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Abstract: 
We study the problem of a policymaker who seeks to set policy optimally in an economy 
where the true economic structure is unobserved, and policymakers optimally learn from their 
observations of the economy. This is a classic problem of learning and control, variants of 
which have been studied in the past, but little with forward-looking variables which are a key 
component of modern policy-relevant models. As in most Bayesian learning problems, the 
optimal policy typically includes an experimentation component reflecting the endogeneity of 
information. We develop algorithms to solve numerically for the Bayesian optimal policy 
(BOP). However the BOP is only feasible in relatively small models, and thus we also 
consider a simpler specification we term adaptive optimal policy (AOP) which allows 
policymakers to update their beliefs but shortcuts the experimentation motive. In our setting, 
the AOP is significantly easier to compute, and in many cases provides a good approximation 
to the BOP. We provide a simple example to illustrate the role of learning and 
experimentation in an MJLQ framework. 
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1 Introduction

We study the problem of a policymaker (more concretely, a central bank), who seeks to set policy

optimally in an economy where the true economic structure is unobserved and the policymaker

optimally learn from their observations of the economy. This is a classic problem of learning and

control with model uncertainty, variants of which have been studied in the past, but very little has

been done with forward-looking variables, which are a key component of modern policy-relevant

models. Our model of the economy takes the form of a so-called Markov jump-linear-quadratic

(MJLQ) system, extended to include forward-looking variables. In this setup, model uncertainty

takes the form of different “modes” or regimes that follow a Markov process. This setup can be

adapted to handle many different forms of model uncertainty, but yet provides a relatively simple

structure for analysis.

In previous work, discussed in more detail below, we studied optimal policy design in models

of this class when policymakers could observe the current mode. In this paper we focus in detail

on the arguably more relevant situation, particularly for the model uncertainty applications which

interest us, in which the modes are not directly observable. Thus decision makers must filter their

observations to make inferences about the current mode. As in most Bayesian learning problems,

the optimal policy thus typically includes an experimentation component reflecting the endogeneity

of information. This class of problems has a long history in economics, and it is well-known that

solutions are difficult to obtain. We develop algorithms to solve numerically for the optimal policy.1

Due to the curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in rel-

atively small models. Confronted with these difficulties, we also consider adaptive optimal policy

(AOP). In this case, the policymaker in each period does update the probability distribution of

the current mode in a Bayesian way, but the optimal policy is computed each period under the

assumption that the policymaker will not learn in the future from observations. In our MJLQ set-

ting, the AOP is significantly easier to compute, and in many cases provides a good approximation

to the BOP. Moreover, the AOP analysis is of some interest in its own right, as it is closely related

to specifications of adaptive learning which have been widely studied in macroeconomics (see [6]

for an overview). Further, the AOP specification rules out the experimentation which some may

view as objectionable in a policy context.2

1 In addition to the classic literature (on such problems as a monopolist learning its demand curve), Wieland
[14]-[15] and Beck and Wieland [1] have recently examined Bayesian optimal policy and optimal experimentation in
a context similar to ours but without forward-looking variables.

2 In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive



In later drafts of this paper, we intend to apply our methods to a relatively simple version of a

benchmark New-Keynesian monetary model which is estimated from US data. We will then show

how probability distributions of forecasts of relevant variables can be constructed for the optimal

policy and for other, restricted policies, such as Taylor rules. In this preliminary version, we provide

a simple example to illustrate the role of learning and experimentation in an MJLQ framework and

compare the policy functions and value functions under NL, AOP, and BOP. Of particular interest

is how uncertainty affects policy, and how learning interacts with the optimal policy decisions. We

also diagnose the aspects of the model which influence the size of experimentation motive, and thus

drive the differences between the Bayesian and adaptive optimal policies.

MJLQ models have also been widely studied in the control-theory literature for the special

case when the model modes are observable and there are no forward-looking variables (see Costa,

Fragoso, and Marques [4] (henceforth CFM) and the references therein).3 More recently, Zampolli

[16] has used such an MJLQ model to examine monetary policy under shifts between regimes with

and without an asset-market bubble. Blake and Zampolli [2] provide an extension of the MJLQ

model with observable modes to include forward-looking variables and present an algorithm for the

solution of an equilibrium resulting from optimization under discretion. Svensson and Williams

[13] provide a more general extension of the MJLQ framework with forward-looking variables and

present algorithms for the solution of an equilibrium resulting from optimization under commitment

in a timeless perspective as well as arbitrary time-varying or time-invariant policy rules, using the

recursive saddlepoint method of Marcet and Marimon [9]. They also provide two concrete examples:

an estimated backward-looking model (a three-mode variant of Rudebusch and Svensson [11]) and

an estimated forward-looking model (a three-mode variant of Lindé [8]). Svensson and Williams

[13] also extend the MJLQ framework to the more realistic case of unobservable modes, although

without introducing learning and inference about the probability distribution of modes, which is

our focus here.

The paper is organized as follows: Section 2 lays out the basic model an MJLQ system with

forward-looking variables. Sections 3, 4, and 5 derive the optimal policy under no learning (NL),

the adaptive optimal policy (AOP), and the Bayesian optimal policy (BOP). Section 6 provides a

simple example and compares the value functions and policy functions for these three alternatives

numerical calculations in the BOP case.
3 do Val and Başar [5] provide an application of an adaptive-control MJLQ problem in economics. In a different

setting, Cogley, Colacito, and Sargent [3] have recently studied how well adaptive policies approximate the optimal
policies.
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and clarifies the benefits and costs of optimal experimentation.

2 The model

We consider a Markov Jump-Linear-Quadratic (MJLQ) model of an economy with forward-looking

variables. The economy has a private sector and a policymaker. We let Xt denote an nX -vector of

predetermined variables in period t, xt an nx-vector of forward-looking variables, and it an ni-vector

of (policymaker) instruments (control variables).4 We let model uncertainty be represented by nj

possible (model) modes and let jt ∈ Nj ≡ {1, 2, ..., nj} denote the mode in period t. The model of

the economy can then be written

Xt+1 = A11jt+1Xt + A12jt+1xt + B1jt+1it + C1jt+1εt+1, (2.1)

EtHjt+1xt+1 = A21jtXt + A22jtxt + B2jtit + C2jtεt, (2.2)

where εt is a multivariate normally distributed random i.i.d. nε-vector of shocks with mean zero

and contemporaneous covariance matrix Inε . The matrices A11j , A12j , ..., C2j have the appropriate

dimensions and depend on the mode j. Note that the matrices on the right side of (2.1) depend

on the mode jt+1 in period t + 1, whereas the matrices on the right side of (2.2) depend on the

mode jt in period t. Equation (2.1) then determines the predetermined variables in period t + 1 as

a function of the mode and shocks in period t+1 and the predetermined variables, forward-looking

variables, and instruments in period t. Equation (2.2) determines the forward-looking variables in

period t as a function of the mode and shocks in period t, the expectations in period t of next

period’s mode and forward-looking variables, and the predetermined variables and instruments in

period t. The matrix A22j is invertible for each j ∈ Nj .

The mode jt follows a Markov process with the transition matrix P ≡ [Pjk].5 Without loss of

generality, we assume that jt and εt are independently distributed.6 We also assume that C1jεt

and C2kεt are independent for all j, k ∈ Nj . These shocks, along with the modes, are the driving

forces in the model and they are not directly observed. For technical reasons, it is convenient but

not necessary that they are independent. We let pt = (p1t, ..., pnjt)′ denote the true probability

distribution of jt in period t. We let pt|t denote the policymaker’s and private sector’s estimate of

4 The first component of Xt may be unity, in order to allow for mode-dependent intercepts in the model.
5 Obvious special cases are P = Inj , when the modes are completely persistent, and Pj. = p̄′ (j ∈ Nj), when the

modes are serially i.i.d. with probability distribution p̄.
6 Because mode-dependent intercepts are included in the model, there are still additive mode-dependent shocks.
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the probability distribution in the beginning of period t. The prediction equation is

pt+1|t = P ′pt|t. (2.3)

We let the operator Et[·] in the expression EtHjt+1xt+1 on the left side of (2.2) denote expec-

tations in period t conditional on policymaker and private-sector information in the beginning of

period t, including Xt, it, and pt|t, but excluding jt and εt. Thus, the maintained assumption is

symmetric information between the policymaker and the (aggregate) private sector. Since forward-

looking variables will be allowed to depend on jt, parts of the private sector, but not the aggregate

private sector, may be able to observe jt and parts of εt.7 The precise informational assumptions

and the determination of pt|t will be specified below.

We let the policymaker’s intertemporal loss function in period t be

Et

∞∑

τ=0

δτL(Xt+τ , xt+τ , it+τ , jt+τ ) (2.4)

where δ is a discount factor satisfying 0 < δ < 1, and the period loss, L(Xt, xt, it, jt), satisfies

L(Xt, xt, it, jt) ≡



Xt

xt

it



′

Wjt




Xt

xt

it


 , (2.5)

where the matrix Wj (j ∈ Nj) is positive semidefinite. We assume that the policymaker optimizes

under commitment in a timeless perspective. As explained below, we will then add the term

Ξt−1
1
δ
EtHjtxt (2.6)

to the intertemporal loss function in period t, where, as we shall see below, the nx-vector Ξt−1 is

the mean of the Lagrange multipliers for equation (2.2) from the optimization problem in period

t− 1.

For the special case of no forward-looking variables (nx = 0), the model consists of (2.1) only,

without the term A12jt+1xt; the period loss function depends on Xt, it, and jt only; and there is no

role for the Lagrange multipliers Ξt−1 or the term (2.6).

We will distinguish three cases: (1) Optimal policy when there is no learning (NL), (2) Adaptive

optimal policy (AOP), and (3) Bayesian optimal policy (BOP). By NL, we refer to a situation when

the policymaker (and aggregate private sector) has a probability distribution pt|t over the modes

in period t and updates the probability distribution in future periods using the transition matrix

only, so the updating equation is

pt+1|t+1 = P ′pt|t. (2.7)
7 [The microfoundations of these assumption may need further clarification.]
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That is, the policymaker and the private sector do not use observations of the variables in the

economy to update the probability distribution. The policymaker then determines optimal policy

in period t conditional on pt|t and (2.7). This is a variant of a case examined in Svensson and

Williams [13].

