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1.1 Scope of the thesis 

Rationalization of the drug discovery process is crucial to be prepared for future challenges in 

human health care [Tollman et al., 2001]. Technological developments like combinatorial 

synthesis and high-throughput screening (HTS) had a large impact on the drug discovery 

process: hundreds of thousands up to millions of molecules can be tested today for a single 

target [Bajorath, 2002]. Despite this large increase in assay capacities such techniques have 

not led to an increased number of approved new chemical entities per year [Xu & Agrafiotis, 

2002]. One reason for this failure might be grounded in the focus on large numbers of tested 

molecules instead of high quality experiments, i.e. testing the right molecules. Computer 

based methods might provide a means to rationalize these experiments incorporating the 

challenges provided by the high-throughput experiments [Agrafiotis et al., 2002; Bleicher et 

al., 2003; Bajorath, 2002]. 

Computational methods for the compilation of molecule-libraries for pharmacological 

screening are called virtual screening methods [Böhme & Schneider, 2000]. Using such 

methods one can restrict pharmacological screening to molecules with a high probability of 

being active instead of testing all molecules accessible. Within the scope of this thesis virtual 
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screening methods were developed, evaluated and applied with the aim to contribute to the 

rationalization of the drug discovery process.  

Virtual screening can either be applied by knowledge of the receptor structure or of 

active ligands [Böhm & Schneider, 2000]. The focus of this work was on ligand-based virtual 

screening methods for “scaffold hopping” [Schneider et al., 1999]: the ability to retrieve 

molecules that have a different topology compared to known active molecules. In other words 

we were interested in methods that were able to retrieve the non-obvious hits from the vast 

chemical space.  

The CATS method is such an approach based on an alignment-free topological 

pharmacophore pair description of molecules [Schneider et al., 1999]. Molecules with similar 

CATS descriptors are likely to evoke similar biological responses. Since the binding of a 

ligand to a receptor is a three-dimensional interaction, a three-dimensional extension of such 

descriptors is an attractive approach and might improve the ability of the descriptor to find 

isofunctional molecules. 

The first goal of this thesis was to develop and evaluate novel alignment-free 

pharmacophore pair based descriptors for virtual screening, based on the three-dimensional 

conformation of a molecule. Therefore the CATS approach was extended to a three-

dimensional pharmacophore pair descriptor (CATS3D) and a molecular surface-based 

descriptor (SURFCATS). These methods were evaluated and optimized by the following 

retrospective screening experiments: 

• Comparison of different similarity metrics and scaling methods 

• Dependence on the correct “receptor bound” conformation 

• Comparison of the enrichment performance and “scaffold hopping” capability with 

CATS and MACCS substructure keys  

• Combination of CATS3D with artificial neural networks 

The second goal of the thesis was to develop and evaluate a three-dimensional “fuzzy” 

pharmacophore model method for virtual screening. The fuzzy description of molecules 

should result in a more general pharmacophore representation which might be favorable to 

retrieve isofunctional molecules with new scaffolds. The resulting approach was compared to 

existing virtual screening methods. 

The last goal was to apply the developed virtual screening methods prospectively to 

retrieve novel inhibitors for the TAR RNA, the metabotropic glutamate receptor 5 and 

taspase1. In quest of this goal the methods developed in this thesis were employed for a 

prospective evaluation. Taspase1 could not serve as test case for the ligand-based methods 
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since no inhibitors were known. For this project a homology model derived pharmacophore 

hypothesis was used for virtual screening, complementing the methods developed in this 

thesis. 

 

 

1.2 The drug discovery process 

The drug discovery and -development process can be illustrated by a value chain (Figure 1.1) 

[Bleicher et al., 2003]. The initial step in this process is to identify a target (mostly a protein) 

that is associated with a disease state under consideration and which can be modulated to alter 

this state. Having identified a target, first hits have to be found, i.e. molecules which possess a 

minimum biological activity. This can be achieved by high-throughput screening (HTS) of 

large libraries of molecules or by modification of endogenous or competitor’s ligands 

available from literature or patents. The next step is the lead generation where the initial hits 

are refined into leads or lead series, variants of prototypical molecules with a unique core 

structure, showing high in-vitro activity, selectivity and initial structure activity relationships 

(SAR). Lead optimization includes further optimization of activity, selectivity and of ADME 

(absorption, distribution, metabolism and excretion) and toxicity properties to obtain 

molecules appropriate for the clinical trials. 

 

 

 

Figure 1.1 Drug discovery value chain.  
 

 

1.3 Chemoinformatics in the drug discovery process 

The name “chemoinformatics” was introduced in 1998 for computational methods used for 

improved decision making in the drug discovery process [Brown, 1998]. According to the 

book “Chemoinformatics” by Gillet and Leach [Leach & Gillet, 2003] chemoinformatics 

methods include the handling of chemical libraries, calculating the similarity and diversity of 

compounds, clustering, predictions of properties and structure activity relationships. From the 

viewpoint of drug design, computational techniques like docking [Kitchen et al., 2004], 

homology-modeling [Hillisch et al., 2004], molecular mechanics [Karplus & McCammon, 

2002], quantum chemistry calculations [Clark, 2003] or sequence alignment [Durbin et al., 
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1998] are of relevance, too. These latter techniques are mostly assigned to the fields of 

computational chemistry or bioinformatics.  

Applications of computational approaches were reported for each step in the drug 

discovery process. Designing libraries for HTS can be rationalized by chemoinformatics 

methods [Schneider, 2002; Bajorath, 2002] incorporating “chemogenomics” strategies 

[Schuffenhauer et al., 2003] or ADME and “drug-likeness” considerations [Lipinski et al., 

1997; Ajay et al., 1998]. In lead optimization incorporation of computational models for 

quantitative structure activity relationships (QSAR) or the incorporation of the receptor 

structure facilitates the rational improvement of ligands [Kubinyi, 1993; Hansch et al., 1995; 

Kitchen et al., 2004]. 

 

 

1.4 Virtual screening 

The number of chemically feasible molecules which could be in principle used as drug 

candidates has been estimated to be 10100 [Walters et al., 1998], which is larger than the 

number of atoms in the universe. This number has two main consequences: first, it should be 

possible to find a ligand with appropriate characteristics for each biological macromolecule. 

Second, it is absolutely impossible to test all these ligands experimentally.  

Virtual screening provides a means to enlarge the number of molecules which can be 

tested for some desired property by several orders of magnitude [Xu & Agrafiotis, 2002]. 

Even though computational prediction of properties will probably never replace biochemical 

measurements, it is much faster. In this way large amounts of molecules can be excluded prior 

to pharmacological experiments to avoid a waste of resources for molecules which have a 

high probability of not being active.  
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Figure 1.2 Hierarchical virtual screening. Virtual screening campaigns are often organized 
hierarchically. First simple and computationally fast filters are applied to remove undesired 
molecules. Subsequent methods are increasingly accurate, more problem specific and often 
computationally slower.  

 

 

In virtual screening campaigns a hierarchical sequence of increasingly complex and 

specific methods is often applied [Bleicher et al., 2003; Böhm & Schneider, 2000] (Figure 

1.2). Starting from a database of molecules (real or virtual molecules) the first step of a 

hierarchical virtual screening is to eliminate all molecules which have undesired properties. 

These properties could be reactive or toxic groups or a violation of the Lipinski “rule of five” 

[Lipinski et al., 1997] which was suggested as a rule of thumb assessing the potential oral 

bioavailability of a molecule. Another possible approach is to predict the “drug-likeness” or 

the “lead-likeness” of molecules to consider only molecules which possess some general 

properties derived from the analysis of known drugs or lead molecules [Ayay et al., 1998; 

Sadowski & Kubinyi, 1998; Byvatov et al., 2003; Teague et al., 1999]. Subsequently with 

smaller libraries increasingly more target specific and computational demanding approaches 

can be applied. These methods range from similarity searching [Willett et al., 1998] based on 

topological or three-dimensional descriptions of molecules to three-dimensional 
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pharmacophore searching [Güner, 2000] and docking methods which also incorporate 

receptor information [Kitchen et al., 2004].  

 

 

1.5 Molecular similarity 

Many virtual screening methods search for molecules which are similar to a reference 

molecule of known activity. This approach is called “similarity searching” [Willett et al., 

1998]. Given a suitable definition of similarity it has been demonstrated that similar 

molecules have a higher chance of exhibiting a similar biological activity than dissimilar 

molecules [Brown & Martin, 1996; Martin et al., 2002]. A quality criterion for a similarity 

searching method is the “neighborhood behavior” [Patterson et al., 1996]. A similarity 

measure satisfies the neighborhood behavior criterion if modifications of a molecule, which 

lead to small changes in the molecular descriptor result in small changes in the activity and 

modifications which lead to large changes in the descriptor result in larger changes in the 

activity.  

No single method is best-suited for all targets and all small molecules. Molecular 

similarity is dependent on the context of the ligands chemotypes and the receptor [Schneider 

& So, 2003; Bender & Glen, 2004]. Different representations of molecules focus on different 

aspects of molecules and for different ligand-receptor complexes there are different 

interactions which are important for ligand-binding. Employing a variety of different 

descriptors increases the probability to have an appropriate molecular encoding suitable for a 

problem under consideration [Sheridan & Kearsley, 2002].  

One difficulty for molecular similarity considerations is that the “fitness-landscape” of 

molecules in drug discovery projects is often found to be multimodal, i.e. there are multiple 

local optima found [Schneider & So, 2003]. The “fitness-landscape” is the relation of a 

molecular descriptor (the landscape) with a desired property (the fitness), which can be e.g. 

the binding affinity, selectivity or metabolic stability. An ideal “fitness-landscape” would be 

smooth with respect to the neighborhood of molecules. In such a “fitness-landscape” similar 

molecules would exhibit similar properties. “Fitness-landscapes” representing the QSAR of 

molecules in drug discovery projects are believed to be jagged [Maggiora et al., 2004]. 

Maggiora compared ideal fitness-landscapes with the hills of Kansas and realistic fitness-

landscapes with the Bryce Canyon (Figure 1.3) [Maggiora et al., 2004]. 
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Figure 1.3 Fitness-landscapes in drug discovery projects. Ideal fitness-landscapes are smooth 
and show few local optima. This would support the rational optimization of molecules. 
Realistic fitness-landscapes are assumed to be jagged and filled with local optima, which can 
render the rational optimization of ligands impossible.  
 

 

1.6 Scaffold hopping  

A naïve approach for similarity searching is to compare the molecular connection tables to 

assess the similarity between two molecules. Such approaches were reported for searching the 

maximum common substructure between two molecules [Raymond & Willett, 2002]. If a 

structural element is known to be associated with activity, other molecules containing this 

substructure can be retrieved and tested for activity [Barnard, 1993]. A drawback of such 

methods is the lack of the ability to retrieve molecules with largely different topologies. This 

ability is called “Scaffold hopping” [Schneider et al., 1999]. Two molecules are considered to 

have different scaffolds if they have different topologies [Böhm et al., 2004]. This idea is 

based on the concept that drug-like molecules are built up from a scaffold (framework) and 

side-chains (Figure 1.4) [Bemis & Murcko, 1996]. 

 

 

 

Figure 1.4. The atoms of a molecule can be separated into scaffold and sidechains. The 
scaffold determines the pharmacological properties, which can be obtained by variation of the 
sidechains.  
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Scaffold hopping is one of the most challenging goals in virtual screening. Ideal 

virtual screening methods would not only find a maximum number but also a maximum 

diverse set of active compounds from a given chemical subspace. There are several reasons 

for seeking a set of diverse structures. Diverse structures offer the medicinal chemist a choice 

in terms of chemical accessibility and prospects for lead optimization. Multiple leads 

(“backup” leads) lower the chance of drug development attrition in case of undesirable 

ADMET properties [Jenkins et al., 2004]. Furthermore, the creation of intellectual property is 

facilitated.  

Different virtual screening concepts have been proposed for scaffold-hopping [Böhm 

et al., 2004]. These include three-dimensional pharmacophore models [Good & Mason, 1996; 

DeEsch et al., 2001], pseudoreceptors [Lloyd et al., 2004], protein structure-based de novo 

design [Schneider & Fechner, 2005; Stahl et al., 2002], and ligand-based similarity searching 

[Willett et al., 1998]. In contrast to the former methods similarity searching is based on the 

comparison of descriptor vectors rather than on the alignment of molecules to a reference and 

can thus be applied efficiently for large datasets [Willett et al., 1998].  

From the viewpoint of a “fitness-landscape” the scaffold defines the region of the 

landscape that is accessible using different sidechains. Different scaffolds might have some 

overlapping regions in the “fitness-landscape”, but also some regions which might not be 

accessible by other scaffolds. This behavior is especially attractive if multiobjective “fitness-

landscapes” are considered [Gillett et al., 2002]. Drugs have to satisfy many objectives like 

tight binding, selectivity or acceptable ADMET properties. Different scaffolds provide a 

higher chance of finding molecules that can access acceptable regions in the “fitness-

landscape” for all these objectives. 

 

 

1.7 The pharmacophore concept 

It has long been recognized that some fragments of chemical molecules can be mutually 

exchanged without much affecting the biological activity. Such fragments are called 

bioisosteric groups [Patani & LaVoie, 1996]. Bioisosteric groups mediate identical or similar 

interactions with the receptor.  

Ligand receptor interactions can be clustered into three general groups: 

“hydrophobic”, “polar positive” and “polar negative” [Horvath et al., 2004]. These groups can 

be further broken down into “hydrophobic-alkyl”, “aromatic”, “hydrogen-bond donor”, 
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“cation”, “hydrogen-bond acceptor” and “anion”. Various definitions and combinations of 

these groups have been reported as pharmacophore atom-types in literature [Güner, 2000; 

Bush & Sheridan, 1993; Pickett, 2003]. An object with an associated pharmacophoric type is 

called a potential pharmacophore point (PPP). PPPs can represent atoms or larger fragments 

of a molecule. 

Based on the spatial arrangement of PPPs of a ligand, a pharmacophore hypothesis can 

be derived. According to the IUPAC definition a pharmacophore is the “ensemble of steric 

and electronic features that is necessary to ensure the optimal supramolecular interactions 

with a specific biological target structure and to trigger (or to block) its biological response” 

[Wermuth et al., 1998]. Accordingly to define a pharmacophore, prior knowledge about the 

importance of the PPPs of a molecule is needed. A pharmacophore can be derived from 

structure-activity data or from conserved features within a set of ligands. Receptor-based 

pharmacophores have also been reported [Pickett, 2003]. 

The most widely used application of pharmacophores is to search for new molecules 

comprising the pharmacophore. These molecules are expected to have a similar biological 

effect. If the relevant pharmacophore pattern is not known, one can also utilize the 

distribution of PPPs of molecules for similarity searching: Molecules that have similar 

distributions of PPPs are likely to have a similar activity (neighborhood principle).  

The description of a ligand-receptor interaction by pharmacophores is a crude 

simplification which does not consider effects like entropy or solvatation. Also some groups 

like fluorine, which can interact like hydrophobic groups and as hydrogen-bond acceptors 

[Böhm et al., 2004] are hard to model correctly by pharmacophore types. 

 

 

1.8 Representation of molecules 

The way the structure of a molecule is encoded has a major influence on the way how 

molecules can be compared. Molecules can be represented either by a full connection table or 

by sets of substructures that are present or absent in the molecule. The first representation is 

more detailed, but to establish a similarity calculation, molecules have to be aligned or a 

maximum common sub-graph between to molecules has to be calculated [Labute et al., 2001; 

Willett et al., 1998]. This can be a time-consuming procedure, especially for the three-

dimensional alignment of flexible molecules. The comparison of the presence and absence of 

substructures can be computed more efficient. Such methods are called “alignment-free”. 

Substructure similarity can be calculated on the basis of predefined substructure dictionaries 
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(e.g. the MACCS keys [MDL Information Systems]) or on the basis of molecule-specific 

generated substructures (e.g. Daylight fingerprints [Daylight Chemical Information 

Systems]). Substructures can be defined as exact chemical fragments (e.g. MACCS), or 

loosely defined like pairs, triplets or quartets of PPPs [Schneider et al., 1999; Good & Kuntz, 

1995; Mason et al., 1999]. Substructure descriptions like the MACCS keys contain only local 

descriptions neglecting the overall topology of the molecule.  

Both kinds of molecular encodings are found combined with two-dimensional and 

three-dimensional representation of molecules. Two-dimensional topological representations 

of molecules have the advantage that the time-consuming calculation of three-dimensional 

conformations for the molecules can be avoided. The stereochemistry of molecules can also 

be left aside. On the other hand the binding event is a three-dimensional interaction between 

ligand and receptor. So it should be advantageous to include such information. The naïve 

assumption about the three-dimensional conformation of a molecule in the binding-pocket 

would be that the conformation of the molecule with the lowest internal energy would be the 

most likely to be found in the receptor. However it has been shown that the “bioactive” 

conformation, i.e. the conformation of a molecule bound to the receptor, does not necessarily 

correspond either to the global torsion-angle energy minimum or to a torsion-angle energy 

minimum at all  [Nicklaus et al., 1995; Boström et al., 1998; Perola & Charifson, 2004]. In 

practice, this renders the task of finding the “bioactive” conformation of a molecule to the 

computational demanding task of presenting a large number of low-energy conformations. 

While it is clear that methods, which are based on the explicit three-dimensional alignment of 

molecules, strictly rely on the presence of a fitting conformation, alignment-free descriptors 

have produced reasonable results using only a small set of conformations or even a single 

conformation [Sheridan et al., 1996; Brown & Martin, 1996].  

A step further away from the atomic representation of molecules is the description of 

molecules based on their molecular surface. Since the interaction between ligand and receptor 

is mediated by the molecular surfaces, surface-based descriptions are thought to be more 

general than atom based descriptions [Wagener et al., 1995; Zamora et al., 2003, Stiefl & 

Baumann, 2003; Clark, 2004]. Field-based methods are another way to circumvent an atom-

based description of a molecule [Cramer et al., 1988; Klebe et al.; 1994; Pastor et al., 2000]. 
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1.9 Autocorrelation descriptors 

Spatial autocorrelation is a quantitative measure for the probability to find objects of defined 

properties within a distance of interest [Wagener et al., 1995; Todeschini & Consonni, 2000]. 

The idea of a molecular descriptor based on the autocorrelation concept was first introduced 

into the field of cheminformatics by Morau and Broto in 1980 [Moreau & Broto, 1980] with 

the ATS (Autocorrelation of a Topological Structure) descriptor. For this approach the atoms 

of a molecule were represented by properties like atomic mass or partial charge. The distance 

between atoms was measured as the number of bonds between the respective atoms 

(topological distance). 

The ATS descriptor for a given topological distance d is calculated by: 
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where w is the atomic property, A is the number of atoms in the molecule, δij,d (Kronecker 

delta) evaluates to 1 for all pairs of atoms with distance d. 

To obtain the full descriptor the ATS autocorrelation is calculated over all defined 

distances and concatenated to a vector {ATS0, ATS1, ATS2, … , ATSD}, where D is the 

maximum distance considered. Moreau, Broto and Vandycke were also the first who applied 

this approach to the three-dimensional conformation of a molecule [Moreau et al., 1984]. For 

the three-dimensional approach the topological distance was replaced by the spatial Euclidean 

distance between two atoms. Pairs of atoms were clustered into groups with distances falling 

into predefined distance ranges (bins). All atom pairs within one bin were treated as having 

the same distance. Gasteiger extended this approach to the spatial autocorrelation of the 

partial charges calculated for surface points [Wagener et al., 1995]. The resulting vector 

values were normalized by dividing the raw counts by the number of atom pairs in each 

distance range.  

In 2000 Pastor and coworkers [Pastor et al., 2000] presented GRIND (Grid-

Independent Descriptors), an approach very similar to the autocorrelation descriptors. The 

GRIND descriptor is calculated from force field-based interaction energies calculated for 

GRID [Goodford, 1985] points surrounding a molecule. Instead of summing up all products 

of interaction energies for pairs of GRID points within a distance range, only the most 

favorable energy contribution is stored for each distance range. Given a descriptor vector, 

pairs of grid points can be identified that are responsible for each descriptor value. Such a 
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trace back from the descriptor to the underlying pairs of grid points is not amenable to other 

autocorrelation approaches. 

In 1985 Carhart [Carhart et al., 1985] introduced a topological atom pair descriptor 

using atom-types instead of atom property values. Each atom is assigned to one atom-type 

class instead of an atom property value. Atom-types are defined by their element, the number 

of neighboring non-hydrogen atoms and their number of π-electrons. The employment of 

these atom-types led to a further distinction of chemical elements according to the atom 

environment. Binary values are assigned to each atom, i.e. an atom does or does not have a 

specific atom-type. Consequently and in contrast to the Moreau-Broto approach, the resulting 

autocorrelation vector for an atom-type is equivalent to a histogram counting the frequencies 

of the atom pairs of the considered atom-type over the different atom-atom distances. 

Calculation of the autocorrelation between pairs of atoms of different atom-types is called 

crosscorrelation. The final Carhart descriptor vector consists of the autocorrelation vectors for 

all atom-types and the crosscorrelation vectors of all pairs of different atom-types. 

In 1996 Sheridan and coworkers [Sheridan et al., 1996] were the first to use 

pharmacophoric atom-types for an autocorrelation approach. This technique provides a 

description presumably most relevant to characterize ligand-receptor interactions in a general 

way, allowing for more different but equally interacting molecules to be identified as similar. 

In this work Sheridan and coworkers also extended the topological Carhart approach to the 

three-dimensional conformation of molecules. This approach was soon followed up by a 

binary representation of such a descriptor [Brown & Martin, 1996]. In 2003 Stiefl and 

Baumann [Stief & Baumann, 2003] reported an autocorrelation approach using surface points 

representing pharmacophoric features. 

The work of Schneider and coworkers [Schneider et al., 1999] first focused on the 

applicability of the autocorrelation descriptors, in this case topological pharmacophores, for 

scaffold hopping. The general description of the atoms with pharmacophore atom-types in 

combination with the decomposition of molecules into atom-pairs was shown to be especially 

successful to find new molecules with significant different molecular scaffold, maintaining 

the desired biological effect. 

 

 

1.10 Retrospective and prospective screening 

The effectiveness of a virtual screening method can be assessed in two ways: retrospective 

and prospective screening. Given a reference molecule with known biological effect, 
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retrospective screening quantifies the ability of a method to retrieve molecules with the same 

biological activity from a database containing molecules with various biological activities 

[Willett et al., 1998; Hert et al., 2004a; Hert et al., 2004b; Xu & Agrafiotis, 2002]. Several or 

all molecules of selected classes of biological activities are mutually taken as reference for the 

screening. For each individual virtual screening experiment, the molecules remaining in the 

database are ranked according to the similarity or distance to the reference molecule.  

A method is considered successful if molecules with the same annotated activity (the 

“active” molecules) as the reference are statistically better scored than molecules with 

different annotated activities (“inactive” molecules). A shortcoming of retrospective screening 

is that it is mostly not known if molecules which are considered inactive for one receptor are 

true inactives or molecules for which the respective activity has not been tested 

experimentally. It is likely that the latter situation represents the majority of cases.  

The most rigorous test for a virtual screening method is prospective screening. Only in 

this way it is possible test the ability of a method to find novel active molecules. On the other 

hand, prospective screening requires much more effort in time and costs and consequently in 

most cases only a smaller number of experiments can be performed, resulting in a less reliable 

statistical assessment of the results. In the worst case this could lead to a poor rating of a 

method which was able to find similar molecules which were inactive due to small 

unfavorable interactions to the receptor, like a steric clash from a methyl group of the 

molecule. Consequently it is best to probe a method by both retrospective and prospective 

screening to obtain a realistic assessment of its performance. 

 

 

1.11 Artificial neural networks in virtual screenin g – 

machine learning based on molecular representations  

Artificial neural networks (ANN) had a large impact on recent drug discovery projects [Zupan 

& Gasteiger, 1999; Schneider, 2000; Terflot & Gasteiger, 2001; Livingstone & Manallack, 

2003]. Applications of ANNs are found for classification, prediction, visualization, and 

clustering. One can distinguish between supervised methods like feedforward networks and 

unsupervised networks like self-organizing maps (SOM) [Kohonen, 1982]. Supervised 

methods establish a relationship between a representation of an object of interest (e.g. a 

molecular descriptor) and an observed response (e.g. a binding affinity or a class affiliation). 

Unsupervised methods cluster the data based on their representation. One particular 

implementation (SOM) projects a data distribution from a high-dimensional space (i.e. the 
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molecular representation) to a lower dimensional space (e.g. two-dimensional for 

visualization) [Kohonen, 1982]. 

In chemoinformatics, supervised ANNs are mainly applied in the establishment of 

quantitative structure activity relationships (QSAR), quantitative structure property 

relationships (QSPR) or binary classification tasks [Schneider, 2000]. ANNs provide a means 

to establish in principle any linear or non-linear relationship between descriptor and observed 

data [Zupan & Gasteiger, 1999]. As a drawback, an ANN behaves like a black box: the 

modeled relationship between the input variables is difficult to extract [Livingstone & 

Manallack, 2003]. Applications of supervised neural networks range from general predictions 

like drug-likeness [Sadowski & Kubinyi, 1998; Ajay et al., 1998] or the identification of 

frequent hitters [Roche et al., 2002a] to more specific tasks like the prediction of binding to 

the hERG K+ channel [Roche et al., 2002b] or to cytochrome P450 [Molnar & Keseru, 2002].  

Unsupervised SOMs can be used for the projection of data into lower dimensional 

space for visualization. This can be utilized for example to evaluate different descriptor-

representation of molecules for their suitability to distinguish between different classes of 

activities [Teckentrup et al., 2004]. Comparison of diversity and coverage of chemical space 

of chemical databases or combinatorial libraries were also reported for SOMs [Schneider & 

Schneider, 2003; Anzali et al., 1998]. A trained SOM can also be used for the prediction of 

class affiliation for new molecules [Schneider et al., 2003; Teckentrup et al., 2004].  

 

 

1.12 Incorporating receptor structure information i nto 

virtual screening  

The binding-event is an interaction between ligand and receptor. Using the receptor for virtual 

screening should enhance the capability for scaffold hopping in comparison to ligand-based 

methods [Xu & Agrafiotis, 2002; Böhm et al., 2004]. The latter methods are intrinsically 

biased towards the chemotypes of the reference molecules. Receptor-based ranking of 

molecules is independent of reference molecules. Structure-based approaches provide a 

rational basis for the establishment of new interactions between ligand and receptor, not 

realized in known ligands before. Using ligand-based approaches new interactions can only 

be found by trial and error. Structure-based virtual screening can suffer from the difficulty in 

scoring ligand-receptor complexes correctly [Halperin et al., 2002; Schneider & Böhm, 

2002], the flexibility of the receptor upon ligand binding [Teague, 2003] and from 

inaccuracies in protein structural models [Davis & Teague, 2003].  
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Receptor information can also be exploited for the derivation of pharmacophore 

models [Pickett, 2003]: 

� the alignment of ligands can be calculated on the basis of the receptor [Grüneberg, 

2005]. 

� promising potential pharmacophore points derived from the receptor can be 

incorporated into or solely used for a pharmacophore model [Wolber & Langer, 

2005, Pirard et al., 2005]. 

� receptor information can be used to disregard molecules, that were regarded as 

active by other methods, that overlap with receptor atoms [Pickett, 2003]. 

Following this idea, multiple receptor conformations obtained from molecular dynamics 

simulations were used to establish a receptor-based dynamic pharmacophore model, which 

was successfully applied for the prediction of new HIV-1 integrase inhibitors [Carlson et al., 

2000].  

If no receptor information is available, homology modeling of the receptor structure 

provides an approach for virtual screening [Hillisch et al., 2004; Bissantz et al., 2003; 

Grüneberg, 2005; Evers et al., 2003; Evers & Klabunde, 2005]. Homology modeling is based 

on the fact that the sequence of proteins is less conserved than the structure [Chothia & Lesk, 

1986, Andreeva et al., 2004]. Consequently the structure of a protein can be predicted based 

on the structure of a closely related protein. The quality of the resulting model critically 

depends on the sequence similarity of the modeled protein to the template structure [Hillisch 

et al., 2004].  

 

 

1.13 The metabotropic glutamate receptor 5 (mGluR5)  

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system 

[Conn & Pin, 1997]. The effect of glutamate is mediated by ionotropic and metabotropic 

glutamate receptors, via pre- and postsynaptic mechanisms. The long term modulating effect 

of glutamate is mediated by the metabotropic glutamate receptors [Conn & Pin, 1997]. The 

family of metabotropic glutamate receptors comprises a set of at least eight subtypes. These 

can be further clustered into three groups on the basis of sequence similarity, pharmacology 

and the respective signal transduction mechanism. Group I (mGluR1 and -5) are coupled to 

the activation of phospholipase C, group II (mGluR2 and -3) and group III (mGluR4, -6, -7, 

and -8) are negatively coupled to cAMP production [Hermans & Challiss, 2001]. 
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The mGluRs belong to family 3 of the G-protein-coupled receptors (GPCRs) 

[Bockaert & Pin, 1999; Fredriksson et al., 2003]. Other members of family 3 are the GABAB, 

Ca2+-sensing, vomeronasal, pheromone and putative taste receptors [Pin et al., 2003]. GPCRs 

are characterized by a general topology of seven transmembrane helices. Class 3 GPCRs 

differ from the other GPCR classes by the presence of an additional N-terminal extracellular 

ligand binding domain, the venus-flytrap module (VFTM), connected to the heptahelical 

domain (HD) via a cystein rich region (Figure 1.5). Other classes of GPCRs contain ligand 

binding regions directly within the seven-transmembrane domain. Family 3 GPCRs are found 

as homodimers or heterodimers [Pin et al., 2003]. Receptor dimerization does also include 

dimerization of the venus-flytrap modules [Kunishima et al., 2000]. 

 

 

 

Figure 1.5 Topology of the metabotropic glutamate receptors. The receptor consist of an 
extracellular venus-flytrap module (PDB code: 1etw) for glutamate binding, and a 
heptahelical transmembrane domain (PDB code from the bovine rhodopsin structure: 1f88), 
which are connected by a Cystein-rich domain. Allosteric modulators bind in the 
transmembrane domain.  
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The activation mechanism of mGluRs involves several steps. Upon glutamate binding 

the venus-flytrap domain undergoes a large conformational change resulting in a closure of 

the venus-flytrap [Kunishima et al., 2000]. This leads to a modified relative orientation of the 

two VFTMs of a dimer. The activated dimer complex of the two VFTMs is assumed to 

stabilize the active conformation of the heptahelical domains [Pin et al., 2004].  

Like with many GPCRs, a basal “constitutive activity” can be measured without 

ligand binding [Pin et al., 2004]. Agonists like the natural substrate glutamate stabilize the 

active state via the VFTM. The “constitutive activity” is not inhibited by competitive 

antagonists that prevent the VFTM closure [Prezeau et al., 1996]. Consequently neither the 

active nor the inactive state of the heptahelical domain is predominantly stable. 

Recently molecules were reported that bind to an allosteric binding site in the 

heptahelical domain of mGluR5 [Gasparini et al., 1999; O’Brien et al., 2003], i.e. in the 

region where the ligand binding site is found in the other classes of GPCRs. These molecules 

are called “allosteric modulators”. Allosteric antagonists which stabilize the inactive state of 

the heptahelical domain are called “inverse agonists”. Such modulators were able to 

completely inhibit the “constitutive activity” and the effect of agonist binding in the VFTM 

[Gasparini et al., 1999]. Allosteric modulators which are able to stabilize the active state of 

the receptor are “positive allosteric modulators”. These molecules cannot activate the receptor 

by themselves, but have a potentiating effect on agonist binding. This effect is assumed to be 

caused in a stabilizing effect of the opened VFTM on the inactive state of the heptahelical 

domain [Pin et al., 2004]. If the VFTM is pruned from the heptahelical domain of mGluR5, 

positive allosteric modulators behave as conventional agonists while inverse agonists shown 

antagonistic behavior [Goudet et al., 2004]. 

Group I mGluRs provide a great prospect for pharmaceutical applications. Molecules 

antagonizing the function of mGluR5 have a potential in prevention of pain and anxiety, and 

in the treatment of Parkinson’s disease [Spooren & Gasparini, 2001; Swanson et al., 2005]. A 

potential role in the treatment of drug dependence has also been reported [Chiamulera et al., 

2001]. Activators or potentiators of group I mGluRs were proposed to be useful in the therapy 

of schizophrenia and Alzheimer’s disease [Pin et al., 2004]. 

For GPCRs only the crystal structure of rhodopsin in the inactive state has been 

resolved, so far [Palczewski et al., 2000]. Homology models based on this structure were 

shown to provide a basis for structure-based virtual screening for GPCR ligands [Evers & 

Klebe, 2004; Evers & Klabunde, 2005]. Successful applications of homology-model based 
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virtual screening for family 3 GPCRs have not been reported until now, despite the fact that 

such models have been published [Pagano et al., 2000; Malherbe et al., 2003]. Many 

allosteric modulators of mGluR1 and mGluR5 were reported in literature. This also renders 

mGluR5 a target for ligand-based virtual screening and library design. 

 

 

1.14 RNA drug design and the Tat-TAR RNA interactio n 

In recent years it has become clear that RNA is an active multifunctional player of the cell 

instead of just a passive vehicle for sequence information [Special journal issues on RNA as 

drug target]. RNA was found to have enzymatic functionality, e.g. the self-splicing intron of 

the Tetrahymena pre-rRNA [Kruger et al., 1982] or within the ribosome [Noller et al., 1992]. 

Gene regulatory elements on the mRNA can have an effect on the transcriptional and on 

translational level. This effect can be mediated by specific RNA-protein interactions and 

directly by RNA-small molecule interactions [Mandal & Breaker, 2004]. Such small 

molecules can be the metabolites of the genes under control, e.g. TPP (thiamine 

pyrophosphate) [Winkler et al., 2002a] or FMN (flavin mononucleotide) [Winkler et al., 

2002b]. With the RNAi mechanism, RNA was also found to participate in anti-infective 

responses [Dykxhoorn et al., 2003].  

Together with these functionalities it was found that RNA can fold into complex and 

well defined three-dimensional structures. Like within proteins, these complex structures 

provide interfaces for specific intermolecular protein-RNA and small molecule-RNA 

interactions. These findings have led to a constantly increasing interest in RNA as a potential 

drug target with a plethora of potential applications [Zaman et al., 2003; Drysdale et al., 2002; 

Gallego & Varani, 2001; Sucheck & Wong, 2000], and several natural and synthetic small 

molecules have been reported to interact specifically with RNA [Hermann, 2003]. 

In principle it is possible to employ the same approaches for RNA drug discovery as 

for molecules targeting proteins [Hermann, 2000]. One difference can be found in the relative 

importance of ligand-protein interactions and ligand-RNA interactions. The latter is biased 

towards electrostatic and stacking interactions in comparison to protein-ligand interactions 

[Hermann, 2000]. This might raise complications with unspecific binding of small molecules 

that comprise a large number of positive charges. In addition, very polar or charged ligands 

bear the danger of low oral bioavailability [Lipinski et al., 1997; Mayer & James, 2004]. 

Other problems might arise from unspecific stacking of molecules which can lead to toxic 

effects from DNA-intercalation [Snyder et al., 2004]. Another difference between protein and 
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RNA targets is the comparably high flexibility of RNA, especially of structures with low 

structural complexity like stem-loop RNAs [Schroeder et al., 2004]. For these structures it has 

been found that different ligands result in ligand-receptor complexes with largely different 

conformations of the RNA structure. A recent publication even reported an RNA sequence 

which was able to fold into two completely different tertiary structures with two different 

enzymatic activities [Schultes & Bartel, 2000]. 

Beside these complications a structure-based automated docking approach including a 

scoring function optimized for RNA was shown to be useful for finding small and enriched 

sets of molecules inhibiting the Tat-TAR interaction [Filikov et al., 2000; Lind et al., 2002]. 

Other studies indicated that the inherent flexibility of RNA structures might limit the 

applicability of entirely structure-based approaches [Williamson, 2000; Gallego & Varani, 

2001; Leulliot & Varani, 2001]. 

One of the best characterized RNA-based regulatory systems is the transactivation 

response element (TAR) of the HIV mRNA [Karn, 1999]. Specific binding of the Tat protein 

to TAR is essential for virus transcription. Without bound Tat protein the elongation of the 

HIV transcript is early aborted due to a poorly processive RNA polymerase II. Bound Tat 

recruits a Tat-associated kinase which activates the RNA polymerase. The activated 

polymerase is able to synthesize the remainder of the HIV transcript [Karn, 1999]. 

 

 

 

Figure 1.6 TAR RNA regulatory element. TAR RNA consists of two stem loop regions and a 
bulge of three nucleotides. The bulge is responsible for the specific interaction to the Tat 
protein, essential for HIV replication.  
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The TAR RNA represents a potential target for defeating HIV as well as a model 

system to deepen the understanding of RNA-small molecule interactions and the development 

of drugs for RNA targets in general. The structure of TAR consists of two rigid double strand 

stems connected by a flexible bulge of three bases, which provides a specific binding pocket 

for the Tat protein [Karn, 1999] (Figure 1.6). A variety of molecules have been found that 

inhibit the Tat-TAR interaction and consequently virus replication [Froeyen & Herdewijn, 

2002; Krebs et al., 2003]. Among these molecules are peptidic derivatives of the binding 

motive from Tat like argininamide, antibiotics like neomycin, and a set of small molecules 

with non-natural scaffolds. Most classes of bulge-binding ligands, for which structures have 

been determined, bind in distinct regions and stabilize different conformations of the bulge 

[Du et al., 2002]. 

The availability of a small set of RNA-ligand complex NMR structures renders the 

TAR RNA as an interesting target for ligand and structure based virtual screening. The 

reported problems in RNA docking make the ligand based approach more attractive at 

present. 

 

 

1.15 Taspase1 

Taspase1 is a threonine aspartase which catalyzes the proteolytic cleavage of MLL (Mixed-

Linage Leukemia) protein, resulting in its activation [Hsieh et al., 2003]. MLL is required for 

the maintenance of HOX gene expression in embryogenesis and hematopoiesis. Chromosome 

translocations leading to chimera proteins of the N-terminus of MLL and varying 

translocation partners result in human infant leukemia. This effect is associated with an up-

regulation of HOX genes. Specific inhibition of taspase1 might present a possibility to treat 

human infant leukemia [Hsieh et al., 2003]. 

