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Abstract. We discuss gapless color superconductivity for neutral quark matter in

β equilibrium at zero as well as at nonzero temperature. Basic properties of gapless
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the understanding of the phase diagram of strange quark matter are discussed.
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1. Introduction

The estimated central densities of compact stars could be sufficiently large to support

the existence of deconfined quark matter. Such matter should develop a Cooper

instability with respect to diquark condensation, and become color superconducting

[1, 2, 3, 4]. Note that typical temperatures inside compact stars are so low that the

diquark condensate, if produced, would not melt.

Matter in the bulk of a compact star should be neutral (at least, on average)

with respect to electric as well as color charges. Otherwise, the star would not be

bound by gravity which is much weaker than electromagnetism. Matter should also

remain in β equilibrium. The latter requires that the rate of the β-decay processes (i.e.,

d→ u+ e− + ν̄e and s→ u+ e− + ν̄e) should be equal to the rate of the corresponding

electron capture processes (i.e., u+ e− → d+ νe and u+ e− → s+ νe).

After the charge neutrality and the β-equilibrium conditions are enforced, the

chemical potentials of different quarks satisfy relations that may interfere with the

dynamics of Cooper pairing. If this happens, some color-superconducting phases may

become less favored than others. For example, in Ref. [5], it was argued that a mixture
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of the normal phase, made of strange quarks, and the two-flavor color superconducting

(2SC) phase, made of up and down quarks, is less favorable than the color-flavor locked

(CFL) phase after the charge neutrality condition is enforced.

Assuming that the constituent medium-modified mass of the strange quark is large

(i.e., larger than the corresponding strange quark chemical potential), in Ref. [6] it was

shown that neutral two-flavor quark matter in β equilibrium can have another rather

unusual ground state called the gapless two-flavor color superconductor (g2SC). The

appearance of this phase is directly connected with enforcing the charge neutrality in

the system. While the symmetry in the g2SC ground state is the same as that in the

conventional 2SC phase, the spectrum of the fermionic quasiparticles is different. The

order parameter of the g2SC phase is given by the difference of the number densities

of quarks participating in pairing (e.g., the number density of green up quarks and the

number density of red down quarks).

The existence of the gapless two-flavor color superconducting phase was confirmed

in Refs. [7, 8, 9], and generalized to nonzero temperatures in Refs. [10, 11]. Later it

was shown, however, that a chromomagnetic instability develops in such a phase [12].

In view of this, the true ground state remains unknown. If the surface tension between

different quark phases is sufficiently small, as suggested in Ref. [13], a mixed phase

composed of the 2SC phase and the normal quark phase [14] may be more favored than

the gapless phases. If this conclusion holds after the screening effects in the mixed phase

are properly taken into account, the mixed phase is likely to be the ground state.

It was also shown that a gapless CFL (gCFL) phase could appear in neutral strange

quark matter when the strange quark mass is not very small [15, 16]. At nonzero

temperature, the (g)CFL phase and several other new phases (e.g., the so-called dSC

and uSC phases) were studied in Refs. [17, 18, 19]. Recently, however, it was claimed

that the gCFL phase also has a chromomagnetic instability [20].

2. Gapless color-flavor locked phase

At very large densities, the most favorable phase of quark matter is the CFL phase

in which up, down and strange quarks participate in Cooper pairing on almost equal

footing [3]. However, at the highest baryon densities existing in stars (which are less

than about 10ρ0, where ρ0 ≈ 0.15 fm−3 is the nuclear saturation density), the CFL

phase may be replaced by a less symmetric phase. This is because the strange quark

is considerably heavier than the up and down quarks, and the ideal strange-nonstrange

cross-flavor diquark pairing could be distorted. Indeed, it is most likely that the actual

value of the strange quark mass ms in a dense medium is in the range between about

100 MeV and 500 MeV. This is not negligible compared to the quark chemical potential

µ which is of the order of 500 MeV in the center of compact stars.

Here, we consider a Nambu-Jona-Lasinio (NJL) type model for three-flavor quark
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matter with a local current-current interaction,

L = ψ̄
(

iγµ∂µ + γ0µ̂− m̂
)

ψ +
g2

2Λ2

(

ψ̄γµλ
A

2
ψ

)2

. (1)

where the color-flavor structure of the chemical potential and the mass matrices are

given by

µ̂ = µ+ µQQ+ µ3T3 + µ8T8 (2)

and m̂ = diagflavor(0, 0, ms), respectively. The matrices Q, T3 and T8 are the generators

of mutually commuting electric and two color charges.