By AOP, we refer to a situation when the policymaker in period t determines optimal policy

as in the NL case, but then uses observations of the realization of the variables in the economy to

update its probability distribution according to Bayes Theorem. In this case, the instruments will

generally have an effect on the updating of future probability distributions and through this channel

separately affect the intertemporal loss. However, the policymaker does not exploit that channel

in determining optimal policy. That is, the policymaker does not do any optimal experimentation.

By BOP, we refer to a situation when the policymaker acknowledges that the current instruments

will affect future inference and updating of the probability distribution and calculates optimal policy

taking this separate channel into account. Therefore, BOP includes optimal experimentation, where

for instance the policymaker may pursue policy that increases losses in the short run but improves

the inference of the true probability distribution and therefore allows losses in the longer run.

3 Optimal policy with no learning

We first consider the NL case. Svensson and Williams [13] derive the equilibrium under commit-

ment in a timeless perspective for the case when Xt, xt, and it are observable in period t, jt is

unobservable, and the updating equation for pt|t is given by (2.7). Observations of Xt, xt, and it

are then not used to update pt|t.

It is worth noting what type of belief specification underlies the assumption that the policymaker

does not learn from his or her beliefs. In general this requires the policymaker to have subjective

beliefs which are inconsistent or differ from the true data-generating process. A first possibility is

that the policymaker (incorrectly) views the modes jt as being drawn independently each period t

from the the exogenously given distribution pt|t given by (2.7) in period t. In particular, if pt|t = p̄,

he or she views the exogenous distribution as being the unconditional distribution p̄ associated

with the transition matrix P . For this possibility, there is no (perceived) gain from learning. Hence

not updating beliefs is optimal for this subjective probability distribution. This is implicitly the

case considered in the September 2005 version of Svensson and Williams [13]. A second possibility,

suggested to us by Alexei Onatski, is that the policymaker in period t forgets past observations of the
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economy, such as Xt−1, Xt−2, . . ., when making decisions in period t. Without past observations,

the policymaker cannot use current observations to update the beliefs. This possibility has the

advantage that the policymaker need not view the modes as being independently drawn, exploiting

the fact that the true modes may be serially correlated. However, forgetting past observations

implies that the beliefs do not satisfy the law of iterated expectations. Here we will study this

second possibility, but the fact that the law of iterated expectations does not hold requires the

slightly more complicated derivations below.

As a further difference, Svensson and Williams [13] assumed C2jt ≡ 0. In the full information

case, this is an innocuous assumption, since if C2jt 6≡ 0 the vector of predetermined variables and

the block of equations for the predetermined variables, (2.1), can be augmented with the vector

Xεt and the equations Xε,t+1 = C2jt+1εt+1, respectively. Here we allow C2jt 6≡ 0 and keep track

of the term C2jtεt, since this term will serve as the shock in the equations for the forward-looking

variables, without which inference in some cases becomes trivial.8

It will be practical to replace equation (2.2) by the two equivalent equations,

EtHjt+1xt+1 = zt, (3.1)

0 = A21jtXt + A22jtxt − zt + B2jtit + C2jtεt, (3.2)

where we introduce the nx-vector of additional forward-looking variables, zt. Introducing this vector

is a practical way of keeping track of the expectations term on the left side of (2.2).

Furthermore, it will be practical to use (3.2) and solve xt as a function of Xt, zt, it, jt, and εt

xt = x̃(Xt, zt, it, jt, εt) ≡ A−1
22jt

(zt −A21jtXt −B2jtit − C2jtεt). (3.3)

We note that, for given jt, this function is linear in Xt, zt, it, and εt.

For the application of the recursive saddlepoint method (see Marcet and Marimon [9], Svensson

and Williams [13], and Svensson [12] for details of the recursive saddlepoint method), the dual

period loss function can be written

EtL̃(X̃t, zt, it, γt, jt, εt) ≡
∑

j

pjt|t

∫
L̃(X̃t, zt, it, γt, j, εt)ϕ(εt)dεt,

where X̃t ≡ (X ′
t,Ξ

′
t−1)

′ is the (nX + nx)-vector of extended predetermined variables (that is,

including the nx-vector Ξt−1), γt is an nx-vector of Lagrange multipliers, and ϕ(·) denotes a generic
8 Alternatively, we could allow C2jt ≡ 0 and add the corresponding predetermined variables, but then we have to

assume that those predetermined variables are not observable. It turns out that the filtering problem becomes much
more difficult when some predetermined variables as well as modes are unobservable.
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probability density function (for εt, the standard normal density function), and where

L̃(X̃t, zt, it, γt, jt, εt) ≡ L[Xt, x̃(Xt, zt, it, jt, εt), it, jt]− γ′tzt + Ξ′t−1

1
δ
Hjt x̃(Xt, zt, it, jt, εt). (3.4)

Then, the somewhat unusual Bellman equation for the dual optimization problem can be written

Ṽ (st) = EtV̂ (st, jt) ≡
∑

j
pjt|tV̂ (st, j)

= max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δV̂ [g(st, zt, it, γt, jt, εt, jt+1, εt+1), jt+1]}

≡ max
γt

min
(zt,it)

∑
j
pjt|t

∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ

∑
k PjkV̂ [g(st, zt, it, γt, j, εt, k, εt+1), k]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1.

(3.5)

where st ≡ (X̃ ′
t, p

′
t|t)

′ denotes the perceived state of the economy (“perceived” in the sense that it

includes the perceived probability distribution, pt|t, but not the true mode) and (st, jt) denotes the

true state of the economy (“true” in the sense that it includes the true mode of the economy). As

we discuss in more detail below, it is necessary to include the mode jt in the state vector because

the beliefs do not satisfy the law of iterated expectations. In the BOP case beliefs do satisfy this

property, so the state vector is simply st. Also note that in the Bellman equation we require that

all the choice variables respect the information constraints and thus depend on the perceived state

st but not the mode j directly.

The optimization is subject to the transition equation for Xt+1,

Xt+1 = A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1, (3.6)

where we have substituted x̃(Xt, zt, it, jt, εt) for xt; the new dual transition equation for Ξt,

Ξt = γt, (3.7)

and the transition equation for pt+1|t+1, (2.7). This can be combined into the transition equation

for st+1,

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, j, εt) + B1jt+1it + C1jt+1εt+1

γt

P ′pt|t


 . (3.8)
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It is straightforward to see that the solution of the dual optimization problem is linear in X̃t

for given st,

ı̃t ≡



zt

it
γt


 = ı̃(st) ≡




z(st)
i(st)
γ(st)


 = F (pt|t)X̃t ≡




Fz(pt|t)
Fi(pt|t)
Fγ(pt|t)


 X̃t, (3.9)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ FxX̃(pt|t, jt)X̃t + Fxε(pt|t, jt)εt. (3.10)

This solution is also the solution to the primal optimization problem. We note that xt is linear in

εt for given pt|t and jt. The equilibrium transition equation is then given by

st+1 = ḡ(st, jt, εt, jt+1, εt+1) ≡ g[st, z(st), i(st), γ(st), jt, εt, jt+1, εt+1].

As can be easily verified, the (unconditional) dual value function Ṽ (st) is quadratic in X̃t for

given pt|t, taking the form

Ṽ (st) ≡ X̃ ′
tṼX̃X̃(pt|t)X̃t + w(pt|t).

The conditional dual value function V̂ (st, jt) gives the dual intertemporal loss conditional on the

true state of the economy, (st, jt). It follows that this function satisfies

V̂ (st, j) ≡
∫ [

L̃(X̃t, z(st), i(st), γ(st), j, εt)
+ δ

∑
k PjkV̂ [ḡ(st, j, εt, k, εt+1), k]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj).

The function V̂ (st, jt) is also quadratic in X̃t for given pt|t and jt,

V̂ (st, jt) ≡ X̃ ′
tV̂X̃X̃(pt|t, jt)X̃t + ŵ(pt|t, jt).

It follows that we have

ṼX̃X̃(pt|t) ≡
∑

j
pjt|tV̂X̃X̃(pt|t, j), w(pt|t) ≡

∑
j
pjt|tŵ(pt|t, j).

The value function for the primal problem, with the period loss function EtL(Xt, xt, it, jt) rather

than EtL̃(X̃t, zt, it, γt, jt, εt), satisfies

V (st) ≡ Ṽ (st)− Ξ′t−1

1
δ

∑

j

pjt|tHj

∫
x(st, j, εt)ϕ(εt)dεt

= Ṽ (st)− Ξ′t−1

1
δ

∑

j

pjt|tHjx(st, j, 0) (3.11)

(where the second equality follows since x(st, jt, εt) is linear in εt for given st and jt). It is quadratic

in X̃t for given pt|t,

V (st) ≡ X̃ ′
tVX̃X̃(pt|t)X̃t + w(pt|t)

8



(the scalar w(pt|t) in the primal value function is obviously identical to that in the dual value

function). This is the value function conditional on X̃t and pt|t after Xt has been observed but

before xt has been observed, taking into account that jt and εt are not observed. Hence, the second

term on the right side of (3.11) contains the expectation of Hjtxt conditional on that information.9

For future reference, we note that the value function for the primal problem also satisfies

V (st) ≡
∑

j
pjt|tV̌ (st, j),

where the conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =
∫ {

L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (3.12)

3.1 The case without forward-looking variables

For the case without forward-looking variables, the recursive saddlepoint method is not needed.