Taspase1 cleaves MLL directly after an aspartate at two positions with sequences 

D/GADD and D/GVDD, respectively. An N-terminal threonine acts as an active site 

nucleophile for the cleavage reaction. Other known threonine proteases are found in the 20S 

proteasome and the archaea proteasome and the catalytic subunit of the Escherichia coli 

(E.coli) HsIV [Hsieh et al., 2003]. These proteases are not structurally related to taspase1.  

Taspase1 reveals sequence similarity to glycosylasparaginase and L-asparaginase, 

which also have an N-terminal threonine involved in the reaction mechanism. 
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Glycosylasparaginases catalyze the cleavage of N-acetylglucosamine-asparagine to 1-amino-

N-acetylglucosamine and aspartate. L-asparaginase catalyzes the conversion of L-asparagine 

to L-aspartate. All three classes of proteins are translated in an inactive form. Activation 

occurs by an autoproteolysis step catalyzed by the N-terminal threonine [Hsieh et al., 2003].  

Inhibitors have not been reported for taspase1, but crystal structures are available for 

glycosylasparaginases and L-asparaginases [Oinonen et al., 1995; Prahl et al., 2004]. This 

renders taspase1 a target for homology-model based drug design.  



2 Computational Methods 

 

 

2.1 Correlation-vector based descriptors 

Three types of correlation vector descriptors were applied in this thesis, which all belong to 

the group of potential pharmacophore point (PPP) pair descriptors: the topological CATS 

descriptor [Schneider et al., 1999], the three-dimensional CATS3D descriptor and the surface-

based SURFCATS descriptor (Figure 2.1). Auto- and crosscorrelation between all types of 

PPPs are transformed into a histogram, counting for the frequencies of the respective pairs of 

PPPs. The pairs of PPPs are further subdivided into distance “bins” which were topological 

distances in the two-dimensional case and distance ranges in the three-dimensional case. Each 

dimension (“bin”) of the CATS3D CV was calculated according to Equation 2.1. 
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where i and j are atom indices, d is a distance or a distance range, T is the pair of PPP 

types of atoms i and j, and T
dδ  (Kronecker delta) evaluates to 1 for all pairs of atoms of type T 

within the distance range d.  

 

 

2.1.1 CATS 

The CATS (Chemically advanced template search) descriptor is a topological atom-pair 

descriptor developed by Schneider and coworkers [Schneider et al., 1999]. The descriptor 

consists of the frequencies of pairs of PPPs within defined topological distances. Distances 

were calculated as the shortest paths between two PPPs. PPP-PPP distances were considered 

from 0 to 10 bonds.  

The PPP definition was as follows: Hydrogen-bond donors were oxygen atoms of OH-

groups and nitrogen atoms of NH- or NH2-groups. Hydrogen-bond acceptors were oxygen 

atoms and nitrogen atoms not adjacent to a hydrogen atom. Positively charged or ionizable 

atoms were defined as atoms with a positive charge or nitrogen atoms of an NH2-group. 
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Negatively charged or ionizable atoms were defined as atoms with a negative charge and 

carbon, sulfur or phosphorous atoms of a COOH-. SOOH-, or POOH-group. Lipophilic atoms 

were chlorine, bromine, or iodine, sulfur atoms adjacent to exactly two carbon atoms, and 

carbon atoms adjacent only to carbon atoms. With this definition atoms were assigned to no, 

one or two PPP-types. Using 10 topological distances “bins” for each of the 15 combinations 

of PPPs resulted in a descriptor of 150 dimensions. 

The CATS descriptor was calculated with the program speedcatsdotcom (version 1.02) 

by Uli Fechner [Fechner et al., 2003]. Scaling was done with the parameter –d 3, which 

corresponds to scaling2 in CATS3D (see Section 2.1.2). 

 

 

 

 

Figure 2.1 The CATS-family of descriptors: CATS, CATS3D and SURFCATS. All 
descriptors are based on a potential pharmacophore (PPP) type description of the underlying 
molecule. For each descriptor, pairs of PPPs are transformed into a correlation vector. CATS 
is calculated from the topological distances of atom-based PPP pairs. For CATS3D the spatial 
distances between atom-based PPPs are used instead. SURFACTS uses the spatial distances 
between PPPs on the contact surface of a molecule. Here the PPPs represent the atom-types of 
the nearest atom to each surface point. Yellow = hydrophobic PPP, cyan = hydrogen-bond 
acceptor, magenta = hydrogen-bond donor, blue = cation, white = no pharmacophore type 
assigned.  
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2.1.2 CATS3D 

The CATS3D descriptor is an extension of the CATS descriptor into three-dimensional space. 

CATS3D was developed and implemented as part of this work. An overview over the 

CATS3D principle is shown in Figure 2.2.  

 

 

 

 

Figure 2.2 Calculation of the CATS3D correlation vector. Atoms are colored according to 
their pharmacophore atom-type (yellow = hydrophobe, cyan = hydrogen-bond acceptor). 
Distances are measured between all pairs of atoms, and frequencies of pairs are determined 
for all pairs of pharmacophoric types and for defined distance ranges (“bins”). As an example, 
a section of the resulting CV representing hydrogen-bond acceptor – hydrophobe pairs is 
shown. 
 

 

The main difference in the correlation vector representation of a 3D conformation in 

comparison to a topological representation of a molecule is that the distances between the 

atoms are no longer shortest paths. Instead, Euclidean distances between all atoms were used. 

Distances between atoms are not restricted to integer values, thus the distances had to be 

partitioned into a set of distance bins. Several such binning schemes have been proposed 

[Wagener et al., 1995; Sheridan et al., 1996; Brown & Martin, 1996]. For CATS3D 20 

distance bins that cover distances from 0 to 20 Å in steps of 1 Å were employed, i.e. if a pair 

of PPPs is found with a distance of 6.17 Å it is counted in the bin from 6 to 7 Å. Distances up 

to 20 Å were considered to include information of most pairs of atoms in the descriptor, even 

for large ligands.  

For CATS3D the modified PATTY atom-types [Bush & Sheridan, 1993] available 

with the pH4_aType function in MOE (Molecular Operating Environment) [Chemical 

Computing Group] were used. This function provides six PPP types: cation (+), anion (-), 
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hydrogen-bond acceptor (A), hydrogen-bond donor (D), polar (P, hydrogen-bond acceptor 

AND hydrogen-bond donor) and hydrophobic (H). Whereas the topological CATS descriptor 

allows assignments of more than a single PPP type to one atom, the CATS3D descriptor 

employs a single PPP type per atom. 

Using 20 distance bins for each of the 21 possible combinations of PPP pairs resulted 

in a descriptor of 420 dimensions. The values of the dimensional were calculated according to 

Eq. 2 with the difference that each pair of PPPs was only counted once and pairs of PPPs with 

themselves were not considered. 

 

Three different scaling methods were implemented for the CATS3D descriptor: 

• No scaling (“unscaled”).  

• Division by the number of PPPs of a molecule (“scaling1”).  

• Division of each of the 21 possible pairs of PPPs by the added occurrences of the two 

respective PPPs (“scaling2”). 

Scaling2 was always applied unless otherwise indicated. Scaling1 is the scaling scheme 

originally developed for the CATS descriptor.  

 

The CATS3D descriptor was implemented in the software spacecats. Spacecats was 

written in the SVL language in MOE [Chemical Computing Group].  

 

Note to the program MOE: all calculations were performed with program versions 2003.02 

and 2004.03. To our knowledge there were no differences between the two versions with an 

impact on the calculations in this thesis. Results obtained with earlier versions are not 

included in this work due to a major revision in the pharmacophore type definitions. 

 

 

2.1.3 SURFCATS 

The SURFCATS approach is a further extension of the CATS3D concept. The interaction 

between ligand and receptor is mediated by the surface between the two molecules. 

Accordingly it might be advantageous to describe molecules by their surface properties.  

The surface points for the calculation of SURFCATS were taken from the molecular 

surface which was calculated with the Gauss-Connolly function in MOE with a spacing of 2 

Å. The molecular surface is defined by the inward-facing part of a virtual probe sphere rolling 

on the van der Waals surface of the molecule [Richards, 1977]. Accordingly this surface 
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definition represents the contact space between ligand and receptor. Each surface point was 

assigned to the PPP type of the nearest atom. Like with CATS3D 20 equal distance bins were 

used from 0 to 20 Å with a stepsize of 1 Å. The SURFCATS CV was calculated exactly like 

the CATS3D CV except that surface points were used as PPPs instead of atoms. Scaling2 was 

always applied. 

The SURFCATS descriptor was implemented in the software surfcats. Surfcats was 

written in the SVL language of MOE [Chemical Computing Group]. 

 

 

2.2 Descriptor vector based virtual screening 

For descriptor vector-based similarity searching, three distance indices were employed: the 

Manhattan distance, the Euclidean distance and the Tanimoto similarity coefficient. The first 

two metrics express distances, i.e. similar molecules have distances lower than dissimilar 

molecules. For similarity metrics this relation is inverted. To avoid confusion the term 

“similarity” will be used for both similarity and distance metrics. The definitions of the 

metrics are given in Table 2.1. Since all CATS derived descriptors contain non-binary data-

values, the continuous version of the Tanimoto coefficient was applied. This version of the 

Tanimoto coefficient gives identical results for binary-data. A more detailed description of 

similarity metrics is given in [Willett et al., 1998]. 

 

Table 2.1 Equations of similarity metrics for continuous variables. A and B are vectors (here: 
molecular descriptor representations), N is the total number of vector elements, xi the value of 
the vector element i, DA,B denotes the distance and SA,B the similarity between objects A and B. 
Note that the range of the Tanimoto coefficient is 0 to 1 if all attributes of A and B are 
restricted to non-negative values. 
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Virtual screening was employed in two ways, using two programs: rankIt by Uli Fechner 

[Fechner et al., 2003] and SQUIDscreen. The workflow of the two programs is illustrated in 

Figure 2.3. Both programs were designed to rank a database of molecular descriptors 

according to the similarity to a reference molecular descriptor, applying slightly different 

virtual screening protocols (Figure 2.3). The output of both programs is a ranked list for each 

reference molecular descriptor and the respective enrichment factor. SQUIDscreen is also 

able to handle multiple conformations of molecules in the virtual screening database. For this 

purpose each conformation of a molecule must be encoded separately. For the result 

SQUIDscreen selects the conformation with the best similarity score. Other conformations are 

discarded from the ranked result list.  

 

 

 

Figure 2.3 Virtual screening protocols of the programs rankIt and SQUIDscreen. rankIt 
iteratively takes reference molecules from the pool of actives (1) of the virtual screening 
database, performs virtual screening (2), and returns the reference back into the virtual 
screening database (3). This procedure is repeated for all active molecules. SQUIDscreen 
operates on distinct sets of reference molecules from the virtual screening database. In 
SQUIDscreen all reference molecules are iteratively submitted to virtual screening.  
 

 

2.2.1 Retrospective screening evaluation 

A quantitative measure for the evaluation of virtual screening results based on the obtained 

hit-lists is the enrichment factor ef [Xu & Agrafiotis, 2002]. This index quantifies the ability 

of a method to retrieve more active molecules than expected by random. The ef is defined as: 
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where Fact and Dact are the numbers of annotated active molecules in a subset and the 

whole database, and Fall and Dall are the total numbers of molecules in the subset and the 

whole database respectively. An enrichment factor of 1 corresponds to a random distribution 

of active molecules in the ranked database, thus an effective pharmacophore model results in 

an ef above 1.  

Subsets which were considered for the calculation of the ef were the first 1% and the 

first 5% of a ranked hit-list from virtual screening. The usage of a 5% subset of the hit-lists 

results in statistically more significant results. In real applications it is not always possible to 

test such large fraction of a database. This is especially important if only small numbers of 

active molecules are applied. 

 

2.3 SQUID 

SQUID Fuzzy Pharmacophore models approximate the spatial distribution of pharmacophoric 

points in an alignment of molecules by a set of generalized potential pharmacophore points 

(PPPs) of Gaussian probability densities. Atoms in the alignment comprising the same 

pharmacophoric features were clustered into PPPs for a more general and “fuzzy” 

representation of the major characteristics of the alignment. The resolution of the model was 

defined by the cluster radius, which is the parameter that affects how strict features are 

clustered into PPPs. The ideal resolution of the pharmacophore model had to be determined 

separately for each set of aligned ligands.  

Each PPP in the pharmacophore model was represented by four attributes. The first 

attribute was the pharmacophore type of the atoms which are represented by the PPP, the 

second was the PPP position in 3D space, the third was the standard deviation σ which 

characterized the width of the distribution of the atoms that were represented by a PPP (in 

graphical illustrations of SQUID pharmacophore models σ is visualized by the radius of the 

PPPs). The fourth attribute (the conservation weight w) weighted each PPP by its 

conservation among the molecules of the alignment (in graphical illustrations of SQUID 

pharmacophore models w is visualized by the intensity of the color of a PPP). This was done 

under the assumption that more conserved features of a set of molecules binding to the same 
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receptor with comparable affinity are more important for the binding than less conserved 

features. 

 

 

 

Figure 2.4 Calculation of the SQUID fuzzy pharmacophore correlation vector. 
Pharmacophore atom-types are assigned to all atoms of a set of aligned molecules (yellow = 
hydrophobe, green = polar). Maxima in the LFDs (red) are determined to be used as cluster 
seeds. In this example a cluster radius (rc) of 1.5 Å was used. Standard deviations (σ) and 
conservation weights (w) are calculated for each PPP that resulted from the clustering 
procedure. Finally distances between all pairs of PPPs are measured and the three-
dimensional representation is transformed into a correlation vector by equation 2.5. As an 
example, a section of the resulting CV representing polar – hydrophobe pairs is shown. 

 

 

2.3.1 Calculation of the SQUID pharmacophore model 

A schematic overview of the calculation of a SQUID pharmacophore is given in Figure 2.4. 

The starting point was an alignment of known active reference compounds. Assignment of 

pharmacophoric types (cation, anion, hydrogen-bond acceptor, hydrogen-bond donor, polar, 

or hydrophobic as defined with the pH4_aType function in MOE [Chemical Computing 

Group]) transformed the alignment into a field of pharmacophoric features. Maxima in the 

local feature densities (LFD) were used as cluster seeds to cluster the features into PPPs for a 
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more general representation of the underlying alignment. For each atom k of type t in the 

alignment the LFD was calculated by 
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where i are all atoms of type t in the molecular ensemble, D2 is the Euclidean distance 

between two atoms and rc is the cluster radius. Positions of atoms of type t for which no other 

atom of type t within rc was found yielding a higher LFD were taken as cluster seeds for PPPs 

of type t. All atoms were subsequently clustered to their nearest cluster seed of their 

respective type. The geometric center of the atoms of a cluster was taken as the position of the 

resulting PPP. The median distance of all atoms contributing to a PPP to the center of the PPP 

was taken as the value of the standard deviation σ of the PPP. For this value a minimum of 0.5 

Å was used. The conservation weights of the PPPs were calculated by  
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where m is the number of molecules in the model. This function returns a maximum value of 

1 for PPPs representing the same number of atoms from all molecules of the ensemble and a 

minimum of n-1 for PPPs which consist only of atoms of one molecule.  

For virtual screening the three-dimensional distribution of PPPs was transformed into 

a two point PPP-CV (Figure 2.4), arranged exactly like the CATS3D CV. The SQUID CV 

represents the three-dimensional distribution of Gaussian densities in the form the distribution 

of pairs of PPPs over the distance bins and over the feature types. The transformation was 

calculated according to Equation 2.5.  
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where p and q are PPPs, d is a distance range (“bin”), T is the pair of pharmacophoric 

types of p and q (e.g. Figure 2.4: p = hydrophobic, q = polar), w are the PPP conservation 

weights, σ is the standard deviation of a PPP, centerd is the center of the distance range d, and 

δ
T (Kronecker delta) evaluates to 1 for all pairs of PPPs of types T. D2 is the Euclidean 
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distance metric. The factor of 0.5 in the sum avoids double counting of pairs. Pairs of PPPs 

with themselves were not considered. The values of each dimension were scaled by the total 

number of possible pairs of PPPs of the two features considered. Finally the CV was scaled to 

a maximum value of 1, i.e. the largest value in the descriptor was scaled to a value of one and 

the other values were scaled proportionally. Like the CATS3D descriptor, the SQUID CV 

consisted of 420 dimensions, representing the same distance bins and pairs of atom-types. The 

SQUID CV was used to rank molecules encoded with the CATS3D descriptor. When 

CATS3D was used to encode molecules for SQUID database screening, the final CATS3D 

descriptor vector was also scaled to a maximum value of 1.  

The calculation of the SQUID CV was done with the program SQUID which was 

written in the SVL language of MOE [Chemical Computing Group]. 

 

 

 

 

 

Figure 2.5 The SQUID similarity score. The numerator of the term describes rewarding 
contributions of the score, i.e. CATS3D dimensions in regions with a high probability in the 
SQUID correlation vector result in high score (match). CATS3D dimensions in low 
probability regions have a low impact on that term (no match). The term for penalizing 
contributions (the denominator) weights CATS3D dimensions by the inverse SQUID vector.  
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2.3.2 Virtual Screening 

For virtual screening the SQUID CV representation was used to weight CATS3D 

representations of molecules according to their fitness according to their distribution of 

pharmacophoric features. The SQUID CV and the CATS3D CVs differ significantly in the 

meaning of their content. The SQUID CV describes a broad range of descriptor areas which 

are favorable for the desired biological activity, while the CATS3D descriptor contains only a 

smaller subset of the actual occurrences of atom-pairs in a specific ligand. Consequently, 

similarity metrics like the Euclidean distance or the Tanimoto index, which are based on the 

assumption that both descriptors, which are to be compared, represent objects in the same 

way, cannot be used to assess the activity of the molecules under consideration. To overcome 

this problem a SQUID similarity score was developed (Eq. 2.6): 
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where xiA is the value of the i-th element of the SQUID CV, xiB is the value of the i-th 

element of a molecule CV and N is the total number of dimensions. The idea of the SQUID 

similarity is further illustrated in Figure 2.5. The value xiA may be considered as the idealized 

probability of the presence of features in xiB. This results in high scores for molecules with 

many features in regions of the query descriptor which have a high probability. To penalize 

the presence of such atom pairs in regions with a low probability, the denominator weights the 

presence of atom pairs with the inverted probabilities of the descriptor of the pharmacophore 

model (a value of 1 was added to the denominator to avoid division by zero and high scores 

resulting from a very low value in the denominator of the term).  

For virtual screening additional weights (“feature-type weights”) were used to weight 

the importance of each of the pharmacophoric features-types (e.g. hydrophobic or hydrogen-

bond donor) in the CV. The sums of the single feature-type weights were used to weight the 

importance of each pair of feature-types in the CV. The sum of the probabilities in the CV for 

each pair of features over all distance bins was scaled to the value of the feature-type weights. 

Finally the whole CV was scaled to a maximum of 1. It was found that a simple optimization 

by permutation of all combinations of the weight values {0.1, 0.2, 0.3, 0.4, 0.5} for each of 

the single features and subsequent testing of these weights in virtual screening was sufficient 

to retrieve good virtual screening results.  
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Evaluation of the different pharmacophore models obtained from different cluster-

radii and feature type weights was done with the program SQUIDopt which is based on the 

workflow of the program SQUIDscreen (Figure 2.3). In SQUIDopt all pharmacophore model 

variants (e.g. models from different cluster radii or different feature type weights) serve as 

references for virtual screening. In this way the different models can be prioritized and the 

model with the best ef value could be used for further virtual screening. In cases where the ef 

was not discriminative enough to favor one or a small set of models a more sensitive measure 

was used, the enrichment value ev: 
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where ef(i%) is the enrichment factor for the first i% of the hit-list. This returns the 

weighted sum of the enrichment factors of the whole database. The smaller the fraction of the 

database, the higher is the weight for the ef. 

Virtual screening was performed with the program SQUIDscreen, which was written 

in C++.  

 

 

2.4 Methods of Section 4.1: Influence of similarity  metrics 

and descriptor vector scaling on CATS3D retrospecti ve 

screening 

 

Data set 
For the retrospective screening experiments the COBRA database (version 2.1; 4705 

molecules) [Schneider & Schneider, 2003] of annotated reference molecules from recent 

scientific literature was employed. Twelve different non-overlapping subsets of COBRA were 

defined as active molecules (used as query) and the respective remainder of the dataset as 

inactive molecules. The sets of actives contained molecules that bind to the angiotensin 

converting enzyme (ACE, 44 compounds), cyclooxygenase 2 (COX2, 93), corticotropin 

releasing factor (CRF antagonists, 63), dipeptidyl-peptidase IV (DPP, 25), G-protein coupled 

receptors (GPCR, 1642), human immunodeficiency virus protease (HIVP, 58), matrix 

metalloprotease (MMP, 77), neurokinin receptors (NK, 188), nuclear receptors (NUC, 211), 
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peroxisome proliferator-activated receptor (PPAR, 35), beta-amyloid converting enzyme 

(BACE, 44) and thrombin (THR, 188).  

For all COBRA molecules hydrogens were added with CLIFF and single 3D 

conformations were calculated with CORINA (version 2.64) [CORINA]. CATS3D 

descriptors were calculated using the three scaling schemes no-scaling, scaling1 and scaling2. 

 

Virtual screening 
For all 12 activity classes of the COBRA database, and for the three scaling schemes 

retrospective screening experiments were performed with the program rankIt, using the 

Manhattan distance, the Euclidean distance and the Tanimoto similarity. The relative 

performance of the different parameter sets was assessed by enrichment factors. 

 

 

2.5 Methods of Section 4.2: Impact of conformationa l 

flexibility on CATS3D virtual screening 

 

Data set 
The PDBbind database [Wang et al., 2004] (version 2002) served as a reference set of high-

quality crystal structures of receptor-bound ligands for the virtual screening experiments. For 

retrospective screening we used the COBRA database [Schneider & Schneider, 2003] 

(version 3.12) consisting of 5,376 annotated ligands compiled from scientific literature. The 

ligands of the PDBbind database were grouped according to their target annotation. All 

clusters containing less then five ligands were removed. Clusters were also removed for 

which no ligands were found in the COBRA database with the same target annotation as in 

PDBbind. From multiple incidences of identical ligands all but the one with the best 

resolution were removed. The final set of reference ligands consisted of 11 groups (“activity 

classes”) with a total number of 177 ligands. The final set of ligands with the corresponding 

PDB identifier is given in Table 2.2. 

The corresponding set of “active” ligands in the COBRA database contained 674 

molecules, which means that the COBRA database contained 4,702 additional ligands that 

were not considered as “active” in either of the 11 activity classes. The final set of annotated 

activity classes and their abbreviations were: acetylcholinesterase (ACHE, 6 compounds from 

PDBbind, 13 compounds from COBRA, overlap: 0), carbonic anhydrase II (CAII, 30, 25, 2), 
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elastase (ELA, 8, 8, 0), factor Xa (FXA, 5, 226, 5), HIV-protease (HIVP, 58, 61, 8), 

neuraminidase (NEU, 8, 28, 1), protein tyrosine kinase c-src (PTK-CSRC, 7, 16, 0), protein 

tyrosine phosphatase 1b (PTP1B, 5, 36, 0), stromelysin 1 (STRO1, 7, 19, 0), thrombin (THR, 

32, 194, 10), and urokinase type plasminogen activator (UTPA, 11, 48, 3). Since we were not 

interested in the absolute performance of the method, but in the relative performance using 

different degrees of conformational information, we did not remove ligands that were present 

in both databases (“overlap”).  

 

Table 2.2. Ligands from the PDBbind dataset selected as reference molecules for virtual 
screening.  
 
Activity class PDB identifier 

Acetylcholinesterase 1e66, 1gpk, 1gpn, 1h22, 1h23, 1vot 

Carbonic anhydrase II 1a42, 1avn, 1bcd, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 

1bnv, 1bnw, 1bzm, 1cil, 1cim, 1cin, 1cnw, 1cnx, 1cny, 1g45, 

1g48, 1g4j, 1g4o, 1g52, 1h4n, 1if7, 1if8, 1okl, 1okn, 1ydb 

Elastase 1bma, 1ela, 1elb, 1elc, 1eld, 1ele, 1inc, 7est 

Factor Xa 1ezq, 1f0r, 1f0s, 1fjs, 1ksn, 1xka 

HIV-protease 1a30, 1a94, 1aaq, 1ajv, 1ajx, 1b6j, 1b6k, 1b6l, 1b6n, 1b6o, 1b6p, 

1bdq, 1bwa, 1bwb, 1c70, 1d4k, 1d4l, 1d4y, 1dmp, 1g2k, 1g35, 

1hbv, 1hih, 1hiv, 1hos, 1hpo, 1hps, 1hpv, 1hpx, 1hsh, 1htf, 1htg, 

1hvh, 1hvi, 1hvj, 1hvl, 1hvr, 1hwr, 1hxw, 1izh, 1k6p, 1k6t, 1k6v, 

1mtr, 1ody, 1ohr, 1pro, 1qbs, 1qbu, 1sbg, 2bpv, 2bpy, 3aid, 4hvp, 

5hvp, 7hvp, 7upj, 8hvp 

Neuraminidase 1f8c, 1f8d, 1f8e, 2qwb, 2qwc, 2qwe, 2qwf, 2qwg 

Protein tyrosine kinase 

c-src 

1a07, 1a08, 1a09, 1a1b, 1a1c, 1a1e, 1is0 

Protein tyrosine 

phosphatase 1b 

1c83, 1c84, 1c87, 1c88, 1ecv 

Stromelysin 1 1b8y, 1caq, 1ciz, 1hfs, 1sln, 1usn, 2usn 

Thrombin 1d3d, 1d3p, 1d4p, 1d6w, 1d9i, 1etr, 1ets, 1ett, 1g37, 1ghv, 1ghy, 

1gi4, 1gj5, 1kts, 1qbv, 1tmt, 1tom, 1uvt, 7kme, 1a4w, 1bcu, 1bhx, 

1c1u, 1c1v, 1c4u, 1c4v, 1c5n, 1c5o, 1fpc, 1jwt, 1k21, 1k22 

Urokinase type 

plasminogen activator 

1f5k, 1f5l, 1gi7, 1gi8, 1gi9, 1gj7, 1gj8, 1gj9, 1gja, 1gjc, 1gjd, 
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Calculation of conformations 
Single three-dimensional conformations were calculated with CORINA [Sadowski et al., 

1994] and multiple three-dimensional conformations were calculated with ROTATE (version 

1.15) [Schwab, 2003], based on the CORINA conformations. Conformations were calculated 

for the selected reference molecules from the PDBbind database and all molecules from the 

COBRA database. For each database single conformations were calculated with CORINA. To 

restrict the number of possible output conformations from ROTATE only the five most 

central rotatable bonds were subjected to torsion angle variation, and conformations with an 

internal (symbolic) energy of more than 100 kJ/mol above the lowest-energy conformation 

were rejected. The resulting conformations were further clustered in torsion angle space to 

obtain only representative conformations. To obtain databases of different conformational 

resolutions (i.e. different numbers of conformations) different thresholds of 120° (resulting 

database further referred to as R1), 60° (R2) and 45° (R3) were applied. CATS3D descriptors 

were calculated for all four COBRA databases with different conformations and the PDBbind 

crystal structure conformations using scaling2. 

 

Superposition and calculation of the RMSD 
Rigid body superimposition of molecules was performed to compare two conformations of 

one molecule. The similarity of two conformations was quantified by the RMSD (root mean 

square deviation) value of Cartesian atom positions. This was done with the program Match3d 

by Jens Sadowski. Match3d takes into account the symmetry of nondistinguishable but 

differently numbered groups (e.g. the two oxygen atoms in a carboxylate group) for the 

calculation and thereby avoids artificially introduced high RMSD values. Only non-hydrogen 

atoms were considered for the calculation. 

 

Virtual screening 
The crystal structure conformations of the 11 ligand classes were used as references for 

retrospective screening of the COBRA database versions with different numbers of 

conformations, using the program SQUIDscreen with the Manhattan distance. The relative 

performance of the different amounts of conformations was assessed by enrichment factors. 
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2.6 Methods of Section 4.3: Virtual screening and s caffold 

hopping efficiency of alignment-free pharmacophore 

pair descriptors 

 

Data set 
For the retrospective screening experiments the COBRA database (version 2.1) [Schneider & 

Schneider, 2003] was employed using the same activity classes as in Section 4.1, except that 

the two very general classes G-protein coupled receptors (GPCR) and nuclear receptors 

(NUC) were discarded for the experiments. For the virtual screening experiments hydrogens 

were added with CLIFF and single 3D conformations were calculated with CORINA (version 

2.64) [Sadowski, 1994]. CATS, CATS3D and SURFCATS descriptors were calculated with 

scaling2. The MACCS keys were calculated with MOE [Chemical Computing Group]. 

 

Molecular equivalence numbers 
Molecular equivalence indices [Xu & Johnson, 2001; Xu & Johnson, 2002] were used to 

identify identical scaffolds in molecular databases. The calculations were done with the 

program Meqi (Molecular equivalence indices) [Pannanugget Consulting]. Meqi reduces the 

molecular representation to the scaffold of a molecule and calculates an equivalence number 

with a modified version of the Morgan algorithm [Morgan, 1965]. For the calculation of 

equivalence numbers all molecules were preprocessed in the following way in Meqi: First all 

hydrogens were stripped off of the molecules. Second, all atoms were transformed into 

carbons with the command “Vertex-labeling.list: C ?”. Third, all bonds were transformed to 

single bonds with the command “Edge-labeling list: 1 1 2 3 4”.  

Two different definitions of scaffolds were used for the equivalence number 

calculation: cyclic system (scaffold) and reduced cyclic system (reduced scaffold) (Figure 

2.6). Scaffolds represent the molecule without sidechains, indifferent for types of atoms and 

bonds. Scaffolds are chosen with the “Subgraphs: CyclicSystem” button. Reduced 

representations are characterized by a simplifying representation of rings, which does not 

further discriminate between rings comprised of different numbers of heavy atoms. 

Conjugated systems with different numbers of rings are not considered as identical. Reduced 

representations were obtained with the command “Topology: Reduced”. Exact representations 

of rings were used with “Topology: Unchanged”. Other parameters of the program were held 
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constant for all calculations: “Embedding: Unembed”, “Components: Group”, “Attachment 

type: RingSys”. 

 

 

 

Figure 2.6 Definition of cyclic system “Scaffold” (Sc) and reduced cyclic system 
“Reduced Scaffold” (ReSc). In this work we defined the scaffold of a molecule as the side-
chain depleted molecular graph without annotation of atom-types. A reduced scaffold is a 
more general representation which does not discriminate between rings consisting of different 
numbers of heavy atoms, but systems containing different numbers of rings are still not 
considered being equal. 
 
 

Virtual screening 
For all 10 activity classes of the COBRA database, and for the four molecular descriptors 

CATS, CATS3D, SURFACTS and the MACCS keys retrospective screening experiments 

were performed with the program rankIt, using the Manhattan distance, the Euclidean 

distance and the Tanimoto similarity. The relative performance of the different parameter sets 

was assessed by enrichment factors. To compare the enrichment of scaffolds and reduced 

scaffolds, enrichment factors were calculated from the first occurrences of each unique 

scaffold and reduced scaffold in the set of active molecules.  

 

 

2.7 Methods of Section 4.4: Prospective screening f or 

mGlurR5 allosteric modulators with CATS3D 

 

Data set 
A set of seven allosteric inhibitors of mGluR5 with reported low nanomolar activity was 

compiled from scientific and patent literature [Gasparini et al., 1999; Mutel et al., 2002; 

Cosford et al., 2003; Gasparini et al., 2003] as reference compounds in virtual screening. 
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For prospective screening the Asinex Gold compound collection [ASINEX] (version 

april 2003) was used, which contained 194,563 molecules. As a pre-screening filter we 

selected the 20,000 most “drug-like” compounds [Schneider & Schneider, 2004] in the same 

manner as described previously for the SPECS database. 3D-conformations of the screening 

compounds were calculated in MOE using the MMFF94 force field [Halgren, 1996]. The 

results were restricted to a maximum of 20 lowest energy conformations per molecule. 

CATS3D descriptors were calculated with the scaling2 option. 

For the analysis of the virtual screening results CATS descriptors were calculated with 

the program speedcatsdotcom [Fechner et al., 2003] with default parameters and the MACCS 

keys were calculated with MOE [Chemical Computing Group]. 

 

Alignment of reference molecules 
To form a hypothesis about receptor-bound 3D-conformations of the reference molecules the 

flexible alignment tool of MOE was used with default parameters and the MMFF94 forcefield 

[Halgren, 1996]. Ligands were successively aligned, starting with the most rigid molecule to 

the most flexible molecule.  

 

Virtual screening 
Prospective screening was performed with each of the reference molecules with SQUIDscreen 

using the Manhattan distance.  

 

 

2.8 Methods of Section 4.5: Prospective screening f or 

mGluR5 allosteric modulators with an artificial neu ral 

network approach based on CATS3D representations  

 

Data sets 
For neural network training 68 mGluR5 allosteric antagonists from literature, patents and 

from unpublished results of Merz Pharmaceuticals, and 158 allosteric antagonists of mGluR1 

from patents and literature were used. Molecules that were not active on either mGluR5 or 

mGluR1 were compiled from the COBRA database (version 3.12) [Schneider & Schneider, 
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2003]. From the COBRA database all molecules were removed with a substring “mGluR” in 

the identifier. 

For all molecules single 3D conformations were calculated with CORINA [Sadowski, 

1994]. CATS3D descriptors were calculated with scaling2. MACCS keys were calculated 

with MOE [Chemical Computing Group]. 

 

Maximal diverse subset selection  
Maximal diverse subsets were selected with the MaxMin algorithm [Kennard & Stone, 1996]. 

The algorithm starts with an initial molecule as the subset selection. Successively, the 

molecule from the remaining molecules, which is most dissimilar to the already selected 

molecules, is added to the selected molecules. The procedure stops, when the desired number 

of molecules is selected. For subset selection the program MaxMinSelection [Schmucker et 

al., 2004] by Michael Schmucker was used, employing the Euclidean distance for 

dissimilarity assessment. An extended version of the program by Uli Fechner was used which 

enables the initialization with a randomly selected molecule in the selected.  

 

Shannon entropy based variable selection  
Selection of variables is important for predictive QSAR results if not all variables in a 

descriptor, e.g. all 420 CATS3D dimensions, contain information which is related with the 

prediction problem. Other variables might not show much or any variance and are though not 

useful for predictions either. We used Shannon entropy based variable selection, which is 

based on the Shannon entropy concept formulated by Shannon in 1963 [Shannon, 1963]. This 

concept was shown to be successful in descriptor selection for classification and QSAR 

applications [Stahura et al., 2000; Godden & Bajorath, 2003]. The Shannon entropy is a 

measure for the distribution of a variable over a range of values. If all possible states of a 

variable are equally populated the Shannon entropy is at maximum. If only a single state is 

populated, the variable has a minimum of entropy. Variables with larger values for the 

Shannon entropy are preferred over variables with lower entropy. 

The Shannon entropy is defined by Equation 2.8: 
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pi is the probability of observing a particular descriptor value, falling into a bin i. For 

continuous variables, the range of values of the descriptor is partitioned into N equal sized 

bins. ci is the number of instances having a descriptor value falling into bin i.  

In the formulation of Eq. 2.8 the Shannon entropy is dependent on the number of bins. A bin 

number independent formulation is the scaled Shannon entropy (Eq. 2.9) 

 

NSEsSE 2log= .     (Eq. 2.9) 

 

The range of sSE is from 0 to 1. For our studies we used N = 100, defined from the minimum 

to the maximum value. Variables were selected with a sSE ≥ 0.3.  

 

Autoscaling  
Autoscaling was used as a pre-procession step for the principle component analysis. With 

autoscaling variables are scaled by their standard deviation, leading to data with zero mean 

and unit variance. In this way differences between variables resulting from different value 

ranges and different size ranges are eliminated. A scaled variable x* is obtained by Equation 

2.10: 
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xik is the value of the kth dimension of molecule i, kx  is the mean value of all xik and sk is the 

standard deviation. Autoscaling results in data vectors scaled to length 1−n . 

 

Principle component analysis (PCA)  
Principle component analysis is a method to obtain uncorrelated variables. Correlated 

variables of a descriptor introduce a bias for these descriptor variables, which can deteriorate 

the performance of prediction methods. PCA can also be used for the visualization of high 

dimensional data in a two- or three-dimensional coordinate system. 

Uncorrelated variables are obtained by a linear projection from an original m-

dimensional space X into a lower d-dimensional space S by S = XL. The projection is defined 

by the loadings matrix LT which contains d vectors of m coefficients. The matrix containing 

the d new coordinates or variables for each molecular object is called the scoring matrix S.  
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The principle components (PC) represent the new coordinate system of the projected 

variables. The first PC coordinate axis is directed parallel to the maximum variance of the 

distribution of the data points in the original space. Accordingly the first PC explains most of 

the variance in the data. The second PC is orthogonal to the first PC and explains most of the 

remaining variance of the data. m PCs explain the full variance of the data. An efficient 

algorithm for the calculation of the PCs is the NIPALS algorithm [Wold, 1966; Wold, 1975], 

which was utilized here.  

The eigenvalue of a PC is the variance which is explained by the PC. The eigenvalue 

is calculated by the sum of the squared loadings of the PC. To obtain a small set of relevant 

uncorrelated variables, only PCs with eigenvalues ≥ 1 were selected.  

 

PCA transforms were calculated with the program nipals by Alexander Böcker.  

 

Feed-forward artificial neural networks  
The most widespread architecture of ANNs is multilayered feed-forward networks. The non-

linear behavior of multilayered feed-forward neural networks enables ANNs to learn in 

principle any relationship between input and output. For our studies we used three layered 

fully-connected networks with an input layer, a hidden layer and an output layer (Figure 2.7).  