In the Cooper pairing dynamics responsible for color superconductivity, the main

effect of a non-vanishing strange quark mass is a reduction of the strange quark Fermi

momentum,

k
(s)
F =

√

µ2 −m2
s ≃ µ−

m2
s

2µ
, for ms ≪ µ. (3)

The magnitude of the reduction is approximately given by the value of m2
s/2µ. This

quantity plays the role of a mismatch parameter in three-flavor quark matter, which

is similar to δµ ≡ µe/2 in two-flavor quark matter [6]. This mismatch interferes with

Cooper pairing between strange and non-strange quarks [15].

The simplest way to take into account the effect of the strange quark mass is

to replace the chemical potential of the strange quark by its effective shifted value in

Eq. (3). This was the approach of Refs. [15, 18]. In this paper, as in Ref. [19], we do

not use such an approximation. The strange quark mass is properly taken into account.

Because of a nonzero strange quark mass, the up-down, the up-strange and the

down-strange diquark condensates are not equal in the ground state [15, 21],
〈(

ψ̄C
)a

i
γ5ψb

j

〉

∼ φ1εij1ǫ
ab1 + φ2εij2ǫ

ab2 + φ3εij3ǫ
ab3 + · · · , (4)

where the ellipsis denote the terms symmetric in color and flavor. Although the

symmetric terms are small and not crucial for the qualitative understanding of strange

quark matter, we retain them in our analysis [18].

A nonzero value of the strange quark mass interferes most prominently with the

pairing between the strange and the non-strange quarks, i.e., with the pairing described

by the gap parameters φ1 and φ2. Because of color-flavor locking, preserved in the

diquark condensate (4), this translates into a special role played by the blue color in the

ground state (in QCD this is meaningful, provided a specific gauge fixing is done).

Starting from the massless limit (ms = 0) and gradually increasing the value of

the strange quark mass, one finds that the CFL phase stays robust until a critical value

of the control parameter m2
s/2µ ≃ ∆ is reached [15]. Here, ∆ is the value of the gap

parameter φ1. (Note that ∆ ≡ φ1 = φ2 ≈ φ3 in the CFL phase, see left panel in Fig. 1

below.) Above the critical value, the charge neutrality exerts too much stress on the

CFL phase, and a transition to a new (gapless) phase happens [15].

A nice feature of the CFL phase is that it stays almost automatically electrically

neutral [22]. The reason is that Cooper pairing in the CFL phase helps to enforce equal
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number densities of all three quark flavors, nu = nd = ns. Since the sum of the charges

of up, down and strange quarks add up to zero, this insures that the electric charge

density is vanishing, nQ = 2
3
nu − 1

3
nd −

1
3
ns = 0. This is exactly what happens in the

CFL phase even at nonzero, but sub-critical values of the strange quark mass.

In contrast to the g2SC case, it is the color rather than the electric charge neutrality

that plays the key role in destabilizing the CFL phase of three-flavor quark matter with

increasing the value of m2
s/2µ. The actual mechanism is directly related to color-flavor

locking in the CFL ground state. Because of such a locking, the blue quarks have

a special status in the Cooper pairing dynamics. In order to avoid the violation of

the color neutrality by these quarks, a nonzero value of the color chemical potential

µ8 ∝ −m2
s/2µ is required [5]. Note that the value of µ8 is monotonically increasing with

the strange quark mass. After the stress in the quark system becomes too strong, the

CFL phase turns into the gapless CFL phase. As was shown in Ref. [15], this happens

when m2
s/2µ ≈ φ1. In essence, the mechanism is the same as in two-flavor quark matter

studied in Ref. [6].

3. Phase diagram

In this section, we present the phase diagram of dense neutral three-flavor quark matter

in the plane of temperature and m2
s/µ. The first version of such a phase diagram was

presented in Ref. [18]. In Ref. [18], however, the effect of the strange quark mass

was incorporated only through a shift of the chemical potential of strange quarks,

µa
s → µa

s −m2
s/(2µ) (here a = 1, 2, 3 is the color index). Such an approach is certainly

reliable at small values of the strange quark mass. One should check, however, whether

the results are reliable at least qualitatively also at not very small values of the strange

quark mass.

The study of the phase diagram [18] was further developed in Ref. [19] where the

strange quark mass was properly taken into account. Here, we perform a similar study

using our original set of model parameters [18]. As we shall see, the results do not differ

very much from those in Ref. [18] even at rather large values of the strange quark mass.

