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1.1 The Drug Discovery Process  

The drug discovery process for new chemical entities (NCE) comprises four main sections, 

namely target identification, lead identification, lead optimization and clinical development as 

illustrated by a pipeline [Bleicher et al., 2003] (Figure 1.1). New biological entities (NBE), 

such as monoclonal antibodies, vaccines and protein drugs, are a complementation to NCE, 

and have been successfully introduced into the market [Adams & Weiner, 2005, Sodoyer & 

Laffly, 2005]. Given the fact that the later stages of the drug discovery process are 

characterized by a high attrition rate [Bleicher et al., 2003] the aim of the first three phases is 

to enter varies NCEs into the clinical phase with a higher rate and improved quality. Since the 

rate is determined by the slowest process in the pipeline (the bottleneck), the challenge is to 

expand these bottlenecks allowing more candidate molecules to pass these stages. 

Computational chemistry comprises techniques supporting the drug discovery process in the 

lead identification and optimization phase. The presented work concentrates on the integration 

of these methods into the lead identification phase. 

Target identification Lead identification Lead optimization Clinical developmentTarget identification Lead identification Lead optimization Clinical development

 

 

 

Figure 1.1 The drug discovery process illustrated by a pipeline. Four sections, target identification, lead 

identification, lead optimization and clinical phase are distinguished.  
 

Initially, new targets are identified (mainly proteins) whose target-selective modulation 

translates into high therapeutic effect and minimal in vivo side effects [Egner et al., 2005; 

Knowles & Gromo, 2003; Drews, 2000]. In the lead identification phase leads or lead series 

are identified for a target linked with a distinct disease. A lead is defined as “a prototypical 

chemical structure or series of structures that demonstrate activity and selectivity in a 

pharmacological or biochemical relevant screen” [Bleicher et al., 2003]. High-throughput 

screening (HTS) [Oldenburg et al., 2001] and virtual screening (VS) [Böhm & Schneider, 

2000, Bajorath, 2002] present the two main lead identification strategies and correspond to 

each other. To define leads or lead series within the identified active molecules selection 

criteria are applied best covering suitable molecular properties, favourable pharmacodynamics 

(potency, selectivity and efficacy), acceptable pharmacokinetic properties, chemical 

optimization potential and patentability [Steinmeyer, 2006]. A promising approach in the lead 

selection process is computational chemistry which is defined as a discipline using 
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mathematical methods for the calculation of molecular properties or for the simulation of 

molecular behaviour [Wermuth et al., 1998]. Computational chemistry techniques provide a 

clustering of data helping to define lead series [Böcker et al., 2003] and offer the ability to 

create models in order to identify false-negatives and false-positives in the data [Harper et al., 

2001; Glick et al., 2004]. An extended integration of computational chemistry in the lead 

identification process with the aim to derive first crude structure-activity relationships (SAR) 

in the data, is assumed to be worthwhile for a further rationalization of the selection process.  

1.2 Lead Identification Strategies 

In the drug discovery process for NCEs several alternative lead identification strategies exist. 

The two most prominent are HTS and VS. In HTS complete compound repositories or a 

subset thereof are tested in a miniaturized and automated biochemical or cell-based assay to 

determine hits against a certain target. To cope with false-negatives emerging from HTS or to 

identify alternative hits in external vendor catalogues or virtual libraries, VS is applied. Both 

techniques have the aim to identify starting structures (hits) which might be translated into 

leads with novel scaffolds. Both screening methods have some characteristics in common. At 

first, both try to minimize false-negatives and false-positives. This is sometimes referred to as 

robustness of a technique. Further they usually result in a limited number of hits in a large 

quantity of non-hits. The imbalance of the number of hits and non-hits and the noise resulting 

from false-positives and false-negatives are the main challenges for the application of 

computational chemistry techniques to understand the SAR in the data [Schreyer et al., 2004]. 

1.2.1 Virtual Screening 

Virtual screening techniques can be separated into structure-based and ligand-based screening 

methods [Bajorath, 2002]. The first method employs the target structure for screening and the 

second uses information derived from known ligands. They are founded on the similarity 

principle stating that similar molecules exhibit similar biological effects [Johnson & 

Maggiora, 1990; Martin et al., 2002]. Another discrimination of VS methods can be done 

according to the dimensionality. Methods using a one-dimensional (1D), two-dimensional 

(2D), three-dimensional (3D) or four-dimensional (4D) description can be defined [Bleicher 

et al., 2003]. One-dimensional techniques comprise methods for compound filtering according 

to unwanted (reactive) fragments, pharmacokinetic ADME-T properties (Absorption, 

Distribution, Metabolism, Excretion and Toxicity), and drug-like or lead-like criteria [Van der 

Waterbeemd & Gifford, 2003; Muegge, 2003]. These methods can be applied as pre-filter for 

large data sets. In 2D or 3D methods, screening is based on the 2D or 3D representation of the 
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molecules, respectively. The 3D search methods are more complex compared to the 2D 

methods since in addition to the topology of the molecules stereoisomer, tautomer and 

conformer representations have to be considered [Kitchen et al., 2004]. Despite of the spatial 

arrangement of the structures in 2D or 3D, the representation of the molecules as numerical or 

bit-string representations describing e.g. the occurrence of substructure elements, potential 

pharmacophore points or physicochemical properties plays a crucial role to leave a molecular 

scaffold and identify novel compounds with novel scaffolds [Renner & Schneider, 2006]. The 

identification of alternative scaffolds is of importance since they can result in alternative lead 

structures which are synthetically easier to access, bear more suited ADME-T or 

pharmacodynamic properties or are not covered by intellectual properties. Examples of 2D 

and 3D virtual screening methods are similarity or substructure search methods [Willett, 

2005], binary classification methods like recursive partitioning [Rusinko et al., 1999], naïve 

Bayes’ classification [Xia et al., 2004] or Support vector machine based classification 

[Byvatov et al., 2003] and 3D pharmacophore methods [Güner, 1999; Renner & Schneider, 

2004]. In light of this, predictions based on a 2D representation of molecules were shown to 

perform equally well or better than the comparable predictions based on a 3D representation 

[Bajorath, 2002; Zhang & Muegge, 2006]. This might be a consequence of additional degrees 

of freedom in the 3D representation caused by translational, rotational and conformational 

flexibility of the molecules. 4D techniques represent molecular docking methods, which 

employ in addition to the 3D representation of the ligands, the target receptor for selecting 

suitable ligands [Kitchen et al., 2004]. The docking process can be divided into the geometric 

process of posing the conformational representations of a ligand into the binding pocket and 

into measuring the interaction strength (scoring). Whereas solutions for the posing can be 

obtained lying within 2 Å root mean square deviations from the same molecule in the crystal 

structure, the scoring process is not accurate enough for reliable affinity predictions [Warren 

et al., 2006]. Reasons are that scoring functions consider mostly enthalpic effects of ligand 

binding, whereas entropic effects like desolvatation of ligand and receptor are not well 

integrated. Further, both proteins and ligands are flexible and might mutually induce a 

different 3D representation, further increasing the complexity of the problem. Despite of that, 

4D techniques have been successfully employed for virtual screening [Kitchen et al., 2004]. 

A third separation of virtual screening methods is into unsupervised and supervised 

classification or regression methods. The first method classifies compounds only according to 

their inherent properties. Examples are clustering and partitioning methods [Böcker et al., 

2004]. In contrast to that, supervised classification techniques train models based on a 
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predefined classification. The created models are then employed for classifying new 

compounds. A large variety of such classification methods exist. They can be subdivided into 

methods coping with linear or non-linear correlation in the data. The advantage of non-linear 

classification methods is that correlations can be identified which might remain undiscovered 

using a linear classifier. However these methods translate into so called “black box” models 

which are difficult to interpret. Examples of linear classification techniques are recursive 

partitioning [Rusinko et al., 1999] or naïve Bayes’ classification [Xia et al., 2004]. Examples 

of non-linear classification methods are neural networks [Schneider, 2000] or SVM based 

classification [Byvatov et al., 2003]. In various applications SVM were shown to outperform 

other classification methods [e.g. Byvatov et al., 2003, Glick et al., 2006]. At this point it is 

important to consider that all classification models are intended to allow valid predictions 

only for the covered chemical data space. An extrapolation is not possible [Sheridan et al., 

2004; Polanski et al., 2005].  

The effectiveness of a virtual screening method can be assessed in two ways, retrospective 

and prospective. A retrospective application specifies how many known actives are retrieved 

from a database in combination with compounds of unknown activity. In contrast, a 

prospective application is the application to a database of compounds with unknown activity. 

It includes the ordering and experimental testing of the identified hits. Figure 1.2 shows an 

example of a prospective virtual screening campaign. Prior to searching, molecule sets (e.g. 

vendor catalogues) are filtered to either eliminate compounds with undesired properties or 

retain molecules containing privileged substructure motives [Oprea & Matter, 2004]. Since 

different screening techniques and different descriptor sets were shown to identify different 

hit classes [Shanmugasundaram et al. 2005], several such methods can be applied for one 

virtual screening task. The obtained result lists can be filtered to receive compounds bearing 

novel scaffold [Saeh et al., 2005; Renner & Schneider, 2006]. This might include the rejection 

of compounds protected by patents or too similar to known actives. In most applications result 

lists exceed the maximum number of compounds that can be reasonably handled by 

experimental screening. Consequently, the result lists have to be further narrowed down. This 

might be achieved by prioritizing compounds obtained with different methods (ensemble 

prediction) [Svetnik et al., 2005; Breiman, 1996; Merkwirth et al., 2004] or by ‘cherry 

picking’ or by creating a maximum diverse representation of the resulting set [Reynolds et al., 

2001].  
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Figure 1.2 Workflow of a virtual screening campaign. After filtering compounds with undesired properties, 

different virtual screening techniques are applied. Resulting compounds are then filtered according to innovative 

potential. From the remaining list, either an ensemble of all results is selected or a cherry picking is performed or 

a maximum diverse subset is created.   

1.2.2 High-Throughput Screening 

In HTS either the complete compound pool of a pharmaceutical company (full screen) or a 

subset thereof (focused screen) or subsets in sequential order (sequential screen) is 

experimentally tested for affinity towards a certain receptor in an automated, miniaturized and 

cost-efficient way [Schnecke & Boström, 2006]. It is possible is to measure 100,000 and more 

compounds a day to identify novel lead compounds [Hertzberg & Pope, 2000]. The assay is 

set up that a robust separation of hits from non-hits is achieved, which corresponds to a high 

signal to noise or signal to background ratio [Bronson et al., 2001]. HTS has been 

successfully applied in lead identification campaigns [Golebiowski et al., 2001; Golebiowski 

et al., 2003]. It has to be pointed out that HTS is not always the matter of choice. HTS assays 

are cost-intensive; for 1,000,000 million compounds a global cost between $500,000 and 

$1,000,000 is estimated [Davies et al., 2006]. And HTS assays show hit rates below 2.5% 

which is exemplified according to the three HTS assays presented in this work (Table 3.1). 
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In HTS compounds are transferred from a dimethylsulfoxide (DMSO) stock solution into a 

micro-titer assay plate with 384 or 1,536 and more wells per plate. Additional reagents are 

added including target protein in case of a biochemical assay or cells for a cell-based assay. 

Following an incubation period the response signal is measured and converted into a percent 

inhibition or fold stimulation. To cope with measurement errors compounds judged as hits are 

further confirmed by determining the IC50 (EC50) value, i.e. the molar concentration of a 

compound that is required for 50% inhibition (effect). In addition to establishing the 

biological assay itself in HTS, parameters have to be further adopted allowing an automated 

and miniaturized screening. These parameters range from assay criteria like compound 

concentration, enzyme/receptor/cell concentration over assay conditions like incubation time, 

temperature or pH value to screening parameters like appropriate detection (colorimetric, 

fluorescence, luminescence or radiometric signals), readout, liquid handling, plate handling 

and compound handling devices.  

HTS assays have been categorized into homogeneous and heterogeneous assays [Walters & 

Namchuk, 2003]. Heterogeneous assays are multi-step assays including washing, filtration or 

transfer steps. In contrast homogeneous assays perform all steps in one mixture. For HTS the 

latter assays are preferred since they are easier to automate and less cost-intensive. However 

signal-to-background separation is more difficult.  

When setting up a HTS assay it has to be decided whether a cellular assay or a biochemical 

assay has to be performed. Cellular assays employ the complete cells for testing instead of the 

isolated target. They have the advantage, that a functional characterization of the molecules 

can be obtained. Further additional properties like cellular toxicity can be simultaneously 

addressed. Finally, targets requiring additional (unknown) co-activators, co-repressors and 

other factors might not be addressable by biochemical assays [Walters & Namchuk, 2003; 

Johnston & Jonston, 2002]. In contrast, biochemical assays show less data scattering and are 

easier to follow since only one target is assessed. It allows identifying more structural classes 

since screening can be performed at higher concentrations and pharmacokinetic properties are 

not considered [Walters & Namchuk, 2003].  

HTS assays have been categorized according to their measurement principles into 

homogeneous fluorescence methods, assays with radiometric readout and cell-based assays 

[Hertzberg & Pope, 2000]. For each type a variety of commercial solutions are available. For 

an explanation the principles of currently used assays are introduced. A more detailed 

description of assay techniques and their commercial solutions can be found in Seethala and 

Fernandes [Seethala & Fernandes, 2001].  
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Homogeneous fluorescence methods utilize a fluorophore which absorbs a photon. The 

fluorophore is excited form the ground state G to the singlet excited state E (typically in 10-15 

s). By fluorescence emission the fluorophore falls back into the ground state (typically in 10-12 

s). The emission can be non-radiatively transmitted from the donor state E to a second 

acceptor fluorophore by intermolecular long range dipole-dipole coupling. The acceptor 

fluorophore is excited to state E’. The transmission can be direct (typically in 10-9 s) or via an 

intermediate electronic state (typically in micro- or milliseconds). By fluorescence emission 

the second fluorophore falls back into the ground state G’. The process is illustrated as a 

Jablonski diagram in Figure 1.3 [Pope et al., 1999; Clegg, 1995].  

 

E

G

Absorption Emission

Primary fluorophore

Singlet 
excited state

Secondary 
state

E’

G’

Emission

Second fluorophore

Singlet 
excited state

E

G

Absorption Emission

Primary fluorophore

Singlet 
excited state

Secondary 
state

E’

G’

Emission

Second fluorophore

Singlet 
excited state

E

G

Absorption Emission

Primary fluorophore

Singlet 
excited state

Secondary 
state

E’

G’

Emission

Second fluorophore

Singlet 
excited state

 

 

 

 

 

 

 
Figure 1.3 Jablonski diagrams of fluorescence absorption and emission. A primary fluorophore absorbs a photon 

and is excited from the ground state G to the singlet excited state E. By energy emission it falls back to G. The 

singlet excited state can be transformed to a secondary excited state. By intermolecular dipole-dipole coupling 

from the singlet excited state or the secondary state energy can be transferred to a second fluorophore. The 

second fluorophore is excited from the ground state G’ to the singlet excited state E’.  

 

The behaviour of absorption and emission is employed for HTS in three different ways. 

Fluorescence polarization/anisotropy follows the fact that a fluorophore (or a fluorescence-

labelled ligand) which is excited with polarized light emits the light polarized. If the 

fluorophore is free in solution (rotational diffusion) the measured fluorescence appears 

depolarized (unbound ligand). In contrast if the fluorophore is bound to a receptor the 

fluorescence emission is polarized (bound ligand). The amount of polarized light can be 

measured quantitatively [Hertzberg & Pope, 2000; Pope et al., 1999].   

Time resolved energy transfer (TRET, transfer via a second excited state) and fluorescence 

resonance energy transfer (FRET, prompt transfer) are based on the Förster theory stating that 

the efficiency of energy transmission from the excited state of a donor fluorophore to an 

acceptor fluorophore is dependent on the sixth power of the distance R between donor and 

acceptor (Eq. 1.1) [Clegg, 1995].  
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R0 defines the distance between acceptor and donor allowing 50% of the energy to be 

transferred non-radiatively. In practice Lanthanides (e.g. Europium cryptates coupled to a 

ligand) have shown to be promising donor fluorophores whereas allophycocyanin coupled to 

a target is an efficient acceptor fluorophore. Light is absorbed from the donor fluorophore at a 

certain wavelength transferred to the acceptor fluorophore and emitted at another wavelength. 

The maximum distance which can translate into an energy transfer lies in the low nanometre 

range [Seethala & Fernandes, 2001]. Only bound fluorophores are measured quantitatively.  

A third homogeneous fluorescence method is fluorescence correlation spectroscopy. It uses 

confocal detection of small volumes (femtoliter) where only a few fluorescent molecules are 

present in combination with measuring the fluctuation of the emitted fluorescence (i.e. 

deviation from the average fluorescence intensity). By using autocorrelation algorithms 

different properties/behaviours of the fluorophore can be detected. A fluorophore bound to a 

receptor shows a quantifiable different fluorescence fluctuation compared to the unbound 

fluorophore in solution. The method is used in combination with FRET or fluorescence 

polarization [Eggelin et al., 2003; Pope et al., 1999].  

HTS methods with radiometric readout immobilize the target onto a solid surface (e.g. a bead 

or a plate surface) which contains a scintillator (e.g. yttrium silicate). A ligand is labelled with 

a β-emitting radioisotope like 3H or 35S. The mean path length of the β-particle is 1.5 μm or 

66 μm respectively. Scintillation molecules lying in this distance range absorb the energy of 

the β-particle and emit it proportionally as light (chemiluminescence). Consequently, only if 

the molecule is bound to the target it is close enough to the scintillator and energy is 

transferred. If a second molecule is present binding to the target, the radio-labelled ligand is 

displaced and no energy is transferred. Since the emission is proportional to the amount of 

absorbed energy, quantitative displacements can be measured [Seethala, 2001]. An example 

of a scintillator proximity assay is shown in Figure 1.4.  
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Figure 1.4 Example of a homogeneous HTS assay based on radioactive signal detection. 

 

Cell-based HTS assays are performed with a wide spectrum of different methods. Examples 

are the measurement of calcium release by G-protein coupled receptors via a calcium 

sensitive fluorophore, reporter gene assays and confocal imaging platforms for cellular and 

sub-cellular imaging [Hertzberg & Pope, 2000]. Reporter gene assays measure the stimulation 

or the inhibition of a target indirectly by a reporter target like firefly luciferase. The reporter 

needs the outcome of the reaction of the first target to catalyze its own reaction. A 

quantifiable signal like chemiluminescence is measured. The advantage of the method is that 

the signal of the first reaction is amplified which allows miniaturization and separation of 

signal and background [Johnston & Johnston, 2002]. Cellular imaging is an upcoming new 

technology measuring cellular events with confocal microscopy. The target of interest is 

tagged with a fluorophore (e.g. red fluorescent protein) and expressed in a cell. Cellular 

events like agonist-induced translocation of a nuclear hormone receptor into the nucleus, 

inhibition of viral entry into a cell or inhibition of cell growth have been quantified [Lang et 

al., 2006]. By using different fluorophores in one experiment several events can be measured 

simultaneously (e.g. selectivity against a second target) [Lang et al., 2006]. 
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1.2.3 Computational Chemistry in the Lead Identification Phase 
 

A variety of computational methods have become an integral part of the lead identification 

phase. On overview is given in Figure 1.5. Library design is applied with the aim to create 

chemical repositories with suitable pharmacokinetic and drug-like properties [Bleicher et al., 

2003]. Screening libraries are designed to have a mostly homogenous representation of the 

company’s (drug-like) chemical space showing no singletons or drastically overrepresented 

regions [Nilakantan & Nunn, 2003]. Finally by employing e.g. knowledge about privileged 

substructures for a receptor or a receptor family it is tried to create targeted or focused 

libraries [Klabunde & Hessler, 2002; Bissantz et al., 2005]. Summarizing these methods try to 

increase the likelihood of identifying hits in HTS. 
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Figure 1.5 Implication of computational chemistry techniques in the HTS process. 

 

After performing a HTS assay, clustering or partitioning techniques are employed to decipher 

lead series in the screening data [Böcker et al., 2004]. Such series are prioritized according to 

predicted or experimentally determined molecular, pharmacokinetic and pharmacodynamic 

properties. Suitable property ranges have been suggested by Steinmeyer et al. and may 

include a molecular weight between 200 and 500 Dalton, a logarithm of the octanole water 

participation coefficient between -1 and +5, solubility in water above 5 mg/L, number of 

hydrogen bond donors below 5, number of hydrogen bond acceptors below 10, caco2 cell 

permeability above 100 cms-1x10-7, human or rat liver microsome stability between 50% and 

80% resistance after 30 minutes, no measurable cytochrome P450 interaction, 10 fold 

selectivity towards related targets, nanomolar potency, cellular activity and many more 

[Steinmeyer et al., 2006]. Applying these multi-property criteria to the identified leads results 
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in only a few which survive. Consequently there is a strong need for backup series which can 

be identified by mining the HTS data for false-negatives [Harper et al., 2001, Polgàr et al., 

2005, Glick, et al., 2005]. On the other hand the lead profiling is a work- and cost-intense 

process. The number of false-positives entering the profiling should be as low as possible. 

According to this it is tried to derive first simple SAR from HTS assays, helping to mine the 

HTS data for false-positives [Roche et al., 2002, Rishton, 2003].  

 

Mining of False-Positives and False-Negatives in HTS 

The theoretical background for determining false-positives (FP) and false-negatives (FN) in 

HTS has been characterized by Zhang et al. [Zhang et al., 2000]. Activity is measured as 

percent control (% CTL) which corresponds to the degree of inhibition or stimulation. The 

obtained % CTL values for the compounds of a library can be approximated by a function 

f(υ). In a simple case the values are Gaussian distributed (1.2).  
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υ represents a discrete % CTL variable, whereas μs and σs are the corresponding mean and 

standard deviation, respectively.  

A HTS assay is characterized by the measurement error. Assuming a constant error, the 

measurement error can as well be characterized by a Gaussian function f(ω) (1.3). 
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ω represents again a discrete % CTL variable, whereas μc and σc are the mean and standard 

deviation, respectively. In the assay a compound scores as a primary hit if its measured % 

CTL value falls beyond a certain % CTL threshold Θ. The assay is set up allowing Θ to be 

defined as a % CTL value being several σs units away from the average μs.  

A compound is judged as a confirmed hit if in a second measurement a % CTL value is 

determined which is again equal to or beyond Θ. Assuming the assay was defined measuring 

the degree of inhibition, the confirmation probability is estimated by a probability function 

P(υ). This function depends on σs, σc and Θ (Eq. 1.4 and Eq. 1.5),  
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where V is determined according to equation 1.5, 
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That means, that the farer Θ is defined from the mean μs of the population (i.e. σs units) and 

the farer the % CTL value of the primary hit lies from Θ (i.e. σc units) the higher is the 

probability to confirm the primary hit. For the tested library the confirmation rate (CR, i.e. the 

number of confirmed hits divided by the number of primary hits) is proportional to the 

probability of the primary hits to be confirmed multiplied by the frequency of compounds at 

that activity (1.6).  
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The false-positives represent those primary hits which are not confirmed. They are mostly 

referred to as not confirmed hits. The false-positive rate (FPR) for the tested library is given 

by 1.7 

 

FPR = 1- CR.                      (1.7) 

 

False-negatives are all hits which are missed during the primary measurement. The false- 

negative rate (FNR) is defined as the number of missed hits divided by the overall number of 

hits (i.e. missed hits and confirmed hits). It can be estimated according to equation 1.8. 
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where f(υ) and P(υ) are defined according to equations 1.2 and 1.4 respectively. That means, 

that the farer Θ is defined from the mean μs of the population (i.e. σs units) and the farer the % 

CTL value of a non-hit lies from Θ (i.e. σc units), the lower the probability that the non-hit is 

false-negative. Schematically the outcome of a HTS assay is illustrated in Figure 1.6.  
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Figure 1.6 Schematic histogram-like representation of the % CTL values of a HTS screen. σs represents the 

standard deviation over all % CTL values whereas σc represents the standard deviation of the measurement error. 

Θ indicated the % CTL value defining hits from non-hits. The red-shaded area represents the % CTL region 

where both hits and non-hits occur.  

 

The x-axis represents the measured % CTL values whereas the y-axis defines the frequency of 

compounds having the corresponding % CTL value. Two distributions are shown defining 

hits and non-hits. σs, the standard deviation of the measured % CTL values, is indicated by the 

large black arrow above the non-hits. σc, the standard deviation of the measurement error, is 

shown as small arrow below the red shaded region. In addition to that Θ, the % CTL threshold 

defining hits and non-hits is present. The red shaded area marks the % CTL region, where 

both hits and non-hits are present. The size of this region is characterized by σs, σc and Θ and 

defines the number of not confirmed hits and false-negatives. It can significantly contribute to 

the so-called noise in HTS data. At this point it has to be pointed out that noise is not only 

arising from measurement errors, but can be a consequence of systematic false-positives. 

These false-positives have been summarized as reactive compounds, “promiscuous inhibitors” 
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and “frequent hitters” [Rishton, 2003, Rishton, 1997; Roche et al., 2002]. Promiscuous 

inhibitors are “compounds measured as inhibitory hit but turn out to act noncompetitively, 

show no meaningful SAR and little target selectivity” [McGovern et al., 2002]. Frequent 

hitters have been described as non-specific compounds (e.g. promiscuous inhibitors) or as 

compounds interfering with the assay method [Roche et al., 2002]. Systematic false-positives 

can only be identified in follow-up experiments and not by confirmation measurements under 

the same HTS assay conditions.  

From the theoretical consideration about the outcome of a HTS assay it is evident that false-

negatives and not confirmed hits occur. The not confirmed hits are cost - and work - intense in 

follow-up characterization. In contrast, false-negatives represent a loss of chemical 

knowledge. In the worst case this can translate into the loss of a lead structure or lead series. 

Given the few lead series resulting from HTS [Steinmeyer et al., 2006] and the high attrition 

rate in later stages of the drug discovery process [Bleicher et al., 2003] it is worthwhile to 

virtually screen the % CTL data for undiscovered hits. To achieve this, two main strategies 

have been followed; the identification of false-negatives by hit directed nearest neighbour 

searching [Shanmugasundaram et al. 2005] and the identification of false-negatives by 

building classification models [van Rhee et al., 2001; Harper et al., 2001; Engels et al., 2002; 

Glick et al., 2004; Glick et al., 2005]. The first method describes the tested compound library 

according to different descriptors and performs a similarity searching around the identified 

hits using different similarity metrics and coefficients. The second approach calculates a 

classification model predicting hits and non-hits. For that, the tested library is divided into a 

training set and a test set. A model is created based on the training set. The model is then 

applied to the test set in order to identify false-negatives. The challenge is that the 

classification method has to be able to cope with different amounts of noise and with highly 

unbalanced data sets (i.e. mostly non-hits). Three example applications shall be given and the 

conclusions given so far. Harper et al. employed binary kernel discrimination for the creation 

of classification models of a HTS data set with over 100,000 data points and a hit rate of 

2.2%. They utilized randomly selected training sets with 500 and 5000 data points to predict 

false-negatives in the remaining test sets [Harper et al., 2001]. They pointed out that one 

single method cannot fully describe the SAR in HTS data and consequently the application of 

different methods might be necessary [Harper et al., 2001]. In light of this Glick et al. 

compared recursive partitioning, naïve Bayesian classifiers and support vector machines for 

classifying four different HTS assays [Glick et al., 2005]. They employed randomly selected 

training sets with less than 5,000 data points and an average hit rate of 5%. The test sets 
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contained more than 170,000 entries. In the retrospective examination all methods were 

capable of identifying false-negatives. However the support vector machines outperformed 

the other methods [Glick et al., 2005]. Van Rhee et al analyzed a HTS assay with recursive 

partitioning in a similar way. They pointed out that the application of methods which can deal 

with non-linear correlations is important for HTS since different lead classes might be present 

which can represent different (uncorrelated) binding modes for a target [van Rhee et al., 

2001]. From the applications published till now it is clear that virtual screening techniques 

have the capacity to identify false-negatives in HTS data [van Rhee et al., 2001; Harper et al., 

2001; Engels et al., 2002; Glick et al., 2005]. However current applications employ randomly 

selected or maximum diverse training sets with less than 10,000 compounds whereas test sets 

exceed 100,000 entries. This anticipates that only rough global models are created missing a 

large proportion of the false-negatives in prospective applications. The training of such 

models on large sets with more than 10,000 data points has not been shown. Furthermore, to 

the best knowledge of the author, only confirmed hits have been used for the analysis. The 

usage of primary screening data for the prediction of false-negatives has yet to be addressed.  

 

Clustering and Partitioning of HTS Data 

Approaches to decipher lead series in HTS data are partitioning and clustering. Whereas 

clustering techniques group compounds according to distances in the descriptor space, 

partitioning techniques assign descriptor space coordinates to form compound groups. 

Partitioning techniques can be subdivided into supervised and unsupervised algorithms. 

Examples of the latter approach are cell-based partitioning algorithms [Agrafiotis & 

Rassokhin, 2002; Jamois et al., 2000; Pearlman & Smith., 1999; Xue & Bajorath, 2000]. The 

methods divide the descriptor space into hyper-rectangular regions and determine the 

occupancy of the obtained cells. A difficulty of applying the methods is to find an appropriate 

grid resolution. However cell-based approaches are available which help choosing a grid 

resolution by measuring diversity and space coverage of the cells, e.g. by entropy-, Chi2-, or 

fractal approaches [Agrafiotis & Rassokhin, 2002; Jamois et al., 2000]. A supervised 

partitioning technique is recursive partitioning [Young & Hawkins, 1995; Hawkins et al., 

1997; Rusinko et al., 1999]. It builds up a binary decision dendrogram, by recursively 

selecting at each partitioning step the descriptor best separating hits from non-hits. The 

method has become popular for HTS data analysis, as it leads to easily interpretable results; it 

is fast and thus applicable to large data sets [Rusinko et al., 1995]. In this context several 
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extensions of recursive partitioning have been introduced creating multiple binary decision 

dendrograms and providing an ensemble prediction [Svetnik et al., 2005; Breiman, 1996]. 

