ANNs (M5vsCO5) didt qpedict any of the Enamine
molecules as active, despite the fact that thigort performed best in training. This might
be an indicator that the Enamine dataset might b@otappropriate for the screening for
MGIuUR5 allosteric antagonists. An alternative terage scores to find a decision based on
ensembles of neural networks is the jury decissonompound is considered as active if the
majority of neural networks consider the compousdetive. In this work a more stringent
criterion was used: a unanimous decision was netdegbult in a maximum score of 1. This
strategy was applied due to the fact that a largetibn of the Enamine dataset was
considered as active, by most of the networks (€igul6).

Figure 4.16 shows the effect of the consensusragdiy average score values. The
number of peaks found in the scores reflects thebau of individual score-values used for
the average score. For the actives/side-activessifization three peaks were found: a first
large peak of many molecules where both nets abegehe molecules are more likely side-

actives than actives, a small peak at 0.5 wherdwbenets do not agree, and another small
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peak where both nets agree that the molecules dpetonthe actives class. For the
actives/inactives classification there should beveh peaks, but since one ANN did not
predict any molecule as active, only ten peaks vigred.

From the actives/inactives prediction we selecledhalecules with an average score
larger than 0.885. This value was found to be aaeable compromise between the presumed
diversity of the hits and the number of obtainets.hWe assumed to find structurally more
diverse molecules by this strategy in comparisonigimg the top scoring molecules alone.
This resulted in a selection of 41,663 moleculesnfthe actives/side-active classification
we selected all molecules with an average scorgeab®9, which resulted in an additional
32,099 molecules. The union of these sets gavet afs&,403 molecules which were

considered as our focused library for mGIuR5 aflostantagonists.

4.5.3 Selection of a representative subset by SOMs

The obtained focused library was further analyzgdsdf organizing maps (SOM). SOMs
provide a topology-preserving projection of datanifra high-dimensional space into a low
dimensional space. The resulting maps also defimsters in the data and provide
representative and diverse subsets of the origia@. Two different SOMs were trained: one
SOM based on the CATS3D descriptor and one SOM bas&lACCS keys. In this way we
wanted to analyze our focused library by two déférobjectives. One objective was to get an
overview over the distribution of diverse sets céffolds (based on the MACCS keys) and
the other objective was to get an overview overdifierent pharmacophores in the library
(based on CATS3D). CATS3D representations of mddscaonsist of a comparably large
number of dimensions (420) in relation to the twaehsional SOM projection. To facilitate
SOM training the discrepancy between the two vagiapaces was reduced by the scaled
Shannon entropy. Only CATS3D-dimensions with aest&hannon entropy above 0.3 were
used for SOM training. To estimate the overlap efltbrary with the chemical space covered
by the known mGIuRS5 allosteric antagonists, all o3 actives from the training set were
included in the SOM training. Two SOMs with 5 x 5 rans were trained. The resulting

SOMs are shown in Figure 4.17.
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Figure 4.17.Self organizing maps (SOMs) of the best predictedniine molecules. SOMs
were calculated using MACCS keys and CATS3D desmsgpiShown are the distribution of
the mGIuR training set, the mGIuR1 training set #&nhd frequency of the predicted hit
molecules, projected on the trained SOM.

In the MACCS SOM 13 of 25 neurons and in the CATS3DMS15 of 25 neurons
contained known actives. This indicates that thedjgted molecules broadly covered the
chemical space of the known mGIuR5 allosteric aomésys. All neurons without active
molecules from the training set were directly néigting a neuron containing active
molecules within its receptive field. In the MACCSOM the neurons containing active

molecules from the training set built a clusterhwé single neuron containing most of the
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molecules. In contrast, in the CATS3D SOM the nesiroontaining active molecules were
loosely distributed over the map with more neuronataining a larger fraction of active
molecules. The results from these two projectiongcate that the ANN approach was able to
predict novel scaffolds and chemotypes which weareilarly distributed between the
CATS3D representations, but are found outside ef ¢huster of known actives in the
MACCS SOM. A projection of the side-actives onto th@ined map revealed that these
molecules were distributed broadly over the mapthen CATS3D SOM 16 neurons were
activated by mGIuR1 antagonists including 10 nesrrdhat also contained mGIuR5S
antagonists. For the MACCS SOM 18 neurons were foutth mGIuR1 antagonists
overlapping with 10 neurons with mGIuR5 antagoni$tee SOMs were not able to define a
full separation of actives and side-actives onbihgis of unsupervised learning. This might be
grounded on the selection of inappropriate desmsgior that task and on the similarity of the
two classes of ligands (Figure 4.17). The relatiegquency of the selected library is shown in
Figure 4.17. According to the MACCS keys, the ligrasas broadly distributed over the map.
With CATS3D most of the library compounds were fdun a small set of two neighboring
neurons. Interestingly both of these neurons ditl comtain any known active reference.
These results indicate the presence of large $edgalogues in the Enamine dataset which
introduced a bias in the molecules selection. Bgcsien of representative compounds for the
biochemical verification of the compounds this bigas circumvented. For experimental
screening for new allosteric modulators of mGluBbmolecules which were nearest to the
neuron centroids were selected. The respective aulele are shown in Figure 4.18 and
Figure 4.19. The representative molecules from ®®Ms show a similar topology in
comparison to known mGIuR5 allosteric antagonistse ( Section 4.4). Most molecules
consist of two ring systems connected by a linker3oor more bonds length. These
characteristics were found in molecules from nesirovith and without known active
references and in the representative moleculestbf 8OMs. Some of the selected molecules
included charged groups like the nitro group. Chdrgroups were not accounted for in the
CATS3D descriptor after the variable selection pthoe. Especially in the MACCS SOM
these molecules were found mostly outside of therares containing the known active

molecules.
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Figure 4.18.Representative molecules selected from the CATSBM. Grey dots indicate
molecules that were tested in the binding assay.
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molecules that were tested in the binding assay.
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4.5.4 Binding assay results
The molecules selected by the SOMs, that were dkil@32 of 50 molecules) were
purchased from Enamine [Enamine] and tested in &wR5 binding assay. The hits and
some of the inactive molecules from the mGIuR5 yassare also tested in an mGIuR1
binding assay to assess the selectivity of the cotds. The results of the assay are shown in
Table 4.15. Three of the 16 tested molecules froen@ATS3D SOM and two of the 16
molecules tested from the MACCS SOM showed mGIluR8ibmn

The best binding ligand for mGIuR5 was found whlk CATS3D SOM in neuron e3:
4.5.23with aK; of 21 uM. This ligand is structurally similar t@énd4.4.24(K; = 12 uM)
found with CATS3D similarity searching in Sectio44though the mGIuR5 hits from
Section 4.4 were not included in the training d&tae K; values from Section 4.4 were
determined considering the fraction of solvatedadidy under the assay conditions. This
parameter was not determined in this section.4=62460 % of the molecule was found in
solution. Assuming a comparable solubility #b.23than for4.4.24 similarK; values were
found for the two molecules. The best hit from MACCS SOM was found in neuron b3:
4.5.33with aK; of 33 uM, which is also similar #.5.23and4.4.24 One apparent difference
of 4.5.33to 4.5.23and4.4.24is the lack of a hydroxyl-group substituent thapissent in the
other two molecules at the benzene ring distatihédinker oxygen. Regarding the lower
of 4.5.33in comparison ta@t.5.23and4.4.24 the hydroxyl group might provide a favorable
interaction with the receptor. A part of the effaft the hydroxyl-group might also be
addressed to a lower solubility 45.33

The selectivity of the molecules for mGIuR5 over &l was low: nine of the 12
molecules tested from the CATS3D SOM and one ofhib&cules tested from the MACCS
SOM were also found to bind to the mGIuR1. Thus mmootecules were found binding to
MGIuR1 than to mGIuR5. The molecule with the highesding affinity was also found for
MGIuR1 @.5.13with aK; of 8 uM for mGIuR1 and &; of 38 uM for MgluR5). Similar
results were observed in Section 4.4 where additipatent ligands for mGluR1 were found
with CATS3D similarity searching using specific nuB5 allosteric antagonists as query
molecules. This might reveal that the employed owdbe representation with CATS3D was
not appropriate for this particular task. While C33D was designed for scaffold hopping,
and accordingly fuzzy representation of the molesuhe selectivity between mGIuR5 and
MGIUR1 seems to require subtle differences in idpgnts, due to the high similarity of the
binding pockets [Pagaret al, 2000].
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Many of the molecules that were active on at least of the receptors mGIuR1 or
MGIUR5 were found to have amide grougss(24 4.5.35 4.5.49 or ester groups4(5.5
4.5.7,4.5.1Q 4.5.13 as linkers. These linkers were not found in tiaéntng data and might
be considered as alternative chemotypes for thiedipart of the molecules.

One of the most challenging goals of virtual sciegns to retrieve novel scaffolds
and chemotypes with the desired biological actiMitythis approach all molecules predicted
as active were clustered by SOMs. Retrieving aatiatecules from clusters of molecules
that did not contain active training samples is ay/wo find molecules different from the
training chemotypes. In the SOMs different clustairs represented by different neurons.
With our approach we were able to find novel actilemotypes from SOM neurons that did
not contain any of the known reference moleculdss was found for mGluR5 and for
mGIuR1, using both molecular descriptors MACCS aWd'€3D for the SOM calculation.
For the molecules tested from the MACCS SOM all mdks: that were active on mGIuR5
were found in neurons that did not contain any kmemGIluR5 antagonist and the molecule
that was active on mGIluR1 was found in a neuroh dich not contain any of the mGIluR1
training molecules. For the CATS3D SOM moleculesesfeund to be active that were from
neurons not containing reference molecules fromtthming set (M5:4.5.7, M1: 4.5.16
4.5.19 4.5.23. However the most active molecules were founcheéarons with reference
molecules: the best identified mMGIuRS5 antago#iSt23was found in the neuron containing
the second largest number of reference moleculéshenbest mGluR1 antagoni&6.13was
found in the neuron with the most mGIuR1 referentégse results are in agreement with the
findings of Sheridan et al. [Sheridaat al, 2004], that best predictions are obtained for
molecules similar to the training data. In conttastheir findings we also found actives with
lower activities in neurons not containing trainimmglecules. This ability might have resulted
from the strategy of training a global model for w5 instead of a set of local models.
However the task of mGIUR5/mGIuR1 selectivity miglave been better represented using a

set of local models.
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Table 4.15. Results from the mGIuR5 and mGIuR1 bindisgpss.

Molecule (neuron) K mGIuR5 (uM) Ki mGIuUR1 (uM) Selectivity
(ICso MGIuR1 /ICso mGIUR5)

CATS3D-SOM

4.5.2 (a2) > 100

4.5.4 (a4) > 100 73 <0.7

455 (a5) >100 46 <0.5

4.5.6 (bl) > 100 > 100 1

4.5.7 (b2) 44 51 1.2

4.5.9 (b4) >100

4.5.10 (b5) >100 69 <0.7

4.5.11 (c1) >100 > 100 1

4.5.13 (c3) 38 8 0.2

4.5.15 (c5) >100

4.5.16 (d1) > 100 45 <0.5

4.5.18 (d3) >100

4.5.19 (d4) > 100 55 <0.6

4.5.23 (e3) 21 64 3.1

4.5.24 (e4) > 100 56 <0.6

4.5.25 (e5) >100 > 100 1

MACCS-SOM

4.5.30 (a5) >100

4.5.31 (b1) >100

4.5.33 (b3) 33 > 100 > 3.0

4.5.34 (b4) >100 69 <0.7

4.5.35 (b5) >100

4.5.36 (cl) >100

4.5.37 (c2) > 100

4.5.39 (c4) >100 > 100 1

4.5.40 (c5) >100 > 100 1

4.5.41 (d1) > 100

4.5.42 (d2) >100

4.5.45 (d5) >100

4.5.46 (el) > 100

4.5.47 (e2) > 100

4.5.48 (e3) >100

4.5.49 (e4) 59 > 100 >1.7
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4.5.5 Conclusions

Using an artificial neural network approach we iested novel chemotypes for allosteric
modulators of mMGIuR5. We used a combination of fieedard neural networks trained on
the separation of mGIuR5 allosteric antagonistsnfrmolecules without that activity and
trained on the separation of allosteric antagorust®GIuURS5 and mGIuR1. A representative
set of molecules for biochemical testing was coetpilsing unsupervised SOMs. Novel
MGIURS5 antagonists with a bdst value of 21 were found. We were able to retrieea/ n

active molecules from regions in the SOMs that dorthmolecules from the training set and
from regions that did not contain these moleculdsis our method was able to correctly
predict molecules as active that were not simdahe reference molecules. This ability might
have resulted from the training of a set of glotveddel based on all molecules from the
heterogeneous training set of MGIuR5 antagonisteaa of a set of local models. Prediction
of the selectivity of ligands was not successfuhisTproperty might have been better
predicted with a set of local models using lesseganmolecular descriptors. Thus the
combination of the CATS3D descriptor with neuratwmrks might be best suited for the

purpose of scaffold hopping, but not for the pugpogligand optimization.



108 Chapter 4

4.6 Retrospective evaluation of SQUID fuzzy

pharmacophore models

Conventional similarity searching (like with the T8 family methods) employs a single
guery molecule for each virtual screening run. émtcast, ensemble-based pharmacophore
searching [Guner, 2000] (for three-dimensional subtures, e.g. like with Catalyst [Greene
et al, 1994]) incorporates information from multipletigse molecules. Using information
from multiple reference molecules has also beemvslo improve alignment-free descriptor
vector based virtual screening [Xat al, 2001; Hertet al, 2004a; Hertet al, 2004b].
However there is the limitation that conserveddezd in the alignment-free descriptor space
are not necessarily conserved in a three-dimenisabigament of ligands.

Traditional pharmacophore searching approachesaleafiquery as a substructure. For
regions in molecules not covered by the substraatorpreference is assigned. This can lead
to the effect that many hits contain large or uir@dsstructural elements in the undefined
regions. Excluded volumes can compensate for a gfathe problem by preventing the
selection of molecules that are too large for timeling pocket [Guiner, 2000].

Using pairs, triplets, or even quartets of atomsP&s is one possibility for the
construction of a CV descriptor. An extension tis thpproach is to use pairs of larger and
more general objects, which might result in a ngeeeralized and abstract description of the
molecule.