 

 

 

Figure 2.7 Three layered feed-forward artificial neural network. The input layer consists of as 
many neurons as the dimensionality of the input data. The optimal number of hidden neurons 
has to be determined experimentally. The hidden layer and the output layer consist of 
sigmoidal neurons. w and v are the weights of the input to the hidden neurons and from the 
hidden neurons to the output neuron, respectively. ϑ j are the bias values from the hidden 

layer and 
outϑ  is the bias of the output neuron. 
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The output of a three-layered ANN can be expressed by Equation 2.11: 
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where wij are the weights from the input to the hidden neurons, vj are the weight from the 

hidden to the output neurons, ϑ j are the bias values from the hidden layer and outϑ  is the bias 

of the output neuron. Sigm (Eq. 2.12) is the sigmoidal function 
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The bias and weight values were determined in a training procedure employing a (1, λ) 

evolution strategy [Schneider & So, 2003]. Evolutionary strategies (ES) are assumed to be 

favorable in comparison to gradient based optimization methods like the backpropagation 

algorithm for optimization tasks in complex multimodal fitness-landscapes like found within 

drug discovery projects [Schneider & So, 2003]. A (1, λ) evolution strategy selects from a 

pool of samples only the fittest (the first parameter in (1, λ)), that is used as a parent for the 

generation of λ offsprings. The parent dies after reproduction. This is assumed to avoid the 

selection of local minima solutions. The ES starts with a random set of weights and bias 

values and generates a set of children with Gaussian distributed variations. At the beginning 

of the optimization process, the width of the Gaussian distribution (the step -size F) is large to 

facilitate the search for the approximate location of the global optimum. As the algorithm 

proceeds to the optimum F becomes smaller. This is realized by inclusion of the F values into 

the evolutionary optimization.  

The evaluation of prediction accuracy of the candidate ANNs in the training was done 

by the mean square error (MSE) function (Eq. 2.14) 
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where S is the number of data samples. The MSE quantifies the distance between the 

predicted values to the desired values from the training samples. 
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The accuracy of classification tasks was assessed by the Matthews correlation 

coefficient (Eq 2.15): 
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where P is the number of positive correct prediction, N is the number of negative correct 

predictions, O is the number of false-positives (overpredictions), and U is the number of false-

negatives (underpredictions). The results of the cc range from -1 to 1. A cc of 1 means a 

perfect prediction, a cc of 0 corresponds to a random prediction and a cc of -1 means a 100% 

wrong prediction. A threshold of 0.5 was used to classify objects as active or inactive for the 

calculation of the cc. 

A problem in neural network training is overfitting of the ANN to the training data. 

This results in a loss of generalization for the prediction of new data. The ANN has learnt the 

examples but no rules to separate the class of actives from inactives. To avoid overfitting the 

original dataset is randomly split into training and test data sets. The training set is used for 

the training of the ANN and the test set is used to supervise the generalization ability of the 

ANN. The training is stopped when the prediction accuracy of the test set starts to decrease 

after an initial phase of improvement while the prediction of the training set still improves. 

The random split into training and test data followed by training is repeated several times to 

obtained statistically significant stopping criteria. This procedure is called cross-validation. 

The training of ANNs was done with the program profi by Gisbert Schneider 

[Schneider & Wrede, 1993]. Ten times cross-validation was applied splitting the data in 

equally sized fractions of 50% / 50%. For the evolution strategy 500 solutions per generation, 

an initial step size of σ = 1 and a minimal step size of σ = 0.001, with a reset step-size of 0.01 

were used. The reset step size is the minimum value of F for each new generated child in the 

evolution strategy. For the training of classification tasks active molecules were marked with 

a target value of 1 and inactives with a target value of 0.  

Using a consensus score obtained from an ensemble of neural networks has been 

shown to improve the quality of predictions in comparison with a single ANN [So & Karplus, 

1996; Kauffman & Jurs, 2000]. Accordingly average values from the scores of multiple 

neural networks were used for the prediction of properties.  
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Self organizing maps (SOMs)  
SOMs represent a class of unsupervised neural networks which are mainly applied for 

clustering, feature extraction and topology preserving projections [Schneider & So, 2003]. 

SOMs consist of a single layer of neurons that have the same dimensionality as the data 

vectors. The two-dimensional distribution of neurons resembles the distribution of data points 

in the original high dimensional space. There is no predicted output value for an input object 

but a winner neuron which is most similar to the input object. Each neuron represents a 

prototype vector for the data objects which are most similar to this neuron. The field within 

which data points are assigned to a neuron is called the receptive field of this neuron. A 

neuron is activated if a data points falls into its receptive field. The preservation of the data 

topology is achieved by the definition of a topology in the neuron layer. This layer is fitted 

onto the original data distribution, preserving the original topology of the data. To avoid 

boundary problems the maps have a toroidal topology. 

The training of SOMs was done according to Kohonen [Kohonen, 1982]: 

(1) Initialize the map with N = N1 * N2 neurons ci with reference vectors 
icw  chosen 

randomly from the distribution p(ζ) of training patterns. Initialize connections between 

the neurons to form a rectangular N1 x N2 grid. The time parameter t is set to 0. 

(2) Randomly select a training pattern ζ from p(ζ) as input signal. 

(3) Determine the winner neuron with the smallest Euclidean distance to the input signal.  

(4) Adapt each neuron in the SOM to the training pattern. 

(5) Increase the time parameter: t = t + 1. 

(6) If t < tmax continue with step (2), else terminate. 

 

The adaptation of a neuron r to a training pattern ζ is done according to: 
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is the Gaussian neighborhood function around the winner neuron s and D1 is the 

Manhattan distance. The time dependent standard deviation is defined as  
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( ) max)( tt
initialfinalinitialt σσσσ = , 

and the time dependent learning rate is defined as  

 

( ) max)( tt
initialfinalinitialt εεεε = . 

 

The training of SOMs was calculated with the program som_create by Gisbert 

Schneider using 5 x 5 = 25 neurons, tmax = 85000, σinitial = 5 and εinitial = 1, and εinitial and 

σinitial = (tmax / number of training patterns). Visualization of SOMS was done with the 

program som_show by Gisbert Schneider. 

 

 

2.9 Methods of Section 4.6: Retrospective evaluatio n of 

SQUID fuzzy pharmacophore models 

 

Data set 
Pharmacophore models were calculated for COX-2 and thrombin on the basis of molecules 

which were reported in pharmacophore models for the respective targets [Palomer et al., 

2002; Patel et al., 2002]. For calculation of a COX-2 pharmacophore model, the crystal 

structures of COX-2 with the specific inhibitor SC-558 (1CX2) and the structures of COX-2 

with the unspecific inhibitors flurbiprofen (3PGH) and indomethacin (4COX) were used to 

model a template alignment for the flexible alignment of the specific COX-2 inhibitors 

rofecoxib and molecule 5 (M5) from Palomer et al. [Palomer et al., 2002]. For calculation of 

the thrombin pharmacophore model the crystal structures with PDB codes 1C4V, 1D4P, 

1D6W, 1D9I, 1DWD, 1FPC and 1TOM were used [Patel et al., 2002]. 

For retrospective screening we used the COBRA database [Schneider & Schneider, 

2003] (version 2.1). Two versions were calculated: one database with single conformations 

was calculated with CORINA [Sadowski, 1994] and one database of up to 50 energy 

minimized conformations was calculated with MOE [Chemical Computing Group] using the 

MMFF94 forcefield [Halgren, 1996]. For retrospective screening the molecules that were 

used for the pharmacophore model generation were removed from the datasets. The resulting 

datasets consisted of 92 active molecules and 4611 inactive molecules for COX-2, and 188 



Computational Methods 47 

actives and 4517 inactive compounds for thrombin. The CATS3D descriptor for the COBRA 

sets was calculated using scaling2. 

 

Alignment of reference molecules 
Alignments of inhibitors were either obtained by the flexible alignment tool in MOE with 

default parameters and the MMFF94 forcefield [Halgren, 1996] or the homology align tool in 

MOE using default parameters. 

 

Virtual screening 
Virtual screening with SQUID pharmacophore models was performed with the program 

SQUIDscreen. CATS3D similarity searching was also performed with SQUIDscreen using 

the Euclidean distance. MOE pharmacophore models were calculated using the PCH_ALL 

atom-type scheme, which consists of atom-types for cationic, anionic, hydrogen-bond donor, 

hydrogen-bond acceptor, aromatic ring centers, and hydrophobic interactions. 

 

 

2.10 Methods of Section 4.7: Prospective screening for 

inhibitors of the Tat-TAR RNA interaction with a SQ UID 

fuzzy pharmacophore model and CATS3D 

 

Data set 
Two reference inhibitors for the Tat TAR interaction were taken from literature: 

acetylpromazine [Lind et al., 2002] in the receptor bound conformation from the NMR 

structure 1LVJ [Du2002] that served as a template for the flexible alignment of CGP40336A 

[Hamy et al., 1998]. 

For the optimization of the “feature-type weights” the two reference ligands, used for 

the pharmacophore calculation, were used for retrospective screening in the COBRA database 

[Schneider & Schneider, 2003] (version 3.12). Up to 20 low energy conformations were 

calculated with MOE [Chemical Computing Group] for each of the molecules in this database 

using the MMFF94 forcefield [Halgren, 1996].  

For prospective screening the SPECS database [SPECS] (june 2003 version) with 

229,658 molecules was used. To obtain higher quality results and to restrict the calculation of 
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3D conformations the 20,000 most druglike molecules were selected, as predicted by an 

artificial neural network approach [Schneider & Schneider, 2004]. For each of these 

molecules multiple conformations were calculated in MOE like for the COBRA molecules.  

 

Calculation of drug-likeness score 
“Drug-likeness” was calculated according to a procedure described in [Schneider & 

Schneider, 2004]. Three parameters were used for the calculation: i) the output (“score”) of an 

artificial neural network that was trained to distinguish between “drugs” and “nondrugs”, 

based on CATS representations of molecules, ii) predicted aqueous solubility [Engkvist & 

Wrede, 2002], and iii) calculated polar surface area (PSA) (ASA_P option from MOE). 

Subsequent principal component analysis of this three-dimensional “drug-likeness” space was 

performed to obtain uncorrelated variables. A ranking of compounds was performed on the 

basis of their distance to “optimal” variable values (i.e., high drug-likeness score; high 

solubility value; PSA < 140 Å2). A detailed description of this procedure is given in 

[Schneider & Schneider, 2004]. 

 

Alignment of reference molecules 
For the alignments of the known reference Tat-TAR interaction inhibitors ligands the flexible 

alignment tool in MOE was used with default parameters and the MMFF94 forcefield 

[Chemical Computing Group]. 

 

Virtual screening 
Virtual screening with SQUID pharmacophore models was performed with the program 

SQUIDscreen. CATS3D similarity searching was performed with SQUIDscreen using the 

Manhattan distance. 
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2.11 Methods of Section 4.8: Prospective screening for 

taspase1 inhibitors with a receptor-derived 

pharmacophore model 

 

Data set 
The sequence of the human taspase1 was obtained from swiss-prot (entry Q9H6P5). 

Homologous crystal structures that were used as template for the homology models 

calculation were 1T3M, 2GAW and 1APZ.  

For prospective screening the SPECS database [SPECS] (june 2003 version) with 

229,658 molecules was used. To obtain higher quality results and to restrict the calculation of 

3D conformations the database was filtered according to the Lipinski “rule of five” [Lipinski 

et al., 1997] and additional target specific filters prior to conformation calculation. For each 

of these remaining molecules up to 20 low energy conformations were calculated in MOE like 

using the MMFF94 forcefield [Halgren, 1996]. Finally all bases were protonated and all acids 

deprotonated with the MOE database/wash function. 

 

BLAST search 
The BLAST [Altschul et al., 1997] search was performed using the sequence of taspase1 as 

query. The BLOSUM62 matrix with a gap opening penalty of 11 and a gap extension penalty 

of 1 was applied.  

 

Homology modeling 
Homology models were calculated with MOE [Chemical Computing Group]. Sequence and 

structure based alignments were calculated with the Homology/Align function in MOE, using 

the default values (blosum62 substitution matrix with a gap start panelty of 7 and gap 

extention panelty of 1). The visualization of the alignments was done with the program 

CHROMA [Goodstadt & Ponting, 2001]. 

Ten models were calculated based on the alignment. The coordinates of the final 

model were calculated as the average of the atom coordinates of the intermediate models. 

Refinement of the model was done by minimizing the sidechains of the models (backbone 

atoms were held fixed) with the MMFF94xx forcefield including solvatation to a RMS 
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gradient of 0.1. Minimization was done using chiral constraints, i.e. the chirality of the 

molecule was held fixed. Results were controlled with the protein report function of MOE. 

Docking 
Docking calculations were computed with the program GOLD [Jones et al., 1997]. For 

GOLD, the genetic algorithm parameters were used with the standard default settings. 

Chemscore was applied as fitness function [Eldridge et al., 1997]. Early termination was 

disabled.  

 

Database filtering 
The SPECS database was filtered according to the Lipinski “rule of five” [Lipinski et al., 

1997] and target specific filters, based on the MOE descriptors in Table 2.3. Molecules were 

discarded from the SPECS database which satisfied one of the criteria based on an extended 

version of the “rule of five”: > 500 Da, logP > 5, > 5 hydrogen-bond donors, > 10 hydrogen-

bond acceptors, > 10 rotatable bonds. Since the inhibitors were thought to depend on one 

acidic group, all molecules with less than one acidic group were removed. Molecules with Br, 

I, B, P, S- and nitro groups and sulfat as only single acidic group were also removed 

 

Table 2.3. MOE Descriptors 

 

Descriptor name Description 

Weight Molecular mass 

logP(o/w) logarithm of the octanol / water partition 

coefficient 

a_don number of hydrogen-bond donors 

a_acc number of hydrogen-bond acceptors 

b_rotN number of rotatable bonds 

a_nBr number of bromine atoms 

a_nI number of iodine atoms 

a_nP number of phosphorus atoms 
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Virtual screening 
Virtual screening was performed with the MOE pharmacophore search tool.  

 

 



3 Experimental Section 

 

Note: The following methods and experimental procedures were not applied by the author of 

the thesis. Inclusion of the experimental details is for the purpose of completeness of the 

scientific results. 

 

 

3.1 Determination of IC50 values for mGluR 

 

Materials 
[3H]-MPEP was obtained from Tocris Cookson (Bristol, UK). MPEP was synthesized for in-

house use as a reference compound according to [Gasparini et al., 1999; Sashida et al., 1988]. 

Test compounds were purchased as dry powder from ASINEX Ltd. (Moscow, Russia). The 

ASINEX Gold Collection Database was provided by ASINEX Ltd. [3H]-MRZ 3415 was 

synthesized by Amersham Biosciences (Buckinghamshire, UK). MRZ 3415 was synthesized 

for in-house use as a reference compound by the Latvian Institute of Organic Synthesis (Riga, 

Latvia). 

 

Membrane preparation 
Male Sprague Dawly Rats (approx. 200-250 g) were anaesthetized and decapitated. 

Forebrains were removed and homogenized (Ultra Turrax, 8 strokes, 600 rpm) in 0.32 M 

Sucrose. The suspension was centrifuged at 1,500 g for 4 min. using a Centrikon T-2050 

Ultracentrifuge (Tegimenta AG, Rotkreuz, Switzerland). Supernatant was removed and 

centrifuged at 20,800 g for 20 min. The resulting pellet was re-suspended in ice-cold distilled 

water and centrifuged at 7,600 g for 20 min. Supernatant and loosely associated flocculent 

membrane material (buffy coat) were removed by gentle trituration of the pellet and 

centrifuged at 75,000 g for 20 min. Supernatant was discarded and the membrane pellet was 

resuspended by sonication in Tris-Buffer (5 mM, pH 7.4) and afterwards centrifuged at 

75,000 g for 20 min. The last step was repeated twice and membranes were re-suspended in 

Tris-Buffer (50 mM, pH 7.5). 
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The concentration of protein was determined by the Lowry protein assay with bovine 

serum albumin as a standard. Membranes were stored frozen at –24°C, thawed on the day of 

the assay and washed again four times at 75,000g for 20 min. 

 

All centrifugation steps were carried out at 4°C. 

 

[3H]-MPEP binding 
After thawing, membranes were washed four times with ice-cold binding buffer containing 50 

mM Tris-HCl, pH 7.5. Binding assays were performed at room temperature in duplicate using 

fixed concentrations of test compound (10 µM). The assay was incubated for 1 h in the 

presence of radiotracer (5 nM) and membranes (1.2 mg/ml) and non-specific binding was 

estimated using 10 µM MPEP. Binding was terminated by rapid filtration through GF 52 

glass-fiber filters (Schleicher&Schuell, Dassel, Germany) using a 1225 Sampling Manifold 

(Millipore GmbH, Eschborn, Germany). Filters were washed twice with ice-cold assay-buffer 

and transferred to scintillation vials. After addition of Ultima-GoldTM MV (Packard 

Bioscience, Groningen, The Netherlands) radioactivity collected on the filters was counted in 

a 1500 Tri-Carb Packard Scintillation Counter. 

 

[3H]-MRZ 3415 Binding 
After thawing, membranes were washed four times with ice-cold binding buffer containing 50 

mM Tris-HCl, pH 7.5. Binding assays were performed at room temperature in quadruplicate 

on 96-well format using fixed concentrations of test compound (10 µM). The assay was 

incubated for 1 h in the presence of radiotracer (1 nM) and membranes (0.8 mg/ml) and non-

specific binding was estimated using 10 µM MRZ 3415. Directly after transferring the 

reaction volume onto a 96-well multiscreen plate with glass fiber filter 0.22 µm (Millipore 

GmbH, Eschborn, Germany) binding was terminated by rapid filtration using a multiscreen 

vacuum manifold (Millipore GmbH, Eschborn, Germany). Afterwards, filters were washed 

four times with ice-cold assay-buffer and Ultima-GoldTM MV Scintillation Cocktail (Packard 

Bioscience, Groningen, The Netherlands) was added. After 14 h – 16 h radioactivity was 

counted in a MicroBetaTrilux (Perkin Elmer Life Sciences GmbH, Rodgau-Jügesheim, 

Germany).  
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Solubility Determination 
40 µl of the stock-solution (10 mM, dimethyl sulfoxyd (DMSO) as solvent) of each test 

compound were diluted with 1.96 ml DMSO to a final concentration of 200 µM. 100 µl of 

this solution were diluted by addition of 1.99 ml of a solvent consisting of methanol and 

deionized water (1:1). The resulting solution A has a concentration of 10 µM of the test 

compound containing 5% DMSO. Solution B was prepared in the same manner but using 

Tris-buffer 50 mM, pH 7.5 as solvent instead of the methanol/deionized water mixture. 

To determine peaks of the different solutions a HP Series 1100 HPLC device with 

diode array detector (Agilent Technologies, Waldbronn, Germany) was used. Both solutions 

flew separately through a SymmetryTM C18 Column (Waters Corporation, Milford, MA) 

with a average pressure of 190 atmosphere. The resulting peaks of both solutions were 

compared at a wavelength where the “area under the curve” (AUC) of the peak of solution A 

and solution B respectively displayed a maximum. The AUC of solution A was defined as 

100%-value. Thus, the solubility of each test compound was determined as follows: 

 

100*[%]Solubility
 

 

Asolution
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AUC=       (Eq. 3.1) 

 

IC50-value Estimation  
IC50 values were estimated from the % of control values from the scintillation assay with a 

four parameter logistic equation. If both the radio-ligand and the competitor reversibly bind to 

the same binding site, binding at equilibrium follows equation 3.2. 
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If s is assumed to be 1 equation 3.2 can be reformulated to: 
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%100

(
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−
=

y

x
IC  ,     (Eq. 3.3) 

 

where s = slope factor = 1; 

x = concentration of test compound [µM] in the assay; 
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y = result of the binding assay for the test compound [% of control]. 

 

Ki-values were calculated from the IC50-values by the Cheng-Prussof Equation [Cheng & 

Prussof, 1973].  

 

d

i

K

L
IC

K
+

=
1

50  ,     (Eq. 3.4) 

 

where L corresponds to the radio-ligand concentration and Kd to its dissociation constant. 

 

 

3.2 Determination of IC50 values for TAR-RNA 

 

Materials 
Argininamide was purchased from Sigma Chemical Corp. (St. Louis, USA). The molecules 

resulting from virtual screening were purchased from SPECS (Delftechpark, The Netherlands) 

as 10 mM stock solutions in DMSO, and diluted for binding assays with DEPC- treated water 

to 1 mM or 100 µM, respectively. Fluorescence based binding assays[20] were performed in 96 

well microplates at 37°C. Reader: FluoStar Galaxy (BMG Labtechnologies, Offenburg, 

Germany), excitation wavelength 540 nm, emission wavelength 590 nm. Microplates: 

Corning 6860, black, non binding surface. The dye labeled Tat49-57–sequence fluoresceine–

AAARKKRRQRRRAAAC–rhodamine (1 µM stock solution) was purchased from Thermo 

Electron Corporation (Ulm, Germany). Oligonucleotides were obtained from Biospring 

(Frankfurt, Germany). 

 

In vitro transcription 
Equimolar amounts of T7-primer (5‘-TAATACGACTCACTATAG-3‘) and TAR template 

(5‘-GGCCAGAGAGCTCCCAGGCTCAGATCTGGCCCTATAGTGAGTCGTATTA-3‘) 

were mixed in TE buffer (10 mM Tris-HCl, 1 mM EDTA; pH 7.4) to give a final 

concentration of 50 pmol / µL in a volume of 100 µL. After heating to 90 °C for 5 minutes, 

the reaction was allowed to cool down slowly to room temperature. All in vitro transcriptions 

were performed with T7 polymerase containing RiboMaxTM Large Scale RNA Production 
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Systems Kit (#P1300; Promega, Mannheim, Germany) as described by the manufacturer. 

Subsequent to transcription the DNA template was removed as follows: After heating the 

transcription mixture to 95 °C for 5 minutes it was chilled immediately on ice. 10 µL RQ1 

DNase buffer (Promega) and 20 µL RQ1 RNase-free DNase (20 U, Promega) were added 

and the mix was incubated for 30 minutes at 37 °C. Following phenol / chloroform extraction, 

RNA was precipitated with 3 volumes of ethanol in the presence of 0.3 M sodium acetate (pH 

5.2). The RNA was desalted on a NAPTM column (Amersham Biosciences, Freiburg, 

Germany). After lyophilisation, the RNA pellet was redissolved in DEPC treated water to a 

concentration of 100 µM (stock solution) or 1 µM (final dilution), respectively. 

 

FRET assay 
The following stock solutions were used in the assay: labeled Tat-peptide (1 µM), TAR-RNA 

(1 µM), TK buffer (500 mM Tris-HCl, 200 mM KCl, 0.1% Triton-X 100, pH 7.4). The final 

volume per well was 100 µL. The fluorescence of pure Tat peptide was determined first: 10 

µL stock solution of Tat and 10 µL TK buffer were filled up with DEPC treated water to 100 

µL. 10 µL of Tat solution, 10 µL of TAR solution (each 1 µM), 10 µL TK buffer, and 70 µL 

DEPC treated water were then mixed in a second well to measure the emission of the Tat-

TAR complex. Having established the numbers for free and for bound peptide, single point 

measurements of potential inhibitors were carried out at concentrations of 1000, 100, and 10 

µM by using 10 µL of the stock solutions (10 mM, 1 mM, and 100 µM). RNA and peptide 

concentrations were kept constant at 100 nM in each well (10 µL Tat, 10 µL TAR, 10 µL TK 

buffer, 10 µL inhibitor, and 60 µL DEPC treated water). Addition of DMSO strongly 

increases the fluorescence of rhodamine independently from peptide-RNA binding. To 

eliminate this effect, samples of Tat and of Tat-TAR (each 100 nM) were also measured in 

the presence of 10 %, 1 %, or 0.1 % DMSO. Dividing these numbers by the value obtained in 

pure water generated the correction factors. For compounds which showed an inhibitory 

effect in the preliminary test, complete titration curves were determined from 11 data points. 

The molecular concentration at which the fitted titration curve intersected with the mean value 

of the fluorescence counts of the Tat-TAR complex and uncomplexed Tat was used as the 

IC50 value of a molecule. 
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The main section is organized in the following way: Sections 1-3 cover the retrospective 

evaluation of pharmacophore pair descriptors (CATS, CATS3D and SURFCATS) with 

respect to similarity metrics, scaling, multiple conformations and scaffold hopping. Sections 4 

and 5 cover the SQUID fuzzy pharmacophore model approach, including the evaluation of the 

method and a prospective virtual screening for Tat-TAR inhibitors. Section 6 and 7 report 

prospective virtual screening experiments for allosteric antagonists of the metabotropic 

glutamate receptor 5 using CATS3D similarity searching and an artificial neural network 

approach. Section 8 addresses the prospective virtual screening with a ligand- and binding-

site-based pharmacophore model of taspase1. 
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4.1 Influence of similarity metrics and descriptor vector 

scaling on CATS3D retrospective screening 

The CATS3D descriptor is a three-dimensional extension of the topological pharmacophore-

pair CATS descriptor developed by Schneider [Schneider et al., 1999] for ligand based virtual 

screening. Several parameters can influence the effectiveness of virtual screening. Among 

these are the set of reference molecules, the molecular descriptor and the similarity metric. 

We wanted to test if there are some general optimal settings for virtual screening with the 

CATS3D descriptor. In detail we wanted to test the influence of different similarity indices, 

namely the Manhattan distance, the Euclidean distance and the Tanimoto similarity 

coefficient (Table 2.1). Further we were interested in the effect of different scaling schemes 

on the performance of the CATS3D descriptor. Three different scaling schemes were tested: 

• No scaling (“no-scaling”).  

• Division by the number of PPPs of a molecule (“scaling1”).  

• Division of each of the 21 possible pairs of PPPs by the added occurrences of the two 

respective PPPs (“scaling2”). 

No-scaling corresponds to the histogram of pairs of PPPs in a molecule. Scaling1 was the 

original scaling scheme reported for the CATS descriptor [Schneider et al., 1999]. The aim of 

scaling1 is to reduce dissimilarities of molecules based on different molecular size. Scaling2 

is an extension of scaling1, first reported for CATS3D [Fechner et al., 2003]. The aim of 

scaling2 is to reduce the bias of highly populated types of PPPs (mainly the hydrophobic 

PPPs) on the similarity between molecules.  

For the retrospective screening experiments we employed the COBRA database 

(version 2.1) [Schneider & Schneider, 2003] of annotated reference molecules from recent 

scientific literature. Twelve different datasets were compiled from the COBRA database. 

These non-overlapping subsets were defined as active molecules (used as query) and the 

respective remainder of the dataset as inactive molecules. The sets of actives contained 

molecules that bind to angiotensin converting enzyme (ACE, 44 compounds), cyclooxygenase 

2 (COX2, 93), corticotropin releasing factor (CRF antagonists, 63), dipeptidyl-peptidase IV 

(DPP, 25), G-protein coupled receptors (GPCR, 1642), human immunodeficiency virus 

protease (HIVP, 58), matrix metalloprotease (MMP, 77), neurokinin receptors (NK, 188), 

nuclear receptors (NUC, 211), peroxisome proliferator-activated receptor (PPAR, 35), beta-

amyloid converting enzyme (BACE, 44), and thrombin (THR, 188). For the virtual screening 

experiments single CORINA [Sadowski et al., 1994] 3D conformations were used.  
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Figure 4.1. Average of the enrichment factors over the 12 activity classes for the different 
scaling methods and similarity metrics from retrospective screening of the COBRA database. 
Blue bars denote 1% enrichment and red bars 5% enrichment factors.  
 
 

Each of the molecules from the subsets was employed as query for one virtual 

screening experiment. Averages of the enrichment factors over all twelve classes are shown in 

Figure 4.1 for the first 1% and 5% of the hit-lists. Apparently the performance of the three 

scaling schemes was scaling2 > scaling1 > no-scaling, independent of the similarity metric 

applied. The performance of the similarity metrics showed no clear ranking. For no-scaling 

and scaling1 the Manhattan distance was found to be best. For scaling2 the Tanimoto 

coefficient was the best performing similarity metric. The differences between the similarity 

metrics were significantly smaller than between the scaling schemes. The standard deviations 

of the average ef values were found to be up to 64 % of the mean values (ef(5%) for no-

scaling with Tanimoto in Figure 4.1). Accordingly the results have to be taken with care. To 

assess the significance of the average efs we further investigated the results of the individual 

target classes.  

The enrichment factors for all classes are given in Table 4.1. For all classes expect 

GPCR significant ef values were found. GPCR is a very general class comprising many 

different receptors. Thus a lack of significant enrichment is not surprising. NUC, another 
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general class, was successful in retrospective screening. The major trend found for the 

average ef values was confirmed. Though large standard deviations were also found in the 

single activity classes the major trend of the average ef values seems to be confirmed. For 

almost all classes the best ef values for 1% of the hit-list were found with scaling2. Only for 

HIVP with Manhattan distance and no-scaling or scaling1, and for NK with Manhattan 

distance and the Tanimoto coefficient with no-scaling resulted in better or equal ef values 

than for the respective screenings using scaling2. For 5% of the hit-list more examples were 

found with equal or better ef values using scaling schemes other than scaling2. For the 

Tanimoto coefficient, this was only found for no-scaling NK.  

 

 

4.1.1 Conclusion 

The impact of different scaling schemes (no-scaling, scaling1, and scaling2) and 

different similarity metrics (Manhattan distance, Euclidean distance, and Tanimoto similarity) 

on virtual screening with the CATS3D descriptor was investigated with retrospective 

screening in ten target classes of the COBRA database. The results suggest a general 

preference for scaling2 (scaling by the added occurrences of the PPP pairs). Scaling2 was 

found to be best for most of the target classes. Accordingly for all further experiments this 

scaling scheme was applied. Using scaling2 the Tanimoto coefficient was found to be best. 

The differences between the similarity metrics were low in comparison to the differences 

between the scaling schemes. Therefore one could also suggest the use of the Manhattan 

distance for the screening of large datasets, since the Manhattan distance is the fastest of the 

three applied similarity metrics.  
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Table 4.1. Retrospective screening results for CATS3D using different scaling schemes and 
similarity metrics. Three scaling schemes (no-scaling, scaling1, and scaling2) and the three 
similarity metrics Manhattan distance (Manh), Euclidean distance (Euc), and the Tanimoto 
similarity (Tani) were applied. Values in brackets are standard deviations. 
 

  no-scaling  scaling1  scaling2 
% DB  Manh Euc Tani  Manh Euc Tani  Manh Euc Tani 
ACE             

1  12 (11) 12 (10) 12 (10)  14 (11) 12 (10) 13 (10)  16 (11) 17 (11) 20 (13) 
5  4 (3) 4 (3) 4 (4)  5 (3) 5 (3) 5 (3)  6 (3) 6 (4) 7 (4) 

COX2             
1  17 (11) 16 (11) 17 (12)  18 (11) 18 (12) 19 (12)  21 (12) 20 (13) 22 (13) 
5  7 (4) 6 (3) 7 (4)  8 (4) 7 (4) 7 (4)  9 (4) 8 (4) 9 (4) 

CRF             
1  19 (11) 15 (10) 15 (9)  21 (11) 15 (9) 15 (8)  22 (10) 21 (10) 20 (11) 
5  8 (3) 6 (3) 6 (3)  9 (3) 7 (3) 7 (3)  10 (3) 10 (3) 10 (3) 

DPP             
1  13 (8) 9 (6) 9 (7)  13 (9) 11 (8) 11 (8)  16 (11) 16 (12) 15 (13) 
5  4 (2) 4 (2) 4 (2)  5 (2) 4 (2) 3 (2)  5 (3) 5 (3) 4 (3) 

GPCR             
1  2 (1) 2 (1) 2 (1)  2 (1) 2 (1) 2 (1)  2 (1) 2 (1) 2 (1) 
5  1 (0) 1 (0) 1 (0)  1 (0) 1 (0) 1 (0)  1 (0) 1 (0) 1 (0) 

HIVP             
1  13 (8) 13 (8) 14 (8)  13 (8) 13 (7) 14 (7)  12 (8) 15 (9) 20 (10) 
5  7 (4) 7 (4) 8 (4)  6 (3) 7 (3) 8 (3)  5 (3) 7 (4) 9 (4) 

MMP             
1  7 (5) 5 (4) 5 (4)  7 (5) 5 (4) 6 (4)  10 (7) 11 (7) 13 (8) 
5  3 (2) 3 (2) 3 (2)  3 (2) 3 (2) 3 (2)  4 (3) 4 (2) 5 (3) 

NK             
1  13 (8) 11 (7) 12 (7)  12 (8) 11 (7) 12 (8)  11 (7) 12 (8) 15 (8) 
5  7 (4) 6 (3) 7 (4)  6 (3) 6 (3) 7 (4)  5 (3) 6 (3) 8 (3) 

NUC             
1  7 (6) 6 (5) 7 (5)  7 (6) 7 (5) 7 (5)  8 (6) 7 (5) 8 (6) 
5  4 (3) 3 (2) 4 (2)  4 (3) 3 (2) 4 (2)  4 (3) 4 (3) 5 (3) 

PPAR             
1  7 (5) 5 (4) 4 (5)  7 (6) 5 (5) 6 (5)  9 (7) 9 (8) 8 (8) 
5  3 (2) 2 (2) 2 (2)  3 (2) 2 (2) 2 (2)  3 (2) 3 (2) 3 (3) 

BACE             
1  7 (5) 5 (3) 4 (2)  8 (6) 6 (4) 5 (4)  12 (10) 12 (10) 11 (9) 
5  2 (2) 2 (1) 2 (1)  3 (2) 2 (1) 2 (1)  3 (2) 3 (3) 4 (3) 

THR             
1  6 (4) 5 (3) 5 (3)  6 (4) 6 (4) 6 (4)  7 (5) 8 (5) 9 (5) 
5  3 (2) 3 (1) 3 (1)  3 (2) 3 (2) 3 (2)  3 (2) 4 (2) 5 (2) 

average             

1% 
 10.1  

(5.1) 
8.6  

(4.7) 
8.8  

(5.1) 
 10.7  

(5.4) 
9.2  

(4.9) 
9.6  

(5.1) 
 12.2  

(5.8) 
12.4  
(5.6) 

13.5  
(6.2) 

5% 
 4.5  

(2.3) 
4.0  

(2.2) 
4.3  

(2.4) 
 4.7  

(2.3) 
4.1  

(2.0) 
4.3  

(2.2) 
 4.8  

(2.5) 
5.1  

(2.4) 
5.7  

(2.7) 
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4.2 Impact of conformational flexibility on CATS3D virtual 

screening 

Virtual screening methods like docking or three-dimensional pharmacophore searching rely 

on the on the “bioactive” conformation of molecules to asses the biological effect of a 

molecule. Three-dimensional pharmacophore correlation vector methods have been shown to 

produce reasonable results using only a small set of conformations or even a single 

conformation per molecule [Sheridan1 et al., 1996, Brown & Martin, 1996, Section 4.1].  

While it is a comparably easy task for small and rigid ligands with only few rotatable 

bonds to sample the conformational space exhaustively, there are still practical limits in the 

number of conformations that can be handled efficiently due to the exponential explosion of 

the number of potential conformations with an increasing number of rotatable bonds [Schwab, 

2003]. Accordingly three-dimensional methods which rely only moderately on the presence of 

an exact fitting conformer would be interesting for virtual screening. 

In the present study we examined the influence of the incorporation of different 

amounts of multiple conformations on the ability of the CATS3D approach to find 

isofunctional molecules in a retrospective screening experiment. Therefore reference 

molecules from co-crystal structures were used as queries for the retrospective virtual 

screening experiments. Different numbers of conformations were calculated for the virtual 

screening database. We compared the effect of using the different virtual screening libraries. 

The PDBbind database [Wang et al., 2004] (version 2002) served as a reference set of 

high-quality crystal structures of receptor-bound ligands for the virtual screening experiments. 

For retrospective screening we used the COBRA database [Schneider & Schneider, 2003] 

(version 3.12) consisting of 5,376 annotated ligands compiled from scientific literature. The 

ligands of the PDBbind database were grouped according to their target annotation. All 

clusters containing less then five ligands were removed. Clusters were also removed for 

which no ligands were found in the COBRA database with the same target annotation as in 

PDBbind. From multiple incidences of identical ligands all but the one with the best 

resolution were removed. The final set of reference ligands consisted of 11 groups (“activity 

classes”) with a total number of 177 ligands. The corresponding set of “active” ligands in the 

COBRA database contained 674 molecules, which means that the COBRA database 

contained 4,702 additional ligands that were not considered as “active” in either of the 11 

activity classes. The final set of annotated activity classes and their abbreviations were: 

acetylcholinesterase (ACHE, 6 compounds from PDBbind, 13 compounds from COBRA, 
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overlap: 0), carbonic anhydrase II (CAII, 30, 25, 2), elastase (ELA, 8, 8, 0), factor Xa (FXA, 

5, 226, 5), HIV-protease (HIVP, 58, 61, 8), neuraminidase (NEU, 8, 28, 1), protein tyrosine 

kinase c-src (PTK-CSRC, 7, 16, 0), protein tyrosine phosphatase 1b (PTP1B, 5, 36, 0), 

stromelysin 1 (STRO1, 7, 19, 0), thrombin (THR, 32, 194, 10), and urokinase type 

plasminogen activator (UTPA, 11, 48, 3). Since we were not interested in the absolute 

performance of the method, but in the relative performance using different degrees of 

conformational information, we did not remove ligands that were present in both databases 

(“overlap”). An overview over the average number of rotatable bonds and the average 

molecular weights of the activity classes is given in Table 4.2. Before further procession of 

the data all molecules were neutralized with a script written in the SVL-language of MOE 

[Chemical Computing Group]. 

 

Table 4.2. Average number of rotatable bonds and molecular weight of the activity classes. 
Values in brackets are standard deviations. 

  PDBbind   COBRA  

Activity 
class 

  Rotatable 
bonds 

Molecular 
weight 

 Rotatable 
bonds 

Molecular 
weight 

ACHE  6.7 (5.8) 334 (116)  8.2 (4.5) 253 (81) 

CAII  7.2 (3.5) 321 (84)  7.3 (3.0) 366 (100) 

ELA  16.4 (3.2) 545 (60)  10.9 (4.2) 431 (126) 

FXA  11.0 (5.3) 435 (29)  12.0 (5.7) 489 (82) 

HIVP  21.7 (9.7) 637 (116)  19.3 (6.2) 614 (116) 

NEU  12.9 (1.4) 305 (20)  12.6 (7.7) 320 (130) 

PTK-CSRC  24.9 (3.4) 557 (64)  7.6 (3.2) 444 (80) 

PTP1B  6.0 (0.0) 277 (34)  10.2 (6.4) 464 (150) 

STRO1  12.9 (6.4) 487 (108)  17.1 (5.6) 489 (106) 

THR  10.7 (5.0) 423 (125)  15.4 (5.1) 500 (107) 

UTPA  6.6 (1.9) 294 (86)  10.2 (5.8) 165 (116) 
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4.2.1 Calculation of conformations for the PDBbind dataset and the 

COBRA database 

Conformations were calculated for the selected reference molecules from the PDBbind 

database and all molecules from the COBRA database. For each database single 

conformations were calculated with CORINA. To restrict the number of possible output 

conformations from ROTATE only the five most central rotatable bonds were subjected to 

torsion angle variation, and conformations with an internal (symbolic) energy of more than 

100 kJ/mol above the lowest-energy conformation were rejected. The resulting conformations 

were classified after the calculation in torsion angle space by applying different thresholds to 

further reduce the number of conformers. 