Data clustering methods are applied to the resulting hits to decipher lead series present in the 

data. Numerous clustering methods exist, and are usually separated into hierarchical methods  

like Ward’s clustering [Ward, 1963, Brown & Martin, 1996] and non-hierarchical methods 

like Jarvis-Patrick [Jarvis & Patrick, 1973; Willett et al., 1986; Doman et al., 1996, Menard et 

al., 1998], k-means [Duda et al., 2001; Holliday et al., 2004], self-organizing maps [Kohonen, 

1982; Schneider & Wrede, 1998; Teckentrup et al., 2004], or Bayesian unsupervised 

clustering [Jain et al., 1999]. In this context the superiority of non-hierarchical Jarvis-Patrick-

clustering over other non-hierarchical clustering methods [Willett et al., 1986] and the 

superiority of hierarchical Ward’s clustering over the Jarvis-Patrick method [Brown & 

Martin, 1996] have been claimed. Despite of these descriptor-based or fingerprint based 

clustering algorithms constantly new methods are being introduced, e.g. to build up a 

phylogeny-like tree employing maximum common substructures [Nicolaou et al., 2002], or to 

cluster a data set according to the frequency of substructure elements [Richon, 2000; Roberts 

et al., 2000] or to cluster a data set according to maximum overlapping substructures [Stahl et 

al., 2005]. 

To prioritize lead series resulting from HTS it is worthwhile to analyze the lead series in 

context of the occurrence of hits and non-hits [Schreyer et al., 2004]. This is illustrated in 

Figure 1.7 where a data set is schematically clustered in a 2D descriptor space. Putative HTS 

hits are shown in red whereas non-hits are shown in blue. Different conclusions can be 

extracted. The cluster with five hits and one non-hit might provide a promising lead series, 

whereas the cluster containing two hits and five non-hits shows a “steep” and less promising 

SAR not tolerating chemical exploration of the compound series. The presence of singleton 

can be judged and it can be distinguished between hits being hit singletons (i.e. hits in clusters 

with non-hits) and true hit singletons (i.e. hits without neighbours) [Stahl & Mauser, 2005]. 

For the second group of singletons no conclusion can be drawn. However chemical 

exploration of the hits might reveal a back-up lead. Finally, simple conclusions can be 

extracted from the clustering whether a hit has a high likelihood to be false-positive (i.e. a hit 

surrounded by non-hits) or a non-hit might be false-negative (i.e. a non-hit surrounded by 

hits). 

When working with large data sets with more than several thousand entries a hierarchical 

clustering is desirable since it creates an interpretable relationship between the clusters. It 

allows navigating in the data and provides both a coarse-grained and fine-grained view on the 
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data. The limitation of most current hierarchical clustering algorithms is that they have at least 

squared running time and memory requirement, which renders them unfeasible for data sets 

exceeding 20,000 entries and thus for HTS data. Only recently first algorithms have been 

introduced allowing such large scale data analyses [Barnard et al., 2004; Sultan et al., 2002]. 
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Figure 1.7 Clustering of a data set comprising hits (red) and non-hits (blue) in two dimensions. Clusters are 

indicated by black circles. Different types of information can be extracted. (i) A cluster containing many hits 

might provide an interesting lead series. (ii) A cluster with only a few hits and many non-hits might indicate a 

steep SAR which does not permit chemical exploration of the compound series. (iii) Data points can be judged as 

singletons. (iv) A hit in a cluster with many non-hits might be false-positive. (v) A non-hit surrounded by many 

hits might be false-negative.  

 

In the present work a clustering based approach was developed to analyze primary screening 

data of HTS assays where more than 500,000 molecules have been tested. At first the 

complete data set was clustered and later the % CTL values were assigned to the compounds 

in the clusters. The composition of the clusters with hits and non-hits was employed to extract 

rules identifying false-negatives, not confirmed hits, singletons and clusters enriched with 

hits. The approach was retrospectively evaluated according to identifying false-negatives and 

not confirmed hits in the primary screening data of three different HTS assays. One was 

involved in inhibiting the transforming growth factor-β type I receptor. In a second step the 

clustering based approach was applied to a prospective virtual screen to identify novel 

dopamine D3 receptor ligands. The obtained results were compared to other virtual screening 

techniques namely pharmacophore based screening, docking and regression based activity 

prediction. In 1.3 and 1.4 both, transforming growth factor-β type I receptor inhibitors and 

dopamine D3 receptor ligands are introduced.  
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1.3 Transforming Growth Factor-β Type I Receptor Inhibitors 

1.3.1 Biological Relevance 
 

The transforming growth factor (TGF)-β receptor family comprises transmembrane receptors 

with cytoplasmic serine and threonine kinase activity [Kraus, 2001]. TGF-βs have a key-

impact on cell proliferation, differentiation and migration of epithelial, endothelial and 

haematopoetic cell lineages thereby controlling the establishment of the body plan and tissue 

differentiation [Narasimha & Leptin, 2000]. Despite the tightly regulated role during 

development, the mediation of immune-responses, wound healing and hematopoesis [Ge et 

al., 2004], TGF-βs are known tumour suppressors, tumour promoters [Subramanian et al., 

2004; Yingling et al., 2004; Arteaga, 2006] and responsible for various types of fibroses upon 

over-stimulation of the immune system [Kalluri & Neilson, 2003; Flanders, 2004; Blobe et 

al., 2000]. Figure 1.8 shows the assumed main TGF-β based signal transduction pathway. 
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Figure 1.8 Schematic pathway of TGF-β signal transduction. TGF-β binds as dimer to the TGF-β type II 

receptor. The type II receptor dimerizes with TGF-β type I receptor, phosphorylates the Type I receptor and 

converts it into the active form. The type I receptor phosphorylates either SMAD-2 or  SMAD-3 proteins, which 

form as a dimer together with SMAD-4 the activated SMAD complex. The SMAD complex binds to specific 

promoter elements and induces or represses transcription in combination with additional co-activators or co-

repressors.  
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One of the members of the TGF-β family (cytokines comprising TGF-βs, bone morphogenetic 

proteins and activins) binds as dimer to the TGF-β type II receptor on the extra-cellular side. 

Subsequently the TGF-β type I receptor ALK5 (activin-like kinase) is recruited into the 

complex forming a heterotetrameric complex of two type I and two type II receptors. ALK5 is 

phosphorylated by the type II receptor at a glycine-serine region on the cytoplasmic side and 

converted into the active state. The C-terminal phosphorylation translates into signal 

transduction from ALK5 to the receptor associated SMAD (R-SMAD) proteins 2 or 3 [Huse et 

al., 2001]. The phosphorylated and thus activated R-SMADs oligomerize with SMAD4 

whereby two R-SMADs interact with one SMAD4 protein. The activated SMAD complex is 

translocated into the nucleus where it sequence-specifically binds to promotor elements, 

interacts with additional co-activators or co-repressors and induces or represses context-

dependent gene transcription. TGF-β was also shown to activate other SMAD independent 

signalling cascades including the p38-MAPK pathways. The simple TGF-β signalling cascade 

is transformed into a complex cell-type, time and context dependent differential gene 

expression profile based on the levels of expression of the TGF-β receptor complex, the 

SMAD proteins, cooperating transcription factors and the activation state of competing 

signalling cascades [Krauss, 2001; Derynck & Zhang, 2003; Yingling et al., 2004, Massague 

& Wotton, 2000]. 

1.3.2 Disease Implication of the TGF-β Signalling Cascade 
 

The TGF-β signalling cascade is implicated in two types of diseases, cancer [Arteaga, 2006] 

and fibrosis [Flanders, 2004]. Fibrosis results either from an over-stimulated immune 

response in the wound healing processes of injured tissue or from chronic inflammation. As a 

consequence, tissue is loosing elasticity, which ultimately can lead to loss of function of 

corresponding inner organs like lung, liver or kidney. Currently there is no effective treatment 

of fibrosis available [Sauer et al., 2005]. The TGF-β signalling cascade employing SMAD3 as 

a cellular transcription factor is one key pathway controlling the inflammation or the wound 

healing processes. It is implicated in recruiting inflammatory cells and fibroblasts into the 

injured tissue and in stimulating the recruited cells to produce and accumulate extracellular 

matrix proteins (e.g. different types of collagens, laminine or nectine). Further the 

proliferation of fibroblasts and their transdifferentiation into myo-fibroblasts as well as 

epithelia-to-mesenchymal transition (EMT) of epithelial cells into fibroblasts is stimulated by 

TGF-β. This allows the accumulation of fibrotic tissue [Flanders, 2004].  
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TGF-β has a dual role in cancer biology. In animal models it was shown to act both as a 

tumour suppressor and as a tumour promoter [e.g. Siegel et al., 2003; Kang et al., 2005]. 

Since TGF-β is a strong inhibitor of cell proliferation of epithelial, endothelial and 

hematopoetic cell lineages it explains its role as early stages tumour suppressor [Yingling et 

al., 2004]. However in later stages of tumourgenesis TGF-β was shown to be implicated into 

the promotion of EMT. This allows cells to adopt mesenchymal characteristics, become 

motile, leave the epithelium and form metastasis [Kalluri & Neilson, 2003; Kang & Massage, 

2004]. Further TGF-β acts autocrine and paracrine on the progression of a tumour after EMT 

by inducing angiogenesis, facilitating tumour cell invasion and/or metastasis, and inhibiting 

anti-tumour immunity [Ge et al., 2004]. The dual role of TGF-β in cancer requires 

establishing a therapeutic index controlling the point where the beneficial effect of 

antagonizing TGF-β signalling and thereby altering tumour progression overwhelms its 

tumour suppressive role [Arteaga, 2006; Yingling et al., 2004]. 

For the treatment of cancer or fibrosis by inhibiting the TGF-β cascade two strategies exists. 

One is the creation of NBEs like monoclonal anti-bodies or anti-sense RNA targeting one of 

the TGF-β cytokines. At the moment several NBEs are in clinical phase I-III, seem to be well 

tolerated and show promising results [Yingling et al., 2004]. Given the great success of the c-

Ableson kinase inhibitor Gleevec in the treatment of chronic myelogenous leukaemia 

[Capdeville et al., 2002], a second strategy is the creation of small organic molecule inhibitors 

of TGF-β type I receptor (ALK-5) kinase. Since all kinase enzymes are targeted via their 

adenosine tri-phosphate (ATP) binding site, for the development of novel kinase inhibitors 

specificity has to be addressed as early as possible.  

Researchers at GlaxoSmithKline, Lilly and Biogen have investigated in identifying selective 

inhibitors for ALK-5 targeting the ATP binding site [Singh et al., 2004; Yingling et al., 2004]. 

In a HTS campaign at GlaxoSmithKline imidazole derivatives were identified as potent 

inhibitors. Since these inhibitors had been originally designed as p38 kinase inhibitors the 

imidazole compounds were further optimized towards the triarylimidazole derivative 1 (IC50 

= 94 nM) showing no measurable p38 binding [Callahan et al., 2001].  

Cellular activity of the closely related compound 2 (IC50 = 47 nM) was obtained and a 

measurable binding to other kinase enzymes was only detected for the ALK kinase enzymes 

ALK-4 and ALK-7 [Byfield et al., 2004]. In presumably the same HTS campaign two 

additional structural classes resulted and were optimized towards the pyrazole derivative 3 

(IC50 = 25 nM) and the thiazole derivative 4 (IC50 = 23 nM). Both compounds show a 

comparably high cellular activity and especially 3 was proven to have no measurable affinity 
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towards a panel of different kinase enzymes [Gellibert et al., 2004]. A comparable pyrazole 

derivative was identified in a virtual screening campaign at Biogen leading to the ATP 

competitive inhibitor 5 (IC50 of 27 nM) [Singh et al., 2003]. Furthermore the pyrazole 

containing compounds 6 [Sawyer et al., 2003] and 7 [Li et al., 2006] were identified and 

further optimized at Lilly by virtual screening and HTS, respectively. Both compounds show 

cellular activity in the low nanomolar range and selectivity towards p38. For compound 7, 

selectivity was further achieved towards Mixed Lineage Kinase 7 [Li et al., 2006]. The crystal 

structures of 3, 5 and 6 in complex with ALK-5 have been solved and a comparable binding 

behaviour was obtained [Sing et al., 2003; Gellibert et al., 2004]. Figure 1.9 exemplifies the 

co-crystallization of 5 with ALK-5 (PDB code: 1PY5). The distal nitrogen in the quinoline 

moiety acts as hydrogen bond acceptor for the backbone nitrogen of histidine 283 in the ATP 

binding site. Further, one of the nitrogens of the pyrazole structure lies in close proximity to 

lysine 232 in the active site. The second nitrogen forms a hydrogen bond to the carboxyl 

group in aspartic acid 351. Finally the 2-pyridyl nitrogen forms a water-mediated network of 

hydrogen bonds to glutamic acid 245, aspartic acid 351 and tyrosine 249 in form of a 

tetrahedral complex. Despite of the presented compounds inhibiting ALK-5, additional patens 

have been filed [Yingling et al., 2004]. However until now only limited literature data is 

available for these compounds [Uhl et al., 2004]. 
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Chart 1.1 ALK-5 inhibitors targeting the ATP binding site. 
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ALK-5 is implicated in two severe and deathly diseases, cancer and fibrosis. Until present no 

drugs for fibroses are on the market. Consequently inhibiting ALK-5 is a worthwhile strategy 

for targeting both fibrosis and cancer. All current inhibitors show a strikingly similar scaffold 

and it is not clear whether they will make it on the market. Hence the identification of novel 

inhibitors by VS or HTS is important. Since kinase inhibitors are targeting the common ATP 

binding site, it is a problem to achieve specificity. This makes the identification of new 

backup series e.g. by mining false-negatives in HTS even more important. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Complex of 5 and ALK-5 (pdb: 1PY5). Hydrogen bonds are present between the quinoline nitrogen 

and the backbone NH of histidine 283 (His 283), one of the pyrazole nitrogens and aspartic acid 351 (Asp 351) 

and a water mediated network between 2-pyridyl and Asp 351, tyrosine 249 (Tyr 249) and glutamic acid (Glu 

245). Further close proximity of the ligand to lysine 232 (Lys 232) was observed. 
  

1.4 Dopamine D3 Receptor Ligands 

G-protein-coupled receptors (GPCRs) represent the largest family of membrane-embedded 

signalling receptors and play a role in a variety of physiological and pathophysiological 

processes [Hill, 2006; Klabunde & Evers, 2005]. As a common motive, they share seven 

trans-membrane (TM) helices as well as the intra-cellular signal transduction to one of the 

heterotrimeric G-proteins. GPCRs can mediate both environmental stimuli such as order, light 

and taste and internal stimuli by recognizing a diverse set of ligands comprising ions, biogenic 

amines, nucleosides, peptides, proteins and even light [Becker et al., 2003]. Given the 

presence of different isoforms of the three G-protein subunits, Gα, β and γ, the occurrence of 
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different co-activators and co-repressors in a cell and the co-stimulation of additional 

signalling pathways a cell-type-, time- and context-specific biological response may emerge 

[Ellis, 2004, Malbon, 2005]. Approximately 50% of all launched drugs target only ~30 

members of the GPCR family with annual worldwide sales exceeding US $30 billion in 2001 

[Klabunde & Hessler, 2002, Wise et al., 2002]. The presence of 210 additional receptors for 

which the natural ligand is known and 160 ‘orphan receptors’ identified by the human 

genome project [Venter et al., 2001] in combination with an increasing evidence showing 

their implication in a wide variety of diseases renders this protein family to one of the most 

important pharmaceutical targets [Becker et al., 2003]. 

Based on the similarity of the amino acid sequences, three main subfamilies of GPCRs 

(rhodopsin-like (A), glucagon-receptor-like (B) and the metabotropic glutamate receptors (C)) 

are known with family A being the largest, functionally and structurally best characterized. 

One subfamily of the rhodopsin-like family forms the biogenic amine binding GPCRs. Within 

this subfamily the dopamine receptors are potent targets for the treatment of schizophrenia, 

Parkinson’s disease and drug abuse [Joyce, 2001]. Due to the distinct location of dopamine D3 

receptors in limbic brain areas, the dopamine D3 receptor is assumed to play a pivotal role in 

these neurological and psychiatric disorders. Recognition of high affine and selective ligands 

employing different types of lead identification strategies for this dopamine receptor subtype 

could improve the therapeutical treatment with less adverse side effects [Schwartz et al., 

2000]. 

1.4.1 The Dopaminergic Pathways 
 
Dopamine (DA) (8, 2-(3,4-dihydroxyphenyl)ethanamine, Chart 1.2) [Carlsson et al., 1958] is 

the predominant catecholamine neurotransmitter in the mammalian central nervous system 

(CNS). Dopamine is biosynthesized via its precursor levodopa (9, L-3,4-

dihydroxyphenylalanine, Chart 1.2) in the CNS by three major groups of neurons present in 

the midbrain and in the hypothalamus [Elsworth & Roth, 1997].  
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The first group of neurons in the midbrain originates from the retrorubral area (A8) whereas 

the second and third groups originate from the substantia nigra pars compacta (A9) and the 

ventral tegmental area (A10), respectively. Neurons located in the hypothalamus are 

nominated as the A12 group in the nucleus infundibularis. According to the projection of the 

dopaminergic axons four different dopaminergic pathways with distinct functionality are 

distinguished. The nigrostriatal pathway comprises neurons originating from the substantia 

nigra pars compacta and retrorubral area projecting to the dorsal striatum. It is implicated in 

the control of movement and in Parkinson’s disease [Smith& Kieval, 2000]. Motivated 

behaviour results from the mesolimbic pathway, where neurons originate from the ventral 

tegmental area and project to the limbic areas of the nucleus accumbens, the corpus 

amygdaloideum, and the hippocampus [Diaz et al., 2000]. In the mesocortical pathway the 

neurons from the ventral tegmental area project to cortical areas of the medial, prefrontal, 

cingulate and entorhinal cortex responsible for aspects of learning and memory. Both latter 

pathways are linked to reward and schizophrenia [Diaz et al., 2000, Sokoloff et al., 2006]. 

Finally, the tuberoinfundibular pathway originating from the hypothalamus projects to the 

eminentia mediana and the intermediate lobe of the pituitary. It is implicated in inhibiting the 

prolactin synthesis [Smith & Kieval, 2000]. An overview of the pathways is shown in Figure 

1.10. 
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Figure 1.10 Dopaminergic pathways in the mammalian brain. 
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Dopamine mediates a variety of functions by signalling through the dopamine receptor family 

of GPCRs. This includes locomotor activity, cognition, emotion, motivated behaviour, 

positive reinforcement, food intake and endocrine regulation [Missale et al., 1998; Nieoullon 

& Coquerel, 2003]. Dysregulation of dopaminergic transmission is implicated in neurological 

and psychiatric disorders such as Parkinson’s disease, schizophrenia, drug addiction, 

Huntington’s disease, attention deficit hyperactivity disorder and Tourette syndrome [LeFoll 

et al., 2005; Joyce, 2001; Emilien et al., 1999]. The dopamine receptors are classified into two 

different subfamilies, the D1-like receptors comprising dopamine D1 and D5 receptors and the 

D2-like receptors consisting of dopamine D2, D3 and D4 receptors [Missale et al., 1998]. The 

receptors within one subfamily are characterized by a high sequence similarity of 82% 

between dopamine D1 and D5 receptors, 76% between dopamine D2 and D3 receptors and 54% 

between dopamine D2 and D4 receptors in the TM domains [Marsden, 2006]. This renders the 

development of selective ligands for one of the receptors a challenge.  

The dopamine D1-like receptors couple functionally to Gαs/Gαolf proteins, activate adenylyl 

cyclase and increase the production of the second messenger cyclic adenosine-3´,5´-

monophosphate (cAMP) whereas the dopamine D2-like receptors couple to Gαi/o, inhibit 

adenylyl cyclase and down-regulate the cAMP concentration [Neve et al., 2004]. It has been 

recognized that dopamine D2 receptors occur with high density in the caudate putamen and 

the substantia nigra, responsible for motor activity whereas the dopamine D3 receptors are 

predominately present in the ventral striatum (Limbic system) responsible for cognition and 

motivation [Levesque et al., 1992; Gurevich & Joyce, 1999]. Consequently dopamine D3 

receptors play a pivotal role in pathological processes including schizophrenia, drug abuse 

and Parkinson’s disease whereas dopamine D2 receptors, besides their therapeutic benefit in 

Parkinson’s disease, are connected to the occurrence of adverse side effects [Schwartz et al., 

2000].  

In the periphery dopamine was shown to modulate cardiovascular and renal functions, 

hormone release, vascular tone and gastrointestinal motility mediating its effect through 

dopamine D1, D2, D3, D4 and D5 receptors. 

1.4.2 Therapeutic Relevance of Selective Dopamine D3 Receptors 
 

As mentioned above, an imbalance of the dopaminergic system is implicated in several 

neurological and psychiatric disorders. Mainly Parkinson’s disease, schizophrenia and 

reinforcing effects of drug abuse are of current interest for developing selective dopamine D3 

receptor ligands.  The mental disorder schizophrenia is characterized by positive symptoms 
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including hallucinations, delusions, and bizarre behaviour, and negative symptoms such as 

diminished affect, loss of motivation and the inability to experience pleasure. The 

“hyperdopaminergic hypothesis” of schizophrenia assumes that the positive symptoms result 

from an overrepresentation of dopamine in the limbic system [Willner, 1997]. Non-selective 

antagonists of dopamine D2 receptors (i.e. first generation antipsychotic drugs), such as 

haloperidol, are capable of releasing the positive symptoms. However the antagonism in the 

dorsal striatum results in extrapyramidal side-effect. Since the dopamine D3 receptor is highly 

concentrated in the limbic area of the striatum, which plays a key role in schizophrenia, 

selective dopamine D3 receptor antagonists are assumed to possess antipsychotic effects and 

might prevent extrapyramidal side-effects [Leriche et al., 2004].  

Parkinson’s disease is characterized by a progressive loss of dopaminergic neuron in the 

substantia nigra pars compacta. It translates into movement disorders like rigidity, tremor, 

akinesia or bradykinesia. Further progression of the disease involves the mesolimbic 

dopaminergic system and results in learning and memory deficiencies. The key drugs in the 

treatment of Parkinson’s disease are either the dopamine precursor levodopa 9 (chart 1.2) or 

dopamine D3-receptor preferring agonists such as pramipexole (Table 1.1) [Mierau et al., 

1995; Kushida, 2006]. Despite the immediate benefit of levodopa it was recognized that the 

long-term administration results in dyskinesia [Bezard et al., 2001]. However the dyskinesia is 

less strong for the dopamine agonists compared to levodopa [Jenner, 2003]. Further it was 

shown that the co-administration of dopamine D3 receptor partial agonists and levodopa 

relieves the symptoms of dyskinesia while maintaining the clinical benefit [Bezard et al., 

2003]. Consequently the development of both selective dopamine D3 receptor agonists and 

partial agonists is of great interest. 

Abused drugs like cocaine or heroin produce reward and reinforcement effects and may lead 

to addictive effects. Especially for cocaine no pharmacological treatment is available yet. It 

was shown that dopamine levels are elevated in the nucleus accumbens upon consumption of 

a drug [Newman et al., 2005]. This region is implicated in reward and reinforcement effects 

of a drug. Further dopamine D3 receptor mRNA levels were shown to be higher in human 

post-mortem studies of brains obtained from cocaine addicts compared to non-addicts of the 

same age [Segal et al., 1997]. Taken together, results indicate that dopamine D3 receptor 

antagonists or partial agonists might offer a therapeutic option for the treatment of drug abuse. 

Current animal models confirm this hypothesis. However proof of concept in humans is still 

missing [Newman et al., 2005].  
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1.4.3 Dopamine D3 Receptor Agonists, Partial Agonists and Antagonists 
 

Dopamine D3 receptors are assumed to possess a high therapeutic potential for the treatment 

of neuropsychiatric disorders [Sokoloff, 2006]. A difficulty in the development of these 

ligands is to achieve selectivity against its homologue, the dopamine D2 receptor, and against 

other (clinically relevant) receptors of the aminergic GPCR family [Klabunde & Evers, 2005]. 

Since no 3D structure of the dopamine receptor or homologue receptors is known a structure-

based drug design is not possible. Ligands have to be optimized to penetrate the blood-brain 

barrier and exert their action in the specific brain areas like the nucleus accumbens.  

Despite of these difficulties selective agonists, partial agonists and antagonists have been 

identified. Some of the partial agonists and antagonists have entered the clinical phases 

whereas a few agonists are already on the market. A representative subset of compounds with 

corresponding affinities at the dopamine receptors D1-D5 is shown in Table 1.1.  

The benzthiazole derivative Pramipexole [Mierau et al., 1995] is a dopamine receptor agonist 

and is successfully applied for the treatment of symptoms of Parkinson’s disease and restless 

legs syndrome. It shows highest affinity for dopamine D3 receptors and only low affinity at 

adrenoceptors and 5-HT receptors [Mierau et al., 1995; Kushida, 2006].  

The selective partial agonists and antagonists, BP 897 [Pilla et al., 1999], S33084 [DuBuffet 

et al., 1999], SB 277011 [Stemp et al., 2000], NGB 2904 [Yuan et al., 1998], ST 198 [Bezard 

et. 2003], FAUC 365 [Bettinetti et al., 2002] (Table 1.1), possess high affinities for the human 

dopamine D3 receptors in the low nanomolar or even subnanomolar range. The author stresses 

to mention that for the same ligand, depending on the assay type, the assay conditions and 

origin of cloning of dopamine receptors from various species, different selectivity ratios 

against dopamine D2 receptors have been reported. They ranged from low 16-fold selectivity 

to 7200-fold [Newman et al., 2005]. According to this the measured Ki values and selectivity 

ratios have to be treated with care. Nevertheless clinical data and results obtained from animal 

models indicate that these compounds fulfil their promises for the treatment of the above 

mentioned diseases [Joyce and Millan, 2005].  

The identified potent and selective dopamine D3 receptor antagonists and partial agonists 

contain strikingly similar scaffolds and only a few crucial modifications have been identified 

being tolerated at dopamine D3 receptors but not at dopamine D2 receptors. The ligands can 

be divided into four different sections, an aryl residue, an amide moiety, a spacer region and a 

positively charged amine residue (Figure 1.11). 
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Table 1.1 Representative subset of dopamine receptor agonists, partial agonists and antagonists together with 

their corresponding affinities at dopamine receptors D1-D5.  

Ki [nM] Compound  D1 D2 D3 D4 D5 
Agonist   

Pramipexole 
(10)1 
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1 Mierau, J. et al., [Mierau et al., 1995], 2 Sokoloff et al. [Sokoloff et al., 2006], 3 Bettinetti et al. [Bettinetti et al., 

2002]. 
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Binding data suggest that a distance of 6 to 7 Å between the amide oxygen and the positively 

charged nitrogen is responsible for D3 selectivity over D2 [Hackling et al., 2003]. The spacer 

region has to be extended and linear however aromatic and hydrophobic substitutions are 

tolerated in the spacer regions [Hackling et al., 2003]. The SAR of the amine rest is “steep” 

since only azacyclic aryl ring systems with specific substitution pattern (e.g. 2,3-dichloro-

phenyl, 2-methoxy-phenyl or p-cyano-phenyl) are tolerated and provide selectivity. 

Favourable groups for the aryl residue are extended by bi- and tricyclic aryl rings or 

conjugated olefinic phenyl rings. Substitutions of the aryl ring system with heteroatoms are, to 

a limited extend, possible [Newman et al., 2005]. 
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Figure 1.11 SAR of dopamine D3 receptor antagonists. As example structure BP 897 is shown separated 

according to two schemes: (i) a section binding to the antagonist part of the binding pocket and a section binding 

to the agonist part. (ii) Four different sections consisting of an aryl group, an amide moiety, a spacer region and 

an amine rest. Favourable pharmacophore points (aromatic or hydrophobic = yellow, acceptor = red, cationic or 

donor = blue) were projected onto BP 897. 

 

The lack of structural diversity within the ligands and the need to obtain more selective 

dopamine D3 receptor ligands with favourable pharmacokinetic properties renders this 

receptor an ongoing challenge and worthwhile example for the application of various kinds of 

computational methods that help explain the SAR within the molecules and identify novel 

ligands. One strategy was to model the 3D structure of the dopamine D2 like receptors based 

on the crystal structure of rhodopsin. The models were later employed for virtual screening 

and for explaining the interaction of the ligands with the receptor. It was recognized that 

different models were necessary to explain the SAR of agonist and antagonists [Bissantz et 

al., 2003; Klabunde & Evers, 2005]. Further, a conserved binding pocket was proposed either 

within the D2 like receptors [Boeckler et al., 2005] or the catecholamine receptors [Xhaard et 

al., 2006]. According to Klabunde and Evers [Klabunde & Evers, 2005], dopamine D2 
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receptors form the agonist binding pocket with trans-membrane helices 3, 5 and 6, whereas 

helices 1, 2 and 7 were suggested to harbour a lipophilic binding site for antagonists. As a key 

interaction an aspartic acid in trans-membrane helix 3 (Asp 110) was identified in all studies 

[Xhaard et al., 2006; Boeckler et al., 2005; Varady et al., 2003]. The created homology 

models were successfully applied in context of virtual screening and significant enrichment in 

dopamine D3 receptor ligands was obtained [Varady et al., 2003].  