The transition equation for Xt+1 is

Xt+1 = Ajt+1Xt + Bjt+1it + Cjt+1εt+1, (3.13)

and the period loss function is

EtL(Xt, it, jt) ≡
∑

j
pjt|tL(Xt, it, j), (3.14)

where

L(Xt, it, jt) ≡
[

Xt

it

]′
Wjt

[
Xt

it

]
. (3.15)

The transition equation is

st+1 ≡
[

Xt+1

pt+1|t+1

]
= g(st, it, jt+1, εt+1) ≡

[
Ajt+1Xt + Bjt+1it + Cjt+1εt+1

P ′pt|t

]
. (3.16)

The Bellman equation for the derivation of the optimal policy is

V (st) = EtV̂ (st, jt) ≡
∑

j
pjt|tV̂ (st, j)

= min
it

Et{L(Xt, it, jt) + δV̂ [g(st, it, jt+1, εt+1), jt+1]}

≡ min
it

∑
j
pjt|t

[
L(Xt, it, j) + δ

∑
k
Pjk

∫
V̂ [g(st, it, k, εt+1), k] ϕ(εt+1)dεt+1

]
. (3.17)

9 To be precise, the observation of Xt, which depends on C1jtεt, allows some inference of εt, εt|t. xt will depend on
jt and on εt, but on εt only through C2jtεt. By assumption C1jεt and C2kεt are independent. Hence, any observation
of Xt and C1jεt does not convey any information about C2jεt, so EtC2jtεt = 0.
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This results in the optimal policy function,

it = i(st) ≡ Fi(pt|t)Xt, (3.18)

which is linear in Xt for given pt|t. The equilibrium transition equation is then

st+1 = ḡ(st, jt+1, εt+1) ≡ g(st, i(st), jt+1, εt+1). (3.19)

The value function, V (st), is quadratic in Xt for given pt|t,

V (st) = X ′
tVXX(pt|t)Xt + w(pt|t).

The conditional value function, V̂ (st, it), satisfies

V̂ (st, j) ≡ L[Xt, i(st), j] + δ
∑

k
Pjk

∫
V̂ [ḡ(st, k, εt+1), k]ϕ(εt+1)dεt+1 (j ∈ Nj).

4 Adaptive optimal policy

Consider now the case of AOP. We assume that C2jt 6≡ 0 and that both εt and jt are unobservable.

The estimate pt|t is the result of Bayesian updating, using all information available, but the optimal

policy in period t is computed under the perceived updating equation (2.7). That is, the fact that

the policy choice will affect future pt+τ |t+τ and that future expected loss will change when pt+τ |t+τ

changes is disregarded. Under the assumption that the expectations on the left side of (2.2) are

conditional on (2.7), the variables zt, it, γt, and xt in period t are still determined by (3.9) and

(3.10).

In order to determine the updating equation for pt|t, we specify an explicit sequence of infor-

mation revelation as follows, in no less than nine steps:

First, the policymaker and the private sector enters period t with the prior pt|t−1. They know

Xt−1, xt−1 = x(st−1, jt−1, εt−1), zt−1 = z(st−1), it−1 = i(st−1), and Ξt−1 = γ(st−1) from the

previous period.

Second, in the beginning of period t, the mode jt and the vector of shocks εt are realized. Then

the vector of predetermined variables Xt is realized according to (2.1).

Third, the policymaker and the private sector observe Xt. They then know X̃t ≡ (X ′
t,Ξ

′
t−1)

′.

They do not observe jt or εt

Fourth, the policymaker and the private sector update the prior pt|t−1 to the posterior pt|t

according to Bayes Theorem and the updating equation

pjt|t =
ϕ(Xt|jt = j,Xt−1, xt−1, it−1, pt|t−1)

ϕ(Xt|Xt−1, xt−1, it−1, pt|t−1)
pjt|t−1 (j ∈ Nj), (4.1)
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where ϕ(·) denotes a generic density function.10 Then the policymaker and the private sector know

st ≡ (X̃ ′
t, p

′
t|t)

′.

Fifth, the policymaker solves the dual optimization problem, determines it = i(st), and imple-

ments/announces the instrument setting it.

Sixth, the private-sector (and policymaker) expectations,

zt = EtHjt+1xt+1 ≡ E[Hjt+1xt+1 | st],

are formed. In equilibrium, these expectations will be determined by (3.9). In order to understand

their determination better, we look at this in some detail.

These expectations are by assumption formed before xt is observed. The private sector and

the policymaker know that xt will in equilibrium be determined next period according to (3.10).

Hence, they can form expectations of the soon-to-be determined xt conditional on jt = j,11

xjt|t = x(st, j, 0). (4.2)

The private sector and the policymaker can also infer Ξt from

Ξt = γ(st). (4.3)

This allows the private sector and the policymaker to form the expectations

zt = z(st) = Et[Hjt+1xt+1 | st] =
∑

j,k
Pjkpjt|tHkxk,t+1|jt, (4.4)

where

xk,t+1|jt =
∫

x







A11kXt + A12kx(st, j, εt) + B1ki(st)
Ξt

P ′pt|t


 , k, εt+1


ϕ(εt)ϕ(εt+1)dεtdεt+1

= x







A11kXt + A12kx(st, j, 0) + B1ki(st)
Ξt

P ′pt|t


 , k, 0


 ,

where we have exploited the linearity of xt = x(st, jt, εt) and xt+1 = x(st+1, jt+1, εt+1) in εt and

εt+1. Note that zt = z(st) = EtHjt+1xt+1 is formed conditional on the belief that the probability

10 The policymaker and private sector also estimate the shocks εt|t as εt|t =
P

j pjt|tεjt|t, where εjt|t ≡ Xt −
A11jXt−1 −A12jxt−1 −B1jit−1 (j ∈ Nj). However, because of the assumed (convenient) independence of C1jεt and
C2kεt, j, k ∈ Nj , we do not need to keep track of εjt|t.

11 Note that 0 instead of εjt|t enters above. This is because the inference εjt|t above is inference about C1jεt, whereas
xt depends on εt through C2jεt. Since we assume that C1jεt and C2jεt are independent, there is no inference of C2jεt

from observing Xt. Hence, EtC2jtεt ≡ 0. Because of the linearity of xt in εt, the integration of xt over εt results in
x(st, jt, 0t).
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distribution in period t + 1 will be given by pt+1|t+1 = P ′pt|t, not by the true updating equation

that we are about to specify.

Seventh, after the expectations zt = z(st) = EtHjt+1xt+1 have been formed, xt is determined as

a function of Xt, zt, it, jt, and εt by (3.3).

Eight, the policymaker and the private sector then use the observed xt to update pt|t to the new

posterior p+
t|t according to Bayes Theorem, via the updating equation

p+
jt|t =

ϕ(xt|jt = j, Xt, zt, it, pt|t)
ϕ(xt|Xt, zt, it, pt|t)

pjt|t (j ∈ Nj). (4.5)

Ninth, the policymaker and the private sector then leave period t and enter period t + 1 with

the prior pt+1|t given by the prediction equation

pt+1|t = P ′p+
t|t. (4.6)

In the beginning of period t + 1, the mode jt+1 and the vector of shocks εt+1 are realized, and

Xt+1 is determined by (2.1) and observed by the policymaker and private sector. The sequence of

the nine steps above then repeats itself.

Since C1jεt is a random nX -vector that, for given j, is normally distributed with mean zero and

covariance matrix C1jC
′
1j (assume for simplicity that the rank of C1jC

′
1j is nX ; if not, for instance

when the predetermined variables include lagged endogenous variables, choose the appropriate

nonsingular submatrix and the appropriate subvector of Xt), we know that

ϕ(Xt|jt = j,Xt−1, xt−1, it−1, pt|t−1) ≡ ψ(Xt −A11jXt−1 −A12jxt−1 −B1jit−1;C1jC
′
1j), (4.7)

where

ψ(ε; Σεε) ≡ 1√
(2π)nε |Σεε|

exp
(
− 1

2
ε′Σ−1

εε ε

)

denotes the density function of a random nε-vector ε with a multivariate normal distribution with

mean zero and covariance matrix Σεε. Furthermore,

ϕ(Xt|Xt−1, xt−1, it−1, pt|t−1) ≡
∑

j

pjt|t−1ψ(Xt −A11jXt−1 + A12jxt−1 + B1jit−1;C1jC
′
1j). (4.8)

Thus, we know the details of the updating equation (4.1).

Since C2kεt is a random nx-vector that is normally distributed with mean zero and covari-

ance matrix C2kC
′
2k (assume that the rank of C2kC

′
2k is nx, or select the appropriate nonsingular

submatrix and appropriate subvector), we know that

ϕ(xt|jt = k,Xt, zt, it, pt|t) ≡ ψ[zt −A21kXt −A22kxt −B2kit;C2kC
′
2k], (4.9)
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ϕ(xt|Xt, zt, it, pt|t) ≡
∑

k

pkt|tψ[zt −A21kXt −A22kxt −B2kit; C2kC
′
2k]. (4.10)

Thus, we know the details of the updating equation (4.5).

In particular, it follows that we can write the updating equation (4.5) as

p+
t|t = Q+(st, zt, it, jt, εt) (4.11)

≡ [Q+
1 (st, zt, it, jt, εt), ..., Q+

nj
(st, zt, it, jt, εt)]′,

where

Q+
k (st, zt, it, jt, εt) ≡ ψ[Zk(Xt, zt, it, jt, εt);C2kC

′
2k]∑

k pkt|tψ[Zk(Xt, zt, it, jt, εt);C2kC
′
2k]

pkt|t (k ∈ Nj) (4.12)

and

Zk(Xt, zt, it, jt, εt) ≡ zt −A21kXt −A22kx̃(Xt, zt, it, jt, εt)−B2kit,

where we use (3.3) to express xt as a function of Xt, zt, it, jt, and εt, and used this to eliminate xt

from the first argument of ψ(·, ·) in (4.9) and (4.10).

The transition equation for pt+1|t+1 can then finally be written

pt+1|t+1 = Q(st, zt, it, jt, εt, jt+1, εt+1), (4.13)

where Q(st, zt, it, jt, εt, jt+1, εt+1) is defined by the combination of (4.1) for period t + 1 with (3.6),

(4.6), and (4.11).

The equilibrium transition equation is then given by

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = ḡ(st, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1x(st, jt, εt) + B1jt+1i(st) + C1jt+1εt+1

γ(st)
Q(st, z(st), i(st), jt, εt, jt+1, εt+1)


 , (4.14)

where the third row is given by the true updating equation (4.13) together with the policy function

(3.9). Thus we note that in this AOP case there is a distinction between the “perceived” transition

equation, which includes the perceived updating equation, (2.7), and the “true” transition equation,

which includes the true updating equation (4.13).