The SQUID (®phisticated _Qantification of _hteraction _Dstributions) fuzzy
pharmacophore is an approach that was designeackéetthe above mentioned topics. In
SQUID pairs of Gaussian probability densities asedufor the descriptor calculation. The
Gaussians represent clusters of atoms comprisengame pharmacophoric feature within an
alignment of several active reference moleculeg. ifborporation of multiple aligned ligands
within the SQUID approach resembles conceptual lariity to the traditional idea of a
pharmacophore model [Giner, 2000]. Based on anrakgt of active molecules, tolerances
for the features are usually estimated to compeng&at ligand and receptor flexibility.
Pharmacophoric features that are present in maiyeofeference molecules result in a high
probability, and features which are sparse in thdedying molecules result in a low
probability. In this way all features of the refece molecules are included in the model and
not just the most conserved substructure. Tolesant¢he features, which are considered by
this approach, might be better represented by Gaudensities than by rigid spheres. For the

resulting fuzzy pharmacophore models different degrof fuzziness can be defined, e.g. the



Main Section 109

model can be very generalizing or more restriotetthé underlying distribution of atoms from
the alignment. The fuzziness can be affected by dluster radius, a variable which
determines the radius within which atoms are ctesténto PPPs.

For virtual screening the three-dimensional spalistribution of Gaussian densities is
transformed into a two-point correlation vector resgentation which describes the same
probability density for the presence of atom pagemprising defined pharmacophoric
features. This representation is independent framstation and rotation which makes rapid
database screening possible without the necessaylicitly align the molecules, which can
be a limiting step for the screening of large das#s. This renders the fuzzy pharmacophore
CV useful for ranking 3D pharmacophore-based C\tasgntations of molecules, namely
CATS3D descriptors of molecules. Consequently SQO#D be characterized as a hybrid
approach between conventional pharmacophore sagrchimilarity searching and fuzzy
modeling.

The goal of this study was to evaluate the pharplaa@ model perception and
virtual screening ability of the SQUID fuzzy pharoahore models. The ability of SQUID
pharmacophore models to find important interacpomts was tested for known reference
pharmacophore models from literature. The effeatdss in virtual screening was compared
with CATS3D similarity searching and traditional gsghacophore searching with MOE
[Chemical Computing Group]. An optimization proceeluof feature-type weight was
necessary in model calculation. The robustnessigbiptimization was evaluated, too.

For the evaluation study we selected pharmacophmréels for cyclooxygenase 2
(COX-2) and thrombin from literature [Palometral, 2002; Pateét al, 2002]. Both targets
are well characterized in the literature and citysteuctures of the receptors with bound
inhibitors are available. This was important siremg method depends on a meaningful
alignment of ligands. Large sets of ligands fortbiatrgets are known, which is essential for
statistical significant results. Ligands from baitttivities differ largely in size and molecular
interactions. COX-2 inhibitors are known to be assl of lower diversity (see section scaffold
hopping) while thrombin inhibitors show a highevelisity in chemotypes and scaffolds (see
section scaffolds). Using these two referencestigelasses the scaffold hopping capability
of SQUID could also be assessed.

For retrospective screening we used the COBRA dataljSchneider & Schneider,
2003] (version 2.1). Two versions were calculatele database with single conformations
was calculated with CORINA [Sadowsét al, 1994] and one database of up to 50 energy

minimized conformations was calculated with MOE [@ieal Computing Group]. For
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retrospective screening molecule that were usegliarmacophore model generation were
removed from the datasets. The resulting datasetsisted of 92 active molecules and 4611

inactive molecules for COX-2, and 188 actives abfi7dinactive compounds for thrombin.

4.6.1 Pharmacophore model of COX-2 ligands

Palomeret al. [Palomeret al, 2002] derived a pharmacophore model for COXHzhitors on
the basis of five specific inhibitors SC-55884.1), rofecoxib 4.6.2, DFU, celecoxib, and a
molecule which they termed “molecule 5" (M8,6.3. For calculation of a 3D structural
alignment of these ligands they used a templagnmént of all COX-2 ligands, for which
there was a crystal structure of the ligand-reaepbonplex available. Crystal structures were
at hand for SC-558 (1CX2) and the two unspecifibibriiors flurbiprofen (3PGH) and
indomethacin (4COX). The alignment of these molesw/as performed by superposition of
their protein structures. The remaining ligandsenaligned to the template alignment with
the program Catalyst [Greem al, 1994]. This approach was taken as a referencéhéo
development of a pharmacophore model with our omagnam SQUID. The molecules DFU
and celecoxib were not included in the SQUID phawpaore model, because they are close
analogs of rofecoxib and SC-558. The 2D structofdke remaining molecules are shown in
Figure 4.20. Crystal structures 1CX2, 3PGH and 4C0fkfe aligned with the homology
alignment tool of MOE [Chemical Computing Group].f&mxib and M5 were aligned to this
template alignment with the flexible alignment t@dIMOE. First, rofecoxib was aligned to
the fixed template alignment. Then, M5 was aligrethe fixed alignment resulted from the
previous step. For the final alignment the unspeaihibitors were removed. The resulting
alignment of COX-2 inhibitors is shown in Figure4. In accordance with the model of
Palomeret al. the crucial pharmacophore features of these mideare the sulfonyl group
and the two aromatic six-membered rings [Paloetal, 2002]. The aromatic rings close to
the sulfonyl group, further referred to as “ring,Adre nearly parallel to each other in the
model. The angles between the planes of the diatamatic rings, further referred to as “ring
B”, seem to be less constrained. The least condergion of the model is the linker region

between the two aromatic ring centers.



Main Section 111

\ "! \\ "f \\ ff
QN ? Q
N&
CF,
4.6.1 SC-558 4.6.2 Rofecoxib 4.6.3 M5

Figure 4.20. Reference COX-2 inhibitors used for the -calculatiof the SQUID
pharmacophore model.

SQUID pharmacophore models were calculated witkteturadii from 0.5 A to 3.5 A
in steps of 0.1 A. A sample set of these pharmam@pmodels is shown in Figure 4.22. The
models consisted of only three generalized intemactypes: hydrogen-bond donors,
hydrogen-bond acceptors, and hydrophobic intenasti®he model resulting from 1 A cluster
radius is the most detailed one. Here atoms ineciweximity are combined to PPPs, which
results in a low abstraction from the chemical fdd$. In contrast to all other models shown,
the preferred angle between the two aromatic rkgsd B are preserved in this model. The
models resulting from 1.5 and 2.0 A exhibit a higtiegree of generalization from molecular
structure. Many atoms, especially in the regionsth@ aromatic rings A and B, were
combined to form large PPPs, covering several atooms each of the molecules. Up to 2.0
A only hydrophobic atoms were combined. The moftels the cluster radii 2.5 A and 3.0 A
still represent the overall shape of the molecalgnment with three hydrophobic PPPs, but
in the 3.5 A model the shape of the alignment iy amarginally visible. In all models with a
cluster radius up to 2.0 A the sulfonyl group ipresented by two highly conserved
hydrogen-bond donor PPPs, one hydrogen-bond ddPier 8nd one hydrophobic PPP. In the
models resulting from cluster radii greater thab &.all oxygen atoms of the sulfonyl group
are represented by a single large PPP. Moreovemytmphobic PPP vanished since the
methyl group was assigned to the PPP of ring A.
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Sulfonyl group

Figure 4.21. Three-dimensional alignment of the COX-2 inhibstoRofecoxib and M5 were
aligned to the crystal structure conformation of-Z88 bound to COX-2. Essential
interactions for specific COX-2 inhibitors are taeomatic rings A and B and the sulfonyl

group.

4.6.2 Retrospective screening for COX-2 inhibitors

As the results of retrospective screening wereittemdo the feature-type weights (data not
shown), a restrained exhaustive search for thenigation of these weights is part of the
model creation procedure. For every calculated madeh of the feature-type weights for
features present in the pharmacophore model waedvizom 0.1 to 0.5 in steps of 0.1, which
resulted in 125 different weighting schemes for @@X-2 pharmacophore models. Each of
the resulting descriptors was evaluated by retrdsmgescreening. To obtain statistically more
significant results, five different subsets of ®@®BRA database were created. For each of the
subsets 50% of actives and 50% of inactives wergaraly chosen from the original database

for retrospective screening.
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Figure 4.22. SQUID fuzzy pharmacophore models for COX-2 calmdafrom different
cluster radii. The Gaussian PPPs of SQUID are septed by spheres. The radius of a sphere
denotes the standard deviation of the PPP and nfemsity of the color illustrates the
conservation weight of the PPP. Yellow = hydropbplmyan = hydrogen-bond acceptor,
magenta = hydrogen-bond donor.

The results of the optimization procedure are showhigure 4.23. For each model
calculated with a different cluster radius the ager enrichment factors for the first 1% and
5% of the 5 ranked databases obtained with thefbest weighting scheme are shown. The
highest average enrichment factor of 39 for thst fie6 of the database was obtained with the
model calculated with a cluster radius of 1.4 A &mture-type weights of 0.1 for hydrogen-
bond donors, 0.4 for hydrogen-bond acceptors a®dbd hydrophobic interactions.
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Figure 4.23. Enrichment factors for the first 1% and 5% fronraspective screening with
COX-2 pharmacophore models with cluster radii fiof A to 3.5 A. For each cluster radius
the result from the best found feature type weidtus) the optimization procedure is shown.
The shown enrichment factors are average values §areening of five randomly selected
subsets of the COBRA database.

As it could be anticipated, the standard deviatiohthe enrichment factors were the
highest for the first 1% and decreased for thet fi%. Nevertheless according to their
standard deviations the enrichment factors forfits¢ 1% of the database still seem to be
appropriate for an evaluation of our pharmacophooelels. Both curves exhibit the same
general characteristics for different cluster raaiihough the differences between the models
vanish more and more considering the enrichmernheffirst 5% of the database (Figure
4.23).

Considering the performance of the models for tméckment in the first 1% of the
database, large enrichment factors could be olatdoreall models with a cluster radius from
0.5 Ato 2.4 A. As can be seen in Figure 4.22 tiedels only differ in the description of the
hydrophobic interactions, while models with 2.5 Adagreater cluster radii differ from the
other models in the description of the oxygen atoirthie sulfonyl group. The models with a
large cluster radius use a single PPP for the igtier of these atoms while the models with
small cluster radius use two PPPs. It seems tlghgle PPP for the description of these
oxygen atoms is not sufficient for a reasonablyfqgraring pharmacophore model. The
models from 0.5 A to 2.4 A can be divided into 4ups. The pharmacophore models of the
first group from 0.5 A to 0.9 A with enrichment facs of roughly 27 consist only of PPPs
merging atoms from different molecules within clepatial proximity, e.g., all aromatic rings
are described by six PPPs. From 1.0 A to 1.2 Amimim in the performance of the models

was observed. In these models ring A is represdntesix PPPs, and ring B is represented by
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four or five PPPs, which might not be an adequataber for the description of an aromatic
six-ring.

The three best performing models were obtained wtiikter radii of 1.3 A to 1.5 A.
Both models from 1.4 A and 1.5 A describe ring Ahaa single PPP and ring B with three
and two PPPs respectively. Like within the pooryfprming models employing cluster radii
from 1.0 A to 1.2 A, in the model obtained withlaster radius of 1.3 A ring B is represented
by four PPPs, but ring A is represented by threRs?Fhe larger tolerances of the three PPPs
of ring A might have compensated the unfavorabkrdgtion of ring B. Within the models
from 1.6 A to 2.4 A the hydrophobic interactiong aepresented by a decreasing number of
five to three hydrophobic PPPs.

For comparison, a pharmacophore model was calculattuding the two additional

COX-2 inhibitors DFU and celecoxib from the modéPalomeretal. [Palomeret al, 2002].
A slightly betteref for the first 1% of the databasef & 40) was obtained with a model
calculated with a cluster radius of 1.5 A and featiype weights of 0.2 for hydrogen-bond
donors, 0.5 for hydrogen-bond acceptors and 0.5hiairophobic interactions (data not
shown).

To test if our approach for the optimization ofttea-type weights is also valid in
situations with significantly fewer reference mallxs we repeated the optimization
procedure with only the molecules from the pharmacoe model as reference molecules for
assessment of the enrichment capabilities of theIB@nodels. For all models with cluster
radii from 0.5 A to 2.4 A several weighting schemme=re found that ranked two of the three
reference molecules into the first percent of tamdase. In no case all three molecules were
found in the first percent. Ranking of all modets@ding to Eq. 2.7 resulted in four similarly
top scoring 1.4 A models with different weightinghemes. Among these models the
previously found best working model was found, widature-type weights of 0.1 for
hydrogen-bond donors, 0.4 for hydrogen-bond acegptod 0.3 for hydrophobic interactions.
The worst of the other three models still resultednef of 34 screening the database with the
92 COX-2 inhibitors.

For comparison the maximueivalue for COX-2 (all 47 molecules of the first Ere
COX-2 inhibitors) would be 51. Accordingly at le&®t times more molecules were found
than expected from a random selection of molecates at least two-thirds of the COX-2
inhibitors which could be found at all in the firk% were retrieved with the SQUID fuzzy
pharmacophore models. However one has to taketltareéhe actual values of tle¢ cannot

be compared between different sets of moleculeausecthesf depends on the total number
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of active molecules in the virtual screening dasgband thus on the a priory probability to
find a hit. A low a priori probability for active®sults in a larger increase in thievalue for
each retrieved active molecule than a high a ppibability.

To compare our method with another established odette performed retrospective
screenings with the molecules from which the phaophore models were calculated. For
this approach we encoded these molecules with KESGD descriptor, but without scaling
the descriptor to a maximum of 1. The database cutde were scored by the Euclidean
distance to the query molecule and the databaseswadsed according to the calculated
distances to the query molecule. A comparison efrésults of the similarity search with the
results obtained from the best SQUID model is shawRigure 4.24. Rofecoxib performed
best in comparison to the other two COX-2 inhilstofhis might be a consequence of its
comparably small size. The pharmacophore modebpedd better than rofecoxib for the
first 15% of the database. With the SQUID appro@bPo of the active COX-2 inhibitors
were ranked into the first 6% of the database.ommarison, rofecoxib retrieved 75% of the
actives among the top 16% of the ranked databaserektingly, the performance of the
pharmacophore model decreased significantly forléiseé 25% of the active molecules in

comparison to the COX-2 inhibitors.
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Figure 4.24. Comparison of the enrichment curves of the besKQCGBQUID model with
CATS3D similarity searching using the COX-2 inhds& from model calculation.
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4.6.3 Pharmacophore model of thrombin ligands

A diverse set of seven non-covalent, non-peptidgiorhbin inhibitors was adopted from Patel

et al.[Patelet al, 2002]. The 2D structures of these moleculeshosvn in Figure 4.25. All

ligands were aligned by superposition of the prosructures with the homology alignment

tool of MOE. The resulting alignment of the thromhirhibitors is shown in Figure 4.26.