Various ligand based methods were applied in this context. Pharmacophore models were 

created for dopamine D2 and D3 receptors. A distance of 6 to 7 Å between the amide oxygen 

and the positively charged nitrogen was employed for D3 selectivity over D2 [Hackling et al., 

2003]. CoMFA and CoMSIA methods were employed to help transform the 3D homology 

model from the antagonist to the agonist state [Boeckler et al., 2005]. In addition, 3D QSAR 

was applied to identify enantiomeric representations of a set of dopamine D3 receptor agonists 

and explain important features within the molecules [Elsner et al., 2005]. Finally, an active 

learning approach using iterative application of SVMs was successfully employed to identify 

novel dopamine D3 receptor antagonists [Byvatov et al., 2005]. 
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1.5 Scope of the Thesis 
 

The scope of the thesis was to identify SAR in the primary screening data of HTS assays. The 

strategy was to hierarchically cluster the compounds, assign the primary screening data to the 

clusters and employ the clusters in combination with their relationship to each other to derive 

models helping to identify false-negatives, not confirmed hits, singletons and clusters 

enriched with hits. The thesis was performed in a four-step process comprising (i) the 

development of the clustering approach, (ii) the development of a graphical user interface for 

working with the clustering results, (iii) the retrospective application of the clustering 

approach to primary screening data of HTS assays and (iv) the prospective application of the 

clustering approach in combination with alternative chemoinformatic methods. 

i) Primary screening HTS data are large. Consequently, the aim was to develop a new and 

cost-efficient hierarchical clustering algorithm, namely NIPALSTREE being able to cope 

with large data sets. The second aim was to adopt a known cost-efficient hierarchical 

clustering algorithm, the hierarchical k-means algorithm. The goal was to evaluate both 

algorithms according to small data sets and compare both clustering algorithms with each 

other in context of retrospective virtual screening applications. 

ii) Clustering large data sets translates into large result lists. This requires new ways of data 

handling. The aim was to develop a graphical user interface, which allows the display of and 

the navigation in the data. The second aim was to enrich the graphical user interface with 

functionalities helping analyse SAR in terminal clusters and singletons. The third aim was to 

incorporate results of a variety of HTS assays into the clusters and provide tools dealing with 

hit enrichment, selectivity and specificity. 

iii) The primary screening data of three HTS assays were provided for a retrospective 

analysis. One of the assays was performed for finding novel inhibitors of the TGF-β receptor 

kinase type I. The aim was to analyze the clustering approach for identifying not confirmed 

hits and false-negatives in the data. To minimize false-positives, the aim was to combine the 

clustering-based data mining with a supervised classification. 

iv) To identify novel dopamine D3 receptor ligands the goal was to apply the clustering 

approach in a prospective virtual screen. The aim was to extend the approach by combining 

results with docking, pharmacophore-based modelling and regression-based activity 

prediction. The results of each of the methods should be analyzed for the capacity of helping 

understand the SAR of the newly identified hits. 
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2 Experimental Techniques 
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2.1 High Throughput Screening Techniques 
 

HTS comprise highly automated techniques measuring several thousands up to a few million 

compounds for their binding capacity at a certain target protein. These techniques follow a 

common scheme: compounds (or natural product mixtures) are transferred from a 

dimethylsulfoxide (DMSO) stock solution into a microtiter assay plate (384 wells per plate to 

1536 wells per plate). Additional reagents are added including target protein (biochemical 

assay) or cells (cell-based assay). Following an incubation period the (usually amplified) 

response signal is measured and converted in a percent inhibition or fold stimulation. Only 

single point measurements are performed with one defined compound concentration and the 

biological response is projected in a narrow data range between 0% and 100%. A user-defined 

% CTL threshold is employed to define hits and non-hits. The hits are then confirmed in 

additional two-point measurements employing the same assay [Bajorath, 2004].  

Establishing a HTS assays is a multi-property optimization in terms of compound 

concentration, enzyme/receptor/cell concentration and additional assay conditions like 

incubation time, temperature or pH value. The quality of a HTS assay is determined by its 

ability to distinguish hits from non-hits, which corresponds to a high signal to noise ratio 

[Oldenburg et al., 2001]. A widely accepted quality measure is the Z’ factor (Eq. 2.1). 
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with σsignal and σbackground being standard deviations for signal (positive control e.g. uninhibited 

enzyme reaction) and background (negative control e.g. substrate without receptor) and Msignal 

and Mbackground the corresponding mean values. Z’ is projected between 0 and 1 with higher 

values determining a higher quality [Zhang et al., 1999].  

2.1.1 TGF-β Type I Receptor 
 
The HTS assay was performed from the group headed by Dr. Frank Büttner in the Department 

of Lead Identification at Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 

Germany. The low-volume 384-well plates (white) were purchased from Greiner [Greiner 

Bio-one Inc., Longwood, USA]. The kinase-Glo reagent was purchased from Promega 

[Promega Corporation, Madison, USA], adenosine-3-phosphate (ATP) was from Sigma 

[Sigma-Aldrich, Taufkirchen, Germany]. The His-tagged transforming growth factor beta 
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type I receptor (His-TGF-bR1.WT-Xa162-end) was expressed in a Baculo virus system and 

prepared in the laboratory of Dr. John Park Dept. of Pulmonary Research (Boehringer 

Ingelheim Pharma GmbH & Co. KG, Biberach, Germany). The protein was obtained frozen 

and stored at -80°. All other materials were of highest grade commercially available. 

In the 384-well plates, 3 μl of the test compound diluted in water (bidest., final concentration 

of compound 5 μg/ml; DMSO 1%) were mixed with 3 μl of the TGF-β type I receptor (diluted 

to achieve a final concentration of 0.17µg/ml in buffer 1) followed by an incubation of 15 

minutes at room temperature. After this step, 3 µl of ATP (diluted in buffer 2, final 200 nM) 

were added. The plates were then incubated at room temperature for 4 h. After this step, 9 µl 

of the Kinase-Glo Reagent were added, followed by an incubation time of 15 minutes at room 

temperature. After this incubation period, the plates were counted in a LEADseeker device 

[Amersham Biosciences, Freiburg, Germany]. 

 

Assay buffer 1:   Assay buffer 2: 

50 mM Tris     50 mM Tris 

50 mM NaCl    1 mM Na2VO4 

0.1mM EGTA    0.1mM EGTA 

1 mM DTT     1 mM DTT 

10% Glycerine   1mM MgCl2 

0.1% Triton X-100   10mM MnCl2 

adjusted to pH 7.5   adjusted to pH 7.5 

 

Each assay microtitter plate contained wells without TGF-β type I receptor (high values, 

100% CTL) and wells only with TGF-β type I receptor (low values, 0% CTL). The analysis of 

the data was performed by calculation of the percentage of ATP consumption of TGF-β type I 

receptor in the presence of the test compound (sample) compared to the consumption of ATP 

in the absence of enzyme (Eq. 2.2). 
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with LSC being LEADseeker counts. An inhibitor of the TGF-β type I receptor kinase will 

give values between 100% CTL (no inhibition) and 0% CTL (complete inhibition). Values of 
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more than 100% CTL are normally related to compound-specific physico-chemical properties 

(e.g. solubility, fluorescence etc.) or indirect biochemical effects such as allosteric regulation.  

The assay principle is as follows: TGF-β type I receptor kinase reaction will consume ATP. 

The Beetle Luciferase in the kinase-Glo Reagent needs as well ATP for its activity. An active 

kinase translates in a low Luciferase signal since less ATP is left for the Luciferase reaction. 

An inactive (inhibited) kinase translates in a high Luciferase signal since no ATP was 

consumed by the kinase [Singh et al., 2004]. 

 

2.2 Dopamine Receptor Binding Studies 
 
Dopamine receptor binding studies were performed by Britta Sasse at the Johann Wolfgang 

Goethe-University, Frankfurt, Germany. CHO-D2(short) cells, expressing the recombinant 

human D2(short) dopamine receptor gene [Hayes et al., 1992], were grown in Dulbecco`s 

modified Eagle`s medium/F12 (1:1) mixture supplemented with 2 mM glutamine, 10% fetal 

bovine serum, and 100 I.U./mL penicillin G, 100 µg/mL streptomycin in an atmosphere of 5% 

CO2 at 37°C [GibcoTM, Karlsruhe, Germany]. Human dopamine D3 receptors stably expressed 

in CHO cells as previously described by Sokoloff et al. [Sokoloff et al., 1992] were used. The 

cell line was cultured in Dulbecco`s modified Eagle’s medium supplemented with 2 mM 

glutamine, and 10% dialyzed fetal bovine serum, and were grown in an atmosphere of 5% 

CO2 at 37°C [GibcoTM, Karlsruhe, Germany]. Human dopamine D2(short) and D3 receptor 

expressing cell lines were grown to confluence. The medium was removed, and the cells were 

washed with 10 mL PBS buffer (140 mM NaCl, 3 mM KCl, 1.5 mM KH2PO4, 8 mM 

Na2HPO4, pH 7.4) at 4°C. After removing the wash buffer, the cells were scraped from the 

flasks into 15 mL of ice-cold medium, and centrifuged at 3,000 rpm for 10 min at 4°C. After 

centrifugation the medium was removed and the cell membranes resuspended in ice-cold Tris-

HCl buffer containing 5 mM MgCl2, pH 7.4 and disrupted with a Polytron and centrifuged at 

20,000 rpm for 30 min at 4°C. The pellets were resuspended by sonification in ice-cold Tris-

HCl buffer (containing 5 mM MgCl2, pH 7.4); membrane aliquots were stored at -70°C. 

Determination of membrane protein was carried out by the method of Bradford. Cell 

membranes containing human D2(short) and D3 receptors from CHO cells were thawed, 

rehomogenized with ultra sonic waves at 4°C in Tris-HCl, pH 7.4 containing 120 mM NaCl, 5 

mM KCl, 2 mM CaCl2 and 1 mM MgCl2 (incubation buffer), and incubated with 0.2 nM 

[³H]spiperone (106 Ci·mmol-1) [Amersham Biosciences, Freiburg, Germany], and drug 

diluted in incubation buffer. Nonspecific binding was determined in the presence of 10 µM 
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BP 897 (prepared in the same laboratory) [Pilla et al., 1999]. Incubations were run at 25°C for 

120 min, and terminated by rapid filtration through PerkinElmer GF/B glass fibre filters 

[PerkinElmer Life Sciences, Rodgau, Germany] coated with 0.3% polyethylenimine [Sigma-

Aldrich, Taufkirchen, Germany] using an Inotech cell harvester [Inotech AG, Dottikon, 

Switzerland]. Unbound radioligand was removed with four washes of 300 µL of ice-cold 50 

mM Tris-HCl buffer, pH 7.4, containing 120 mM NaCl. The filters were soaked in 9 mL Beta 

plate scintillation and counted using a PerkinElmer MicroBeta®Trilux scintillation counter 

[PerkinElmer Life Sciences, Rodgau, Germany]. Competition binding data were analyzed by 

the software GraphPad Prism™ (2000, version 3.02) [GraphPad Software Inc., San Diego, 

CA, USA], using non-linear least squares fit. For detailed screening the compounds have been 

tested at seven concentrations in triplicate carrying out two to four separate binding 

experiments for human dopamine D2(short) and for human dopamine D3 receptors and 

expressed as mean ± standard deviation (SD). Ki values were calculated from the IC50 values 

according to Cheng-Prusoff equation (Eq. 2.3) [Cheng & Prusoff, 1973]. 
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with L being the concentration of the competing radio ligand ([³H]spiperone) and KD being the 

equilibrium dissociation constant of the radioligand affinity. The IC50 value represents the 

concentration of the unlabeled compound displacing 50% of the bound radioligand from the 

receptor. Ki is the concentration of the ligand binding to half of the receptor at equilibrium in 

the absence of competitors. 
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3 Computational Techniques 
 

     



Computational Techniques   39 
                                                                                           
  
Different computational techniques were applied to virtual screening and “mining” of HTS 

data. They can be subdivided into own method developments and methods already described 

in literature. This section contains only the latter methods whereas newly developed methods 

are presented in the Results and Discussion section. At first a literature survey of the 

techniques is given, mainly focusing on their implication in early stages of the drug discovery 

process. Then the application of the method in the present work is defined. The section is 

structured according to a “typical” chemoinformatic workflow setting, starting with the 

specification of the used data sets, followed by molecule preparation, pre-filtering, descriptor 

calculation and descriptor selection and ending with the application of different methods to 

the prepared data. The applications are further subdivided into unsupervised methods (no 

incorporation of a priori knowledge of measured data), supervised methods (incorporation of 

a priori knowledge of measured data), 3D pharmacophore modelling, and receptor based 

docking. This separation mirrors the different methods in terms of computation speed and 

target specificity, starting from rough molecule filtering over application of different 

alignment-free and descriptor-based supervised and unsupervised methods in 2D to more 

elaborate precise methods using 3D conformer data sets like pharmacophore modelling or 

docking (4D) [Bleicher et al., 2003].  

3.1 Data Sets 
 

3.1.1 COBRA 
 

COBRA (Collection of Bioactive Reference Analogues) is a constantly updated small high 

quality data set containing 5,375 pharmacologically active molecules taken from the literature 

in version 3.1 [Schneider & Schneider, 2003]. Despite the 2D molecular representation, the 

data set additionally provided information about receptor class, name and subtype of the 

target and the indication field for each entry. Version 3.1 of the COBRA data set contained 

only drug-like molecules, whose structures were desalted and formally neutral. 

3.1.2 MDDR 
 
The MDDR database (version of August 2003) contained 141,692 biologically relevant 

molecules taken from patent literature, scientific journals, and meeting reports [Elsevier 

MDL, San Leandro, CA.]. Each entry contained a 2D molecular structure field, an activity 

class field and a corresponding activity class index (note that a molecule can be assigned to 
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multiple activity classes). The MDDR was prepared using the steps described in further detail 

in 3.2: (i) Entries lacking structural information were removed leaving 139,037 compounds. 

(ii) Counter ions were removed using a statistical in-house approach implemented in 

Kensington Discovery Edition [InforSense Ltd., London] at Boehringer Ingelheim, and (iii) 

structures were neutralized using SciTegic Pipeline Pilot [SciTegic, San Diego, CA]. For 453 

entries the counter ion was undistinguishable. These entries were removed. Since only small 

organic drug-like molecules were of interest several drug-likeness filters were applied to the 

MDDR [Böcker et al. 2005]. Applying all filtering steps to the MDDR the database was 

reduced to 109,528 entries. 

3.1.3 SPECS Catalogue 
 

The SPECS catalogue (version June 2003) is a vendor database consisting of 229,658 small 

organic molecules which can be purchased to build up diverse screening libraries for HTS and 

lead discovery programs [SPECS, Delft, The Netherlands]. The used version contains only 

desalted and neutralized compounds. 

3.1.4 HTS Data 
 

At Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany more than 40 HTS 

assays were available each having more than 350,000 data points measured. The different 

assays were separated according to the disease area (cardiovascular, metabolic, central 

nervous system, respiratory or oncology), target type (receptor or enzyme), assay type 

(functional assay, enzyme activity assay, binding assay, expression assay or transcription 

assay), assay technology (radioactive, non-radioactive), screening technology (FLIPR, Alpha 

screen, FRET, SPA LEADseeker, Luciferase reporter assay) and according to the mode of 

action (activator, inhibitor, antagonist, agonist, modulator). For the present work three 

different high-quality assays were selected. Selection criteria were based on the number of 

data points, the quality of the assay (hit rate and confirmation rate) and two assay criteria: an 

inhibitory assay and no cellular assays. Due to proprietary rights of Boehringer Ingelheim the 

first two assays are termed assay A and assay B, whereas the third assay was performed 

against the human TGF β type I receptor (ALK5). The main facts of all three assays are 

summarized in Table 3.1.  
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Table 3.1 Employed HTS assays. 

 Assay A Assay B ALK5 

Indication Metabolic Syndrome Respiratory disease Respiratory disease 

Assay technology Alpha screen 

non-radioactive 

SPA LEADseeker 

radioactive 

Luciferase  

non-radioactive 

Tested compounds* 664,878 549,525 738,861 

Primary hits** 2,028 11,853 11,284 

Hit rate 0.3 % 2.2% 1.5% 

Confirmed hits 1,541 10,775 9,581 

Confirmation rate 76% 91% 85% 
* Compounds having no structure and redundant compounds were removed 

** Primary hits were removed, not tested in confirmation 

 

3.1.4.1 Assay A 

Assay A has its implication in the treatment of metabolic syndrome [Ruderman & Prentki, 

2004; Curtis et al., 2005; Gronemeyer et al., 2004]. As assay technology a non-radioactive 

inhibitory alpha screen was performed testing 804,586 different samples [von Leoprechting et 

al., 2004]. The mean result was 105.5% CTL with standard deviation of 11.4%. Based on an 

upper threshold of 50% CTL, 2,476 hits occurred representing a hit rate of 0.3%. 2,475 

compounds entered confirmation measurements where 1,921 primary hits were confirmed 

(confirmation rate = 78%). Eliminating all compounds from consideration having no structure 

specified 2,028 primary hit remained and a total of 664,878 data points. Of these molecules 

1,541 remained as confirmed hits. 

 

3.1.4.2 Assay B 

Assay B is an enzyme activity assay based on the radioactive SPA LEADseeker technology 

[Amersham Biosciences, Freiburg, Germany]. It has its implication in the field of respiratory 

disease namely the treatment of asthma and COPD [Barnes, 2002; Barnes, 2004]. In total 

688,738 different compounds were tested leading to a mean result of 87.9% CTL and a 

standard deviation of 8.7%. The hit threshold was set to 20% CTL leaving an impressive 

number of 28,239 primary hits (i.e. a hit rate of 4.1 %). Due to the high hit rate a maximum 

divers set of 12,918 compounds entered confirmation whereof 11,633 true hits occurred 

having a mean activity below 28.7% CTL (i.e. a confirmation rate of 90.1%). After filtering 

redundant compounds and compounds having no structure 11,853 primary hit remained and a 
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total of 549,525 measured data points. The hits not tested in confirmation were discarded 

from the analyses. 10,775 primary hits were confirmed. 

 

3.1.4.3 TGF-β Type I Receptor 

The inhibitory assay against TGF-β Type 1 receptor is explained in more detail in 2.1.1 

[Yingling et al., 2004]. It is characterized by a Z’ factor of 0.7 - 0.8 (Eq. 2.1), showing the 

high quality of the assay in terms of signal to noise ratio [Zhang et al., 1999]. TGF-β type I 

receptor is assumed to have various implications in fibrosis remodelling and was performed to 

identify new drugs for COPD or asthma [Barnes, 2002; Barnes, 2004]. 868,276 different 

compounds were tested in the primary screen resulting in a mean % CTL of 104.1% and a 

standard deviation of 4.3%. Based on a hit threshold of 50% CTL, 15,936 hits were obtained 

(1.8% hit rate). 15,289 compounds entered confirmation measurement and 13,419 true hits 

resulted based on a threshold of 54% CTL. After filtering redundant compounds and 

compounds having no structure specified 11,284 primary hit remained and a total of 738,861 

measured data points. The hits not tested in confirmation were discarded from the analyses. 

Of these hits 9,581 hits were confirmed.  

3.1.5 Dopamine Data 
 
The sets consist of 472 compounds containing Ki values for dopamine D2 and D3 receptors 

[Missale et al., 1998] with a Ki value of 1 mM as maximum for both receptors. The molecules 

mostly belong to the class of analogues of BP 897, a clinical phase two dopamine D3 partial 

agonist (Table 1.1) [Joyce & Millan, 2005, LeFoll et al., 2005]. The affinity of the compounds 

is spread from 0.33 nM to 1 mM for dopamine D3 receptors and from 1.6. nM to 1 mM for 

dopamine D2 receptors. For 386 compounds Ki values at both receptors were below 1 mM. 

Consequently, selectivity ratios of D2/D3 or D3/D2 were calculated only for these entries. The 

molecules are present in Appendix A. 

3.1.6 Fisher’s Iris Data 
 

Fisher’s Iris data set consisted of 150 random samples of flowers from the Iris species setosa, 

versicolor, and virginica. For each species there were 50 observations for sepal length, sepal 

width, petal length, and petal width in cm, yielding a four-dimensional descriptor space 

[Fisher, 1936]. The data set is listed in Appendix B. 
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3.2 Data Preparation Strategies 
 

One essential step in computational chemistry is data preparation. This incorporates (i) pre- 

filtering of molecules and (ii) molecule preparation. Pre-filtering of molecules can have 

several reasons, for example to obtain only drug- or lead-like compounds [Muegge, 2003] or 

to design focussed or targeted libraries [Balakin et al., 2002; Balakin et al., 2003; Lang et al., 

2002]. A further reason for pre-filtering is that the accuracy of classification and regression 

techniques is sensitive to outliers. Hence, extreme outlying molecules should be avoided 

[Verma & Hansch, 2005].  

The type of preparation for a molecule data set highly depends on the application. Especially 

docking, pharmacophore and QSAR applications require extended preparations due to the 

following reasons: The strength of H-bond varies greatly from 2-15 fold affinity increase for 

neutral bonding to up to a 3,000 fold affinity increase for charged bonding [Davis & Teague, 

1999]. According to this molecules have to be charged correctly. For docking and 3D 

pharmacophore applications different tautomeric, stereoisomeric and conformeric 

representations of a molecule have to be considered. Depending on the number of tautomeric 

and chiral centres and the flexibility of the molecule, many degrees of freedom result and can 

lead to “combinatorial explosion” [Kitchen et al., 2004]. To avoid this a possibility is to 

restrict to the energetically preferred tautomer, reject molecules having more than a 

predefined number of chiral centres and focus either on one or on all energetically preferred 

but distinct conformers. A detailed review about conformer generation strategies can be found 

elsewhere [Leach, 1996]. The following sections describe the applied molecule filtering and 

molecule preparation steps. 

3.2.1 Data Filtering 
 
In the analyses of the MDDR only small organic molecules having drug-like properties were 

used. Two filtering steps were applied, one based on key words describing the therapeutic 

implication of the molecules and one based on molecular properties of the molecules: 

Key-word Based Filtering 

A molecule was filtered out if the key words mentioned below were assigned to the 

compound. If another key word was additionally present (e.g. kinase inhibitor) no filtering 

was performed:  
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blood supplements, vaccines, monoclonal antibodies, molecules for cancer immune therapy, 

chemo-preventives, chemo-protectives, molecules for gene therapy, radio sensitizer, 

diagnostic agents, antidotes, antibiotics and antineoplastica.  

 

Property Based Filtering 

• Molecules were filtered having a molecular weight below 150 Dalton or above 1,000 

Dalton. The molecular weight descriptor implemented in the MOE program package was 

employed [Chemical Computing Group, Montreal, Canada]. 

• Molecules were removed containing reactive functional groups [Hann et al. 1999]. Example 

structures are shown in Appendix C: carbazide, acid anhydride, pentafluorophenylester, 

paranitrophenylester, hydroxybenzotriazole (HOBT)-ester, triflate, Lawson’s reagent, 

phosphor-amide, aromatic azide, beta-carbonyl-quaternary-nitrogen, acyl-hydrazide, 

cationic carbon/ chlorine/ iodine/ phosphor/ sulphur, phosphorane, chloramidine, nitroso, 

phosphor or sulphur halide, carbodiimide, isonitrile, triacyloxime, cyanohydrin, acyl 

cyanide, sulfonylcyanide, cyanophosphonate, azocyan-amide, azoalkanal, acid halide, 

peroxide. The program FILTER (version 2.0) [OpenEye Scientific Software, Santa Fe, 

USA] was used. The functional groups are named after the corresponding annotation in the 

program. 

• Molecules were rejected bearing more than six halogen atoms. The program FILTER was 

employed (version 2.0) [OpenEye Scientific Software, Santa Fe, USA]. 

• Molecules were discarded not containing a least one carbon atom and one nitrogen/ oxygen/ 

sulphur atom. A pearl script was used provided by Dr. Bernd Beck [Boehringer Ingelheim 

Pharma GmbH & Co. KG, Biberach, Germany]. 

• Molecules were removed containing additional elements than H, C, N, O, F, P, S, Cl, Br, 

and I. Pipeline Pilot (version 5.1) [SciTegic, San Diego, USA] was used. 

3.2.2 Removal of Counter Ions 
 

The simplest strategy to remove counter ions is to reject the smaller fragment. However this is 

prone to errors since e.g. inorganic fatty acids might be larger than the actual active molecule 

or both the putative biologically active molecule and the putative counter ion are “drug-like” 

and have a similar molecular weight. An extended strategy is to remove counter ions and 

solvents based on catalogues of known counter ions and solvents, and only if the putative 

counter ion is unknown to remove the smaller molecule. Note that for the latter entries wrong 
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assignments can occur. In this study a statistical approach was developed to identify counter 

ions not based on rejection of the smaller molecule. The basic idea behind the strategy is that 

counter ions occur more often in the data set than the active molecules. Therefore the 

occurrence of each molecule was counted. Two user-defined rules were applied to distinguish 

active molecules from counter ions/solvents: (i) the active molecule occurs less than six times 

in the database and the counter ion occurs more than 20 times. (ii) The counter ion occurs 

more than 50 times in the database irrespective of the occurrence of the active molecule. 

Applying both rules to the MDDR 453 entries remained undefined and were discarded. The 

statistical approach was implemented in Kensington discovery edition (version 1.9) 

[InforSense Ltd., London]. 

3.2.3 Neutralization and Charge Assignment 
 

To avoid erroneous charge assignments for the ligand-based clustering and virtual screening 

approaches all molecules were kept neutral. Neutralization was based on catalogues of known 

basic and acidic groups and was performed using Pipeline Pilot (version 5.1) [SciTegic, San 

Diego, USA]. The remaining molecules bearing a positive or negative charge were checked 

manually and if necessary neutralized using MOE-SVL scripts for unrecognized cases 

[Chemical Computing Group (CCG), Montreal, Canada]. 

To ionize molecules at a certain pH value various algorithms have been described. They can 

be categorized into methods based on quantum mechanics ab initio calculations, density 

functional theory, semi-empirical quantum mechanics, comparative molecular field analysis 

or methods creating models based on known acids and bases [Xing et al., 2003]. For large 

scale applications like virtual screening only the latter software tools are applicable. They are 

either based on expert systems looking for known acidic or basic groups (e.g. the PATTY 

type functionality [Bush & Sheridan, 1993]) or on models predicting the pKa of a molecule at 

a certain pH value like ACD/pKa DB [ACD Inc., Toronto, Canada]. For the docking and 

pharmacophore approaches the charging routine of MOE was employed. It is based on an 

extended PATTY type catalogue [Bush & Sheridan, 1993]. 

3.2.4 Conformer Generation 
 

For the similarity searching (see 3.3.6) and the classification and regression techniques (see 

3.5) a single conformation was created for each molecule using CORINA (version 3.2) 

[Molecular Networks GmbH, Erlangen Germany] with default parameters. For the 
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pharmacophore searching (see 3.6), sampling of the conformer space is necessary for 

successful screening. Conformers were created using the stochastic search algorithm in MOE: 

molecules are divided into overlapping fragments. For the fragments a stochastic 

conformational search is performed. This is followed by a Merck molecular force field 

(MMFF94x) based energy minimization [Halgren, 1996]. The fragments are assembled using 

a rigid body superposition. Conformers are removed if clashes or undesirable group 

conformations occur.  

The search algorithm was performed with the default parameter setting of the MOE program 

package [Chemical Computing Group, Montreal, Canada]; i.e. a maximum strain energy of 4 

kcal/mol and a maximum of 250 conformers per molecule. To avoid combinatorial explosion 

caused by flexible molecules or molecules with many chiral centres, compounds having the 

following properties were rejected prior to conformational sampling: number of rotatable 

bonds > 7, single bond chain length > 6, chrial centres > 4, unconstrained chiral centres > 3, 

number of rings > 8. The different tautomers were not considered.  

3.2.5 Ontology assignment 
 

When creating a model for e.g. a targeted library, a first step is to select all molecules 

interacting with members of the target family. The selection is based on the names of the 

proteins. Schuffenhauer et al. extended this process and derived a hierarchical ontological 

activity description for the MDDR molecules, e.g. an angiotensin cleaving enzyme inhibitor is 

classified after the EC convention into enzymes (root class), hydrolases (subclass 1), 

peptidases (subclass 2) etc. [Schuffenhauer et al., 2002]. In total, a relation was created for 

compounds targeting GPCRs, ligand-gated ion channels, nuclear hormone receptors and 

enzymes. This system was captured and extended for the used MDDR version. It allows a 

coarse-grained or a fine-grained view on the MDDR molecules. In total an ontological 

description was assignable for 59,173 molecules. 

3.3 Molecular Similarity, Descriptors and Descriptor Selection 
 

A generally accepted hypothesis is that structurally similar molecules have a higher chance to 

exhibit a similar biological activity profile [Johnson & Maggiora, 1990, Martin et al., 2002]. 

This Similarity Principle is the foundation for a successful application of similarity searching, 

classification or regression methods. A key feature of the molecular similarity concept is the 

description of the chemical space. These descriptors can be categorized according to their data 
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representation (e.g. bit strings, numerical values, vector representations); dimensionality (1D, 

2D or 3D), their chemical information content (e.g. structural descriptors, physicochemical 

descriptors or pharmacophore representations) or whether they are alignment-free or not 

[Bajorath, 2002; Böcker et al., 2004]. In the following only alignment-free descriptors are 

described, whereas 3.6 describes the alignment-dependent pharmacophore concept. The 

second key feature of the similarity concept is the definition of a scheme allowing to measure 

similarity [Willett et al., 1998, Martin, 2001]. Various such schemes have been proposed 

ranging from simple numerical metrics (e.g. Euclidean or Manhattan metric) over schemes 

coping well with fingerprints (e.g. Tanimoto dissimilarity in combination with Daylight 

Fingerprints [Daylight Chemical Information Systems, Inc. Los Altos, USA]) to more 

sophisticated methods giving the descriptors an additional weighting. Calculating hundreds of 

descriptors for a data set may require descriptor selection exemplified by the following 

reasons: (i) saving of disc space, (ii) avoiding feature over-representation due to too many 

correlated descriptors, (iii) avoiding model over-training by having more descriptors than data 

points, (iv) identifying descriptors helping to understand SAR in the data. Different strategies 

are used at present to guide descriptor selection ranging from unsupervised procedures trying 

to identify redundant or non-relevant features [Whitley et al., 2000] to supervised procedures 

employing classification techniques to select the descriptors relevant for describing a certain 

activity. Since the latter is NP-complete (non-deterministic in polynomial time), machine 

learning techniques like genetic algorithms [Wegner et al., 2004, Hoffman et al., 2000], 

Particle Swarms [Agrafiotis & Cedeno, 2002] or Artificial Ants [Izrailev & Agrafiotis, 2001] 

have proven to be useful. In the present study only unsupervised approaches were followed. 

3.3.1 CATS 2D 
 

The correlation vector descriptor CATS 2D (150 dimensions) is based on potential 

pharmacophore points (PPPs). Atoms are assigned to five different PPPs (hydrogen donor, 

hydrogen acceptor, ionisable or positively charged, ionisable or negatively charged and 

lipophilic) and correlated with the respective distance counted in bond lengths (ranging from 

zero to nine bonds) [Schneider et al., 1999]. 