Note that V (st) in (3.11), which is subject to the perceived transition equation, (3.8), does not

give the true (unconditional) value function for the AOP case. This is instead given by

V̄ (st) ≡
∑

j
pjt|tV̌ (st, j),
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where the true conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =
∫ {

L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (4.15)

That is, the true value function V̄ (st) takes into account the true updating equation for pt|t, (4.13),

whereas the optimal policy, (3.9), and the perceived value function, V (st) in (3.11), are conditional

on the perceived updating equation (2.7) and thereby the perceived transition equation (3.8). Note

also that V̄ (st) is the value function after Xt has been observed but before xt is observed, so it

is conditional on pt|t rather than p+
t|t. Since the full transition equation (4.14) is no longer linear

due to the belief updating (4.13), the true value function V̄ (st) is no longer quadratic in Xt for

given pt|t. Thus more complex numerical methods are required to evaluate losses in the AOP case,

although policy is still determined simply as in the NL case.

Note that12

EtQ(st, z(st), i(st), jt, εt, jt+1, εt+1) = pt+1|t = P ′pt|t. (4.16)

The difference between the true updating equation for pt+1|t+1, (4.13), and the perceived updating

equation (2.7) is that, in the true updating equation, pt+1|t+1 under AOP becomes a random variable

from the point of view of period t, with the mean equal to pt+1|t+1. This is because pt+1|t+1 depends

on the realization of jt+1 and εt+1. We can hence write the true transition equation for pt+1|t+1 as

pt+1|t+1 = P ′pt|t + vt+1

where vt+1 ≡ [Q(st, z(st), i(st), jt, εt, jt+1, εt+1) − P ′pt|t], and thus Etvt+1 = 0. The first term on

the right side is the prediction, pt+1|t = Etpt+1|t+1 = P ′pt|t and the second term is the innovation

in pt+1|t+1 that results from the Bayesian updating and depends on the realization of jt+1 and εt+1.

If the conditional value function V̌ (st+1, jt+1) under NL is concave in pt+1|t+1 for given Xt+1

and jt+1, then by Jensen’s inequality the true expected future loss under AOP will be lower than

the true expected future loss under NL. Furthermore, under BOP, it may be possible to adjust

policy so as to increase the variance of pt+1|t+1, that is, achieve a mean-preserving spread which

might further reduce the expected future loss. This amounts to optimal experimentation.

4.1 The case without forward-looking variables

For the case without forward-looking variables, again the recursive saddlepoint method is not

needed. With the transition equation for the predetermined variables (3.13) and the period loss
12 Of course, (4.13) is in expectation consistent with the prediction equation, (2.3). Equation (4.16) follows since,

for k ∈ Nj ,
P

j,h pjt|tPjh

R
Qk(st, zt, it, j, εt, h, εt+1)ϕ(εt)ϕ(εt+1)dεtdεt+1 = pk,t+1|t =

P
j pjt|tPjk .
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function (3.14), the optimal policy in the AOP case is determined as in the NL case by the solution

to (3.17), subject to the perceived transition equation (3.16) and given by the same policy function,

(3.18).

The optimal policy under AOP is calculated under the perceived updating equation, (2.7). The

true updating equation for pt+1|t+1 is

pt+1|t+1 = Q(st, it, jt+1, εt+1), (4.17)

where

Q(st, it, jt+1, εt+1) ≡ [Q1(st, it, jt+1, εt+1), ..., Qnj (st, it, jt+1, εt+1)]′,

Qk(st, it, jt+1, εt+1) ≡
ψ[(Ajt+1 −Ak)Xt + (Bjt+1 −Bk)it + Cjt+1εt+1; CkC

′
k]∑

j,k Pjkpjt|tψ[(Ajt+1 −Ak)Xt + (Bjt+1 −Bk)it + Cjt+1εt+1;CkC
′
k]

∑
j
Pjkpjt|t.

The equilibrium transition equation is

st+1 = ḡ(st, jt+1, εt+1) ≡
[

Ajt+1Xt + Bjt+1i(st) + Cjt+1εt+1

Q(st, i(st), jt+1, εt+1)

]
.

The true (unconditional) value function, V̄ (st), taking into account that pt+1|t+1 will be updated

according to (4.17) and ex post depend on jt+1 and εt+1, is given by

V̄ (st) ≡
∑

j
pjt|tV̌ (st, j),

where the true conditional value function V̌ (st, j) satisfies

V̌ (st, j) = L[Xt, i(st), j] + δ
∑

k
Pjk

∫
V̌ [ḡ(st, k, εt+1), k]ϕ(εt+1)dεt+1.

Again, if the conditional value function V̌ (st+1, jt+1) under NL is concave in pt+1|t+1, the value

function V̄ (st) under AOP will be lower than under NL.13

4.2 A special case when forward-looking variables do not reveal any further

information

A special case that is simpler to deal with is when

A21j = A21, A22j = A22, B2j = B2, C2j = 0 (j ∈ Nj). (4.18)

13 It remains to clarify the concavity properties of the conditional and unconditional value functions. Kiefer [7]
examines the properties of a value function, including concavity, under Bayesian learning for a special case.
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That is, the matrices A21, A22, and B2 are independent of j, and the matrix C2 = 0, so

xt = x̃(Xt, zt, it) ≡ A−1
22 (zt −A21Xt −B2it).

In that case, the observation of xt does not reveal any further information about jt. This implies

that the updating equation (4.5) collapses to

p+
t|t = pt|t,

so the prediction equation (4.6) is simply

pt+1|t = P ′pt|t.

In particular, we then have

xt = x(st) ≡ x̃[Xt, z(st), i(st)],

pt+1|t+1 = Q(st, zt, it, jt+1, εt+1),

st+1 = g(st, zt, it, γt, jt+1, εt+1),

ḡ(st, jt+1, εt+1) ≡ g(st, z(st), i(st), γ(st), jt+1, εt+1).

That is, there is in this case no separate dependence of st+1 and xt on jt and εt beyond st. This

special case also makes the case of Bayesian optimal policy simpler.

5 Bayesian optimal policy

Finally, we consider the BOP case, when optimal policy is determined while taking the updating

equation (4.13) into account. That is, we now allow the policymaker to choose it taking into

account that this will affect pt+1|t+1, which in turn will affect future expected losses. That is,

optimal experimentation is allowed. For the BOP case, there is hence no distinction between the

“perceived” and “true” transition equation.

The transition equation for the BOP case is then

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(st, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1

γt

Q(st, zt, it, jt, εt, jt+1, εt+1)


 . (5.1)
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Then the dual optimization problem can be written as (3.5) subject to the above transition equation

(5.1).

However, in the Bayesian case, matters simplify somewhat, as we do not need to compute the

conditional value function V̂ (st, jt): We note that the second term on the right side of (3.5) can be

written as

EtV̂ (st+1, jt+1) ≡ E
[
V̂ (st+1, jt+1)

∣∣∣ st

]
.

Since, in the Bayesian case, the beliefs do satisfy the law of iterated expectations, this is then the

same as

E
[
V̂ (st+1, jt+1)

∣∣∣ st

]
= E


 V̂







Xt+1(jt+1, εt+1)
Ξt

pt+1|t+1(Xt+1(jt+1, εt+1))


 , jt+1




∣∣∣∣∣∣
st




= E



E


 V̂







Xt+1(jt+1, εt+1)
Ξt

pt+1|t+1(Xt+1(jt+1, εt+1))


 , jt+1




∣∣∣∣∣∣
Xt+1, pt+1|t+1(Xt+1)




∣∣∣∣∣∣
st





= E


 Ṽ







Xt+1(jt+1, εt+1)
Ξt

pt+1|t+1(Xt+1(jt+1, εt+1))







∣∣∣∣∣∣
st




= E
[
Ṽ (st+1)

∣∣∣ st

]
,

where we use the definition of Ṽ (st), that Xt+1 is a function of jt+1 and εt+1, and that pt+1|t+1 is

a function of Xt+1. Appendix B provides a more detailed proof.

Thus, the Bellman equation for the Bayesian optimal policy is

Ṽ (st) = max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δṼ [g(st, zt, it, γt, jt, εt, jt+1, εt+1)]}

≡ max
γt

min
(zt,it)

∑
j
pjt|t

∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ

∑
k PjkṼ [g(st, zt, it, γt, j, εt, k, εt+1)]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1,

(5.2)

where the transition equation is given by (5.1).

The solution to the optimization problem can be written

ı̃t ≡



zt

it
γt


 = ı̃(st) ≡




z(st)
i(st)
γ(st)


 = F (X̃t, pt|t) ≡




Fz(X̃t, pt|t)
Fi(X̃t, pt|t)
Fγ(X̃t, pt|t)


 , (5.3)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ Fx(X̃t, pt|t, jt, εt). (5.4)

Because of the nonlinearity of (4.13) and (5.1), the solution is no longer linear in X̃t for given pt|t.

The dual value function, Ṽ (st), is no longer quadratic in X̃t for given pt|t. The value function of

17



the primal problem, V (st), is given by, equivalently, (3.11), (4.15) (with the equilibrium transition

equation (4.14) with the solution (5.3)), or

V (st) =
∑

j

pjt|t

∫ {
L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV [ḡ(st, j, εt, k, εt+1)]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1. (5.5)

It it is also no longer quadratic in X̃t for given pt|t. Thus more detailed numerical methods are

necessary in this case to find the optimal policy and the value function.

5.1 The case without forward-looking variables

In the case without forward-looking variables, the transition equation for st+1|t+1 is

st+1 = g(st, it, jt+1, εt+1) ≡
[

Ajt+1Xt + Bjt+1it + Cjt+1εt+1

Q(st, it, jt+1, εt+1)

]
,

and the optimal policy is determined by the Bellman equation

V (st) = min
it

Et{[L(Xt, i(st), jt) + δV [g(st, it, jt+1, εt+1)]}

= min
it

∑
j
pjt|t

{
L(Xt, it, j) + δ

∑
k
Pjk

∫
V [g(st, it, k, εt+1)]ϕ(εt+1)dεt+1

}
.