According to Patel and coworkers the major inteoast are B, H1, H2 and H3, where B is a

basic interaction which interacts with the carbaxyroup of Asp189. H1, H2 and H3 are

hydrophobic interactions. Less conserved interastiare D1 and Al, where D1 is a

hydrogen-bond donor and Al is a hydrogen-bond daocefQUID pharmacophore models

were calculated from the 3D alignment with clustetii from 0.5 A to 3.5 A within steps of

0.1A.
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Figure 4.25. Reference thrombin inhibitors used for the caltofa of the SQUID
pharmacophore model. The names beneath the madeamdehe pdb identifiers of the protein

structures from which the conformations of thesdamdes were extracted.
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A sample set of the resulting models is shown igufg@ 4.27. Four generalized
interaction types were found in the ligands basadtle ph4 aType function of MOE:
hydrogen-bond acceptor, hydrogen-bond donor, palat hydrophobic. Since all ligands
were presented in neutralized state, interactiovaB not identified as cationic feature, instead
it was represented by hydrogen-bond donor and pimiaractions and an additional
hydrogen-bond acceptor. In the 1.0 A and 1.5 A rsdee description of the three
hydrophobic interactions H1, H2 and H3 is very dethusing a large number of PPPs. With
a cluster radius of 2.0 A only four PPPs are lefthe models with cluster radii of 2.5 A, 3.0
A and 3.5 A these hydrophobic interactions areasgmted by only three PPPs. Both Al and
D1 are structurally conserved features in the atignt. All appropriate atoms from the
different molecules lie in near proximity to eadher. Al is represented by a small conserved
PPP in all models except for the 3.5 A model, whiéres represented by a large PPP,
including other hydrogen-bond acceptors. D1 is atgwesented by a small conserved PPP
except for the models with 3.0 A and 3.5 A clussafius.

Figure 4.26. Three-dimensional alignment of thrombin inhibitorBhe molecules were
aligned by superposition of their appropriate progtructures. Essential interactions with the
receptor are: B is a basic interaction, H1, H2, Bi@dare hydrophobic interactions, Al is a
hydrogen-bond acceptor and D1 is a hydrogen-bondrdo
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4.6.4 Retrospective screening for thrombin inhibito rs

For retrospective screening with the SQUID pharmphooe models obtained from the
alignment of thrombin inhibitors the same procedordeature-type weight optimization was
applied as for the screening for COX-2 inhibitoRor the thrombin optimization 625
weighting schemes had to be evaluated per model.

The results of the optimization procedure are showiRigure 4.28. The best average
enrichment factor of 18 for the first 1% of the alzse was obtained with the model
calculated with a cluster radius of 2.0 A and feattype weights of 0.4 for polar, 0.5 for
hydrogen-bond donors, 0.3 for hydrogen-bond accgptod 0.5 for hydrophobic interactions.

Figure 4.27. SQUID fuzzy pharmacophore models for thrombin dalted from different
cluster radii. The Gaussian PPPs of SQUID are septed by spheres. The radius of a sphere
denotes the standard deviation of the PPP and nfemsity of the color illustrates the
conservation weight of the PPP. Yellow = hydropbplmyan = hydrogen-bond acceptor,
magenta = hydrogen-bond donor, green = polar.
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Figure 4.28.Enrichment factors for the first 1% and 5% fronrespective screening with

thrombin pharmacophore models with cluster radinfr0.5 A to 3.5 A. For each cluster
radius the result from the best found feature typeghts from the optimization procedure is
shown. The shown enrichment factors are averageesdrom screening of five randomly
selected subsets of the COBRA database.

We detected two peaks for each of the enrichmenoifs, one for models with a high
degree of generalization with cluster radii frond & to 2.2 A, and one for models with a
lower degree of generalization with cluster radiildd A and 1.1 A. Interestingly, models
with cluster radii greater than 2.8 A performedyveell, too. As can be seen in Figure 4.27,
the model with a cluster radius of 1.0 A from tlmstfpeak mainly clustered atoms within
near proximity into PPPs, while already favoringieerved atoms. The model with a cluster
radius of 2.0 A from the second peak representdaatires with a drastically diminished
overall number of PPPs. In particular the threertytdobic interactions are represented by
four PPPs, in contrast to all other models withmalter cluster radius. The models resulting
from cluster radii larger than 2.8 A consist mosifyPPPs with large tolerances, but unlike
for COX-2, these PPPs represent the shape of thexaiar alignment very well.

Like for COX-2 the optimization procedure was repeawith only the molecules
from the pharmacophore model as reference moledatgsmany models weighting schemes
were found which ranked two of the seven referemm#ecules into the first 1% of the
database. In no case more molecules were foundarfitst 1%. Ranking of all models
according to Eq. 2.7 resulted in the previouslyniest working 2.0 A model with feature-
type weights of 0.4 for polar interactions, 0.5 frdrogen-bond donors, 0.4 for hydrogen-

bond acceptors and 0.5 for hydrophobic interactions
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The result of the 2.0 A SQUID model was compareth wesults from retrospective
screening with CATS3D descriptors calculated fréwa nolecules used for the calculation of
the pharmacophore model. Enrichment curves are rshovirigure 4.29. Major differences
were observed in the performance of the individhedmbin inhibitors. The inhibitors from
the crystal structures 1FPC and 1DWD performed. Bédw three inhibitors from structures
1D4P, 1D9I, and 1TOM performed even worse than alaan distribution of active
molecules within some regions of the ranked dambake SQUID pharmacophore model
performed better than the most successful simylaeiarch for the first 40% of the database.
50% of the active molecules were ranked into thst f6% of the database by the
pharmacophore model in comparison to the best thirormhibitor from 1DWD, which

ranked 50% of the active molecules into the fi%olof the database.
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Figure 4.29.Comparison of the enrichment curves of the besmnthin SQUID model with
CATS3D similarity searching using the thrombin initors from the model calculation.

4.6.5 Method performance

For an additional comparison of the SQUID pharmaoop model with an established
method we calculated pharmacophore models fromtiee alignments of COX-2 and
thrombin reference compounds with the pharmacoptomeof MOE [Chemical Computing
Group]. For both models we used the atom-type sehe@H_ALL which consists of atom-

types for cationic, anionic, hydrogen-bond donoydrbgen-bond acceptor, aromatic ring
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centers and hydrophobic interactions. In contrass@UID, one PPP in MOE can describe
multiple atom-types, which can be combined by logperators. As a starting point for the
alignments pharmacophore models were calculatedmatically with the consensus
pharmacophore function using MOE default paramef#ns function clusters features into
PPPs which are more conserved than a thresholé.viaar the threshold 50 % conservation
was used. Retrospective screening with thesediratmacophore models was very slow and
the program even failed to screen the whole datalae to limitations of the software. As a
consequence, we modified the models manually byverg PPPs which were not among the
key features of the pharmacophore models publibgdéalomeret al.[Palomeret al, 2002]

or Patelet al. [Patelet al, 2002] respectively (Figure 4.21, Figure 4.26)r Ehe thrombin
model the radii and the positions of the PPPs fbr 2 and D1 were manually adjusted for a
more accurate representation of the underlying siingctures and the cluster of hydrogen-
bond donors. Additional multiple features of thePBRvere also removed. The resulting MOE
pharmacophore models are shown in Figure 4.30. Butidels were evaluated by
retrospective screening of the COBRA database.

With the MOE COX-2 model (Figure 4.30a) we retriev@dl matching molecules
among which we found 49 (58 %) of the known COXxibitors. In comparison, the COX-2
SQUID model found 47 (56 %) active molecules in finet 84 compounds from the ranked
database. Reinsertion of a PPP from the first MOBehavhich represents the central five-
ring of the COX-2 inhibitors by an acceptor, aroimatr hydrophobic interaction, resulted in
48 actives (91 %) out of 53 matches. Within thstf53 molecules of the ranked database the
SQUID pharmacophore model retrieved only 38 (72a%ijve compounds. A comparison of
the actives found by MOE and SQUID showed thataverlap was only 25 molecules, i.e.,
that both methods complement each other. SQUIevetd additional 13 actives which were
missed by the refined MOE model.

With the MOE thrombin model (Figure 4.30b) we reted 5 actives (31 %) among
16 matches, in comparison to the SQUID model whithieved 13 actives (81 %) among the
first 16 molecules of the sorted database. Retobsqge screening with the partial match
option of the MOE pharmacophore search functionirgguonly six of the seven PPPs as
matching criterion resulted in 489 matches inclgd8¥ (18 %) thrombin inhibitors. With
SQUID 119 actives (24 %) were found among the #88 molecules of the ranked database.
The two sets of actives have 64 molecules in commgain, we conclude that the two

pharmacophore searching approaches complemenbteah
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Figure 4.30. MOE Pharmacophore models for COX-2 (a) and throngb)nIn the COX-2
pharmacophore model the rings A and B are repreddny two aromatic ring center PPPs,
and the sulfonyl group is represented by a PPR fdwnor or hydrophobic interaction. In the
thrombin pharmacophore model the hydrophobic ictezas H1 and H2 are represented by
hydrophobic PPPs while H3 is represented by an ation®PP. For Al a hydrogen-bond
acceptor PPP and for D1 a hydrogen-bond donor PE2Faund. The basic interaction B was
represented by two PPPs, one for hydrogen-bondptmcer hydrogen-bond donor and one
for hydrogen-bond acceptor and hydrogen-bond donor.

To gain further confidence in our approach we tadkok at the two top-scoring non-
active molecules from each of the best pharmacephaodels for COX-2 and thrombin
(Figure 4.31). Moleculed.6.11[Woo et al, 1998] and4.6.12 [Supuranet al, 2003] were
found with the COX-2 pharmacophore model with 1.4ldster radius, and moleculés$.13
[Marlowe et al, 2000] and4.6.14 [Rudolf et al, 1994] were found with the thrombin
pharmacophore model with 2.0 A cluster radius. Etotamide 4.6.19 is an inhibitor of
carbonic anhydrase. Also, it has been shown recémit celecoxib is a nanomolar inhibitor
of carbonic anhydrase [Webet al, 2004]. EMATE §.6.1) is an inhibitor of estrone
sulfatase, and a nanomolar inhibitory effect of EMEA®n carbonic anhydrase activity has
been reported [Hecet al, 2003]. This indicates that both “non-active” ewmiles share
common features with the COX-2 inhibitors from gtermacophore model.

Molecule 4.6.13 (BOCD-Arg-Pro-Arg) is an inhibitor of Factor Xa for wihic
nanomolar inhibition of thrombin has been repoftéd et al, 2003]. It thus represents a real
hit. BIBP3226 4.6.149 is an antagonist of the neuropeptide réceptor. To our knowledge
thrombin activity has not been tested for this roole.
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Figure 4.31. Best scoring false-positive hits found with thel80 fuzzy pharmacophore
models. Compound4.6.11and4.6.12 were found with the COX-2 pharmacophore model
with 1.4 A cluster radius. Compounds.13and4.6.14were found with the thrombin model
derived form 2.0 A cluster radius.

4.6.6 Conclusion

We challenged our SQUID approach using inhibitofrsC@®X-2 and thrombin. For both
classes COX-2 and thrombin SQUID pharmacophore taodere able to find an appropriate
representation of important pharmacophoric intévast The optimization procedure was
found to be robust in cross-validation using fivifedent randomly sampled subsets of 50 %
of the COBRA database. Using only the moleculesnfrine pharmacophore model as
references for the optimization resulted in idadtiCOX-2) or near identical (thrombin)
results as for using all active molecules as refegs. The best retrospective screening results
for COX-2 were obtained with the model resultingnfra cluster radius of 1.4 A, yielding an
enrichment factor of 39 for the first 1% of the kad database. For thrombin, the best results
for the enrichment in the first 1% of the databasee obtained with the model resulting from
a cluster radius of 2.0 A, yieldingf = 18. For both targets, the best models outpeddrm
retrospective screening by CATS3D similarity seargh This showed that - independent
from the overall enrichment and thus independenth@fexplicit selection of active molecules

- the pharmacophore model outperformed conventisinalarity searching. In comparison to
conventional pharmacophore searching with MOE, SQIldintified additional actives and

thus complements existing methods. We demonsttatgdhe SQUID pharmacophore model
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approach provides a potentially useful new methwdvirtual screening. The inherent fuzzy
description of the molecules should support the gbascaffold hopping’, especially with
higher degrees of fuzziness.
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4.7 Prospective screening for inhibitors of the Tat -TAR
RNA interaction with a SQUID fuzzy pharmacophore
model and CATS3D

RNA is a relatively new target to be tackled daldtely in drug discovery projects.
Molecules inhibiting the interaction between the TARRIA and the Tat protein might be
useful to defeat HIV. The first inhibitor found wasgininamide 4.7.1), a derivative of the
arginine which is responsible for specific bindioigTat to TAR [Tao & Frankel, 1992]. So
far, only structure-based virtual screening hambeported for TAR, where an automated
docking approach including a scoring function ojed for RNA led to the identification of
acetylpromazine4(7.2 and chlorpromazined(7.3 [Lind et al, 2002].

An alternative for structure-based virtual scregnare ligand-based approaches
[Schneider & Bohm, 2002]. Especially methods inaigd the active-analog idea of
pharmacophores have been shown to be suited ftiolsehopping [Schneideet al, 1999].
Pharmacophore based similarity searching whichasig@nally developed to identify protein-
ligands might be robust enough to identify new RM@ands without altering the definitions
of the pharmacophoric interactions towards RNA Bjeinteractions.