The PPP are defined as follows: hydrogen-bond donors correspond to oxygen atoms of OH 

groups and nitrogen atoms of NH- or NH2-groups. Hydrogen-bond acceptors correspond to 

oxygen atoms and nitrogen atoms not adjacent to a hydrogen atom. Positively charged or 

ionizable atoms were defined as atoms with a positive charge or nitrogen atoms of a primary 

amino-group. Negatively charged or ionizable atoms correspond to atoms with a negative 
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charge and carbon, sulphur or phosphorous atoms of a COOH-, SOOH-, or POOH-group, 

respectively. Lipophilic atoms were chlorine, bromine, iodine, sulphur atoms adjacent to 

exactly two carbon atoms, and carbon atoms adjacent only to carbon atoms. Applying this 

definition, atoms were assigned to no, one or two PPP-types.  

The CATS descriptor was calculated with the program speedcatsdotcom by Uli Fechner 

(version 1.02, University of Frankfurt, Frankfurt, Germany). Scaling was done with the 

parameter –d 3, which corresponds to a normalization of a PPP pair to its respective 

occurrence in the descriptor [Fechner et al., 2003]. 

3.3.2 CATS 3D 
 
The correlation vector descriptor CATS 3D (420 dimensions) is, in contrast to the topological 

CATS 2D descriptor, based on potential pharmacophore points (PPP) in 3D space. Atoms are 

assigned to six different PPPs (hydrogen donor, hydrogen acceptor, cationic, anionic, polar 

and hydrophobic) and correlated with the respective distance counted in ranges of 1 Å 

(ranging from zero to 20 Å) [Fechner et al., 2003]. 

For CATS 3D the modified PATTY atom-types available with the pH4_aType function in 

MOE were used. Scaling was performed by normalization of PPP pairs to their respective 

occurrence in the descriptor. Prior to descriptor calculation the 3D structure of the compounds 

was either calculated employing CORINA [Molecular Networks GmbH, Erlangen Germany] 

or MOE MMFF94x based energy minimization. The CATS3D descriptor was calculated with 

the program cats3d_db written in SVL in MOE by Dr. Steffen Renner (University of 

Frankfurt, Frankfurt, Germany).  

3.3.3 MOE 2D 
 
The MOE 2D descriptor set contains 146 descriptors describing physical properties, 

subdivided surface areas, atom counts and bond counts, Kier and Hall connectivity and kappa 

shape indices, adjacency and distance matrices, and pharmacophore features 

(http://www.chemcomp.com/journal/descr.htm) [Chemical Computing Group, Montreal, 

Canada]. 

3.3.4 Daylight Fingerprints 
 

The Daylight fingerprint descriptor is a bit-string representation of the presence (1) or absence 

(0) of a certain structure defined by the Morgan algorithm (i.e. all single atoms, two atom 
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combinations, three atom combinations etc. are identified and hashed on a fingerprint of 

defined length) [Morgan, 1965]. As fingerprint length a bit-string of 1,024 bits was used. For 

further detail on fingerprint calculation see URL: www.daylight.com. 

3.3.5 Descriptor Preparation and Selection 
 

Mean Centring and Scaling to Unit Variance 

Descriptors can cover different data ranges (e.g. molecular weight and logP). For further 

analyses, like similarity calculations, PCA or PLS descriptors are required to be projected 

onto the same data range. A probate projection technique is to centre a descriptor according to 

its mean and later scale it onto unit variance [Otto, 1998]. It offers the additional possibility to 

detect descriptors with low variance. Such descriptors are not relevant and can be deleted. In 

the present work descriptors having a standard deviation less than 0.0005 were discarded. It 

has to be mentioned that this scaling routine is only defined for descriptor showing a normal 

distribution. Further outliers have a high impact on the scaling and by projection onto unit 

variance a loss of information occurs. Different alternatives are described in literature like 

normalization, Pareto scaling [Eriksson, 2001] or variable stability scaling [Keun et al., 2003]. 

The mean xmean for a descriptor column x with n entries was calculated according to equation 

3.1. 
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The standard deviation σ for a descriptor column x was calculated according to equation 3.2. 
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The scaling of a descriptor value xi was performed according to equation 3.3. 
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Entropy based Descriptor Selection 

A measure of information content is Shannon entropy (SE) [Shannon, 1948], which was 

adopted by Bajorath and co-workers to quantify a descriptor’s information content [Godden & 

Bajorath, 2000, Godden & Bajorath, 2001]. For this work descriptor were rejected having low 

information content. The Shannon Entropy is defined by Equation 3.4. 
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with pi giving the probability of the number of data entries ci within a data range i (Eq. 3.5). 
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As proposed by Bajorath and co-workers each descriptor value range was subdivided into Ni = 

100 equidistant data ranges i (“bins”). Descriptors having only a constant value over the 

whole data set have no statistical variance and were discarded prior to the calculation of SE. 

To make the SE independent of the number of bins, the obtained values were normalized by 

the logarithm to base two of the amount of Ni (Eq. 3.6). 

 

)log (2 iN
SEsSE = .                                (3.6) 

 

Bajorath and co-workers defined descriptors having a scaled SE (sSE) equal to or less than 

0.3 as “information-poor”. In the presented work these descriptors were discarded. 

 

Redundancy-based Descriptor Selection 

To remove redundant dimensions from a descriptor set, Unsupervised Forward Selection 

(UFS) was performed as published by Whitely and co-workers [Whitley et al., 2000]. Starting 

with the two least correlated descriptors, this method builds up a descriptor space by choosing 

the next descriptor x having the lowest multiple correlation coefficient R2 to the currently 

selected l descriptors (Eq. 3.7).  
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{c1, …, cl} represents the orthogonal basis for the subspace spanned by the selected l 

descriptors. x is added to the selected descriptor set whereas its orthogonal projection is 

obtained by cx = Y/|Y| where Y is defined by equation 3.8 
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The algorithm is performed until a predefined threshold for R2 is reached [Whitley et al., 

2000].  

3.3.6 The Similarity Concept in Virtual Screening 
 

In similarity searching nearest neighbours of a query molecule are searched in a target data 

set. This is achieved by describing all molecules with a set of descriptors or fingerprints. The 

fingerprints and descriptors are employed to calculate the distance between the query and the 

target. After searching a sorted list of nearest neighbours to the query is created. Many 

different distance metrics or similarity coefficients are available for searching [Willett et al., 

1998, Willett, 2005]. In the present work the metrics or coefficients listed in Table 3.2 were 

implemented and used for numerical descriptors. Additionally, the Tanimoto dissimilarity 

coefficient T shown in Equation 3.9 was used in combination with Daylight fingerprints. 
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where NA and NB are the number of bits set in the bit strings of molecules A and B, 

respectively, and NA&B is the number of bits that are set in both. 

To judge the outcome of a similarity search the percentage of examined data is plotted against 

the percentage of known actives in the list and enrichment curves are obtained. If a defined 

percentage of molecules was selected an enrichment factor is calculated according to 

Equation 3.10. 
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with Ni,c being the number of screened entries i belonging to class c, Ni being the total number 

of screened entries i, Nc being the total number of entries of class c in the data set and N being 

the overall number of entries. EF > 1 indicates that more compounds belonging to the activity 

class c have been retrieved than expected from an equal distribution. 
Table 3.2 Similarity metrics and coefficients for numerical descriptors (adapted from Willet et al., 1998). 
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*xi,A represents  the value descriptor i of molecule A and xi,B represents the value descriptor i of molecule B, 

respectively 
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3.4 Unsupervised Classification Techniques 
 
Unsupervised classification techniques embrace methods using only inherent properties of a 

data set (e.g. molecular descriptors) and no a priori knowledge of measured data for 

classification. One large group of methods represent clustering and unsupervised partitioning 

approaches, whereby clustering techniques group compounds according to distances in the 

descriptor space and partitioning techniques assign descriptor space coordinates to form 

compound groups. Other mostly graph based methods classify molecules according to e.g. 

maximum common substructures. 

In context of the presented work unsupervised techniques were used for data classification, 

projection, visualization and maximum diverse subset selection. These methods are presented 

in the following. Two (unsupervised) hierarchical clustering algorithms, NIPALSTREE and 

hierarchical k-means, were implemented. Both algorithms represent the heart of this work. 

Consequently it was decided to present them in the Results and Discussion section.  

3.4.1 Molecular Scaffold Analysis 
 

An approach to understand common features present in drug molecules was published by 

Bemis and Murcko [Bemis & Murcko, 1996, Bemis & Murcko, 1999]. Commercially 

available drugs were separated into their largest connected ring system and side chains. For 

the ring systems all atoms were converted into sp3 hybridized carbon atoms creating a 

molecular framework/scaffold. This is illustrated in Figure 3.1 for temocapril, a known 

angiotensin converting enzyme (ACE) inhibitor [Acharya et al., 2003]. In the original study 

the scaffolds and the largest connected ring systems were further analyzed. The 32 most 

abundant scaffolds represented half of the data indicating a low diversity among the current 

drugs [Bemis & Murcko, 1996]. In the present work the aim was to analyze the developed 

clustering approach for its capacity to retrospectively identify false-negatives bearing novel 

scaffolds in the primary screening hits of assay A, assay B and the assay against TGF-β type I 

receptor. The primary screening hits were converted into their corresponding scaffolds with a 

program written in SVL in MOE by Kristina Grabowski (University of Frankfurt, Frankfurt, 

Germany). The three most occurring scaffolds from each assay were selected and defined as 

false-negatives (i.e. they were defined as non-hits).  
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Figure 3.1 Molecular scaffold extraction of temocapril: The largest connected ring system is extracted followed 

by a conversion of all atoms into sp3-hybridized carbon atoms.  

3.4.2 Maximum Diversity Selection 
 
Various situations can occur requiring reducing a data set in size. This can be a virtual 

screening hit list too large for experimental testing or a computationally expensive method 

requiring a limited set of compounds. One rational selection approach is the creation of a 

maximum diverse subset. Algorithms for subset selection range from maximum dissimilarity 

selection techniques like MaxMin [Schmuker at al., 2004] over cluster-based or partition-

based selection [Agrafiotis & Rassokhin, 2002] to techniques employing heuristics like 

simulated annealing [Reynolds et al., 2001]. In the present work the Stochastic Cluster 

Analysis (SCA) algorithm [Reynolds et al., 2001] was implemented belonging to the class of 

maximum dissimilarity selection algorithms: 

 

Step 0: Describe compounds by numerical descriptors (e.g. 3.3.1 – 3.3.3). 

Step 1: Define a distance threshold T, the desired number of compounds N to select and 

the distance metrics or similarity coefficient from section 3.3.6. 

Step 2: Randomly select a compound from the data set and add it to the result list, if the 

distance to the previously selected molecules does not exceed T. 

Step 3: Perform step 2 until N is reached. 

 

N can only be reached if a suitable threshold T was chosen. If T is too low, a random selection 

takes place. In the present work T was determined that exactly N entries were selected.  
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3.4.3 Principle Component Analysis 
 
Principle component analysis (PCA) is an orthogonal transformation of a p-dimensional data 

matrix X with n entries. The d new coordinate values are termed principle components. A 

principle component represents the portion of the original data matrix by one dimension S, 

which explains most of its variance with L as a new coordinate system. L has the 

dimensionality of the original data matrix, however each dimension is assigned a weight and a 

direction to obtain an uncorrelated coordinate system; i.e. L reflects the importance of each 

dimension to explain the variance in the data set. Each principle component contributes 

cumulatively to explain the variance in X and usually a small number of principle components 

are sufficient to explain most of the variance. The unexplained proportion of X remains in the 

residual matrix E (Eq. 3.11). PCA is employed for dimensionality reduction and to visualize a 

data set in two or three dimensions. It allows getting an overview of the clusters or outliers 

present in the data [Otto, 1998; Eriksson et al., 2001].  
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In the present work the NIPALS (non-linear iterative partial least squares) algorithm 

[Miyashita et al., 1990] was implemented for PCA calculations. It consists of the following 

steps: 

 

Step 0: Define the number of principle components. Mean centre descriptors and scale to 

unit variance (3.3.5). Discard a descriptor column if its standard deviation underscores a 

threshold Θ. In the present study 0.0005 was chosen for Θ [Whitley et al., 2000].  

Step 1: Employ the first row as initial loading vector L. 

Step 2: Project the data matrix X onto S using L: S = XL  

Step 3: Calculate new L using S: LT = STX. (T means transpose). 

Step 4: Normalize L to length 1: L = L/|L| 

Step 5: Project X onto a new score vector S employing L: S = XL 

Step 6: Calculate the difference D between previous and new S: D = Sold – Snew. If D 

exceeds a threshold Ф, return to step 3. In the present study 0.0005 was chosen for Ф. 

Step 7: Remove principle component from X: X = X –SLT. 
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Step 8: Continue with step 1 until the predefined number of principle components is 

reached. 

3.4.4 Non-linear Component Analysis 
 

If complex relations occur in data set, a linear transformation employing PCA might be not 

well suited. Instead a non-linear component analysis (NLCA) can be performed trying to 

elucidate higher order correlations. One method for NLCA is an encoder network which is 

exemplified in Figure 3.2 [Duda et al., 2001; Schneider & Wrede 1998].  

Encoder networks operate by presenting a d dimensional descriptor matrix to both the input 

layer und the output layer with d units each. Both layers are fully connected by three hidden 

layers, two with non-linear units and one central with linear units. In the present study training 

was performed using a (1, λ) evolution strategy with a sum-squared error minimization fitness 

function for weight adoption, five non-linear units in each hidden layer and three units in the 

central hidden layer. By this architecture encoder networks learn to reproduce the input 

patterns at the output layer (auto-encode) by the internal representation in the hidden units. 

After training the central units represent the new coordinate system of the non-linear principle 

components. NLPCA was performed using the program ChemSpaceShuttle by Alireza 

Givehchi (University of Frankfurt, Frankfurt, Germany) [Givehchi et al., 2003]. 
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Figure 3.2 Topology of an encoder network for performing a non-linear principle component analysis. The 

descriptor matrix with d descriptors is fed into the output and input layer (white circles). Hidden neurons are 

represented by black and orange circles. After training the orange circles represent the non-linear principle 

components.  

     



Computational Techniques   57 
                                                                                           
  
3.4.5 Clustering Techniques 
 

Self Organizing Map 

The self organizing map (SOM) technique [Kohonen 1982, Schneider & Wrede, 1998] is a 

non-linear clustering technique, allowing visualizing a d-dimensional data set as a two-

dimensional (or more) map containing n clusters (or fields). Employing Kohonen’s algorithm 

[Kohonen, 1982] a topology preserving projection of the d-dimensional space is obtained. 

Each cluster is represented by a neuron ci with d weights. In a distance dependant and time 

dependant iterative optimization procedure neuron weights are adopted best representing the 

data set [Teckentrup et al., 2004]. 

In the present work the Euclidean distance was used, the number of optimization cycles was 

defined as ten times the number of data points, the neighbourhood weighting was set to half of 

the maximum edge of the map and the learning step size was set to one. To avoid boundary 

problems a toroidal topology was employed for the maps. SOM calculation was performed 

using the program som_create by Gisbert Schneider. SOM visualization was performed using 

the program som_show by Gisbert Schneider (University of Frankfurt, Frankfurt, Germany). 

 

Phylogenetic-Like Tree Clustering 

The phylogenetic-like tree clustering approach is a hierarchical hybrid clustering method and 

it consists of the following steps [Nicolaou et al., 2002]: 

 

Step 0: Molecules are described by fingerprint descriptors like MACCS keys [MDL 

Information System Inc., San Leandro, USA].  

Step 1: A SOM is used to cluster molecules in a tree node based on their chemical 

descriptors. 

Step 2: SOM clusters are selected containing only molecules of high similarity. 

Step 3: Maximum common substructure (MCS) are extracted from these clusters. 

Step 4: Expert rules are applied to evaluate the substructures and to eliminate all that do 

not constitute a significant gain in knowledge. 

Step 5: Each newly identified MCS is used to search the data set for molecule matching 

the substructure. The resulting list forms a new tree node.  

Step 6: The algorithm is repeated from step 1 for the new node. 
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Results of the clustering are classes, subclasses and singletons. In the present work the 

similarity threshold defining a cluster was set to obtain homogeneous clusters. Further a 

redundancy threshold was set to construct diverse and unique classes. Only classes were 

selected since they are assumed to correspond soonest to “lead classes”. The clustering was 

performed using the program ClassPharmer (version 3.2) [BioReason Inc., Santa Fe, USA]. 

 

Ward’s Clustering 

Ward’s hierarchical clustering algorithm is an agglomerative clustering method maximising 

the inter-cluster variance whilst minimizing the intra-cluster variance [Ward, 1963]. In the 

present work the reciprocal nearest neighbour version of the algorithm was employed 

[Murtagh, 1985] provided by the Kensington Discovery Edition (version 1.9) [InforSense 

Ltd., London]. It consists of the following steps: 

Step 0: Define a descriptor space. 

Step 1: Find nearest neighbours by calculating the Euclidean distance (Table 3.2) between 

the data points. 

Step 2: Trace path of unvisited nearest neighbours until a reciprocal nearest neighbour is 

found. 

Step 3: Merge reciprocal nearest neighbour pair to a new data point (the centroid). 

Step 4: Repeat 1 to 3 until one unvisited point remains. 

Step 5: Sort reciprocal nearest neighbours by increasing Euclidean distance to each other. 

 

3.5 Supervised Classification and Regression Techniques 
 
Supervised techniques embrace all methods using additional a priori knowledge of measured 

data for model building. They can be subdivided into classification methods, which predict 

the belonging to a certain group (actives or not actives), and regression methods, which try to 

create functional dependencies e.g. between structure and activity. Both concepts have 

become standard in the field of early drug discovery [Kubinyi, 1993; Höltje & Sippl, 2001; 

Böhm et al., 2002]. In the presented work at first the supervised methods are introduced 

employed for classification and regression. In a final chapter detailed introduction will be 

given to statistical validation of the created models.  
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3.5.1 Partial Least Squares 
 

Partial least squares (PLS) can be described as the regression extension of principle 

component analysis (PCA) [Wold, 1966]. Instead of describing the maximum variation in the 

“measured” data (X, e.g. a descriptor set), which is the case for PCA, PLS attempts to derive 

latent variables, analogues to principle components, which maximize the covariation between 

the “measured” data X and the “response” variables (Y, e.g. pIC50 values). Result of the PLS 

analysis are de-correlated scoring vectors for the X and Y matrix (new dimensions, size = 

number of rows in X and Y), loading vectors for the X matrix (size = number of columns in 

X) and weighting vectors for X and Y. The weighting vectors and loading vectors serve to 

predict Y vectors for new molecules. Using the so called “variable influence of projection” 

(VIP), PLS offers the additional possibility to identify the importance of descriptors for both 

X and Y matrix. VIP represents a weighted sum of squares of the PLS weights, employing the 

amount of explained Y-variance of each descriptor. 

In the present work, prior to PLS calculation descriptor columns were mean centred and 

scaled to unit variance. Descriptors with a standard deviation < 0.0005 were discarded. 

Quality of the model was assessed by calculating Q² (goodness of prediction) and R² 

(goodness of fit), whereas Q² was determined by seven-fold cross-validation using randomly 

selected partitions of equal size (software default). The number of latent components was 

determined, as the point showing an optimal balance between R² and Q². PLS was performed 

using SIMCA-P+ 10.5 [Umetrics Ab, Umea, Sweden, Eriksson et al., 2001]. 

3.5.2 Support Vector-based Regression 
 

Support vector-based regression (SVR) has its foundation in statistical learning theory and 

belongs to the Kernel-based optimization functions. One SVR type is ε-SVR [Smola & 

Schölkopf, 1998, Liu et al., 2006; Zhou et al., 2006]. For a data set X, with entries x and 

measured values y (note that the entries x are represented by a set of descriptors), it has the 

objective to find a function f(x) that has at most ε deviation from the measured values y for all 

entries x, and at the same time is as flat as possible. This is described for a linear function by 

f(x)=(w, x)+b, with (w, x) being the dot product in X and w as small as possible to ensure 

flatness. f(x) is approximated, that all points (x, y) are predicted with at least ε precision 

(margin, Figure 3.3). The regression function f(x) is obtained by solving the constrained 

quadratic optimization problem and is given by equation 3.12. 
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with αi being Lagrange multipliers, xi
sv being the support vectors at margin ε and b being a 

vector with constant values. Analogously to the “soft margin” loss function in support vector 

machine-based binary classification slack variables ζj are introduced to cope with otherwise 

unsolvable constraints in the optimization problem (Figure 3.3). The trade-off between the 

flatness of f and the amount of slack variables is regulated by a global parameter C.  

To extend the approach to solving non-linear problems, the data points are mapped into a high 

dimensional space, where a linear function is established. This corresponds to evaluating 

kernel k functions at location k(xi, x). In the present study the radial basis function (RBF) 

kernel was employed (Eq. 3.13) [Schölkopf et al., 1997; Smola & Schölkopf, 1998; Zhou et 

al., 2006]. 

 

R.xxxxk ii ∈−−= γγ , )exp(),( 2
              (3.13) 

 

 

x

x

x

x

x

x

x

x

xx

xx

x

x
x

+ε
0
-ε

ζ

predicted

ex
pe

rim
en

ta
l

x

x

x

x

x

x

x

x

xx

xx

x

x
x

+ε
0
-ε

ζ

predicted

ex
pe

rim
en

ta
l

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Principle of a linear support vector-based regression. By solving the quadratic optimization problem 

it is tried to find the function f(x)=(w, x)+b approximating all points (x, y) with at most ε precision (margin). 

Additional slack variables ζ can be introduced to cope with otherwise unsolvable constraints in the optimization 

problem. 

 

The SVM software package LIB-SVM 2.5 was used [Chang & Lin, 2001]. log10(Ki) values of 

the corresponding data set were used as y vectors. The descriptors representing the data points 
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x of the training set were scaled to the interval [-1,1] prior to calculation. The test data and if 

present the external validation data were scaled according to the scaling factors of the training 

set. Parameter pairs C and γ for SVR training were systematically examined starting from 

log2(C) = -2 to log2(C) = 15 and log2(γ) = -15 to log2(γ) = 2 with a step size of 0.2 [Kriegl et 

al., 2005]. The SVR model was selected best predicting the y variables of the test set in terms 

of R2. As additional objective function the squared correlation coefficient Q2 was used, 

obtained by 7-fold cross validation on ten different random splits of the training set (i.e. an 

average Q2 value of 10 individual Q2 values was created). ε was set to 0.1. The parameter 

settings are defined in the parameter file shown in Appendix D.  

3.5.3 Bayesian Regularized Artificial Neural Networks 
 

Artificial neural networks (ANN) were shown to model classification and regression problems 

effectively [Manallack & Livingstone, 1999; Schneider, 2000]. As an example a fully 

connected feed forward network topology is presented in Figure 3.4.  
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Figure 3.4 Fully connected feed forward artificial neural network for classifying a molecule characterized by a 

descriptor vector. The input layer consists of as many units as descriptors are present. The hidden layer consists 

of five units and the output layer contains one unit. Input to hidden layer connections are characterized by 

weights ω and hidden to output layer connections by weights υ.  

 

The input layer contains as many units as descriptors are used. The output unit contains only 

one unit sufficient for classification tasks. By introducing a hidden layer non-linear relation in 

the data can be modelled. Function approximation for f(x) (Eq. 3.14) is achieved by 
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systematically adopting weights ωij from input layer to hidden layer and υj from hidden layer 

to output layer to minimize a classification error E. 
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ζj and ζout are bias values for the hidden layer and the output layer respectively. For g and h 

different activation functions are used like the logistic sigmoidal function tanh (Eq. 3.15). 
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Training an ANN can translate into over-fitting and over-training. Over-fitting occurs when 

the network topology is too complex and too many weights are present for optimization. An 

approach to control the effective complexity is regularization which introduces an additional 

penalization term Ω to the error function E (Eq. 3.16), 

 

Ω+=  ' βEE  .                  (3.16) 

 

In this context β controls the extent to which Ω influences the form of the solution. A simple 

form of regularizer is weight decay and is achieved by calculating the sum of squares of all 

adaptive parameters in the ANN. Over-training occurs when too many optimization cycles 

were performed and the network models not only regularities but noise. To circumvent this, 

the prediction for an external test set is monitored. ANNs optimize a single set of parameters, 

i.e. one solution is identified out of a complex solution landscape. For a detailed description 

of the discussed neural networks see [Bishop, 1995]. 

A different ANN approach, Bayesian regularized artificial neural networks (BRANN), was 

employed in this work. It has been claimed to be less sensitive to over-training and over-

fitting [Ajay et al., 1998; Burden & Winkler, 1999; Bruneau, 2001]. Instead of initializing and 

optimizing a network with a single set of network parameters (weights, biases and offsets) a 

network is initialized with all possible combinations of parameter values. Bayesian inference 

integrates the prediction of the network over all parameter values, whereas each parameter set 

combination is weighted by its posterior probability established from the training data. No 

error minimization is used and a separation of the input data into training and validation set is 
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not necessary. Further since all network parameters are used for prediction, regularization 

favouring less complex solutions is an inherent property of BRANN. Bayesian inference 

initializes a prior probability distribution over the weights P(w). By employing the descriptor 

vectors (x1,..., xN) and the corresponding response vectors (y1,..., yN) the posterior probability 

for each model is determined using Bayes’ theorem (Eq. 3.17), 
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Bayesian analysis allows predicting yN+1 for a descriptor vector xN+1 by solving the integral 

(Eq. 3.18),  
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where Fw(xN+1) is the output of the network. In the present work the BRANN software 

provided by Neal was employed (http://www.cs.toronto.edu/~radford/fbm.software.html). It 

uses as priors w for the weights, biases and offsets independent Gaussian distributions with 

mean μ0 of zero and variance σ (3.19).  

 
2

0

2
1

2
1)(

⎟
⎠
⎞

⎜
⎝
⎛ −

−

= σ
μ

π

w

ewf                  (3.19) 

 

Since appropriate values for σ are unknown in the beginning, they are defined by a gamma 

distribution f(σ,μ,α) with mean μ and shape α and gamma function Γ(α) (Eq. 3.20). These 

gamma distributions are termed hyperparameters. 
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For the priors of the weights of the input to hidden layer and the weights of the output to 

hidden layer the mean μ is controlled by another gamma distribution with mean μ2 and shape 

α. The reason for using the three level priors is, that by integration, the hyperparameters are 

adopted employing the concept of marginalization: the elimination of unwanted variables by 

     



Computational Techniques   64 
                                                                                           
  
integration. In the software the mean μ2 and shape α for the weights and the mean μ and shape 

α for the offsets and biases are defined by the user. Additionally, for the response vectors 

(y1,..., yN) a noise parameter is determined which is treated as two-level prior with Gaussian 

distribution, where the variance σ is defined by a gamma distribution with mean μ and shape 

α. In the present work input to hidden weights were defined by α = 0.5 and μ2 = 0.05. The bias 

for the hidden weights was specified by α = 0.5 and μ = 0.05. The hidden to output weights 

were defined by α = 0.5 and μ2 = 0.05. The output bias was specified by μ = 100. The noise 

for the response vector was defined by μ = 0.05. All other parameters were not set (see the 

parameter file listed in Appendix E). Hyperparameters are sampled by the software. 

The integrals in equation 3.18 are difficult to evaluate due to the degrees of freedom. A hybrid 

Markov chain Monte Carlo method was used by the software for the integration [Neal, 1994]. 

Using a metropolis algorithm a sequence of vectors is generated that form an ergodic Markov 

chain. It is assumed that this chain reaches a stationary (equilibrium) distribution. From N 

Markov chains present in the stationary condition equation 3.18 can be solved by calculating 

the averages (Eq. 3.21).  
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where I specifies the initial values until the Markov chain reaches the stationary distribution. 

The energy function E(w) which is minimized by the Metropolis algorithm is defined by 

equation 3.22 

 

),|(log)( yxwPwE −= .                 (3.22) 

 

The Markov chain was initialized with a trajectory of 100 so called leapfrog steps, an average 

window size and a step-size adjustment of 0.2. The sampling was performed with the 

provided persistent hybrid Monte Carlo method, a trajectory of 1000 leapfrog steps, a step 

size adjustment of 0.3, a heat-bath decay of 0.3 and an average window size of 10. 1000 

iterations were sampled whereas the last 200 iterations were employed for calculating the 

average (Eq. 3.21, 800 iterations were used to reach the equilibrium). The Monte Carlo 

settings are defined in the parameter file listed in Appendix E. For the analysis a fully 

connected feed-forward network with ten units in the hidden layer and one unit in the output 

layer was used. Note that suitable values defining the gamma distribution of the 
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hyperparameters and the hybrid Monte Carlo algorithm were systematically evaluated by Dr. 

Jan Kriegl  (Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany). The 

BRANN software was provided by Radford M. Neal [Neal, 1994]. 

3.5.4 Validation of Classification and Regression Techniques 
 

In the present work three different types of data were distinguish for the regression and 

classification approaches, training data, test data and validation data. Training data were data 

points used for creating a model, test data were data points known to the model but not 

employed for training, and validation data were data points unknown to the model. The data 

sets are defined in 4.3.2, 4.3.3 and 4.4.5. In the following the statistical measures applied for 

the classification techniques and the regression techniques are shown. The measures were 

applied to all three types of data.  

Validation of Classification Techniques 

Classification techniques were characterized by a contingency table (or confusion matrix),

           Actual 

  - + 

- True-negatives (TN) False-negatives (FN) 

+ False-positives (FP) True-positives (TP) 

Predicted 

 

 

containing the number of true positives (TP), false-positives (FP), false-negatives (FN) and 

true negatives (TN). From this table the measures summarized in Table 3.3 were calculated. 

In all cases a value between 0 and 1 is obtained. Sensitivity (or recall) is the correctly 

classified proportion of positives, whereas specificity (precision) is the correctly classified 

proportion of negatives.  

For predictions both a high recall and a high precision is wanted. The false-negative rate is the 

proportion of incorrectly classified negatives, whereas the false-positive rate is the proportion 

of incorrectly classified positives. Both measures were required to be as low as possible. A 

“naïve” classification measure is accuracy since it does not take chance predictions into 

account. The κ index and the squared Matthews correlation coefficient  circumvent this 

by taking the model’s improvement in prediction over chance into account [Chohan et al., 

2005]. The , the accuracy and the κ index range from 0 to 1, whereas a value of one 

represents a perfect prediction and a value of zero represents no correct prediction at all. 

