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E�et of olor superondutivity on the mass and radius of a quark starStefan B. Rüster∗ and Dirk H. Rishke†Institut für Theoretishe Physik, J.W. Goethe-Universität,D-60054 Frankfurt am Main, Germany(Dated: June 1, 2006)We ompare quark stars made of olor-superonduting quark matter to normal-onduting quarkstars. We fous on the most simple olor-superonduting system, a two-�avor olor superondutor,and employ the Nambu�Jona-Lasinio (NJL) model to ompute the gap parameter and the equationof state. By varying the strength of the four-fermion oupling of the NJL model, we study the massand the radius of the quark star as a funtion of the value of the gap parameter. If the ouplingonstant exeeds a ritial value, the gap parameter does not vanish even at zero density. For ouplingonstants below this ritial value, mass and radius of a olor-superonduting quark star hangeat most by ∼ 20% ompared to a star onsisting of normal-onduting quark matter. For ouplingonstants above the ritial value mass and radius may hange by fators of two or more.I. INTRODUCTIONAt su�iently high densities and su�iently low temperatures quark matter is a olor superondutor [1℄. In nature,olor-superonduting quark matter ould exist in the interior of ompat stellar objets suh as neutron or quarkstars. Among the best known properties of ompat stellar objets are their masses and radii. The question then iswhether these observable properties allow to deide if ompat stellar objets ontain, or are even ompletely madeof, olor-superonduting quark matter. To this end, one has to ompute these properties for stars ontaining olor-superonduting quark matter and ompare them to the orresponding ones for stars ontaining normal-ondutingquark matter.This question has reently triggered a lot of ativity [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13℄. Pure quark stars as well ashybrid stars were onsidered, both with two-�avor olor-superonduting quark matter as well as with quark matteronsisting of three �avors in the olor-�avor-loked phase [14℄. All these investigations are based on variants of theNJL model [15℄ where fermions interat via a four-point vertex. The oupling strength is adjusted to be in agreementwith hadron phenomenology at zero quark-hemial potential µ. This leads to olor-superonduting gap parameters
φ of the order of 100 MeV [14, 16℄. For reasonable values of the parameters entering the equation of state, suh as theMIT bag onstant B and the strange quark mass ms, the result of these studies is that mass and radius of a ompatstellar objet hange by ∼ 20%, if it ontains olor-superonduting instead of normal-onduting quark matter.In this paper, we onsider a di�erent question. We ask how large the olor-superonduting gap parameter has to bein order to see substantial hanges in mass and radius of a ompat stellar objet. As the transition to hadroni matterintrodues another degree of freedom whih may either mask [2℄ or enhane [8℄ the e�ets of olor superondutivity,we do not onsider hybrid stars, but fous exlusively on pure quark stars. We also onsider the most simple olor-superonduting state, namely quark matter with two �avors in the so-alled 2SC phase, although this state may notbe the most favorable one [17℄.This paper is organized in the following way. In Se. II we derive the gap equation and the equation of state fortwo-�avor olor-superonduting quark matter using the Cornwall-Jakiw-Tomboulis (CJT) formalism [18℄. While thisformalism is equivalent to other approahes to derive the gap equation and the equation of state, it is nevertheless themost elegant way. Moreover, it also provides a general framework that allows one to go beyond the standard mean-�eld approximation (although this diretion is not pursued in this work). In addition, it aounts for the possibilityof non-vanishing gluon bakground �elds generated by ondensation of quark Cooper-pairs. Our derivation presentedin Se. II puts speial emphasis on this point, whih has previously been negleted in the the derivation of the gapequation. In Se. III we ompute the masses and radii of quark stars via the Tolman-Oppenheimer-Volko� (TOV)equation. Setion IV onludes this paper with a summary of our results.Our units are ~ = c = kB = 1. The metri tensor is gµν = diag (1,−1,−1,−1). Four-vetors are denoted as
Kµ = (k0,k), where k is a three-vetor with modulus k = |k| and diretion k̂ = k/k. We work in the imaginary-time formalism, i.e., the spae-time integration is de�ned as ∫

X
=
∫ 1/T

0
dτ
∫

V
d3x, where τ is Eulidean time, T

∗Eletroni address: ruester�th.physik.uni-frankfurt.de
†Eletroni address: drishke�th.physik.uni-frankfurt.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14501569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ruester@th.physik.uni-frankfurt.de
mailto:drischke@th.physik.uni-frankfurt.de


2is the temperature, and V the three-volume of the system. Energy-momentum sums are written as T/V ∑K =
T
∑

n

∫

d3k/(2π)3, where the sum runs over the Matsubara frequenies ωn = 2nπT for bosons and ωn = (2n+ 1)πTfor fermions, respetively. II. EQUATION OF STATE AND GAP EQUATIONFor olor-superonduting matter in the 2SC phase, the Lagrangian is given by
L = − 1

4
Ga

µνG
µν
a + ψ̄ (iD�− m̂)ψ , (1)where

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (2)is the gluon �eld strength tensor; Aa

µ is the vetor potential for the gluon �eld, fabc are the struture onstants of
SU(3)c, and g is the strong oupling onstant. The fermion �elds ψ are (4NcNf = 24)-dimensional spinors. Suppressingthe Dira struture we hoose the following basis in olor-�avor spae:

ψ =

















ψu
r

ψd
r

ψu
g

ψd
g

ψu
b

ψd
b

















. (3)The Dira onjugate spinor is de�ned as ψ̄ = ψ†γ0. The ovariant derivative is given by Dµ = ∂µ − igAa
µTa, where Taare the generators of SU(3)c, suitably generalized to our 6-dimensional olor-�avor basis (3). The quark mass matrixis m̂ = diag(mu,md,mu,md,mu,md). When omputing quark star properties in Se. III, we also inlude eletrons inorder to ahieve eletrial neutrality. In some ases we also add non-interating strange quarks.In the treatment of superonduting systems it is advantageous to double the fermioni degrees of freedom byintroduing Nambu-Gor'kov spinors

Ψ̄ =
(

ψ̄, ψ̄C

)

, Ψ =

(

ψ
ψC

)

, (4)where ψC = Cψ̄T is the harge-onjugate spinor; C is the harge-onjugation matrix. In this basis, the tree-levelation an be written as
I
[

Ψ̄,Ψ, A
]

= − 1

4

∫

X

Ga
µν(X)Gµν

a (X) +
1

2

∫

X,Y

Ψ̄(X)S−1
0 (X,Y )Ψ(Y ) , (5)where

S−1
0 (X,Y ) =

(

iD�X + µ̂γ0 − m̂ 0

0 iD�C
X − µ̂γ0 − m̂

)

δ(4)(X − Y ) (6)is the tree-level propagator for Nambu-Gor'kov fermions. Here we introdued the harge-onjugate ovariant derivative
D C

µ = ∂µ+igAa
µT

T
a . The delta funtion is de�ned as δ(4)(X−Y ) = δ(τx−τy) δ(3)(x−y). The quark-hemial potentialmatrix is µ̂ = diag(µu

r , µ
d
r , µ

u
g , µ

d
g, µ

u
b , µ

d
b). The hemial potential for quarks of olor i and �avor f an be representedas

µf
i = µ− µe Q

f + µ3 T
3
ii + µ8 T

8
ii , (7)where µe is the eletro-hemial potential, Qf is the eletri harge (in units of e) of quark �avor f , and µ3 and

µ8 are the olor-hemial potentials assoiated with the diagonal generators T 3 and T 8 of SU(3)c. While µ ontrolsthe quark number density, µe, µ3, and µ8 have to be introdued to ensure eletri- and olor-harge neutrality. Ifthe SU(3)c olor symmetry is not broken, the olor-hemial potentials have to vanish, µ3 = µ8 = 0, otherwise theywould break SU(3)c expliitly. However, when the olor symmetry is broken by a olor-harged quark Cooper-pairondensate, µ3 and µ8 do not need to be zero. We shall ome bak to this issue below.



3The e�etive ation in the CJT formalism [18℄ reads [19, 20, 21, 22℄
Γ
[

Ψ̄,Ψ, A, S,D
]

= I
[

Ψ̄,Ψ, A
]

− 1

2
Tr lnD−1 − 1

2
Tr
(

D−1
0 D − 1

)

+
1

2
Tr lnS−1 +

1

2
Tr
(

S−1
0 S − 1

)

+ Γ2

[

Ψ̄,Ψ, A, S,D
]

. (8)The quantities D and S are the full gluon and quark propagators, respetively. The inverse tree-level quark propagator
S−1

0 was introdued in Eq. (6). Correspondingly, D−1
0 is the inverse tree-level gluon propagator. The traes run overspae-time, Nambu-Gor'kov, olor, �avor, and Dira indies. The fator 1/2 in front of the fermioni one-loop termsompensates the doubling of the degrees of freedom in the Nambu-Gor'kov basis. The funtional Γ2 is the sum of alltwo-partile irreduible (2PI) diagrams. It is impossible to evaluate all 2PI diagrams exatly. However, the advantageof the CJT e�etive ation (8) is that trunating the sum Γ2 after a �nite number of terms still provides a well-de�nedmany-body approximation. Here we only inlude the sunset-type diagram shown in Fig. 1,

FIG. 1: The sunset-type diagram.
Γ2 = − g2

4

∫

X,Y

Tr
NG,c,f,s

[Γµ
a S(X,Y ) Γν

b S(Y,X)] Dab
µν(X,Y ) , (9)where the trae now runs only over Nambu-Gor'kov, olor, �avor, and Dira indies. The Nambu-Gor'kov verties arede�ned as

Γµ
a =

(

γµTa 0
0 −γµT T

a

)

. (10)Later on, we shall approximate the gluon-exhange interation between quarks by a point-like four-fermion oupling.This e�etively removes dynamial gluon degrees of freedom, suh that we do not need to worry about gauge �xingor possible ghost degrees of freedom. Therefore we already omitted the latter in Eq. (8).The stationary points of the e�etive ation (8) determine the expetation values of the one- and two-point funtions,
δΓ

δΨ̄
= 0 ,

δΓ

δΨ
= 0 ,

δΓ

δAa
µ

= 0 ,
δΓ

δD
= 0 ,

δΓ

δS
= 0 . (11)The �rst two equations yield the Dira equation for the fermioni �elds Ψ and Ψ̄ in the presene of the gluon �eld

Aa
µ. The solution is trivial, sine fermioni, i.e. Grassmann-valued, �elds do not have a (-number) expetation value.The third equation is the Yang-Mills equation for the gluon �eld,

Dab
ν F

νµ
b (X) =

δ

δAa
µ(X)

[

1

2
Tr
(

D−1
0 D − S−1

0 S
)

− Γ2

]

, (12)where Dab
ν = ∂νδ

ab − gfabcAc
ν(X) is the ovariant derivative in the adjoint representation. The �rst two terms on theright-hand side are the ontributions from gluon and fermion tadpoles [23℄. The funtional derivative with respet to