The goal of this study was to enhance the evalna@ATS3D and SQUID with
prospective virtual screening experiments. Furttimer applicability of our alignment-free
pharmacophore based virtual screening approactmddshe tested for RNA targets. The
SPECS compound set [SPECS] containing 229,658 rsngeecompounds was virtually
screened for potential inhibitors of the Tat-TARemaction. Virtual screening consisted of
three steps: i) calculation of a “drug-likenessorec by an artificial neural network as a
prescreening step, ii) CATS3D pharmacophore simylasearching, and iii) SQUID
pharmacophore similarity searching based on thgiblle alignment of known active
reference molecules. Steps ii) and iii) were penkd independently for the 20,000 most

“druglike” compounds.
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Figure 4.32.NMR structures of TAR RNAa) TAR with bulge binders: 1anr (free TAR),
19d3 (TAR complexed with neomycin), 1larj (arginine)laju (argininamide), 1lvj
(acetylpromazine). ). The bulge nucleotides areesgnted in space filling: U23 (blue), C24
(green), and U25 (red). All structures are from HIVTAR except laju (HIV-2, C24 is
missing).b) Binding pockets of the TAR ligands. Surface reprgation of the binding sites,
mapped by electrostatic partial charges (red =thegaartial charge, blue = positive partial
charge).
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Figure 4.33. TAR-Tat interaction inhibitors. Argininamidd.7.1, acetylpromazinet.7.2
chlorpromazinel.7.3 CGP40336A4.7.4
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Figure 4.34.Modification of ligand4.7.4for the alignment.

4.7.1 Calculation of an alignment of reference comp  ounds

Several NMR structures of the TAR-RNA with bound ibitors are publicly available
(Figure 4.32). Different ligands address differdnnding-sites and stabilize different
conformations of the bulge (Figure 4.32a). Acetyipazine 4.7.2 is bound in a deep
binding-site mediated by a combination of stackargl charged interactions whereas the
other ligands are bound in shallow binding-sitemuhated by charged interactions (Figure
4.32b). Because of the seemingly more drugliketiozlaof ligand-receptor interactions in the
acetylpromazine binding-site in comparison to ttireensites we decided to design ligands for
the former binding-site. Acetylpromaziné.7.2 [Lind et al, 2002] and CGP40336A1(7.4)
[Hamy et al, 1998] (Figure 4.33) were chosen as referencantlg from literature with
reported nanomolaiCsy values. For both molecules binding to the bulgel fmeen
experimentally verified, however detailed structwata was not available fdr.7.4 As4.7.4
contains a ring system -- which might be involvediacking interactions like #h.7.2-- and

a charged flexible part -- which might interact ganto a potential charga-interaction of
4.7.2with C24 [Duet al, 2002] --, we assumed th&t7.4 could have a comparable binding
mode as4.7.2 For calculation of a SQUID model the two ligaridsd to be aligned to each
other. One possibility would be to dock the refeeetigands into the TAR binding pocket;
the other possibility is to perform a flexible lighbased alignment. Since we were not able to
reproduce the experimentally determined TAR-boumafarmation of acetylpromazing7.2
within the binding pocket using either MOE [Chemi€&dmputing Group] docking or the
AUTODOCK approach [Morriset al, 1998] (results not shown), we decided to align
CGP40336A4.7.4to the NMR conformation of.7.2by help of the flexible alignment tool of
MOE. Interestingly, fruitless attempts to reprodtive NMR structure oft.7.2 complexed to
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TAR RNA was also reported by Detering and Varaniowuccessfully reproduced many
other RNA-ligand complexes using AUTODOCK, but &gl to reproduce the
acetylpromazine binding mode with an RMSD value WwebA [Detering & Varani, 2004].
Their study supports our decision to follow theahg-based alignment approach. For the
alignment calculation we used the first NMR modelhaf Protein Database entry (PDB code:
1LVJ) [Du et al, 2002]. Since it was not possible to predict oeable conformations of the
aliphatic amino groups @f.7.4based on flexible alignment alone, we decidedutooff these
groups and use molecufe7.5instead (Figure 4.34) for the alignment and virk@aeening.
The top scoring solutions of the flexible alignmerdre visually inspected, and we selected
the conformation where the ligand appeared to &sthinto the receptor (Figure 4.35).
Stacking and polar interactions df7.4 occupy the same parts of the binding pocket as
acetylpromazind.7.2 so we think that a reasonable starting solutias feund.

Figure 4.35. Alignment of4.7.5to the NMR conformation o#.7.2 (a) (PDB-code: 1LVJ).
The alignment shown in the binding pocket of TARWlith 4.7.2in red and4.7.5in green.
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4.7.2 Calculation of pharmacophores and virtual scr  eening

For virtual screening with CATS3D we calculated t6ATS3D descriptor from those

conformations of the reference molecules that tedufrom the flexible alignment. For

screening with the SQUID pharmacophore model thst kesolution of the model, i.e. the
optimal PPP cluster radius, and the best weightstlie different features had to be
determined. The performance of the different patamgets was determined by their ability
to rank the two molecules from the pharmacophordehto top positions in comparison to
molecules from the COBRA reference dataset [Sclene8dSchneider, 2003] (version 3.12)
of bioactive molecules, as described earlier irtiSect.6.

For the optimization cluster radii from 0.5 to 30in steps of 0.1 A were applied.
Feature type weights were applied from 0.1 to 5sieps of 0.1 for hydrogen-bond
acceptors, hydrogen-bond donors and hydrophobierdations. This resulted in 125
combinations of feature type weights explored facheof the 26 cluster-radii. For all cluster
radii models were found which ranked at least dnh® query compounds into the first 1%
of the hit-list. Equal best results were obtaindthwluster-radii of 1.4, 1.5, and 1.6 A: the
same eight combinations of feature type weightseweund for each model ranking both
guery compounds into the first 1% of the databd$e. eight combinations were: {(0.1 for
hydrogen-bond donors, 0.2 for hydrogen-bond aceepfo3 for hydrophobes), (0.1, 0.3, 0.3),
(0.1, 0.3, 0.4), (0.1, 0.4, 0.4), (0.1, 0.4, 0(B)1, 0.5, 0.5), (0.2, 0.4, 0.5), (0.2, 0.5, 0.%)pr

virtual screening we chose the intermediate modtl eluster radius = 1.5 A and weights of

(0.1, 0.3, 0.4). The selected pharmacophore msd#iown in Figure 4.36.

Figure 4.36.SQUID fuzzy pharmacophore model derived frdmi.2 and4.7.5in top-view
(&) and side-view (b). The spheres represent thesstan PPPs of SQUID. The radius of a
sphere denotes the standard deviation of the PBRharintensity of the color illustrates the
conservation weight of the PPP. Yellow = hydropbplmyan = hydrogen-bond acceptor,
magenta = hydrogen-bond donor.



Main Section 131

Three virtual screening experiments were performitd different queries: i) + ii) the
two CATS3D CVs which were calculated from molecudes.2 and4.7.5 and iii) the CV
from the optimized SQUID pharmacophore model. Ftbenresults the top scoring database
molecules were visually inspected, and a set ahdfcules (10 molecules from SQUID and
10 molecules from CATS3D, one molecule overlap) wekected for experimental testing
(Figure 4.37). To estimate the degree of “scaffubping” of the retrieved molecules the
average MACCS Tanimoto similarity of the hits to ttespective most similar reference
molecules was calculated. For SQUID this similakitgs found to be 0.52 + 0.13 and for
CATS3D 0.53 = 0.11. For comparison the MACCS Tanonsimilarity between the two
reference molecules was found to be 0.61. Accordmghis criterion the chemotypes

retrieved were more dissimilar to the referencenabtgpes than the references to themselves.

4.7.3 FRET determination of the inhibition constant s

All 19 molecules were tested for their potency inTat-TAR inhibition assay (These
experiments were performed by Verena Ludwig and &itkeffer in collaboration with the
group of Prof. Gobel, Frankfurt). As reference ve¢edmined théCsg values of argininamide,
acetylpromazine and chlorpromazine -- three inbikitfrom the literature with reported
values ofK; ~ 1 mM for argininamide [Tao & Frankel, 1992], ahdso < 1 puM for
acetylpromazine and chlorpromazin€sg values in our assay were 1.4 mM for argininamide
and 500 pM for acetylpromazine and chlorpromazinendLet al, 2002]. The strong
discrepancy in thdCs, for acetylpromazine and chlorpromazine comparethé&reported
values is in accordance with a recently publisheidla which reported a discrepancy in the
same order of magnitude for acetylpromazidg € 270 uM compared ttCso ~ 1 UM, as
previously stated) [Mayer & James, 2004]. As a fpstscreening of the compounds we
performed single-point measurements of the inlmbitipotency using three fixed
concentrations of 10, 100 and 1000 pM of the canelidelecule. Molecule$.7.14(hit form
SQUID) [Tugusheveet al, 1998] and4.7.21 (hit from CATS3D with reference molecule
4.7.95 [Shanazaroet al., 1989] (Figure 4.37) showed a stronger inhibitilban argininamide
in the single point measurements. Multipoint measergs yieldedCs, values of 46 uM and
500 pM ford.7.14and4.7.21, respectively.
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Figure 4.37.Molecules selected from SQUID and CATS3D virtuaksaing.
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Figure 4.38. Flexible alignment 0f4.7.14 (a) and4.7.21 (b) to the aligned reference
moleculest.7.2(red) and4.7.5(green).

The two ligand-based pharmacophore methods were tblperform “scaffold-
hopping”, retrieving isofunctional but slightly téfent molecular scaffolds from the SPECS
catalogue. Both new ligands contain a central siracconsisting of three rings with an
aliphatic amide side-chain, like the reference commgls. An additional aromatic ring is
present at different positions in both moleculegerding the original ring systems to four
concatenated rings. Flexible alignments4o7.14 and 4.7.21 (Figure 4.38) revealed that
4.7.14fits better to the reference alignment thiA.21.Also, the aliphatic amide side-chain
of 4.7.14was closer aligned to the corresponding side-chafirise references. The nitrogen
of the additional pyridine ring af.7.14was positioned directly above the potential hydreg
bond acceptors of the reference molecules. In #atli4and4.7.21the additional ring might
be used for more favorable stacking interactiorth Wie receptor. 1@.7.21this potentially
favorable effect might have been compensated bgicstress due to an unfavorable
orientation of the ring or the amide side-chainill She ICsy value is comparable to

acetylpromazine and chlorpromazine.

4.7.4 Conclusions

In this study we presented the application of twgarid-based virtual screening approaches
for the compilation of a small focused library caining potential TAR RNA ligands. Among
the 19 molecules tested we found two molecules hwinere able to inhibit the Tat-TAR

interaction in a FRET assay. The SQUID fuzzy phawphore approach yielded the most
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potent molecule with an improved activity of oneder of magnitude compared to
acetylpromazine4.7.2 or chlorpromazine4.7.3 This could be an effect of incorporating
information from multiple active reference moleauli@to the pharmacophore-based search
for new TAR ligands.

Ligand-based approaches provide a complementargepbmo structure based design,
which might be hampered by the large inherent lflidiky of RNA targets. Though it has been
shown that specific parameterization of scoringcfioms is not essential for ligand docking to
RNA it is still significantly slower than a liganolased approach [Detering & Varani, 2004]. It
has been demonstrated that ligand-based pharmaeoppproaches are capable of finding
new RNA ligands. Although the best molecule reslitea moderatéCso of only 46 uM in
the FRET assay this molecule might provide a sigrpoint for further optimization.
Certainly, other assay types will be needed to ioonénd further scrutinize these findings.
The new inhibitors might not represent ideal caathd for starting a lead optimization
project. Additional experiments will have to be foemed addressing the question which role
the additional ring system actually plays for RNAcagnition and binding affinity.
Furthermore, structurek?7.14and4.7.21might be intercalating agents and exhibit unspecif
binding to both RNA and DNA targets due to the plaring systems and relatively high
lipophilicity. Such issues could also be addressealdifferent setting of the virtual screening
approach. For example, to obtain selectivity towalRNA, known DNA-binders and
intercalators might be used as negative examplessifoilarity searching. This tactic is
currently pursued in our laboratory.

Irrespective of the outcome of such analyses, bgdmd-based methods have proved
to be useful for finding new molecules within thetiaty range of known reference
compounds. Notably both approaches were origirdalyeloped for protein ligands, but they
also seem to be applicable to virtual screenindridA ligands. To our knowledge this study
presents the first inhibitors of an RNA-protein quex found by ligand-based virtual

screening.
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4.8 Prospective screening for taspasel inhibitors w ith a

receptor-derived pharmacophore model

When no ligand and no receptor structure infornmatoe available for virtual screening
alternative approaches have to be applied. Onahpldgsis to predict the protein structure
with a homology model and utilize the predictedistre for virtual screening [Hilliscét al,
2004; Bissantzt al, 2003; Grineberg, 2005; Evers & Klebe, 2004; Ew&rKlabunde,
2005]. Homology models are better described asaal gpproximation of the real protein
structure than as a high accuracy replicate. Helmigh-throughput docking studies can be
misleading, when based on homology models alone.akegrnative to this approach are
receptor-derived pharmacophore models [Wolber &gesin2005; Piraret al, 2005]. Such
an approach was used to search for a first inhilmfohuman taspasel. Taspasel is a
threonine protease [Hsiatt al, 2003] and hence the problem of finding an irtibifor
taspasel involves the problem of scaffold-hoppimignf a peptide substrate to a drug-like
molecule inhibitor. This is a comparably complesktdor ligand-based pharmacophore-
descriptor approaches like the CATS descriptor @ often hampered by the many
potentially interacting groups in peptides [Shemidd al, 2001]. Thus a pharmacophore
model focusing on small numbers of relevant intéoas might be favorable for this task.

The sequence of the human taspasel from the swassiry Q9H6P5 was used for a
BLAST [Altschul et al, 1997] search for related protein structures fitbin PDB database
[Bermanet al, 2000]. Protein structures were selected withgaifsicant similarity in both
subunits of taspasel. Mutant proteins were discardadoverview of the PDB structures
which were finally selected is given in Table 4.16.

1T3M [Prahlet al, 2004] is an isoaspartyl peptidase with an aold#i L-asparaginase
activity [Hejaziet al, 2002; Borelet al, 2004] (Figure 4.39). 2GAW [Guet al, 1998] and
1APZ [Oinoneret al, 1995] have a glycosylasparaginase activity ded an L-asparaginase
activity [Noronoskiet al, 1997, Tarentino & Plummer, 1993] (Figure 4.38). activities
include the hydrolysis of a beta-N amide linking aspartate and varying substituents. In
taspasel there is also an amide bond hydrolyzegur@i4.39): the peptide bond between
aspartate and glycin. Though the glycin is not labt;mthe beta amide of an asparagine, the
sidechain carboxyl group of this aspartate migteract similarly to the free carboxyl group
of the asparagine of the other enzymes. For allyraps, isoaspartyl peptidase,

glycosylasparaginases and taspasel is has been nstemed that they undergo
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autoproteolysis as an activation step, which isiated by the same reaction centre as used
for the enzymatic activity [Xwet al, 1999, Hsieltet al, 2003]. Accordingly all actives sites

have a proteolytic activity.