2
MCCR

2
MCCR
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Table 3.3 Accuracy and error measures that can be calculated from a contingency table. 

Measure Formula 

Accuracy  
TNFNFPTP
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+++
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+
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Validation of Regression Techniques 

Regression techniques were evaluated according to the goodness of prediction, R², the 

goodness of fit, Q² and the root mean square error (RMSE). R² was calculated according to 

Equation 3.23. 
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with x and y  being the mean values of measured values xi and predicted values yi, 

respectively. Result of R² range from 0 to 1, whereas a value of one represents a perfect 

prediction and a value of zero represents no correlation at all. 

In the present study Q² was obtained by leave-group-out cross validation (CV). In an iterative 

process a group from the training set is left out, a new model is trained for the reduced 

training set and the activity predicted for this group is then used for Q² calculation (Eq. 3.24). 
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 with y being the mean values of measured values yi and xi being the predicted values. Q² 

ranges from -∞ to 1 with a value of 1 resembling a perfectly robust model. In the present work 

Q² was obtained by 7-fold cross-validation. The indices defining the groups were randomly 

selected. For the SVR approach the cross-validation was repeated ten times (i.e. 10 different 

assignments of random indices) and the individual Q² values were averaged.  

RMSE is a measure to calculate the deviation between predicted values xi and measured 

values yi and should be as low as possible (Eq. 3.25). 
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3.6 The Pharmacophore Concept 
 
A pharmacophore is defined as an “ensemble of steric and electronic features that is necessary 

to ensure the optimal supramolecular interaction with a specific biological target structure and 

to trigger its biological response” [Wermuth et al., 1998]. The steric and electronic features 

are usually defined as “hydrophobic”, “aromatic”, hydrogen-bond donor”, “cationic”, 

“hydrogen-bond acceptor” and “anionic” chemical features in 3D, are not restricted to single 

atoms and can possess directionalities. Since the interaction with the receptor is only assumed, 

the correct specification of such a feature is “potential pharmacophore point” (PPP). To cope 

with additional receptor constraints inclusion or exclusion volume spheres are possible 

[Güner, 1999].  

A pharmacophore model is created by assigning features to a set of ligands assumed to bind to 

the same receptor in a similar binding mode. If the coordinates of the ligands are not known 

molecule alignment tools try to best represent the molecules according to their spatial PPPs 

arrangement [Kristam et al., 2005; Klabunde & Evers, 2005].  
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A pharmacophore search consists of the following steps: (i) definition of the 3D 

pharmacophore model by molecule alignment and feature assignment, (ii) conformer 

generation of the screening data set and (iii) pharmacophore searching. In the present work 

the functionalities implemented in the MOE program package were used for all three steps.  

(i) Pharmacophore definition: as starting structures for the molecule alignment, conformations 

were used, obtained by docking into or extracted from the 3D structure of the corresponding 

receptor (see 3.7). The molecule alignment was refined employing MMFF94x force field 

[Halgren 1996] based energy minimization. The alignment itself was based on Gaussian 

feature density overlap calculations. In addition to the standard feature parameters the charge 

feature was assigned a weight of 1. As pharmacophore features the undirected pharmacophore 

type descriptions for hydrogen-bond donor, hydrogen-bond acceptor, cationic, anionic, 

aromatic ring centre and hydrophobic region were used [Lin, 2004]. The size of the potential 

pharmacophore points was defined manually. 

(ii) Conformers of the screening data set were created as described in 3.2.4. For all 

conformers acids were deprotonated, bases were protonated (see 3.2.3) and undirected 

pharmacophore features were calculated prior to searching. 

(iii) The searching was performed on the conformer data set employing the model(s). Only the 

best scoring conformer was kept of each molecule. 

 

3.7 Docking Techniques 
 
Docking comprises methods simulating the mutual recognition of small molecules (the 

ligands) and their macromolecular biological targets (the receptors, mostly proteins). The 

docking process can be decomposed into addressing two separate problems: posing and 

scoring. Posing is the determination whether a ligand conformation fits into the receptor 

binding pocket by geometric complementarity, whereas scoring is the determination of the 

binding affinity of the conformation in the binding pocket (chemical complementarity). 

Scoring is employed to rank the order of the ligand poses with the aim to separate correct 

from incorrect poses [Gohlke & Klebe, 2002; Taylor et al., 2002; Kitchen et al., 2004]. It was 

demonstrated that docking programs are suited to solve the geometric problem of posing and 

near native ligand-receptor poses can be obtained. However available scoring functions suited 

for fast docking approaches are not able to accurately predict binding affinities, which has a 

direct impact on the later rank ordering [Warren et al., 2006].  
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Scoring functions can be subdivided into three classes, force-field based scoring functions 

using mainly van der Waals and electrostatic energy terms, empirical scoring functions 

employing experimentally determined binding affinities for parameterization of ligand 

receptor interactions and knowledge-based scoring functions using as well experimentally 

determined binding affinities to define simple atom-type interaction-pair potentials.  

Ligand-receptor interactions are defined by the standard Gibb’s free energy of binding ΔG° 

which is composed of enthalpic (ΔH°) and entropic (ΔS°) portions (Eq. 3.26). 

 

ΔG° = ΔH° - TΔS°                   (3.26) 

 

T refers to the absolute temperature. The limitation of currently applied scoring functions is 

that both terms contribute to the binding affinity and that entropic terms at both the receptor 

and ligand are hardly addressed (e.g. desolvation effects) [Gohlke & Klebe, 2002]. A second 

limitation of docking approaches is that both receptor and ligand are flexible targets. For 

ligands an extended conformational analysis is performed. However the receptor flexibility is 

only partly included by employing molecular dynamics, rotamer libraries and protein 

ensembles [Carlson, 2002; Teague, 2003; Kitchen et al., 2004].  

Despite of that a correct preparation of both the ligand set (conformers, tautomers, 

stereoisomers, charges) and the receptor (charges, water molecules in the active site, quality 

check of the crystal structure) is of importance. If no crystal or NMR structure of the receptor 

is available, homology models can be created based on the structure of closely related 

receptors [Hillisch et al., 2004].  

3.7.1 GOLD Docking 
 

Docking calculations were performed using the program GOLD (version 2.2) [The 

Cambridge Crystallographic Data Centre, Cambridge, UK]. GOLD is based on a genetic 

algorithm optimizing the position of the ligand in the protein binding pocket, the dihedrals of 

the ligand rotational bonds, the ligand ring geometries and the dihedrals of the protein OH 

groups and NH3
+ groups [Jones et al., 1997; Verdonk et al., 2003]. The scoring of the ligand 

is performed employing hydrogen bonding fitting points and hydrophobic/aromatic fitting 

points on both the ligand and the protein cavity. As scoring functions GOLD Score (force-

field-based) and ChemScore (empirical) were available. In the present study GOLD Score 

was employed with default parameters. The protein was provided as PDB file whereas the 

binding pocket was defined by the x, y and z coordinates of the pocket centre in combination 
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with a radius of 12 Å. The docking was performed in the highest accuracy mode. The 

parameters for the genetic algorithm were left at default. The early termination option was 

switched off and the ten best binding modes together with the score values were kept for 

further analyses. An example configuration file is present in Appendix F. 
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4.1 Algorithm Development 
 

Two divisive hierarchical clustering algorithms were developed, NIPALSTREE and 

hierarchical k-means for the clustering of large data sets. NIPALSTREE projects a data set 

onto one dimension using PCA. The data set is sorted according to the scoring vector and split 

at the median position into two subset. The algorithm is applied recursively onto the subsets. 

The hierarchical k-means recursively separates a data set into two clusters using the k-means 

algorithm. A measure is introduced helping to identify a similarity threshold defining terminal 

clusters. The statistical evaluation of the hierarchical cluster dendrograms is characterized. 

Both algorithms are validated and compared to each other according to different example sets. 

4.1.1 Data Sets  
 

Four data sets were used to validate both clustering methods, Fisher’s Iris data set [Fisher, 

1936], two molecule data sets – COBRA [Schneider & Schneider, 2003] and MDDR 

[Elsevier MDL, San Leandro, USA] - and the SPECS catalogue [SPECS, Delft, The 

Netherlands] (see 3.1). The MDDR data set was prepared as described in section 3.1.2. For 

MDDR both CATS 2D and MOE 2D descriptors were calculated. For COBRA and a data set 

comprising COBRA, MDDR and the SPECS catalogue only MOE 2D descriptors were 

calculated. Descriptors were mean centred and scaled to unit variance. Finally descriptors 

were selected based on Shannon entropy and UFS (see section 3.3.5). The data set names, the 

employed UFS R² thresholds and the results of the descriptor selection steps for the different 

data sets are summarized in Table 4.1.1.  

4.1.2 NIPALSTREE 
 
Many hierarchical clustering techniques exhibit quadratic complexity [Jain et al., 1999] 

rendering them unsuited for large data sets. To reduce this complexity a possibility is to 

project a descriptor matrix onto one dimension and convert the clustering problem into a 

sorting problem which scales with O(n·log·n), with n being the number of data points (e.g. 

molecules). Two such projection techniques are PCA (see 3.4.3) or NLCA (see 3.4.4) [Otto, 

1998]. In a preliminary experiment the MDDRMOE099 data set was reduced to 59,173 

entries showing affinity to either an enzyme, a GPCR, a nuclear hormone receptor or a ligand-

gated ion channel (see 3.2.5) [Schuffenhauer et al., 2002]. The first three principle 

components were calculated using PCA and NLCA. The obtained scoring vectors were 
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plotted against each other. Data points were coloured according to their belonging to the four 

target classes. Visual inspection of the 3D representations revealed that both PCA and NLCA 

were capable of projecting the different target classes into mostly separate regions of the 3D 

map. The conclusion was that a separation of different ligand classes employing numerical 

descriptors and PCA is possible.  

 

Table 4.1.1 Final data sets after descriptor pruning and similarity threshold calculation 
 COBRA MDDR SPECS + 

COBRA 
+ MDDR 

Data set 
size  
 

5,375 109,528 344,561 

Descriptor 
set 
 

MOE2D CATS2D MOE2D MOE2D 

Original 
number of 
descriptors 
 

147 150 147 147 

Entropy-
based 
pruninga 

 

111 45 110 111 

UFS R2 

threshold 
 

0.8 0.99 0.8 0.99 0.8 0.99 0.99 

UFS based 
pruning 
 

22 53 31 45 24 56 60 

Final data 
set name 
 

COBRA 
08 

COBRA 
099 

MDDR 
CATS08

MDDR 
CATS099 

MDDR 
MOE08 

MDDR 
MOE099 

 

Threshold 
Θb  

4.0 5.6 4.6 5.2 3.6 5.6 5.2 

a Descriptors having a standardized Shannon entropy below 0.3 were removed. b Calculated similarity threshold 

for the clustering. The Euclidean metric was employed. 

 

The results encouraged to further adopt PCA for the clustering algorithm as follows: a d-

dimensional descriptor matrix is projected onto the first PC. Based on the scoring vector S, 

the descriptor matrix is sorted in ascending order and split at the median position. Two 

equally large descriptor sets – from now on termed “left” and “right” sub-matrix – are created. 

This is repeated for the new subsets until the maximum distance between the entries in a sub-

matrix underscores a predefined similarity threshold Θ (for an estimation of Θ see 4.1.5). The 
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algorithm was applied to MDDRMOE099. The clustering was fast, needed less than 64 

megabyte (MB) random access memory (RAM) and translated into clusters which were 

enriched with GPCR ligands, enzymes inhibitors, nuclear hormone receptor ligands and 

ligand-gated ion channel ligands. 

Two principal shortcomings of the method should be mentioned: one is that topological errors 

may occur performing the projection. Clusters which exist in d-dimensional space may be 

distributed over a broad data range in the first PC. These clusters would be torn apart. A 

second shortcoming is that splitting at the median can lead to a separation of similar entries 

lying directly at the median position. The relevance of the first problem can be assessed for 

each individual case by performing additional similarity searches. With that, related sub-

matrices can be detected (see 4.2.1). The second shortcoming led to the current version of the 

algorithm: To build up a hierarchical dendrogram, the following steps are performed 

recursively on the data set:  

 

Step 0: Define a distance threshold Θ. In the present study the Euclidian metric was 

employed. However all similarity metrics and coefficients listed in Table 3.2 can be used. 

Step 1: Create a copy of the current descriptor matrix. The PCA projection is performed 

on this data matrix. The original data matrix is sorted according to the values in the 

scoring vector (heapsort was employed as sorting method) and the splitting procedure is 

initiated with the original data matrix (Figure 4.1.1). 

Step 2: Generate clusters by splitting. The splitting procedure is illustrated schematically 

in Figure 4.1.1 B. Three clusters (black, white and grey circles) are represented by one 

descriptor. Splitting at the median position pulls the white cluster apart. Starting from the 

median position the left and right neighbouring entries are examined step-wisely to find a 

better split point i (left side) or j (right side). The point j is used as new split point since no 

cluster is separated and the resulting left and right data sets are of comparable size. The 

procedure is shown as algorithmic flow chart in Figure 4.1.1 A. It starts by setting a 

pointer to the median entry. The split point is by definition assigned to the right side. 

Starting from the median position in the original data matrix, the Euclidian distance to the 

left neighbouring entry is calculated. If the distance falls below the threshold Θ, the 

neighbouring entry is defined as new temporary split point. This is performed iteratively 

until the left end of the matrix is reached or Θ is exceeded. The procedure is initiated 

analogously for the right side. For both processes the number of comparisons is counted. 

If both stepping procedures have reached the end of the data matrix, Θ is decreased and 
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the procedure is reinitiated. If Θ reaches zero no splitting is performed. If the number of 

comparisons for the left side is larger then for the right side, the splitting position is set to 

the right temporary split point and vice versa. Θ is set back to the original value and the 

left and right sub-matrices are created. 
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Figure 4.1.1 Concept of wandering neighbour. A. Algorithmic flow chart. Abbreviations: d(i,i-1) = (Euclidian) 

distance between molecule i and i-1, d(j,j+1) = (Euclidian) distance between molecule j and j+1. Θ = similarity 

threshold, ε = parameter used for systematically lowering Θ. B. Schematic illustration of the concept: three 

clusters are represented in a one-dimensional data set (black, white and grey). Splitting at the median position 

pulls the white cluster apart. Starting from the median position the left and right neighbouring entries are 

examined step-wisely to deduce a better split point i (left side) or j (right side). The point j is used as new split 

point since no clusters are separated and the resulting left and right data sets are of comparable size (N = 11 left 

and N = 8 right) compared to splitting at i (N = 14 left and N = 5 right). 
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Step 3: Check the maximum distance within a new subset. If the maximum (Euclidian) 

distance between the entries in one subset does exceed the predefined threshold Θ, the 

algorithm restarts with the subsets at Step 1. Otherwise no splitting of this matrix is 

performed. 

 

The algorithm separates the data according to the first PC. This makes it monothetic in nature, 

like recursive partitioning [Rusinko et al., 1999]. However in contrast to recursive 

partitioning, NIPALSTREE is an unsupervised classification technique separating a data set 

only according to its inherent properties present in the loading vector. 

The same similarity threshold Θ was used for both the wandering neighbour procedure (now 

referred to as Θ2) and the termination criterion (now referred to as Θ1). Although it might be 

intuitive to set both thresholds to the same value, the following pre-examinations were 

performed: Θ1 was determined as termination threshold as described in 4.1.5. For this Θ1 

value the algorithm was performed using Θ2 values within a specified data range. The number 

of singletons and the number of terminal clusters was calculated, normalized and plotted in 

one graph (Figure 4.1.2). Results show on the x-axis the Θ2 value and on the y-axis the 

corresponding scaled number of singletons (blue) and clusters (magenta). For all analyzed 

data sets a minimum was obtained for the singleton curve. At approximately the same Θ2 

value the cluster curve converged to a minimum. These minima were observed at Θ2 values 

which were similar to the determined Θ1 values. The aim of the wandering neighbour 

procedure was to avoid distortion of clusters at the median position. “False” singletons should 

be minimized and fewer but larger and more homogeneous clusters should occur. The 

obtained results were in good agreement with the expectation and justify the usage of the 

same value for Θ1 and Θ2. 

NIPLASTREE was able to cluster large data sets with feasible run time behaviour and space 

requirements. The reading, clustering and displaying of 404,148 molecules with 60 

descriptors took 39 minutes on a Linux workstation employing a 3.2 GHz Intel Xeon 

Processor, and required less than 2 GB of memory. For a comparison, the same clustering 

using the hierarchical k-means algorithm (see 4.1.4) was 6 times faster and employed 20% 

less memory. 
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Figure 4.1.2 Identification of a value for the wandering threshold Θ2. Clustering was performed with 

NIPALSTREE and COBRA08.  Θ1 was set to 4.0. 

4.1.3 Outlier PCA 
 
A possible deficiency of NIPALSTREE is that by the projection of the descriptor matrix onto 

one dimension clusters in d-dimensional space can be distributed over a broad data range in 

the first PC. To circumvent this putative deficiency, a variant of NIPALSTREE, Outlier PCA, 

was implemented as a non-hierarchical clustering method. It employs the property of PCA to 

project outliers to the left and right end of the scoring vectors [Oprea & Gottfries, 2001]:  

 

Step 0: Define a distance threshold Θ and one of the similarity metrics or coefficients 

listed in Table 3.2.  

Step 1: Create a copy of the current descriptor matrix. The PCA projection is performed 

on this data matrix. The original data matrix is sorted according to the values in the 

scoring vector and the splitting procedure is initiated with the original data matrix. 

Step 2: Generate clusters by splitting. The splitting procedure starts by setting a pointer to 

the first and last entry of the data matrix. The distance is calculated between the entry at 

the pointer position and the neighbouring entry in the descriptor matrix. If the distance 

underscores Θ, the neighbouring entry is defined as new temporary split point. This is 

performed iteratively until the opposite end of the matrix is reached or the threshold Θ is 

exceeded.  

Step 3: Check for each split point: if both opposite ends have been reached clustering is 

ready. Otherwise the entries from the beginning of the matrix to the left temporary split 

point and the entries from the end of the matrix to the right temporary split point define 
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new clusters. The part amid defines the new sub-matrix. The algorithm restarts with the 

sub-matrix at Step 1. 

 

The advantage of the algorithm is that the space requirement scales linear with the number of 

data points (N). However the time complexity scales quadratic. It renders the algorithm 

unfeasible for large data sets. A second disadvantage of outlier PCA is that no hierarchy is 

created between the data points. This complicates display and navigation in the clusters. The 

algorithm is based on the assumption that at every iteration step clusters are present at the 

ends of the scoring vector. This needs not be the case.  

4.1.4 Hierarchical k-means 
 

The k-means algorithm represents a non-hierarchical clustering technique [Jain et al., 1999]. It 

requires O(k·n) computation time and space, with n being the number of data points and k 

being the number of clusters. The k-means algorithm randomly selects k data points as initial 

cluster centroids (step 1). k clusters are formed by assigning each data point to its nearest 

centroid (step 2). New virtual centroids are calculated for each cluster (step 3). The second 

and third steps are iterated until a predefined number of iterations is reached or the clusters do 

not change anymore. Although the algorithm was shown to produce reliable results, there are 

several features which have to be dealt with care [Jain et al., 1999]: 

 

(i) The number of cluster centroids k has to be predefined. For a large k the resulting clusters 

tend to be small and exclusive, whereas for a low k, clusters tend to be large and 

heterogeneous. The optimal choice of k depends on the inherent structure of the data set and 

the aim of the particular study. 

(ii) Due to the nature of the algorithm, a hierarchical relationship between the clusters is not 

assigned. This can complicate later analysis.  

 

To address this, a modified form of the k-means algorithm was implemented, forming k 

clusters at each level of a hierarchical dendrogram [Sultan et al., 2002; Barnard et al., 2004; 

Böcker et al., 2005].  The advantage is that for a hierarchical clustering no predefinition of the 

number of clusters is required. In contrast it has to be defined until which distance threshold 

molecules are treated as similar and should be fused to form one cluster. Consequently the 

same threshold has to be determined as for the NIPALSTREE algorithm. 

 

     



Results and Discussion   79 

The basic steps of the modified algorithm are: 

 

Step 0: Define k. For a binary dendrogram, k = 2. Specify a distance threshold Θ. In the 

present study, the Euclidian metric was employed to define “distance”. 

Step 1: Perform data clustering employing the k-means algorithm. k child clusters are 

created and the data set is partitioned according to the k-means algorithm. 

Step 2: Check for each cluster: If the maximum distance between the data point exceeds 

the threshold Θ, repeat Step 1 for this cluster. Otherwise terminate. 

 

It should be noticed, that the hierarchical k-means is a technique using a randomization step 

during the initialization of the centroid vectors. Identical dendrograms need not necessarily 

result from multiple runs on the same data set. To avoid this, approaches like a maximum 

dissimilarity selection of the initial cluster centroids might be used. This requires additional 

calculation steps increasing the time complexity. To avoid this no such pre-selection was 

performed. The algorithm was implemented in such a way that k can be defined by the user. 

In the presented work k was always set to 2. 

Hierarchical k-means was able to cluster large data sets with feasible run time behaviour and 

space requirements. Compared to NIPALSTREE, the reading, clustering, and displaying of 

the same 404,148 molecules with 60 descriptors took only 383 seconds on a Linux 

workstation employing a 3.2 GHz Intel Xeon Processor.  

4.1.5 The Stop Threshold Concept 
 

Many hierarchical clustering algorithms use criteria like the homogeneity or the heterogeneity 

of the resulting clusters to assess the quality of the algorithm [Everitt et al., 2001]. These 

criteria are also used to determine, whether clusters containing similar molecules should be 

merged. The difficulty is that these techniques require a definition of “similarity”. Both the 

NIPALSTREE and the hierarchical k-means algorithm face the same problem since the 

threshold Θ has to be defined as maximum allowed distance between the entries in a terminal 

cluster. For both clustering algorithms a method was proposed helping to find such a 

threshold value [Böcker et al., 2005; Böcker et al., 2006]:  

For a specified distance range the number of singletons, the number of clusters, and the sum 

of the maximum distances in each terminal cluster, Dmax (Eq. 4.1) are calculated, scaled to 

[0,1] and plotted in one graph (Figure 4.1.3). Dmax can be interpreted as the sum of the cluster 

radii of the n terminal clusters. 
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where D is a distance, xi,j represents data points that are members of the same terminal cluster 

i, ci represents the centroid of cluster i, and Ni is the number of members of cluster i. For D all 

distance metrics or coefficients from Table 3.2 can be selected. Note that for Tanimoto, dice 

and cosine coefficients the complement, i.e. 1- D(xi,j,ci), is summed up for all j. 

  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.3 Identification of the distance threshold Θ. Clustering was performed using the hierarchical k-means, 

Euclidean metric, COBRA08 and different distance thresholds. The number of terminal clusters, singletons and 

Dmax was calculated.  

 

In all clustering examples shown in this study the Θ value that led to the maximal Dmax value 

was used (Figure 4.1.3). Last row of Table 4.1.1 summarizes the results obtained for the 

different data sets. Dmax represents a point where the data set in the dendrogram best adopts 

the predefined similarity threshold and a maximum dense packing of the terminal clusters is 

obtained. This maximum dense packing is assumed to represent the point showing a 

maximum in homogeneity and a minimum in heterogeneity.  

4.1.6 Statistical Evaluation of Cluster Dendrograms 
 

Cluster dendrograms can be analysed according to different perspectives. At first it can be 

distinguished between an unsupervised and a supervised analysis. The latter is only possible if 

additional biological data like % CTL, IC50 or Ki values have been projected onto the 

emerging clusters. Secondly, a cluster in the dendrogram can be analysed isolated or context-
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dependant. Thirdly, different parts of a dendrogram can be examined like a dendrogram level 

or a complete branch (that is, from the root cluster to a terminal cluster). Fourthly a 

dendrogram can be assessed in its entirety. Measures for all different views have been 

implemented and can be accessed via a GUI. Here the measures are introduced. Based on a 

user-defined threshold compounds with biological response values (% CTL, IC50 or Ki values) 

are assigned to the classes “hit” and “non-hit” (and “not-defined”). If not stated otherwise, 

these names are used for describing classes. 

 

Cluster Evaluation 

(i) Clusters are evaluated according to simple measures like the number of data points in a 

cluster or the percentage of class hit entries in a cluster or the percentage of class hit entries 

inherited from the father cluster. If more than one biological response column has been loaded 

(e.g. % CTL values from different HTS), the percentage overlap between the hit classes in a 

cluster is calculated.  

(ii) A cluster is analysed according to the enrichment factor (EF, equation 3.10). An EF > 1 

indicates that more compounds belonging to a class have been clustered than expected from 

an equal distribution. The EF value depends on the size of the cluster under consideration: on 

upper dendrogram levels, where clusters are large, EF values are small. On lower dendrogram 

levels they can get large without statistical relevance. 

(iii) Clusters are evaluated according to impurity measures. The Gini impurity and entropy 

impurity are both measures judging the clustering of a class c with respect to all additional 

classes in the cluster. The entropy impurity Entropy(c) for class c is calculated according to 

equation 4.2 [Duda et al., 2001]. 

 

)))(ln()())(ln()(()( cipcipcipcipcEntropy ≠≠+==−= ,                          (4.2) 

 

and the Gini impurity Gini(c) for class c is calculated according to equation 4.3. 

 

)²)()²((1)( cipcipcGini ≠+=−= ,                                         (4.3) 

 

with p(i) being the percentage of entries in a cluster belonging to a class. A value close to zero 

indicates for both measures a pure cluster with respect to class c.  
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(iv) The Pearson correlation coefficient (PCC) provides a measure analysing correlations (a 

relationship) between the n entries xi,n and xj,n of two vectors i and j. It is calculated according 

to equation 4.4. 
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with ix and jx  being the means, and si and sj being the standard deviations of vectors i and j, 

respectively. In case of hierarchical k-means the PCC is calculated between the centroid 

vector of a cluster and the centroid vector of its parent cluster. For NIPALSTREE it is 

calculated between the loading vector of the cluster under consideration and the loading 

vector of the parent cluster. The PCC is only defined if both vectors are of same length. This 

is not always true, since with the NIPALSTREE algorithm in each cluster descriptors are 

rejected having a standard deviation < 0.0005. The PCC ranges from +1 (perfect correlation) 

over 0 (no correlation) to -1 (perfect inverse correlation). The NIPALSTREE algorithm 

separates a data set of a cluster into equally large proportions. Since PCA is used for sorting 

the data, the separation resembles mostly a split in the middle of the variance. Consequently 

the PCC is expected to be close to zero. Otherwise if the PCC is close to 1 or -1 the parent 

cluster and the actual cluster are expected to contain similar compounds. For the hierarchical 

k-means a (virtual) representative of a subset (the parent cluster centroid) is compared to a 

representative of a smaller subset within the subset (the actual cluster centroid). A correlation 

(PCC close to 1 or -1) between them is always expected. 

(v) For the NIPALSTREE algorithm PCA calculation results in the scoring and the loading 

vector. Values in the loading vector define the importance of the descriptors and their 

direction to cumulatively explain the variance in a cluster. This capability was extended 

helping to identify descriptors describing the difference between the entries of the actual 

cluster and the entries in the brother cluster: the d entries in the actual loading vector are 

selected whose absolutes exceed a threshold ζ. That means that only descriptor weightings are 

employed explaining some variance. In the present study 0.1 was used for ζ. Note that by 

focussing only on the absolute values the direction is ignored. The second step is 

characterized by calculating the ratio R between the d absolute values in the loading vectors of 

the actual cluster and the brother cluster (Eq. 4.5). 
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Equally weighted descriptors in both clusters have an R value of one and are ignored. In 

contrast differing descriptor weightings translate into a high or a low R value.  

For the hierarchical k-means algorithm the relation R for d descriptors is calculated according 

to equation 4.6 
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which represents the ratio of the change of the mean descriptor value going from the father 

cluster to the actual cluster compared to the corresponding change in the brother cluster. 

Again a minimum or a maximum R value indicates a large difference between the descriptor 

in both clusters. 

 

Dendrogram Evaluation 

A generalized view on the distribution of molecules belonging to a hit class c in the cluster 

dendrogram was obtained using the following analysis: for a dendrogram level the average 

enrichment factor (EF) is calculated for all n (n = number of clusters) EFs of class c, which 

are larger or equal to one (Eq. 4.7).  
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The average EF is calculated for all dendrogram levels, where the number of clusters is less 

than or equals to the number of molecules belonging to class c. On higher dendrogram levels, 

artificially large enrichment factors can bias the average and are thus avoided [Böcker et al., 

2006]. 

Two impurity measures offering a generalized view on the distribution of molecules 

belonging to a class c, have been implemented, SE and Kullback-Leibler distance (KBD) 

[Duda et al., 2001]. The SE is defined according to equation 3.4 (see 3.3.5). Here pi represents 

the number of class c members ci in a cluster divided by the total number of class members on 

a dendrogram level (equation 3.5). To make the SE independent of the number of clusters Ni 
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on a dendrogram level, the obtained values are normalized by the logarithm to base two of Ni 

(equation 3.6). A scaled SE close to zero represents a highly ordered distribution of class c 

members on a dendrogram level. This resembles a distinct clustering of the class. 

The KBD is calculated according to equation 4.8. 
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with pobs(i) being the observed number of class c members ci in a cluster divided by the total 

number of class members on a dendrogram level. Assuming a random separation of class c in 

the father cluster, pexp(i) explains the expected number of class c members ci in a cluster 

divided by the total number of class members on a dendrogram level. To obtain values 

independent of the number of clusters Ni, the KBD is standardized according to equation 4.9. 

 

iN
KBDsKBD

2log
= .                               (4.9) 

 

The KBD tends to be high if class c is not separated into equally large proportions. A high 

KBD value indicates a dendrogram level where a separation of class c from the rest occurs. 

Likewise to the average EF the Shannon entropy and Kullback-Leibler distances are only 

calculated for dendrogram levels, where the number of clusters is less or equals to the number 

of class c molecules. Figure 4.1.4 shows an example of the average EF, Shannon entropy and 

Kullback-Leibler distance obtained for ACE inhibitors (hit) and the remainder (non-hits) of 

COBRA099. The hierarchical k-means algorithm was employed.  