Aa
µ ating on the trae is nontrivial beause of the dependene of the inverse tree-level propagators D−1

0 and S−1
0 onthe gluon �eld, f. Eq. (6). The last term is non-zero if Γ2 ontains 2PI diagrams with an expliit dependene on Aa

µ.It vanishes in our approximation (9) for Γ2. As shown in Ref. [23℄ the solution of the Yang-Mills equation in the 2SCphase is a onstant bakground �eld Aa
µ ∼ gµ0δ

a8. This bakground �eld ats like a olor-hemial potential µ8 and



4provides the olor-harge neutrality of the 2SC phase [23℄. Later on, we shall remove the gluon degrees of freedom byapproximating the non-loal gluon exhange with a point-like four-fermion oupling. The onstant bakground �eld
Aa

µ then disappears from the treatment, and the olor-hemial potential µ8 assumes the role of the bakground �eldto ensure olor neutrality.The fourth equation (11) is the Dyson-Shwinger equation for the gluon propagator,
D−1µν

ab (X,Y ) = D−1
0

µν

ab (X,Y ) + Πµν
ab (X,Y ) , (13)where

Πµν
ab (X,Y ) = −2

δΓ2

δDνµ
ba (Y,X)

=
g2

2
Tr [Γµ

a S(X,Y ) Γν
b S(Y,X)] (14)is the gluon self-energy. Sine we shall approximate gluon exhange by a four-fermion oupling, we do not need tosolve the Dyson-Shwinger equation for the gluon propagator.The �fth equation (11) is the Dyson-Shwinger equation for the quark propagator,

S−1(X,Y ) = S−1
0 (X,Y ) + Σ(X,Y ) , (15)where

Σ(X,Y ) = 2
δΓ2

δS(Y,X)
= −g2 Γµ

a S(X,Y ) Γν
b D

ab
µν(Y,X) (16)is the quark self-energy. Assuming translational invariane, in momentum spae the Dyson-Shwinger equation reads

S−1(K) = S−1
0 (K) + Σ(K) , Σ(K) = − g2 T

V

∑

Q

Γµ
a S(Q) Γν

b D
ab
µν(K −Q) . (17)Let us introdue the Nambu-Gor'kov matries

S−1
0 =

(

[

G+
0

]−1
0

0
[

G−
0

]−1

)

, Σ =

(

Σ+ Φ−

Φ+ Σ−

)

, (18)where
[

G+
0

]−1
(K) = γµ(Kµ + gAa

µTa) + µ̂ γ0 − m̂ , (19a)
[

G−
0

]−1
(K) = γµ(Kµ − gAa

µT
T
a ) − µ̂ γ0 − m̂ (19b)are the inverse tree-level propagators for partiles and harge-onjugate partiles, respetively. The quantities Σ± in Eq.(18) are the normal self-energies for partiles and harge-onjugate partiles, while Φ± are the so-alled anomalousself-energies. The self-energies are related via Σ−(K) = C[Σ+(−K)]TC−1 and Φ−(K) = γ0[Φ

+(K)]†γ0. With thede�nitions (18), in Nambu-Gor'kov spae the Dyson-Shwinger equation (17) has the solution
S =

(

G+ Ξ−

Ξ+ G−

)

, (20)where
G± =

{

[

G±
0

]−1
+ Σ± − Φ∓

(

[

G∓
0

]−1
+ Σ∓

)−1

Φ±

}−1

, (21a)
Ξ± = −

(

[

G∓
0

]−1
+ Σ∓

)−1

Φ±G± . (21b)Here G± are the propagators for quasipartiles and harge-onjugate quasipartiles, respetively, while Ξ± are theso-alled anomalous propagators.The gap equation for the olor-superonduting gap parameter an be dedued from the (21)- or (12)-omponentsof the Nambu-Gor'kov self-energy (18),
Φ+(K) = g2 T

V

∑

Q

γµT T
a Ξ+(Q) γνTbD

ab
µν(K −Q) , (22a)

Φ−(K) = g2 T

V

∑

Q

γµTa Ξ−(Q) γνT T
b Dab

µν(K −Q) . (22b)



5It is su�ient to onsider Eq. (22a), beause Eq. (22b) follows from the relation Φ−(K) = γ0[Φ
+(K)]†γ0. In theolor-�avor basis (3) the gap matrix in the 2SC phase reads

Φ± =

















0 0 0 ∆±
1 0 0

0 0 ∆±
2 0 0 0

0 ∆±
2 0 0 0 0

∆±
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















. (23)Here we have used the fat that red up-quarks form Cooper pairs with green down-quarks, with a (Dira spae)gap matrix ∆±
1 , while green up-quarks form Cooper pairs with red down-quarks, with the gap matrix ∆±

2 . A priori,
∆±

1 6= ∆±
2 . As required by the overall antisymmetry of the spin-zero gap matrix [1℄, the right-hand side of Eq. (23) issymmetri in olor-�avor spae.The regular quark self-energy Σ± was omputed in Ref. [24℄. To leading order,

Σ+(K) = Σ−(K) ≃ g2

9π2
γ0 k0 ln

(

gµ

|k0|

)

. (24)This orresponds to a wave funtion renormalization fator in the quark propagator. In the QCD gap equation, itleads to subleading orretions whih modify the prefator of the olor-superonduting gap parameter [25, 26℄. Sinewe ultimately do not onsider the QCD gap equation, but the one in a simpler point-like four-fermion oupling model,we neglet the regular quark self-energy (24) in the following.In order to proeed we ompute the full inverse quark propagator (21a) with the gap matrix (23), whih is diagonalin the olor-�avor basis (3),
[