Table 4.16 Selected reference protein structures for hompologdeling of taspasel.
Identities were determined according to the BLASdnement. (NT = N-terminal subunit; CT
= C-terminal subunit).

PBD code 1T3M 2GAW 1APZ
% sequence NT: 42 ] 151 (27%) 29 /87 (33%) 22 | 48 (45%)
identity CT: 35/ 70 (50%) 22 / 68 (32%) 29 /98 (29%)
e-value NT:  4e° 4> 3e°

CT: 7e'? 4¢° 2¢°
crystal structure 1.65 A 2.2 A 2.3 A
resolution
enzymatic isoaspartyl glycosyl- glycosyl-
function peptidase / L- asparaginase asparaginase

asparaginase

organism Eschrichia coli Flavobacterium Human

meningosepticum

The structure 1APZ is a co-crystal structure otgbylasparaginase with the reaction
product aspartate. Mutagenesis experiments of residear to the bound aspartate identified
a set of eight amino-acids essential for the catafctivity [Liu et al, 1998]. An overview of
the spatial orientation of these sidechains wittpeet to the bound aspartate is given in
Figure 4.40. T152 is the key functionality providirthe nucleophile for the hydrolase
reaction. The hydroxyl of T170 contributes to theaation rate. D183 and R180 bind to
aspartate via hydrogen or ionic bonds to the afphao- and the alpha carboxy-group. W11
is involved in the regulation of the enzyme reattiate. S50, D66 and T203 were also shown
to be important for the enzymatic activity. A ninthportant residue is revealed by the crystal
structure 1APZ: G203 which shows a hydrogen bondmgraction with the aspartate
mediated via the back-bone oxygen of the glycine.
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Figure 4.39. Reactions catalyzed by the isoaspartyl peptid&&B(code 1T3M) and the
glycosylasparaginases (PDB code 2GAW and 1APZpmparison to taspasel.
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Figure 4.40. Aspartate bound in the active site of 1APZ. Esaémnésidues in the binding
pocket are indicated.

To construct a template for the calculation of ambtngy model of taspasel all three
crystal structures were aligned based on the siricif the enzymes with the homology align
tool in MOE [Chemical Computing Group]. This struetialignment was used as a template
to align the taspasel sequence. The resultingraéghis shown in Figure 4.41. All residues
considered essential for the enzymatic activitAPZ [Liu et al, 1998], except for W11,
were fully conserved (D66, T152, R180, G204) orlaepd by isofunctional amino-acids
(S50A, T170S, D183Q, T203S). The full conservatminthe reaction center T152, the
carboxyl interaction partner R180, the hydrogenebaoceptor interaction of G204, and D66
reflects the similar reaction of the enzymes andedimes the possibility of a similar binding

mode of the ligands.
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N-terminus
W1
I
S1APZ. A e SPLPLVVNT- WPF- - - KNETEAAW RAFAS GS'LPAVESGC
>1T3M A ----GKAVI Al HG Al SRAQVSLQQELRYI EALS | VETGXMEEA ES LDV TEAV
S2GAW A e NKPI VLST- WNF- - GLH NVEAW KVESKEGKI LPAVEKGY
>Taspase_N (39) RGGFVLVHA - - YHSESKAKE- YKHV- CKRCQKAI - EKEQATAL| TRAYTAAL
Consensus/ 100% ...... thihlHHGAG . . ... .. hpp. b.al . sbpA. ..sh.c.L..G . AhDsVp. th
S50 D66
I I
>1APZ. A AMCEREQCDGS|/HHGSPDELGETTLD M [VBGT TMDVEAYGDLRRI KNAI GVJ- RKVLE
>1T3M A RLLEECPLFNA- [l FAVFTRDETHELD ICV)/BGNTLKAFANAGYSHLRNPVLAN- RLVME
>2GAW A RLVEDDPTERSY Y] CRPDRDGRVTLD |Cl [/PEN- YNI [ -SIUACMEHI KNPI SV - RAVME
>Taspase_N VELEDSPFTNA- EMSNLNLLGEI ECD S| VPGKSLNFAYGALSG KNPVSVEINRLLCE
Consensus/ 100% . bhEcp. h..tV&QG . . sb.. phphDA. | MD. p*bphG Vt shp. | +Nsl . sA. R | hE
>1APZ. A e HTTHTLLVEES T TTF T QSM 'FI NEDL STSASQAL HSDW. ARNCOPNYWRN
>1ITAMA --e - QSPHVIWM | EG ENF FAR MERVSPEI FSTSLRYEQLLAAR- - - - - - - - -
>2GAWA e KTPHVMLV, DG LEF LSQ FKKENLLTAESEKEVWKEW.KT- - --------
>Taspase_N GQKCGKLSAGRI PPCFLVEG YRWIVDH | PSCPPNI MI'TRFSLAAFKRNKRKLELAER
Consensus/100% ......... p.s.sbbl Gt A paA sbGb.p.s..h..*p..b..bb..ppp. pbhcpV
>1APZ. A | PDPSKYCGPYKPP- - - -
>ITBM A e
S2GAW A e
>Taspase_N DTEPFMOLKKRROSS( 10)

Consensus/ 100% .sD.. pbp.. bpss....

C-terminus
T152 T170 R180 D183 T203 &X04

I I | | \/
>1APZ. B | EMVWI HKTEH AAGTSTN I KFKI H R DSPI PEAT AYADDT- - - - - - AG AAATEN
>1T3M B VI AVALDLDNLAAATSTGEMINKLPERYADSPLVEARCYANNA- - - - - - SVIWVSCTET
>2GAW B | =M ALDAQ NLSGACTTS MAYKVH R DSPI | FA LFVDNE- - - - - - | G ATATEH
>Taspase_C VI AVWVDHE NVAAAVSSG LALKHPE R QAALYE G CWAENTGAHNPYST| VSTS IC
Consensus/ 100% Tl Ghlslc. pGplttts**sCGh. . Kb. GRVGpt sl . GsCGhasps. .. .. .. sAsss*
>1APZ. B DI LMRFLPSYQAVEYNMR- RGEDPTI | CQKVI - SRI QKHFP- - - - - - - EFFGAV |CANV-
>1T3M B EVFI RALAAYDI AALMDYGGLSLAE CERVWMEKLPALG - - ---- - - GSGGEL|FAl DH-
>2GAW B EEVI RTVGTHLVVELM\- QGRTPQQ CKEAV- ERI VKI VNRRGKNLKDI QVGHFALNK-
>Taspase_C EHLVRTI LARECSHAL - - QAEDAHQ LLETMONKFI SSPFLASED- - GVLGGV|I VLRSC
Consensus/ 100% G . hhRhl . sb. hs. hbp. . tbs. . bAhbcshbp+b. . ... b.tcs...h.sthlshp..
>1APZ. B - - TGSYGAACNKLSTFTQFSFMVYNSEKNQPTEEKVDC - - - -
>1T3M B - - EG\WALPFN- - - - TEGWRAWGYAG- DTPTTA YR- - - - - -
>2GAW B - - KGEYGAYCl @ - - - DGFNFAVHDQ K- GNRLETP- - - - - - -
>Taspase_C RCSAEPDSSQNK- - QTLLVEFLWSHTT- ESMCVGYMSAQ 35)

Consensus/ 100% ..ptp.s....p..ph..h.bhh....Kp..p....psb....

Figure 4.41 Alignment of the C-terminal and the N-terminalgasel sequences to the
structural alignment of 1T3M, 1APZ and 2GAW. Congensymbols other than residue
letters are: - = negative, * = ser/thr, | = alipbat = positive, t = tiny, a = aromatic, ¢ =
charged, s = small, p = polar, b = big, h = hydadpb. Essential residues for catalytic
activity in glycosylasparaginase are marked acogrdd the numbering of [Liu et al., 1998].
Amino acid symbols at alignment positions that H36% conserved over proteins that have a
residue at the respective positions were colorezhs€rvation was first considered on the
level of residue identity. For non-identical resduconservation was further considered on
the level of similar biochemical properties: rednegative, cyan = S/T, grey highlighted
yellow = aliphatic, dark blue = positive, light gre = tiny, dark blue highlighted yellow =
aromatic, pink = charged, dark green = small, liglate = polar, light blue highlighted yellow
= big, black highlighted yellow = hydrophobic.
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Figure 4.42.Evaluation of the taspasel homology model. a) iBopghocket of taspasel with
essential residues. Y52 was the only binding-gstdue flagged in the MOE protein report to
have unusual backbone torsion angles. b) Strualigpnment of the taspasel homology
model with the reference structures 1T3M, 2GAW aAdPZ. Comparison of the protein
structures. ¢) Comparison of the active site ressdiblack. essential residues in 1APZ, blue:

aligned residues in taspasel). d) Comparison abthes after helix one. Large differences in
the protein structures are found in this region.
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A homology model was calculated for taspasel withEM@ing the alignment from
Figure 4.41. The Cartesian average of ten homatoggels was used for further experiments.
The model was minimized including solvatation tergasd chiral constraints with the
MMFF94xx forcefield. The protein structure quality thfe model was controlled with the
protein report function in MOE (see Appendix 6.2)h&dral torsion deviations were mostly
observed in loop regions distant from the bindiitg. Most relevant for the model might be
an omega torsion angle deviation of Y52, whichireaed into the binding pocket (Figure
4.41a). Since this deviation only affected the blagcke it might have no effect on the binding
site geometry. It was left unchanged.

To assess the similarity of the taspasel homologgetto the template structures, the
calculated structure was aligned with the referestoectures with the homology alignment
tool of MOE. The calculated structure of taspasétedi well to the reference structures
(Figure 4.41b): according to our model, the protre with the beta-sheet and the flanking
alpha-helices was structurally conserved over teymes. Differences were found in the
loop connecting the secondary structure elemeniisegsential residues, except for W11,
were found to be aligned (Figure 4.41c). After tlew structural alignment including the
taspasel model the S50 position of the glycosytagp@ases was aligned to glutamine in
taspasel and isoaspartyl peptidase, which seens me@sonable than the former alignment
to the directly neighboring alanines: serine andtaghine are both capable to perform
hydrogen-bonding interactions while alanine is able to do so. For the W11 position no
structural alignment was found. A reason for thas @e seen in Figure 4.41d. Both in the
isoaspartyl peptidase and in taspasel the loopendrl is located was found displaced due
to an extended alpha helix, connected to the |&mpth, the former “aligned” leucin from
isoaspartyl peptidase and the tyrosine from tadpdse not fit to the tryptophanes (Figure
4.41d). The extended helix and the connected Idopagpasel also fitted poorly to the
respective structural element of 1T3M. Accordingdlistregion of the model seems to be the
least reliable with respect to the binding sitewdwer the remaining part of the binding site
covering the essential residues except W11 wasecoed between the enzymes and thus
provided a reliable structural basis for the un@erding of the taspasel activity and virtual

screening for inhibitors.
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a)

Figure 4.42. Docking solution for the peptide QLDGVDD in thespasel active site. a)
Surface representation of the active site, col@ecbrding to the electrostatic potential. b)
Potential interacting residues of taspasel wittptide.

To test whether the cleaved sequence of the MLIltepracan bind in a comparable
manner to the substrates of the reference protemspplied a docking approach. For the
docking we used the peptide QLDGVDD. To avoid untedncharged interactions the C-
terminus of the peptide was amidated for the dagkrperiments. The N-terminal alpha-
nitrogen of threonin was set positively chargede Blest docking solution is shown in Figure
4.42. As expected the peptide bond between aspamak glycine was directly situated above
the reactive T234. The sidechain carboxylate ofpgéptide aspartate was found to interact
with R262. The absence of an amino group besidedhiboxy-group was compensated by

the mutation of aspartate to glutamine at posit&&b. A hydrogen bonding interaction
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between G311 and the backbone nitrogen of the eteagpartate in the peptide was also
found.

The interpretations of the docking solution haveedaken with care: it is comparably
more difficult to retrieve the correct receptor hdwconformation of a peptide than for small
molecules by docking calculations [Lat al, 2004]. Peptides are much more flexible than
drug-like molecules and thus provide a much lagrof possible docking solutions that
have to be ranked by a scoring function. The sgoahthe docking solutions is already a
non-trivial task for drug-like molecules [Kitchest al, 2004] and might be even more
complicated for peptides. Given that the positibthe peptide bond to be cleaved was placed
directly above the nucleophile and the carboxyhoug of the aspartate at the cleavage-site
was found to interact with R262, the found dockswjution seems to provide a reasonable

starting hypothesis for the ligand binding-mode.

1234

Figure 4.43. Pharmacophore hypothesis derived from the doclegtige and interactions
with the receptor. The hydrogen-bond acceptor (Auteraction with T234 and the hydrogen-
bond acceptor AND anion (Acc & Ani) interaction wedefined essential for virtual
screening. Hyd = hydrophobe, Don = hydrogen-bontbdo
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Using the bound peptide and the receptor struaupharmacophore model (Figure
4.43) was created for virtual screening for ligamasibiting the taspasel reaction. Three
interactions were defined as essential, i.e. iotemas which had to be satisfied by a molecule
to be considered as hit. Essential interactiongwaehydrogen-bond acceptor function within
a radius of 3 A around the N-terminal nitrogen @&3% and two (hydrogen-bond acceptor
AND anion) functions within a radius of 0.8 A arauthe two oxygens form the aspartate
carboxyl-group interacting with R262. Other hydmd®nding interactions were defined at
the positions of the two substrate interactionmmad of G311 and G313. Two hydrophobic
interactions were defined within a radius of 1.2iund the beta and gamma carbon atom of
the hydrophobic sidechains of valine and leucinghef substrate, respectively. All protein
atoms were defined as excluded spheres. To bedawadi as a hit, a molecule had to satisfy
at least four of the pharmacophore points.

We screened the SPECS database of compounds (@@ \&rsion). For the virtual
screening experiment the database was preprociesgegfollowing way with MOE:
1) Acids and bases were set charged.
2) All molecules were discarded with: > 500 Da, logB,> 5 hydrogen-bond donors, >
10 hydrogen-bond acceptors, > 10 rotatable bonds.
3) Molecules lacking acidic groups were removed.
4) Molecules with Br, I, B, P, S- and nitro groups autfate as only single acidic group
were removed.
For the remaining 8,018 molecules initial conforimas were calculated with CORINA

[Sadowskiet al, 1994] and up to 20 low energy conformations vwoaleulated with MOE.