 

 

 

Figure 4.2. The torsion angle. a) – f) Example of the torsion angle variation of the central 
rotatable bond of butane in steps of 60°. b), d) and f) correspond to minima in the torsion 
energy; a), c) and f) correspond to unfavorable states with maxima in the torsion angle 
energy. g) illustrates the five innermost rotatable bonds of the Factor Xa inhibitor Fxv673 
(Roman letters at the bonds in dark grey), that were used for the conformation generation with 
ROTRATE. 
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Table 4.3. Average number of conformations per molecule calculated for 11 activity classes. 
Multiple conformations were calculated with the following thresholds for the classification in 
torsion angle space: R1: 120 °, R2: 60° and R3: 45°. 

 

  PDBbind  COBRA 

Activity 
class 

 
R1 R2 R3 

 
R1 R2 R3 

ACHE  1.7 10.7 19.2  1.5 10.7 20.8 

CAII  3.5 18.9 31.3  3.1 22.0 38.9 

ELA  3.8 34.9 51.5  2.8 27.0 54.9 

FXA  3.8 38.4 69.0  3.9 32.8 59.4 

HIVP  2.9 30.1 56.4  2.8 28.9 51.4 

NEU  2.0 24.5 45.1  2.4 19.0 35.2 

PTK-CSRC  2.6 26.7 48.0  4.0 21.9 41.4 

PTP1B  4.0 14.6 25.6  3.2 25.4 46.9 

STRO1  3.4 35.4 64.9  3.2 31.0 55.6 

THR  3.5 26.5 49.6  3.4 34.3 63.6 

UTPA  3.3 11.0 19.2  3.3 22.8 48.0 

Average  3.1 24.7 43.6  3.1 25.1 46.9 

 

 

For the final classification we used torsion angle thresholds of 120° (resulting database further 

referred to as R1), 60° (R2) and 45° (R3). Table 4.3 gives an overview over the average 

number of conformations that were calculated per molecule for the different activity classes of 

both datasets. On average approximately three conformations were generated for each 

molecule in the R1 datasets, roughly 25 conformations in the R2 and about 45 conformations 

per molecule in the R3 datasets. For some of the activity classes (e.g. PTP1B, UTPA) the 

number of conformations differed significantly between the reference dataset and the COBRA 

database. Since the number of possible conformations is mainly determined by the number 

bonds which were rotated, this difference indicates that the topological similarity between the 

entries of these classes was low. 
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Table 4.4. Average best RMSD of the calculated conformations to the reference 
conformations of the PDBbind molecules. Improvements are given for usage of multiple 
conformations in comparison to the RMSD obtained with a single CORINA conformation. 
The improvement I (Rx, x=1,2,3) was calculated by RMSD (CORINA conformation) / 
RMSD (best Rx conformation). Values in brackets are standard deviations. 

 
 

RMSD in Å  
 Improvement over 

CORINA  

Activity 
class 

 
CORINA R1 R2 R3 

 
I (R1) I (R2) I (R3) 

ACHE  1.5 (1.8) 1.1 (1.2) 0.7 (0.7) 0.7 (0.8)  1.4 2.1 2.0 

CAII  1.1 (0.4) 0.9 (0.4) 0.8 (0.4) 0.8 (0.4)  1.2 1.4 1.5 

ELA  2.2 (0.4) 1.6 (0.3) 1.4 (0.4) 1.3 (0.4)  1.4 1.6 1.7 

FXA  2.0 (0.4) 1.7 (0.4) 1.0 (0.2) 0.8 (0.2)  1.2 2.1 2.5 

HIVP  3.1 (0.8) 2.6 (0.9) 2.2 (0.7) 2.1 (0.7)  1.2 1.4 1.5 

NEU  1.0 (0.6) 1.2 (0.4) 0.8 (0.5) 0.8 (0.5)  0.9 1.3 1.3 

PTK-CSRC  2.2 (0.5) 2.2 (0.2) 1.8 (0.1) 1.8 (0.1)  1.0 1.2 1.2 

PTP1B  0.9 (0.2) 0.5 (0.1) 0.4 (0.1) 0.4 (0.0)  1.6 2.1 2.4 

STRO1  2.1 (0.8) 1.5 (0.7) 1.2 (0.6) 1.2 (0.6)  1.4 1.7 1.8 

THR  1.9 (0.9) 1.4 (0.8) 1.2 (0.7) 1.1 (0.7)  1.4 1.6 1.7 

UTPA  0.9 (0.5) 0.5 (0.4) 0.4 (0.3) 0.4 (0.2)  1.7 2.3 2.4 

Average 
 

1.7 (0.7) 1.4 (0.6) 1.1 (0.6) 1.0 (0.5) 
 1.3 

 (0.2) 
1.7  
(0.4) 

1.8  
(0.5) 

 

 

4.2.2 Reproducing the crystal-structure conformatio ns of reference 

ligands 

In order to assess the reproduction of the receptor-bound conformations of the PDBbind 

reference ligands we calculated the RMSD value of all generated conformations to their 

corresponding experimentally determined geometry. The results of the calculation are shown 

in Table 4.4. In a recent publication [Boström, 2002] an RMSD of less than 0.5 Å to the 

reference conformation was considered as a successfully reproduced conformation. According 

to this threshold, only for two activity classes (PTP1B, UTPA) the bioactive conformation 

could be reproduced, even with the R3 database containing the largest number of calculated 

conformations. Applying a less stringent RMSD criterion of 1 Å, the CORINA conformations 
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already reproduced the bioactive conformation for three of the eleven activity classes (NEU, 

PTP1B, UTPA). For six activity classes the bioactive conformation could be reproduced in 

the R3 database. The best RMSD values were found for PTP1B and UTPA, the two classes 

with the minimum of rotatable bonds of 6 and 6.5 on average (Table 4.2), using the maximum 

of conformations. Only for two classes RMSD values higher than 1.3 Å were obtained: for 

HIVP and PTK-CSRC, the two classes with the largest number of rotatable bonds (21.7 for 

HIVP, 24.9 for PTK-CSRC). Interestingly, the largest improvement using more 

conformations could be obtained for Factor Xa inhibitors (FXA) which have 11 rotatable 

bonds on average (Table 4.2). For UTPA and PTP1B the second- and the third-best 

improvement were found. The smallest improvement was obtained for PTK-CSRC, which is 

probably caused by the fact that not all rotors were processed for the generation of multiple 

conformations and these two classes had the most additional bonds that were not rotated. 

 

 

 

Figure 4.3. Superposition of the CORINA conformation (red) and the best R3 conformation 
(green) of the Factor Xa inhibitor Fxv673 (PDB code 1KSN) to the reference conformation 
from the crystal structure. 

 

 

An example of the Factor Xa inhibitor Fxv673 (PDB code 1KSN) CORINA 

conformation (red) and the best R3 conformation (green) superimposed onto the reference is 

shown in Figure 4.3. The bound ligand conformation has a central kink that is not found in the 

geometrically more stretched CORINA conformation (RMSD = 2.3 Å). The best ROTATE 

conformation reproduced the kink which resulted in an improved RMSD of 1.1 Å. 

Summarizing, using more conformations resulted in a lower RMSD, and in most cases 

conformations were found close to the receptor-bound conformation.  
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4.2.3 Retrospective screening 

In order to determine the impact of multiple conformations on 3D similarity searching the 

presumable “bioactive” conformations of the reference ligands selected from the PDBbind 

database were used to screen the COBRA database for ligands with similar biological activity. 

The results of the retrospective screening experiments are compiled in Table 4.5. Most 

reference classes were able to significantly enrich the first percent of the ranked database with 

molecules from the same activity class. Surprisingly, for PTK-CSRC and PTP1B no actives at 

all were found in the top 1% of the ranked database. In comparison to the other activity 

classes significant differences in the average number of rotatable bonds and the average 

molecular weight of the reference molecules and the molecules from the COBRA database 

can be found (Table 4.2). This indicates that the ligand sets from the two databases differed 

from each other and were therefore not considered as “similar” by the virtual screening 

method.  

For probing the impact of multiple conformations for similarity searching with 

CAT3D correlation vectors we were interested in the improvement of using multiple 

conformations over single conformations and not just in the overall performance of each 

class. Interestingly, while significant improvement was observed for several of the activity 

classes, on average no significant improvement in the enrichment factor was observed when 

multiple conformations were incorporated. The largest improvement was observed for FXA 

and THR yielding an enrichment factor of 1.8 for R2 and R3, respectively. For the other 

activity classes much smaller improvements were detected. For ACHE even a significant 

deterioration was observed. In all cases no large difference in the ef between R2 and R3 was 

observed. 

Furthermore, no obvious correlation between the improvement of the RMSD from 

Table 4.4 and the improvement in similarity searching (Table 4.5) was found. Figure 4.4 

shows the plots of the enrichment factors versus the best RMSD values to the receptor-bound 

(bioactive) conformation found in the various conformational ensembles (single CORINA 

conformation, R1, R2, and R3) for the different activity classes. For example for UTPA, for 

which the RMSD could be largely improved for the PDBbind dataset, the usage of multiple 

conformations for COBRA led only to a small improvement for R3. On the other hand, FXA 

resulted in the largest improvement in both RMSD and in enrichment. HIVP and STRO1, the 

two classes with the most rotatable bonds in the COBRA dataset, showed nearly no 

improvement for R3. In R1 both classes even showed a small deterioration in the ef. This is 
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likely to be due to the rotation of only the five innermost rotatable bonds in the molecules. 

This limitation seems to prevent the reproduction of the crystal structure, i.e. the presumably 

“bioactive” conformation. This substantiates the observation in the previous experiment 

where the two classes with more than 20 rotatable bonds resulted in the two largest RMSD 

values (HIVP and PTK-CSRC in Table 4.4). Regarding the ef values, both HIVP and STRO1 

performed well, even with a single conformation. In contrast, THR, which ranked third in the 

number of rotatable bonds in the COBRA database, improved significantly with more 

conformations (Table 4.5, Figure 4.3). For ELA with an average number of 11.9 rotatable 

bonds in the COBRA database (Table 4.2), the enrichment did not increase although the 

RMSD to the receptor-bound conformation was lowered from 2.2 Å (CORINA single 

conformation) to 1.3 Å (R3 database).  

 

Table 4.5. Result of the retrospective screening of the COBRA database with the PDBbind 
reference structures. Enrichment factors were calculated for the first percent of the ranked 
databases. The improvement I (Rx, x=1,2,3) was calculated by ef (best Rx conformation) / ef 
(CORINA conformation. Values in brackets are standard deviations.  

 
 

Enrichment factor 
 Improvement over 

CORINA 

Activity 
class 

 
CORINA R1 R2 R3 

 
I (R1) I (R2) I (R3) 

ACHE  5.1 (4.0) 2.5 (3.9) 1.3 (3.1) 1.3 (3.1)  0.5 0.3 0.3 

CAII  3.8 (4.0) 4.5 (3.9) 4.6 (4.0) 4.6 (4.7)  1.2 1.2 1.2 

ELA  1.6 (4.4) 1.6 (4.4) 1.6 (4.4) 1.6 (4.4)  1.0 1.0 1.0 

FXA  4.8 (2.4) 7.0 (2.3) 8.5 (2.3) 8.7 (2.5)  1.5 1.8 1.8 

HIVP  12.2 (11.8) 11.4 (11.2) 13.2 (13.1) 13.3 (13.3)  0.9 1.1 1.1 

NEU  22.2 (10.5) 21.3 (11.0) 23.5 (10.0) 22.1 (10.3)  1.0 1.1 1.0 

PTK-CSRC  0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)  - - - 

PTP1B  0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)  - - - 

STRO1  9.0 (8.9) 6.7 (7.2) 8.2 (9.0) 9.0 (10.7)  0.7 0.9 1.0 

THR  2.9 (3.7) 4.0 (4.8) 5.2 (5.8) 5.3 (5.8)  1.4 1.8 1.8 

UTPA  4.9 (5.8) 6.6 (8.4) 6.2 (8.9) 6.0 (8.9)  1.3 1.3 1.2 

Average 
 

6.0 (6.5) 6.0 (6.1) 6.6 (6.9) 6.5 (6.6) 
 1.1 

 (0.3) 
1.1 
 (0.4) 

1.1  
(0.4) 
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Figure 4.4. Enrichment factors, ef (cf. Table 4.5), versus the best RMSD values, obtained 
with the four conformational ensembles (CORINA, R1, R2, and R3; cf. Table 4.4) for each of 
the activity classes. ACHE: acetylcholinesterase, CAII: carbonic anhydrase II, ELA: elastase, 
FXA: factor Xa, HIVP: HIV-protease, NEU: neuraminidase, PTK-CSRC: protein tyrosine 
kinase c-src, PTP1B: protein tyrosine phosphatase 1b, STRO: stromelysin 1, THR: thrombin, 
UTPA: urokinase type plasminogen activator. 
 

 

To find an explanation for the low impact of multiple conformations on similarity 

searching, we further investigated the Manhattan distances of the molecules obtained from 

different conformational samplings to the reference molecules. In Table 4.6 the average 

Manhattan distances from the best scoring conformations of all active molecules from the 

COBRA database to the reference molecules are given. Only an average improvement of 1.1 

was found using R3 in comparison to the COBRA conformations. For comparison the average 

Manhattan distances of the 10 best scoring inactives from each virtual screening experiment 

to the respective reference molecular descriptor are given in Table 4.7. Again an average 

improvement of 1.1 was found using R3 instead of single COBRA conformations. For ACHE 

no improvement was found for the active molecules but a small improvement of 1.1 (I(R3)) 
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was found for the inactives. This explains the decreased enrichment factor for ACHE using 

multiple conformations.  

 

Table 4.6. Average Manhattan distances of the actives from the COBRA database to the 
reference molecules from the PDBbind database. The improvement I (Rx, x=1,2,3) was 
calculated by average distance (Rx) / average distance (CORINA). Values in brackets are 
standard deviations.  

 

 
 Average Manhattan distance to the reference 

molecules 
 Improvement over 

CORINA 

Activity 
class 

 
CORINA R1 R2 R3 

 
I (R1) I (R2) I (R3) 

ACHE  9.5 (3.8) 9.4 (3.8) 9.2 (3.8) 9.2 (3.8)  1.0 1.0 1.0 

CAII  10.3 (3.2) 10.0 (3.1) 9.7 (3.1) 9.6 (3.1)  1.0 1.1 1.1 

ELA  10.7 (2.4) 10.3 (2.2) 10.0 (2.2) 9.9 (2.2)  1.0 1.1 1.1 

FXA  12.4 (3.5) 11.9 (3.5) 11.4 (3.4) 11.3 (3.5)  1.0 1.1 1.1 

HIVP  15.3 (4.4) 14.9 (4.4) 14.2 (4.5) 14.1 (4.5)  1.0 1.1 1.1 

NEU  9.9 (2.8) 9.6 (2.7) 9.3 (2.7) 9.2 (2.7)  1.0 1.1 1.1 

PTK-CSRC  13.2 (2.7) 12.6 (2.6) 12.0 (2.5) 11.9 (2.5)  1.0 1.1 1.1 

PTP1B  14.4 (3.9) 13.7 (4.0) 13.1 (4.1) 13.0 (4.1)  1.1 1.1 1.1 

STRO1  19.8 (4.8) 19.0 (4.8) 18.7 (4.8) 18.7 (4.8)  1.0 1.1 1.1 

THR  12.7 (3.5) 12.3 (3.3) 12.0 (3.2) 12.0 (3.1)  1.0 1.1 1.1 

UTPA  11.1 (4.0) 10.8 (3.9) 10.5 (3.8) 10.5 (3.8)  1.0 1.1 1.1 

Average 
 12.7 (3.0) 12.2 (2.8) 11.8 (2.8) 11.8 (2.8)  1.0 

 (0.0) 
1.1 
 (0.0) 

1.1  
(0.0) 

 

 

4.2.4 Conclusion 

Investigating the impact of multiple conformations on 3D similarity searching with CATS3D, 

it was demonstrated that using only a single conformation per molecule already resulted in 

significant enrichment of actives. This observation was also made for ligand classes with 

many rotatable bonds. On average these results did not significantly improve using multiple 

conformations. Nevertheless, for some classes of molecules considerable improvement in the 

enrichment of active molecules was observed. Furthermore, no clear correlation between the 
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improvement of the enrichment factor and the improvement of the RMSD to the bioactive 

conformation could be derived when screening with CATS3D correlation vectors. It was 

found that the Manhattan distance of single conformations did not change significantly using 

more conformations. This was observed for molecules with the same activity as well as for 

false-positives. Since the calculation of multiple conformations is computationally expensive 

it seems to be preferential to use single conformations for large databases, e.g. virtual 

combinatorial libraries, for a first-pass virtual screen. Single conformations can be computed 

efficiently with CORINA, even for large databases. In a second screening round, e.g. with 

smaller databases or flexible ligands, it can be worthwhile considering multiple 

conformations. 

 

Table 4.7. Average Manhattan distances of the best inactives from the COBRA database to 
the references molecules from the PDBbind database. The 10 best scoring inactive molecules 
from each retrospective screening experiment were used as inactives. The improvement I (Rx, 
x=1,2,3) was calculated by average distance (Rx) / average distance (CORINA). Values in 
brackets are standard deviations. 

 
 Average Manhattan distance to the reference 

molecules 
 Improvement over 

CORINA 

Activity 
class 

 
CORINA R1 R2 R3 

 
I (R1) I (R2) 

I 
(R3) 

ACHE  5.7 (2.7) 5.3 (2.6) 5.1 (2.6) 5.0 (2.6)  1.1 1.1 1.1 

CAII  5.5 (1.9) 5.3 (1.9) 5.1 (1.9) 5.1 (1.9)  1.0 1.1 1.1 

ELA  6.2 (1.5) 5.8 (1.4) 5.4 (1.4) 5.3 (1.4)  1.1 1.1 1.2 

FXA  7.8 (2.2) 7.6 (2.1) 7.3 (2.1) 7.2 (2.2)  1.0 1.1 1.1 

HIVP  10.5 (3.4) 10.1 (3.3) 9.6 (3.2) 9.5 (3.2)  1.0 1.1 1.1 

NEU  7.2 (1.1) 7.0 (1.0) 6.5 (1.1) 6.4 (1.1)  1.0 1.1 1.1 

PTK-CSRC  7.9 (2.0) 7.5 (2.1) 7.1 (1.9) 7.0 (1.9)  1.1 1.1 1.1 

PTP1B  7.5 (2.6) 7.2 (2.6) 6.8 (2.5) 6.7 (2.4)  1.0 1.1 1.1 

STRO1  14.8 (4.0) 14.4 (3.9) 13.8 (4.0) 13.7 (3.9)  1.0 1.1 1.1 

THR  6.3 (0.6) 6.2 (0.6) 6.0 (0.6) 5.9 (0.6)  1.0 1.1 1.1 

UTPA  5.1 (1.5) 4.9 (1.4) 4.7 (1.4) 4.7 (1.4)  1.0 1.1 1.1 

Average 
 7.7 (2.8) 7.4 (2.7) 7.0 (2.6) 7.0 (2.6)  1.0 

 (0.0) 
1.1  
(0.0) 

1.1  
(0.0) 
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4.3 Virtual screening and scaffold hopping efficien cy of 

alignment-free pharmacophore pair descriptors 

Manipulating living systems at the molecular level requires profound knowledge of the 

variability of small molecule effectors that provoke a particular cellular response. Medicinal 

chemistry relies on libraries of molecular probes that can be rationally designed to contain a 

desired degree of chemotype diversity. Despite great advances in the field of virtual screening 

and rational compound library design, “scaffold-hopping” remains a challenging goal 

[Schneider & Fechner, 2005]. The concept of scaffold-hopping aims at finding isofunctional 

but structurally dissimilar molecular entities [Schneider et al., 1999, Schneider et al., 2000; 

Böhm et al., 2004, Jenkins et al., 2004]. Ideal screening methods that perform successful 

scaffold-hops would not only find a maximum number but also a maximally diverse set of 

active compounds from a given chemical subspace. Only until recently, the focus in the 

development and evaluation of virtual screening methods has often been purely on the 

retrieval of large numbers of “active” molecules -- irrespective of the number of retrieved 

chemotypes. This has led to the impression that methods employing a low level of abstraction 

from the molecular structure, e.g. substructure fingerprints, are among the most efficient 

ligand-based virtual screening methods [Brown & Martin, 1996; Hert et al., 2004b]. In 

contrast to substructure-based molecular descriptors, pharmacophore models and 

physicochemical metrics represent a comparably high level of abstraction from chemical 

structure. Consequently, such methods have been employed for screening library design 

relying on their scaffold-hopping potential [Schneider et al., 1999; Schneider et al., 2000; 

Matter, 1997; Nærum et al., 2002]. In this study we compared the scaffold-hopping efficiency 

of similarity searching with topological, three-dimensional and molecular surface-based 

pharmacophore pair descriptors and a substructure fingerprint method. 

Similarity searching is founded on the similarity principle which states that similar 

molecules exhibit similar biological effects [Johnson & Maggiora, 1990]. A straightforward 

approach for similarity searching is to compare the connection tables to assess the similarity 

between two molecules. Such methods include substructure fingerprints like the MACCS 

keys [MDL Information Systems] which are based on exact chemical substructures. 

Substructure matching approaches were reported to be among the most successful for virtual 

screening [Brown & Martin, 1996; Hert et al., 2004b]. The classification of intermolecular 

interactions into general pharmacophore types provides a means to obtain a more general 

description of the underlying chemotypes of molecules [Schneider et al., 2000; Mason & 
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Good, 2001]. Three such descriptors were employed in this work: the topological CATS 

descriptor [Schneider et al. 1999; Fechner et al., 2003], the three-dimensional CATS3D 

descriptor, and the molecular surface based SURFCATS descriptor.  

Molecular representations that are grounded on three-dimensional conformations like 

molecular surface-based descriptors are independent from the molecular connectivity and 

should have a favorable scaffold-hopping potential [Bender & Glen, 2004; Clark, 2004]. For 

comparison with a conceptually different descriptor the MACCS keys were used as 

implemented in MOE. 

To assess the degree of scaffold-hopping, one must define the term “scaffold”. Here, 

we followed the concept of Xu and Johnson employing the software suite Meqi [Pannanugget 

Consulting L. L. C.], which has recently been devised for the analysis of chemical libraries 

[Xu & Johnson, 2001; Xu & Johnson, 2002]. Two different definitions of a scaffold were 

applied: cyclic system (“Scaffold”, Sc) and reduced cyclic system (“Reduced Scaffold, ReSc) 

(Figure 2.6). In Meqi, each molecular topology is specified by a particular molecular 

equivalence index (meqi) which is used to distinguish between different scaffolds and reduced 

scaffolds. 

Ligands from ten different target classes from the COBRA database [Schneider & 

Schneider, 2003] of annotated ligands were used as reference for retrospective virtual 

screening: angiotensin converting enzyme (ACE, 44 compounds, 28 scaffolds, 17 reduced 

scaffolds), cyclooxygenase 2 (COX2, 94, 27, 14), corticotropin releasing factor (CRF 

antagonists, 63, 33, 23), dipeptidyl-peptidase IV (DPP, 25, 13, 7), human immunodeficiency 

virus protease (HIVP, 58, 46, 31), matrix metalloproteinase (MMP, 77, 47, 19), neurokinin 

receptors (NK, 118, 65, 49), peroxisome proliferator-activated receptor (PPAR, 35, 29, 17), 

beta-amyloid converting enzyme (BACE, 44, 13, 12), and thrombin (THR, 188, 100, 36). 

According to the number of scaffolds and reduced scaffolds in relation to the number of 

molecules the datasets range from sets with a low scaffold diversity (e.g. COX2) to sets with a 

large relative scaffold diversity (e.g. PPAR, HIVP). The complete COBRA database 

contained 1,628 different scaffolds and 637 distinct reduced scaffolds. For retrospective 

screening each molecule from each target class was taken iteratively as the reference molecule 

for a virtual screening experiment, where all other molecules were ranked according to their 

similarity to the reference molecule. For quantification of “similarity” three similarity indices 

were employed: Manhattan distance, Euclidean distance, and Tanimoto similarity (Table 2.1). 
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To summarize: For the retrospective screening experiments we employed ten different 

datasets, four descriptors (CATS, CATS3D, SURFCATS, MACCS), and three molecular 

representations (atomic, scaffold, and reduced scaffold representation).  

 

 

 

Figure 4.5. Average relative performance for the first 5% over 10 ligand classes from the 
COBRA database. Comparison of the performance of MACCS, CATS, CATS3D and 
SURFCATS for molecules, scaffolds (Sc) and reduced scaffolds (ReSc). Three similarity 
metrics were applied: the Tanimoto similarity, the Euclidean distance and the Manhattan 
distance. 
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The average relative performance of the four methods for the first 5% of the database 

over the ten activity classes is summarized in Figure 4.5. The relative performance of one 

particular method within one activity class was defined as the ef yielded with this method 

divided by the average ef of the four methods (using the same similarity index). The influence 

of different similarity indices on the overall enrichment was low, for most parts 

indistinguishable within the standard deviations. For all molecular representations the order of 

the methods in terms of the enrichment factors for the top 5% of the hit-lists was found to be 

MACCS > CATS > CATS3D = SURFCATS when looking at the average values only. With 

regard to the enrichment of scaffolds and reduced scaffolds CATS, CATS3D and 

SURFCATS slightly improved in comparison to the MACCS keys.  

 

Table 4.8. Enrichment factors of different molecular representations (“Molecules”, 
“Scaffolds”, “Reduced Scaffolds”) over the activity classes. ef values are given for the first 
1% and 5% of the hit-lists. The Tanimoto coefficient was used to rank the molecules.  

 
 Molecules 
% DB MACCS CATS CATS3D SURFCATS 
ACE     
1 22 (11) 23 (13) 20 (13) 21 (15) 
5 9 (4) 11 ( 5) 7 ( 4) 8 ( 4) 
COX2     
1 27 (17) 14 ( 9) 22 (13) 19 (11) 
5 11 (6) 5 ( 3) 9 ( 4) 8 ( 4) 
CRF     
1 28 (15) 13 ( 8) 20 (11) 16 (10) 
5 12 (4) 7 ( 3) 10 ( 3) 9 ( 3) 
DPP     
1 21 (14) 12 ( 9) 15 (13) 13 (10) 
5 6 (4) 4 ( 4) 4 ( 3) 3 ( 2) 
HIVP     
1 14 ( 7) 24 (11) 19 (10) 20 (11) 
5 6 (2) 11 ( 3) 9 ( 4) 9 ( 4) 
MMP     
1 13 ( 9) 12 ( 7) 13 ( 8) 12 ( 9) 
5 5 (3) 5 ( 2) 5 ( 3) 5 ( 3) 
NK     
1 9 ( 6) 8 ( 4) 15 ( 8) 9 ( 6) 
5 5 (2) 5 ( 2) 7 ( 3) 5 ( 3) 
PPAR     
1 17 (17) 17 (12) 8 ( 8) 10 ( 8) 
5 5 (4) 6 ( 3) 3 ( 3) 4 ( 2) 
BACE     
1 13 (10) 12 (10) 11 ( 9) 6 ( 5) 
5 6 (4) 4 ( 3) 4 ( 3) 3 ( 2) 
THR     
1 12 ( 6) 14 ( 7) 9 ( 5) 8 ( 5) 
5 6 (2) 9 ( 4) 5 ( 2) 5 ( 3) 

((continued below)) 
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  Scaffolds  Reduced Scaffolds 
% DB  MACCS CATS CATS3D SURFCATS  MACCS CATS CATS3D SURFCATS 

ACE           
1  22 (11) 27 (12) 21 (11) 20 (10)  25 (12) 29 (12) 23 (10) 22 ( 8) 
5  9 (3) 12 ( 3)  7 ( 2)  8 ( 3)   9 (3) 11 ( 3)  8 ( 3)  8 ( 2) 

COX2           
1  27 (15) 16 ( 8) 23 ( 9) 21 (10)  33 (15) 20 (10) 25 (10) 26 (11) 
5  10 (4)  5 ( 2)  8 ( 3)  8 ( 3)  10 (3)  6 ( 2)  8 ( 2)  9 ( 3) 

CRF           
1  24 (12) 16 (10) 22 (12) 17 (10)  28 (13) 19 (11) 23 (11) 19 (12) 
5  11 (4)  7 ( 4) 10 ( 3)  9 ( 3)  11 (4)  7 ( 3)  9 ( 3)  8 ( 3) 

DPP-IV           
1  21 (13) 12 ( 8) 16 (12) 14 (12)  24 (12) 18 (11) 23 (15) 20 (16) 
5   7 (4)  6 ( 5)  4 ( 3)  4 ( 2)   9 (5)  7 ( 4)  6 ( 4)  5 ( 3) 

HIVP           
1  15 ( 8) 26 (13) 22 (12) 23 (13)  21 (11) 34 (15) 28 (15) 31 (16) 
5   6 (3) 11 ( 4) 10 ( 4) 10 ( 4)   8 (3) 13 ( 4) 11 ( 4) 11 ( 4) 

MMP           
1  17 (11) 15 ( 9) 16 (11) 16 (12)  24 (14) 24 (12) 24 (13) 23 (13) 
5   6 (3)  6 ( 3)  6 ( 3)  7 ( 4)   8 (3)  8 ( 3)  8 ( 3)  8 ( 4) 

NK           
1  10 ( 6)  9 ( 4) 16 ( 8) 10 ( 6)  12 ( 6) 11 ( 5) 16 ( 8) 11 ( 7) 
5   5 (2)  5 ( 2)  8 ( 3)  6 ( 3)   6 (2)  6 ( 2)  8 ( 3)  6 ( 3) 

PPAR           
1  16 (14) 17 (11)  8 ( 8) 10 ( 8)  19 (16) 23 (14) 10 ( 9) 14 (10) 
5   5 (3)  6 ( 3)  3 ( 2)  4 ( 2)   7 (4)  8 ( 3)  4 ( 2)  5 ( 2) 

BACE           
1  14 ( 9) 14 (10) 12 ( 7)  8 ( 5)  15 ( 9) 16 (11) 13 ( 8)  9 ( 6) 
5   4 (3)  4 ( 2)  4 ( 2)  3 ( 2)   4 (3)  5 ( 3)  4 ( 2)  3 ( 2) 

THR           
1  15 ( 6) 19 ( 9) 12 ( 7) 11 ( 7)  19 ( 8) 28 (12) 19 ( 9) 18 ( 9) 
5   7 (2) 10 ( 4)  6 ( 3)  6 ( 3)   8 (3) 11 ( 4)  8 ( 3)  7 ( 3) 

 
 

An explanation for the high performance of the MACCS keys in scaffold enrichment 

might be that the connectivity of the substructures is not accounted for by this descriptor. This 

can lead to an effective retrieval of molecules with slightly different scaffolds but similar 

side-chain decoration. Does this finding justify the conclusion that substructure fingerprints 

are best-suited for the purpose of scaffold-hopping? To find an answer to this question, a 

more detailed analysis was performed looking on the enrichment of the individual activity 

classes. We calculated ef values for all ten different classes, yielded with the Tanimoto 

coefficient (Table 4.8; results for the Manhattan distance and the Euclidean distance can be 

found in Appendix 6.1). None of the descriptors performed generally superior to the other 

descriptors within the error bars. Judging from the average values only, MACCS performed 

best for COX2, CRF, and DPP for full molecules, scaffolds and reduced scaffolds. CATS 

performed best for ACE, HIVP and THR, and CATS3D for NK in all molecular 

representations. SURFCATS was not found to be best for any one class. However, each 

descriptor of the CATS family was found to be better than the other family members for some 

ligand classes. This underlines the dependence of the descriptor performance on the screening 
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database. In other words, there is no globally best descriptor. It has to be stressed that this 

interpretation has limited relevance due to the large standard deviations and represents trends 

only. Further investigations with additional descriptors and metrics, and larger high-quality 

drug databases will be needed to scrutinize these findings. 

 

 

 

 

Figure 4.6. Scaffold diversity of the ligand classes. The diversity is given by the number of 
scaffolds (light gray) or reduced scaffolds (dark gray) relative to the number of molecules in a 
data set. With enrichment factors for the first 5% MACCS performed best fort he classes 
COX2, CRF and DPP, CATS performed best for the classes ACE, HIVP and THR and 
CATS3D performed best for NK. 
 

 

Figure 4.6 shows the fraction of scaffolds and reduced scaffolds found in the ten 

ligand classes. For the classes preferred by MACCS the average fraction of scaffolds was 0.44 

(± 0.13) and the average fraction of reduced scaffolds was 0.27 (± 0.11). For CATS the 

fractions were 0.65 (± 0.13) and 0.37 (± 0.17), and for CATS3D 0.55 and 0.42, respectively. 

One might speculate that MACCS performed best in classes with low numbers of different 

topologies, i.e. low scaffold diversity. CATS and CATS3D performed best in classes 

revealing a high degree of scaffold diversity. We conclude that pharmacophore descriptors 

might be more suited for designing diverse compound libraries compared to substructure 

fingerprints. Still one must be aware that these results are comparable within the error margin.  
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In an earlier publication we reported that different descriptors are often found to 

retrieve different molecules, despite having equal enrichment factors [Fechner et al., 2003]. In 

the present study we witness a similar situation: descriptors complement each other in the 

retrieval of different scaffolds and reduced scaffolds (Table 4.9).  

 

 

Table 4.9. Overlap of the results for pairs of descriptors in the first 5% of the hit-list. Shown 
are the average numbers over all ten classes of retrieved scaffold representations which were 
found by both methods. The numbers on the diagonal (shown in bold) are the average 
numbers of scaffolds found with the respective descriptor. The employed similarity index was 
the Tanimoto coefficient.  

 
Scaffold representations 
 

Descriptor MACCS CATS CATS3D SURFCATS 
MACCS 13.8    
CATS 8.6 15.4   

CATS3D 8.2 9.3 13.2  
SURFCATS 7.7 8.9 9.8 12.9 

 
Reduced Scaffold representations 
 

Descriptor MACCS CATS CATS3D SURFCATS 
MACCS 8.9    
CATS 6.1 9.8   

CATS3D 5.8 6.5 8.7  
SURFCATS 5.3 6.1 6.5 8.1 

 

 

Two of the virtual hit-lists were further investigated: the results for the COX-2 

inhibitors celecoxib (Figure 4.7) and rofecoxib (Figure 4.8). For each scaffold class, the best-

ranking hits were surveyed. Although the two reference molecules share a common reduced 

scaffold different scaffold classes were retrieved on different ranking positions. Again, the 

four similarity searching methods differed in their ability to retrieve diverse scaffold which 

results in a complementation of the methods. This outcome is remarkable especially because 

of the striking relatedness of the query structures. 
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Figure 4.7. Best hits for each reduced scaffold obtained with celecoxib. For each descriptor 
the best scored molecule in each reduced scaffold class is shown that was retrieved in the first 
1 % of the ranked database.  
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Figure 4.8. Best hits for each reduced scaffold obtained with rofecoxib. For each descriptor 
the best scored molecule in each reduced scaffold class is shown that was retrieved in the first 
1 % of the ranked database.  
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The two reduced scaffolds that were found exclusively with the MACCS keys for 

rofecoxib (ReSc classes 6 and 7) reflect that MACCS keys include no direct information of 

the size of the retrieved molecules. These molecules might have been rejected by the other 

methods due to their large size. Large reduced scaffolds were also found with CATS for 

celecoxib (ReSc class 2), which might have resulted from the restriction of the descriptor to a 

maximal path length of 10 bonds. Such a cut-off might be inappropriate for a database with 

potentially long ligands and respective pharmacophores, such as those annotated to HIVP, 

MMP, and PPAR – particularly in prospective screens 

 

4.3.1 Conclusion 

Concluding, we found that both substructure fingerprints (MACCS) and 

pharmacophore-pair descriptors (CATS) are suited for retrospective scaffold retrieval. For 

more diverse ligand classes the pharmacophore-based CATS descriptors slightly 

outperformed substructure (MACCS) keys as an average trend. The fact that structurally 

focused collections of pharmacologically active compounds are typically employed for 

retrospective screening studies might explain the often found high performance of 

substructure keys or related descriptors. Our results suggest that for the particular purpose of 

scaffold-hopping a reasonable strategy might be to use more generalizing molecular 

representations like pharmacophore descriptors. The use of several complementing methods 

can also be recommended for the purpose of scaffold hopping. We hope that our study will 

stimulate further investigations on this important topic of medicinal chemistry. 
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4.4 Prospective screening for mGlurR5 allosteric 

modulators with CATS3D 

Allosteric modulators for the metabotropic glutamate receptor 5 are a promising class of 

molecules for addressing several disorders of the central nervous system [Hermans & 

Challiss, 2001]. Being part of the pharmaceutical interesting class of GPCRs, for which rare 

receptor structure information is available, mGluR5 is an ideal target to test ligand based 

virtual screening approaches.  

 

 

 

Figure 4.9. Allosteric mGluR5 antagonists. 
 

 

First selective allosteric antagonists for mGluR5, SIB-1751 (4.4.1) and SIB-1893 

(4.4.2), were published in 1999 [Varney et al., 1999]. SIB-1751 was identified by high-

throughput screening (HTS), and SIB-1893 resulted from a UNITY search for analogues 

[Varney et al., 1999]. In phosphoinositol (PI) hydrolysis assays the two molecules revealed 

IC50 values of 3.1 µM and 2.3 µM, respectively. Chemical variation of SIB-1893 resulted in 

the much more potent highly selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-

pyridine (MPEP, 4.4.3, Figure 4.9) with an IC50 of 36 nM in PI hydrolysis assays [Gasparini 

et al., 1999]. Several MPEP-analogues (4.4.4–4.4.9, Figure 4.9) [4: Cosford et al., 2003; 5-8: 
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Mutel et al., 2002; 9: Gasparini et al., 2003] with reported low nanomolar activity have been 

published in the scientific and patent literature since then. Nonetheless, the mode of action of 

these ligands is not completely understood. Recent publications of MPEP and MPEP 

derivatives also reported off-target activity [4: Cosford et al., 2003; 5-8: Mutel et al., 2002; 9: 

Gasparini et al., 2003] and a short plasma half life [Anderson et al., 2003]. In particular, the 

latter could be attributed to potential metabolic instability of the ethynyl linker.  