G±
]−1

= diag
(

[G±
0

u

r ]−1 − ∆∓
1 G

∓
0

d

g ∆±
1 , [G±

0

d

r ]
−1 − ∆∓

2 G
∓
0

u

g ∆±
2 , [G±

0

u

g ]−1 − ∆∓
2 G

∓
0

d

r ∆±
2 ,

[G±
0

d

g]
−1 − ∆∓

1 G
∓
0

u

r ∆±
1 , [G±

0

u

b ]−1, [G±
0

d

b ]
−1
)

, (25)where
[G±

0

f

i ]−1 = γµKµ ± µf
i γ0 . (26)At this stage, we have set the onstant gluon bakground �eld Aa

µ = 0 (olor neutrality an be ahieved by adjustingthe olor-hemial potential µ8), and we have also negleted the small up- and down-quark masses. The elementsof the full inverse quark propagator (25) have a simple physial interpretation. Consider, for instane, the red-upelement [G±u
r ]−1. The presene of the olor-superonduting ondensate ∆+

1 (onsisting of Cooper pairs of red up-and green down-quarks) modi�es the propagation of red up-quarks, suh that a red up-quark an be onverted into aharge-onjugate green down-quark whih ontinues to propagate and is then onverted bak into a red up-quark bythe harge-onjugate ondensate ∆−
1 .With Eq. (23) and setting Σ± = 0, Eq. (21b) reads in the olor-�avor basis (3)
Ξ± =





















0 0 0 Ξ±ud
rg 0 0

0 0 Ξ±du
rg 0 0 0

0 Ξ±ud
gr 0 0 0 0

Ξ±du
gr 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















, (27)where
Ξ±ud

rg = −G∓
0

u

r ∆±
1 G

±d
g , Ξ±du

rg = −G∓
0

d

r∆
±
2 G

±u
g , Ξ±ud

gr = −G∓
0

u

g∆±
2 G

±d
r , Ξ±du

gr = −G∓
0

d

g∆
±
1 G

±u
r . (28)Negleting e�ets from the breaking of SU(3)c due to Cooper pair ondensation (these e�ets are of sub-subleadingorder in the QCD gap equation [27℄), the gluon propagator an be taken to be diagonal in adjoint olor,Dab

µν(K−Q) =



6
δabDµν(K − Q). Inserting this in the gap equation (22a) and performing the sum over adjoint olors we obtain thefollowing four equations by identifying the non-trivial elements of the resulting olor-�avor matrix:

∆+
1 (K) = g2 T

V

∑

Q

γµ

[

1

2
Ξ+ud

gr (Q) − 1

6
Ξ+ud

rg (Q)

]

γνDµν(K −Q) , (29a)
∆+

2 (K) = g2 T

V

∑

Q

γµ

[

1

2
Ξ+du

gr (Q) − 1

6
Ξ+du

rg (Q)

]

γνDµν(K −Q) , (29b)
∆+

2 (K) = g2 T

V

∑

Q

γµ

[

1

2
Ξ+ud

rg (Q) − 1

6
Ξ+ud

gr (Q)

]

γνDµν(K −Q) , (29)
∆+

1 (K) = g2 T

V

∑

Q

γµ

[

1

2
Ξ+du

rg (Q) − 1

6
Ξ+du

gr (Q)

]

γνDµν(K −Q) . (29d)In order to determine ∆+
1 and ∆+

2 , only two of these four equations are neessary. These two equations an beombined to
∆+

1 (K) + 3 ∆+
2 (K) =

4

3
g2 T

V

∑

Q

γµ Ξ+ud
rg (Q) γνDµν(K −Q) , (30a)

3 ∆+
1 (K) + ∆+

2 (K) =
4

3
g2 T

V

∑

Q

γµ Ξ+ud
gr (Q) γνDµν(K −Q) . (30b)We now have to determine Ξ+ud

rg and Ξ+ud
gr . The Dira struture of the olor-superonduting gap matries ∆±

1,2 isonveniently written in terms of energy-hirality projetors [31℄,
Pe

c (k) =
1

4
(1 + cγ5) (1 + eγ0γ · k̂) , (31)where c = ± stands for the right/left-handed projetion, and e = ± denotes the projetion onto states of posi-tive/negative energy. With these projetors the gap matries an be written as

∆+
n (K) =

∑

c,e

φ e
nc(K)Pe

c (k) , ∆−
n (K) =

∑

c,e

φ e
nc

∗(K)P−e
−c (k) , n = 1, 2 . (32)With the de�nition of the quasipartile energy for positive and negative energy states (e = ±)

ǫek (µ, φ) =

√

(k − eµ)
2
+ |φ|2 , (33)we an write the omponents of the full quark propagator of the quark olors partiipating in Cooper pairing as

G+u
r (K) =

∑

c,e

Pe
c (k)

(k0 + δµ1)2 − [ǫek (µ̄, φ e
1c)]

2 [G−
0

d

g]
−1(K) , (34a)

G+d
r(K) =

∑

c,e

Pe
c (k)

(k0 + δµ2)2 − [ǫek (µ̄, φ e
2c)]

2 [G−
0

u

g ]−1(K) , (34b)
G+u

g (K) =
∑

c,e

Pe
c (k)

(k0 − δµ2)2 − [ǫek (µ̄, φ e
2c)]

2 [G−
0

d

r ]
−1(K) , (34)

G+d
g(K) =

∑

c,e

Pe
c (k)