This results in the optimal policy function

it = i(st) ≡ Fi(st).

Because of the nonlinearity of Q(st, it, jt+1, εt+1), the optimal policy function is no longer linear in

Xt for given pt|t, and the value function is no longer quadratic in Xt for given pt|t. The equilibrium

transition equation is

st+1 = ḡ(st, jt+1, εt+1) ≡ g(st, i(st), jt+1, εt+1).

5.2 The special case when forward-looking variables do not reveal any further

information

As above, the special case (4.18) makes it unnecessary to deal with the details of the updating

equation (4.11) and the separate dependence of st+1 on jt and εt. The transition equation is simply

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(st, zt, it) + B1jt+1it + C1jt+1εt+1

γt

Q(st, zt, it, jt+1, εt+1)


 .
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5.3 Bayesian optimal policy with endogenous mode transition

In the baseline formulation of the model, the mode transition matrix is given, so the model uncer-

tainty represented by the Markov chain of the modes is independent of the state of the economy

and the policy choice. Assume now that the mode transition probabilities are instead endogenous

and do depend on Xt, xt, and it. That is, the transition matrix depends on Xt, xt, and it,

P = P (Xt, xt, it) ≡ [Pjk(Xt, xt, it)] .

Let

P̃ (Xt, zt, it, jt, εt) ≡ P [Xt, x̃(Xt, zt, it, jt, εt), it],

where we have used (3.3).

Then equation (4.6) is replaced by

pt+1|t = P̃ (Xt, zt, it, jt, εt)′p+
t|t, (5.6)

and (5.6) is used instead of (4.6) in the definition of Q(st, zt, it, jt, εt, jt+1, εt+1). Furthermore,

everywhere, Pjk is replaced by P̃jk(Xt, zt, it, jt, εt). The rest of the problems remains the same.

Thus, formally, the extension to endogenous mode transitions is easy.

6 Simple examples

In this section we present some simple examples which help to illuminate the benefits of learning and

experimentation. First we consider a backward-looking case, then add forward-looking components.

6.1 A backward-looking example

We consider the simplest possible example, where nX = 1, nx = 0, ni = 1, nε = 1, and Nj = {1, 2},

Xt+1 = Ajt+1Xt + Bjt+1it + Cjt+1εt+1,

where εt is normally distributed with zero mean and unit variance. We specify that A1 = A2 = 1

and C1 = C2 = 1, so

Xt+1 = Xt + Bjt+1it + εt+1.

Furthermore, B1 = − 1.5 and B2 = − 0.5. That is, the instrument it has a larger effect on Xt+1 in

mode 1 than in mode 2. We assume that the modes are quite persistent,

P ≡
[

P11 1− P11

1− P22 P22

]
=

[
0.98 0.02
0.02 0.98

]
.
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It follows that the stationary distribution of the modes satisfies p̄ ≡ (p̄1, p̄2)′ = (0.5, 0.5)′. We

note that the predicted probability of mode 1 in period t + 1, p1,t+1|t, is similar to the perceived

probability of mode 1 in period t, since the modes are so persistent,

p1,t+1|t = p1t|tP11 + (1− p1t|t)(1− P22) = 0.02 + 0.96p1t|t. (6.1)

We finally assume that the period loss function satisfies

Lt =
1
2
X2

t .

For this simple example, the state st ≡ (X ′
t, p

′
t|t)

′ can be represented by (Xt, p1t)′, where we write

p1t for p1,t|t, the perceived probability of mode 1 in period t.

Figure 6.1, panel a, shows the resulting value function V (Xt, p1t) for the optimal policy under

no learning (NL), as a function of p1t for three different values of Xt.14 Panel b shows the value

function for the Bayesian optimal policy (BOP) as a function of p1t, for the same three different

values of Xt. Panel c plots the difference between the loss under BOP and NL. We see that the

loss under BOP is significantly lower than under NL, albeit less so for high values of p1t. Panel d

shows the difference between the loss under BOP and the adaptive optimal policy (AOP). We see

that the loss under BOP is lower than under AOP, but only modestly so.

Taken together, these results show that there is indeed benefit from learning in this example,

although the benefits from experimentation are quite modest here. By moving from the NL case to

AOP, and thus updating beliefs, policymakers are able to capture most of the benefit of the fully

Bayesian optimal policy. The additional incremental improvement from AOP to BOP, arising from

the experimentation motive, is much less significant. Thus the AOP, which we recall is relatively

simple to compute and to implement recursively in real time, provides a good approximation to

the fully optimal policy. Of course, these conclusions are dependent on the particular parameters

chosen for this simple example, but we have found similar qualitative results in a number of other

examples that we have analyzed.

Figure 6.2 shows the corresponding optimal policy functions. Panel a shows the optimal policy

under NL as a function of Xt for three different values of p1t. For given p1t, the optimal policy

function under NL is linear in Xt. Panel b shows the optimal policy function under BOP. On this

scale, the nonlinearity in Xt for given p1t is not apparent. Panel c shows the difference between

the optimal policy under BOP and NL. Here we see that the Bayesian optimal policy is indeed
14 The example is solved with collocation methods via modifications of some of the programs of the CompEcon

Toolbox described by Miranda and Fackler [10]
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Figure 6.1: Losses from no learning (NL), adaptive optimal policy (AOP), and Bayesian optimal

policy (BOP)
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nonlinear in Xt for given p1t. Panel d plots the difference in the policies for all p1t and all Xt in the

interval [− 5, 5]. We see that the difference is largest for small p1t, where the Bayesian optimal policy

responds more aggressively (it is larger for positive values of Xt and smaller for negative values)

than the adaptive policy. We discuss below how more aggressive policies can sharpen inference,

and thus lessen future expected losses.

6.2 The interaction of learning and control

In order to better understand the nature of the different solutions and the role of learning, we

consider figures 6.3 and 6.4 which depict how beliefs respond to different policies. First, figure

6.3 shows the components of the Bayesian updating rule. Panel a shows the conditional density

function of the innovation in Xt+1, Zt+1 ≡ Xt+1−EtXt+1, conditional on the mode jt+1 ≡ k where

k = 1 or 2 in period t+1, for given Xt and it. Here Xt is set equal to 1, and it is set equal to 0.8; this

value for it is approximately the optimal policy under NL for Xt = 1 and p1,t+1|t = p1t|t = p̄1 = 0.5.

Panel b shows the unconditional (that is, not conditional on k) density function of the innovation
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Figure 6.2: Policy for no learning (NL) and Bayesian optimal policy (BOP)
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in Xt+1, for Xt = 1, it = 0.8, and p1,t+1|t = 0.5. Panel c plots the resulting updated p1,t+1|t+1 as

a function of the innovation in Xt+1. By Bayes Theorem, it is given by the ratio of the density of

the innovation conditional on k = 1 to the unconditional density of the innovation multiplied by

the period-t prediction of mode 1 in period t + 1, p1,t+1|t = 0.5,

p1,t+1|t+1 =
ψ(Xt+1 − EtXt+1 | k = 1, Xt, it)
ψ(Xt+1 − EtXt+1 | p1,t+1|t, Xt, it)

p1,t+1|t. (6.2)

We see that p1,t+1|t+1 is decreasing in Xt+1 − EtXt+1. The larger the innovation in Xt+1, the less

likely the mode 1, since, for a given positive it, mode 1 is associated with a larger negative effect

of it on Xt+1 and hence, everything else equal, a lower Xt. This is apparent in panel a, where

the probability density of the innovation conditional on mode 1 is to the left of the density of the

innovation conditional on mode 2.

Suppose now that the policymaker increases the value of the policy instrument, say from 0.8

to 1.4. Then, a larger value of the policy instrument multiplies the mode-dependent coefficient

Bjt+1 . As a result, the conditional probability densities in panel a move further apart, and the

unconditional density in panel b becomes more spread out. As a result, the updated p1,t+1|t+1

22



Figure 6.3: Probability density of Xt+1 and updating of pt+1|t+1

−5 0 5
0

0.1

0.2

0.3

0.4

a. ψ(Z
t+1

| k, X
t
, i

t
=0.8)

Z
t+1

 ≡ X
t+1

 − E
t
X

t+1 −5 0 5
0

0.1

0.2

0.3

0.4

0.5

b. ψ(Z
t+1

| p
1,t+1|t

=0.5, X
t
, i

t
=0.8)

Z
t+1

 ≡ X
t+1

 − E
t
X

t+1

−5 0 5
0

0.5

1

c. p
1,t+1|t+1

Z
t+1

 ≡ X
t+1

 − E
t
X

t+1

−5 0 5
0

0.5

1

d. p
1,t+1|t+1

Z
t+1

 ≡ X
t+1

 − E
t
X

t+1

k=1
k=2

i
t
=0.8 i

t
=0.8

i
t
=1.4

becomes more sensitive to the innovation. This is shown in panel d, where p1,t+1|t+1 as a function

of the innovation is plotted for both it = 0.8 and it = 1.4. Thus, with a larger absolute value of the

instrument, for a given realization of the innovation, the updated p1,t+1|t+1 is closer to the extremes

of 0 or 1. The policymaker becomes less uncertain about the mode in period t + 1. In this sense,

we can say that a larger instrument setting improves the updating and learning of the distribution

of the modes. Thus, if the policymaker perceives that learning is beneficial, he or she would in this

example be inclined to experiment by pursuing more aggressive policy, in the sense of increasing

the magnitude of the instrument for a given Xt.

We will return shortly to the issue of when learning and experimentation is beneficial. But

first, we note that, given the conditional and unconditional distribution of the innovation in Xt+1

illustrated in figure 6.3, panels a and b, and the relation between the updated probability p1,t+1|t+1

and the realization of the innovation in Xt+1 illustrated in panel c, we can infer the conditional

and unconditional probability densities of p1,t+1|t+1.15 These are shown in figure 6.4, panels a and

b, respectively, for it = 0.8. Furthermore, panels c and d show the conditional and unconditional
15 If ψp(p) and ψZ(Z) denote the probability densities of scalars p and Z, and p is an invertible and continuously

23



Figure 6.4: Probability density of pt+1|t+1
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probability densities of p1,t+1|t+1 when it is increased to 1.4. Comparing panels c and a, we see that

a higher absolute value of the instrument moves the conditional densities of beliefs further apart.