All three curves provide a different view on the same dendrogram. With exception of 

dendrogram level 2, the average EF shows a constant rising for class hit stepping down the 

dendrogram hierarchy. It indicates a systematic separation of this class from the rest. Class 

non-hit shows no enrichment at all. The Shannon entropy curve for class hit shows a constant 

decrease in impurity. It can be understood as a systematic clustering of this class in the 

dendrogram. From dendrogram level 2 ongoing, the KBD curve for class hit exhibited values 

above 0.1. These KBD values (with respect to class non-hit) indicate a separation of this class 

from the rest. It supports the results obtained with SE and average EF. On the uppermost 

dendrogram level COBRA099 was separated into clusters containing 73% (left cluster) and 

27% (right cluster) of the data set. This unbalanced separation has a direct influence on both 
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impurity measures of class non-hit. It is indicated by a low value in the Shannon entropy plot 

and the high value in the Kullback-Leibler plot. It cannot be seen in the average EF plot. The 

average EF is an intuitive and interpretable measure. However both the SE and KBD provide 

extra information and are thus valuable. 
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Figure 4.1.4 Average EF (a), scaled Shannon entropy (b) and scaled Kullback-Leibler distance (c) values 

obtained for ACE inhibitors (hit) and the rest (non-hits) of COBRA099 for each dendrogram level. The 

dendrogram was obtained with the hierarchical k-means.  
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A measure of the balance S of a dendrogram is calculated for each dendrogram level 

according to equation 4.10. 
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with n being the number of non terminal clusters in the dendrogram until the dendrogram 

level is reached and m being the number of non terminal clusters of an optimally split 

dendrogram. l(n) or l(m) defines the shortest internal path lengths of clusters n or m to the root 

cluster. A value of one resembles a balanced dendrogram whereas a value near zero resembles 

a linear connected list. Figure 4.1.5 shows an example of S values obtained for COBRA099 in 

combination with the hierarchical k-means (blue curve) or NIPALSTREE (magenta curve). 

The x-axis represents the dendrogram level and the y-axis the corresponding S value. On level 

six the dendrogram obtained with the hierarchical k-means algorithm gets unbalanced. A same 

observation was made for the NIPALSTREE algorithm on level eight.  
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Figure 4.1.5 S values obtained for different dendrogram levels employing COBRA099 and the hierarchical k-

means algorithm (blue curve) or the NIPALSTREE algorithm (magenta curve). 

 

4.1.7 Application of NIPALSTREE 
 
NIPALSTREE was applied to Fisher’s Iris data set. A Θ value of 1.12 was used and was 

determined as described in 4.1.5. Figure 4.1.6 shows the projection of the data set on the first 

two principal components (A). The calculated hierarchical cluster dendrogram is shown in B.  
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Figure 4.1.6 Clustering of Fisher’s Iris data set. A: Score plot of the data according to the first two principle 

components (explained variance > 95%). The different data classes are coloured in blue (1), yellow (2) and green 

(3). B: Binary dendrogram (Θ = 1.12) obtained with the NIPALSTREE algorithm. Each dendrogram cluster is 

represented by a pie chart showing its relative class composition. 

 

Data points in A were coloured according to their belonging to classes 1 (blue), 2 (yellow) or 

3 (green). In the binary dendrogram each cluster is shown as a pie chart showing its relative 

class composition. Obviously the dendrogram representation is in agreement with the PC-

projection (note that individual horizontal branches have to be rotated by 180° in the 

dendrogram). Class 1 occupies a distinct region in the PC plot. In the dendrogram pure class 1 

containing branches were observed from dendrogram level three ongoing. Class 2 and class 3 

show both overlapping and pure regions in both plots. As can be seen in the Figure 4.1.6 B on 

the first dendrogram level a proportion of class 2 entries was assigned to the right side. On 

dendrogram level two these entries were separated from class 1. This observation shows a 

disadvantage of the algorithm: the separation of a data set into two equally large partitions can 

force local data densities to be torn apart. However, on subsequent dendrogram levels, these 

data result in pure but smaller clusters.  

The NIPALSTREE algorithm was applied to COBRA08 and COBRA099. As one example, 

angiotensin converting enzyme (ACE) inhibitors were selected. ACE, a zinc dependent 

metalloprotease, plays a central role in the angiotensin-renin system. ACE cleaves the 

decapeptide angiotensin I into the vasopressor angiotensin II. ACE inhibitors have been used 

for treatment of cardiovascular diseases, including high blood pressure, heart failure and 

kidney failure [Acharya et al., 2003]. 

COBRA contained 48 molecules categorized as ACE inhibitors. They can be grouped into 

four structural classes (class representatives are shown in Figure 4.1.7, 17-20) and a few 
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“outliers”, which cannot easily be assigned to any of the classes (four example structures are 

shown in Figure 4.1.7, 21-24). Seven molecules of class 1 (represented by 17), eleven 

molecules of class 2 (represented by 18), twelve molecules of class 3 (represented by 19) and 

six molecules of class 4 (represented by 20) were present. Both descriptor versions of 

COBRA were clustered using the NIPALSTREE algorithm. Figure 4.1.8 shows the average 

EFs for each dendrogram level, both COBRA versions and the ACE inhibitors and non-ACE 

inhibitors. As expected the non-ACE inhibitors showed an average EF of one (i.e. no 

enrichment) in the dendrogram. In contrast ACE inhibitors were characterized by constantly 

increasing average EFs for both COBRA versions on deeper dendrogram levels. Going from 

the uppermost cluster to clusters located on deeper levels, ACE inhibitors were enriched 

employing the clustering algorithm and both descriptor sets. 
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Figure 4.1.7 Four class representatives (17-20) and four examples of outliers (21-24) of ACE inhibitors in the 

COBRA data set. 

 

The separation of the four ACE inhibitor classes (Figure 4.1.7, represented by 17-20) in the 

dendrograms was analysed in detail. On the root level “outliers” were assigned to the right 

     



Results and Discussion   89 

sub-dendrogram. The four classes were completely assigned to the left sub-dendrogram. On 

dendrogram level four employing COBRA099 and level five employing COBRA08 class 2 

was the first one that was separated from the other classes. Class 2 molecules differ from the 

other classes in having an imidazole substructure element. An amide moiety is completely 

missing. The loading vectors of the class 2 containing cluster and its brother cluster were 

analysed as described in 4.1.6 (Eq. 4.5) The aim was to identify discriminating descriptors 

between class 2 and the other ACE classes. 
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Figure 4.1.8 Average enrichment factors for each dendrogram level obtained for ACE inhibitors and non-ACE 

inhibitors (rest) of COBRA08 and COBRA099. Green: COBRA099 ACE inhibitors; dark blue: COBRA08 ACE 

inhibitors; magenta: COBRA099 non-ACE inhibitors; light blue: COBRA08 non-ACE inhibitors. 
 

For COBRA08 high R values were present for PEOE_VSA-0, PEOE_VSA-4 and 

SMR_VSA1 and for COBRA099 for PEOE_VSA-4 and SlogP_VSA1. The corresponding 

original descriptor values of class 2 and classes 1, 3 and 4 were analysed and the resulting 

means and standard deviations are shown in Table 4.1.2. Marked differences were obtained 

for class 2 compared to the other ACE classes. It shows that by analysing loading vectors in 

class separating dendrogram clusters important descriptor can be identified. 
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Table 4.1.2 Mean descriptor values and standard deviations obtained for ACE inhibitors of class 2 and classes 1, 

3 and 4.  

 PEOE_VSA-0 

[Å2] 

PEOE_VSO-4 

[Å2] 

SlogP_VSA1 

[Å2] 

SMR_VSA1 

[Å2] 

Class 2 32.9 ± 15.1 5.68  35.7 ± 3.3 18.7  

Class 1, 3, 4 51.8 ± 15.9 0 21.6 ± 4.8 3.49 ± 2.9 

 

The terminal clusters obtained with both descriptor sets were examined in detail. Since here 

the interest lies on separating structural classes, clusters were judged according to the number 

of identified class members and the enrichment factors of the corresponding classes. The 

results are summarized in Table 4.1.3 
 

Table 4.1.3 Terminal clusters enriched with ACE inhibitors of COBRA099 or COBRA08. 

Data set ACE class in 
cluster 

Number of class 
entries in cluster 

Cluster 
size  

EF of ACE class 
for the cluster 

COBRA099 2 4 5 391 

COBRA099 2 4 9 217 

COBRA099 3 4 6 299 

COBRA099 3 4 5 358 

COBRA099 1 3 5 461 

COBRA08 3 5 7 320 

COBRA08 2 4 7 279 

COBRA08 3 3 8 168 

 

The terminal clusters obtained for COBRA099 showed two clusters enriched with class 3, one 

cluster enriched with class 1, and two clusters enriched with class 2 ACE inhibitors. Class 4 

ACE inhibitors occurred mainly as singletons. The terminal clusters obtained for COBRA08 

showed two clusters enriched with class 3 and one cluster enriched with class 2 ACE 

inhibitors. Class 1 and class 4 inhibitors occurred mainly as singletons. This separation of 

classes of similar molecules reflects a characteristic of the NIPALSTREE algorithm, which is 

a consequence of keeping the use of internal memory as low as possible: via the projection of 

a d-dimensional space onto one dimension mapping errors occur. As a consequence, closely 

related molecules appear as singletons in different parts of the created dendrogram. The 

problem can be fixed by performing additional similarity searches around the terminal 

clusters. Any metric listed in Table 3.2 can be employed for that. 
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The results show that a clustering of ACE inhibitors can be obtained employing the 

NIPALSTREE algorithm. Although differences exist, clustering both descriptor sets led to a 

comparable separation of the molecules in the dendrogram. No clear descriptor preference can 

be given. For the terminal clusters in COBRA099 which were enriched with ACE inhibitors, a 

co-clustering of six additional protease inhibitors and five molecules binding to other receptor 

classes was observed. For COBRA08, seven additional protease inhibitors were found and 

five molecules binding to other receptors. Since protease inhibitors usually share a 

peptidomimetic backbone, the co-clustering of other protease inhibitors was expected. It 

shows the applicability of the clustering method to targeted library design. 

As mentioned in 4.1.3 a variant of the NIPALSTREE algorithm was implemented: outlier 

PCA. COBRA099 was clustered with the algorithm. Only clusters were analysed containing 

at least three ACE inhibitors. Three clusters were identified. Cluster one contained five ACE 

inhibitors of class 2, cluster two contained four compounds of class 3 and cluster three 

contained three molecules of class 1. The remaining ACE inhibitors occurred mainly as 

singletons. Outlier PCA shows (as negative aspects) a squared run time and does not create a 

hierarchical relationship between the clusters. This complicates later analyses. For the ACE 

inhibitors outlier PCA did not result in superior clustering of the ACE classes with respect to 

the corresponding NIPALSTREE analysis (Table 4.1.3). A reason for the observed lower 

validity might be the false assumption that clusters in a data set are projected to the left and 

right end of the first scoring vector employing the algorithm. According to the results outlier 

PCA was deprioritized for further analyses. 

4.1.8 Application of Hierarchical k-means 
 
Similar to the NIPLASTREE algorithm in a first experiment, Fisher’s Iris data set was used to 

test the performance of the hierarchical k-means algorithm. Figure 4.1.9 a shows the 

projection of the data on the first two principal components. The binary k-means dendrogram 

is shown in b (no termination criterion was specified). It is evident that the dendrogram 

representation is in agreement with the PC-projection. Three distinct classes are shown which 

occupy different branches of the dendrogram. Three entries of class 2 were assigned to the 

right side of the dendrogram which is dominated by class 1 examples. These points are 

indicated by little arrows in Figure 4.1.9. The observation reveals a disadvantage of the 

algorithm: the number of clusters on a dendrogram level, k, forces the data space to be split 

into k sub-regions on each dendrogram level. Local data densities lying at an interface region 

between two such sub-regions bear the danger of being torn apart. As can be seen in Figure 

     



Results and Discussion   92 

4.1.9 b, after the third split of the Iris data set, the three “outliers” form a pure cluster. The 

outcome of this preliminary experiment is promising, since although data points were 

assigned to the “wrong” side of the dendrogram, in the end pure but smaller clusters were 

obtained. It should be kept in mind that an optimum solution exists for such a problem. When 

dealing with large data sets only algorithms can be used which try to reach the optimum. 

When comparing the dendrogram obtained with the hierarchical k-means to the dendrogram 

obtained with NIPALSTREE, it is evident that the hierarchical k-means algorithm shows a 

more pronounced separation of the three classes. Especially the separation of class 3 from the 

other two classes shows a clear advantage of the hierarchical k-means algorithm: in a cluster 

the data set needs not to be split into equally large subsets. Outlying clusters can be separated 

early from the rest of the data set. 
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Figure 4.1.9 Clustering of Fisher’s Iris data set. a) Score plot of the data according to the first two principle 

components (explained variance > 95%). The different data classes are coloured in blue (1), yellow (2) and green 

(3). b) Binary dendrogram (k = 2, Θ = 0). Each dendrogram cluster is represented by a pie chart showing its 

relative class composition. Arrows indicate the location of three class 2 data points in the PC-plot (a) and the k-

means dendrogram (b). 

 

The hierarchical k-means clustering was applied to MDDR and COBRA. Two examples were 

selected to be discussed in more detail, (i) caspase 1 (interleukin 1 cleaving enzyme; ICE, EC 

number 3.4.22.36) inhibitors [Talanian et al., 2000; Braddock & Quinn, 2004] from COBRA, 

and (ii) glucocorticoid receptor ligands [Brody et al., 1998; Norman et al., 2004] from 

MDDR. 

ICE inhibitors prevent IL1 cleavage, which plays a major role in a wide range of 

inflammatory and autoimmune diseases, like rheumatoid arthritis, osteoarthritis, chronic 

obstructive pulmonary disease, and asthma. ICE belongs to the family of cysteine proteases 
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and specifically cleaves Asp116-Ala117 and Asp27-Gly28. Inhibitors typically mimic this 

residue motif. In COBRA 39 ICE inhibitors were present. 

Glucocorticoid receptors bind glucocorticoids and induce gene transcription. This leads to 

catabolic reactions in extrahepatic tissues, anabolic reactions in the liver, immune-suppressive 

reactions in the lymphatic system and under stress to elevated cortisol levels having 

inflammation blocking effects. Due to the various functions of glucocorticoids, drugs that 

bind to glucocorticoid receptors have implications in a lot of therapeutic areas, e.g. rheumatic 

disease or allergic reactions [Brody et al., 1998]. In the MDDR 91 glucocorticoid receptor 

ligands were present. 

COBRA Clustering (ICE Inhibitors). 

Both versions of COBRA (COBRA08 and COBRA099, Table 4.1) were clustered using the 

hierarchical k-means algorithm. With the exception of one outlier, for both data sets all ICE 

inhibitors (N = 39) were assigned to one side of the dendrogram on the first dendrogram level. 

On subsequent dendrogram levels the inhibitors were separated into individual branches. 

Comparing the emerging clusters obtained with the different descriptor sets, different 

groupings of ICE inhibitors were observed. This is expected since the larger descriptor set 

(COBRA099) should emphasize properties in a different way than the smaller one. The 

average EF, SE and KBD diagrams for ICE inhibitors in COBRA08 (ICE_08) and 

COBRA099 (ICE_099) were analysed (Figure 4.1.10). 

The average EF curve for ICE_099 shows constantly increasing average enrichment factors. 

An exception was dendrogram level three. For ICE_08 this rising was only observed for the 

first three dendrogram levels. When analysing the ICE curves obtained by SE or KBD and 

both COBRA versions, opposite results were obtained. Here both descriptor sets performed 

equally well on dendrogram level one indicated by a high value in the KBD diagram and a 

low value in the SE diagram. On subsequent dendrogram levels the SE values for ICE_08 

were lower and the KBD values were higher with respect to corresponding values obtained for 

ICE_099. It indicates a purer and thus superior clustering for ICE_08. This opposite 

behaviour of SE and KBD compared to the average EF can be explained by analysing the 

cluster sizes on the different dendrogram levels. For COBRA099 on the first dendrogram 

level both ICE inhibitors and the complete data set showed an unbalanced separation. In 

contrast for COBRA08 only ICE inhibitors showed this unbalanced separation. It translated 

into a lower average EF value. 
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Figure 4.1.10 Average EF (a), SE (b) and KBD distance (c) for dendrograms obtained for ICE inhibitors in 

COBRA099 (ICE_099) and COBRA08 (ICE_08). The hierarchical k-means algorithm was employed. 
 

Both SE and KBD are based on the number of cluster and the analysed class. The overall data 

set size has no influence. Consequently no difference can be seen on the first dendrogram 

level for ICE_08 or ICE_099. On dendrogram level one ICE inhibitors in the COBRA099 

dendrogram were separated into comparably large partitions. For COBRA08 again an 

unbalanced split of ICE inhibitors occurred. This separation is not visible in the average EF 

values. Contradictory both SE and KBD account for this purer clustering and give valuable 

additional information. SE, KBD and average EF try to monitor the distribution of a class on a 
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dendrogram level in one value. This simplification allows only draw rough conclusions. The 

different points of views are necessary to get a deeper understanding. 

Focussing on the results obtained for the COBRA08 set, three large clusters emerged 

containing mainly ICE inhibitors. Cluster one consisted of 15 entries, with nine ICE Inhibitors 

(EF = 82.7), cluster two comprised 12 entries, with six ICE inhibitors (68.9) and cluster three 

consisted of 14 entries, with nine ICE Inhibitors (EF = 88.6). The molecules in the three 

clusters, which were not defined as ICE inhibitors, fall into two classes. Class one consists of 

other protease inhibitors, like Matrix metalloproteinase inhibitors [Baker et al., 2002], human 

rhinovirus 3C protease inhibitors [Johnson et al., 2002] or Hepatitis C Virus NS3 protease 

inhibitors [Goudreau et al., 2004]. This is not surprising, since small organic protease 

inhibitors try to mimic peptide-sequences [Böhm et al., 2002]. These peptide sequences can 

be in turn similar to each other. Class two consists of α4β1 intregrin (also known as very late 

antigen-4, VLA-4) antagonists, which have potential for the treatment of allergic disease like 

asthma and other chronic inflammatory diseases [Lin et al., 2004]. Although both ICE 

inhibitors and VLA-4 antagonists play a role in treatment of allergic diseases no 

interconnection is known to the author. Regarding the ICE inhibitors in the three clusters, two 

out of the three clusters were composed of structurally similar molecules. The third cluster 

contained compounds less related to the first two clusters. Representative structures are shown 

in Figure 4.1.11. Small individual clusters were also observed with only one or two ICE 

inhibitors. These might have resulted from unsuitable cluster boundaries or be a consequence 

of shortcomings of the chosen descriptor set.  

The representatives of the three large clusters (A, B and C) contain mutual substructure 

elements that were found in identical or only slightly different form in all other structures of 

the clusters. A peptidic moiety (Figure 4.1.11, yellow) represents a substructure motif that is 

present in all ICE inhibitors: a modified aspartic acid, alanine, valine, and a peptide bond. 

Clusters A and B are closer related to each other, which can be explained by the shared ethyl-

phenol group (Figure 4.1.11, magenta). They differ in the occurrence of an acetamide group 

in cluster A (Figure 4.1.11, green) and a propyl-benzene group in cluster B (Figure 4.1.11, 

green). The more distant cluster C accounts for two unique substructures, a toluene group and 

a ring closure connecting the alanine and valine residues (Figure 4.1.11, green). Results show 

that the distribution of ICE inhibitors in the dendrogram can be interpreted from a structural 

perspective. 
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Figure 4.1.11 Representative ICE inhibitors from the three main emerging clusters (A, B, C) obtained for 

COBRA08 using the hierarchical k-means. Clusters A and B contain closely related structures. Yellow: common 

substructure motif in all three clusters; magenta: common motif in clusters A and B; green: unique motifs. 

 

MDDR Clustering (Glucocorticoid Receptor Ligands). 

The MDDR was clustered employing the hierarchical k-means algorithm (k = 2) in 

combination with the four descriptor sets listed in Table 4.1.1 and the corresponding 

calculated stop thresholds. Comparing the different descriptor sets according to their 

capability to separate glucocorticoid receptor ligands from the rest of MDDR, the 

MDDRCATS08 descriptor set yielded the best results at the root levels. In total 90% of the 

Glucocorticoid receptor ligands were assigned to the right side. Glucocorticoid receptor 

ligands in the MDDR can be divided into three main “lead” classes: 23% class I, 66% class II, 

and 11% class III (see Figure 4.1.12 A). Judging the different descriptor sets according to 

their capability to separate the different lead classes, both CATS 2D descriptor sets separated 

class I from classes II and III on the root level. In contrast, the MDDRMOE099 set separated 

class III from classes I and II and the MDDRMOE08 descriptor set showed no clear 

separation at all. It highlights the impact of different descriptor sets on the separation. The 

terminal clusters containing more than two glucocorticoid receptor ligands were selected form 

the MDDRCATS08 dendrogram. In total 270 additional molecules were identified. Of these 

molecules 86.3% have been described as ligands of other nuclear hormone receptors or as 

ligands being involved in the synthesis of steroid hormones. The remaining 37 molecules 

could only be assigned to a wide variety of inhibitor classes.  
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Figure 4.1.12 A: The three core structures (I. – III.) of glucocorticoid receptor ligands present in the MDDR 

database. B: Representative glucocorticoid receptor ligands in the three largest terminal clusters (A, B, C) in the 

left and right sub-dendrogram of dendrogram level 1. Results are shown for MDDRCATS08. On both sides 

clusters B and C lie in closer proximity to each other compared to cluster A. Yellow: common motif in all three 

clusters on the left side; blue: common motif in clusters B and C on the left side; magenta: common motif in 

cluster B and C on the right side; green: unique motives. 
 

The different descriptor sets resulted in a comparable MDDR clustering. For all descriptor 

sets on the left and right side (from the root) three large clusters appeared containing 

glucocorticoid receptor ligands. Figure 4.1.12 B shows as an example the results, obtained 

with the MDDRCATS08 descriptor set. The structures in Figure 4.1.12 B were 

representatives of the clusters (three on each side of the cluster dendrogram viewed from the 

root). Cluster “importance” was rated according to the enrichment factor of either class I, II or 

III (Figure 4.1.12 A), and not according to the enrichment factor of glucocorticoid receptor 

ligands in general. The enrichment factors in the three class I clusters (Figure 4.1.12 B left 

dendrogram half) were 2,818, 2,817 and 2,192, whereas enrichment factors in the two class II 

clusters (Figure 4.1.12 B right dendrogram half, clusters B and C) were 493 and 401 and the 

enrichment factor of the class III cluster was 5,917 (Figure 4.1.12 B right dendrogram half, 

cluster A). The compounds were grouped according to their relationship in the dendrogram, 
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so that in both dendrogram halves clusters B and C were in closer proximity to each other 

compared to cluster A. The three different classes were separated. Class I was only present on 

the left side. Common motifs in the three clusters are indicated by yellow-coloured 

substructures. Green colour shows unique substructures across all clusters. Blue fragments 

represent a common substructure of the related clusters B and C on the left dendrogram half. 

In clusters B and C of the right dendrogram half class II showed the classical steroid 

backbone (magenta colour) whereas class III dominated cluster A (Figure 4.1.12). Despite of 

the separation of the three classes across clusters differently substituted core structures were 

recognized and grouped. The results show that the different structural classes were separated 

from each other and enriched in terminal clusters. The clustering mirrors the structural 

relationship of glucocorticoid receptor ligands and confirms the results obtained for ICE 

inhibitors in COBRA. 

 

Virtual Screening  

To further evaluate the hierarchical k-means algorithm, a virtual screening application was 

designed: The dendrogram can be generated employing a reference data set (e.g., MDDR, 

COBRA). By projecting new molecules on the dendrogram their potential activity might be 

predicted by analyzing the co-clustering of new molecules with known actives in terminal 

clusters. This can also be performed simultaneously by reading-in compounds for which the 

pharmacological activity is unknown together with reference compounds. It provides a quick 

and easy way to find new compounds being putatively active. One such study was performed 

to illustrate the idea: The combined data set of MDDR, COBRA, and the SPECS catalogue 

was used to build up a binary dendrogram using the hierarchical k-means (Table 4.1.1). All 

known caspase-1 inhibitors from COBRA (N = 39) were marked and the terminal clusters 

containing these molecules were screened for co-located MDDR caspase-1 inhibitors (N = 

188). A challenging question is to look for “scaffold hops” within a cluster. One such pair is 

given by structures 25 (COBRA) [Edwards, 2003] and 26 (MDDR) [Hagmann et al., 1994] 

which were grouped together (chart 4.1). Both are known caspase-1 inhibitors with different 

scaffolds. In this particular cluster, only four molecules were co-located (one from COBRA, 

three from MDDR). All of them are known cysteine protease inhibitors. Compounds 27 

[Cameron et al., 1997] and 28 [Guo et al., 2001] represent the other two molecules from 

MDDR (chart 4.1). They are both cathepsin L inhibitors [Turk et al., 2000] and share the 

peptide-like backbone part with the caspase-1 inhibitors. This example demonstrates a 

possible use of the hierarchical k-means for constructing focused screening libraries. 
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Chart 4.1 Cysteine protease inhibitors 

 

Summarizing, all three clustering examples demonstrated a meaningful automatic grouping of 

chemical structures by the hierarchical k-means approach. The algorithm is feasible for large 

data sets. The hierarchical nature of the cluster relationships provides a possibility to find 

SAR in the different clusters if activity data is present. 

4.1.9 Comparison of Both Algorithms by Virtual Screening 
 
It was shown that both, NIPALSTREE and hierarchical k-means perform a meaningful 

clustering of large data sets. According to this the question is arising whether one of the 

algorithms can be given a favour. To answer the question and examine the usefulness of both 

algorithms in the context of virtual screening the combined data set of the SPECS catalogue, 

COBRA and MDDR was employed (Table 4.1.1). The SPECS catalogue was engaged to 

increase the number of molecules for which the activity is unknown. These molecules were 

treated as “inactive”. With the combined data the hierarchical clustering was performed using 

both algorithms. The five inhibitor classes listed in Table 4.1.4 were analysed and used as 

compound labels. 
Table 4.1.4 SPECS_COBRA_MDDR: sizes of inhibitor/ligand classes. 

Label N (COBRA) N (MDDR) 
ACE inhibitor 48 494 
COX inhibitor 149 1,556 
Adrenoceptor ligand 200 542 
GABA receptor ligand 85 478 
Glucocorticoid receptor ligand 18 91 
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The quality of both clustering algorithms was evaluated and compared to each other by 

examining for each dendrogram level what percentage of MDDR entries with a certain label 

has been co-clustered with COBRA entries bearing the same label. By summing up the cluster 

sizes of the examined clusters, the screened percentage of the original data set was derived. 

Enrichment curves for each label were created by plotting the percentage of retrieved MDDR 

entries bearing the label against the percentage of the screened data set for each dendrogram 

level. Figure 4.1.13 shows the enrichment curves obtained with the hierarchical k-means 

(Figure 4.1.13 a) and NIPALSTREE (Figure 4.1.13 b) for ACE inhibitors (dark blue curves), 

COX inhibitors (magenta curves), adrenoceptor ligands (yellow curves), GABA receptor 

ligands (light blue curves) and glucocorticoid receptor ligands (purple curves). All curves 

show a steep rising in the lower percentage range (deeper dendrogram levels) for all labels. 

The markers in the curves correspond to dendrogram levels, with the right-most point being 

the root of the dendrogram. 

To compare both clustering algorithms dendrogram level 11 was selected. On this level the 

screened data size of each selected screening application was above 3,500 compounds which 

is a suitable size for further filtering steps, ordering and experimentally testing of the 

molecules. Enrichment factors were calculated for both algorithms and the disjunctions and 

conjunctions of the result lists of both algorithms. Table 4.1.5 shows the obtained enrichment 

factors. In parenthesis the number of retrieved MDDR entries is shown, interacting with the 

examined receptor class. 
 

Table 4.5 Enrichment factors obtained with the clustering algorithms on dendrogram level 11. 
a ACE  

(N = 494) 
COX  

(N = 1,556) 
Adrenoceptor 

(N= 542) 
Glucocorticoid 

receptor  

(N = 91) 

GABA-

receptor  

(N = 478) 
Hierarchical k-meansb 31.2 

 (N = 246) 

11 

(N = 761) 

8.99  

(N = 298) 

27.3 

 (N = 27) 

7.97  

(N = 110) 

NIPALSTREEb 16.2 

(N = 188) 

6.16  

(N = 625) 

6.14 

 (N = 270) 

18.7  

(N = 17) 

3.51  

(N = 84) 

Hierarchical k-means + 

NIPALSTREE 

disjunctionb 

17.6  

(N = 306) 

6.42  

(N = 980) 

5.93  

(N = 394) 

15.6 

(N = 30) 

4.86  

(N = 165) 

Hierarchical k-means + 

NIPALSTREE 

conjunctionb 

54 

(N = 128) 

22.6 

(N = 406) 

16.3 

(N = 174) 

98  

(N = 14) 

7.77  

(N = 29) 

a In parenthesis the total number of MDDR ligands in the data set is shown. 
b In parenthesis the number of MDDR ligands is shown retrieved with the corresponding method. 
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Figure 4.1.13 Clustering of the SPECS_COBRA_MDDR data set using NIPALSTREE (a) and hierarchical k-

means (b) and specific labels (see colour panels). On a dendrogram level the number of data points in clusters 

containing COBRA entries with a specific label, is translated into the percentage of virtually screened 

compounds. The number of co-clustered MDDR entries having the same label, is converted into the percentage 

of retrieved hits. Points in the diagram correspond to dendrogram levels. 

 

All calculated EFs were higher for the hierarchical k-means algorithm compared to the 

corresponding EFs from NIPALSTREE. The result shows that for the listed examples the 

hierarchical k-means algorithms outperformed the NIPALSTREE algorithm. With the 

exception of GABA receptor ligands, the conjunctive combination of both algorithms 

translated into two-fold higher enrichment factors. Reducing the data space by intersecting the 

results of the two algorithms can have the consequences of loosing structural classes. To test 

how many structural classes get lost by combining both algorithms the distribution of ACE 
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inhibitors on level 11 was re-analysed. The employed ACE inhibitor sets are presented in 

Table 4.1.6. 