(k0 − δµ1)2 − [ǫek (µ̄, φ e
1c)]

2 [G−
0

u

r ]−1(K) , (34d)where
µ̄ =

µu
r + µd

g

2
=
µd

r + µu
g

2
= µ− µe

6
+

µ8

2
√

3
, (35a)

δµ1 =
µu

r − µd
g

2
=

1

2
(µ3 − µe) , (35b)

δµ2 =
µd

r − µu
g

2
=

1

2
(µ3 + µe) . (35)



7Here we used Eq. (7). Labelling the omponents of the full quark propagator with a olor and �avor index is slightlymisleading. For instane, red-up and green-down quasipartiles are both admixtures of red up and green down quarks.Both quasipartiles have the same Fermi surfae µ̄, and only their dispersion relations k0 = −ǫek
(

µ̄, φ e
1c

)

± δµ1 di�erby 2 δµ1.With Eqs. (32) and (34) and the relation G∓
0 ∆±

nG
± = G∓∆±

nG
±
0 , Eq. (28) beomes

Ξ±ud
rg (K) = −

∑

c,e

P∓e
∓c (k)φ e

1c(±K)

(k0 ∓ δµ1)2 − [ǫek (µ̄, φ e
1c)]

2 , (36a)
Ξ±du

rg (K) = −
∑

c,e

P∓e
∓c (k)φ e

2c(±K)

(k0 ∓ δµ2)2 − [ǫek (µ̄, φ e
2c)]

2 , (36b)
Ξ±ud

gr (K) = −
∑

c,e

P∓e
∓c (k)φ e

2c(±K)

(k0 ± δµ2)2 − [ǫek (µ̄, φ e
2c)]

2 , (36)
Ξ±du

gr (K) = −
∑

c,e

P∓e
∓c (k)φ e

1c(±K)

(k0 ± δµ1)2 − [ǫek (µ̄, φ e
1c)]

2 . (36d)Here we assumed that φ e
nc(−K) = φ e

nc
∗(K). Taking the gluon interation to be point-like, Dµν(K −Q) = − gµν/Λ

2,
Λ = const., the Dira struture of the gap equations (30) an be projeted out to yield gap equations for the gapfuntions φ e

nc(K). It turns out that the gap equations for di�erent energy, e = ±, and hirality, c = ±, projetionsdeouple and have the same form. We therefore omit the indies e, c in the following. Due to our assumption of apoint-like gluon interation, the gap funtion is also independent of K. The gap equations (30) assume the simpleform
φ1 + 3φ2 =

8

3

g2

Λ2

T

V

∑

Q

∑

e

φ1

(q0 − δµ1)2 −
[

ǫeq(µ̄, φ1)
]2 , (37a)

3φ1 + φ2 =
8

3

g2

Λ2

T

V

∑

Q

∑

e

φ2

(q0 + δµ2)2 −
[

ǫeq(µ̄, φ2)
]2 . (37b)We now perform the Matsubara sums with the help of the relation

T
∑

n

1

(q0 − δµ)2 − ǫ2
= − 1

4ǫ

[

tanh

(

ǫ+ δµ

2T

)

+ tanh

(

ǫ− δµ

2T

)]

−→
T→0

− 1

2ǫ
θ(ǫ− |δµ|) . (38)The resulting gap equations are

φ1 + 3φ2 = − 2

3π2

g2

Λ2

∑

e

∫ κ

0

dq q2
φ1

ǫeq(µ̄, φ1)
θ
(

ǫeq(µ̄, φ1) − |δµ1|
)

, (39a)
3φ1 + φ2 = − 2

3π2

g2

Λ2

∑

e

∫ κ

0

dq q2
φ2

ǫeq(µ̄, φ2)
θ
(

ǫeq(µ̄, φ2) − |δµ2|
)

. (39b)Here we introdued a uto� κ to render the momentum integral �nite.The equation of state for 2SC matter, i.e., the pressure as a funtion of temperature and hemial potential, resultsfrom the relation
p2SC =

T

V
Γ∗ , (40)where Γ∗ is the value of the e�etive ation (8) at the stationary point determined by Eqs. (11). Sine we do notonsider the gluons as dynamial degrees of freedom, the �rst three terms in Eq. (8) an be omitted. The last twoterms in Eq. (8) an be simpli�ed with the help of the Dyson-Shwinger equation (15). The �nal result reads

p2SC =
1

2

T

V

[

Tr lnS−1 − 1

2
Tr (ΣS)

]

, (41)where the propagator S obeys the Dyson-Shwinger equation (15). Performing the trae over Nambu-Gor'kov spae,the seond term an be written as
− 1

4

T

V
Tr (ΣS) = − 1

4

T

V
Tr

X,c,f,s

(

Σ+G+ + Σ−G− + Φ− Ξ+ + Φ+ Ξ−
)

, (42)



8where the trae on the right-hand side runs over spae-time, olor, �avor, and Dira indies. Sine we negleted theregular self-energies Σ± in the derivation of the gap equation, to be onsistent we also have to drop the �rst two termsin Eq. (42). Fourier-transforming into momentum spae and using the gap equations (22), we obtain
− 1

4

T

V
Tr (ΣS) = − g2

4

T 2

V 2

∑

K,Q

Tr
c,f,s

[

γµTa Ξ−(K) γνT T
b Ξ+(Q) + γµT T

a Ξ+(K) γνTb Ξ−(Q)
]

Dab
µν(K −Q) , (43)where the trae on the right-hand side runs only over olor, �avor, and Dira indies. We now insert the loal,instantaneous gluon propagator Dab