Thus with a more aggressive policy, beliefs are much more sharply concentrated around the truth.

Comparing panels d and b, we see that the unconditional density is further spread out, and in this

case becomes bimodal. Thus, the mass of the unconditional distribution is closer to the extremes,

0 and 1, indicating that the uncertainty about the mode in period t + 1 falls.

When is learning beneficial? In order to understand this, we again look at figure 6.1, panel a,

which shows the value function under NL, as a function of p1t = p1t|t for three different values of

Xt. Consider a policymaker in period t, with the perceived probability of mode 1 in period t equal

to 0.5, so p1t = p1t|t = 0.5. Since 0.5 is the stationary probability for this Markov chain, this also

means that the period-t predicted probability of mode 1 in period t + 1, given by (6.1), is also 0.5.

Under NL, the policymaker’s predicted and updated probabilities are the same, p1,t+1|t+1 = p1,t+1|t.

differentiable function of Z, p = Q(Z), the densities are related by

ψp(p) = ψZ(Q−1(p))dQ−1(p)/dp.
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Figure 6.5: Loss from adaptive optimal policy (AOP)
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Thus in this case the conditional and unconditional probability distributions of p1,t+1|t+1 in figure

6.4, panels a and b, are the same and are simply given by a spike with unit probability mass for

p1,t+1|t+1 = 0.5.

Under adaptive optimal policy (AOP), the policymaker applies the same policy function as

under NL, but now he or she uses Bayes Theorem to update the perceived probability of mode 1,

p1,t+1|t+1, after observing the innovation in Xt+1 at the beginning of period t+1. That is, from the

vantage point of period t, the updated probability p1,t+1|t+1 in period t+1 is a random variable with

the probability density shown in figure 6.4, panel b. As discussed above, the mean of this probability

density is the predicted probability, p1,t+1|t = 0.5. Comparing the perceived probability distribution

of p1,t+1|t+1 under AOP with what prevails under NL, we see a dramatic mean-preserving spread,

from a spike with unit mass at 0.5 to the spread-out probability density shown in panel b.

As discussed above, such a mean-preserving spread reduces the intertemporal loss if the value

function under NL is strictly concave as function of p1,t+1|t+1. In this case Jensen’s inequality

implies that the expected future loss falls when the future beliefs become more dispersed.16 In

figure 6.1, panel a, we see that the value function under NL indeed is concave, more so for higher

values of Xt+1 and lower values of p1,t+1|t+1, but also in the vicinity of p1,t+1|t+1 = 0.5. Thus,

we understand why the loss is lower under AOP, where the policymaker follows the same policy

function, it+1 = F (Xt+1, p1,t+1|t+1), as under NL but updates the probability of mode 1 according

to (6.2).

Under AOP, the policymaker does not consider adjusting the policy in order to change the shape

of the density of p1,t+1|t+1 and thereby improve the updating of p1,t+1. Our previous discussion

16 Kiefer [7] examines the properties of a value function under Bayesian learning.
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of figure 6.4 has revealed that increasing the absolute value of the instrument in this example will

lead to a larger mean-preserving spread. In the case of increasing the instrument from 0.8 to 1.4,

this increases the spread from that of the density in panel b to the that of the density in panel d.

The value function under AOP is shown in figure 6.5. Compared with the value function under

NL in panel a of figure 6.1, it is more concave for low values of p1t and somewhat flatter for higher

values.

Now, in the BOP case, the policymaker considers the influence of his or her policy on inference.

Thus he or she has the option of increasing the magnitude of the policy instrument somewhat,

in order to increase the mean-preserving spread of the density of p1,t+1|t+1, the benefit of which

depends on the concavity of the AOP value function. The cost of this is an increase in the expected

period loss in period t+1 from its minimum. The result of the optimal tradeoff is shown in panels c

and d of figure 6.2 above. In this particular example, the policymaker chooses not to deviate much

from the policy under NL and AOP. That is, he or she does not experiment much, except for small

values of p1,t+1|t ≈ p1t|t where incidentally the concavity of the value function under AOP is the

largest.17 Furthermore, from figure 6.1, panels c and d, we see that the fall in the intertemporal

loss from AOP to BOP is quite modest, and most of the fall in the loss arises in moving from NL

to AOP.

Thus, in this example, the main benefit from learning arises without any experimentation.

Although the amount of experimentation, measured as the policy difference between BOP and

AOP, is substantial for low values of p1t|t, the benefit in terms of additional loss is quite small.

Furthermore, in the above example there is no direct cost whatsoever of a large instrument or

a large change in the instrument. If such a cost is added, the magnitude and the benefits of

experimentation (moving from AOP to BOP) shrink, whereas there is still substantial benefits

from learning (moving from NL to AOP).

6.3 A forward-looking example

We now turn to a closely related example with forward-looking elements. The main implications

of the backward-looking example are preserved, with one important qualification. The Lagrange

multiplier associated with the equation for the forward-looking variable becomes a state variable,

and this introduces some changes in the optimal policy in response to movements in this new
17 The approximation p1,t+1|t ≈ p1t|t is justified by (6.1). Because the modes are so persistent, the predicted

probability is close to the current perceived probability.

26



Figure 6.6: Losses from no learning (NL), adaptive optimal policy (AOP), and Bayesian optimal

policy (BOP) for the forward-looking example with Ξt−1 = 0.
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multiplier state Ξt−1. Rather than being symmetric around Xt = 0, in the forward-looking case

policies become asymmetric when Ξt−1 6= 0.

The example here is perhaps the simplest possible in the forward-looking case. There is one

predetermined variable, one forward-looking variable, and two modes. The transition equation for

the predetermined variable and the equation for the forward-looking variable are:

Xt+1 = Bjt+1it + εt+1, (6.3)

Etxt+1 = Xt + xt. (6.4)

In the backward-looking example above, the uncontrolled system was a random walk which

policy stabilized. The current system is similar, in that the jump variable xt is essentially a random

walk in the absence of control. As in the backward-looking case, we suppose that the instrument

is more effective in mode 1:

B1 = − 1.5, B2 = − 0.5.
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Figure 6.7: Policy for no learning (NL) and Bayesian optimal policy (BOP) for the forward-looking

example with Ξt−1 = 0.
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Again, we assume that the modes are highly persistent with transition matrix:

P =
[

0.98 0.02
0.02 0.98

]
.

The loss function is similar in spirit to the backward-looking case, although different in details:

Lt =
1
2
x2

t + 0.1i2t , δ = 0.95.

Since the forward-looking variable xt now has the random walk elements, it is also the one which

receives the most weight in the loss function. We also include a small control cost term.

Figure 6.6 is analogous to figure 6.1 above. In the current figure, panel a shows the resulting

value function V (Xt, Ξt−1, p1t) for the optimal policy under NL, as a function of p1t for three

different values of Xt, and with Ξt−1 = 0. The shadow cost of the forward-looking constraint is

zero, and thus this value is most comparable to the backward-looking case. Below we discuss the

differences in results when the multiplier Ξt−1 differs from zero. Again, panel b shows the value

function for the BOP as a function of p1t, while panel c plots the difference between the loss under
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Figure 6.8: Differences in policy between Bayesian optimal policy (BOP) and no learning (NL)

for the forward-looking example with different Ξt−1 values. Solid line: p1t = 0.08; dashed line:

p1t = 0.36; dot-dash line: p1t = 0.92.
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BOP and NL, and panel d shows the difference between the loss under BOP and AOP. Overall,

these results are quite similar to the backward-looking case. The value functions appear nearly

linear with some modest concavity, suggesting that learning is beneficial but experimentation has

modest effects. Indeed, we again see that the loss under BOP is significantly lower than under NL,

while the loss under BOP is lower than under AOP, but only modestly so.

Figure 6.7 is analogous to figure 6.2 above, showing the corresponding optimal policy functions.

For the current figure, we again set Ξt−1 = 0. Panel a shows the optimal policy under NL as a

function of Xt for three different values of p1t, while panel b shows the optimal policy function under

BOP. As above, the nonlinearity in the BOP policy is not apparent at this scale. Panel c shows

the difference between the optimal policy under BOP and NL, while panel d plots the difference

in the policies for all p1t and all Xt in the interval [− 5, 5]. As in the backward-looking case, the

difference between policies is largest for small p1t, where the Bayesian optimal policy responds more

aggressively. Also note that, for a given p1t, the magnitudes of the differences, and hence the effects

of experimentation on policy, are symmetric about the Xt origin. That is, it is larger for positive

values of Xt and smaller for negative values, but the absolute value of the effect on it is the same

when |Xt| is the same.

We now examine the effects of the forward-looking constraint, as summarized by different values

of Ξt−1. A nonzero Ξt−1 correspond to a constraint from previous commitment and will therefore

increase the loss compared to when Ξt−1 is zero. However, a more interesting effect is on the

experimentation component of policy. In particular, for different Ξt−1 values some asymmetries in
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the policy appear. This is evident in figure 6.8, which plots the differences in the optimal policy

under BOP and NL for three different values of p1t in each panel, now for different Ξt−1. Panel b

repeats panel c of figure 6.7 with Ξt−1 = 0, while in panel a we set Ξt−1 = − 4 and in panel c we

set Ξt−1 = 4. We see that, in each case, the experimentation component of policy tends to lead

toward more aggressive policy, but this effect is altered by the multiplier Ξt−1. Comparing panel

a to panel b, we see that when Ξt−1 < 0 the experimentation component is greater for positive

values of Xt and smaller for negative values. The converse happens in panel c, as when Ξt−1 > 0

the experimentation component is smaller for positive values.