To identify the structural classes present in the data sets, a phylogenetic-like tree clustering 

analysis was performed (see 3.4.5). This program is a hierarchical cluster analysis tool 

extracting maximum common substructures of a given data set. The resulting classes are 

assumed to correspond closest to lead structure classes. Table 4.1.6 shows, that after 

combining results of both algorithms (set 3), 15 ClassPharmer classes do no longer occur with 

respect to set 1 (hierarchical k-means) or five classes with respect to set 2 (NIPALSTREE). 

To estimate whether the not occurring classes represent a loss of real “lead” classes, Daylight 

Fingerprints were calculated for all MCS of the classes of set 1, 2 and 3. For each rejected 

MCS of set 1 or 2 the most similar MCS in set 3 was identified using Tanimoto similarity 

calculations.   

 
Table 4.1.6: MDDR ACE inhibitor sets 

Data set a Final data set name Number of MDDR 

ACE Inhibitors 

ClassPharmer  

Classes 

Hierarchical k-means Set 1 246 39 

NIPALSTREE Set 2 188 29 

Hierarchical k-means 

+ NIPALSTREE 

conjunction 

Set 3 128 24 

a Data sets contain only MDDR ACE inhibitors found with both algorithms on dendrogram level eleven 

 

Three representative nearest neighbour pairs are highlighted in Figure 4.1.14. All structures 

contain the common theme of a carboxylic acid and an amide group separated by an aliphatic 

carbon atom. Differences exist in the adjacent moieties. The left side of the structure pairs 

represents a non-matching class of set 1 (hierarchical k-means) and the right side the most 

similar class of set 3. Figure 4.1.14 A shows the case where only minor differences exist 

between the structural pairs. This occurred for nine of the non-matching classes from data set 

1 and three from set 2. Figure 4.1.14 B exemplifies the case where the core “lead” structure 

with the common theme is still equal in both structure pairs, but the rest groups show 

differences. This was observed for five of the not matching classes of set 1 and for two from 

set 2. Figure 4.1.14 C shows the only example where it is assumed that a structural class is 

lost, since on the left side the hydantoine core structure is replaced by a tetrahydroazepinone 

on the right side. This structural arrangement is present in four structures of set 2.  
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In summary the results demonstrate that the conjunctive application of both algorithms 

reduces the number of compounds to be screened while the number of actual hits is 

diminished to a lower extent. On dendrogram level eleven of the dendrogram for ACE 

inhibitors, only one “lead” class is lost. This effect may be different for other ligand classes. 

However, current results let assume, that both algorithms are likely to produce overlapping 

clusters and that this is not the case.  
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Figure 4.1.14 Example of three most similar MCS pairs obtained by ClassPharmer analysis for set 3 (left side of 

each structure pair) and set 1 (right side of each structure pair). Similarity was determined by calculating 

Tanimoto coefficients employing Daylight Fingerprints. Similar structural motifs are highlighted in yellow.  

4.1.10 Conclusions 
 
A new hierarchical clustering algorithm, NIPALSTREE, was developed having the capacity 

to cluster large data sets. The hierarchical k-means algorithm was adopted for the same 

purpose. Both algorithms were able to cluster 400,000 compounds with 60 descriptors in less 

than one hour on a 3.2 GHz Intel Xeon processor. The memory consumption was below 2 

GB. It let to the assumption that both algorithms are capable of clustering several million data 

points using 64 bit processors in a few days. 

The Dmax calculation was introduced helping identify a stop threshold for the clustering. The 

maximum Dmax value is assumed to achieve a packing of maximum density in the terminal 
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clusters. It represents a compromise between maximizing the homogeneity and minimizing 

the heterogeneity. This theoretical consideration was confirmed for the examined ACE 

inhibitors, ICE inhibitors and glucocorticoid receptor ligands since both a grouping of 

structurally similar ligands and a separation from the remaining data set was obtained in 

terminal clusters. 

Both clustering methods were validated and compared to each other according to several 

examples. Using different descriptor sets both algorithms showed structurally meaningful 

groupings and were able to enrich different ligand classes in the created dendrograms. Both a 

coarse-grained and fine-grained view on the data is obtained. The hierarchical k-means 

algorithm seemed to outperform NIPALSTREE in that higher enrichment factors were 

obtained for a set of different ligand classes. The superiority of the first algorithm might be 

explained by its polythetic nature compared to the monothetic nature of the latter algorithm. 

The conjunctive application of both clustering algorithms was shown to improve the EFs 

without loosing a large proportion of the different lead classes present in the data. Further the 

NIPALSTREE algorithm provides the loading vector for every cluster. It allows direct 

drawing of conclusions of the importance of different descriptors in a cluster. First insights 

into SAR of a ligand class can be gained. Consequently, no clear preference can be given for 

any of the algorithms. A comparison of both clustering algorithms to any other hierarchical 

clustering algorithm is still missing. It is likely that more calculation intense methods like 

Wards’ clustering or the recently introduced sequential supraparamagnetic clustering [Ott et 

al., 2004] will provide a grouping of higher quality. These methods exhibit at least quadratic 

time complexity and space requirement and are not applicable to large data sets. 

Several measures were adopted helping to derive structure activity relationships in the 

dendrogram. By calculating the average enrichment factor, Shannon entropy and Kullback-

Leibler distance for the distribution of a class of inhibitors on a dendrogram level, the 

distribution is judged by one value. By plotting these values for every level in one graph it 

was possible to judge the clustering of the inhibitors in the dendrogram. Each of the three 

measures offered a different but complementing view on the separation. A global point of 

view on the SAR of a class of ligands is obtained. The calculation of the ratio between the 

values of the loading vector in a cluster and its brother cluster revealed important descriptors 

distinguishing a hit class from their structurally related non-hits. Although other methods exist 

identifying such descriptors it shows that the calculated dendrograms provide information to 

draw conclusions about the SAR in the data. 
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4.2 SAR Analyses in the Cluster Dendrogram 
 

The strategy of the present work was to cluster a data set and then employ the emerging 

clusters in combination with biological response values to elucidate SAR in the data. The first 

section (4.1) has described two hierarchical clustering algorithms allowing clustering of large 

data sets with up to a few million data points. When working with large data sets, a manual 

analysis is no longer possible. Instead a guided graphical navigation through chemical space 

is necessary. Publications addressing this problem exist in computational chemistry and the 

main strategy was to create integrated program packages allowing to perform a multitude of 

SAR analyses in one graphical user interface (GUI) [Oellien et al., 2005; Liu et al., 2005; 

Wild & Blankley, 1999; Kibbey & Calvet, 2005; Gedeck & Willett, 2001; Meyer & Cook, 

2000]. Unfortunately these packages have been designed to display clustering results of 

several thousand molecules and not for millions. According to this a new GUI had to be 

developed to display the results and perform SAR analyses with the aim to help identifying 

clusters enriched with actives, singletons or false-negatives and false-positives. For an 

illustration COBRA099 was employed. A focus was laid on the protease inhibitor classes 

listed in Table 4.2.1.  

 
Table 4.2.1 Analyzed protease inhibitors in COBRA099  

Protease enzyme Number of 
inhibitors 

hit rate [%] Protease type 

ACE 48 0.89 Metallo Protease 

Collagenase 1 (MMP 1) 24 0.45 Metallo Protease 

Cathepsin D 5 0.09 Aspartic Protease 

HIV protease 62 1.15 Aspartic Protease 

Cathepsin K 24 0.45 Cysteine Protease 

ICE 39 0.73 Cysteine Protease 

Dipeptidyl peptidase 4 (DPP IV) 25 0.47 Serine Protease 

Urokinase 48 0.89 Serine Protease 

Thrombin 195 3.63 Serine Protease 

Factor VIIa 34 0.63 Serine Protease 

Factor Xa 226 4.2 Serine Protease 

 

     



Results and Discussion   106 

For each inhibitor class artificial % CTL values were created. Compounds belonging to the 

inhibitor classes were assigned to a low % CTL value and compounds not belonging to the 

inhibitor class to a high % CTL value. 4.2.1 introduces the GUI and the navigation in the 

dendrogram starting from the complete dendrogram over clusters to the molecules in a cluster. 

4.2.2 and 4.2.3 explain two types of a guided navigation in the data present in the 

dendrogram. 

4.2.1 General Analysis 
 
COBRA099 was clustered using the hierarchical k-means algorithm and the termination 

threshold specified in Table 4.1.1 (see 4.1.1). The resulting binary cluster dendrogram was 

reported to an interactive GUI (Figure 4.2.1).  

Figure 4.2.1 Graphical user interface appearing after clustering of COBRA099 employing the hierarchical k-

means algorithm. Additionally artificial % CTL values of the protease targets in Table 4.2.1 have been loaded. 
 

The GUI is separated into three parts, a main window showing the dendrogram and two side 

panels on the right and left side. The dendrogram is directed from the uppermost cluster to 

terminal clusters on the opposite side. The dendrogram clusters are drawn as black circles 

whereas black lines indicate connections between the clusters. Using the hierarchical k-means 
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algorithm the vertical connections were scaled to the diversity of cluster centroids in the sub-

dendrogram. In the case of NIPALSTREE they were scaled to the maximum depth of the sub-

dendrogram. In the left panel, buttons show the titles of the incorporated (HTS) assays. The 

button for ACE inhibitors has been activated. Based on a user-defined % CTL threshold the 

entries were assigned to the two classes “hit” and ”non-hit”. The “classes” field on the right 

side shows buttons for the ACE classes “hit” (blue) and “non-hit” (yellow). Additionally, the 

numbers of entries belonging to a class are present in parenthesis. By activating a button in 

the classes field all clusters in the dendrogram containing at least one member of the class 

were highlighted with the corresponding colour (Figure 4.2.2). 

Figure 4.2.2 Graphical user interface appearing after clustering of COBRA099 employing the hierarchical k-

means algorithm. % CTL values have been loaded describing the inhibitor classes listed in Table 4.2.1. Based on 

a user defined % CTL threshold the compounds were assigned to the classes hit and non-hit. Clusters containing 

at least one ACE inhibitor (hit) were coloured in blue in the dendrogram. 
 

The GUI was implemented so that several buttons on the left side panel can be activated 

simultaneously. Subsequently all pre-defined classes appear in the classes field. Multiple class 

buttons can be activated at the same time. Clusters in the dendrogram are then coloured 

according to the presence of different classes. It gives a first hint on selectivity issues. A 
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second graphical display type has already been shown when describing results obtained for 

Fisher’s Iris data set, a pie chart representation of clusters in the dendrogram showing their 

relative class composition (see 4.1.7 and 4.1.8). 

The cluster dendrogram in the main window is navigable. A cluster can be selected with the 

left mouse button and becomes the new root of the displayed dendrogram. To know which 

part of the dendrogram is displayed the “Overview” field on the right side panel shows the 

complete dendrogram in miniaturized form. Here, the actually drawn dendrogram is coloured 

in black. A navigation example is shown in Figure 4.2.3. Using the buttons “Back” and 

“Whole tree” on the right side, a navigation step back or a step back to show the complete 

dendrogram can be performed. This type of navigation enables to step in or out of chemical 

data distributions. It allows a coarse-grained and a fine-grained view on the molecules in the 

dendrograms. This is illustrated by two ACE inhibitor pairs shown in Figure 4.2.4. Molecules 

A and B were extracted from a cluster located on an upper dendrogram level. Here clusters 

were large and different lead structures were presented. Compounds C and D were extracted 

from a terminal cluster containing analogues of one lead structure. 

 

 

Figure 4.2.3 Example of a navigation in the dendrogram obtained for COBRA099 employing the hierarchical k-

means algorithm. Two focussing steps have been performed. The clusters indicated by the black arrows formed 

the new roots of the actually displayed dendrogram. The overview window on the right side panel shows the 

actually displayed dendrogram in black whereas the not visible part is highlighted in light grey.  
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The right side panel shows a frame titled “average enrichment factors”. It contains the curves 

for average EFs for classes “hit” and “non-hit” (section 4.1.6). Note that the at last selected 

assay on the left side panel is used for curve calculation. In addition to that both SE and KBD 

curves can be accessed by left clicking on this frame. 
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Figure 4.2.4 A-B: ACE inhibitors present in a clusters on an upper dendrogram level. C-D: ACE inhibitors in a 

terminal cluster. 

 

By right clicking on a cluster in the main window, a new GUI opens. It contains statistical 

information about the cluster. Only the results of the last selected assay are shown. However, 

it is possible to access information about the other assays via the menu bar. The GUI is 

separated into five parts, a list showing the cluster entries combined with their % CTL values, 

two fields showing the consistency of the classes in the cluster, a general information part, a 

list showing the cluster centroid (hierarchical k-means) or the loading vector (NIPALSTREE) 

and a field showing statistical measures introduced in 4.1.6. Figure 4.2.5 shows a cluster. It 

was located on dendrogram level seven. % CTL column values for ICE inhibitors were 

selected.  

The GUI contains an additional menu bar. It allows performing several functionalities for the 

cluster. One such functionality is to conduct a similarity search around the cluster centroid in 

the data set using a user-defined threshold. Every similarity metric or coefficient listed in 

Table 3.2 can be selected. A search might become necessary to cope with misclassifications 
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putatively occurring with both algorithms. Using different metrics or coefficients for 

searching and clustering offers the chance to have alternative points of views on chemical 

similarity [Sheridan & Kearsley, 2002]. By applying more coarse grained (wider) similarity 

thresholds, the chemical space around the cluster is examined. It might translate into 

identifying new active compounds bearing novel scaffolds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2.5 Example of a GUI showing information about a cluster. % CTL values for ICE inhibitors were 

selected. Five different parts are displayed, the list showing the identifiers of the entries of the cluster, two fields 

showing the consistency of the ICE inhibitor classes (hit and non-hit), a general information part, the centroid 

vector and a field showing statistical information about the classes in the cluster. 

 

A function in the menu bar allows displaying the molecules in the cluster in a scrollable 

window. For structure drawing Marvin structure viewer (version 3.1) was employed 

[ChemAxon Ltd., Budapest, Hungary]. It offers the possibility to perform a detailed analysis 

for a single molecule, ranging from 3D conformer and tautomer generation to property 
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calculations like elemental analysis, topological analysis and Hückel analysis or the prediction 

of pKa, logP, logD, polar surface area, polarizability and refractivity. As an example the ACE 

inhibitor trandolaprilat [Guay, 2003] was analysed (Figure 4.2.6 A).  
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Figure 4.2.6 Physicochemical analysis of trandolaprilat (A). B. The lowest free energy conformer of 

Trandolaprilat was determined and charged according to calculated pKa values at pH 7.4. C. Topological 

analysis. D. calculated logP and logD values. E. Trandolaprilat at pH 7.4 in combination with expected donor 

(D) and acceptor (A) moieties. 
 

As a first step the lowest free energy conformer was created. The pKa values of the different 

groups in the molecule were calculated. Figure 4.2.6 B shows the resulting micro-species at 

the physiological pH of 7.4 in combination with the calculated pKa values for each group. 

Both carboxylic groups were deprotonated (pKa = 3.05 and 3.72), whereas the secondary 

nitrogen beard a positive charge (pKa = 7.66). The basic amine and the opposite carboxylic 

groups are assumed to mutually enhance their basicity and acidity. It explains the lower pKa 

for this carboxylic group. The tertiary amide nitrogen was assigned to a negative pKa value 

indicating that it cannot take up a proton at any pH. The predicted pKa properties are in good 

agreement with literature data [e.g. Williams & Lemke, 2002]. Figure 4.2.6 C shows the 
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topological analysis of trandolaprilat. In D the calculated logP of both the neutral and charged 

isoform are presented. Figure 4.2.6 E shows the predicted isoform at pH 7.4 in combination 

with expected donor (D) and acceptor moieties (A).  

Performing such detailed analyses for different molecules of a cluster can give a first hint on 

pharmacokinetic properties. This may help explain the SAR of the molecules or their ADME 

properties. Other types of analyses might be considered like the extraction of maximum 

common substructures from a cluster [Stahl & Mauser, 2005] or the alignment of molecules 

based on CoMFA analysis [Cramer et al., 1988]. Still the implemented or incorporated 

functionalities already allow a view on either the dendrogram or the cluster or the molecules 

in a cluster. 

4.2.2 Terminal Cluster Analyses 
 
4.2.1 introduced the GUI and the different focusing grades for SAR analyses. Here the guided 

navigation through terminal clusters is exemplified. When analyzing terminal clusters, three 

cluster types might be of interest: 

 

(i)  Structural and biological singletons. The clusters contain only one compound which is 

assumed to be active. They are outliers in the data set and are avoided in follow-up studies 

since no (Q)SAR can be directly derived. They might provide a rich source for alternative 

lead structures.  

(ii) Biological singletons. The clusters contain several molecules. Only one is assumed to be 

active. These clusters are deprioritized since the active might be false-positive or possess a 

“steep” SAR. It is assumed to cause difficulties in the optimisation of this molecule towards 

higher activity or a better pharmacokinetic profile.  

(iii) Biological clusters. This cluster type contains several compounds and all or at least a 

large proportion is assumed to be active. They allow drawing a first conclusion about SAR of 

the structural class/classes in the cluster.  

 

To identify different terminal cluster types a function was implemented counting the number 

of hits (actives) and non-hits (inactives) in a cluster. If a cluster contains at least one hit an 

additional similarity search around the cluster centroid is performed. The user-defined 

threshold (e.g. the estimated termination threshold Θ) and one of the metrics or coefficients of 

Table 3.2 is used. The final number of hits and non-hits is counted and the cluster is assigned 

to one of the predefined cluster types listed in Table 4.2.2. 
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4.2.2 Pre-defined cluster types to separate terminal clusters 

Cluster type name Number of hits Cluster size 

Not active cluster - >1 

Not active singleton - 1 

Active singleton 1 1 

Active singleton in cluster (size = 2) 1 2 

Active singleton in cluster (size = 3) 1 3 

Active singleton in cluster (size = 4) 1 4 

Active singleton in cluster (size = 5) 1 5 

Active singleton in cluster (size = 6) 1 6 

Active singleton in cluster (size = 7) 1 7 

Active singleton in cluster (size > 7) 1 >7 

Active cluster with two actives 2 >2 

Active cluster with three actives 3 >3 

 

After performing the terminal cluster analysis a new GUI is displayed. It contains selectable 

buttons for the cluster types. Each button has a specific colour. When activating one of the 

buttons each terminal cluster belonging to the cluster type is redrawn as an oval with 

corresponding colour. All non-terminal clusters heading to these clusters are coloured 

likewise. For further discussion structural thrombin inhibitor singletons from COBRA099 

were selected. The “Active singleton” button was activated and the corresponding clusters in 

the dendrogram were coloured in light-green (Figure 4.2.7). 

The clustering of a data set can translate in two types of singletons, true singletons and false 

singletons. True singletons represent structural singletons whereas false singletons show only 

minor structural difference to related molecules. The occurrence of the latter singletons in a 

data set can depend on the used similarity threshold, the similarity metric, the descriptor 

scaling procedure, the descriptor set used in the application etc. To minimize them different 

solutions have been proposed like the re-clustering of singletons employing more coarse-

grained similarity thresholds [Menard et al., 1998] or “fuzzy” clustering allowing a molecule 

to be a member of several clusters [Holliday et al., 2004] or the re-clustering of singletons 

based on maximum common substructure comparisons [Stahl & Mauser, 2005]. When 

analyzing thrombin inhibitors in the dendrogram only 15 clusters were present judged as 

structural and biological singletons. These singletons were examined manually by analyzing 

the parent clusters and screening the data set for the nearest neighbour. Chart 4.2 shows two 
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representative examples. For the putative thrombin singletons 29 and 32 nearest neighbours 

30 and 33 in COBRA099 were identified using the Euclidean metric. For 29 the parent cluster 

was examined. A representative of this cluster is shown in 31. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.2.7 The right GUI shows the dendrogram obtained by clustering COBRA099 employing the 

hierarchical k-means algorithm. The left GUI appeared after terminal cluster analysis focussing on thrombin 

inhibitors. The cluster types are shown as radio button with a specific colour. The “Active singleton” button was 

activated. In the dendrogram thrombin inhibitor singletons are coloured as light green ovals. All clusters in the 

dendrogram heading to one of these terminal clusters are coloured correspondingly. 
 

Results indicate that in the first case the thrombin inhibitor 29 represented a real singleton 

since both the nearest neighbour 30 in the data set and the representative from the parent 

cluster 31 possessed different molecular scaffolds. In the second case the thrombin singleton 

32 and its nearest neighbour 33 were similar. As main differences the methyl-carbamic acid 

moiety in 32 is replaced by a hydrazine substructure in 33. False singletons can be a result of 

the description of the molecules, the employed similarity metric or the descriptor scaling 

procedure. To further minimize these singletons other types of analysis like MCS alignments 

or the mapping of potential pharmacophore points might be fruitful. However judging 

molecules as structural singletons lies in the eye of the beholder and will always require a 

final manual analysis. With the presented workflow it was possible to reduce the number of 

singletons to a minimum. The incorporated functionalities assist in quickly identifying these 

singletons and in the final visual inspection. 
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Chart 4.2 Thrombin inhibitor singletons. 

 

4.2.3 Relevant Clusters, Selectivity and Specificity 
 

Thus far the focus of the guided dendrogram navigation was on identifying different types of 

terminal clusters. Here a second navigation type is introduced, helping to identify clusters 

enriched with actives in the dendrogram. As example application factor Xa inhibitors were 

selected. They play a central role in the blood clotting cascade, being the point of convergence 

of intrinsic and extrinsic pathways [Tan et al., 2003]. Consequently factor Xa is an attractive 

target for the development of new anticoagulants [Frederick et al., 2005; Ueno et al., 2005; 

Krovat et al., 2005]. For COBRA factor Xa inhibitors (N = 226) a molecular scaffold analysis 

was performed (see 3.4.1). The occurrence of each scaffold was counted. Scaffolds having 

more than five entries were visually inspected and if similar combined to a larger cluster. 

Results of the manual examination were eight different structural classes. Representatives are 

shown in Chart 4.3.  
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Chart 4.3 Representative factor Xa inhibitors. 

 

To find structural classes of a ligand class in the cluster dendrogram two extreme scenarios 

might be considered: (i) a structural class can be large, diverse and may consist of both active 

and inactive compounds. For a detailed understanding of the SAR of this structural class 

clusters on upper dendrogram levels are of interest. (ii) A structural class can be small and 

homogenous in activity. Here one is looking for clusters on lower dendrogram levels. Despite 

of that, if multiple measurements at different targets have been performed for the compounds, 

selectivity and specificity are of interest. 

To identify clusters enriched with active molecules of class c, a measure is to colour clusters, 

whose EFs for the ligand class exceeds a user-defined threshold. Problem of this measure is 

that on upper dendrogram levels clusters are large and EFs are low. On lower dendrogram 

levels enrichment factors can get large without statistical relevance. To obtain a measure 

identifying clusters enriched with class c entries on every dendrogram level with equal 

weight, the EF has to be adjusted to the dendrogram level k. Assuming a perfectly balanced 

binary dendrogram (i.e. at each cluster the data set is separated into equally large partitions) 

on every dendrogram level 2k clusters are present. Scaling is achieved by dividing the EF for 

cluster i by the logarithm to base two of k. By this an EF, bEFi,c,k for cluster i and class c 

independent of k is obtained (Eq. 4.11).  
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bEF values are calculated for clusters located on dendrogram levels, where the number of 

clusters is less or equals to the number of class c molecules. On higher dendrogram levels, 

artificially large enrichment factors can bias the calculation [Böcker et al., 2006]. Clusters are 

coloured red in the dendrogram if the value exceeds a predefined threshold ς. On higher levels 

clusters are coloured red, whose percentage of class c entries exceeds a predefined threshold 

τ. In addition to this an activity threshold, AT1, is defined. Clusters containing at least one 

entry having a biological response value exceeding AT1 are displayed and coloured green. All 

other clusters are excluded from display. For the factor Xa inhibitors in the dendrogram 

obtained for COBRA099 and the hierarchical k-means, values for ς, τ and AT1 were defined 

as 5, 75% and 50% CTL, respectively. The resulting dendrogram is shown in figure 4.2.8. 

Figure 4.2.8 Cluster dendrogram obtained by clustering COBRA_099 with the hierarchical k-means algorithm. 

Only clusters were displayed in green containing at least one factor Xa inhibitor. In red clusters were shown 

whose bEF for factor Xa inhibitors exceeded the predefined thresholds for ς or τ values. 
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Obviously when comparing the dendrogram in Figure 4.2.8 with the dendrogram in Figure 

4.2.1 the number of displayed clusters is reduced markedly. It indicates that factor Xa 

inhibitors were clustered in individual branches of the dendrogram. The uppermost clusters 

coloured red were visually inspected. With the exception of the classes represented by 36 and 

38 it was possible to re-identify all structural classes of factor Xa inhibitors. In numbers, 17 

out of 20 molecules of the class represented by 34 were identified in two clusters. Only two 

non-hits were co-located. 27 out of 29 molecules of the class represented by 35 were found in 

one large cluster. 13 additional factor Xa inhibitors were co-clustered including the six 

members of the class represented by 39. 22 non hits occurred. Five out of nine molecules of 

the class represented by 37 were identified in one cluster. Only hits were present. Four out of 

six compounds of the class represented by 40 were found in one cluster. No additional non-hit 

occurred. All five molecules of the class represented by 41 were identified in one cluster. No 

additional non-hit occurred. However six additional factor Xa inhibitors were co-clustered 

giving an extended view on the SAR of this structural class. 

Two structural classes were missed in the analysis. This might be a result of the descriptor set 

used, the similarity metric or deficiencies of the clustering algorithm. A possibility to identify 

these classes might be to lower thresholds ς and τ. However this would increase the number of 

clusters to examine. For the class represented by 36 the number of molecules in COBRA was 

counted containing the scaffold. 43 molecules were identified of which 13 were described as 

factor Xa inhibitors. This large proportion of inactive compounds might serve as an 

explanation for missing the class with the specified thresholds. Both classes represented by 35 

and 41 were clustered in combination with additional factor Xa inhibitors. For the cluster 

containing analogues of 41 these additional factor Xa inhibitors were missed during the initial 

scaffold analysis since their scaffold contained an additional ring or a ring of different size. It 

shows that with the bEF approach an extended SAR can be obtained. The identification of 

clusters consisting of different factor Xa classes (e.g. 35 and 39) shows the lead hopping 

potential of this approach. Summarizing, six clusters were analyzed. It was possible to 

retrospectively identify six out of eight structural classes. It shows the value of the employed 

measure in combination with hierarchical clustering. When clustering larger data sets with 

several 100,000 compounds (e.g. molecules from vendor catalogues) and a few known actives 

two ways of adjusting ς and τ can be thought of. ς and τ can be set so that a high or a low 

number of co-clustered vendor molecules is retrieved. High amounts of molecules with 

unknown affinity can later be employed for targeted screening libraries. Low numbers are 
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more suited for virtual screening applications aiming on the identification of new lead 

compounds.  

The cluster containing 38 factor Xa inhibitors (classes represented by 35 and 39) and 22 

additional molecules represents an example worthwhile to addressing selectivity and 

specificity. The following graphical functionalities have been implemented to analyse a 

cluster: (i) the display of the number of hits and non-hits of each incorporated assay as a 

histogram. (ii) The display of enrichment factors of hits and non-hits of the assays as a 

histogram. (iii) The display of R² values as a histogram. These values are calculated between 

the actually selected activity values and the activity values of the other incorporated results. It 

should be noticed that this calculation makes only sense if all assay results belong to the same 

result format (e.g. only Ki values). Further the values should represent a quantitative activity 

measurement of high quality (that means no qualitative % CTL values, see 4.3.1). (iv) A more 

robust value is the calculation of percentage overlap between the actually selected hit class 

and all other hit classes. (v) The display of the molecules in a cluster in combination with all 

activity values as a histogram [Wilkens et al., 2005]. The cluster with the 38 factor Xa 

inhibitors and the 22 additional molecules was analysed accordingly. Results of (i), (ii), (iii) 

and (iv) are shown in Figure 4.2.9. The factor Xa values were selected for calculating R² 

values and the percentage of overlap. 

In Figure 4.2.9 in the section titled with “Number” the % CTL values of the 60 compounds in 

the cluster were converted into the classes hit and non-hit. In total 38 factor Xa inhibitors, five 

factor VIIa inhibitors, four thrombin inhibitors and one urokinase inhibitor were present (12 

undefined compound occurred). All inhibitors target trypsin-like serine proteases and 

underline that the clustering can be used for constructing focussed screening libraries. The 

histogram titled with “Enrichment factors” showed that factor VIIa inhibitors were the second 

most enriched class in this cluster. A phylogenetic sequence alignment employing the 

blosum62 substitution matrix, a gap start penalty of 7 and a gap extension penalty of 1 

[Durbin et al., 1998] revealed that human factor Xa and factor VIIa have the closest similarity 

to each other with respect to the other target enzymes analysed in this application (Figure 

4.2.11 A). This might give an explanation for the observed co-enrichment of both inhibitor 

classes. The histogram titled with “Correlation to selected label” shows, as expected, a self-

correlation of 1 for factor Xa inhibitors. Since an artificial % CTL data set was employed and 

overlap between hit classes did not exist, all other R² values occurred without statistical 

relevance. This artificial correlation cannot be seen in the histogram titled with “overlap 

between actives”. It underlines the robustness of this simple measure. Figure 4.2.10 shows the 
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results obtained for (v) as a scrollable window. In A four factor Xa inhibitors were selected 

and in B four factor VIIa inhibitors. Evidently both molecule groups represent different 

scaffolds giving a good explanation for affinity towards different receptors. The results show 

that by employing the bEFs approach the dendrogram is reduced to a manageable number of 

clusters. The implemented functionalities analysing selectivity and specificity highlighted a 

co-enrichment of factor VIIa and factor Xa inhibitors in a cluster. The combination of 

molecules in this cluster with the biological results explained the SAR in terms of selectivity 

towards factor Xa or factor VIIa.  
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Figure 4.2.9 Results of selectivity and specificity analysis of a cluster. The histogram titled with “Number” 

shows the number of hits and non-hits in the cluster resulting from different assays. The column titled with 

“Enrichment factors” shows the equivalent of the first figure in terms of enrichment factors. The histogram titled 

with “Correlation to selected label” shows R² values calculated between the % CTL values of the factor Xa assay 

and all other assays. The histogram titled with “overlap between actives” shows the percentage of overlap 

between the hits of the factor Xa assay and the hits of all other assays. 
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Figure 4.2.10 Display of molecules of a cluster in combination with all activity values. In A factor Xa inhibitors 

are shown. In B VIIa inhibitors are drawn. 
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The observed co-clustering of trypsin-like serine protease inhibitors in the dendrogram gave 

rise to a further specificity analysis. For each % CTL measurement and dendrogram level 

eight, all 256 clusters on this level were examined. The relative frequencies of the 

corresponding hits were extracted. For each inhibitor class of Table 4.1.1 a 256 dimensional 

descriptor was created combining structural information with biological activity. These 

descriptors were clustered using Ward’s hierarchical clustering algorithm [Ward, 1963]. For 

comparison amino acid sequences of the human target enzymes were extracted from Swiss 

Prot (http://www.expasy.org/sprot/). Using the phylogenetic multiple sequence alignment 

algorithm implemented in MOE in combination with the blosum62 substitution matrix, a gap 

start penalty of 7 and a gap extension penalty of 1 [Durbin et al., 1998] the sequences were 

aligned. TreeView 1.6.6 was employed for phylogenetic tree display 

(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html/) [Page, 1996]. The phylogenetic 

dendrogram (A) and the Ward’s clustering of the relative frequencies of the inhibitor classes 

are shown in Figure 4.2.11. 