376 drug-like and non-peptidic molecules satistlezlpharmacophore. This list was manually
reduced to 85 compounds removing too similar mdéscor molecules with unreasonably
appearance. These molecules were purchased foriregpéal testing. Unfortunately at the
time of finishing this thesis no results from thesays about the potency of the selected
potential ligands were available.

4.8.1 Conclusions
A pharmacophore model derived from a receptor hogywlmodel and a binding mode
hypothesis were used to virtually screen for tigt finhibitors for human taspasel. Yet with

the assay system still in development one candyjretate that our approach was successful
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in retrieving 85 diverse drug-like and non-peptidimolecules, that satisfied the
pharmacophore and looked reasonable to exhibieast Islight activity according to the
medicinal chemistry experience of the authors. Wthis does not tell much about the actual
activity of the compounds one can already resurae ttie approach seemed to produce in
principle meaningful results and thus representsltarnative to entirely ligands based or
structure-based approaches. The approach seenss atiractive for scaffold hopping from
peptides to drug-like molecules and in combinatigtih homology model approximations of

the receptor structure.



5 Summary

5.1 Summary

The goal of this thesis was the development, etialuaand application of novel virtual
screening approaches for the rational compilatiohigh quality pharmacological screening
libraries. The criteria for a high quality were igthprobability of the selected molecules to be
active compared to randomly selected moleculesdaratsity in the retrieved chemotypes of
the selected molecules to be prepared for thdiattrof single lead structures. For the latter
criterion the virtual screening approach had tofquer “scaffold hopping”. The first
molecular descriptor that was explicitly reportenr that purpose was the topological
pharmacophore CATS descriptor, representing a lediwe vector (CV) of all
pharmacophore points in a molecule. The represent& alignment-free and thus renders
fast screening of large databases feasible.

In a first series of experiments the CATS descriptas conceptually extended to the
three-dimensional pharmacophore-pair CATS3D desuripgnd the molecular surface based
SURFCATS descriptor. The scaling of the CATS3D desar, the combination of CATS3D
with different similarity metrics and the dependert the CATS3D descriptor on the three-
dimensional conformations of the molecules in thieugl screening database were evaluated
in retrospective screening experiments. The “st@ff@pping” capabilities of CATS3D and
SURFCATS were compared to CATS and the substructingerprint MACCS keys.
Prospective virtual screening with CATS3D similargearching was applied for the TAR
RNA and the metabotropic glutamate receptor 5 (m83ILA combination of supervised and
unsupervised neural networks trained on CATS3D rij@scs was applied prospectively to
compile a focused but still diverse library of m&k modulators. In a second series of
experiments the SQUID fuzzy pharmacophore modehatktvas developed, that was aimed
to provide a more general query for virtual scregrihan the CATS family descriptors. A
prospective application of the fuzzy pharmacophoralels was performed for TAR RNA
ligands. In a last experiment a structure-/ligaaddanl pharmacophore model was developed
for taspasel based on a homology model of the emzyhmis model was applied

prospectively for the screening for the first intobs of taspasel.
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The effect of different similarity metriciE(c Euclidean distancévlanh Manhattan
distance andrani: Tanimoto similarity) and different scaling metisoflinscaled scalingl
scaling by the number of atoms, aschling2 scaling by the added incidences of potential
pharmacophore points of atom pairs) on CATS3D sintyl searching was evaluated in
retrospective virtual screening experiments. 12ehrclasses of the COBRA database of
annotated ligands from recent scientific literatwere used for that purpos®caling2 a new
development for the CATS3D descriptor, was shownp#&form best on average in
combination with all three similarity metrics (ecltment factoef (1%): Manh= 11.8 + 4.3,
Euc= 119 + 4.6,Tani = 12.8 £ 5.1). The Tanimoto coefficient was foundperform best
with the new scaling method. Using the other sgalmethods the Manhattan distance
performed bestef (1%): unscaled Manh = 9.6 + 4.0,Euc = 8.1 £ 3.5,Tani = 8.3 + 3.8;
scalingt Manh=10.3 £ 4.1Fuc= 8.8 + 3.6,Tani= 9.1 £ 3.8).

Since CATS3D is independent of an alignment, thpeddence of a “receptor
relevant” conformation might also be weaker comgdoeother methods like docking. Using
such methods might be a possibility to overcomebleras like protein flexibility or the
computational expensive calculation of many confmsnTo test this hypothesis, co-crystal
structures of 11 target classes served as queriesrfual screening of the COBRA database.
Different numbers of conformations were calculai@dthe COBRA database. Using only a
single conformation already resulted in a signifitcanrichment of isofunctional molecules on
average €f (1%) = 6.0 £ 6.5). This observation was also mimiddigand classes with many
rotatable bonds (e.g. HIV-protease: 19.3 + 6.2tatle bonds in COBRAef (1%) = 12.2 +
11.8). On average only an improvement from usirgrttaximum number of conformations
(on average 37 conformations / molecule) to usimgle conformations of 1.1 fold was
found. It was found that using more conformatioctsvas and inactives equally became more
similar to the reference compounds according toGA& S3D representations. Applying the
same parameters as before to calculate confornsattbmrihe crystal structure ligands resulted
in an average Cartesian RMSD of the single confaomatto the crystal structure
conformations of 1.7 + 0.7 A. For the maximum numbé conformations, the RMSD
decreased to 1.0 + 0.5 A (1.8 fold improvement werage).

To assess the virtual screening performance andsdh#old hopping potential of
CATS3D and SURFACATS, these descriptors were coethan CATS and the MACCS
keys, a fingerprint based on exact chemical subtisires. Retrospective screening of ten
classes of the COBRA database was performed. Acaptd the average enrichment factors
the MACCS keys performed bestf(1%): MACCS = 17.4 + 6.4, CATS = 14.6 £ 5.4,
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CATS3D = 13.9 + 4.9, SURFCATS = 12.2 + 5.5). Thassks, where MACCS performed
best, consisted of a lower average fraction ofedéfiit scaffolds relative to the number of
molecules (0.44 = 0.13), than the classes, wherd SCperformed best (0.65 = 0.13).
CATS3D was the best performing method for onlyragla target class with an intermediate
fraction of scaffolds (0.55). SURFCATS was not fduo perform best for a single class.
These results indicate that CATS and the CATS32rig#srs might be better suited to find
novel scaffolds than the MACCS keys. All methods evalso shown to complement each
other by retrieving scaffolds that were not fouydhe other methods.

A prospective evaluation of CATS3D similarity sdang was done for metabotropic
glutamate receptor 5 (mGIuR5) allosteric modulat@sven known antagonists of mGIuR5
with sub-micromolaiCso were used as reference ligands for virtual scregeaof the 20,000
most drug-like compounds — as predicted by ani@difneural network approach — of the
Asinex vendor database (194,563 compounds). EiigR® wirtual screening hits were found
with aK; below 50 uM in a binding assay. Most of the ligan#se only moderately specific
for mGIuR5 (maximum of > 4.2 fold selectivity) rélee to mGIluR1, the most similar
receptor to mGIuR5. One ligand exhibited even deb&t; for mGIuR1 than for mGIuR5
(mGIuR5: K; > 100 uM, mGIuR1K; = 14 uM). All hits had different scaffolds than the
reference molecules. It was demonstrated that ahgpited library contained molecules that
were different from the reference structures — asmated by MACCS substructure
fingerprints — but were still considered isofunotb by both CATS and CATS3D
pharmacophore approaches.

Artificial neural networks (ANN) provide an altetnae to similarity searching in
virtual screening, with the advantage that theyoiporate knowledge from a learning
procedure. A combination of artificial neural netk® for the compilation of a focused but
still structurally diverse screening library was mayed prospectively for mGIluRS.
Ensembles of neural networks were trained on CAT83Desentations of the training data
for the prediction of “mGIluR5-likeness” and for “MBR5/MGIUR1 selectivity”, the most
similar receptor to mGIuR5, yielding Matthews between 0.88 and 0.92 as well as 0.88 and
0.91 respectively. The best 8,403 hits (the focugwdry: the intersection of the best hits
from both prediction tasks) from virtually rankindpe Enamine vendor database (ca.
1,000,000 molecules), were further analyzed bysalé-organizing maps (SOMs), trained on
CATS3D descriptors and on MACCS substructure fingetp A diverse and representative
subset of the hits was obtained by selecting thst similar molecules to each SOM neuron.

Binding studies of the selected compounds (16 nudscfrom each map) gave that three of
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the molecules from the CATS3D SOM and two of the enoles from the MACCS SOM
showed mGIuR5 binding. The best hit withkKaof 21 uM was found in the CATS3D SOM.
The selectivity of the compounds for mGIuR5 over loi& was low. Since the binding
pockets in the two receptors are similar the gér@fa S3D representation might not have
been appropriate for the prediction of selectivityboth SOMs new active molecules were
found in neurons that did not contain moleculesnfithe training set, i. e. the approach was
able to enter new areas of chemical space withesdsip mGIuR5. The combination of
supervised and unsupervised neural networks andS3ATseemed to be suited for the
retrieval of dissimilar molecules with the samesslaf biological activity, rather than for the
optimization of molecules with respect to actiuityselectivity.

A new virtual screening approach was developed whih SQUID ESophisticated
Quantification ofInteractionDistributions) fuzzy pharmacophore method. In SQ\pHs of
Gaussian probability densities are used for thetroation of a CV descriptor. The Gaussians
represent clusters of atoms comprising the samemat@phoric feature within an alignment
of several active reference molecules. The fuzzpyresentation of the molecules should
enhance the performance in scaffold hopping. Phaopteore models with different degrees
of fuzziness (resolution) can be defined which rhigg an appropriate means to compensate
for ligand and receptor flexibility. For virtual mening the 3D distribution of Gaussian
densities is transformed into a two-point correlatvector representation which describes the
probability density for the presence of atom-paiemprising defined pharmacophoric
features. The fuzzy pharmacophore CV was used ma @ATS3D representations of
molecules. The approach was validated by retrosgesicreening for cyclooxygenase 2
(COX-2) and thrombin ligands. A variety of modelghndifferent degrees of fuzziness were
calculated and tested for both classes of moleciest performance was obtained with
pharmacophore models reflecting an intermediateregegf fuzziness. Appropriately
weighted fuzzy pharmacophore models performed bétteretrospective screening than
CATS3D similarity searching using single query neoles, for both COX-2 and thrombiaf(
(1%): COX-2: SQUID = 39.2., best CATS3D result =&6Thrombin: SQUID = 18.0, best
CATS3D result = 16.7). The new pharmacophore methasl shown to complement MOE
pharmacophore models.

SQUID fuzzy pharmacophore and CATS3D virtual sciregnwere applied
prospectively to retrieve novel scaffolds of RNAwdling molecules, inhibiting the Tat-TAR
interaction. A pharmacophore model was built uprfrone ligand (acetylpromazink;so =

500 uM) and a fragment of another known ligand (CG&#386A), which was assumed to bind
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with a comparable binding mode as acetylpromaZiine fragment was flexible aligned to
the TAR bound NMR conformation of acetylpromazinesing an optimized SQUID
pharmacophore model the 20,000 most druglike mtdscirom the SPECS database
(229,658 compounds) were screened for Tat-TAR tigaBoth reference inhibitors were also
applied for CATS3D similarity searching. A set 09 Inolecules from the SQUID and
CATS3D results was selected for experimental tgstin a fluorescence resonance energy
transfer (FRET) assay the best SQUID hit showetCaggnvalue of 46 uM, which represents
an approximately tenfold improvement over the m&fiee acetylpromazine. The best hit from
CATS3D similarity searching showed &@so comparable to acetylpromazinkC{, = 500
uM). Both hits contained different molecular scattothan the reference molecules.

Structure-based pharmacophores provide an alteen&ti ligand-based approaches,
with the advantage that no ligands have to be knimwedvance and no topological bias is
introduced. The latter is e.g. favorable for hogpirom peptide-like substrates to drug-like
molecules. A homology model of the threonine agsarttaspasel was calculated based on
the crystal structures of a homologous isoaspasptidase. Docking studies of the substrate
with GOLD identified a binding mode where the cled\wond was situated directly above the
reactive N-terminal threonine. The predicted enzguigstrate complex was used to derive a
pharmacophore model for virtual screening for naaspasel inhibitors. 85 molecules were
identified from virtual screening with the pharmpbore model as potential taspasel-
inhibitors, however biochemical data was not avéddefore the end of this thesis.

In summary this thesis demonstrated the succedsfiglopment, improvement and
application of pharmacophore-based virtual screpnimethods for the compilation of
molecule-libraries for early phase drug developm&he highest potential of such methods
seemed to be in scaffold hopping, the non-trivaaktof finding different molecules with the
same biological activity.
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5.2 Zusammenfassung

Ziel dieser Arbeit war die Entwicklung, Untersucumd Anwendung von neuen virtuellen
Screening-Verfahren fir den rationalen Entwurf hqahlitativer Molekul-Datenbanken fir
das pharmakologische Screening. Anforderung fle d¢iohe Qualitat waren eine hohe a
priori Wahrscheinlichkeit fir das Vorhandenseiniadt Molekile im Vergleich zu zufallig
zusammengestellten Bibliotheken, sowie das Vorhasela einer Vielfalt unterschiedlicher
Grundstrukturen unter den selektierten Molekilen, gegen den Ausfall einzelner
Leitstrukturen in der weiteren Entwicklung abgesithzu sein. Notwendig fur die letztere
Eigenschaft ist die Fahigkeit eines Verfahrens zy@mundgerust-Springen“. Der erste
Molekul-Deskriptor, der explizit fir das ,,Grundgetri&pringen” eingesetzt wurde war der
CATS Deskriptor — ein topologischer Korrelationskie (,correlation vectot, CV) Uber
alle Pharmakophor-Punkte eines Molekuls. Der Vecgleion Molekulen tber den CATS
Deskriptor geschieht ohne eine Uberlagerung derekde, was den effizienten Einsatz
solcher Verfahren fur sehr gro3e Molekil-Datenbardeemdglicht.