These differences reflect a feature of the tradeoff between experimentation and control which

is absent in the backward-looking case. Experimentation tends to push toward more aggressive

policy to sharpen the inference about the modes. However, when Ξt−1 < 0, the forward-looking

constraint implies a larger loss penalty for more negative Xt and it, which dampens this effect.

But, for positive Xt, the loss is smaller with Ξt−1 > 0, which amplifies the effect.

More precisely, in this case the term (2.6) that must be added to intertemporal loss function to

represent previous commitments is

Ξt−1
1
δ
xt.

A negative Ξt−1 hence makes it desirable to increase xt, everything else equal. By (6.3) and (6.4),

xt is determined by

xt = −Xt + Etxt+1 = −Xt − Et

∞∑

τ=0

Xt+1+τ = −Xt − Et

∞∑

τ=0

Bjt+1+τ it+τ ,

where we assume that the sums converge. Since Bj < 0 for j = 1 and 2, increasing xt means

increasing it. Hence, for Ξt−1 < 0 (> 0) and for each Xt and p1t, under both NL and BOP the

optimal it is higher (lower), and more so for BOP.

In economic terms, with forward-looking variables in the model, the key considerations are not

just sharpening inference versus inducing more volatility, but also influencing the expectations of

future variables. As we have seen the optimal policy embodies a rather intricate tradeoff amongst

these factors. However it remains the case that the gains from optimal experimentation are much

smaller than the gains from learning.
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7 Conclusions

In this paper we have presented a relatively general framework for analyzing model uncertainty and

the interactions between learning and optimization. While this is a classic issue, very little to date

has been done for systems with forward-looking variables, which are essential elements of modern

models for policy analysis. Our specification is general enough to cover many practical cases of

interest, but yet remains relatively tractable in implementation. This is definitely true for cases

when decision makers do not learn from the data they observe (our no learning case) or when they

do learn but do not account for learning in optimization (our adaptive optimal policy case). In

both of these cases, we have developed efficient algorithms for solving for the optimal policy which

can handle relatively large models with multiple modes and many state variables. However in the

case of the Bayesian optimal policy, where the experimentation motive is taken into account, we

must solve more complex numerical dynamic programming problems. Thus we are haunted by the

curse of dimensionality, forcing us to study relatively small and simple models.

Thus an issue of much practical importance is the size of the experimentation component of

policy, and the losses entailed by abstracting from it. While our results in this paper are far from

comprehensive, they suggest that in practical settings the experimentation motive may not be a

concern. The above and similar examples that we have considered indicate that the benefits of

learning (moving from NL to AOP) may be substantial, whereas the benefits from experimentation

(moving from AOP to BOP) are modest or even insignificant. If this preliminary finding stands

up to scrutiny, experimentation in economic policy in general and monetary policy in particular

may not be very beneficial, in which case there is little need to face the difficult ethical and other

issues involved in conscious experimentation in economic policy. Furthermore, the AOP is much

easier to compute and implement than the BOP. To have this truly be a robust implication, more

simulations and cases need to be examined. In particular, it will be important to see how these

results are affected in more realistic and empirically relevant settings. We are in the progress of

carrying out such analysis.
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Appendix

A Details of the algorithm for the no-learning case

Here we provide more detail on the setup of the model in the no-learning case and adapt the

algorithm in Svensson and Williams [13] (DFT) to our revised specification. Most of this should

probably go in a revision of DFT in the future.

A.1 Setup

Our first task is to write the extended MJLQ system for the saddlepoint problem. We suppose that

we start with an initial period loss function which has the form

Lt =




Xt

xt

it



′ 


Q11j Q12j N1j

Q′
12j Q22j N2j

N ′
1j N ′

2j Rj







Xt

xt

it


 .

Then the dual loss is

L̃t = Lt − γ′tzt + Ξ′t−1

1
δ
Hjxt.

We now substitute in for xt using

xt = x̃(Xt, zt, it, jt, εt)

≡ A−1
22,jzt −A−1

22,jA21,jXt −A−1
22,jB2,jit −A−1

22,jC2,jεt

≡ AxX,jXt + Axz,jzt + Axi,jit + Axv,jvt, (A.1)

where in the last line we introduce new notation for the shock. Since we assume C1jεt is independent

of C2jεt, we find it useful to denote the shock εt in the forward-looking equation by vt. After this

substitution we want to express the laws of motion and dual loss in terms of the expanded state

X̃t = [X ′
t, Ξ

′
t−1]

′ and the expanded controls ı̃t = [z′t, i′t, γ′t]′. Suppressing time and mode subscripts

for the time being (all are t and j, respectively (except t − 1 on Ξt−1)), we see that the dual loss

can be written explicitly as

L̃t = X ′ (Q11 + A′xXQ22AxX + 2A′xXQ′
12

)
X + 2X ′ (N1 + Q12Axi + A′xXQ22Axi + A′xXN2

)
i

+ 2z′(A′xzQ
′
12 + A′xzQ22AxX)X + Ξ′

1
δ
HAxXX + Ξ′

1
δ
HAxzz + Ξ′

1
δ
HAxii

− γ′z + z′(A′xzQ22Axz)z + i′(R + A′xiQ22Axi + 2A′xiN2)i + 2z′(A′xzN2 + A′xzQ22Axi)i

+ v′(A′xvQ22Axv)v + cross terms in v,
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where we don’t write out the cross terms since they have zero conditional expectations. Thus we

can write the dual loss (ignoring the cross terms in v)

L̃t =
[

X̃t

ı̃t

]′ [
Q̃j Ñj

Ñ ′
j R̃j

] [
X̃t

ı̃t

]
+ v′tΛjvt,

where (again suppressing the j index)

Q̃ =
[

Q̃11 Q̃12

Q̃′
12 0

]
,

Q̃11 = Q11 + A′xXQ22AxX + 2A′xXQ′
12,

Q̃12 =
1
2δ

A′xXH ′,

Ñ =
[

Ñ11 Ñ12 0
Ñ21 Ñ22 0

]
,

Ñ11 = Q12Axz + A′xXQ22Axz,

Ñ12 = N1 + Q12Axi + A′xXQ22Axi + A′xXN2,

Ñ21 =
1
2δ

HAxz,

Ñ22 =
1
2δ

HAxi,

R̃ =




R̃11 R̃12 R̃13

R̃′
12 R̃22 0

R̃′
13 0 0


 ,

R̃11 = A′xzQ22Axz,

R̃12 = A′xzN2 + A′xxQ22Axi,

R̃13 = − I/2,

R̃22 = R + A′xiQ22Axi + 2A′xiN2,

Λ = A′xvQ22Axv.

Similarly, the law of motion for X̃t can then be written

X̃t+1 = Ãjtjt+1X̃t + B̃jtjt+1 ı̃t + C̃jtjt+1 ε̃t+1,

where

ε̃t+1 =
[

εt+1

νt

]
, Ãjk =

[
A11k + A12kAxXj 0

0 0

]
,

B̃jk =
[

A12kAxzj B1k + A12kAxij 0
0 0 I

]
, C̃jk =

[
C1k A12kAxvj

0 0

]
.
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Furthermore, for the case where C2j ≡ 0 and the forward variables do not reveal the mode j, we

have that AxX , Axz, Axi are independent of the mode and Axv ≡ 0, so the dependence on j in Ãjk,

B̃jk, and C̃jk disappears.

A.2 Unobservable modes and forward-looking variables

Then we continue as in Appendix I of DFT. What follows is a correction and revision of Appendix

I.2.

The value function for the dual problem, Ṽ (Xt, pt|t), will be quadratic in X̃t for given pt and

can be written

Ṽ (X̃t, pt) ≡ X̃ ′
tṼ (pt)X̃t + w(pt),

where

Ṽ (pt) ≡
∑

j
pjtV̂ (pt)j , w(pt) ≡

∑
j
pjtŵ(pt)j .

Here, Ṽ (pt) and V̂ (pt)j are symmetric (nX + nx) × (nX + nx) matrices and w(pt) and ŵ(pt)j are

scalars that are functions of pt. (Thus, we simplify the notation and we let Ṽ (pt) and V̂ (pt)j

(j ∈ Nj) denote the matrices ṼX̃X̃(pt) and V̂XX(pt, jt) in section 3.) They will satisfy the Bellman

equation

X̃ ′
tṼ (pt)X̃t + w(pt) = max

γt

min
zt,it

∑

j

pjt

{
X̃ ′

tQ̃jX̃t + 2X̃ ′
tÑj ı̃t + ı̃′tR̃j ı̃t + tr(Λj)

+ δ
∑

k Pjk[X̃ ′
t+1,jkV̂ (P ′pt)kX̃t+1,jk + ŵ(P ′pt)k]

}
,

where

X̃t+1,jk ≡ ÃjkX̃t + B̃jk ı̃t + C̃jkε̃t+1.

The first-order condition with respect to ı̃t is thus

∑

j

pjt

[
X̃ ′

tÑj + ı̃′tR̃j + δ
∑

k

Pjk(X̃ ′
tÃ
′
jk + ı̃′tB̃

′
jk)V̂ (P ′pt)kB̃jk

]
= 0.

We can rewrite the first-order conditions as

∑

j

pjt

[
Ñ ′

jX̃t + R̃j ı̃t + δ
∑

k

PjkB̃
′
jkV̂ (P ′pt)k(ÃjkX̃t + B̃jk ı̃t)

]
= 0.

It is then apparent that the first-order conditions can be written compactly as

J(pt)̃ıt + K(pt)X̃t = 0, (A.2)

where

J(pt) ≡
∑

j

pjt

[
R̃j + δ

∑

k

PjkB̃
′
jkV̂ (P ′pt)kB̃jk

]
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K(pt) ≡
∑

j

pjt

[
Ñ ′

j + δ
∑

k

PjkB̃
′
jkV̂ (P ′pt)kÃjk

]

This leads to the optimal policy function,

ı̃t = F̃ (pt)X̃t,

where

F̃ (pt) ≡ − J(pt)−1K(pt).