Pharmacophore-based similarity searching has been proven to be suited for finding 

new ligands which exhibit similar biological activity but are based on a different chemical 

scaffold [Böhm & Schneider, 2000]. Using a set of known specific allosteric antagonists of 

mGluR5 (4.4.3-4.4.9) [Gasparini et al., 1999; Cosford et al., 2003; Mutel et al., 2002; 

Gasparini et al., 2003], which were compiled from scientific and patent literature, as a query 

we applied a hierarchical, ligand-based virtual screening approach to identify novel 

compounds accomplishing mGluR5 modulation. First, a “drug-likeness” estimation by an 

artificial neural network system was employed for prescreening to focus only on molecules 

with a predicted “drug-like” structure [Schneider & Schneider, 2004]. For subsequent 

similarity searching we used the CATS3D descriptor.  

 

 

 

Figure 4.10. Flexible pharmacophore-based alignment of reference molecules 4.4.3-4.4.9. 
Red: oxygen; blue: nitrogen; yellow: sulfur; gray: carbon. 

 

 

To form a hypothesis about receptor-bound 3D-conformations of 4.4.3-4.4.9 we used 

the flexible alignment tool of MOE (Figure 4.10). Ligands were successively aligned from 

4.4.3 to 4.4.9 and conformations were chosen based on existing knowledge among the best 

ranked results. Molecule 4.4.9 was manually adjusted to fit to the alignment, i.e. the angle 
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between the two planes of the ring systems was set to 90° (Merz, unpublished results). These 

individual 3D conformations served as query structures for CATS3D similarity searching. 

In search for new ligands we virtually screened the Asinex Gold compound collection, 

version of April 2003 [ASINEX], which contained 194,563 molecules. As a pre-screening 

filter we selected the 20,000 most “drug-like” compounds as described previously [Schneider 

& Schneider, 2004]. The result of this procedure can be seen, e.g., for the neural network 

prediction: the average drug-likeness score of the complete Asinex Gold collection according 

to the artificial neural network was 0.36 (σ = 0.28), for our screening set the score was 0.60 

(σ = 0.23) (higher values indicate more “drug-like” molecules).  

3D-conformations of the screening compounds were calculated in MOE using the 

MMFF94 force field. The results were restricted to a maximum of 20 lowest energy 

conformations per molecule. Similarity between a database entry and a reference molecule 

was expressed by the Manhattan distance. Separate similarity searches were performed with 

each of the molecules 4.4.3-4.4.9, and 27 of the top-scoring molecules (Figure 4.11) were 

selected for experimental testing. Molecules were chosen which had low Manhattan distances 

to one of the reference molecules and which were not too similar to the previously selected 

molecules, as judged by visual inspection from a medicinal chemistry perspective (Table 

4.10).  

 

Table 4.10. Results of virtual screening and the binding assays 

Virtual Screening  Binding Assay 
Molecule 

no. 

Most 
similar 

reference 
molecule 

Rank 
(CATS3D) 

CATS3D 
Manhattan 
distance 

CATS2D 
Manhattan 
distance 

MACCS 
Tanimoto 
similarity 

 Ki mGluR5 
(µM) 

Ki mGluR1 
(µM) 

Selectivity 
(Ki mGluR1 / 
Ki mGluR5) 

10 3 1 0.68 2.85 0.21  24 > 100 > 4.2 
11 3 4 0.88 2.2 0.2  > 100 63 < 0.6 
12 3 5 0.94 5.03 0.17  > 100 41 < 0.4 
13 3 6 0.95 3.79 0.22  > 100 > 100 1 
14 3 7 1.02 2.64 0.17  > 100 > 100 1 
15 3 17 1.12 3.06 0.24  > 100 > 100 1 
16 4 1 1.52 2.54 0.35  > 100 > 100 1 
17 4 3 1.67 5.27 0.22  > 100 > 100 1 
18 4 4 1.67 2.34 0.34  > 100 > 100 1 
19 4 6 1.73 1.88 0.25  > 100 > 100 1 
20 5 3 2.14 1.79 0.42  > 100 > 100 1 
21 5 7 2.22 1.79 0.36  > 100 > 100 1 
22 5 38 2.52 2.66 0.38  41 64 1.6 
23 6 5 1.41 2.23 0.48  33 61 1.8 
24 6 6 1.45 1.91 0.31  12 17 1.5 
25 7 2 1.55 2.69 0.38  35 > 100 > 2.9 
26 7 3 1.56 2.41 0.39  > 100 > 100 1 
27 7 5 1.6 2.62 0.53  > 100 14 < 0.14 
28 8 2 0.79 5.49 0.38  > 100 > 100 1 
29 8 7 0.91 5.37 0.24  > 100 > 100 1 
30 8 9 1 5.37 0.31  40 > 100 2.54 
31 8 12 1.14 4.81 0.28  > 100 > 100 1 
32 8 36 1.3 5.33 0.2  14 45 3.2 
33 9 1 1.49 2.19 0.46  63 > 100 > 1.6 
34 9 2 1.54 1.94 0.45  38 > 100 > 2.7 
35 9 5 1.59 2.59 0.46  > 100 > 100 1 
36 9 7 1.64 6.63 0.46  > 100 > 100 1 
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Figure 4.11. Molecules selected from CATS3D virtual screening. 
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To estimate the degree of “scaffold-hopping” we compared the average distance of 

each molecule 4.4.10-4.4.36 to its respective nearest reference (<Dlib>) compound with the 

average distance between the reference molecules 4.4.3-4.4.9 (<Dref>). Three such indices 

were employed: the CATS3D Manhattan distance, the topological CATS2D Manhattan 

distance, and the substructure-based MACCS key Tanimoto similarity from MOE. While the 

average CATS3D distance of the library compounds to their reference molecules was 

significantly smaller in comparison to the average distance between the reference molecules 

(<Dlib> = 1.41 (± 0.45); <Dref> = 2.66 (± 0.89)), <Dlib> was only marginally smaller than 

<Dref> for CATS2D (3.31 (± 1.48) vs. 3.6 (± 1.4)). With the MACCS keys <Dlib> was smaller 

than <Dref> (0.33 (± 0.11) vs. 0.39 (± 0.15)), indicating a greater similarity among the 

reference set than between the virtual screening hits and the reference molecules. This 

demonstrates that the compiled library contains scaffolds which are different from the 

references (as estimated by MACCS substructure fingerprints) but are still considered 

isofunctional by the CATS pharmacophore approaches.  

In vitro binding studies for mGluR5 were performed on the basis of a [³H]MPEP 

displacement assay. Estimates of Ki values for the ligands were made from measurements at a 

fixed concentration of 10 µM. Selectivity of the ligands versus mGluR1, the most similar 

receptor to mGluR5 within the mGluR family, was assessed by a displacement assay with the 

Merz proprietary selective mGluR1 antagonist MRZ 3415. Nine molecules (4.4.10, 4.4.22, 

4.4.23, 4.4.24, 4.4.25, 4.4.30, 4.4.32, 4.4.33, 4.4.34) exhibited a Ki value below 70 µM for 

mGluR5 (Table 4.10), with structure 4.4.10 being the most selective inhibitor. With our assay 

system we determined a Ki of 12.5 nM for MPEP on mGluR5. 

The predicted rank-order of the tested library compounds does not correlate with 

binding affinity (Table 4.10). It is evident that the Manhattan distance, which was used for 

compound prioritization, does not distinguish between molecular attributes that are relevant or 

irrelevant for a particular receptor-ligand interaction. Furthermore, the small list of virtual hits 

that was compiled for each reference molecule prevents a sound statistical evaluation. 
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Figure 4.12. Flexible alignment of the most potent found mGluR5 modulators to the 
alignment of reference molecules 4.4.3-4.4.9 (green). Alignments are shown for (a) 4.4.23, 
4.4.24, 4.4.25, 4.4.32, (b) 4.4.10, (c) 4.4.33, 4.4.34, (d) 4.4.22.  

 

 

The best found nine molecules were aligned to the reference molecule alignment with 

the MOE flexible alignment tool (Figure 4.12). 4.4.23, 4.4.24, 4.4.25, 4.4.32 fitted well into 

the reference alignment (Figure 4.12a) with the keto-group of each molecule superposed onto 

the pyridine nitrogen as a hydrogen-bond acceptor substitute, and the various linker moieties 

aligned to the triple bond linkers of the MPEP derivatives. For 4.4.30 a comparable binding 

mode might be anticipated, which was not found by the flexible alignment since MOE did not 

recognize the oxazolidine oxygen of 4.4.30 as a potential hydrogen-bond acceptor. Based on 

the alignment it cannot be decided whether molecules 4.4.10, 4.4.33, 4.4.34 and 4.4.22 

(Figure 4.12b-d) were actually aligned in a reasonable fashion. For these molecules large 

substructure elements were placed in the MPEP linker region which we assume to bind to into 

a narrow part of the receptor binding pocket. To our surprise 4.4.28 and 4.4.31 -- analogs of 

ligands 4.4.10 and 4.4.30 – showed to be inactive. For both molecules this effect might be 

explained by steric restrictions in the receptor. 
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The selectivity of the hits was low. Compound 4.4.27 was even found to be a potent 

and selective binder of mGluR1. This might indicate the existence of similar binding pockets 

in both receptor subtypes. Overlap of the binding pockets for antagonists of both receptor 

subtypes has already been shown [Pagano et al., 2000]. Similar binding pockets are further 

supported by the weaker mGluR1 selective binder 4.4.11, which is similar to 4.4.23, 4.4.24 

and 4.4.25. These are more selective towards mGluR5. Compound 4.4.14 was inactive in both 

mGluR1 and mGluR5 binding studies, although it might be regarded as a close analogue of 

4.4.11. A higher selectivity of the compounds might be achieved by incorporation of selective 

molecules acting on mGluR1 in the virtual screening procedure. These might be used as an 

anti-target in additional similarity searching experiments. Molecules with a high similarity to 

mGluR5 ligands and a low similarity to mGluR1 ligands might exhibit a better selectivity 

profile.  

A challenging goal of pharmacophore-based similarity searching is “scaffold-

hopping”. This aim was clearly met in this study. Isofunctional alternatives to the MPEP 

scaffold were found, which provide several starting points for lead structure development. As 

an important outcome, the metabolically unstable triple-bond linker present in the MPEP-

derived reference molecules is substituted by various alternatives in the compounds that were 

selected by virtual screening. Noteworthy, the double-bond linker of 4.4.23, 4.4.24, and 

4.4.32 is structurally identical to the one present in SIB-1893 and similar to the linker type of 

SIB-1757, both of which were not present in the reference collection (Figure 4.9). Some of 

the tested compounds (4.4.12, 4.4.13, 4.4.15) resemble structural similarity to the recently 

reported mGluR5 antagonist 4.4.37 [Wang et al., 2004] (Figure 4.13), that was found by HTS. 

This further underlines the ability of the CATS3D approach to find isofunctional but 

structurally different scaffolds. Molecule 4.4.38, a recently reported mGluR5 antagonist with 

a tetrazole linker (Figure 4.13) [Roppe et al., 2004], shows that more voluminous groups like 

in 4.4.22 might also be allowed in the linker region, assuming an identical binding mode. The 

novel scaffolds of compounds 4.4.33 and 4.4.34 present a promising opportunity for 

straightforward combinatorial design with the aim to significantly improve binding behavior. 

One possible reason for the low selectivity of 4.4.23, 4.4.24, 4.4.25 and 4.4.32 might 

be due to the replacement of the SIB-1893 pyridine by a keto-group. While the hydrogen-

bond acceptor functionality of the pyridine is maintained, the substitution results in a loss of 

possible steric and stacking interactions. These findings indicate that the receptor subtype 

selectivity of MPEP-like mGluR5 antagonists might be based on steric or π-π stacking 

interactions mediated by the pyridine ring. Reference molecule 4.4.9, which lacks an aromatic 
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ring, supports the hypothesis that a defined steric interaction in the region of the MPEP 

pyridine might be sufficient for selectivity. 

 

 

 

 

Figure 4.13. Recently reported mGluR5 antagonists with new scaffolds. 
 

 

4.4.1 Conclusion 

 Summarizing, it has been demonstrated that pharmacophore-based similarity searching can 

lead to novel, isofunctional molecular scaffolds that provide a basis for lead structure 

development. The target was an allosteric binding site of a pharmacologically challenging 

GPCR. Although homology-based models of the MPEP binding pocket have been published 

recently [Pagano et al., 2000, Malherbe et al., 2003], successful virtual screening exploiting 

this information has not been reported until now. The entirely ligand-based CATS3D 

approach can thus be seen as a working alternative to more demanding structure-based design 

techniques with the main aim to develop novel lead series. 
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4.5 Prospective screening for mGluR5 allosteric 

modulators with an artificial neural network approa ch 

based on CATS3D representations 

 

Artificial neural networks (ANN) are an attractive tool for the identification of molecules with 

a desired biological activity. In this section we used an ensemble of ANNs and self organizing 

maps (SOMs) to find new specific and diverse allosteric antagonists of mGluR5. The 

following setup was employed (Figure 4.14):  

1. 10 ANNs were trained on the prediction of mGluR5 activity. 

2. Two ANNs were trained on the selectivity against mGluR1. 

3. Self organizing maps were used to select representative subsets of the predicted virtual 

hits for pharmacological characterization. 

 

 

 

Figure 4.14. Combination of supervised and unsupervised artificial neural networks for the 
compilation of a focused diverse mGluR5 library. The focus is realized with ensembles of 
supervised feed-forward networks for the prediction of general “mGluR5-likeness” and 
“mGluR5 vs. mGluR1 selectivity”. Diversity is obtained with unsupervised self organizing 
map (SOM) selection of representative subsets of the best fraction of hits from the previous 
steps. 
 
 

Many allosteric antagonists of mGluR5 have been described in patents and in 

scientific literature. However the structural classes of ligands are very dissimilar and it is 
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unclear how the classes are related to each other from the view of the binding mode in the 

receptor. The availability of many different active molecules is a genuine starting point for a 

machine learning algorithm. On the other hand, potential different binding modes and 

different sub-pockets in the binding site of these ligands might hamper such an approach, 

where all ligands are considered as active. The origin of the activity data from different assay 

systems as well as the absence of an obvious alignment of the ligands renders a classification 

method more appropriate than an approach for the prediction of inhibition constants. Artificial 

neural networks (ANN) have been shown to be successful in complex classification tasks in 

drug discovery related projects. Our aim was to create a prediction tool to identify new 

molecules with specific mGluR5 allosteric modulator activity. Using CATS3D as molecular 

descriptor, the inherent suitability of this descriptor for scaffold hopping should further 

support this goal. 

For this approach we combined supervised and unsupervised ANNs. First, ensembles 

of supervised ANNs were trained to separate molecules which possess mGluR5 allosteric 

antagonist activity  (“mGluR5-likeness”) from molecules without that property and from 

molecules with mGluR1 allosteric antagonist activity. Second, unsupervised ANNs, self 

organizing maps (SOMs), were used to cluster the best scoring molecules and to retrieve 

representative subsets for experimental testing. Recently an approach was reported combining 

self organizing maps (SOMs) with feed-forward neural networks [Gini et al., 2004]. In these 

studies SOMs were used as a pre-processing tool to cluster similar molecules. For each of the 

clusters separate neural networks were trained. These methods obtained an improved 

prediction accuracy of activities of molecules since neural networks were trained on similarly 

acting molecules in comparison to a single ANN trained on all molecules [Gini et al., 2004]. 

This approach is similar to the approach of counterpropagation networks [Zupan & Gasteiger, 

1999]. Counterpropagation networks consist of one SOM layer, that is trained unsupervised, 

and an additional output layer for the prediction of observables, that is trained in a supervised 

manner. However for such an approach sufficiently large datasets are crucial for a successful 

training of the large number of neural networks. In comparison to our approach this 

combination of unsupervised and supervised neural networks results in a set of local models 

with the aim of the highest possible prediction accuracy. Our approach results in a global 

model with the aim to identify properties of active molecules and to find novel structural 

clusters which were not identified before.  

In a recent article it was stated that the similarity of molecules with predicted 

properties to the training set is a good indicator for the accuracy of the prediction [Sheridan et 
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al., 2004]. We were interested if this relation was also found for our ANN SOM combination 

approach, namely if there were more molecules retrieved from SOM neurons containing 

molecules from the training set in comparison to neurons without training molecules, or not. 

 

4.5.1 Training of feedforward ANNs 

Neural networks were trained on two classification tasks. One set of ANNs was trained on the 

distinction between mGluR5 allosteric antagonists (further referred to as “actives”) from other 

molecules (further referred to as “inactives”). Another set of ANNs was trained on the 

distinction between actives and mGluR1 allosteric antagonists (further referred to as “side-

actives”), the most similar receptor to mGluR5. The training set for the actives consisted of 68 

mGluR5 allosteric antagonists from literature, patents and from unpublished molecules from 

Merz Pharmaceuticals GmbH (Frankfurt). The side-actives set consisted of 158 allosteric 

antagonists of mGluR1 from patents and literature. Inactives were compiled from the COBRA 

database. The training procedure of ANNs requires approximately equally sized fractions of 

molecules form two classes. To obtain a reasonable sampling of the molecules of the COBRA 

database, five different training sets of 100 molecules were compiled using the MaxMin 

algorithm [Kennard & Stone, 1996] for maximal diverse subset selection. The dissimilarity 

was calculated based on the CATS3D descriptor.  

For the training of neural networks with the aim to discriminate between actives and 

inactives all five COBRA subsets were merged with the set of 68 actives, resulting in five 

data sets of 168 molecules. For all five sets all variables from the CATS3D descriptor with a 

scaled Shannon entropy (Eq. 2.8) of less than 0.3 were eliminated, leading to 75 to 79 

remaining variables. The resulting datasets are further referred to with M5vsCO1 (mGluR5 vs. 

COBRA set 1), M5vsCO2, M5vsCO3, M5vsCO4 and M5vsCO5. Table 4.11 gives an 

overview over the selected variables for the data sets. The selection differed only in few cases 

for variables describing larger distances. Variables including cation- and anion-interactions 

were not selected since all molecules were neutralized before descriptor calculation. 

Training with uncorrelated variables can result in improved prediction quality 

[Schneider & So, 2003]. To test this hypothesis for our classification tasks we calculated 

uncorrelated versions of M5vsCO1 to M5vsCO5. All variables were autoscaled and a 

principle component analysis (PCA) was performed. All principle components with 

eigenvalues above or equal to 1 were used for further calculations. This resulted in ten 

principle components for each of the data sets. The five resulting data sets with uncorrelated 

variables are further referred to as M5vsCO1pca, M5vsCO2pca, …, M5vsCO5pca. The 



Chapter 4 94 

percentages of explained variance of the first two principle components were 69.8 % and 11.1 

%, 70.3 % and 10.9 %, 69.2 % and 11.6 %, 70.2 % and 10.7 %, and 70.0 % and 11.0 %, 

respectively. Accordingly in all five data sets more than 80 % of the variance is explained by 

the first two principle components. This indicated that the variables of the CATS3D 

descriptor were highly correlated for the description of these data sets. Projections of actives 

and inactives using the first 2 principle components revealed that the CATS3D description 

seemed to be appropriate to separate active molecules from inactive molecules (Figure 4.15).  

 

Table 4.11. Variables selected by scaled Shannon entropy for the different data sets. 
The variables are coded in the following way: e.g. PA 3-11 means that all polar – hydrogen 
bond-acceptor bins with distance ranges from 2 to 3, 3 to 4, … , 10 to 11 Å are selected. P = 
polar, A = hydrogen-bond acceptor, D = hydrogen-bond donor, H = hydrophobic. 

 

selected 

descriptors 
M5vsCO1 M5vsCO2 M5vsCO3 M5vsCO4 M5vsCO5 M5vsM1 

PA 3-11 3-12 3-10 3-12 3-10  

PH 2-15 2-16 2-15 2-15 2-15  

DA 3-9 3-9 3-7 3-9 3-9  

DH 2-13 2-13 2-14 2-14 2-14 3-7 

AA 3-8 3-9 3-8 3-10 3-8  

AH 2-15 2-15 2-14 2-15 2-15 2-13 

HH 2-17 2-17 2-17 2-17 2-17 2-14 

total 

number 
77 79 75 79 77 29 

 

 

For the training of neural networks to discriminate between actives and side-actives 

the datasets of 68 actives and 158 side-actives were merged. Variables with a scaled Shannon 

entropy below 0.3 were eliminated, resulting in 29 remaining variables. This dataset is further 

referred to as M5vsM1 (mGluR5 vs. mGluR1). Due to the smaller variation of the molecules 

in this data set in comparison to the COBRA subsets, a smaller number of variables were 

selected having entropies above 0.3. Details on the selected variables are shown in Table 4.11. 

Uncorrelated variables were obtained by autoscaling and subsequent PCA. The resulting 

dataset is further referred to as M5vsM1pca. Seven principle components were found with 
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eigenvalues above 1. The first PC explained 59.8 % and the second PC explained 17.4 % of 

the variance in the data.  

 

 

 

Figure 4.15. Principle component projection of the data sets used for the training of the 
supervised neural networks. Five datasets were used for “mGluR5-likeness” prediction 
(M5vsCO1, …, M5vsCO5) and one dataset was used for the “mGluR5 vs. mGluR1 
selectivity” prediction (M5vsM1). White dots represent actives and black dots represent 
inactives or side-actives. 
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The projection of the first two principle components is shown in Figure 4.15. It is 

apparent that mGluR5 and mGluR1 were not easily separable by a linear function. However 

both subsets form several clusters and should therefore be separable by a non-linear classifier 

like ANN. On the other hand some of the regions overlap which supports the results from 

Section 4.4, that selectivity between the two classes is determined by small variations of the 

ligands, which are not yet clearly understood.  

 

Table 4.12. Results of the 10-fold cross-validation for M5vsCO1 to M5vsCO5. The average 
cc values for the training- and test-sets were calculated after 100 steps of training. Selected 
nets are printed in bold. Standard deviations are given in brackets. 
 

 M5vsCO1 M5vsCO2 M5vsCO3 M5vsCO4 M5vsCO5 
no. 

hidden 
neurons 

train test train test train test train test train test 

1 0.98 
(0.03) 

0.79 
(0.06) 

0.97 
(0.04) 

0.78 
(0.05) 

0.98 
(0.03) 

0.80 
(0.09) 

0.99 
(0.02) 

0.83 
(0.06) 

1 (0) 0.84 
(0.05) 

2 0.99 
(0.01) 

0.84 
(0.06) 

1 (0) 0.85 
(0.06) 

0.99 
(0.01) 

0.87 
(0.04) 

1 (0.01) 0.86 
(0.03) 

1 (0) 0.83 
(0.07) 

3 1 (0) 0.83 
(0.07) 

1 (0) 0.86 
(0.04) 

1 (0) 0.86 
(0.07) 

1 (0.01) 0.84 
(0.08) 

1 (0) 0.85 
(0.07) 

4 1 (0) 0.86 
(0.06) 

1 (0) 0.87 
(0.08) 

1 (0) 0.88 
(0.05) 

1 (0) 0.86 
(0.07) 

1 (0) 0.88 
(0.04) 

5 1 (0) 0.86 
(0.06) 

1 (0) 0.87 
(0.06) 

1 (0) 0.85 
(0.05) 

1 (0) 0.88 
(0.04) 

1 (0) 0.85 
(0.05) 

6 1 (0) 0.86 
(0.06) 

1 (0) 0.83 
(0.04) 

1 (0) 0.85 
(0.05) 

1 (0) 0.86 
(0.05) 

1 (0) 0.89 
(0.03) 

7 1 (0) 0.87 
(0.05) 

1 (0) 0.84 
(0.07) 

1 (0) 0.91 
(0.03) 

1 (0) 0.84 
(0.08) 

1 (0) 0.88 
(0.05) 

8 1 (0) 0.86 
(0.05) 

1 (0) 0.85 
(0.06) 

1 (0) 0.88 
(0.04) 

1 (0) 0.84 
(0.05) 

1 (0) 0.88 
(0.05) 

9 1 (0) 0.87 
(0.03) 

1 (0) 0.88 
(0.04) 

1 (0) 0.89 
(0.03) 

1 (0) 0.83 
(0.06) 

1 (0) 0.87 
(0.06) 

10 1 (0) 0.88 
(0.02) 

1 (0) 0.86 
(0.06) 

1 (0) 0.91 
(0.04) 

1 (0) 0.85 
(0.05) 

1 (0) 0.86 
(0.07) 

11 1 (0) 0.85 
(0.05) 

1 (0) 0.85 
(0.06) 

1 (0) 0.89 
(0.06) 

1 (0) 0.88 
(0.05) 

1 (0) 0.89 
(0.03) 

12 1 (0) 0.85 
(0.03) 

1 (0) 0.87 
(0.07) 

1 (0) 0.89 
(0.04) 

1 (0) 0.84 
(0.06) 

1 (0) 0.90 
(0.04) 

13 1 (0) 0.85 
(0.05) 

1 (0) 0.86 
(0.06) 

1 (0) 0.90 
(0.04) 

1 (0) 0.85 
(0.05) 

1 (0) 0.89 
(0.04) 

 

 

All twelve described data sets were employed for the training of neural networks. The 

optimal number of hidden neurons and the optimal number of training steps had to be 

determined for each of the twelve datasets. Several numbers of hidden neurons were tested for 

each of the datasets with ten-fold cross-validation. Cross-validation was employed by random 

division of the datasets into equal sized fractions of training and test data. This procedure was 
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repeated ten times to obtain an estimation of network performance. A number of 100 steps 

were used for the training. In preliminary training experiments 100 steps seemed to be a 

reasonable compromise between a sufficiently large number of training steps to extract the 

underlying structure activity relationship and overtraining of the neural networks, which 

prevents generalization of the predictions.  

 

Table 4.13. Results of the 10 fold cross-validation for M5vsCO1pca to M5vsCO5p. The 
average cc values for the training- and test-sets were calculated after 100 steps of training. 
Selected nets are printed in bold. Standard deviations are given in brackets. 
 

 M5vsCO1pca M5vsCO2pca M5vsCO3pca M5vsCO4pca M5vsCO5pca 
no. 

hidden 
neurons 

train test train test train test train test train test 

1 0.95 
(0.02) 

0.79 
(0.05) 

0.97 
(0.02) 

0.84 
(0.04) 

0.97 
(0.02) 

0.82 
(0.05) 

0.97 
(0.05) 

0.78 
(0.05) 

0.97 
(0.03) 

0.80 
(0.06) 

2 0.99 
(0.02) 

0.83 
(0.08) 

0.98 
(0.02) 

0.87 
(0.07) 

1 (0) 0.85 
(0.06) 

0.99 
(0.02) 

0.82 
(0.05) 

1 
(0.01) 

0.87 
(0.06) 

3 1 (0.01) 0.81 
(0.08) 

0.99 
(0.02) 

0.83 
(0.07) 

1 
(0.01) 

0.86 
(0.06) 

1 (0) 0.85 
(0.06) 

0.99 
(0.01) 

0.82 
(0.06) 

4 1 (0) 0.84 
(0.05) 

1 (0) 0.87 
(0.06) 

1 (0) 0.88 
(0.03) 

1 
(0.01) 

0.84 
(0.06) 

1 (0) 0.83 
(0.06) 

5 1 (0.01) 0.82 
(0.07) 

1 
(0.01) 

0.87 
(0.04) 

1 (0) 0.90 
(0.03) 

1 (0) 0.85 
(0.05) 

1 (0) 0.85 
(0.06) 

6 1 (0) 0.86 
(0.04) 

1 (0) 0.86 
(0.06) 

1 (0) 0.91 
(0.03) 

1 (0) 0.84 
(0.04) 

1 (0) 0.87 
(0.06) 

7 1 (0) 0.89 
(0.03) 

1 (0) 0.84 
(0.06) 

1 (0) 0.92 
(0.05) 

1 (0) 0.85 
(0.05) 

1 (0) 0.86 
(0.06) 

8 1 (0) 0.85 
(0.05) 

1 
(0.01) 

0.87 
(0.04) 

1 (0) 0.91 
(0.04) 

1 (0) 0.84 
(0.05) 

1 (0) 0.85 
(0.05) 

 

 

Table 4.14. Results of the 10 fold cross-validation for M5vsM1 and M5vsM1pca. The 
average cc values for the training- and test-sets were calculated after 100 steps of training. 
Selected nets are printed in bold. Standard deviations are given in brackets. 
 

 M5vsM1 M5vsM1pca 

no. hidden 
neurons 

train test train test 

1 0.99 (0.02) 0.87 (0.05) 0.96 (0.02) 0.8 (0.05) 
2 1 (0.01) 0.88 (0.03) 0.98 (0.02) 0.81 (0.06) 
3 1 (0.01) 0.89 (0.05) 0.96 (0.02) 0.84 (0.07) 
4 1 (0.01) 0.88 (0.04) 0.98 (0.02) 0.83 (0.05) 
5 0.99 (0.01) 0.91 (0.02) 0.99 (0.01) 0.78 (0.06) 
6 1 (0.01) 0.88 (0.04) 0.99 (0.02) 0.79 (0.08) 
7 1 (0.01) 0.88 (0.05)   
8 0.98 (0.02) 0.9 (0.04)   
9 0.99 (0.01) 0.89 (0.05)   
10 0.99 (0.01) 0.9 (0.04)   
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The evaluation of different number of hidden neurons for the ANN training is given in 

detail in Tables 4.12, 4.13, and 4.14. In all active/inactive classification networks the test data 

was 100% correctly predicted employing more than two or three hidden neurons. For the 

actives/side-actives networks this was not true. Using larger numbers of hidden neurons did 

not always lead to 100% prediction accuracy. This effect might be grounded on neural 

network training using too few training steps or on the complexity of the separation task.  

ANNs were selected with the best Matthews cc in the training and the test data. In the 

case that more than one network obtained equal best cc values, the net with the lowest number 

of hidden neurons was selected. Employing the best found number of hidden neurons, 

successful predictions of the test sets were obtained with Matthews coefficients equal or 

larger than 0.84 for all test data sets. For the actives/inactives separation only small 

differences in the test data prediction accuracy were found between the raw descriptor values 

and the uncorrelated variables (best found Matthews cc = 0.91 vs. 0.92 for the test data). For 

the actives/side-actives separation, the raw descriptor values performed better than the 

uncorrelated variables (best found Matthews cc = 0.91 vs. 0.84 for the test data). This might 

be caused by the difference of the classification task. A general classification task applied to 

relatively easily separable data like with the actives/inactives classification might profit or at 

least not be hampered by a more general data presentation with uncorrelated variables. For the 

specific and complex separation of actives and side-actives details of the descriptors might 

have played a role, which were lost in the uncorrelated variables. Additionally, more 

descriptor variables automatically lead to a better separation between data classes, but also 

favors overfitting of the descriptor values to the observed data.  

 

 

 

Figure 4.16. Frequency of predicted score values for the molecules of the Enamine database.  
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For each data set for actives/inactives classification the parameters of the best 

performing model with the minimum number of hidden neurons were selected for the final 

training. The selected nets are printed in bold in Tables 4.12, 4.13 and 4.14. For the 

actives/side-actives classification ANNs with uncorrelated variables were not used. Instead 

two nets with two and five hidden neurons were selected with the original variables. Final 

neural networks were trained using the full data sets with the given number of hidden 

neurons.  

 

4.5.2 Prediction of allosteric mGluR5 modulators 

For prospective virtual screening we used the database of the commercial molecule-supplier 

Enamine [Enamine], which consisted of 1,022,483 molecules. For each neural network the 

molecules were processed like the training data: the same variables were selected as for the 

training data. When necessary, autoscaling and PCA were applied using the means, standard 

deviations and transformation matrices from the training data sets. Consensus scores were 

obtained by calculation of the average values of the ten ANNs for the actives-inactives 

classification and for the two ANNs for the actives-side-actives classification. A histogram of 

the two distributions of the score values is shown in Figure 4.16. Interestingly the scores for 

the actives/inactives classification did not exceed a value of 0.89 for the Enamine dataset. 

This was an effect of the ensemble neural network average score that was applied for the 

prediction. One of the trained ANNs (M5vsCO5) did not predict any of the Enamine 

molecules as active, despite the fact that this network performed best in training. This might 

be an indicator that the Enamine dataset might not be appropriate for the screening for 

mGluR5 allosteric antagonists. An alternative to average scores to find a decision based on 

ensembles of neural networks is the jury decision: a compound is considered as active if the 

majority of neural networks consider the compound as active. In this work a more stringent 

criterion was used: a unanimous decision was needed to result in a maximum score of 1. This 

strategy was applied due to the fact that a large fraction of the Enamine dataset was 

considered as active, by most of the networks (Figure 4.16).  

Figure 4.16 shows the effect of the consensus scoring by average score values. The 

number of peaks found in the scores reflects the number of individual score-values used for 

the average score. For the actives/side-actives classification three peaks were found: a first 

large peak of many molecules where both nets agree that the molecules are more likely side-

actives than actives, a small peak at 0.5 where the two nets do not agree, and another small 
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peak where both nets agree that the molecules belong to the actives class. For the 

actives/inactives classification there should be eleven peaks, but since one ANN did not 

predict any molecule as active, only ten peaks were found.  

From the actives/inactives prediction we selected all molecules with an average score 

larger than 0.885. This value was found to be a reasonable compromise between the presumed 

diversity of the hits and the number of obtained hits. We assumed to find structurally more 

diverse molecules by this strategy in comparison to using the top scoring molecules alone. 

This resulted in a selection of 41,663 molecules. From the actives/side-active classification 

we selected all molecules with an average score above 0.99, which resulted in an additional 

32,099 molecules. The union of these sets gave a set of 8,403 molecules which were 

considered as our focused library for mGluR5 allosteric antagonists. 

 

4.5.3 Selection of a representative subset by SOMs 

The obtained focused library was further analyzed by self organizing maps (SOM). SOMs 

provide a topology-preserving projection of data from a high-dimensional space into a low 

dimensional space. The resulting maps also define clusters in the data and provide 

representative and diverse subsets of the original data. Two different SOMs were trained: one 

SOM based on the CATS3D descriptor and one SOM based on MACCS keys. In this way we 

wanted to analyze our focused library by two different objectives. One objective was to get an 

overview over the distribution of diverse sets of scaffolds (based on the MACCS keys) and 

the other objective was to get an overview over the different pharmacophores in the library 

(based on CATS3D). CATS3D representations of molecules consist of a comparably large 

number of dimensions (420) in relation to the two-dimensional SOM projection. To facilitate 

SOM training the discrepancy between the two variable spaces was reduced by the scaled 

Shannon entropy. Only CATS3D-dimensions with a scaled Shannon entropy above 0.3 were 

used for SOM training. To estimate the overlap of the library with the chemical space covered 

by the known mGluR5 allosteric antagonists, all mGluR5 actives from the training set were 

included in the SOM training. Two SOMs with 5 x 5 neurons were trained. The resulting 

SOMs are shown in Figure 4.17. 
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Figure 4.17. Self organizing maps (SOMs) of the best predicted Enamine molecules. SOMs 
were calculated using MACCS keys and CATS3D descriptors. Shown are the distribution of 
the mGluR training set, the mGluR1 training set and the frequency of the predicted hit 
molecules, projected on the trained SOM. 
 

 

In the MACCS SOM 13 of 25 neurons and in the CATS3D SOM 15 of 25 neurons 

contained known actives. This indicates that the predicted molecules broadly covered the 

chemical space of the known mGluR5 allosteric antagonists. All neurons without active 

molecules from the training set were directly neighboring a neuron containing active 

molecules within its receptive field. In the MACCS SOM the neurons containing active 

molecules from the training set built a cluster with a single neuron containing most of the 
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molecules. In contrast, in the CATS3D SOM the neurons containing active molecules were 

loosely distributed over the map with more neurons containing a larger fraction of active 

molecules. The results from these two projections indicate that the ANN approach was able to 

predict novel scaffolds and chemotypes which were similarly distributed between the 

CATS3D representations, but are found outside of the cluster of known actives in the 

MACCS SOM. A projection of the side-actives onto the trained map revealed that these 

molecules were distributed broadly over the map. In the CATS3D SOM 16 neurons were 

activated by mGluR1 antagonists including 10 neurons that also contained mGluR5 

antagonists. For the MACCS SOM 18 neurons were found with mGluR1 antagonists 

overlapping with 10 neurons with mGluR5 antagonists. The SOMs were not able to define a 

full separation of actives and side-actives on the basis of unsupervised learning. This might be 

grounded on the selection of inappropriate descriptors for that task and on the similarity of the 

two classes of ligands (Figure 4.17). The relative frequency of the selected library is shown in 

Figure 4.17. According to the MACCS keys, the library was broadly distributed over the map. 

With CATS3D most of the library compounds were found in a small set of two neighboring 

neurons. Interestingly both of these neurons did not contain any known active reference. 

These results indicate the presence of large sets of analogues in the Enamine dataset which 

introduced a bias in the molecules selection. By selection of representative compounds for the 

biochemical verification of the compounds this bias was circumvented. For experimental 

screening for new allosteric modulators of mGluR5, all molecules which were nearest to the 

neuron centroids were selected. The respective molecules are shown in Figure 4.18 and 

Figure 4.19. The representative molecules from both SOMs show a similar topology in 

comparison to known mGluR5 allosteric antagonists (see Section 4.4). Most molecules 

consist of two ring systems connected by a linker of 3 or more bonds length. These 

characteristics were found in molecules from neurons with and without known active 

references and in the representative molecules of both SOMs. Some of the selected molecules 

included charged groups like the nitro group. Charged groups were not accounted for in the 

CATS3D descriptor after the variable selection procedure. Especially in the MACCS SOM 

these molecules were found mostly outside of the neurons containing the known active 

molecules.  
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Figure 4.18. Representative molecules selected from the CATS3D SOM. Grey dots indicate 
molecules that were tested in the binding assay. 
 