µν(K −Q) = − δabgµν/Λ
2, and sum over a, b and µ, ν. Then we perform the traeover olor, �avor and Dira spae with the help of Eqs. (27), (36). Due to the point-like gluon interation the sumsover K und Q separate. These sums an be simpli�ed with the help of the gap equations (37). The �nal result is

− 1

4

T

V
Tr (ΣS) =

3

4

Λ2

g2

[

|φ1|2 + |φ2|2 + 3 (φ∗1φ2 + φ1φ
∗
2)
]

. (44)The �rst term in Eq. (41) is straightforwardly evaluated as
1

2

T

V
Tr lnS−1 =

=
T

V

∑

K

∑

e







∑

n=1,2

∑

j=±

ln

[

(k0 + j δµn)2 − [ǫek(µ̄, φn)]2

T 2

]

+ ln

[

k2
0 − [ǫek(µu

b , 0)]2

T 2

]

+ ln

[

k2
0 − [ǫek(µd

b , 0)]2

T 2

]







=
1

π2

∑

e

∫ κ

0

dk k2





∑

n=1,2







ǫek(µ̄, φn) +
∑

j=±

T ln

[

1 + exp

(

− ǫek(µ̄, φn) + j δµn

T

)]







+ ǫek(µu
b , 0) + 2T ln

[

1 + exp

(

− ǫek(µu
b , 0)

T

)]

+ ǫek(µd
b , 0) + 2T ln

[

1 + exp

(

− ǫek(µd
b , 0)

T

)])

. (45)Subtrating the ontribution from the vauum and taking the limit T → 0 leads to
1

2

T

V
Tr lnS−1 =

1

π2

∑

e

∑

n=1,2

∫ κ

0

dk k2

[

ǫek(µ̄, φn) − k +
k

3

k − eµ̄

ǫek(µ̄, φn)
θ (|δµn| − ǫek(µ̄, φn))

]

+
µu

b
4 + µd

b

4

12π2
. (46)To obtain the pressure (41) for olor-superonduting quark matter with two �avors we have to add Eqs. (44) and(45).In Se. III we shall onsider ompat stellar objets whih have to be neutral with respet to eletri harge. In orderto ahieve this, we have to add the ontribution of eletrons to the pressure (41) of our two-�avor olor superondutor,

pe =
µ4

e

12π2
, (47)where we negleted the small eletron mass. If the hemial potential for strange quarks, µs

i = µ+µe/3+µ3T
3
ii+µ8T

8
ii,exeeds the strange quark mass, ms, we also have to inlude strange quarks into our onsideration. We assume themto be non-interating, whih leads to the following additional ontribution to Eq. (41),

ps =
1

3π2

b
∑

i = r

∫ kF
s

i

0

dk
k4

Es
k

, (48)with the Fermi momentum kF
s
i = (µs

i
2 − m2

s)
1/2 and the energy Es

k = (k2 + m2
s)

1/2. Strange quarks also serve toneutralize the large positive eletri harge of a system of up and down quarks. Consequently, we expet the eletrondensity to be redued one strange quarks are present in the system. The total pressure of our system is the sum ofEqs. (41), (47), and (48),
p = p2SC + pe + ps −B . (49)



9Here, we have also subtrated the pressure of the perturbative vauum in the form of the MIT bag onstant B [32℄.This will prove essential to obtain bound stars of �nite radius.Compat stellar objets are not only neutral with respet to eletri harge but also with respet to olor harge.The neutrality onditions read
ne ≡ ∂p

∂µe
= 0 , (50a)

n3 ≡ ∂p

∂µ3
= 0 , (50b)

n8 ≡ ∂p

∂µ8
= 0 , (50)where ne is the total eletri harge density and n3, n8 are the olor harge densities. It is straightforward to see thatthe solution of Eq. (50b) is µ3 = 0. The reason is that in a two-�avor olor superondutor, SU(3)c is broken to SU(2)c.One of the generators of this residual SU(2)c symmetry is T3 and, onsequently, the assoiated olor-hemial potentialhas to vanish (otherwise, SU(2)c would be broken expliitly). We therefore have µ3 = 0 irrespetive of whether weenfore olor neutrality or not. >From Eqs. (35) we then onlude δµ ≡ δµ1 = −δµ2 = −µe/2. Inserting this resultinto the gap equations (39) we read o� that the only possible solution is φ ≡ φ1 = −φ2. This greatly simpli�es thegap equations; there is only a single gap equation for φ,

3π2 Λ2

g2
=
∑

e

∫ κ

0

dq q2
1

ǫeq(µ̄, φ)
θ
(

ǫeq(µ̄, φ) − |δµ|
)

, (51)and the expression (44) beomes
− 1

4

T

V
Tr (ΣS) = − 3

Λ2

g2
|φ|2 . (52)Finally, in order to solve the Tolman-Oppenheimer-Volko� equation, we need the energy density, whih at T = 0 reads

ε = µn+ µ3n3 + µ8n8 + µene − p . (53)Here, n ≡ ∂p/∂µ is the quark density. III. RESULTSIn this setion we numerially solve the gap equation (51) and ompute the equation of state (49). With Eqs.(49) and (53) we then solve the TOV equation to obtain the mass-radius relation for quark stars. Unless mentionedotherwise, in order to ompare our results to those of Ref. [28℄, we use the following values for the parameters of ourmodel,
ms = 0.1407 GeV , (54a)

g2/Λ2 = 45.1467 GeV−2 , (54b)
κ = 0.6533 GeV , (54)