Let us start with the discussion of the effect of a nonzero strange quark mass on

the gap parameters. The zero-temperature results for the gaps as functions of m2
s/µ

are shown in the left panel of Fig. 1. At small strange quark mass, the ground state

corresponds to the CFL phase. Here, the following relation between the three gaps

holds: φ1 = φ2 ≈ φ3 [19]. At large strange quark mass, on the other hand, the three

gap parameters are very different. As we can see from the figure, the qualitative change

of the gaps as functions of m2
s/µ happens at m2

s/µ ≈ 2φ1. This is a consequence of the

phase transition between the CFL and the gCFL phase [15].

As one can check, the transition point atm2
s/µ ≈ 2φ1 corresponds to the appearance

of additional gapless modes in the quasiparticle spectrum, justifying the name of the

phase. As in the case of the g2SC phase, the order parameter in the gCFL phase could

be identified with a difference of number densities of some quarks participating in pairing
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[6]. In particular, this is the difference of the number densities of blue down and green

strange quarks [18]. In Ref. [15], however, it was suggested to use the number density

of electrons as an alternative order parameter. While there are no electrons in the CFL

phase [22], there is a non-vanishing density of them in the gCFL phase. Thus, the

corresponding transition was called an insulator-metal transition. Note that, at nonzero

temperatures, the corresponding transition becomes a smooth crossover [18, 19].

The physical properties of the gCFL phase are very different from those of the

CFL phase. The presence of gapless quasiparticle modes has a large effect on the

thermodynamics as well as on the transport properties. In contrast to the CFL phase

which is an insulator, the gCFL phase is a metal with a nonzero number density of

electrons [15, 16, 18, 19]. Therefore, the electrical conductivities of the two phases

are very different. (Note that, at low temperature, the electrical conductivity in the

CFL phase is dominated by thermally excited electron-positron pairs [23].) Also, the

neutrino emissivity from the gCFL phase should be rather high. It is dominated by the

β processes involving the gapless modes. In contrast, the corresponding emissivity from

the CFL phase is strongly suppressed.

Now, let us discuss how three-flavor neutral quark matter responds to a nonzero

temperature. In general, as in Ref. [18], if one starts from the (g)CFL phase and

gradually increases the temperature, three consecutive phase transitions occur in the

system (see right panel of Fig. 1):

(i) the transition from the (g)CFL phase to the so-called uSC phase;

(ii) the transition from the uSC phase to the 2SC phase;

(iii) the transition from the 2SC phase to the normal quark phase.

Here, the notation uSC (dSC) stands for superconducting phases in which there are only

up-down and up-strange (or up-down and down-strange) condensates, and there is no

down-strange (or up-strange, respectively) condensate [17]. From Eq. (4) one can check

that φ1 vanishes in the uSC phase, while φ2 vanishes in the dSC phase.

Our results differ from those of Ref. [17] in that the dSC phase is replaced by the

uSC phase in the near-critical region. This was also the case in our previous study [18].

However, Ref. [19] revealed a small region of the dSC phase at temperatures close to

the critical temperature and at small values of the strange quark mass. We checked

that our numerical calculations produce qualitatively the same results when we use a

set of parameters close to that of Ref. [19]. In fact, the main difference between the two

studies is the value of the cut-off parameter in the NJL model. From this we conclude

that the size of the dSC region in the phase diagram is particularly sensitive to the

choice of the cut-off in the NJL model.

Now, let us briefly discuss the main features of the phase diagram of dense neutral

three-flavor quark matter in the plane of temperature and m2
s/µ. This is shown

in the right panel of Fig. 1. Here, the results are plotted for a fixed value of the

quark chemical potential, µ = 500 MeV. The three solid lines denote the three phase

transitions discussed earlier. In the mean-field approximation used in this study, all
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Figure 1. The absolute value of the gap parameters φi (i = 1, 2, 3) as functions of

m2

s
/µ at zero temperature (left panel); and the phase diagram of neutral three-flavor

quark matter in the plane of temperature and m2

s
/µ at a fixed value of the quark

chemical potential, µ = 500 MeV, (right panel). By definition, G ≡ g2/Λ2.

three transitions are second order phase transitions. After taking into account various

types of fluctuations, the nature of some of them may change [24]. A detailed study of

this issue is, however, outside the scope of this paper. The two dashed lines mark the

appearance of gapless modes in the metallic CFL (mCFL) and 2SC phases (see Ref. [18]

for the detailed definitions). In addition, there is also an insulator-metal crossover

transition between the CFL and mCFL phase. This is marked by the dotted line on the

phase diagram in Fig. 1.