 

Figure 4.19. Representative molecules selected from the MACCS SOM. Grey dots indicate 
molecules that were tested in the binding assay. 
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4.5.4 Binding assay results 

The molecules selected by the SOMs, that were available (32 of 50 molecules) were 

purchased from Enamine [Enamine] and tested in an mGluR5 binding assay. The hits and 

some of the inactive molecules from the mGluR5 assay were also tested in an mGluR1 

binding assay to assess the selectivity of the molecules. The results of the assay are shown in 

Table 4.15. Three of the 16 tested molecules from the CATS3D SOM and two of the 16 

molecules tested from the MACCS SOM showed mGluR5 binding.  

The best binding ligand for mGluR5 was found with the CATS3D SOM in neuron e3: 

4.5.23 with a Ki of 21 µM. This ligand is structurally similar to ligand 4.4.24 (Ki = 12 µM) 

found with CATS3D similarity searching in Section 4.4, though the mGluR5 hits from 

Section 4.4 were not included in the training data. The Ki values from Section 4.4 were 

determined considering the fraction of solvated ligand under the assay conditions. This 

parameter was not determined in this section. For 4.4.24 60 % of the molecule was found in 

solution. Assuming a comparable solubility for 4.5.23 than for 4.4.24, similar Ki values were 

found for the two molecules. The best hit from the MACCS SOM was found in neuron b3: 

4.5.33 with a Ki of 33 µM, which is also similar to 4.5.23 and 4.4.24. One apparent difference 

of 4.5.33 to 4.5.23 and 4.4.24 is the lack of a hydroxyl-group substituent that is present in the 

other two molecules at the benzene ring distant to the linker oxygen. Regarding the lower Ki 

of 4.5.33 in comparison to 4.5.23 and 4.4.24, the hydroxyl group might provide a favorable 

interaction with the receptor. A part of the effect of the hydroxyl-group might also be 

addressed to a lower solubility of 4.5.33. 

The selectivity of the molecules for mGluR5 over mGluR1 was low: nine of the 12 

molecules tested from the CATS3D SOM and one of the molecules tested from the MACCS 

SOM were also found to bind to the mGluR1. Thus more molecules were found binding to 

mGluR1 than to mGluR5. The molecule with the highest binding affinity was also found for 

mGluR1 (4.5.13 with a Ki of 8 µM for mGluR1 and a Ki of 38 µM for MgluR5). Similar 

results were observed in Section 4.4 where additional potent ligands for mGluR1 were found 

with CATS3D similarity searching using specific mGluR5 allosteric antagonists as query 

molecules. This might reveal that the employed molecular representation with CATS3D was 

not appropriate for this particular task. While CATS3D was designed for scaffold hopping, 

and accordingly fuzzy representation of the molecules the selectivity between mGluR5 and 

mGluR1 seems to require subtle differences in the ligands, due to the high similarity of the 

binding pockets [Pagano et al., 2000].  
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Many of the molecules that were active on at least one of the receptors mGluR1 or 

mGluR5 were found to have amide groups (4.5.24, 4.5.35, 4.5.49) or ester groups (4.5.5, 

4.5.7, 4.5.10, 4.5.13) as linkers. These linkers were not found in the training data and might 

be considered as alternative chemotypes for the linker part of the molecules.  

One of the most challenging goals of virtual screening is to retrieve novel scaffolds 

and chemotypes with the desired biological activity. In this approach all molecules predicted 

as active were clustered by SOMs. Retrieving active molecules from clusters of molecules 

that did not contain active training samples is a way to find molecules different from the 

training chemotypes. In the SOMs different clusters are represented by different neurons. 

With our approach we were able to find novel active chemotypes from SOM neurons that did 

not contain any of the known reference molecules. This was found for mGluR5 and for 

mGluR1, using both molecular descriptors MACCS and CATS3D for the SOM calculation. 

For the molecules tested from the MACCS SOM all molecules that were active on mGluR5 

were found in neurons that did not contain any known mGluR5 antagonist and the molecule 

that was active on mGluR1 was found in a neuron that did not contain any of the mGluR1 

training molecules. For the CATS3D SOM molecules were found to be active that were from 

neurons not containing reference molecules from the training set (M5: 4.5.7, M1: 4.5.16, 

4.5.19, 4.5.23). However the most active molecules were found in neurons with reference 

molecules: the best identified mGluR5 antagonist 4.5.23 was found in the neuron containing 

the second largest number of reference molecules and the best mGluR1 antagonist 4.5.13 was 

found in the neuron with the most mGluR1 references. These results are in agreement with the 

findings of Sheridan et al. [Sheridan et al., 2004], that best predictions are obtained for 

molecules similar to the training data. In contrast to their findings we also found actives with 

lower activities in neurons not containing training molecules. This ability might have resulted 

from the strategy of training a global model for mGluR5 instead of a set of local models. 

However the task of mGluR5/mGluR1 selectivity might have been better represented using a 

set of local models.  
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Table 4.15. Results from the mGluR5 and mGluR1 binding assays. 

Molecule (neuron) Ki mGluR5 (µM) Ki mGluR1 (µM) Selectivity  

(IC50 mGluR1 / IC50 mGluR5) 

CATS3D-SOM    

4.5.2 (a2) > 100   

4.5.4 (a4) > 100 73 < 0.7 

4.5.5 (a5) > 100 46 < 0.5 

4.5.6 (b1) > 100 > 100 1 

4.5.7 (b2) 44 51 1.2 

4.5.9 (b4) > 100   

4.5.10 (b5) > 100 69 < 0.7 

4.5.11 (c1) > 100 > 100 1 

4.5.13 (c3) 38 8 0.2 

4.5.15 (c5) > 100   

4.5.16 (d1) > 100 45 < 0.5 

4.5.18 (d3) > 100   

4.5.19 (d4) > 100 55 < 0.6 

4.5.23 (e3) 21 64 3.1 

4.5.24 (e4) > 100 56 < 0.6 

4.5.25 (e5) > 100 > 100 1 

MACCS-SOM    

4.5.30 (a5) > 100   

4.5.31 (b1) > 100   

4.5.33 (b3) 33 > 100 > 3.0 

4.5.34 (b4) > 100 69 < 0.7 

4.5.35 (b5) > 100   

4.5.36 (c1) > 100   

4.5.37 (c2) > 100   

4.5.39 (c4) > 100 > 100 1 

4.5.40 (c5) > 100 > 100 1 

4.5.41 (d1) > 100   

4.5.42 (d2) > 100   

4.5.45 (d5) > 100   

4.5.46 (e1) > 100   

4.5.47 (e2) > 100   

4.5.48 (e3) > 100   

4.5.49 (e4) 59 > 100 > 1.7 
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4.5.5 Conclusions 

Using an artificial neural network approach we retrieved novel chemotypes for allosteric 

modulators of mGluR5. We used a combination of feedforward neural networks trained on 

the separation of mGluR5 allosteric antagonists from molecules without that activity and 

trained on the separation of allosteric antagonists of mGluR5 and mGluR1. A representative 

set of molecules for biochemical testing was compiled using unsupervised SOMs. Novel 

mGluR5 antagonists with a best Ki value of 21 were found. We were able to retrieve new 

active molecules from regions in the SOMs that contained molecules from the training set and 

from regions that did not contain these molecules. Thus our method was able to correctly 

predict molecules as active that were not similar to the reference molecules. This ability might 

have resulted from the training of a set of global model based on all molecules from the 

heterogeneous training set of mGluR5 antagonists instead of a set of local models. Prediction 

of the selectivity of ligands was not successful. This property might have been better 

predicted with a set of local models using less general molecular descriptors. Thus the 

combination of the CATS3D descriptor with neural networks might be best suited for the 

purpose of scaffold hopping, but not for the purpose of ligand optimization.  
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4.6 Retrospective evaluation of SQUID fuzzy 

pharmacophore models 

Conventional similarity searching (like with the CATS family methods) employs a single 

query molecule for each virtual screening run. In contrast, ensemble-based pharmacophore 

searching [Güner, 2000] (for three-dimensional substructures, e.g. like with Catalyst [Greene 

et al., 1994]) incorporates information from multiple active molecules. Using information 

from multiple reference molecules has also been shown to improve alignment-free descriptor 

vector based virtual screening [Xu et al., 2001; Hert et al., 2004a; Hert et al., 2004b]. 

However there is the limitation that conserved features in the alignment-free descriptor space 

are not necessarily conserved in a three-dimensional alignment of ligands. 

Traditional pharmacophore searching approaches define a query as a substructure. For 

regions in molecules not covered by the substructure no preference is assigned. This can lead 

to the effect that many hits contain large or undesired structural elements in the undefined 

regions. Excluded volumes can compensate for a part of the problem by preventing the 

selection of molecules that are too large for the binding pocket [Güner, 2000]. 

Using pairs, triplets, or even quartets of atoms as PPPs is one possibility for the 

construction of a CV descriptor. An extension to this approach is to use pairs of larger and 

more general objects, which might result in a more generalized and abstract description of the 

molecule.  

The SQUID (Sophisticated Quantification of Interaction Distributions) fuzzy 

pharmacophore is an approach that was designed to tackle the above mentioned topics. In 

SQUID pairs of Gaussian probability densities are used for the descriptor calculation. The 

Gaussians represent clusters of atoms comprising the same pharmacophoric feature within an 

alignment of several active reference molecules. The incorporation of multiple aligned ligands 

within the SQUID approach resembles conceptual similarity to the traditional idea of a 

pharmacophore model [Güner, 2000]. Based on an alignment of active molecules, tolerances 

for the features are usually estimated to compensate for ligand and receptor flexibility. 

Pharmacophoric features that are present in many of the reference molecules result in a high 

probability, and features which are sparse in the underlying molecules result in a low 

probability. In this way all features of the reference molecules are included in the model and 

not just the most conserved substructure. Tolerances of the features, which are considered by 

this approach, might be better represented by Gaussian densities than by rigid spheres. For the 

resulting fuzzy pharmacophore models different degrees of fuzziness can be defined, e.g. the 
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model can be very generalizing or more restricted to the underlying distribution of atoms from 

the alignment. The fuzziness can be affected by the cluster radius, a variable which 

determines the radius within which atoms are clustered into PPPs.  

For virtual screening the three-dimensional spatial distribution of Gaussian densities is 

transformed into a two-point correlation vector representation which describes the same 

probability density for the presence of atom pairs, comprising defined pharmacophoric 

features. This representation is independent from translation and rotation which makes rapid 

database screening possible without the necessity to explicitly align the molecules, which can 

be a limiting step for the screening of large databases. This renders the fuzzy pharmacophore 

CV useful for ranking 3D pharmacophore-based CV representations of molecules, namely 

CATS3D descriptors of molecules. Consequently SQUID can be characterized as a hybrid 

approach between conventional pharmacophore searching, similarity searching and fuzzy 

modeling. 

The goal of this study was to evaluate the pharmacophore model perception and 

virtual screening ability of the SQUID fuzzy pharmacophore models. The ability of SQUID 

pharmacophore models to find important interaction points was tested for known reference 

pharmacophore models from literature. The effectiveness in virtual screening was compared 

with CATS3D similarity searching and traditional pharmacophore searching with MOE 

[Chemical Computing Group]. An optimization procedure of feature-type weight was 

necessary in model calculation. The robustness of this optimization was evaluated, too.  

For the evaluation study we selected pharmacophore models for cyclooxygenase 2 

(COX-2) and thrombin from literature [Palomer et al., 2002; Patel et al., 2002]. Both targets 

are well characterized in the literature and crystal structures of the receptors with bound 

inhibitors are available. This was important since our method depends on a meaningful 

alignment of ligands. Large sets of ligands for both targets are known, which is essential for 

statistical significant results. Ligands from both activities differ largely in size and molecular 

interactions. COX-2 inhibitors are known to be a class of lower diversity (see section scaffold 

hopping) while thrombin inhibitors show a higher diversity in chemotypes and scaffolds (see 

section scaffolds). Using these two references ligand classes the scaffold hopping capability 

of SQUID could also be assessed.  

For retrospective screening we used the COBRA database [Schneider & Schneider, 

2003] (version 2.1). Two versions were calculated: one database with single conformations 

was calculated with CORINA [Sadowski et al., 1994] and one database of up to 50 energy 

minimized conformations was calculated with MOE [Chemical Computing Group]. For 
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retrospective screening molecule that were used for pharmacophore model generation were 

removed from the datasets. The resulting datasets consisted of 92 active molecules and 4611 

inactive molecules for COX-2, and 188 actives and 4517 inactive compounds for thrombin. 

 

4.6.1 Pharmacophore model of COX-2 ligands 

Palomer et al. [Palomer et al., 2002] derived a pharmacophore model for COX-2 inhibitors on 

the basis of five specific inhibitors SC-558 (4.6.1), rofecoxib (4.6.2), DFU, celecoxib, and a 

molecule which they termed “molecule 5” (M5, 4.6.3). For calculation of a 3D structural 

alignment of these ligands they used a template alignment of all COX-2 ligands, for which 

there was a crystal structure of the ligand-receptor complex available. Crystal structures were 

at hand for SC-558 (1CX2) and the two unspecific inhibitors flurbiprofen (3PGH) and 

indomethacin (4COX). The alignment of these molecules was performed by superposition of 

their protein structures. The remaining ligands were aligned to the template alignment with 

the program Catalyst [Greene et al., 1994]. This approach was taken as a reference for the 

development of a pharmacophore model with our own program SQUID. The molecules DFU 

and celecoxib were not included in the SQUID pharmacophore model, because they are close 

analogs of rofecoxib and SC-558. The 2D structures of the remaining molecules are shown in 

Figure 4.20. Crystal structures 1CX2, 3PGH and 4COX were aligned with the homology 

alignment tool of MOE [Chemical Computing Group]. Rofecoxib and M5 were aligned to this 

template alignment with the flexible alignment tool of MOE. First, rofecoxib was aligned to 

the fixed template alignment. Then, M5 was aligned to the fixed alignment resulted from the 

previous step. For the final alignment the unspecific inhibitors were removed. The resulting 

alignment of COX-2 inhibitors is shown in Figure 4.21. In accordance with the model of 

Palomer et al. the crucial pharmacophore features of these molecules are the sulfonyl group 

and the two aromatic six-membered rings [Palomer et al., 2002]. The aromatic rings close to 

the sulfonyl group, further referred to as “ring A”, are nearly parallel to each other in the 

model. The angles between the planes of the distant aromatic rings, further referred to as “ring 

B”, seem to be less constrained. The least conserved region of the model is the linker region 

between the two aromatic ring centers. 
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Figure 4.20. Reference COX-2 inhibitors used for the calculation of the SQUID 
pharmacophore model. 

 

 

SQUID pharmacophore models were calculated with cluster radii from 0.5 Å to 3.5 Å 

in steps of 0.1 Å. A sample set of these pharmacophore models is shown in Figure 4.22. The 

models consisted of only three generalized interaction types: hydrogen-bond donors, 

hydrogen-bond acceptors, and hydrophobic interactions. The model resulting from 1 Å cluster 

radius is the most detailed one. Here atoms in close proximity are combined to PPPs, which 

results in a low abstraction from the chemical scaffolds. In contrast to all other models shown, 

the preferred angle between the two aromatic rings A and B are preserved in this model. The 

models resulting from 1.5 and 2.0 Å exhibit a higher degree of generalization from molecular 

structure. Many atoms, especially in the regions of the aromatic rings A and B, were 

combined to form large PPPs, covering several atoms from each of the molecules. Up to 2.0 

Å only hydrophobic atoms were combined. The models from the cluster radii 2.5 Å and 3.0 Å 

still represent the overall shape of the molecular alignment with three hydrophobic PPPs, but 

in the 3.5 Å model the shape of the alignment is only marginally visible. In all models with a 

cluster radius up to 2.0 Å the sulfonyl group is represented by two highly conserved 

hydrogen-bond donor PPPs, one hydrogen-bond donor PPP, and one hydrophobic PPP. In the 

models resulting from cluster radii greater than 2.0 Å all oxygen atoms of the sulfonyl group 

are represented by a single large PPP. Moreover, the hydrophobic PPP vanished since the 

methyl group was assigned to the PPP of ring A. 
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Figure 4.21. Three-dimensional alignment of the COX-2 inhibitors. Rofecoxib and M5 were 
aligned to the crystal structure conformation of SC-558 bound to COX-2. Essential 
interactions for specific COX-2 inhibitors are the aromatic rings A and B and the sulfonyl 
group. 

 

 

4.6.2 Retrospective screening for COX-2 inhibitors 

As the results of retrospective screening were sensitive to the feature-type weights (data not 

shown), a restrained exhaustive search for the optimization of these weights is part of the 

model creation procedure. For every calculated model, each of the feature-type weights for 

features present in the pharmacophore model was varied from 0.1 to 0.5 in steps of 0.1, which 

resulted in 125 different weighting schemes for the COX-2 pharmacophore models. Each of 

the resulting descriptors was evaluated by retrospective screening. To obtain statistically more 

significant results, five different subsets of the COBRA database were created. For each of the 

subsets 50% of actives and 50% of inactives were randomly chosen from the original database 

for retrospective screening.  
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Figure 4.22. SQUID fuzzy pharmacophore models for COX-2 calculated from different 
cluster radii. The Gaussian PPPs of SQUID are represented by spheres. The radius of a sphere 
denotes the standard deviation of the PPP and the intensity of the color illustrates the 
conservation weight of the PPP. Yellow = hydrophobic, cyan = hydrogen-bond acceptor, 
magenta = hydrogen-bond donor. 
 

 

The results of the optimization procedure are shown in Figure 4.23. For each model 

calculated with a different cluster radius the average enrichment factors for the first 1% and 

5% of the 5 ranked databases obtained with the best found weighting scheme are shown. The 

highest average enrichment factor of 39 for the first 1% of the database was obtained with the 

model calculated with a cluster radius of 1.4 Å and feature-type weights of 0.1 for hydrogen-

bond donors, 0.4 for hydrogen-bond acceptors and 0.3 for hydrophobic interactions.  
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Figure 4.23. Enrichment factors for the first 1% and 5% from retrospective screening with 
COX-2 pharmacophore models with cluster radii from 0.5 Å to 3.5 Å. For each cluster radius 
the result from the best found feature type weights from the optimization procedure is shown. 
The shown enrichment factors are average values from screening of five randomly selected 
subsets of the COBRA database.  

 

 

As it could be anticipated, the standard deviations of the enrichment factors were the 

highest for the first 1% and decreased for the first 5%. Nevertheless according to their 

standard deviations the enrichment factors for the first 1% of the database still seem to be 

appropriate for an evaluation of our pharmacophore models. Both curves exhibit the same 

general characteristics for different cluster radii, although the differences between the models 

vanish more and more considering the enrichment of the first 5% of the database (Figure 

4.23).  

Considering the performance of the models for the enrichment in the first 1% of the 

database, large enrichment factors could be obtained for all models with a cluster radius from 

0.5 Å to 2.4 Å. As can be seen in Figure 4.22 these models only differ in the description of the 

hydrophobic interactions, while models with 2.5 Å and greater cluster radii differ from the 

other models in the description of the oxygen atoms of the sulfonyl group. The models with a 

large cluster radius use a single PPP for the description of these atoms while the models with 

small cluster radius use two PPPs. It seems that a single PPP for the description of these 

oxygen atoms is not sufficient for a reasonably performing pharmacophore model. The 

models from 0.5 Å to 2.4 Å can be divided into 4 groups. The pharmacophore models of the 

first group from 0.5 Å to 0.9 Å with enrichment factors of roughly 27 consist only of PPPs 

merging atoms from different molecules within close spatial proximity, e.g., all aromatic rings 

are described by six PPPs. From 1.0 Å to 1.2 Å a minimum in the performance of the models 

was observed. In these models ring A is represented by six PPPs, and ring B is represented by 
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four or five PPPs, which might not be an adequate number for the description of an aromatic 

six-ring. 

The three best performing models were obtained with cluster radii of 1.3 Å to 1.5 Å. 

Both models from 1.4 Å and 1.5 Å describe ring A with a single PPP and ring B with three 

and two PPPs respectively. Like within the poorly performing models employing cluster radii 

from 1.0 Å to 1.2 Å, in the model obtained with a cluster radius of 1.3 Å ring B is represented 

by four PPPs, but ring A is represented by three PPPs. The larger tolerances of the three PPPs 

of ring A might have compensated the unfavorable description of ring B. Within the models 

from 1.6 Å to 2.4 Å the hydrophobic interactions are represented by a decreasing number of 

five to three hydrophobic PPPs. 

For comparison, a pharmacophore model was calculated including the two additional 

COX-2 inhibitors DFU and celecoxib from the model of Palomer et al. [Palomer et al., 2002]. 

A slightly better ef for the first 1% of the database (ef = 40) was obtained with a model 

calculated with a cluster radius of 1.5 Å and feature-type weights of 0.2 for hydrogen-bond 

donors, 0.5 for hydrogen-bond acceptors and 0.5 for hydrophobic interactions (data not 

shown). 

To test if our approach for the optimization of feature-type weights is also valid in 

situations with significantly fewer reference molecules we repeated the optimization 

procedure with only the molecules from the pharmacophore model as reference molecules for 

assessment of the enrichment capabilities of the SQUID models. For all models with cluster 

radii from 0.5 Å to 2.4 Å several weighting schemes were found that ranked two of the three 

reference molecules into the first percent of the database. In no case all three molecules were 

found in the first percent. Ranking of all models according to Eq. 2.7 resulted in four similarly 

top scoring 1.4 Å models with different weighting schemes. Among these models the 

previously found best working model was found, with feature-type weights of 0.1 for 

hydrogen-bond donors, 0.4 for hydrogen-bond acceptors and 0.3 for hydrophobic interactions. 

The worst of the other three models still resulted in an ef of 34 screening the database with the 

92 COX-2 inhibitors.  

For comparison the maximum ef value for COX-2 (all 47 molecules of the first 1% are 

COX-2 inhibitors) would be 51. Accordingly at least 34 times more molecules were found 

than expected from a random selection of molecules and at least two-thirds of the COX-2 

inhibitors which could be found at all in the first 1% were retrieved with the SQUID fuzzy 

pharmacophore models. However one has to take care that the actual values of the ef cannot 

be compared between different sets of molecules because the ef depends on the total number 
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of active molecules in the virtual screening database and thus on the a priory probability to 

find a hit. A low a priori probability for actives results in a larger increase in the ef value for 

each retrieved active molecule than a high a priori probability.  

To compare our method with another established method we performed retrospective 

screenings with the molecules from which the pharmacophore models were calculated. For 

this approach we encoded these molecules with the CATS3D descriptor, but without scaling 

the descriptor to a maximum of 1. The database molecules were scored by the Euclidean 

distance to the query molecule and the database was sorted according to the calculated 

distances to the query molecule. A comparison of the results of the similarity search with the 

results obtained from the best SQUID model is shown in Figure 4.24. Rofecoxib performed 

best in comparison to the other two COX-2 inhibitors. This might be a consequence of its 

comparably small size. The pharmacophore model performed better than rofecoxib for the 

first 15% of the database. With the SQUID approach 75% of the active COX-2 inhibitors 

were ranked into the first 6% of the database. In comparison, rofecoxib retrieved 75% of the 

actives among the top 16% of the ranked database. Interestingly, the performance of the 

pharmacophore model decreased significantly for the last 25% of the active molecules in 

comparison to the COX-2 inhibitors.  

 

 

 

Figure 4.24. Comparison of the enrichment curves of the best COX-2 SQUID model with 
CATS3D similarity searching using the COX-2 inhibitors from model calculation. 
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4.6.3 Pharmacophore model of thrombin ligands 

A diverse set of seven non-covalent, non-peptidic thrombin inhibitors was adopted from Patel 

et al. [Patel et al., 2002]. The 2D structures of these molecules are shown in Figure 4.25. All 

ligands were aligned by superposition of the protein structures with the homology alignment 

tool of MOE. The resulting alignment of the thrombin inhibitors is shown in Figure 4.26. 

According to Patel and coworkers the major interactions are B, H1, H2 and H3, where B is a 

basic interaction which interacts with the carboxylic group of Asp189. H1, H2 and H3 are 

hydrophobic interactions. Less conserved interactions are D1 and A1, where D1 is a 

hydrogen-bond donor and A1 is a hydrogen-bond acceptor. SQUID pharmacophore models 

were calculated from the 3D alignment with cluster radii from 0.5 Å to 3.5 Å within steps of 

0.1 Å.  

 

 

 

Figure 4.25. Reference thrombin inhibitors used for the calculation of the SQUID 
pharmacophore model. The names beneath the molecules are the pdb identifiers of the protein 
structures from which the conformations of these molecules were extracted. 
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A sample set of the resulting models is shown in Figure 4.27. Four generalized 

interaction types were found in the ligands based on the ph4_aType function of MOE: 

hydrogen-bond acceptor, hydrogen-bond donor, polar and hydrophobic. Since all ligands 

were presented in neutralized state, interaction B was not identified as cationic feature, instead 

it was represented by hydrogen-bond donor and polar interactions and an additional 

hydrogen-bond acceptor. In the 1.0 Å and 1.5 Å models the description of the three 

hydrophobic interactions H1, H2 and H3 is very detailed using a large number of PPPs. With 

a cluster radius of 2.0 Å only four PPPs are left. In the models with cluster radii of 2.5 Å, 3.0 

Å and 3.5 Å these hydrophobic interactions are represented by only three PPPs. Both A1 and 

D1 are structurally conserved features in the alignment. All appropriate atoms from the 

different molecules lie in near proximity to each other. A1 is represented by a small conserved 

PPP in all models except for the 3.5 Å model, where it is represented by a large PPP, 

including other hydrogen-bond acceptors. D1 is also represented by a small conserved PPP 

except for the models with 3.0 Å and 3.5 Å cluster radius. 

 

 

 

Figure 4.26. Three-dimensional alignment of thrombin inhibitors. The molecules were 
aligned by superposition of their appropriate protein structures. Essential interactions with the 
receptor are: B is a basic interaction, H1, H2, and H3 are hydrophobic interactions, A1 is a 
hydrogen-bond acceptor and D1 is a hydrogen-bond donor. 
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4.6.4 Retrospective screening for thrombin inhibito rs 

For retrospective screening with the SQUID pharmacophore models obtained from the 

alignment of thrombin inhibitors the same procedure for feature-type weight optimization was 

applied as for the screening for COX-2 inhibitors. For the thrombin optimization 625 

weighting schemes had to be evaluated per model. 

The results of the optimization procedure are shown in Figure 4.28. The best average 

enrichment factor of 18 for the first 1% of the database was obtained with the model 

calculated with a cluster radius of 2.0 Å and feature-type weights of 0.4 for polar, 0.5 for 

hydrogen-bond donors, 0.3 for hydrogen-bond acceptors and 0.5 for hydrophobic interactions.  

 

 

 

Figure 4.27. SQUID fuzzy pharmacophore models for thrombin calculated from different 
cluster radii. The Gaussian PPPs of SQUID are represented by spheres. The radius of a sphere 
denotes the standard deviation of the PPP and the intensity of the color illustrates the 
conservation weight of the PPP. Yellow = hydrophobic, cyan = hydrogen-bond acceptor, 
magenta = hydrogen-bond donor, green = polar. 
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Figure 4.28. Enrichment factors for the first 1% and 5% from retrospective screening with 
thrombin pharmacophore models with cluster radii from 0.5 Å to 3.5 Å. For each cluster 
radius the result from the best found feature type weights from the optimization procedure is 
shown. The shown enrichment factors are average values from screening of five randomly 
selected subsets of the COBRA database.  

 

 

We detected two peaks for each of the enrichment factors, one for models with a high 

degree of generalization with cluster radii from 2.0 Å to 2.2 Å, and one for models with a 

lower degree of generalization with cluster radii of 1.0 Å and 1.1 Å. Interestingly, models 

with cluster radii greater than 2.8 Å performed very well, too. As can be seen in Figure 4.27, 

the model with a cluster radius of 1.0 Å from the first peak mainly clustered atoms within 

near proximity into PPPs, while already favoring conserved atoms. The model with a cluster 

radius of 2.0 Å from the second peak represents the features with a drastically diminished 

overall number of PPPs. In particular the three hydrophobic interactions are represented by 

four PPPs, in contrast to all other models with a smaller cluster radius. The models resulting 

from cluster radii larger than 2.8 Å consist mostly of PPPs with large tolerances, but unlike 

for COX-2, these PPPs represent the shape of the molecular alignment very well. 

Like for COX-2 the optimization procedure was repeated with only the molecules 

from the pharmacophore model as reference molecules. For many models weighting schemes 

were found which ranked two of the seven reference molecules into the first 1% of the 

database. In no case more molecules were found in the first 1%. Ranking of all models 

according to Eq. 2.7 resulted in the previously found best working 2.0 Å model with feature-

type weights of 0.4 for polar interactions, 0.5 for hydrogen-bond donors, 0.4 for hydrogen-

bond acceptors and 0.5 for hydrophobic interactions. 
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The result of the 2.0 Å SQUID model was compared with results from retrospective 

screening with CATS3D descriptors calculated from the molecules used for the calculation of 

the pharmacophore model. Enrichment curves are shown in Figure 4.29. Major differences 

were observed in the performance of the individual thrombin inhibitors. The inhibitors from 

the crystal structures 1FPC and 1DWD performed best. The three inhibitors from structures 

1D4P, 1D9I, and 1TOM performed even worse than a random distribution of active 

molecules within some regions of the ranked database. The SQUID pharmacophore model 

performed better than the most successful similarity search for the first 40% of the database. 

50% of the active molecules were ranked into the first 6% of the database by the 

pharmacophore model in comparison to the best thrombin inhibitor from 1DWD, which 

ranked 50% of the active molecules into the first 13% of the database. 

 

 

 

Figure 4.29. Comparison of the enrichment curves of the best thrombin SQUID model with 
CATS3D similarity searching using the thrombin inhibitors from the model calculation. 
 

 

4.6.5 Method performance 

For an additional comparison of the SQUID pharmacophore model with an established 

method we calculated pharmacophore models from the two alignments of COX-2 and 

thrombin reference compounds with the pharmacophore tool of MOE [Chemical Computing 

Group]. For both models we used the atom-type scheme PCH_ALL which consists of atom-

types for cationic, anionic, hydrogen-bond donor, hydrogen-bond acceptor, aromatic ring 
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centers and hydrophobic interactions. In contrast to SQUID, one PPP in MOE can describe 

multiple atom-types, which can be combined by logic operators. As a starting point for the 

alignments pharmacophore models were calculated automatically with the consensus 

pharmacophore function using MOE default parameters. This function clusters features into 

PPPs which are more conserved than a threshold value. For the threshold 50 % conservation 

was used. Retrospective screening with these first pharmacophore models was very slow and 

the program even failed to screen the whole database due to limitations of the software. As a 

consequence, we modified the models manually by removing PPPs which were not among the 

key features of the pharmacophore models published by Palomer et al. [Palomer et al., 2002] 

or Patel et al. [Patel et al., 2002] respectively (Figure 4.21, Figure 4.26). For the thrombin 

model the radii and the positions of the PPPs for H1, H2 and D1 were manually adjusted for a 

more accurate representation of the underlying ring structures and the cluster of hydrogen-

bond donors. Additional multiple features of the PPPs were also removed. The resulting MOE 

pharmacophore models are shown in Figure 4.30. Both models were evaluated by 

retrospective screening of the COBRA database.  

With the MOE COX-2 model (Figure 4.30a) we retrieved 84 matching molecules 

among which we found 49 (58 %) of the known COX-2 inhibitors. In comparison, the COX-2 

SQUID model found 47 (56 %) active molecules in the first 84 compounds from the ranked 

database. Reinsertion of a PPP from the first MOE model, which represents the central five-

ring of the COX-2 inhibitors by an acceptor, aromatic or hydrophobic interaction, resulted in 

48 actives (91 %) out of 53 matches. Within the first 53 molecules of the ranked database the 

SQUID pharmacophore model retrieved only 38 (72 %) active compounds. A comparison of 

the actives found by MOE and SQUID showed that the overlap was only 25 molecules, i.e., 

that both methods complement each other. SQUID retrieved additional 13 actives which were 

missed by the refined MOE model. 

With the MOE thrombin model (Figure 4.30b) we retrieved 5 actives (31 %) among 

16 matches, in comparison to the SQUID model which retrieved 13 actives (81 %) among the 

first 16 molecules of the sorted database. Retrospective screening with the partial match 

option of the MOE pharmacophore search function requiring only six of the seven PPPs as 

matching criterion resulted in 489 matches including 87 (18 %) thrombin inhibitors. With 

SQUID 119 actives (24 %) were found among the first 489 molecules of the ranked database. 

The two sets of actives have 64 molecules in common. Again, we conclude that the two 

pharmacophore searching approaches complement each other. 
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Figure 4.30. MOE Pharmacophore models for COX-2 (a) and thrombin (b). In the COX-2 
pharmacophore model the rings A and B are represented by two aromatic ring center PPPs, 
and the sulfonyl group is represented by a PPP for a donor or hydrophobic interaction. In the 
thrombin pharmacophore model the hydrophobic interactions H1 and H2 are represented by 
hydrophobic PPPs while H3 is represented by an aromatic PPP. For A1 a hydrogen-bond 
acceptor PPP and for D1 a hydrogen-bond donor PPP was found. The basic interaction B was 
represented by two PPPs, one for hydrogen-bond acceptor or hydrogen-bond donor and one 
for hydrogen-bond acceptor and hydrogen-bond donor. 

 

 

To gain further confidence in our approach we took a look at the two top-scoring non-

active molecules from each of the best pharmacophore models for COX-2 and thrombin 

(Figure 4.31). Molecules 4.6.11 [Woo et al., 1998] and 4.6.12 [Supuran et al., 2003] were 

found with the COX-2 pharmacophore model with 1.4 Å cluster radius, and molecules 4.6.13 

[Marlowe et al., 2000] and 4.6.14 [Rudolf et al., 1994] were found with the thrombin 

pharmacophore model with 2.0 Å cluster radius. Ethoxzolamide (4.6.12) is an inhibitor of 

carbonic anhydrase. Also, it has been shown recently that celecoxib is a nanomolar inhibitor 

of carbonic anhydrase [Weber et al., 2004]. EMATE (4.6.11) is an inhibitor of estrone 

sulfatase, and a nanomolar inhibitory effect of EMATE on carbonic anhydrase activity has 

been reported [Ho et al., 2003]. This indicates that both “non-active” molecules share 

common features with the COX-2 inhibitors from the pharmacophore model.  

Molecule 4.6.13 (BOC-D-Arg-Pro-Arg) is an inhibitor of Factor Xa for which 

nanomolar inhibition of thrombin has been reported [Ho et al., 2003]. It thus represents a real 

hit. BIBP3226 (4.6.14) is an antagonist of the neuropeptide Y1 receptor. To our knowledge 

thrombin activity has not been tested for this molecule.  
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Figure 4.31. Best scoring false-positive hits found with the SQUID fuzzy pharmacophore 
models. Compounds 4.6.11 and 4.6.12 were found with the COX-2 pharmacophore model 
with 1.4 Å cluster radius. Compounds 4.6.13 and 4.6.14 were found with the thrombin model 
derived form 2.0 Å cluster radius. 
 

 

4.6.6 Conclusion 

We challenged our SQUID approach using inhibitors of COX-2 and thrombin. For both 

classes COX-2 and thrombin SQUID pharmacophore models were able to find an appropriate 

representation of important pharmacophoric interactions. The optimization procedure was 

found to be robust in cross-validation using five different randomly sampled subsets of 50 % 

of the COBRA database. Using only the molecules from the pharmacophore model as 

references for the optimization resulted in identical (COX-2) or near identical (thrombin) 

results as for using all active molecules as references. The best retrospective screening results 

for COX-2 were obtained with the model resulting from a cluster radius of 1.4 Å, yielding an 

enrichment factor of 39 for the first 1% of the ranked database. For thrombin, the best results 

for the enrichment in the first 1% of the database were obtained with the model resulting from 

a cluster radius of 2.0 Å, yielding ef = 18. For both targets, the best models outperformed 

retrospective screening by CATS3D similarity searching. This showed that - independent 

from the overall enrichment and thus independent of the explicit selection of active molecules 

- the pharmacophore model outperformed conventional similarity searching. In comparison to 

conventional pharmacophore searching with MOE, SQUID identified additional actives and 

thus complements existing methods. We demonstrated that the SQUID pharmacophore model 
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approach provides a potentially useful new method for virtual screening. The inherent fuzzy 

description of the molecules should support the goal of ‘scaffold hopping’, especially with 

higher degrees of fuzziness.  
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4.7 Prospective screening for inhibitors of the Tat -TAR 

RNA interaction with a SQUID fuzzy pharmacophore 

model and CATS3D 

RNA is a relatively new target to be tackled deliberately in drug discovery projects. 

Molecules inhibiting the interaction between the TAR RNA and the Tat protein might be 

useful to defeat HIV. The first inhibitor found was argininamide (4.7.1), a derivative of the 

arginine which is responsible for specific binding of Tat to TAR [Tao & Frankel, 1992]. So 

far, only structure-based virtual screening has been reported for TAR, where an automated 

docking approach including a scoring function optimized for RNA led to the identification of 

acetylpromazine (4.7.2) and chlorpromazine (4.7.3) [Lind et al., 2002]. 

An alternative for structure-based virtual screening are ligand-based approaches 

[Schneider & Böhm, 2002]. Especially methods including the active-analog idea of 

pharmacophores have been shown to be suited for scaffold-hopping [Schneider et al., 1999]. 

Pharmacophore based similarity searching which was originally developed to identify protein-

ligands might be robust enough to identify new RNA ligands without altering the definitions 

of the pharmacophoric interactions towards RNA specific interactions.  

The goal of this study was to enhance the evaluation CATS3D and SQUID with 

prospective virtual screening experiments. Further the applicability of our alignment-free 

pharmacophore based virtual screening approaches should be tested for RNA targets. The 

SPECS compound set [SPECS] containing 229,658 screening compounds was virtually 

screened for potential inhibitors of the Tat-TAR interaction. Virtual screening consisted of 

three steps: i) calculation of a “drug-likeness” score by an artificial neural network as a 

prescreening step, ii) CATS3D pharmacophore similarity searching, and iii) SQUID 

pharmacophore similarity searching based on the flexible alignment of known active 

reference molecules. Steps ii) and iii) were performed independently for the 20,000 most 

“druglike” compounds. 
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Figure 4.32. NMR structures of TAR RNA. a) TAR with bulge binders: 1anr (free TAR), 
1qd3 (TAR complexed with neomycin), 1arj (arginine), 1aju (argininamide), 1lvj 
(acetylpromazine). ). The bulge nucleotides are represented in space filling: U23 (blue), C24 
(green), and U25 (red). All structures are from HIV-1 TAR except 1aju (HIV-2, C24 is 
missing). b) Binding pockets of the TAR ligands. Surface representation of the binding sites, 
mapped by electrostatic partial charges (red = negative partial charge, blue = positive partial 
charge). 
 