B1/4 = 0.17 GeV . (54d)In Fig. 2 we show the total pressure (49), normalized to its value for φ = µe = µ8 = 0, as a funtion of the quark-hemial potential for various ases. The ontribution of strange quarks is omitted, ps = 0, and the bag onstantis set to zero, B = 0. One observes that the olor-superonduting state with φ > 0 has a larger pressure than thenormal-onduting state with φ = 0. Consequently, the olor-superonduting state is energetially preferred. Thedi�erene in pressure between olor-superonduting and normal-onduting states is proportional to the value ofthe gap (squared), f. Fig. 4. The onstraint of eletri-harge neutrality redues the pressure. (The e�et on thepressure when imposing olor-harge neutrality is negligibly small.) This onstraint is neessary to obtain stable stars.Eletrially harged stars would explode beause of the repulsive Coulomb fore. (One also has to impose olor-hargeneutrality beause olor-harged stars annot exist due to on�nement.)In Fig. 3 the same ases are shown as in Fig. 2, now inluding the ontribution of strange quarks. Again, theolor-superonduting state is energetially preferred over the normal-onduting state. The di�erene to the previous



10ase is that, as soon as µ exeeds ms, strange quarks partially assume the role of eletrons to ensure eletri-hargeneutrality of the system. Consequently, the eletroni ontribution to the pressure is redued, f. Fig. 5, and theredution of the pressure when imposing eletri-harge neutrality beomes smaller. For large values of the quark-hemial potential, µ ≫ ms, the amount of eletrons neessary to make the system eletrially neutral beomesnegligibly small. Therefore, the full and dashed lines, as well as the short-dashed and dotted lines in Fig. 3 approaheah other.In Fig. 4 we show the gap as a funtion of the quark-hemial potential. For small values of the quark-hemialpotential the gap vanishes. At larger values of µ, the gap inreases, until the quark-hemial potential approahesthe value of the uto� κ, where due to restrited phase spae the gap starts to derease. The onditions of eletriand olor neutrality (50a) and (50) tend to derease the value of the gap. This derease is espeially pronounedin the ase without strange quarks (dashed line), where the eletro-hemial potential is large, see Fig. 5. Inludingstrange quarks, the eletro-hemial potential beomes smaller and, onsequently, the gap beomes larger (dottedline). Note the kink in the dotted line in Fig. 4. To the left of the kink, the system is in the so-alled �gapless� olor-superonduting phase disussed in detail in Ref. [29℄, while to the right it is in the standard olor-superondutingphase without gapless modes. For the dashed line, the system is always in the gapless olor-superonduting phase.Figure 5 shows the value of the eletro-hemial potential µe as a funtion of µ as obtained from enforing theneutrality onditions (50a) and (50). For normal-onduting quark matter without strange quarks, eletri-hargeneutrality requires that the eletron density inreases proportional to the quark density. Consequently, µe is a lin-early rising funtion of µ (full line). In the presene of strange quarks the amount of eletrons required to ahieveeletri neutrality is smaller. Therefore, µe dereases as soon as µs
i > ms. For an eletri- and olor-harge neutralolor superondutor either with or without strange quarks, the eletro-hemial potential inreases substantially asompared to a normal ondutor. (Only with strange quarks and for very large values of µ lose to κ, the value of µein the olor-superonduting phase is smaller than in a normal ondutor and may even beome negative. We pereivethe latter to be an artefat of approahing the limit of phase spae.)In Fig. 6 we show the value of the olor-hemial potential µ8 as a funtion of µ for eletri- and olor-neutralolor-superonduting quark matter with and without strange quarks. (Normal-onduting matter is automatiallyolor neutral in the thermodynami limit.) The values of µ8 neessary to make the system olor neutral are muhsmaller than the values of µe required for eletri neutrality. This an be understood in the weak-oupling limit wherethe gap is muh smaller than the hemial potential, φ ∼ µ exp(−1/g2) ≪ µ. In this limit, the value of µ8 requiredto ahieve olor neutrality is parametrially of order µ8 ∼ φ2/µ [23℄.With Eqs. (49) and (53) we now solve the TOV equations

dp

dr
= − [p(r) + ε(r)][M(r) + 4πr3p(r)]

r[r − 2M(r)]
, (55a)

M(r) = 4π

∫ r

0

ε(r′)r′
2
dr′ . (55b)The resulting mass-radius relations are shown in Fig. 7. We observe that the in�uene of olor superondutivity onthe mass-radius relation is at most on the order of a few perent, in agreement with the results of Ref. [12℄. This wasto be expeted, sine superondutivity is a Fermi-surfae phenomenon, while the equation of state whih determinesthe mass and radius is sensitive to the whole Fermi sea. To be more preise, the relative hange in the pressure due tosuperondutivity is of the order φ2/µ2. For φ≪ µ this is a tiny e�et. Indeed, as an be seen from Fig. 7, inludingstrange quarks has a muh larger e�et on the masses and radii. The reason is that adding strange quarks to thesystem a�ets a relative hange of the pressure by a term ∼ (µs/µ)4 ∼ O(1).The observation that olor superondutivity does not have an e�et on the mass-radius relation of a quark starfor φ ≪ µ immediately leads to the question how large the gap has to beome in order to see an appreiable hangein either the mass or the radius of the star. To our knowledge this question has so far not been addressed in theliterature and is the main motivation for our urrent study. This question an be answered by arti�ially inreasingthe oupling onstant g2/Λ2, suh that the solution φ of the gap equation (51) inreases as well. Of ourse, suh amodi�ation will hange the vauum properties, suh as the pion deay onstant, within our NJL model. However, atnonzero baryon density, this model is in any ase not very realisti as it neither desribes saturation of nulear matterin the ground state nor does it feature a hadroni phase where hiral symmetry is broken. Here, we onsider the NJLmodel just as an e�etive model to desribe quark-quark interations at high baryon density. It is then ertainly apermissible and interesting question to ask how the oupling strength a�ets the value of the olor-superondutinggap parameter and quark star properties.In Fig. 8 we show the solution of the gap equation when dereasing the oupling onstant by a fator of two (fullline) as well as inreasing it by a fator of 3/2 (short-dashed line) and a fator of two (dotted line), respetively. Inthe latter ase we observe the interesting phenomenon that the gap is non-vanishing even when µ = 0. At �rst sight