By comparing the results in the right panel of Fig. 1 with the corresponding

phase diagram in Ref. [18], we find that the results are qualitatively the same and

even quantitatively very similar. Thus, with our set of parameters, even a simplified

treatment of the strange quark mass reproduces the overall structure of the phase

diagram. It should be admitted, however, that this may not always be the case. For

example, the simplified method with an effective shift of the strange quark chemical

potential is unlikely to capture the appearance of the first order phase transition at

small temperatures and large ms in the phase diagram shown in Figs. 1 and 16 of

Ref. [19].

4. Conclusion

In this paper, we studied neutral three-flavor quark matter at large baryon densities.

We obtained the phase diagram of dense neutral three-flavor quark matter in the plane
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of temperature and m2
s/µ. In contrast to the approximate treatment of the strange

quark mass of Ref. [18], here the mass is properly taken into account. The final results

are very similar to those of Ref. [18].

If we ignore the possibility of the chromomagnetic instability [12, 20] for a moment,

there are two main possibilities for the strange quark matter ground state at T = 0: the

CFL and the gCFL phases in the case of small and large strange quark mass, respectively.

The transition from the CFL to the gCFL phase is driven by a gradual build-up of the

stress in the quark system due to the color neutrality condition. This stress grows with

increasing the strange quark mass. The mechanism is directly related to color-flavor

locking in the CFL ground state. Turning on the strange quark mass tends to induce

an imbalance of the blue color in the system. This imbalance is removed by a nonzero

value of the color chemical potential µ8 in the CFL phase. After reaching a critical

value of the strange quark mass, m2
s/µ ≈ 2φ1, the CFL turns into the gCFL phase [15].

This is similar to a transition between the 2SC and the g2SC phases which, however, is

driven by the electron chemical potential, needed to preserve electric charge neutrality

in two-flavor quark matter [6].

In this study we confirm the results of Ref. [18] regarding the existence of several

different phases of neutral three-flavor quark matter at nonzero temperature. We also

confirm the order in which they appear. In particular, we observe the appearance of

the uSC phase as an intermediate state in melting of the (g)CFL phase into the 2SC

phase. Formally, this is different from the prediction of Ref. [17]. We find, however,

that the difference is connected with the choice of the model parameters. In the NJL

model with a cut-off parameter Λ = 800 MeV used in Ref. [19], there is a non-vanishing

(although rather small) region of the dSC phase. On the other hand, in the NJL model

with a relatively small value of the cut-off parameter (we have Λ = 653 MeV) used in

this paper, no sizeable window of the dSC phase is found.

Now, if one takes the chromomagnetic instability [12, 20] into account seriously,

there is a fundamental problem in the present understanding of the phase diagram of

neutral dense quark matter. Indeed, some regions of the phase diagram (see right panel

of Fig. 1) correspond to phases that are unstable, and there exist no unambiguous

alternatives (two of such alternatives were proposed in Ref. [25]). Of course, it is of

prime importance to resolve this crisis.
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[18] S. B. Rüster, I. A. Shovkovy, and D. H. Rischke, Nucl. Phys. A743, 127 (2004).

[19] K. Fukushima, C. Kouvaris and K. Rajagopal, hep-ph/0408322.

[20] R. Casalbuoni, R. Gatto, M. Mannarelli, G. Nardulli and M. Ruggieri, hep-ph/0410401.

[21] A. W. Steiner, S. Reddy and M. Prakash, Phys. Rev. D 66, 094007 (2002).

[22] K. Rajagopal and F. Wilczek, Phys. Rev. Lett. 86, 3492 (2001).

[23] I. A. Shovkovy and P. J. Ellis, Phys. Rev. C 67, 048801 (2003).

[24] K. Iida and G. Baym, Phys. Rev. D 63, 074018 (2001) [Erratum-ibid. D 66, 059903 (2002)]; Phys.

Rev. D 65, 014022 (2002); Phys. Rev. D 66, 014015 (2002);

I. Giannakis and H. C. Ren, Phys. Rev. D 65, 054017 (2002); Nucl. Phys. B 669, 462 (2003);

D. N. Voskresensky, nucl-th/0312016;

T. Matsuura, K. Iida, T. Hatsuda, and G. Baym, Phys. Rev. D 69, 074012 (2004);

I. Giannakis, D. F. Hou, H. C. Ren, and D. H. Rischke, hep-ph/0406031.

[25] M. G. Alford, J. A. Bowers and K. Rajagopal, Phys. Rev. D 63, 074016 (2001);
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