In einer ersten Serie von Versuchen wurde der CBESkriptor erweitert zu dem
dreidimensionalen CATS3D Deskriptor und dem auf d&olekil-Oberflache basierten
SURFCATS Deskriptor. In retrospektiven Studien veufdr diese Deskriptoren der Einfluss
verschiedener Skalierungs-Methoden, die Kombinationh unterschiedlichen Ahnlichkeits-
Metriken und die Auswirkung verschiedener dreidin@maler Konformationen untersucht.
Weiter wurden das Potential der entwickelten D@sren CATS3D und SURFCATS im
,Grundgerist-Springen® mit CATS und dem Substrulurgerprint MACCS keys
verglichen. Prospektive Anwendungen der CATS3D Adfieitssuche wurden fir die TAR-
RNA und den metabotropen Glutamat Rezeptor 5 (m&luRrchgefuhrt. Eine Kombination
von Uberwachten und unidberwachten neuronalen Netzarde prospektiv fir die
Zusammenstellung einer fokussierten aber dennoeferssin Bibliothek von mGIURS
Modulatoren eingesetzt. In einer zweiten Reihe varsMchen wurde der SQUID Fuzzy
Pharmakophor Ansatz entwickelt, mit dem Ziel zueeimoch generelleren Molekiil-
Beschreibung als mit den Deskriptoren aus der CR@filie zu gelangen. Eine prospektive
Anwendung der ,Fuzzy Pharmakophor* Methode wurdedigr TAR-RNA durchgefuhrt. In
einem letzten Versuch wurde fur Taspasel ein Strdkiganden-basiertes Pharmakophor-
Modell auf der Grundlage eines Homologie-Modells Begyms entwickelt. Dieses wurde
fur das prospektive Screening nach Taspasel-lohdniteingesetzt.

Der Einfluss verschiedener Ahnlichkeits-Metrikefuk Euklidische DistanzManh:
Manhattan DistanzTani: Tanimoto Ahnlichkeit) und verschiedener Skaliess\ethoden
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(Ohne-SkalierungSkalierungi Skalierung aller Werte nach der Anzahl Ator8&alierung2
Skalierung der Werte eines Paares von Pharmakdpintkten entsprechend der Summe aller
Pharmakophor-Punkte mit denselben Pharmakophorflygef die Ahnlichkeits-Suche mit
CATS3D wurde in retrospektiven virtuellen Screenkexperimenten untersucht. Fir diesen
Zweck wurden 12 verschiedene Klassen von RezeptonehEnzymen aus der COBRA
Datenbank von annotierten Liganden aus der jungeigsenschaftlichen Literatur eingesetzt.
Skalierung?2 eine neue Entwicklung fir CATS3D, zeigte im Duwcmitt die beste
Performanz in Kombination mit allen drei AhnlichteeMetriken (Anreicherungs-Fakt@f
(1%): Manh = 11,8 + 4,3;Euk = 11,9 £+ 4,6;Tani = 12,8 £ 5,1). Die Kombination von
Skalierung2mit dem Tanimoto Ahnlichkeits-Koeffizienten lieferdie besten Ergebnisse. In
Kombination mit den anderen Skalierungen brachte Mianhattan Distanz die besten
Ergebnissedf (1%): Ohne-SkalierungManh = 9,6 + 4,0;Euk= 8,1 £+ 3,5Tani= 8,3 + 3,8;
SkalierungilManh= 10,3 + 4,1Euk= 8,8 £ 3,6;Tani= 9,1 £ 3,8).

Da die CATS3D Ahnlichkeits-Suche unabhéngig von téerlagerung einzelner
Molekule ist, konnte ebenfalls eine gewisse Unabigkeg von der vorhandenen 3D
Konformation bestehen. Eine solche Unabhéngigkarevinteressant um die zeitaufwendige
Berechnung multipler Konformationen zu umgehen. diese Hypothese zu untersuchen
wurden Co-Kristalle von Liganden aus 11 Klassen Rezeptoren und Enzymen ausgewabhlt,
um als Anfrage-Strukturen im virtuellen Screenimgder COBRA Datenbank zu dienen.
Verschiedene Versionen der COBRA Datenbank mit rgokeedlicher Anzahl
Konformationen wurden berechnet. Bereits mit eiegzigen Konformation pro Molekil
konnte im Mittel eine deutliche Anreicherung an aéti Molekilen beobachte werdeef (
(1%) = 6,0 + 6,5). Diese Beobachtung beinhaltetehaglassen von Molekulen mit vielen
rotierbaren Bindungen. (z.B. HIV-Protease: 19,3,2 ®tierbare Bindungen in COBRAf
(1%) = 12,2 =+ 11,8). Im Mittel konnten dazu bei Verwdung der maximalen Anzahl
Konformationen (durchschnittlich 37 KonformationeWolekil) nur eine Verbesserung von
1.1 festgestellt werden. Nach der CATS3D Ahnlichkeiirden die inaktiven Molekiile im
gleichen Mal3 ahnlicher zu den Referenzen als digeskiMolekile. Zum Vergleich konnte
durch Verwendung multipler statt einzelner Konfotior@en eine 1,8-fache Verbesserung des
RMSD zu den Konformationen aus den Kristall-Strukiianformationen erreicht werden
(einzelne Konformationen: 1,7 + 0,7 A; max. Konfationen: 1,0 + 0,5 A).

Um die Leistungsfahigkeit von CATS3D und SURFCATS virtuellen Screening
und im Grundgerust-Springen zu beurteilen, wurdiesed Deskriptoren mit CATS und den

MACCS keys, einem Fingerprint basierend auf exaktdremischen Substrukturen,
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verglichen. Fur die retrospektive Analyse wurdenKl@ssen von Rezeptoren und Enzymen
aus der COBRA Datenbank ausgewahlt. Nach den meittlAnreicherungs-Faktoren ergaben
sich fur MACCS die besten Resultatf (1%): MACCS = 17,4 + 6,4; CATS = 14,6 = 5,4;
CATS3D = 13,9 + 4,9; SURFCATS = 12,2 + 5,5). Egyeisich, dass die Klassen, in denen
MACCS die besten Ergebnisse erzielen konnte, einenmnggn gemittelten Anteil von
verschiedenen Grundgertsten aufwiesen im Verh&tinider Anzahl an Molekilen (0,44 +
0,13) als die Klassen, in denen CATS am besten@y&5 * 0,13). CATS3D war nur in einer
Klasse mit einem mittleren Anteil von Grundgeruse/s5) die beste Methode. SURFCATS
war fir keine Klasse besser als alle anderen Methddiese Ergebnisse deuten darauf hin,
dass Methoden wie CATS und CATS3D besser geeignet sim neue Grundgeriste zu
finden. Es konnte weiter gezeigt werden, dassdieiMethoden einander erganzen, dass also
mit jeder Methode Grundgeriste gefunden werden lkonndie mit keiner der anderen
Methoden gefunden werden konnten.

Eine prospektive Anwendung wurde fir CATS3D in deuche nach neuen
allosterischen Modulatoren des metabotropen Glutd&eateptors 5 (mGIluR5) durchgefuhrt.
Sieben bekannte allosterische mGIuR5 Antagonisténsab-mikromolarenlCsg Werten
wurde als Referenzen eingesetzt. Das virtuelle édang wurde auf den 20.000 von einem
kinstlichen neuronalen Netz als am wirkstoff-ategsvorhergesagten Molektlen der Asinex
Datenbank (194.563 Molekile) durchgefuhrt. Acht2@gefundenen Hits aus dem virtuellen
Screening zeigterK; Werte unter 50 pM in einem Bindungs-Assay. Die Melirtder
Liganden zeigte nur eine geringe Selektivitat (Maxim> 4,2-fach) gegeniber mGIluR1, dem
ahnlichsten Rezeptor zu mGIURS5. Einer der Ligarnzegte einen besserdf fur mGIluR1
als fur mGIuR5 (mMGIuR5K; > 100 pM, mGIuR1K; = 14 uM). Alle gefundenen Molekile
zeigten verschiedene Grundgeriste als die Refdviolekile. Es konnte gezeigt werden,
dass die zusammengestellte Bibliothek von den MAGE$ als unterschiedlich zu den
Referenz Strukturen betrachtet wurden, von CATS QA@S3D aber noch als isofunktional
betracht wurden.

Kunstliche neuronal Netze gjtificial neural net, ANN) bieten eine Alternative zur
Ahnlichkeits-Suche im virtuellen Screening mit d¥iorteil, dass in einer Serie von Liganden
enthaltenes implizites Wissen Uber eine Lernprozedein Modell integrierte werden kann.
Eine Kombination von ANNs fur die Zusammenstellugiger fokussierten aber dennoch
diversen Molekul-Bibliothek wurde prospektiv fur dguche nach mGIuR5 Antagonisten
eingesetzt. Gruppen von ANNs wurden auf den Basis@ATS3D Représentationen fur die
Vorhersage von ,mGluR5-artigkeit” und ,mGIuR5/mGILRSelektivitat* trainiert. Dabel
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ergaben sich Matthews zwischen 0,88 und 0,92 sowie zwischen 0,88 untl. @8 besten
8.403 Hits (die Schnittmenge der besten Hits audebeVorhersagen) aus einem virtuellen
Screening der Enamine Datenbank (ca. 1.000.000 Niggkrgab die fokussierte Bibliothek.
Diese wurde weiter mit Selbstorganisierten Kartgself organizing mags SOM) analysiert,
die auf CATS3D und MACCS key Reprasentationen teainiurden. Eine diverse und
reprasentative Untermenge der Molekile wurde gewanivedem die jeweils néchsten
Molekile zu jedem der Neuronen der Karten ausgewdhliden. Bindungsstudien der
selektierten Molekile (16 von jeder der Karten) bega dass drei Molekiile aus der CATS3D
SOM und zwei der Molekile aus der MACCS SOM mGIuR5 Bimglzeigten. Der beste Hit
mit einemK; von 21 uM wurde Uber die CATS3D SOM gefunden. Ditel8witat der
gefundenen Molekile gegeniber mGIluR1 war wiederumgeDa sich die Bindungstaschen
der beiden Rezeptoren sehr &hnlich sind, kdonnteveiallgemeinernde Beschreibung der
Molekile mit CATS3D nicht geeignet fiir eine solcherhersage gewesen sein. In beiden
SOMs wurden neue aktive Moleklle in Neuronen gefundendenen sich keine der
bekannten Inhibitoren befanden, d.h. es wurderdregem Ansatz neue chemische Bereiche
auf der SOM fur mGIuRS5 beschrieben. Die Verbinduag uberwachten und untiberwachten
neuronalen Netzen mit CATS3D scheint am bestenggeeizu sein, um Molekile mit
unterschiedlicher Struktur, aber gleicher Aktivstdasse aufzufinden. Die Optimierung auf
hohere Aktivitat oder Selektivitat schien wenigeemnet zu sein.

Mit dem SQUID EophisticatedQuantification of InteractionDistributions) Fuzzy
Pharmakophor Modell wurde ein neuer Ansatz fur dasielle Screening entwickelt. In
SQUID werden Paare von Gaul3-Wahrscheinlichkeit¢igic flr die Konstruktion eines
Korrelations-Vektors eingesetzt. Die Gaul3-Dichteprésentieren Gruppen von Atomen
desselben Pharmakophor-Typs in einer Uberlageruelgrerer aktiver Referenz-Molekiile.
Die unscharfe Reprasentation der Molekile sollte 8pangen zwischen Grundgerusten
erleichtern. Der Ansatz ermdglicht die DefinitioarwvPharmakophor-Modellen verschiedener
Unscharfe oder Aufldsung, was eventuell eine Mogkth darstellt, die Flexibilitat von
Ligand und Rezeptor zu berucksichtigen. Fir dastuefle Screening wird die
dreidimensionale Verteilung der Gauf3-Dichten ineair2-Punkt CV transformiert, der die
Wahrscheinlichkeit fur die Anwesendheit von Paaren Pharmakophor-Punkten beschreibt.
Der Fuzzy Pharmakophor CV wurde eingesetzt um CATRB&prasentationen zu bewerten.
Evaluiert wurde die Methode durch retrospektivese&eing nach COX-2 und Thrombin
Inhibitoren. Eine Serie von Modellen mit verschieglerAuflosung wurde fir beide

Molekilklassen getestet. Die besten Ergebnisse wuirddeiden Fallen mit Modellen mit
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mittlerer Aufldsung erzielt. Geeignet gewichteteaPhakophor-Modelle erzielten bessere
Resultate als CATS3D Ahnlichkeits-Suche mit den zelimen Molekilen aus den
Pharmakophor-Modelleref (1%): COX-2: SQUID = 39,2; bestes CATS3D Resuit&6,6;
Thrombin: SQUID = 18,0; bestes CATS3D Resultat 57L6Es konnte weiter gezeigt
werden, dass die neue Methode MOE Pharmakophor Moikedlen gefundenen Molekilen
erganzt.

Der SQUID Fuzzy Pharmakophor Ansatz sowie CATS3Drden prospektiv
eingesetzt fur die Suche nach neuen GrundgerigteRNA bindendende Inhibitoren der
Tat-TAR Interaktion. Ein SQUID Modell wurde auf d&rundlage von einem Liganden
(Acetylpromazin,lCso = 500 uM) und dem Fragment eines weiteren bekanhiggnden
(CGP40336A) berechnet, von dem ein zum Acetylpromaergleichbarer Bindungsmodus
angenommen wurde. Das Fragment wurde flexibel @& THAR-RNA gebundene NMR
Konformation des Acetylpromazins aligned. Mit eineptimierten SQUID Modell wurden
die 20.000 wirkstoffartigsten Moleklle der SPECS dbatink (229.658 Molekile) virtuell
nach TAR-RNA Liganden durchsucht. Mit beiden Referenhibitoren wurden zum
Vergleich auch CATS3D Suchen durchgefiihrt. 19 Mdielkaus den Hits von SQUID und
CATS3D wurden fur einen FRET Assay ausgewahlt. liste Hit von SQUID zeigte einen
ICs50 Wert von 46 pM, was eine ca. 10-fache Verbesseimngerhaltnis zu Acetylpromazin
darstellt. Der beste CATS3D Hit war vergleichbart tcetylpromazin ICso = 500 pM).
Beide gefundenen Molekile zeigten unterschiedlicmen@geriste im Verhaltnis zu den
Referenz Molekulen.