Furthermore, the value-function matrix Ṽ (pt) for the dual saddlepoint problem satisfies

X̃ ′
tṼ (pt)X̃t ≡

∑

j

pjt

{
X̃ ′

tQ̃jX̃t + 2X̃ ′
tÑjF̃ (pt)X̃t + X̃ ′

tF̃ (pt)′R̃jF̃ (pt)X̃t

+ δ
∑

k PjkX̃
′
t[Ã

′
jk + F̃ (pt)′B̃′

jk]V̂ (P ′pt)k[Ãjk + B̂jkF̃ (pt)]X̃t

}
.

This implies the following Riccati equations for the matrix functions V̂ (pt)j :

V̂ (pt)j = Q̃j + ÑjF̃ (pt) + F̃ (pt)′Ñ ′
j + F̃ (pt)′R̃jF̃ (pt)

+ δ
∑

k

Pjk[Ã′jk + F̃ (pt)′B̃′
jk]V̂ (P ′pt)k[Ãjk + B̃jkF̃ (pt)].

The scalar functions ŵ(pt)j will satisfy the equations

ŵ(pt)j = tr(Λj) + δ
∑

k

Pjk[tr(V̂ (P ′pt)kC̃jkC̃
′
jk) + ŵ(P ′pt)k]. (A.3)

The value function for the primal problem is

X̃ ′
tV (pt)X̃t + w(pt) ≡ X̃ ′

tṼ (pt)X̃t + w(pt)− Ξ′t−1

1
δ

∑
j
pjtHjFxX̃(pt)jX̃t,

where we use that by (A.1) the equilibrium solution for xt can be written

xt = FxX̃(pt)jX̃t + Fxv(pt)jvt.

We may also find the conditional value function

X̃ ′
tV (pt)jX̃t + w(pt)j ≡ X̃ ′

tṼ (pt)jX̃t + w(pt)j − Ξ′t−1

1
δ
HjFxX̃(pt)jX̃t (j ∈ Nj).

A.3 An algorithm for the model with forward-looking variables

What follows is a correction and revision of Appendix I.3 of DFT.

Consider an algorithm for determining F̃ (pt), Ṽ (pt), w(pt), V̂ (pt)j and ŵ(pt)j for a given distri-

bution of the modes in period t, pt. In order to get a starting point for the iteration, we assume that
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the modes become observable T + 1 periods ahead, that is, in period t + T + 1. Hence, from that

period on, the relevant solution is given by the matrices F̃j and Ṽj and scalars wj for j ∈ Nj , where

F̃j is the optimal policy function, Ṽj is the value-function matrix, and wj is the scalar in the value

function for the dual saddlepoint problem with observable modes determined by the algorithm in

the appendix of DFT.

We consider these matrices Ṽj and scalars wj and the horizon T as known, and we will consider

an iteration for τ = T, T − 1, ..., 0 that determines F̃ (pt), Ṽ (pt), and w(pt) as a function of T . The

horizon T will then be increased until F̃ (pt), Ṽ (pt), and w(pt) have converged.

Let pt+τ,t for τ = 0, ..., T and given pt be determined by the prediction equation,

pt+τ,t = (P ′)τpt,

and let V̂ T+1
k = Ṽk and ŵT+1

k = wk (k ∈ Nj). Then, for τ = T, T − 1, ..., 0, let the mode-dependent

matrices V̂ τ
j and the mode-independent matrices Ṽ τ and F τ be determined recursively by

Jτ ≡
∑

j

pj,t+τ,t

[
R̃j + δ

∑

k

PjkB̃
′
jkV̂

τ+1
k B̃jk

]
,

Kτ ≡
∑

j

pj,t+τ,t

[
Ñ ′

j + δ
∑

k

PjkB̃
′
jkV̂

τ+1
k Ãjk

]
,

F̃ τ = − (Jτ )−1Kτ ,

V̂ τ
j = Q̃j + ÑjF̃

τ + F̃ τ ′Ñ ′
j + F̃ τ ′R̃jF̃

τ

+ δ
∑

k

Pjk[Ã′jk + F̃ τ ′B̃′
jk]V̂

τ+1
k [Ãjk + B̃kF̃

τ )],

ŵτ
j = tr(Λj) + δ

∑

k

Pjk[tr(V̂ τ+1
k C̃jkC̃

′
jk) + ŵτ+1

k ],

Ṽ τ =
∑

j

pj,t+τ,tV̂
τ
j ,

wτ
j =

∑

j

pj,t+τ,tŵ
τ
j .

This procedure will give F̃ 0, Ṽ 0 and w0 as functions of T . We let T increase until F̃ 0 and Ṽ 0

have converged. Then, F̃ (pt) = F̃ 0, Ṽ (pt) = Ṽ 0, and w(pt) = w0. The value-function matrix V (pt)

(denoted VX̃X̃(pt) in section 3) for the primal problem will be given by

V (pt) ≡ Ṽ (pt)−
[

0 1
2ΓX(pt)′

1
2ΓX(pt) 1

2 [ΓΞ(pt) + ΓΞ(pt)′]

]
,

where the matrix function

[ΓX(pt) ΓΞ(pt)] ≡ 1
δ

∑
j
pjtHj [FxX(pt)j FxΞ(pt)j ]
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is partitioned conformably with Xt and Ξt−1. The conditional value function matrix V (pt)j for the

primal problem will be given by

V (pt)j ≡ V̂ (pt)j −
[

0 1
2ΓX(pt)′j

1
2ΓX(pt)j

1
2 [ΓΞ(pt)j + ΓΞ(pt)′j ]

]
(j ∈ Nj),

where V̂ (pt)j = V̂ 0
j and the matrix function

[ΓX(pt)j ΓΞ(pt)j ] ≡ 1
δ
Hj [FxX(pt)j FxΞ(pt)j ]

is partitioned conformably with Xt and Ξt−1.

B Verifying the law of iterated expectations in the case of Bayesian

optimal policy

It will be slightly simpler to use the general probability measure notation, Pr(· | ·), although we will

translate this to the specific cases at the end. We also write pt for pt|t, for simplicity. Finally, for

simplicity we only consider the case without forward-looking variables (so we need only deal with

Xt rather than X̃t). The generalization to forward-looking variables is straightforward.

Thus, we want to verify

EtV̂ (st+1, jt+1) = EtV (st+1),

where V (st) ≡ EtV̂ (st, jt).

First, in the BOP case, we note that we can write pt+1 = Q̂(Xt+1;Xt, pt, it), and so we can

define

V̆ (Xt+1, jt+1; Xt, pt, it) ≡ V̂ (Xt+1, Q̂(Xt+1; Xt, pt, it), jt+1).

Then we consider

EtV̂ (Xt+1, pt+1, jt+1) ≡
∫

V̆ (Xt+1, jt+1; Xt, pt, it)d Pr(Xt+1, jt+1 | Xt), (B.1)

where the identity specifies the notation for the joint probability measure of (Xt+1, jt+1), Pr(Xt+1, jt+1 | Xt),

conditional on the information set in period t, Xt ≡ σ({Xt, Xt−1, ...}) (that is, the sigma-algebra

generated by current and past realizations of Xs, s ≤ t). We note that pt = E(jt | Xt) is Xt-

measurable, that is, pt is a function of Xt. Furthermore, it is Xt-measurable. Hence, Et [·] ≡
E[· | Xt, pt, it] ≡ E[· | Xt]. Also, we note that we can write

Et+1V̂ (Xt+1, pt+1, jt+1) ≡
∫

V̆ (Xt+1, jt+1; Xt, pt, it)dPr(jt+1 | Xt+1) ≡ V (Xt+1, pt+1).
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We will use two equivalent decompositions of the joint measure. First, perhaps the most natural

decomposition is

Pr(Xt+1, jt+1 = k | Xt) = Pr(Xt+1 | jt+1 = k,Xt) Pr(jt+1 = k | Xt)

=
∑

j

Pr(Xt+1 | jt+1 = k,Xt) Pr(jt+1 = k | jt = j) Pr(jt = j | Xt)

=
∑

j

Pr(Xt+1 | jt+1 = k,Xt)Pjkpjt. (B.2)

Alternatively, we can decompose the joint measure as

Pr(Xt+1, jt+1 = ` | Xt) = Pr(jt+1 = ` |Xt+1,Xt) Pr(Xt+1 | Xt)

= Pr(jt+1 = ` | Xt+1)
∑

j

Pr(Xt+1 | jt = j,Xt) Pr(jt = j | Xt)

= Pr(jt+1 = ` | Xt+1)
∑

j,k

Pr(Xt+1 | jt = j, jt+1 = k,Xt) Pr(jt+1 = k | jt = j) Pr(jt = j | Xt).

= p`,t+1

∑

j,k

Pr(AkXt + Bkit + Ckεt+1 | jt = j, jt+1 = k,Xt)Pjkpjt

= p`,t+1

∑

j,k

ϕ(εt+1)Pjkpjt. (B.3)

Thus, using the first decomposition, (B.2), with (B.1) we have an expression as in section 5.1,

EtV̂ (Xt+1, pt+1, jt+1)

=
∫ ∑

j,k

V̆ (AkXt + Bkit + Ckεt+1, k; Xt, pt, it)Pjkpjtϕ(εt+1)dεt+1

=
∫ ∑

j,k

V̂ [AkXt + Bkit + Ckεt+1, Q(AkXt + Bkit + Ckεt+1; Xt, pt), k]Pjkpjtϕ(εt+1)dεt+1

On the other hand, using the second decomposition, (B.3), we can write (B.1) as

EtV̂ (Xt+1, pt+1, jt+1)

=
∫ ∑

j,k,`

V̆ (Xt+1, `;Xt, pt, it)p`,t+1 Pjkpjtϕ(εt+1)dεt+1

=
∫ ∑

j,k

V (Xt+1, Q̂(Xt+1; Xt, pt))Pjkpjtϕ(εt+1)dεt+1

=
∫ ∑

j,k

V [AkXt + Bkit + Ckεt+1, Q(AkXt + Bkit + Ckεt+1;Xt, pt)]Pjkpjtϕ(εt+1)dεt+1

= EtV (Xt+1, pt+1)
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Note that, by averaging with respect to pt, we thus eliminate jt as a state variable and do not need

to compute the conditional value function V̂ (Xt, pt, jt).
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