 

Figure 4.33. TAR-Tat interaction inhibitors. Argininamide 4.7.1, acetylpromazine 4.7.2, 
chlorpromazine 4.7.3, CGP40336A 4.7.4. 
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Figure 4.34. Modification of ligand 4.7.4 for the alignment. 
 

 

4.7.1 Calculation of an alignment of reference comp ounds 

Several NMR structures of the TAR-RNA with bound inhibitors are publicly available 

(Figure 4.32). Different ligands address different binding-sites and stabilize different 

conformations of the bulge (Figure 4.32a). Acetylpromazine (4.7.2) is bound in a deep 

binding-site mediated by a combination of stacking and charged interactions whereas the 

other ligands are bound in shallow binding-sites dominated by charged interactions (Figure 

4.32b). Because of the seemingly more druglike relation of ligand-receptor interactions in the 

acetylpromazine binding-site in comparison to the other sites we decided to design ligands for 

the former binding-site. Acetylpromazine (4.7.2) [Lind et al., 2002] and CGP40336A (4.7.4) 

[Hamy et al., 1998] (Figure 4.33) were chosen as reference ligands from literature with 

reported nanomolar IC50 values. For both molecules binding to the bulge had been 

experimentally verified, however detailed structural data was not available for 4.7.4. As 4.7.4 

contains a ring system -- which might be involved in stacking interactions like in 4.7.2 -- and 

a charged flexible part -- which might interact similar to a potential charge-π interaction of 

4.7.2 with C24 [Du et al., 2002] --, we assumed that 4.7.4 could have a comparable binding 

mode as 4.7.2. For calculation of a SQUID model the two ligands had to be aligned to each 

other. One possibility would be to dock the reference ligands into the TAR binding pocket; 

the other possibility is to perform a flexible ligand-based alignment. Since we were not able to 

reproduce the experimentally determined TAR-bound conformation of acetylpromazine 4.7.2 

within the binding pocket using either MOE [Chemical Computing Group] docking or the 

AUTODOCK approach [Morris et al., 1998] (results not shown), we decided to align 

CGP40336A 4.7.4 to the NMR conformation of 4.7.2 by help of the flexible alignment tool of 

MOE. Interestingly, fruitless attempts to reproduce the NMR structure of 4.7.2 complexed to 
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TAR RNA was also reported by Detering and Varani who successfully reproduced many 

other RNA-ligand complexes using AUTODOCK, but failed to reproduce the 

acetylpromazine binding mode with an RMSD value below 2 Å [Detering & Varani, 2004]. 

Their study supports our decision to follow the ligand-based alignment approach. For the 

alignment calculation we used the first NMR model of the Protein Database entry (PDB code: 

1LVJ) [Du et al., 2002]. Since it was not possible to predict reasonable conformations of the 

aliphatic amino groups of 4.7.4 based on flexible alignment alone, we decided to cut off these 

groups and use molecule 4.7.5 instead (Figure 4.34) for the alignment and virtual screening. 

The top scoring solutions of the flexible alignment were visually inspected, and we selected 

the conformation where the ligand appeared to fit best into the receptor (Figure 4.35). 

Stacking and polar interactions of 4.7.4 occupy the same parts of the binding pocket as 

acetylpromazine 4.7.2, so we think that a reasonable starting solution was found.  

 

 

 

Figure 4.35. Alignment of 4.7.5 to the NMR conformation of 4.7.2 (a) (PDB-code: 1LVJ). 
The alignment shown in the binding pocket of TAR (b) with 4.7.2 in red and 4.7.5 in green. 
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4.7.2 Calculation of pharmacophores and virtual scr eening 

For virtual screening with CATS3D we calculated the CATS3D descriptor from those 

conformations of the reference molecules that resulted from the flexible alignment. For 

screening with the SQUID pharmacophore model the best resolution of the model, i.e. the 

optimal PPP cluster radius, and the best weights for the different features had to be 

determined. The performance of the different parameter sets was determined by their ability 

to rank the two molecules from the pharmacophore model to top positions in comparison to 

molecules from the COBRA reference dataset [Schneider & Schneider, 2003] (version 3.12) 

of bioactive molecules, as described earlier in Section 4.6.  

For the optimization cluster radii from 0.5 to 3.0 Å in steps of 0.1 Å were applied. 

Feature type weights were applied from 0.1 to 0.5 in steps of 0.1 for hydrogen-bond 

acceptors, hydrogen-bond donors and hydrophobic interactions. This resulted in 125 

combinations of feature type weights explored for each of the 26 cluster-radii. For all cluster 

radii models were found which ranked at least one of the query compounds into the first 1% 

of the hit-list. Equal best results were obtained with cluster-radii of 1.4, 1.5, and 1.6 Å: the 

same eight combinations of feature type weights were found for each model ranking both 

query compounds into the first 1% of the database. The eight combinations were: {(0.1 for 

hydrogen-bond donors, 0.2 for hydrogen-bond acceptors, 0.3 for hydrophobes), (0.1, 0.3, 0.3), 

(0.1, 0.3, 0.4), (0.1, 0.4, 0.4), (0.1, 0.4, 0.5), (0.1, 0.5, 0.5), (0.2, 0.4, 0.5), (0.2, 0.5, 0.5)}. For 

virtual screening we chose the intermediate model with cluster radius = 1.5 Å and weights of 

(0.1, 0.3, 0.4). The selected pharmacophore model is shown in Figure 4.36.  

 

 
 

Figure 4.36. SQUID fuzzy pharmacophore model derived from 4.7.2 and 4.7.5 in top-view 
(a) and side-view (b). The spheres represent the Gaussian PPPs of SQUID. The radius of a 
sphere denotes the standard deviation of the PPP and the intensity of the color illustrates the 
conservation weight of the PPP. Yellow = hydrophobic, cyan = hydrogen-bond acceptor, 
magenta = hydrogen-bond donor. 
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Three virtual screening experiments were performed with different queries: i) + ii) the 

two CATS3D CVs which were calculated from molecules 4.7.2 and 4.7.5, and iii) the CV 

from the optimized SQUID pharmacophore model. From the results the top scoring database 

molecules were visually inspected, and a set of 19 molecules (10 molecules from SQUID and 

10 molecules from CATS3D, one molecule overlap) was selected for experimental testing 

(Figure 4.37). To estimate the degree of “scaffold-hopping” of the retrieved molecules the 

average MACCS Tanimoto similarity of the hits to the respective most similar reference 

molecules was calculated. For SQUID this similarity was found to be 0.52 ± 0.13 and for 

CATS3D 0.53 ± 0.11. For comparison the MACCS Tanimoto similarity between the two 

reference molecules was found to be 0.61. According to this criterion the chemotypes 

retrieved were more dissimilar to the reference chemotypes than the references to themselves.  

 

4.7.3 FRET determination of the inhibition constant s 

All 19 molecules were tested for their potency in a Tat-TAR inhibition assay (These 

experiments were performed by Verena Ludwig and Ute Scheffer in collaboration with the 

group of Prof. Göbel, Frankfurt). As reference we determined the IC50 values of argininamide, 

acetylpromazine and chlorpromazine -- three inhibitors from the literature with reported 

values of Ki ~ 1 mM for argininamide [Tao & Frankel, 1992], and IC50 < 1 µM for 

acetylpromazine and chlorpromazine . IC50 values in our assay were 1.4 mM for argininamide 

and 500 µM for acetylpromazine and chlorpromazine [Lind et al., 2002]. The strong 

discrepancy in the IC50 for acetylpromazine and chlorpromazine compared to the reported 

values is in accordance with a recently published article which reported a discrepancy in the 

same order of magnitude for acetylpromazine (KD = 270 µM compared to IC50 ~ 1 µM, as 

previously stated) [Mayer & James, 2004]. As a first prescreening of the compounds we 

performed single-point measurements of the inhibition potency using three fixed 

concentrations of 10, 100 and 1000 µM of the candidate molecule. Molecules 4.7.14 (hit form 

SQUID) [Tugusheva et al., 1998] and 4.7.21 (hit from CATS3D with reference molecule 

4.7.5) [Shanazarov et al., 1989] (Figure 4.37) showed a stronger inhibition than argininamide 

in the single point measurements. Multipoint measurements yielded IC50 values of 46 µM and 

500 µM for 4.7.14 and 4.7.21, respectively.  
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Figure 4.37. Molecules selected from SQUID and CATS3D virtual screening.  
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Figure 4.38. Flexible alignment of 4.7.14 (a) and 4.7.21 (b) to the aligned reference 
molecules 4.7.2 (red) and 4.7.5 (green). 
 

 

The two ligand-based pharmacophore methods were able to perform “scaffold-

hopping”, retrieving isofunctional but slightly different molecular scaffolds from the SPECS 

catalogue. Both new ligands contain a central structure consisting of three rings with an 

aliphatic amide side-chain, like the reference compounds. An additional aromatic ring is 

present at different positions in both molecules, extending the original ring systems to four 

concatenated rings. Flexible alignments of 4.7.14 and 4.7.21 (Figure 4.38) revealed that 

4.7.14 fits better to the reference alignment than 4.7.21. Also, the aliphatic amide side-chain 

of 4.7.14 was closer aligned to the corresponding side-chains of the references. The nitrogen 

of the additional pyridine ring of 4.7.14 was positioned directly above the potential hydrogen-

bond acceptors of the reference molecules. In both 4.7.14 and 4.7.21 the additional ring might 

be used for more favorable stacking interactions with the receptor. In 4.7.21 this potentially 

favorable effect might have been compensated by steric stress due to an unfavorable 

orientation of the ring or the amide side-chain. Still the IC50 value is comparable to 

acetylpromazine and chlorpromazine.  

 

4.7.4 Conclusions 

In this study we presented the application of two ligand-based virtual screening approaches 

for the compilation of a small focused library containing potential TAR RNA ligands. Among 

the 19 molecules tested we found two molecules which were able to inhibit the Tat-TAR 

interaction in a FRET assay. The SQUID fuzzy pharmacophore approach yielded the most 
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potent molecule with an improved activity of one order of magnitude compared to 

acetylpromazine 4.7.2 or chlorpromazine 4.7.3. This could be an effect of incorporating 

information from multiple active reference molecules into the pharmacophore-based search 

for new TAR ligands.  

Ligand-based approaches provide a complementary concept to structure based design, 

which might be hampered by the large inherent flexibility of RNA targets. Though it has been 

shown that specific parameterization of scoring functions is not essential for ligand docking to 

RNA it is still significantly slower than a ligand-based approach [Detering & Varani, 2004]. It 

has been demonstrated that ligand-based pharmacophore approaches are capable of finding 

new RNA ligands. Although the best molecule resulted in a moderate IC50 of only 46 µM in 

the FRET assay this molecule might provide a starting point for further optimization. 

Certainly, other assay types will be needed to confirm and further scrutinize these findings. 

The new inhibitors might not represent ideal candidates for starting a lead optimization 

project. Additional experiments will have to be performed addressing the question which role 

the additional ring system actually plays for RNA recognition and binding affinity. 

Furthermore, structures 4.7.14 and 4.7.21 might be intercalating agents and exhibit unspecific 

binding to both RNA and DNA targets due to the planar ring systems and relatively high 

lipophilicity. Such issues could also be addressed in a different setting of the virtual screening 

approach. For example, to obtain selectivity towards RNA, known DNA-binders and 

intercalators might be used as negative examples for similarity searching. This tactic is 

currently pursued in our laboratory. 

Irrespective of the outcome of such analyses, both ligand-based methods have proved 

to be useful for finding new molecules within the activity range of known reference 

compounds. Notably both approaches were originally developed for protein ligands, but they 

also seem to be applicable to virtual screening for RNA ligands. To our knowledge this study 

presents the first inhibitors of an RNA-protein complex found by ligand-based virtual 

screening. 
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4.8 Prospective screening for taspase1 inhibitors w ith a 

receptor-derived pharmacophore model 

 

When no ligand and no receptor structure information are available for virtual screening 

alternative approaches have to be applied. One possibility is to predict the protein structure 

with a homology model and utilize the predicted structure for virtual screening [Hillisch et al., 

2004; Bissantz et al., 2003; Grüneberg, 2005; Evers & Klebe, 2004; Evers & Klabunde, 

2005]. Homology models are better described as a good approximation of the real protein 

structure than as a high accuracy replicate. Hence, high-throughput docking studies can be 

misleading, when based on homology models alone. An alternative to this approach are 

receptor-derived pharmacophore models [Wolber & Langer, 2005; Pirard et al., 2005]. Such 

an approach was used to search for a first inhibitor of human taspase1. Taspase1 is a 

threonine protease [Hsieh et al., 2003] and hence the problem of finding an inhibitor for 

taspase1 involves the problem of scaffold-hopping form a peptide substrate to a drug-like 

molecule inhibitor. This is a comparably complex task for ligand-based pharmacophore-

descriptor approaches like the CATS descriptor that are often hampered by the many 

potentially interacting groups in peptides [Sheridan et al., 2001]. Thus a pharmacophore 

model focusing on small numbers of relevant interactions might be favorable for this task. 

The sequence of the human taspase1 from the swiss-prot entry Q9H6P5 was used for a 

BLAST [Altschul et al., 1997] search for related protein structures from the PDB database 

[Berman et al., 2000]. Protein structures were selected with a significant similarity in both 

subunits of taspase1. Mutant proteins were discarded. An overview of the PDB structures 

which were finally selected is given in Table 4.16.  

1T3M [Prahl et al., 2004] is an isoaspartyl peptidase with an additional L-asparaginase 

activity [Hejazi et al., 2002; Borek et al., 2004] (Figure 4.39). 2GAW [Guo et al., 1998] and 

1APZ [Oinonen et al., 1995] have a glycosylasparaginase activity and also an L-asparaginase 

activity [Noronoski et al., 1997, Tarentino & Plummer, 1993] (Figure 4.39). All activities 

include the hydrolysis of a beta-N amide linking an aspartate and varying substituents. In 

taspase1 there is also an amide bond hydrolyzed (Figure 4.39): the peptide bond between 

aspartate and glycin. Though the glycin is not bound to the beta amide of an asparagine, the 

sidechain carboxyl group of this aspartate might interact similarly to the free carboxyl group 

of the asparagine of the other enzymes. For all enzymes, isoaspartyl peptidase, 

glycosylasparaginases and taspase1 is has been demonstrated that they undergo 
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autoproteolysis as an activation step, which is mediated by the same reaction centre as used 

for the enzymatic activity [Xu et al., 1999, Hsieh et al., 2003]. Accordingly all actives sites 

have a proteolytic activity.  

 

 

Table 4.16. Selected reference protein structures for homology modeling of taspase1. 
Identities were determined according to the BLAST alignment. (NT = N-terminal subunit; CT 
= C-terminal subunit). 
 
PBD code  1T3M 2GAW 1APZ 
% sequence 
identity 

NT: 
CT: 

42 / 151 (27%) 
35 / 70 (50%) 

29 / 87 (33%) 
22 / 68 (32%) 

22 / 48 (45%) 
29 / 98 (29%) 

e-value NT: 
CT: 

4e-9 
7e-12 

4e-5 
4e-6 

3e-5 
2e-5 

crystal structure 
resolution 

 1.65 Å 2.2 Å 2.3 Å 

enzymatic 
function 

 isoaspartyl 
peptidase / L-
asparaginase 

glycosyl-
asparaginase 

glycosyl-
asparaginase 

organism  Eschrichia coli Flavobacterium 
meningosepticum 

Human 

 

 

The structure 1APZ is a co-crystal structure of glycosylasparaginase with the reaction 

product aspartate. Mutagenesis experiments of residues near to the bound aspartate identified 

a set of eight amino-acids essential for the catalytic activity [Liu et al., 1998]. An overview of 

the spatial orientation of these sidechains with respect to the bound aspartate is given in 

Figure 4.40. T152 is the key functionality providing the nucleophile for the hydrolase 

reaction. The hydroxyl of T170 contributes to the reaction rate. D183 and R180 bind to 

aspartate via hydrogen or ionic bonds to the alpha amino- and the alpha carboxy-group. W11 

is involved in the regulation of the enzyme reaction rate. S50, D66 and T203 were also shown 

to be important for the enzymatic activity. A ninth important residue is revealed by the crystal 

structure 1APZ: G203 which shows a hydrogen bonding interaction with the aspartate 

mediated via the back-bone oxygen of the glycine. 
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Figure 4.39. Reactions catalyzed by the isoaspartyl peptidase (PDB code 1T3M) and the 
glycosylasparaginases (PDB code 2GAW and 1APZ) in comparison to taspase1. 
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Figure 4.40. Aspartate bound in the active site of 1APZ. Essential residues in the binding 
pocket are indicated.  
 

 

To construct a template for the calculation of a homology model of taspase1 all three 

crystal structures were aligned based on the structure of the enzymes with the homology align 

tool in MOE [Chemical Computing Group]. This structural alignment was used as a template 

to align the taspase1 sequence. The resulting alignment is shown in Figure 4.41. All residues 

considered essential for the enzymatic activity in 1APZ [Liu et al., 1998], except for W11, 

were fully conserved (D66, T152, R180, G204) or replaced by isofunctional amino-acids 

(S50A, T170S, D183Q, T203S). The full conservation of the reaction center T152, the 

carboxyl interaction partner R180, the hydrogen-bond acceptor interaction of G204, and D66 

reflects the similar reaction of the enzymes and underlines the possibility of a similar binding 

mode of the ligands. 
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N-terminus 
                                           W11 
                                            | 
>1APZ.A         ------------------SPLPLVVNT-WPF---KNATEAAW-RALASGGSALDAVESGC 
>1T3M.A         ----GKAVIAIHGGAGAISRAQMSLQQELRYIEALSAIVETGQKMLEAGESALDVVTEAV 
>2GAW.A         -------------------NKPIVLST-WNF--GLHANVEAW-KVLSKGGKALDAVEKGV 
>Taspase_N      (39)RGGFVLVHAGAG--YHSESKAKE-YKHV-CKRACQKAI-EKLQAGALATDAVTAAL 
Consensus/100%  ......thlhlHtGAG........hpp.b.al.sbpA...sh.c.L..G..AhDsVp.th 
 
                         S50             D66 
                          |               | 
>1APZ.A         AMCEREQCDGSVGFGGSPDELGETTLDAMIMDGTTMDVGAVGDLRRIKNAIGVA-RKVLE 
>1T3M.A         RLLEECPLFNA-GIGAVFTRDETHELDACVMDGNTLKAGAVAGVSHLRNPVLAA-RLVME 
>2GAW.A         RLVEDDPTERSVGYGGRPDRDGRVTLDACIMDEN-YNIGSVACMEHIKNPISVA-RAVME 
>Taspase_N      VELEDSPFTNA-GMGSNLNLLGEIECDASIMDGKSLNFGAVGALSGIKNPVSVANRLLCE 
Consensus/100%  .bhEcp.h..tVGbGt..sb..phphDA.lMD.p*bphGtVtshp.l+Nsl.sA.R.lhE 
 
>1APZ.A         ---------HTTHTLLVGESATTFAQSMGFINEDLSTSASQALHSDWLARNCQPNYWRNV 
>1T3M.A         ---------QSPHVMMIGEGAENFAFARGMERVSPEIFSTSLRYEQLLAAR--------- 
>2GAW.A         ---------KTPHVMLVGDGALEFALSQGFKKENLLTAESEKEWKEWLKT---------- 
>Taspase_N      GQKGKLSAGRIPPCFLVGEGAYRWAVDHGIPSCPPNIMTTRFSLAAFKRNKRKLELAERV 
Consensus/100%  .........p.s.sbblG-tA.paA.sbGb.p.s..h..*p..b..bb..ppp.pbhcpV 
 
>1APZ.A         IPDPSKYCGPYKPP---- 
>1T3M.A         ------------------ 
>2GAW.A         ------------------ 
>Taspase_N      DTDFMQLKKRRQSS(10) 
Consensus/100%  .sD..pbp..bpss.... 

 

C-terminus  
               T152              T170     R180 D183                  T203  G204  
                |                 |         |  |                         \/ 
>1APZ.B         TIGMVVIHKTGHIAAGTSTNGIKFKIHGRVGDSPIPGAGAYADDT------AGAAAATGN 
>1T3M.B         TVGAVALDLDGNLAAATSTGGMTNKLPGRVGDSPLVGAGCYANNA------SVAVSCTGT 
>2GAW.B         TIGMIALDAQGNLSGACTTSGMAYKMHGRVGDSPIIGAGLFVDNE------IGAATATGH 
>Taspase_C      TVGAVVVDHEGNVAAAVSSGGLALKHPGRVGQAALYGCGCWAENTGAHNPYSTAVSTSGC 
Consensus/100%  TlGhlslc.pGplttts**sGb..Kb.GRVGptsl.GsGhasps.......sAsss*Gp 
 
>1APZ.B         GDILMRFLPSYQAVEYMR-RGEDPTIACQKVI-SRIQKHFP-------EFFGAVICANV- 
>1T3M.B         GEVFIRALAAYDIAALMDYGGLSLAEACERVVMEKLPALG---------GSGGLIAIDH- 
>2GAW.B         GEEVIRTVGTHLVVELMN-QGRTPQQACKEAV-ERIVKIVNRRGKNLKDIQVGFIALNK- 
>Taspase_C      GEHLVRTILARECSHAL--QAEDAHQALLETMQNKFISSPFLASED--GVLGGVIVLRSC 
Consensus/100%  G-.hhRhl.sb.hs.hbp..tbs..bAhbcshbp+b.....b.tcs...h.sthIshp.. 
 
>1APZ.B         --TGSYGAACNKLSTFTQFSFMVYNSEKNQPTEEKVDCI---- 
>1T3M.B         --EGNVALPFN----TEGMYRAWGYAG-DTPTTGIYR------ 
>2GAW.B         --KGEYGAYCIQ----DGFNFAVHDQ-K-GNRLETP------- 
>Taspase_C      RCSAEPDSSQNK--QTLLVEFLWSHTT-ESMCVGYMSAQ(35) 
Consensus/100%  ..ptp.s....p..ph..h.bhh....Kp..p....psb.... 
 

Figure 4.41. Alignment of the C-terminal and the N-terminal taspase1 sequences to the 
structural alignment of 1T3M, 1APZ and 2GAW. Consensus symbols other than residue 
letters are: - = negative, * = ser/thr, | = aliphatic, + = positive, t = tiny, a = aromatic, c = 
charged, s = small, p = polar, b = big, h = hydrophobic. Essential residues for catalytic 
activity in glycosylasparaginase are marked according to the numbering of [Liu et al., 1998]. 
Amino acid symbols at alignment positions that are 100% conserved over proteins that have a 
residue at the respective positions were colored. Conservation was first considered on the 
level of residue identity. For non-identical residues conservation was further considered on 
the level of similar biochemical properties: red = negative, cyan = S/T, grey highlighted 
yellow = aliphatic, dark blue = positive, light green = tiny, dark blue highlighted yellow = 
aromatic, pink = charged, dark green = small, light blue = polar, light blue highlighted yellow 
= big, black highlighted yellow = hydrophobic.  
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Figure 4.42. Evaluation of the taspase1 homology model. a) Binding pocket of taspase1 with 
essential residues. Y52 was the only binding-site residue flagged in the MOE protein report to 
have unusual backbone torsion angles. b) Structure alignment of the taspase1 homology 
model with the reference structures 1T3M, 2GAW and 1APZ. Comparison of the protein 
structures. c) Comparison of the active site residues (black. essential residues in 1APZ, blue: 
aligned residues in taspase1). d) Comparison of the loops after helix one. Large differences in 
the protein structures are found in this region.  
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A homology model was calculated for taspase1 with MOE using the alignment from 

Figure 4.41. The Cartesian average of ten homology models was used for further experiments. 

The model was minimized including solvatation terms and chiral constraints with the 

MMFF94xx forcefield. The protein structure quality of the model was controlled with the 

protein report function in MOE (see Appendix 6.2). Dihedral torsion deviations were mostly 

observed in loop regions distant from the binding site. Most relevant for the model might be 

an omega torsion angle deviation of Y52, which is directed into the binding pocket (Figure 

4.41a). Since this deviation only affected the back-bone it might have no effect on the binding 

site geometry. It was left unchanged. 

To assess the similarity of the taspase1 homology model to the template structures, the 

calculated structure was aligned with the reference structures with the homology alignment 

tool of MOE. The calculated structure of taspase1 fitted well to the reference structures 

(Figure 4.41b): according to our model, the protein core with the beta-sheet and the flanking 

alpha-helices was structurally conserved over the enzymes. Differences were found in the 

loop connecting the secondary structure elements. All essential residues, except for W11, 

were found to be aligned (Figure 4.41c). After the new structural alignment including the 

taspase1 model the S50 position of the glycosylasparaginases was aligned to glutamine in 

taspase1 and isoaspartyl peptidase, which seems more reasonable than the former alignment 

to the directly neighboring alanines: serine and glutamine are both capable to perform 

hydrogen-bonding interactions while alanine is not able to do so. For the W11 position no 

structural alignment was found. A reason for this can be seen in Figure 4.41d. Both in the 

isoaspartyl peptidase and in taspase1 the loop where W11 is located was found displaced due 

to an extended alpha helix, connected to the loop. Both, the former “aligned” leucin from 

isoaspartyl peptidase and the tyrosine from taspase1 did not fit to the tryptophanes (Figure 

4.41d). The extended helix and the connected loop of taspase1 also fitted poorly to the 

respective structural element of 1T3M. Accordingly this region of the model seems to be the 

least reliable with respect to the binding site. However the remaining part of the binding site 

covering the essential residues except W11 was conserved between the enzymes and thus 

provided a reliable structural basis for the understanding of the taspase1 activity and virtual 

screening for inhibitors.  
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Figure 4.42. Docking solution for the peptide QLDGVDD in the taspase1 active site. a) 
Surface representation of the active site, colored according to the electrostatic potential. b) 
Potential interacting residues of taspase1 with the peptide. 

 

 

To test whether the cleaved sequence of the MLL protein can bind in a comparable 

manner to the substrates of the reference proteins we applied a docking approach. For the 

docking we used the peptide QLDGVDD. To avoid unwanted charged interactions the C-

terminus of the peptide was amidated for the docking experiments. The N-terminal alpha-

nitrogen of threonin was set positively charged. The best docking solution is shown in Figure 

4.42. As expected the peptide bond between aspartate and glycine was directly situated above 

the reactive T234. The sidechain carboxylate of the peptide aspartate was found to interact 

with R262. The absence of an amino group beside this carboxy-group was compensated by 

the mutation of aspartate to glutamine at position 265. A hydrogen bonding interaction 
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between G311 and the backbone nitrogen of the cleaved aspartate in the peptide was also 

found.  

The interpretations of the docking solution have to be taken with care: it is comparably 

more difficult to retrieve the correct receptor bound conformation of a peptide than for small 

molecules by docking calculations [Liu et al., 2004]. Peptides are much more flexible than 

drug-like molecules and thus provide a much larger set of possible docking solutions that 

have to be ranked by a scoring function. The scoring of the docking solutions is already a 

non-trivial task for drug-like molecules [Kitchen et al., 2004] and might be even more 

complicated for peptides. Given that the position of the peptide bond to be cleaved was placed 

directly above the nucleophile and the carboxylic group of the aspartate at the cleavage-site 

was found to interact with R262, the found docking solution seems to provide a reasonable 

starting hypothesis for the ligand binding-mode. 

 

 

 

Figure 4.43. Pharmacophore hypothesis derived from the docked peptide and interactions 
with the receptor. The hydrogen-bond acceptor (Acc) interaction with T234 and the hydrogen-
bond acceptor AND anion (Acc & Ani) interaction were defined essential for virtual 
screening. Hyd = hydrophobe, Don = hydrogen-bond donor.  
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Using the bound peptide and the receptor structure a pharmacophore model (Figure 

4.43) was created for virtual screening for ligands inhibiting the taspase1 reaction. Three 

interactions were defined as essential, i.e. interactions which had to be satisfied by a molecule 

to be considered as hit. Essential interactions were: a hydrogen-bond acceptor function within 

a radius of 3 Å around the N-terminal nitrogen of T234 and two (hydrogen-bond acceptor 

AND anion) functions within a radius of 0.8 Å around the two oxygens form the aspartate 

carboxyl-group interacting with R262. Other hydrogen bonding interactions were defined at 

the positions of the two substrate interaction partners of G311 and G313. Two hydrophobic 

interactions were defined within a radius of 1.2 Å around the beta and gamma carbon atom of 

the hydrophobic sidechains of valine and leucine of the substrate, respectively. All protein 

atoms were defined as excluded spheres. To be considered as a hit, a molecule had to satisfy 

at least four of the pharmacophore points. 

 

We screened the SPECS database of compounds (june 2003 version). For the virtual 

screening experiment the database was preprocessed in the following way with MOE: 

1) Acids and bases were set charged. 

2) All molecules were discarded with: > 500 Da, logP > 5, > 5 hydrogen-bond donors, > 

10 hydrogen-bond acceptors, > 10 rotatable bonds. 

3) Molecules lacking acidic groups were removed.  

4) Molecules with Br, I, B, P, S- and nitro groups and sulfate as only single acidic group 

were removed. 

For the remaining 8,018 molecules initial conformations were calculated with CORINA 

[Sadowski et al., 1994] and up to 20 low energy conformations were calculated with MOE.  

 

376 drug-like and non-peptidic molecules satisfied the pharmacophore. This list was manually 

reduced to 85 compounds removing too similar molecules or molecules with unreasonably 

appearance. These molecules were purchased for experimental testing. Unfortunately at the 

time of finishing this thesis no results from the assays about the potency of the selected 

potential ligands were available. 

 

4.8.1 Conclusions  

A pharmacophore model derived from a receptor homology model and a binding mode 

hypothesis were used to virtually screen for the first inhibitors for human taspase1. Yet with 

the assay system still in development one can already state that our approach was successful 
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in retrieving 85 diverse drug-like and non-peptidic molecules, that satisfied the 

pharmacophore and looked reasonable to exhibit at least slight activity according to the 

medicinal chemistry experience of the authors. While this does not tell much about the actual 

activity of the compounds one can already resume that the approach seemed to produce in 

principle meaningful results and thus represents an alternative to entirely ligands based or 

structure-based approaches. The approach seems to be attractive for scaffold hopping from 

peptides to drug-like molecules and in combination with homology model approximations of 

the receptor structure.  

 

 

 

 

 

 



5 Summary 

 

5.1 Summary  

The goal of this thesis was the development, evaluation and application of novel virtual 

screening approaches for the rational compilation of high quality pharmacological screening 

libraries. The criteria for a high quality were a high probability of the selected molecules to be 

active compared to randomly selected molecules and diversity in the retrieved chemotypes of 

the selected molecules to be prepared for the attrition of single lead structures. For the latter 

criterion the virtual screening approach had to perform “scaffold hopping”. The first 

molecular descriptor that was explicitly reported for that purpose was the topological 

pharmacophore CATS descriptor, representing a correlation vector (CV) of all 

pharmacophore points in a molecule. The representation is alignment-free and thus renders 

fast screening of large databases feasible. 

In a first series of experiments the CATS descriptor was conceptually extended to the 

three-dimensional pharmacophore-pair CATS3D descriptor and the molecular surface based 

SURFCATS descriptor. The scaling of the CATS3D descriptor, the combination of CATS3D 

with different similarity metrics and the dependence of the CATS3D descriptor on the three-

dimensional conformations of the molecules in the virtual screening database were evaluated 

in retrospective screening experiments. The “scaffold hopping” capabilities of CATS3D and 

SURFCATS were compared to CATS and the substructure fingerprint MACCS keys. 

Prospective virtual screening with CATS3D similarity searching was applied for the TAR 

RNA and the metabotropic glutamate receptor 5 (mGlur5). A combination of supervised and 

unsupervised neural networks trained on CATS3D descriptors was applied prospectively to 

compile a focused but still diverse library of mGluR5 modulators. In a second series of 

experiments the SQUID fuzzy pharmacophore model method was developed, that was aimed 

to provide a more general query for virtual screening than the CATS family descriptors. A 

prospective application of the fuzzy pharmacophore models was performed for TAR RNA 

ligands. In a last experiment a structure-/ligand-based pharmacophore model was developed 

for taspase1 based on a homology model of the enzyme. This model was applied 

prospectively for the screening for the first inhibitors of taspase1. 
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The effect of different similarity metrics (Euc: Euclidean distance, Manh: Manhattan 

distance and Tani: Tanimoto similarity) and different scaling methods (unscaled, scaling1: 

scaling by the number of atoms, and scaling2: scaling by the added incidences of potential 

pharmacophore points of atom pairs) on CATS3D similarity searching was evaluated in 

retrospective virtual screening experiments. 12 target classes of the COBRA database of 

annotated ligands from recent scientific literature were used for that purpose. Scaling2, a new 

development for the CATS3D descriptor, was shown to perform best on average in 

combination with all three similarity metrics (enrichment factor ef (1%): Manh = 11.8 ± 4.3, 

Euc = 11.9 ± 4.6, Tani = 12.8 ± 5.1). The Tanimoto coefficient was found to perform best 

with the new scaling method. Using the other scaling methods the Manhattan distance 

performed best (ef (1%): unscaled: Manh = 9.6 ± 4.0, Euc = 8.1 ± 3.5, Tani = 8.3 ± 3.8; 

scaling1: Manh = 10.3 ± 4.1, Euc = 8.8 ± 3.6, Tani = 9.1 ± 3.8). 

Since CATS3D is independent of an alignment, the dependence of a “receptor 

relevant” conformation might also be weaker compared to other methods like docking. Using 

such methods might be a possibility to overcome problems like protein flexibility or the 

computational expensive calculation of many conformers. To test this hypothesis, co-crystal 

structures of 11 target classes served as queries for virtual screening of the COBRA database. 

Different numbers of conformations were calculated for the COBRA database. Using only a 

single conformation already resulted in a significant enrichment of isofunctional molecules on 

average (ef (1%) = 6.0 ± 6.5). This observation was also made for ligand classes with many 

rotatable bonds (e.g. HIV-protease: 19.3 ± 6.2 rotatable bonds in COBRA, ef (1%) = 12.2 ± 

11.8). On average only an improvement from using the maximum number of conformations 

(on average 37 conformations / molecule) to using single conformations of 1.1 fold was 

found. It was found that using more conformations actives and inactives equally became more 

similar to the reference compounds according to the CATS3D representations. Applying the 

same parameters as before to calculate conformations for the crystal structure ligands resulted 

in an average Cartesian RMSD of the single conformations to the crystal structure 

conformations of 1.7 ± 0.7 Å. For the maximum number of conformations, the RMSD 

decreased to 1.0 ± 0.5 Å (1.8 fold improvement on average).  

To assess the virtual screening performance and the scaffold hopping potential of 

CATS3D and SURFACATS, these descriptors were compared to CATS and the MACCS 

keys, a fingerprint based on exact chemical substructures. Retrospective screening of ten 

classes of the COBRA database was performed. According to the average enrichment factors 

the MACCS keys performed best (ef (1%): MACCS = 17.4 ± 6.4, CATS = 14.6 ± 5.4, 
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CATS3D = 13.9 ± 4.9, SURFCATS = 12.2 ± 5.5). The classes, where MACCS performed 

best, consisted of a lower average fraction of different scaffolds relative to the number of 

molecules (0.44 ± 0.13), than the classes, where CATS performed best (0.65 ± 0.13). 

CATS3D was the best performing method for only a single target class with an intermediate 

fraction of scaffolds (0.55). SURFCATS was not found to perform best for a single class. 

These results indicate that CATS and the CATS3D descriptors might be better suited to find 

novel scaffolds than the MACCS keys. All methods were also shown to complement each 

other by retrieving scaffolds that were not found by the other methods.  

A prospective evaluation of CATS3D similarity searching was done for metabotropic 

glutamate receptor 5 (mGluR5) allosteric modulators. Seven known antagonists of mGluR5 

with sub-micromolar IC50 were used as reference ligands for virtual screening of the 20,000 

most drug-like compounds – as predicted by an artificial neural network approach – of the 

Asinex vendor database (194,563 compounds). Eight of 29 virtual screening hits were found 

with a Ki below 50 µM in a binding assay. Most of the ligands were only moderately specific 

for mGluR5 (maximum of > 4.2 fold selectivity) relative to mGluR1, the most similar 

receptor to mGluR5. One ligand exhibited even a better Ki for mGluR1 than for mGluR5 

(mGluR5: Ki > 100 µM, mGluR1: Ki = 14 µM). All hits had different scaffolds than the 

reference molecules. It was demonstrated that the compiled library contained molecules that 

were different from the reference structures – as estimated by MACCS substructure 

fingerprints – but were still considered isofunctional by both CATS and CATS3D 

pharmacophore approaches.  

Artificial neural networks (ANN) provide an alternative to similarity searching in 

virtual screening, with the advantage that they incorporate knowledge from a learning 

procedure. A combination of artificial neural networks for the compilation of a focused but 

still structurally diverse screening library was employed prospectively for mGluR5. 

Ensembles of neural networks were trained on CATS3D representations of the training data 

for the prediction of “mGluR5-likeness” and for “mGluR5/mGluR1 selectivity”, the most 

similar receptor to mGluR5, yielding Matthews cc between 0.88 and 0.92 as well as 0.88 and 

0.91 respectively. The best 8,403 hits (the focused library: the intersection of the best hits 

from both prediction tasks) from virtually ranking the Enamine vendor database (ca. 

1,000,000 molecules), were further analyzed by two self-organizing maps (SOMs), trained on 

CATS3D descriptors and on MACCS substructure fingerprints. A diverse and representative 

subset of the hits was obtained by selecting the most similar molecules to each SOM neuron. 

Binding studies of the selected compounds (16 molecules from each map) gave that three of 
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the molecules from the CATS3D SOM and two of the molecules from the MACCS SOM 

showed mGluR5 binding. The best hit with a Ki of 21 µM was found in the CATS3D SOM. 