Struktur-basierte Pharmakophor Modelle stellen eieernative zu Liganden-
basierten Ansétzen dar, mit dem Vorteil, dass kbelannten Liganden benétigt werden und
somit keine Beeinflussung hin zu bekannten Strgktun das Modell hineingebracht wird.
Die letztere Eigenschaft sollte glnstig flr das r@gerust Springen sein. Ein Homologie
Modell der Threonin Aspartase Taspasel, eine Pegteasrde auf der Grundlage der
Kristallstruktur einer homologen Isoaspartyl-Peasié berechnet. Uber Docking Studien mit
dem Programm GOLD wurde ein Bindungsmodus des lidtén Substrats identifiziert, in
dem die gespaltene Peptidbindung direkt Uber deaktiven N-terminalen Threonin
angeordnet lag. Der vorhergesagte Enzym-Substratgiex wurde herangezogen, um ein
Pharmakophor-Modell zu fir das virtuelle Screenimgimneuen Taspasel Inhibitoren zu
entwickeln. 85 Molekile wurden aus der SPECS Datdnkals potentielle Inhibitoren
identifiziert, jedoch fehlten bei Fertigstellungeder Arbeit noch gesicherte experimentelle

Daten Uber die pharmakologischen Eigenschaftegefendenen Molekiile.
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Zusammenfassend wurde in dieser Arbeit die erfalgesEntwicklung, Verbesserung
und Anwendung von Pharmakophor-basierten virtueflereening Methoden fir den Entwurf
von Molekil-Bibliotheken fur die frihe Wirkstoff-Bmtcklung gezeigt. Das Potential dieser
Methoden schien besonders im Grundgerist-Springelnegan, also in der nicht-trivialen

Identifikation von unterschiedlichen Molekilen migigher biologischer Aktivitat.



6 Appendix

6.1 Enrichment factors of activity classes from Sec tion 4.3

Enrichment factors of different molecular repreatiohs (“Molecules”, “Scaffolds”,
“Reduced Scaffolds”) over the activity classekvalues are given for the first 1% and 5% of
the hit-lists. The Manhattan distanwas applied as similarity metric.

Molecules
% DB MACCS CATS CATS3D SURFCATS
ACE
1 25 (12) 27 (17) 16 (11) 18 (13)
5 10 (4) 10 (5) 6(3) 6 (3)
COX2
1 30 (16) 16 (10) 21 (12) 19 (11)
5 13 (5) 6(3) 8(4) 8(4)
CRF
1 25 (14) 14 (9) 22 (10) 16 (9)
5 11 (4) 7(3) 10 (3) 8(3)
DPP
1 21 (14) 14 (11) 16 (11) 13 (10)
5 7(3) 5(3) 5(3) 4(2)
HIVP
1 13 (7) 21 (11) 12 (8) 15 (10)
5 5(2) 9(4) 5(3) 6(4)
MMP
1 13 (8) 12 (7) 10 (7) 12 (9)
5 5(@3) 5(2) 4(2) 5(3)
NK
1 9(6) 9(4) 11(7) 7(5)
5 5(2) 5(2) 5(3) 4(2)
PPAR
1 18 (15) 19 (12) 8(7) 9(8)
5 6 (4) 7(3) 3(2) 3(2)
BACE
1 14 (11) 12 (10) 12 (10) 7 (5)
5 6 (4) 4(3) 3(2) 2(2)
THR
1 12 ( 6) 14 (7) 7(5) 7(5)
5 6 (2) 8 (4) 3(2) 4(3)

((continued below))
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Scaffolds Reduced Scaffolds

% DB MACCS CATS CATS3D SURFCATS MACCS CATS CATS3D  SURFCATS

ACE
1 25(12) 30(16) 15(10) 16(9) 29 (13) 33(14) 18 (10) 19(9)
5 11(4) 11(4 6(2) 6(2) 11(3) 11(4) 6(2) 6(2)
COX2
1 28 (12) 17(8) 21(8) 19(9 33(12) 22(10) 26 (10) 24 (11)
5 11 (4) 6(2) 8(2) 8 (3) 12 (3) 7(2) 9(2) 9(3)
CRF
1 24 (12) 18(11) 23(10) 17 (10) 28 (13) 20(11) 25(10) 18 (11)
5 10 (4) 8 (3) 10(3) 8 (3) 11 (4) 8 (3) 10(3) 8 (3)
DPP-IV
1 22(13) 15(10) 17(10) 15(11) 25(12) 22(14) 23 (14) 21 (16)
5 8 (3) 6 (3) 5(2) 4(2) 9 (5) 7(3) 6 (3) 6 (3)
HIVP
1 14(8) 23(12) 14(9 17(11) 19 (12) 31 (15) 18 (12) 23 (15)
5 6 (3) 10(4) 5(3) 7(4) 7(3) 11 (4) 7(4) 8 (4)
MMP
1 16 (11) 15(9) 13(10) 16 (12) 23(12) 23(12) 21 (13) 22(14)
5 6 (3) 6 (3) 4(3) 6 (4) 8 (3) 8(3) 6 (4) 7(4)
NK
1 10(6) 10(4) 12(7) 8 (5) 11(6) 11(5) 13(7) 9(6)
5 5(2) 5(2) 5(3) 4(2) 5(2) 6(2) 5(3) 5(2)
PPAR
1 16 (13) 19 (11) 9(7) 10(9) 20 (15) 24 (14) 11(8) 13 (11)
5 5(@3) 7(3) 3(2) 3(2) 7 (4) 8 (4) 4(2) 4 (3)
BACE
1 14 (10) 12(8) 11 (6) 8 (5) 15(11) 14(9) 12(7) 9(5)
5 4(2) 4(2) 3(2) 3(2) 5(@3) 4(2) 3(2) 3(2)
THR
1 14 (6) 18(10) 9(6) 10(7) 18(8) 27(13) 14 ( 8) 17 (9)
5 6 (2) 8 (4) 4(3) 5(3) 8 (3) 10 (4) 5(3) 6 (3)
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Enrichment factors of different molecular reprea@inhs (“Molecules”, “Scaffolds”,
“Reduced Scaffolds”) over the activity classekvalues are given for the first 1% and 5% of
the hit-lists. The Euclidean distane@s applied as similarity metric.

Molecules
% DB MACCS CATS CATS3D SURFCATS
ACE
1 25 (12) 22 (12) 17 (11) 20 (14)
5 10 (4) 10(5) 6 (4) 7(4)
COX2
1 30 (16) 14 (9) 20 (13) 18 (11)
5 13 (5) 5(3) 8 (4) 8 (4)
CRF
1 25 (14) 12 ( 8) 20 (10) 16 (10)
5 11 (4) 7(3) 10(3) 8 (3)
DPP
1 21 (14) 13 (10) 16 (12) 13 (11)
5 7(3) 4 (3) 5(3) 4(2)
HIVP
1 13(7) 22 (11) 15(9) 17 (11)
5 5(2) 10(3) 7(4) 7(4)
MMP
1 13(8) 11 (6) 11(7) 11 (9)
5 5(@3) 5(2) 4(2) 5(3)
NK
1 9(6) 8 (4) 12 ( 8) 8 (5)
5 5(2) 5(2) 6 (3) 5(3)
PPAR
1 18 (15) 18 (12) 9(8) 10(7)
5 6 (4) 7(3) 3(2) 3(2)
BACE
1 14 (11) 12 (10) 12 (10) 6 (5)
5 6 (4) 4 (3) 3(3) 3(2)
THR
1 12 ( 6) 14 (7) 8 (5) 7(5)
5 6 (2) 8 (4) 4(2) 4 (3)

((continued below))
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Scaffolds Reduced Scaffolds

% DB MACCS CATS CATS3D SURFCATS MACCS CATS CATS3D  SURFCATS
ACE
1 25(12) 24(13) 17 (10) 19(10) 29 (13) 27 (13) 20(10) 21(9)
5 11 (4) 11 (4) 6 (3) 7(3) 11 (3) 11 (3) 7(3) 8(2)
COX2
1 28(12) 16(9) 21(9) 20(9 33(12) 20(10) 25(10) 26 (11)
5 11 (4) 5(2) 8 (3) 8(3) 12 (3) 6(2) 9(2) 9(3)
CRF
1 24 (12) 15(10) 21(10) 17 (10) 28 (13) 18(10) 22(9) 18 (11)
5 10 (4) 7(4) 10(3) 8(3) 11 (4) 7(3) 9(3) 8 (3)
DPP-IV
1 22(13) 13(10) 18(11) 1412 25(12) 18(12) 24 (14) 20(17)
5 8 (3) 5(4) 5(3) 4(2) 9 (5) 6 (4) 6 (3) 5(3)
HIVP
1 14 ( 8) 24 (12) 16(10) 20(13) 19(12) 31(15) 22 (13) 27 (17)
5 6 (3) 10 ( 4) 7(4) 8 (4) 7(3) 12 (4) 8 (4) 10 ( 4)
MMP
1 16 (11) 15(8) 14 (10) 15(12) 23 (12) 23(11) 21 (13) 22(13)
5 6 (3) 6(2) 5(3) 6 (4) 8 (3) 8(3) 6 (3) 8(3)
NK
1 10 ( 6) 9(4) 13(8) 9(6) 11 (6) 11 (5) 14 ( 8) 10 ( 6)
5 5(2) 5(2) 6 (3) 5(3) 5(2) 6(2) 6 (3) 5(3)
PPAR
1 16 (13) 18 (11) 9(8) 10 ( 8) 20(15) 24 (14) 11(9) 13 (10)
5 5(@3) 6 (3) 3(2) 3(2) 7 (4) 8 (4) 4(2) 4(2)
BACE
1 14 (10) 14 (9 11 (6) 8 (5) 15(11) 16 (10) 11(7) 8(5)
5 4(2) 4(2) 3(2) 3(1) 5(@3) 4(2) 3(2) 3(2)
THR
1 14 ( 6) 18 (9) 9(6) 10 ( 6) 18 ( 8) 27 (12) 15(8) 16 ( 8)

5 6 (2) 9(4) 4 (3) 5(3) 8 (3) 10 (4) 6 (3) 6 (3)
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6.2 Protein report from MOE for the taspasel homolo gy

model from Section 4.8

Prot ei n Report
Wed Jan 05 14:22:19 2005 (MOE 2004. 03, MOE-ProEval 2002.01)

Options

Z-Score Threshold 5

VDW Cont act Threshol d : 70

Wite Qutliers Only . TRUE

Contacts Wthin Chains Only : TRUE

Topi cs

Di hedral s . TRUE

Bond Angl es : TRUE

Bond Lengt hs . TRUE

Cont act s : TRUE

Protein Report: Dihedrals

Chai n/ Resi due phi psi omega chil chi 2 Zeta

>1 TaspaseASN49 106.7< -48.3< -176.1 -158.5 12. 3 26.5

>1 TaspaseG.U103 106.8< -53.7< 114.2< -179.9 179.0 31.2

>1 TaspaseASP104 -77. 4 132.9 -115.2< -138.5 -30.0 29.8

>1 TaspaselLEU107  -158.8 146.7 -145.3< 10.3 -172.3 39.4

>1 TaspaseG.Y108 -120.7 171.2 137.3< - - -

>1 TaspaseARGL17 99.3< -126.4< 175.4 -65.8 -90.0 24.5

>1 TaspaselLYS128 -107.2 99.7 -143.0< 53.1 -109.5 27.9

>2 TaspaseTYR52 143. 7 167.6 150. 1< -86.4 19.8 21.1

>2 TaspaseH S53 -123.3 -101.4 -146.9< -170.8 80.5 32.5

>2 TaspaseSER54 42.5 -24.2 -151.0< -154.0 - 27.7

>2 Taspase@.U55 176. 3 31.2 -121.4< 159.8 -178.7 34.7

>2 Taspasel LE73 T -139.0 62.0 -23.0< -94.9 -71.2 29.7 cis
>2 TaspaseG.Y150 -123.9 138.5 149. 5< - - -

>2 TaspaseGLN151 -82.2 116.6 104.5< -89.6 50.8 31.8

>2 TaspaselYS152 -78.7 120. 4 63.2< 43.9 163.2 32.5 cis
>2 TaspaselLYS154 -164. 1< -106.8< -157.2 -24. 4 75.2 33.9

>2 TaspaselLEU155 18.2 -75.0 143.7< -143. 7 76.7 29.0

>2 TaspaseALA157 -89.5 61. 3 149. 7< - - 32.9

>2 TaspaseARGL59 146.3< -37.7< 59.3< -167.0 47.2 60.2< cis
>2 TaspasePROL62 -66. 2 113.3 135.5< 22.6 -33.8 38.5

>2 TaspaseCYS163 72.0< -51.4< 15.3< -83.3 - 27.4 cis
>2 TaspasePHE164 175.7 107.7 -148.2< 177.0 -67.5 34.8



162 Chapter 6

Protein Report: Bond Angl es
Chai n/ Resi due CNCA NCACNCACBCBCA-C CACN CAACO OCN

>1 TaspaseGLN126 120.3 6 93.0 3 8 9
>1 TaspaseASN127 108.0 8 103. 4 5 0 4
>2 Taspasel LE73 172.1 . .2 121. 4 8 3 5
>2 TaspaseGLN151 119.3 92.2< 116.0 113.8 117.7 120.5 120.5
>2 TaspaseARGl59 117.7 9 89.4 7 1 3
>2 Taspasel LE160 110.9 8< 118.4 9 8 2
>2 TaspaseCYS163 137.1 8 108.7 0 1 7

Protein Report: Bond Lengths

Chai n/ Resi due NCA CA-CB CA-C CO CN
>1 TaspaseTYR36 1. 460 1.236< 1.528 1. 227 1. 387
>1 TaspaseALA120 1.452 1.385< 1.522 1.229 1. 386
>1 TaspasePHE135 1.462 1.662< 1.528 1.223 1. 400
>1 TaspaselLEU136 1.463 1.689< 1.545 1.226 1.398
>2 TaspaseALAS0 1. 456 1.288< 1.524 1.226 1.389
>2 TaspaseH S63 1. 457 1.706< 1.534 1.226 1.388
>2 TaspaseGLN70 1. 467 1.356< 1.529 1.224 1.391
>2 TaspaseG.Y153 1.421 - 1.531 1.229 1.424<
>2 TaspaselLYS154 1.479 1. 507 1.551 1.228 1.423<
>2 Taspasel LE160 1.438 1.582 1.494 1.222 1.430<
Protein Report: Contacts
Chai n/ Resi due Atom Distance Chain/Residue At om
No Items to Report
Protein Report: Summary
%residues in CORE : 78.47
Par anet er bserved Expect ed

mean s. d. mean s.d
trans onega : 170. 7 10. 6 180.0 5.8
C-al pha chirality : 33.4 3.2 33.8 4.2
chil - gauche mnus : -66.0 25.1 -66.7 15.0
chil - gauche plus : 56. 4 19.2 64.1 15.7
chil - trans : 195.3 18.1 183. 6 16.8
hel i x phi : -78.3 21.0 -65.3 11.9
hel i x psi : -27.1 15.6 -39. 4 11.3
chil - pooled s.d. : - 19.2 - 15. 7
proline phi : -69.3 7.7 -65. 4 11.2
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