11this seems surprising but one an readily onvine oneself that the gap equation (51) indeed has a non-trivial solutionfor µ = 0, if the oupling onstant exeeds the ritial value g2/Λ2 = 3π2/κ2 ≃ 69.37 GeV−2. The situation where thegap was non-vanishing in the vauum was also analyzed in Ref. [30℄.In Fig. 9 we show the mass-radius relations alulated with the equations of state orresponding to the gaps shownin Fig. 8. As expeted, a derease of the oupling onstant by a fator of two does not appreiably hange the mass-radius relation, but multiplying the oupling onstant by a fator 3/2 already leads to an inrease of maximum massand radius by ∼ 20%. For the oupling onstant whih is a fator of two larger than the default value we �nd thatthe quark star also doubles in mass and radius. The reason is that the equation of state hanges appreiably for gapsof order ∼ 300 MeV, f. Fig. 8, sine then φ ∼ µ.IV. CONCLUSIONSIn this paper we have investigated olor-superonduting quark matter in the so-alled 2SC phase, i.e., a olorsuperondutor onsisting of massless up and down quarks, where quarks of red and green olor form anti-blue Cooperpairs. Starting from the CJT formalism, we have derived the gap equation and the pressure. By adding eletrons and/orstrange quarks, we have also studied this system under the onstraints of eletri and olor neutrality. For eletri-and olor-neutral systems, we have solved the TOV equation in order to determine the mass-radius relation for quarkstars. We on�rmed the result of Ref. [12℄ that olor superondutivity does not substantially alter the mass andthe radius of a quark star, if the oupling onstant is hosen to reprodue vauum properties suh as the pion deayonstant. The reason is that superondutivity has an e�et of the equation of state whih is proportional to φ2/µ2whih is small if φ≪ µ.We then asked the question how large the olor-superonduting gap parameter has to be in order to see anappreiable e�et on the mass and the radius of a quark star. To this end, we arti�ially inreased the ouplingonstant whih has the e�et of inreasing the olor-superonduting gap parameter. We found non-trivial solutionsof the gap equation in the vauum, i.e., for µ = 0, when the oupling onstant exeeds a ritial value whih is diretlyproportional to the uto� parameter of our NJL-type model. For gaps of the order of 300 MeV the mass and radiusof a olor-superonduting quark star was found to be twie as large as for a normal-onduting quark star. Whilethis is per se an interesting result, suh quark stars are still of the same size and mass as ordinary neutron stars. Itis thus impossible to deide whether a ompat stellar objet onsists of normal-onduting or olor-superondutingquark matter, or simply of ordinary neutron matter.AknowledgmentsThe authors thank Debades Bandyopadhyay, Matthias Hanauske, Mei Huang, Jürgen Sha�ner-Bielih, and IgorShovkovy for disussions.[1℄ D. Bailin, A. Love, Phys. Rept. 107, 325 (1984)[2℄ D. Page, M. Prakash, J.M. Lattimer, A. Steiner, Phys. Rev. Lett. 85, 2048 (2000)[3℄ A.W. Steiner, S. Reddy, M. Prakash, Phys. Rev. D 66, 094007 (2002)[4℄ M. Buballa, M. Oertel, Nul. Phys. A 703, 770 (2002)[5℄ M. Baldo, M. Buballa, F. Burgio, F. Neumann, M. Oertel, H.J. Shulze, Phys. Lett. B 562, 153 (2003)[6℄ J.E. Horvath, G. Lugones, J.A. de Freitas Paheo, Int. J. Mod. Phys. D 12, 519 (2003)[7℄ G. Lugones, J.E. Horvath, astro-ph/0211638[8℄ M. Alford, S. Reddy, Phys. Rev. D 67, 074024 (2003)[9℄ H. Grigorian, D. Blashke, D.N. Aguilera, astro-ph/0303518[10℄ S. Banik, D. Bandyopadhyay, astro-ph/0212340[11℄ D. Blashke, H. Grigorian, D.N. Aguilera, S. Yasui, H. Toki, AIP Conf. Pro. 660, 209 (2003)[12℄ D. Blashke, S. Fredriksson, H. Grigorian, A. M. Özta³, nul-th/0301002[13℄ I. Shovkovy, M. Hanauske, M. Huang, Phys. Rev. D 67, 103004 (2003)[14℄ M. Alford, K. Rajagopal, F. Wilzek, Nul. Phys. B 537, 443 (1999)[15℄ Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); Phys. Rev. 124, 246 (1961)[16℄ R. Rapp, T. Shäfer, E.V. Shuryak, M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998); M. Alford, K. Rajagopal, F. Wilzek,Phys. Lett. B 422, 247 (1998)[17℄ M. Alford, K. Rajagopal, JHEP 0206, 031 (2002)[18℄ J.M. Cornwall, R. Jakiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)
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