The selectivity of the compounds for mGluR5 over mGluR1 was low. Since the binding 

pockets in the two receptors are similar the general CATS3D representation might not have 

been appropriate for the prediction of selectivity. In both SOMs new active molecules were 

found in neurons that did not contain molecules from the training set, i. e. the approach was 

able to enter new areas of chemical space with respect to mGluR5. The combination of 

supervised and unsupervised neural networks and CATS3D seemed to be suited for the 

retrieval of dissimilar molecules with the same class of biological activity, rather than for the 

optimization of molecules with respect to activity or selectivity.  

A new virtual screening approach was developed with the SQUID (Sophisticated 

Quantification of Interaction Distributions) fuzzy pharmacophore method. In SQUID pairs of 

Gaussian probability densities are used for the construction of a CV descriptor. The Gaussians 

represent clusters of atoms comprising the same pharmacophoric feature within an alignment 

of several active reference molecules. The fuzzy representation of the molecules should 

enhance the performance in scaffold hopping. Pharmacophore models with different degrees 

of fuzziness (resolution) can be defined which might be an appropriate means to compensate 

for ligand and receptor flexibility. For virtual screening the 3D distribution of Gaussian 

densities is transformed into a two-point correlation vector representation which describes the 

probability density for the presence of atom-pairs, comprising defined pharmacophoric 

features. The fuzzy pharmacophore CV was used to rank CATS3D representations of 

molecules. The approach was validated by retrospective screening for cyclooxygenase 2 

(COX-2) and thrombin ligands. A variety of models with different degrees of fuzziness were 

calculated and tested for both classes of molecules. Best performance was obtained with 

pharmacophore models reflecting an intermediate degree of fuzziness. Appropriately 

weighted fuzzy pharmacophore models performed better in retrospective screening than 

CATS3D similarity searching using single query molecules, for both COX-2 and thrombin (ef 

(1%): COX-2: SQUID = 39.2., best CATS3D result = 26.6; Thrombin: SQUID = 18.0, best 

CATS3D result = 16.7). The new pharmacophore method was shown to complement MOE 

pharmacophore models. 

SQUID fuzzy pharmacophore and CATS3D virtual screening were applied 

prospectively to retrieve novel scaffolds of RNA binding molecules, inhibiting the Tat-TAR 

interaction. A pharmacophore model was built up from one ligand (acetylpromazine, IC50 = 

500 µM) and a fragment of another known ligand (CGP40336A), which was assumed to bind 
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with a comparable binding mode as acetylpromazine. The fragment was flexible aligned to 

the TAR bound NMR conformation of acetylpromazine. Using an optimized SQUID 

pharmacophore model the 20,000 most druglike molecules from the SPECS database 

(229,658 compounds) were screened for Tat-TAR ligands. Both reference inhibitors were also 

applied for CATS3D similarity searching. A set of 19 molecules from the SQUID and 

CATS3D results was selected for experimental testing. In a fluorescence resonance energy 

transfer (FRET) assay the best SQUID hit showed an IC50 value of 46 µM, which represents 

an approximately tenfold improvement over the reference acetylpromazine. The best hit from 

CATS3D similarity searching showed an IC50 comparable to acetylpromazine (IC50 = 500 

µM). Both hits contained different molecular scaffolds than the reference molecules.  

Structure-based pharmacophores provide an alternative to ligand-based approaches, 

with the advantage that no ligands have to be known in advance and no topological bias is 

introduced. The latter is e.g. favorable for hopping from peptide-like substrates to drug-like 

molecules. A homology model of the threonine aspartase taspase1 was calculated based on 

the crystal structures of a homologous isoaspartyl peptidase. Docking studies of the substrate 

with GOLD identified a binding mode where the cleaved bond was situated directly above the 

reactive N-terminal threonine. The predicted enzyme-substrate complex was used to derive a 

pharmacophore model for virtual screening for novel taspase1 inhibitors. 85 molecules were 

identified from virtual screening with the pharmacophore model as potential taspase1-

inhibitors, however biochemical data was not available before the end of this thesis. 

In summary this thesis demonstrated the successful development, improvement and 

application of pharmacophore-based virtual screening methods for the compilation of 

molecule-libraries for early phase drug development. The highest potential of such methods 

seemed to be in scaffold hopping, the non-trivial task of finding different molecules with the 

same biological activity. 
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5.2 Zusammenfassung 

Ziel dieser Arbeit war die Entwicklung, Untersuchung und Anwendung von neuen virtuellen 

Screening-Verfahren für den rationalen Entwurf hoch-qualitativer Molekül-Datenbanken für 

das pharmakologische Screening. Anforderung für eine hohe Qualität waren eine hohe a 

priori Wahrscheinlichkeit für das Vorhandensein aktiver Moleküle im Vergleich zu zufällig 

zusammengestellten Bibliotheken, sowie das Vorhandensein einer Vielfalt unterschiedlicher 

Grundstrukturen unter den selektierten Molekülen, um gegen den Ausfall einzelner 

Leitstrukturen in der weiteren Entwicklung abgesichert zu sein. Notwendig für die letztere 

Eigenschaft ist die Fähigkeit eines Verfahrens zum „Grundgerüst-Springen“. Der erste 

Molekül-Deskriptor, der explizit für das „Grundgerüst-Springen“ eingesetzt wurde war der 

CATS Deskriptor – ein topologischer Korrelations-Vektor („correlation vector“, CV) über 

alle Pharmakophor-Punkte eines Moleküls. Der Vergleich von Molekülen über den CATS 

Deskriptor geschieht ohne eine Überlagerung der Moleküle, was den effizienten Einsatz 

solcher Verfahren für sehr große Molekül-Datenbanken ermöglicht. 

In einer ersten Serie von Versuchen wurde der CATS Deskriptor erweitert zu dem 

dreidimensionalen CATS3D Deskriptor und dem auf der Molekül-Oberfläche basierten 

SURFCATS Deskriptor. In retrospektiven Studien wurde für diese Deskriptoren der Einfluss 

verschiedener Skalierungs-Methoden, die Kombination mit unterschiedlichen Ähnlichkeits-

Metriken und die Auswirkung verschiedener dreidimensionaler Konformationen untersucht. 

Weiter wurden das Potential der entwickelten Deskriptoren CATS3D und SURFCATS im 

„Grundgerüst-Springen“ mit CATS und dem Substruktur-Fingerprint MACCS keys 

verglichen. Prospektive Anwendungen der CATS3D Ähnlichkeitssuche wurden für die TAR-

RNA und den metabotropen Glutamat Rezeptor 5 (mGluR5) durchgeführt. Eine Kombination 

von überwachten und unüberwachten neuronalen Netzen wurde prospektiv für die 

Zusammenstellung einer fokussierten aber dennoch diversen Bibliothek von mGluR5 

Modulatoren eingesetzt. In einer zweiten Reihe von Versuchen wurde der SQUID Fuzzy 

Pharmakophor Ansatz entwickelt, mit dem Ziel zu einer noch generelleren Molekül-

Beschreibung als mit den Deskriptoren aus der CATS Familie zu gelangen. Eine prospektive 

Anwendung der „Fuzzy Pharmakophor“ Methode wurde für die TAR-RNA durchgeführt. In 

einem letzten Versuch wurde für Taspase1 ein Struktur-/Liganden-basiertes Pharmakophor-

Modell auf der Grundlage eines Homologie-Modells des Enzyms entwickelt. Dieses wurde 

für das prospektive Screening nach Taspase1-Inhibitoren eingesetzt. 

Der Einfluss verschiedener Ähnlichkeits-Metriken (Euk: Euklidische Distanz, Manh: 

Manhattan Distanz, Tani: Tanimoto Ähnlichkeit) und verschiedener Skalierungs-Methoden 
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(Ohne-Skalierung, Skalierung1: Skalierung aller Werte nach der Anzahl Atome, Skalierung2: 

Skalierung der Werte eines Paares von Pharmakophor-Punkten entsprechend der Summe aller 

Pharmakophor-Punkte mit denselben Pharmakophor-Typen) auf die Ähnlichkeits-Suche mit 

CATS3D wurde in retrospektiven virtuellen Screening Experimenten untersucht. Für diesen 

Zweck wurden 12 verschiedene Klassen von Rezeptoren und Enzymen aus der COBRA 

Datenbank von annotierten Liganden aus der jüngeren wissenschaftlichen Literatur eingesetzt. 

Skalierung2, eine neue Entwicklung für CATS3D, zeigte im Durchschnitt die beste 

Performanz in Kombination mit allen drei Ähnlichkeits-Metriken (Anreicherungs-Faktor ef 

(1%): Manh = 11,8 ± 4,3; Euk = 11,9 ± 4,6; Tani = 12,8 ± 5,1). Die Kombination von 

Skalierung2 mit dem Tanimoto Ähnlichkeits-Koeffizienten lieferte die besten Ergebnisse. In 

Kombination mit den anderen Skalierungen brachte die Manhattan Distanz die besten 

Ergebnisse (ef (1%): Ohne-Skalierung: Manh = 9,6 ± 4,0; Euk = 8,1 ± 3,5; Tani = 8,3 ± 3,8; 

Skalierung1: Manh = 10,3 ± 4,1; Euk = 8,8 ± 3,6; Tani = 9,1 ± 3,8). 

Da die CATS3D Ähnlichkeits-Suche unabhängig von der Überlagerung einzelner 

Moleküle ist, könnte ebenfalls eine gewisse Unabhängigkeit von der vorhandenen 3D 

Konformation bestehen. Eine solche Unabhängigkeit wäre interessant um die zeitaufwendige 

Berechnung multipler Konformationen zu umgehen. Um diese Hypothese zu untersuchen 

wurden Co-Kristalle von Liganden aus 11 Klassen von Rezeptoren und Enzymen ausgewählt, 

um als Anfrage-Strukturen im virtuellen Screening in der COBRA Datenbank zu dienen. 

Verschiedene Versionen der COBRA Datenbank mit unterschiedlicher Anzahl 

Konformationen wurden berechnet. Bereits mit einer einzigen Konformation pro Molekül 

konnte im Mittel eine deutliche Anreicherung an aktiven Molekülen beobachte werden (ef 

(1%) = 6,0 ± 6,5). Diese Beobachtung beinhaltete auch Klassen von Molekülen mit vielen 

rotierbaren Bindungen. (z.B. HIV-Protease: 19,3 ± 6,2 rotierbare Bindungen in COBRA, ef 

(1%) = 12,2 ± 11,8). Im Mittel konnten dazu bei Verwendung der maximalen Anzahl 

Konformationen (durchschnittlich 37 Konformationen / Molekül) nur eine Verbesserung von 

1.1 festgestellt werden. Nach der CATS3D Ähnlichkeit wurden die inaktiven Moleküle im 

gleichen Maß ähnlicher zu den Referenzen als die aktiven Moleküle. Zum Vergleich konnte 

durch Verwendung multipler statt einzelner Konformationen eine 1,8-fache Verbesserung des 

RMSD zu den Konformationen aus den Kristall-Struktur Konformationen erreicht werden 

(einzelne Konformationen: 1,7 ± 0,7 Å; max. Konformationen: 1,0 ± 0,5 Å).  

Um die Leistungsfähigkeit von CATS3D und SURFCATS im virtuellen Screening 

und im Grundgerüst-Springen zu beurteilen, wurden diese Deskriptoren mit CATS und den 

MACCS keys, einem Fingerprint basierend auf exakten chemischen Substrukturen, 
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verglichen. Für die retrospektive Analyse wurden 10 Klassen von Rezeptoren und Enzymen 

aus der COBRA Datenbank ausgewählt. Nach den mittleren Anreicherungs-Faktoren ergaben 

sich für MACCS die besten Resultate (ef (1%): MACCS = 17,4 ± 6,4; CATS = 14,6 ± 5,4; 

CATS3D = 13,9 ± 4,9; SURFCATS = 12,2 ± 5,5). Es zeigte sich, dass die Klassen, in denen 

MACCS die besten Ergebnisse erzielen konnte, einen geringen gemittelten Anteil von 

verschiedenen Grundgerüsten aufwiesen im Verhältnis zu der Anzahl an Molekülen (0,44 ± 

0,13) als die Klassen, in denen CATS am besten war (0,65 ± 0,13). CATS3D war nur in einer 

Klasse mit einem mittleren Anteil von Grundgerüsten (0,55) die beste Methode. SURFCATS 

war für keine Klasse besser als alle anderen Methoden. Diese Ergebnisse deuten darauf hin, 

dass Methoden wie CATS und CATS3D besser geeignet sind, um neue Grundgerüste zu 

finden. Es konnte weiter gezeigt werden, dass sich die Methoden einander ergänzen, dass also 

mit jeder Methode Grundgerüste gefunden werden konnten, die mit keiner der anderen 

Methoden gefunden werden konnten. 

Eine prospektive Anwendung wurde für CATS3D in der Suche nach neuen 

allosterischen Modulatoren des metabotropen Glutamat Rezeptors 5 (mGluR5) durchgeführt. 

Sieben bekannte allosterische mGluR5 Antagonisten mit sub-mikromolaren IC50 Werten 

wurde als Referenzen eingesetzt. Das virtuelle Screening wurde auf den 20.000 von einem 

künstlichen neuronalen Netz als am wirkstoff-artigsten vorhergesagten Molekülen der Asinex 

Datenbank (194.563 Moleküle) durchgeführt. Acht der 29 gefundenen Hits aus dem virtuellen 

Screening zeigten Ki Werte unter 50 µM in einem Bindungs-Assay. Die Mehrheit der 

Liganden zeigte nur eine geringe Selektivität (Maximum > 4,2-fach) gegenüber mGluR1, dem 

ähnlichsten Rezeptor zu mGluR5. Einer der Liganden zeigte einen besseren Ki für mGluR1 

als für mGluR5 (mGluR5: Ki > 100 µM, mGluR1: Ki = 14 µM). Alle gefundenen Moleküle 

zeigten verschiedene Grundgerüste als die Referenz Moleküle. Es konnte gezeigt werden, 

dass die zusammengestellte Bibliothek von den MACCS keys als unterschiedlich zu den 

Referenz Strukturen betrachtet wurden, von CATS und CATS3D aber noch als isofunktional 

betracht wurden. 

Künstliche neuronal Netze („artificial neural net“, ANN) bieten eine Alternative zur 

Ähnlichkeits-Suche im virtuellen Screening mit dem Vorteil, dass in einer Serie von Liganden 

enthaltenes implizites Wissen über eine Lernprozedur in ein Modell integrierte werden kann. 

Eine Kombination von ANNs für die Zusammenstellung einer fokussierten aber dennoch 

diversen Molekül-Bibliothek wurde prospektiv für die Suche nach mGluR5 Antagonisten 

eingesetzt. Gruppen von ANNs wurden auf den Basis von CATS3D Repräsentationen für die 

Vorhersage von „mGluR5-artigkeit“ und „mGluR5/mGluR1 Selektivität“ trainiert. Dabei 
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ergaben sich Matthews cc zwischen 0,88 und 0,92 sowie zwischen 0,88 und 0,91. Die besten 

8.403 Hits (die Schnittmenge der besten Hits aus beiden Vorhersagen) aus einem virtuellen 

Screening der Enamine Datenbank (ca. 1.000.000 Moleküle) ergab die fokussierte Bibliothek. 

Diese wurde weiter mit Selbstorganisierten Karten („self organizing maps“, SOM) analysiert, 

die auf CATS3D und MACCS key Repräsentationen trainiert wurden. Eine diverse und 

repräsentative Untermenge der Moleküle wurde gewonnen, indem die jeweils nächsten 

Moleküle zu jedem der Neuronen der Karten ausgewählt wurden. Bindungsstudien der 

selektierten Moleküle (16 von jeder der Karten) ergaben, dass drei Moleküle aus der CATS3D 

SOM und zwei der Moleküle aus der MACCS SOM mGluR5 Bindung zeigten. Der beste Hit 

mit einem Ki von 21 µM wurde über die CATS3D SOM gefunden. Die Selektivität der 

gefundenen Moleküle gegenüber mGluR1 war wiederum gering. Da sich die Bindungstaschen 

der beiden Rezeptoren sehr ähnlich sind, könnte die verallgemeinernde Beschreibung der 

Moleküle mit CATS3D nicht geeignet für eine solche Vorhersage gewesen sein. In beiden 

SOMs wurden neue aktive Moleküle in Neuronen gefunden, in denen sich keine der 

bekannten Inhibitoren befanden, d.h. es wurden mit diesem Ansatz neue chemische Bereiche 

auf der SOM für mGluR5 beschrieben. Die Verbindung von überwachten und unüberwachten 

neuronalen Netzen mit CATS3D scheint am besten geeignet zu sein, um Moleküle mit 

unterschiedlicher Struktur, aber gleicher Aktivitätsklasse aufzufinden. Die Optimierung auf 

höhere Aktivität oder Selektivität schien weniger geeignet zu sein. 

Mit dem SQUID (Sophisticated Quantification of Interaction Distributions) Fuzzy 

Pharmakophor Modell wurde ein neuer Ansatz für das virtuelle Screening entwickelt. In 

SQUID werden Paare von Gauß-Wahrscheinlichkeits-Dichten für die Konstruktion eines 

Korrelations-Vektors eingesetzt. Die Gauß-Dichten repräsentieren Gruppen von Atomen 

desselben Pharmakophor-Typs in einer Überlagerung mehrerer aktiver Referenz-Moleküle. 

Die unscharfe Repräsentation der Moleküle sollte das Springen zwischen Grundgerüsten 

erleichtern. Der Ansatz ermöglicht die Definition von Pharmakophor-Modellen verschiedener 

Unschärfe oder Auflösung, was eventuell eine Möglichkeit darstellt, die Flexibilität von 

Ligand und Rezeptor zu berücksichtigen. Für das virtuelle Screening wird die 

dreidimensionale Verteilung der Gauß-Dichten in einen 2-Punkt CV transformiert, der die 

Wahrscheinlichkeit für die Anwesendheit von Paaren von Pharmakophor-Punkten beschreibt. 

Der Fuzzy Pharmakophor CV wurde eingesetzt um CATS3D Repräsentationen zu bewerten. 

Evaluiert wurde die Methode durch retrospektives Screening nach COX-2 und Thrombin 

Inhibitoren. Eine Serie von Modellen mit verschiedener Auflösung wurde für beide 

Molekülklassen getestet. Die besten Ergebnisse wurden in beiden Fallen mit Modellen mit 
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mittlerer Auflösung erzielt. Geeignet gewichtete Pharmakophor-Modelle erzielten bessere 

Resultate als CATS3D Ähnlichkeits-Suche mit den einzelnen Molekülen aus den 

Pharmakophor-Modellen (ef (1%): COX-2: SQUID = 39,2; bestes CATS3D Resultat = 26,6; 

Thrombin: SQUID = 18,0; bestes CATS3D Resultat = 16,7). Es konnte weiter gezeigt 

werden, dass die neue Methode MOE Pharmakophor Modelle in den gefundenen Molekülen 

ergänzt. 

Der SQUID Fuzzy Pharmakophor Ansatz sowie CATS3D wurden prospektiv 

eingesetzt für die Suche nach neuen Grundgerüsten für RNA bindendende Inhibitoren der 

Tat-TAR Interaktion. Ein SQUID Modell wurde auf der Grundlage von einem Liganden 

(Acetylpromazin, IC50 = 500 µM) und dem Fragment eines weiteren bekannten Liganden 

(CGP40336A) berechnet, von dem ein zum Acetylpromazin vergleichbarer Bindungsmodus 

angenommen wurde. Das Fragment wurde flexibel an die TAR-RNA gebundene NMR 

Konformation des Acetylpromazins aligned. Mit einem optimierten SQUID Modell wurden 

die 20.000 wirkstoffartigsten Moleküle der SPECS Datenbank (229.658 Moleküle) virtuell 

nach TAR-RNA Liganden durchsucht. Mit beiden Referenz Inhibitoren wurden zum 

Vergleich auch CATS3D Suchen durchgeführt. 19 Moleküle aus den Hits von SQUID und 

CATS3D wurden für einen FRET Assay ausgewählt. Der beste Hit von SQUID zeigte einen 

IC50 Wert von 46 µM, was eine ca. 10-fache Verbesserung im Verhältnis zu Acetylpromazin 

darstellt. Der beste CATS3D Hit war vergleichbar mit Acetylpromazin (IC50 = 500 µM). 

Beide gefundenen Moleküle zeigten unterschiedliche Grundgerüste im Verhältnis zu den 

Referenz Molekülen. 

Struktur-basierte Pharmakophor Modelle stellen eine Alternative zu Liganden-

basierten Ansätzen dar, mit dem Vorteil, dass keine bekannten Liganden benötigt werden und 

somit keine Beeinflussung hin zu bekannten Strukturen in das Modell hineingebracht wird. 

Die letztere Eigenschaft sollte günstig für das Grundgerüst Springen sein. Ein Homologie 

Modell der Threonin Aspartase Taspase1, eine Protease, wurde auf der Grundlage der 

Kristallstruktur einer homologen Isoaspartyl-Peptidase berechnet. Über Docking Studien mit 

dem Programm GOLD wurde ein Bindungsmodus des natürlichen Substrats identifiziert, in 

dem die gespaltene Peptidbindung direkt über dem reaktiven N-terminalen Threonin 

angeordnet lag. Der vorhergesagte Enzym-Substrat-Komplex wurde herangezogen, um ein 

Pharmakophor-Modell zu für das virtuelle Screening nach neuen Taspase1 Inhibitoren zu 

entwickeln. 85 Moleküle wurden aus der SPECS Datenbank als potentielle Inhibitoren 

identifiziert, jedoch fehlten bei Fertigstellung dieser Arbeit noch gesicherte experimentelle 

Daten über die pharmakologischen Eigenschaften der gefundenen Moleküle. 
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Zusammenfassend wurde in dieser Arbeit die erfolgreiche Entwicklung, Verbesserung 

und Anwendung von Pharmakophor-basierten virtuellen Screening Methoden für den Entwurf 

von Molekül-Bibliotheken für die frühe Wirkstoff-Entwicklung gezeigt. Das Potential dieser 

Methoden schien besonders im Grundgerüst-Springen zu liegen, also in der nicht-trivialen 

Identifikation von unterschiedlichen Molekülen mit gleicher biologischer Aktivität. 

 

 

 

 

 



6 Appendix 

 

6.1 Enrichment factors of activity classes from Sec tion 4.3 

 

Enrichment factors of different molecular representations (“Molecules”, “Scaffolds”, 
“Reduced Scaffolds”) over the activity classes. ef values are given for the first 1% and 5% of 
the hit-lists. The Manhattan distance was applied as similarity metric. 

 
 Molecules 
% DB MACCS CATS CATS3D SURFCATS 
ACE     
1 25 (12) 27 (17) 16 (11) 18 (13) 
5 10 (4) 10 ( 5)  6 ( 3)  6 ( 3) 
COX2     
1 30 (16) 16 (10) 21 (12) 19 (11) 
5 13 (5)  6 ( 3)  8 ( 4)  8 ( 4) 
CRF     
1 25 (14) 14 ( 9) 22 (10) 16 ( 9) 
5 11 (4)  7 ( 3) 10 ( 3)  8 ( 3) 
DPP     
1 21 (14) 14 (11) 16 (11) 13 (10) 
5  7 (3)  5 ( 3)  5 ( 3)  4 ( 2) 
HIVP     
1 13 ( 7) 21 (11) 12 ( 8) 15 (10) 
5  5 (2)  9 ( 4)  5 ( 3)  6 ( 4) 
MMP     
1 13 ( 8) 12 ( 7) 10 ( 7) 12 ( 9) 
5  5 (3)  5 ( 2)  4 ( 2)  5 ( 3) 
NK     
1  9 ( 6)  9 ( 4) 11 ( 7)  7 ( 5) 
5  5 (2)  5 ( 2)  5 ( 3)  4 ( 2) 
PPAR     
1 18 (15) 19 (12)  8 ( 7)  9 ( 8) 
5  6 (4)  7 ( 3)  3 ( 2)  3 ( 2) 
BACE     
1 14 (11) 12 (10) 12 (10)  7 ( 5) 
5  6 (4)  4 ( 3)  3 ( 2)  2 ( 2) 
THR     
1 12 ( 6) 14 ( 7)  7 ( 5)  7 ( 5) 
5  6 (2)  8 ( 4)  3 ( 2)  4 ( 3) 

((continued below)) 
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  Scaffolds  Reduced Scaffolds 
% DB  MACCS CATS CATS3D SURFCATS  MACCS CATS CATS3D SURFCATS 

ACE           
1  25 (12) 30 (16) 15 (10) 16 ( 9)  29 (13) 33 (14) 18 (10) 19 ( 9) 
5  11 (4) 11 ( 4)  6 ( 2)  6 ( 2)  11 (3) 11 ( 4)  6 ( 2)  6 ( 2) 
COX2           
1  28 (12) 17 ( 8) 21 ( 8) 19 ( 9)  33 (12) 22 (10) 26 (10) 24 (11) 
5  11 (4)  6 ( 2)  8 ( 2)  8 ( 3)  12 (3)  7 ( 2)  9 ( 2)  9 ( 3) 
CRF           
1  24 (12) 18 (11) 23 (10) 17 (10)  28 (13) 20 (11) 25 (10) 18 (11) 
5  10 (4)  8 ( 3) 10 ( 3)  8 ( 3)  11 (4)  8 ( 3) 10 ( 3)  8 ( 3) 
DPP-IV           
1  22 (13) 15 (10) 17 (10) 15 (11)  25 (12) 22 (14) 23 (14) 21 (16) 
5   8 (3)  6 ( 3)  5 ( 2)  4 ( 2)   9 (5)  7 ( 3)  6 ( 3)  6 ( 3) 
HIVP           
1  14 ( 8) 23 (12) 14 ( 9) 17 (11)  19 (12) 31 (15) 18 (12) 23 (15) 
5   6 (3) 10 ( 4)  5 ( 3)  7 ( 4)   7 (3) 11 ( 4)  7 ( 4)  8 ( 4) 
MMP           
1  16 (11) 15 ( 9) 13 (10) 16 (12)  23 (12) 23 (12) 21 (13) 22 (14) 
5   6 (3)  6 ( 3)  4 ( 3)  6 ( 4)   8 (3)  8 ( 3)  6 ( 4)  7 ( 4) 
NK           
1  10 ( 6) 10 ( 4) 12 ( 7)  8 ( 5)  11 ( 6) 11 ( 5) 13 ( 7)  9 ( 6) 
5   5 (2)  5 ( 2)  5 ( 3)  4 ( 2)   5 (2)  6 ( 2)  5 ( 3)  5 ( 2) 
PPAR           
1  16 (13) 19 (11)  9 ( 7) 10 ( 9)  20 (15) 24 (14) 11 ( 8) 13 (11) 
5   5 (3)  7 ( 3)  3 ( 2)  3 ( 2)   7 (4)  8 ( 4)  4 ( 2)  4 ( 3) 
BACE           
1  14 (10) 12 ( 8) 11 ( 6)  8 ( 5)  15 (11) 14 ( 9) 12 ( 7)  9 ( 5) 
5   4 (2)  4 ( 2)  3 ( 2)  3 ( 2)   5 (3)  4 ( 2)  3 ( 2)  3 ( 2) 
THR           
1  14 ( 6) 18 (10)  9 ( 6) 10 ( 7)  18 ( 8) 27 (13) 14 ( 8) 17 ( 9) 
5   6 (2)  8 ( 4)  4 ( 3)  5 ( 3)   8 (3) 10 ( 4)  5 ( 3)  6 ( 3) 
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Enrichment factors of different molecular representations (“Molecules”, “Scaffolds”, 
“Reduced Scaffolds”) over the activity classes. ef values are given for the first 1% and 5% of 
the hit-lists. The Euclidean distance was applied as similarity metric. 

 
 Molecules 
% DB MACCS CATS CATS3D SURFCATS 
ACE     
1 25 (12) 22 (12) 17 (11) 20 (14) 
5 10 (4) 10 ( 5)  6 ( 4)  7 ( 4) 
COX2     
1 30 (16) 14 ( 9) 20 (13) 18 (11) 
5 13 (5)  5 ( 3)  8 ( 4)  8 ( 4) 
CRF     
1 25 (14) 12 ( 8) 20 (10) 16 (10) 
5 11 (4)  7 ( 3) 10 ( 3)  8 ( 3) 
DPP     
1 21 (14) 13 (10) 16 (12) 13 (11) 
5  7 (3)  4 ( 3)  5 ( 3)  4 ( 2) 
HIVP     
1 13 ( 7) 22 (11) 15 ( 9) 17 (11) 
5  5 (2) 10 ( 3)  7 ( 4)  7 ( 4) 
MMP     
1 13 ( 8) 11 ( 6) 11 ( 7) 11 ( 9) 
5  5 (3)  5 ( 2)  4 ( 2)  5 ( 3) 
NK     
1  9 ( 6)  8 ( 4) 12 ( 8)  8 ( 5) 
5  5 (2)  5 ( 2)  6 ( 3)  5 ( 3) 
PPAR     
1 18 (15) 18 (12)  9 ( 8) 10 ( 7) 
5  6 (4)  7 ( 3)  3 ( 2)  3 ( 2) 
BACE     
1 14 (11) 12 (10) 12 (10)  6 ( 5) 
5  6 (4)  4 ( 3)  3 ( 3)  3 ( 2) 
THR     
1 12 ( 6) 14 ( 7)  8 ( 5)  7 ( 5) 
5  6 (2)  8 ( 4)  4 ( 2)  4 ( 3) 

((continued below)) 
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  Scaffolds  Reduced Scaffolds 
% DB  MACCS CATS CATS3D SURFCATS  MACCS CATS CATS3D SURFCATS 

ACE           
1  25 (12) 24 (13) 17 (10) 19 (10)  29 (13) 27 (13) 20 (10) 21 ( 8) 
5  11 (4) 11 ( 4)  6 ( 3)  7 ( 3)  11 (3) 11 ( 3)  7 ( 3)  8 ( 2) 
COX2           
1  28 (12) 16 ( 9) 21 ( 9) 20 ( 9)  33 (12) 20 (10) 25 (10) 26 (11) 
5  11 (4)  5 ( 2)  8 ( 3)  8 ( 3)  12 (3)  6 ( 2)  9 ( 2)  9 ( 3) 
CRF           
1  24 (12) 15 (10) 21 (10) 17 (10)  28 (13) 18 (10) 22 ( 9) 18 (11) 
5  10 (4)  7 ( 4) 10 ( 3)  8 ( 3)  11 (4)  7 ( 3)  9 ( 3)  8 ( 3) 
DPP-IV           
1  22 (13) 13 (10) 18 (11) 14 (12)  25 (12) 18 (12) 24 (14) 20 (17) 
5   8 (3)  5 ( 4)  5 ( 3)  4 ( 2)   9 (5)  6 ( 4)  6 ( 3)  5 ( 3) 
HIVP           
1  14 ( 8) 24 (12) 16 (10) 20 (13)  19 (12) 31 (15) 22 (13) 27 (17) 
5   6 (3) 10 ( 4)  7 ( 4)  8 ( 4)   7 (3) 12 ( 4)  8 ( 4) 10 ( 4) 
MMP           
1  16 (11) 15 ( 8) 14 (10) 15 (12)  23 (12) 23 (11) 21 (13) 22 (13) 
5   6 (3)  6 ( 2)  5 ( 3)  6 ( 4)   8 (3)  8 ( 3)  6 ( 3)  8 ( 3) 
NK           
1  10 ( 6)  9 ( 4) 13 ( 8)  9 ( 6)  11 ( 6) 11 ( 5) 14 ( 8) 10 ( 6) 
5   5 (2)  5 ( 2)  6 ( 3)  5 ( 3)   5 (2)  6 ( 2)  6 ( 3)  5 ( 3) 
PPAR           
1  16 (13) 18 (11)  9 ( 8) 10 ( 8)  20 (15) 24 (14) 11 ( 9) 13 (10) 
5   5 (3)  6 ( 3)  3 ( 2)  3 ( 2)   7 (4)  8 ( 4)  4 ( 2)  4 ( 2) 
BACE           
1  14 (10) 14 ( 9) 11 ( 6)  8 ( 5)  15 (11) 16 (10) 11 ( 7)  8 ( 5) 
5   4 (2)  4 ( 2)  3 ( 2)  3 ( 1)   5 (3)  4 ( 2)  3 ( 2)  3 ( 2) 
THR           
1  14 ( 6) 18 ( 9)  9 ( 6) 10 ( 6)  18 ( 8) 27 (12) 15 ( 8) 16 ( 8) 
5   6 (2)  9 ( 4)  4 ( 3)  5 ( 3)   8 (3) 10 ( 4)  6 ( 3)  6 ( 3) 
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6.2 Protein report from MOE for the taspase1 homolo gy 

model from Section 4.8 

 
 
 
Protein Report 
Wed Jan 05 14:22:19 2005 (MOE 2004.03, MOE-ProEval 2002.01) 
 
Options: 
-------- 
 
Z-Score Threshold               : 5  
VDW Contact Threshold           : 70  
Write Outliers Only             : TRUE  
Contacts Within Chains Only     : TRUE  
 
Topics: 
-------- 
 
Dihedrals                       : TRUE  
Bond Angles                     : TRUE  
Bond Lengths                    : TRUE  
Contacts                        : TRUE  
 
Protein Report: Dihedrals 
Chain/Residue       phi     psi    omega   chi1    chi2     zeta 
---------------------------------------------------------------------------
----- 
>1  TaspaseASN49     106.7<  -48.3< -176.1  -158.5    12.3    26.5     
>1  TaspaseGLU103    106.8<  -53.7<  114.2< -179.9   179.0    31.2     
>1  TaspaseASP104    -77.4   132.9  -115.2< -138.5   -30.0    29.8     
>1  TaspaseLEU107   -158.8   146.7  -145.3<   10.3  -172.3    39.4     
>1  TaspaseGLY108   -120.7   171.2   137.3<   -       -       -        
>1  TaspaseARG117     99.3< -126.4<  175.4   -65.8   -90.0    24.5     
>1  TaspaseLYS128   -107.2    99.7  -143.0<   53.1  -109.5    27.9     
>2  TaspaseTYR52     143.7   167.6   150.1<  -86.4    19.8    21.1     
>2  TaspaseHIS53    -123.3  -101.4  -146.9< -170.8    80.5    32.5     
>2  TaspaseSER54      42.5   -24.2  -151.0< -154.0    -       27.7     
>2  TaspaseGLU55     176.3    31.2  -121.4<  159.8  -178.7    34.7     
>2  TaspaseILE73  T -139.0    62.0   -23.0<  -94.9   -71.2    29.7    cis 
>2  TaspaseGLY150   -123.9   138.5   149.5<   -       -       -        
>2  TaspaseGLN151    -82.2   116.6   104.5<  -89.6    50.8    31.8     
>2  TaspaseLYS152    -78.7   120.4    63.2<   43.9   163.2    32.5    cis 
>2  TaspaseLYS154   -164.1< -106.8< -157.2   -24.4    75.2    33.9     
>2  TaspaseLEU155     18.2   -75.0   143.7< -143.7    76.7    29.0     
>2  TaspaseALA157    -89.5    61.3   149.7<   -       -       32.9     
>2  TaspaseARG159    146.3<  -37.7<   59.3< -167.0    47.2    60.2<   cis 
>2  TaspasePRO162    -66.2   113.3   135.5<   22.6   -33.8    38.5     
>2  TaspaseCYS163     72.0<  -51.4<   15.3<  -83.3    -       27.4    cis 
>2  TaspasePHE164    175.7   107.7  -148.2<  177.0   -67.5    34.8     
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Protein Report: Bond Angles 
Chain/Residue     C-N-CA  N-CA-C N-CA-CB CB-CA-C  CA-C-N  CA-C-O   O-C-N 
--------------------------------------------------------------------------- 
>1  TaspaseGLN126  120.3   127.6<  118.6    93.0   112.3   122.8   124.9  
>1  TaspaseASN127  108.0   142.0<  105.8   103.4   115.5   121.0   123.4  
>2  TaspaseILE73   172.1<  109.2   106.2   121.4   110.8   124.3   124.5  
>2  TaspaseGLN151  119.3    92.2<  116.0   113.8   117.7   120.5   120.5  
>2  TaspaseARG159  117.7   137.5<   99.9    89.4<  117.7   118.1   122.3  
>2  TaspaseILE160  110.9    94.8   129.8<  118.4   120.9   117.8   121.2  
>2  TaspaseCYS163  137.1<  111.1   120.8   108.7   113.0   121.1   124.7  
 
Protein Report: Bond Lengths 
Chain/Residue           N-CA   CA-CB    CA-C    C-O     C-N 
--------------------------------------------------------------------------- 
>1  TaspaseTYR36       1.460   1.236<  1.528   1.227   1.387  
>1  TaspaseALA120      1.452   1.385<  1.522   1.229   1.386  
>1  TaspasePHE135      1.462   1.662<  1.528   1.223   1.400  
>1  TaspaseLEU136      1.463   1.689<  1.545   1.226   1.398  
>2  TaspaseALA50       1.456   1.288<  1.524   1.226   1.389  
>2  TaspaseHIS63       1.457   1.706<  1.534   1.226   1.388  
>2  TaspaseGLN70       1.467   1.356<  1.529   1.224   1.391  
>2  TaspaseGLY153      1.421     -     1.531   1.229   1.424< 
>2  TaspaseLYS154      1.479   1.507   1.551   1.228   1.423< 
>2  TaspaseILE160      1.438   1.582   1.494   1.222   1.430< 
 
Protein Report: Contacts 
Chain/Residue       Atom  Distance  Chain/Residue        Atom 
--------------------------------------------------------------------------- 
No Items to Report 
 
Protein Report: Summary 
 
% residues in CORE   :  78.47 
 
Parameter                        Observed                 Expected 
                             mean         s.d.        mean         s.d. 
 
trans omega         :       170.7         10.6       180.0          5.8 
C-alpha chirality   :        33.4          3.2        33.8          4.2 
chi1 - gauche minus :       -66.0         25.1       -66.7         15.0 
chi1 - gauche plus  :        56.4         19.2        64.1         15.7 
chi1 - trans        :       195.3         18.1       183.6         16.8 
helix phi           :       -78.3         21.0       -65.3         11.9 
helix psi           :       -27.1         15.6       -39.4         11.3 
chi1 - pooled s.d.  :          -          19.2          -          15.7 
proline phi         :       -69.3          7.7       -65.4         11.2 
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