Both dendrograms show a co-location of factor Xa and factor VIIa. Further thrombin and 

urokinase are located at least in the same sub-dendrogram in both figures. Consequently a 

relationship between trypsin-like serine protease amino acid sequence and the structure 

classes inhibiting the protease enzymes exists. Results were different for the other protease 

targets. From the EC nomenclature it was anticipated that DPP IV (a serine protease) 

collocates with the other trypsin-like protease targets. This was only observed in dendrogram 

B. In the phylogenetic dendrogram DPP IV was clustered together with ACE. This different 

clustering was seen for all remaining targets. It shows that sequence alignments do not 

necessarily map the structural inhibitor profile of the enzymes. The clustering of relative 

frequencies of different inhibitor classes can be understood as ligand-based relationship of the 

analyzed binding pockets. Such a clustering of binding pockets was defined as “pocketome” 

analysis [An et al., 2006]. By using alternative information for defining the binding pocket 

(i.e. sequence information, structural information or ligand information) different views on 

the pocket relationships were obtained [Pirard & Matter, 2006; An et al., 2005; Oloff et al., 

2006]. When searching targets for counter screens, the knowledge of a pocket clustering was 

assumed to give valuable information [Arnold et al., 2004]. The link between chemical and 

structural similarity formed a basis for targeted library design [Kellenberger et al., 2006]. 

Differences in pockets were identified helping define selectivity regions in a protein [Pirard & 

Matter, 2006]. The here proposed pocketome analysis is unique since no protein information 
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is required. It provides a new, alternative view on the relationship between proteins and is 

especially useful when no 3D structural information is available for a set of proteins. 
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Figure 4.2.11 Hierarchical dendrograms for the inhibitor classes listed in Table 4.1.1. A. Phylogenetic 

dendrogram resulting from a multiple alignment of the human amino acid sequences of the protease enzymes. B. 

Ward’s clustering of the inhibitor classes. Relative frequencies were employed as descriptors. They were 

extracted from clusters on dendrogram level 8 of the dendrogram obtained with the hierarchical k-means 

algorithm for COBRA099.  
 

In addition to the presented functionalities several other methods were implemented. To 

identify selective clusters for one inhibitor class compared to another class (or all other 

classes) it is possible to divide corresponding EFs by each other. If a predefined threshold is 

exceeded or the ratio falls below a second threshold or the ratio lies in the range between both 

thresholds clusters are coloured differently. Substructure searching routines have been 
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implemented allowing to identify clusters containing molecules of interest or privileged 

substructure elements [Schnur et al., 2006]. A projection function has been included allowing 

to project new molecules on the dendrogram for which e.g. pharmacokinetic measurements 

have been performed. By measuring the distance of projected molecules to the cluster 

centroid and comparing the distance to the actual cluster radius, the outlier behaviour of these 

compounds can be examined. 

4.2.4 Conclusions 
 
The hierarchical clustering of large data set requires to have a GUI at hand, which allows the 

display of and the navigation in the clusters. Such a GUI was developed. It provides 

functionalities to analyse the dendrogram, a cluster in the dendrogram, the compounds in a 

cluster or their molecular properties. A variety of measures and functionalities were 

introduced, which allowed to identify clusters enriched with actives or singletons or to 

analyse selectivity and specificity. The scaling of the enrichment factor for an inhibitor class 

to the logarithm of the corresponding dendrogram level was introduced to obtain a value 

which is independent of the dendrogram level and thereby of the cluster size. It allowed for 

the simultaneous identification of different lead series by one threshold value. This 

simplification bears the danger of loosing clusters and other methods employing impurity 

measures or a chi2 statistic [Duda et al., 2001] might offer an advantage. However the 

proposed example of factor Xa inhibitors demonstrates that it was possible to reduce the 

number of clusters to a manageable size and to retain the majority of lead classes present in 

the data. The observed co-clustering of other serine protease inhibitors in these clusters 

highlights the possibility of this measure for constructing focussed screening libraries. An 

extended view on a lead class is possible and selectivity or specificity issues can be addressed. 

The identification of “true” singletons is of great value since it might provide a rich source for 

alternative lead structures. In this context the rating of terminal clusters, employing additional 

similarity searches, alternative similarity metrics and the constitution of these clusters with 

hits and non-hits provided a focussed view on these singletons. However the example showed 

that it was only possible to reduce the number of singletons and a manual analysis was 

necessary to achieve a final conclusion. 

To get an insight into specificity, for a set of different protease inhibitor classes their relative 

frequencies in the clusters on a dendrogram level were extracted forming a new descriptor set. 

The inhibitor classes were clustered based on the new descriptor set. Comparison of the 

obtained hierarchical clustering to a phylogenetic multiple sequence alignment based on the 
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amino acid sequences of the corresponding enzymes showed both a clear overlap as well as 

differences in the dendrograms. This new clustering allows an alternative ligand-based point 

of view on the relationship between the binding pockets for a set of proteins. It is useful when 

no 3D structures of the proteins are available or the binding pockets were shown to be very 

flexible. It can provide insight into adverse side effects or putative enzymes for which counter 

screens should be performed [Arnold et al., 2004]. 

Summarizing the implemented GUI provides functionalities which allow isolating and 

analysing a set of inhibitors in a large data set. The SAR of this inhibitor class can be viewed 

from different perspectives. The GUI is assumed to be applicable to the primary screening 

data of HTS assays. 

 

     



Results and Discussion   126 

4.3 Retrospective Analyses of HTS Assays 
 

To apply the hierarchical k-means algorithm to SAR extraction in context of large data sets, 

the primary screening data of three HTS assays were selected. The aim was to develop 

workflows helping to detect false-negatives and primary screening hits having a high 

likelihood to translate into not confirmed hits. The introduction summarized the attempts 

already made in literature (see 1.2.3). The present study differs from them since, to the best 

knowledge of the author, for the first time the single point primary screening data (prior to 

confirmation measurement) are used to identify false-negatives and not confirmed hits.  

In 4.3.1 the primary screening data of the three HTS assays are characterized. Secondly 

attempts are shown trying to identify not confirmed hits. In 4.3.3 a false-negative mining is 

introduced. As clustering techniques only the hierarchical k-means algorithm was employed 

in combination with either CATS 2D, MOE 2D or CATS 3D descriptors. Descriptor scaling 

and reduction was performed as described in 3.3.5 using a Shannon entropy threshold of 0.3 

and a UFS R2 threshold of 0.99. In all cases the number of descriptors was reduced to 40 to 60 

descriptors. This was a prerequisite to run the clustering on a Linux workstation with 3.2 GHz 

Intel Xeon processor and 4 GB memory. Cluster stop thresholds were calculated according to 

4.1.5 using the Euclidean distance metric.  

4.3.1 Assay Characterization 
 

An HTS assay can be characterized by the mean activity of the population in combination 

with its standard deviation σs and by the standard deviation of the measurement error σc 

[Zhang et al., 2000]. Ideally parameters like the confirmation rate, the false-positive rate and 

false-negative rate can be deduced from these values. Three HTS assays, assay A, assay B and 

the assay against TGF-β type I receptor (see Table 3.1, now referred to as TGF-β HTS) were 

analyzed. As first step a histogram was created of all % CTL values of the primary screening 

data. Figure 4.3.1 shows the histogram for the TGF-β HTS assay for the % CTL data range 

from -5 to 120. A peak defining inactive compounds was observed at a value of 106 % CTL. 

The standard deviation σs was 5.4 % CTL units. The % CTL threshold defining actives of 50 

% CTL is more then ten standard deviations away from the observed mean. Hit entries 

succeeding the threshold were clearly separated from the non-hits. It shows the high quality of 

the assay. Comparable results were obtained for assay A and B. 
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Figure 4.3.1 Histogram of all primary screening % CTL values of TGF-β HTS assay.  
 

In the three HTS assays % CTL values were obtained by single point and single dose 

measurements. Compounds whose % CTL value fell below the hit threshold were confirmed 

twice setting the hit threshold one σs unit higher. Confirmed hits entered IC50 determination. 

To analyze the correlation between primary screening results and confirmation measurements 

or IC50 values corresponding values were plotted against each other. For illustrating the results 

assay A was selected. Figure 4.3.2 shows a correlation between primary screening % CTL 

values and confirmation % CTL values (A) and no correlation between % CTL and IC50 

values (B, note that average % CTL were employed). Comparable results were obtained for 

assay B and the TGF-β HTS assay. All three assays showed a dynamic standard deviation σc 

with higher % CTL values translating in a higher σc. When constructing a histogram over the 

% CTL values of the primary screening hits a high bin occupation was observed at % CTL 

values close to the hit threshold. Not confirmed hits were present in every bin. The confirmed 

compounds translated into affine hits with IC50 values below 20 μM. However, from the 

missing correlation in the plot of % CTL values against IC50 values it is evident that % CTL 

values do not allow drawing quantitative conclusion about the SAR of the compounds.  

 

     



Results and Discussion   128 

A B
%

C
TL

 (c
on

f)

IC
50

%CTL (primary) %CTL
Figure 4.3.2 Analysis of assay A. A. Plot of primary hit % CTL values against % CTL values obtained in 

confirmation measurement. B. Plot of average % CTL values against IC50 values. 

 

To get an insight into the distribution of not confirmed hits histograms were created over the 

% CTL values of the primary screening hits. Results showed that with the exception of the 

TGF-β HTS assay the majority of primary screening hits translated into not confirmed hits 

when the % CTL values were close to the confirmation threshold. For TGF-β HTS assay no 

such trend was visible. When analyzing histograms of these primary screening hits both the 

majority of not confirmed hits and confirmed hits showed % CTL values near the primary 

screening threshold. To draw conclusions enrichment factors were calculated for each 

histogram bin, defining the not confirmed hits as class c and all primary screening hits as total 

data set (see 3.3.6). The enrichment factors obtained for the TGF-β HTS assay are shown in 

Figure 4.3.3. 
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Figure 4.3.3 Enrichment factors obtained for not confirmed hits (EF(fp)) in a predefined data range of the 

primary screening % CTL values.  
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Results indicate that with increasing primary screening values the occurrence of not 

confirmed hits rises with respect to a random distribution. It confirms the theoretical 

considerations of Zhang et al.,: the closer the % CTL value of a primary screening hit to the 

hit threshold, the higher is the likelihood, that it translates into a non-confirmed hit [Zhang et 

al., 2000]. This makes the author confident that the same holds true for false-negatives. 

Summarizing, the results show that % CTL thresholds defining hits were selected that a 

separation of hits from non-hits was achieved. % CTL values showed no correlation to IC50 

values. It makes the derivation of QSAR with % CTL values impossible. Primary screening 

hit molecules exhibited IC50 values below 20 μM. This shows that it is possible to identified 

actives with the approach. Compounds having a % CTL value closer to the % CTL threshold 

showed a higher probability to results as not confirmed hit. The same is assumed for putative 

false-negatives.  

4.3.2 Not Confirmed Hits 
 

To analyze whether not confirmed hits can be predicted from the primary screening data 

compounds of all three assays were clustered. The idea was to employ the knowledge of the 

constitution of the terminal clusters with hits and non-hits to derive rules like (i) if a cluster 

consists only of hits, the occurrence of not confirmed hit is unlikely or (ii) if a cluster is large 

and contains only one hit, the hit might be a not confirmed hit. Different attempts were 

undertaken to approach the problem. Only clusters were considered containing at least one hit. 

To cope with the imperfection of both clustering algorithms additional similarity searches in 

the data set were performed around the terminal cluster centroids. The pre-calculated stop 

threshold Θ (see 4.1.5) was used as maximum distance threshold.  

To address the identification of not confirmed hits in the cluster dendrograms the cluster size, 

the number of hits in the cluster and the occurrence of not confirmed hits (1 defines the 

occurrence of not confirmed hits and 0 the absence) were extracted from the terminal clusters 

containing hits. The values were plotted against each other using a box plot. Figure 4.3.4 A 

shows the results obtained for the TGF-β HTS assay, with the x-axis representing the number 

of hits, the y-axis showing the presence or absence of not confirmed hits in a cluster and the z-

axis highlighting the cluster size. No correlation between cluster size, number of hits and not 

confirmed hits was visible (comparable results were obtained for assay A and B). Figure 4.3.4 

B shows a box-whisker plot obtained for the TGF-β HTS assay. The x-axis represents the 

number of hits in a binned data range. The y-axis shows the proportion of not confirmed hits 
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in that data range. Bars represent the data range between the quartiles of the observed false-

positive proportions, whereas white separators and pluses correspond to mean and median 

values respectively. The whiskers explain a maximum of 1.5 fold the inter quartiles distance. 

They were always defined by a data point. The blue x represent outliers. A relationship 

between the proportions of not confirmed hits and number of hits in a cluster was not visible. 

The preliminary results indicate that not confirmed hits cannot be identified by simply 

focussing on the composition of a cluster with hits and non-hits. Yet additional relations need 

to be included like the measured affinity or the spatial relation between the clusters in the 

dendrogram. 

A manual analysis of not confirmed hits from assay B was performed in the corresponding 

cluster dendrograms. The following rules were derived prioritizing hits in a terminal cluster: 

 

(0) Define the hit % CTL threshold Θ. This value is usually defined by the assay 

performer when the assay is set up. 

(1) Perform a similarity search around the cluster centroid in the data set (see 4.2.2). 

(2) Consider only hits having a % CTL value above Θ-2σs. With that, only clusters are 

analysed having entries with % CTL values close to Θ. According to Figure 4.3.2 not 

confirmed hits are enriched in this data range. 

(3) Define entries having a % CTL value i in: Θ < i < Θ + 2 σs as hits n. The rule copes 

with the standard deviation of the measurement error σc. Entries having % CTL values in 

this data range might be false-negatives. 

(4) The number of primary screening hits and hits n is not allowed to be 100%. The rule 

excludes mainly singletons and small clusters from the analysis. 

(5) If N-score of the screening hits and hits n in a cluster falls below ω, the hits are 

considered as not confirmed hits. The N-score is defined according to equation 4.12 

[Krumrine et al., 2005]. 

 

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−⋅−=− ∫ dxPNxBPNXsignscoreN

N

X
),,(log)( ,                        (4.12) 

 

with X being the number of hits in a cluster, N being the cluster size and P being the 

overall observed hit rate. The integral over the binomial distribution B(x,N,P) gives the 

probability of observing x hits in a cluster of size N in relation to the overall hit rate. In the 
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present analyses ω was set to -0.4. It corresponds to one hit in a cluster of size 20 with a 

hit rate of 1.5%. 
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Figure 4.3.4 Analysis of the clustering of the compounds of the TGF-β HTS assay. A. Plot of the number of hits 

in a cluster against the cluster size and the occurrence of not confirmed hits in the cluster. B. Box-whiskers plot 

of the number of hits in a cluster and the proportion of not confirmed hits. 
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(6) Examine parent clusters recursively. According to this rule, the relation between the 

cluster and its brother clusters is examined. It corresponds to searching around the cluster 

centroid with a wider similarity threshold. 

(7) No additional new primary screening hits and hits n are allowed on upper dendrogram 

levels. The rule copes with the inclusion of hit singletons or small hit clusters present in a 

sub-dendrogram. If this occurs no valid conclusion can be drawn. 

(8) If the N-score of the screening hits and hits n in a cluster underscores ω, the hits are 

deprioritized and considered as not confirmed hits. 

 

Dendrograms obtained with compounds of assays A, B and the TGF-β HTS assay were 

analysed according to the rule catalogue. The MOE 2D descriptor set was employed. Results 

are summarized in Table 4.3.1.  

 
Table 4.3.1 Results of false-positive prediction  

 Assay A Assay B TGF-β HTS assay 

# primary hits 2,028 11,853 11,284 

# confirmed hits 1,541 10,775 9,581 

Confirmation rate 76% 91% 85% 

Correct predictions 346 777 531 

Total predictions 596 2,974 784 

% correct predicted 58% 26% 68% 

% false-positives 

identified  

71% 72% 34% 

 

For neither of the assays it was possible to obtain overall correct predictions. In case of assay 

A, assay B and the TGF-β HTS assay 58%, 26% and 67% were correctly predicted as not 

confirmed hits, respectively. These not-confirmed hits resemble the case where a few hits 

were co-clustered with many similar non-hits. The data show that not all not-confirmed hits 

were identified. This is evident from Figure 4.3.4 A since not confirmed singletons and not 

confirmed hits from clusters with several hits were present. The results let conclude that the 

rule catalogue has clear limitations for predicting not confirmed hits. The high number of 

falsely predicted confirmed hits indicates that corresponding molecules were present in 

clusters with a high proportion of similar non-hits. These hits are difficult for follow-up 
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studies (small chemical modifications translate into loss of activity) and should be de-

prioritized. Consequently the rule catalogue provides a tool for identifying and rating such 

hits. This has been already proposed elsewhere [Schreyer et al., 2004]. 

For both assay A and B it was possible to identify over 70% of all not confirmed hits. For the 

TGF-β HTS assay only 34% were identified. Supervised classification techniques might offer 

an alternative to explain the remaining not confirmed hits in the TGF-β HTS assay. To test 

this, the following experimental setup was created. Dendrograms were created with either 

MOE 2D, CATS 2D or CATS 3D descriptors. Entries of terminal clusters containing hits 

were extracted. Clusters which were deprioritized according to the above specified rules were 

excluded. Based on the % CTL threshold compounds were pre-classified as hits (class 1) or 

non hits (class 0). Bayesian regularized artificial neural networks (BRANN, see 3.5.3) were 

trained with the data. The same compounds were then projected through the classification 

models to re-classify the entries. The basic idea was that the classification techniques are 

tolerant to noise and that the created models are robust enough to obtain a correct re-

classification [Glick et al., 2006]. Results obtained for the TGF-β HTS assay are summarized 

in Table 4.3.2. 

 
Table 4.3.2 Classification results for not-confirmed hits in TGF-β HTS assay. 

  MOE 2D CATS 2D CATS 3D 

Not confirmed 

hits 

998 1,069 1,040 

Confirmed hits 9,328 9,555 9,476 

Training data 

Size 34,153 42,564 37,019 

True negatives 817 893 881 Test data 

True positives 5,106 4,975 4,709 

The classification results for the test sets show that the not confirmed hits (true negatives) 

were well predicted with all three descriptor sets. However this is given to a significant loss of 

confirmed hits (true positives) rendering the method unacceptable for further usage in this 

context. To get a deeper understanding of the obtained classification, predictions obtained 

with the MOE 2D descriptor set were analysed in more detail. Contingency tables for the 

training set and test set are shown in Table 4.3.3. The test set contained only confirmed hits 

(class 1) and not confirmed hits (class 0), whereas the training set consisted of primary 

screening hits (class 1) and non-hits (class 0). 
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Table 4.3.3 Contingency tables for the training and test set for not confirmed hits in TGF-β HTS. 

Training set  Test set 

 Predicted   Predicted 

Expected 0 1  Expected 0 1 

0 21,953 1,700  0 817 181 

1 5,049 5,289  1 4,218 5,106 

 

Both tables showed for the BRANN models a high specificity and a low sensitivity of around 

50% true hits. The employed neural networks do not directly classify compounds into the 

classes 1 (hit) and 0 (non-hit). Yet instead a value is predicted in the range of 0 and 1. Based 

on a threshold of 0.5 compounds are assigned to either of the classes. Sensitivity might be 

increased by setting the classification threshold to a lower value. Figure 4.3.5 shows a 

histogram over the occurrence of hits and non-hits in the training set at different prediction 

data ranges. 
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Figure 4.3.5 Histogram over the hits and non-hits of the training set obtained for MOE 2D BRANN model for 

the TGF-β HTS assay. 

  

The majority of the non-hits were predicted with values clearly below 0.5 confirming the 

observed high specificity. The hit compounds instead had prediction values covering the 

complete range between 0 and 1. Same results were obtained when analysing the histograms 

for the test set (data not shown). In order not to loose a significant amount of confirmed hits 

the classification threshold has to be defined as low as possible. This in turn minimizes the 
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number of identified not confirmed hits. It might be speculated whether other classification 

techniques like naïve Bayes’ classification or SVM based classification might be better suited. 

In pre-experiments employing SVMs for classification calculation time was too long for the 

herein presented data sets (several months). The naïve Bayes’ approach on the other hand 

translated into models with lower specificity and sensitivity in these experiments. This is 

exemplified by the training data set with MOE 2D descriptors (Table 4.3.2) for the TGF-β 

HTS assay. The BRANN model showed a sensitivity of 0.5 and a specificity of 0.93. The 

Bayesian classifier model provided a sensitivity of 0.3 and a specificity of 0.88. 

Reasons for the obtained low sensitivity of the calculated BRANN models might have been 

that the training sets were unbalanced towards the non-hits (2-3 -fold) or that high amounts of 

noise were present in the data (i.e. systematic false-positives and false-negatives) or that the 

% CTL threshold defining hits and non-hits was not well chosen. In light of this pre-

experiments setting the % CTL threshold one σs unit higher or lower for class definition did 

not further improve prediction accuracy.  

Summarizing, the results show that by applying the rule catalogue it was possible to identify 

not confirmed hits in the cluster dendrogram. False predicted true hits identified by this 

conservative approach are assumed to be difficult to optimize. They are of no interest in 

follow up studies. It highlights the ability of the clustering approach to prioritize or de-

prioritize hits based on the knowledge of the complete data set. The application of supervised 

classification techniques for the remaining not confirmed hits resulted in models with high 

specificity but low sensitivity. They were not suited for further application in this context. 

4.3.3 False-Negatives 
 

A prerequisite for judging the potential of a method to identify false-negatives is to know the 

false-negatives. A close-by idea in a retrospective analysis is to construct these false-negatives 

artificially. One simple possibility is to randomly define a set of hits as false-negatives. 

However the more challenging task is the identification of complete false-negative scaffolds 

thereby examining the scaffold-hopping potential of a method. To analyse whether false-

negative scaffolds can be identified in the calculated cluster dendrograms primary screening 

hits of assays A, B and the TGF-β HTS assay were converted into reduced scaffolds (see 

3.4.1). Small scaffolds like cyclohexane or naphthalene were highly abundant and the 

corresponding molecules did not represent uniform structural classes [Wilkens et al., 2005]. 

They were eliminated. The occurrence of each remaining scaffold was counted and the three 

most abundant scaffolds were selected to define false-negative classes. Results for all three 
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assays are summarized in Table 4.3.4. Note that the same dendrograms were used for the 

three assays as in 4.3.2. 
 

Table 4.3.4 Number of molecules forming false-negative classes 1-3. 

 Assay A Assay B TGF β HTS 

Primary hits 2,028 11,853 11,284 

False-negative class 1§ 55 546 563 

False-negative class 2§ 24 269 151 

False-negative class 3§ 23 196 142 
§False-negatives were obtained by converting primary screening hits into reduced scaffolds. The occurrence of 

each scaffold was counted and the three most abundant scaffolds were selected as false-negative classes. 

 

Only terminal clusters were analysed containing primary screening hits. The assumption was 

to identify co-clustered false-negatives. To illustrate the false-negative mining procedure 

results of the TGF-β HTS assay obtained with MOE 2D descriptors and false-negative class 1 

are considered in more detail. The final results obtained for all three assays, the three false-

negative classes and the three descriptor sets are summarized in Tables 4.3.5 (TGF-β HTS), 

4.3.6 (assay A) and 4.3.7 (assay B). A schematic work-flow of the false-negative analysis is 

present in Figure 4.3.6. By definition the term “screening set” is referred to as the number of 

non-hits in combination with the number of false-negatives. 

By extracting all compounds from terminal clusters containing hits 101 of the 563 false- 

negatives were identified. In total 39,298 compounds were retrieved (set 1). By prior 

excluding all clusters from the analysis judged as not confirmed hits according to the rules 

specified in 4.3.2 the total data size was reduced to 34,870 compounds (set 2). Still 101 false-

negatives were identified. It corresponds to an enrichment factor for the false-negative-class 

of 3.87. Both hierarchical clustering algorithms are not perfect in classification and additional 

similarity searches around the hit cluster centroids might improve the results. For this the pre-

calculated stop threshold Θ was used as maximum distance threshold in combination with 

Euclidean metric. The same clusters as for set 2 were examined. A high number of 409 

compounds of the 563 false-negatives were identified. However the total data size increased 

likewise to 118,749 entries (set 3). An enrichment factor of 4.52 was obtained which is 

slightly better than that for set 2. 

Summarizing, the results show that the identification of false-negatives in the cluster 

dendrogram is possible. The number of non-hits in set 2 and set 3 is large. This limits both 

sets for re-ordering compounds and testing for false-negatives. When analysing BRANN in 
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context of not confirmed hits (4.3.2) specific models were obtained (specificity > 0.9) 

rendering them well-suited for filtering non-hits. To test whether this capability can be used 

for predicting false-negatives, BRANN models were trained with set 2 (note that the false-

negatives were defined as non-hits). The false-negatives and non-hits were extracted from set 

3 and projected through the calculated model. 173 of the 409 false-negatives were correctly 

predicted. In turn the screening data size was reduced from 108,423 non-hits to 3,288. This is 

a suitable size for ordering compounds and re-testing them in HTS. By training a supervised 

classification model with set 2 it was possible to separate non-hits from false-negatives in set 

3. This is reflected by the high enrichment factor for the false-negative class of 69.1. 

Results obtained for all three assays, the three descriptor set and the three false-negative 

classes are shown in Tables 4.3.5 - 4.3.7. They confirm the results described for the TGF-β 

HTS assay obtained with MOE 2D descriptors and false-negative class 1. It was possible to 

identify the false-negative classes in the dendrogram employing set 2. The only exception was 

the false-negative class 3 of assay A in combination with the MOE 2D descriptors. Additional 

similarity searches around the cluster centroid increased the number of identified false-

negatives (set 3) and the screening size. No improvement of enrichment factors was achieved. 

In 4.1 it was shown that both clustering algorithms are capable of clustering structurally 

similar compounds in a terminal cluster. Consequently a large proportion of a false-negative 

class is assumed to be co-clustered. In the present study descriptors were employed focussing 

on the properties of the molecules instead of the structure itself. By that compounds can be 

co-clustered having similar properties but different scaffolds. It explains the identification of 

the false-negative classes in set 1-3. The new hit compounds with novel scaffold might then 

serve as “seed” structure for further screening. 

To reduce the number of co-clustered non-hits and maintain the false-negative classes 

BRANN models were trained. Projecting test sets obtained for assay B and the TGF-β HTS 

assay through the calculated models markedly reduced the screening size while maintaining at 

least a proportion of the false-negative classes. In most cases this led to high enrichment 

factors for the false-negative classes (see numbers in parentheses in Tables 4.3.5 – 4.3.7). A 

comparable analysis for assay A resulted in a complete loss of classes in four cases and in 

four other cases only one or two compounds were maintained. 
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Figure 4.3.6 Workflow of the false-negative mining. Dendrograms are calculated for the compounds of a HTS 

assay. Only terminal clusters containing hits are considered. They form set 1. A mining of not confirmed hits in 

the cluster dendrogram is performed (see 4.3.2). Entries of the remaining clusters form the training set (set 2) 

which is employed for calculating a BRANN classification model. Hits are defined as class 1 and non hits as 

class 0. For the clusters of set 2 a similarity search in the descriptor matrix is performed. The pre-defined 

similarity threshold Θ is employed for searching. Resulting entries form the test set 3, which is projected through 

the BRANN model to obtain a final classification of the compounds. 
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Table 4.3.5 Results of false-negative mining of TGF-β HTS assay. 

 MOE 2D§ CATS 2D§ CATS 3D§ 

False-negatives 563 563 563 Basic 

Size 738,861 738,861 738,861 

False-negatives 101 (EF=3.87) 381 (EF=11.9) 176 (EF=6.5) Set 2 

Size 34,252 42,199 35,557 

False-negatives 409 (EF=4.52) 518 (EF=3.97) 383 (EF=3.52) Set 3 

Size 118,749 171,250 142,922 

False-negatives 173 (EF=69.1) 51 (EF=19.8) 222 (EF=77.1) 

Class 1 

BRANN 

Size 3,288 3,374 3,780 

False-negatives 151 151 151 Basic 

Size 738,861 738,861 738,861 

False-negatives 95 (EF=13.3) 141 (EF=16.2) 95 (EF=12.6) Set 2 

Size 34,870 42,540 37,049 

False-negatives 137 (EF=5.59) 151 (EF=4.31) 130 (EF=4.44) Set 3 

Size 119,851 171,379 143,344 

False-negatives 22 (EF=32.37) 31 (EF=44.8) 37 (EF=48.8) 

Class 2 

BRANN 

Size 3,326 3,387 3,711 

False-negatives 142 142 142 Basic 

Size 738,861 738,861 738,861 

False-negatives 79 (EF=11.8) 119 (EF=14.6) 105 (EF=14.7) Set 2 

Size 34,957 42,524 37,198 

False-negatives 128 (EF=5.58) 140 (EF=4.25) 129 (EF=4.68) Set 3 

Size 119,443 171,376 143,279 

False-negatives 66 (EF=87) 39 (EF=58) 45 (EF=64.9) 

Class 3 

BRANN 

Size 3,947 3,502 3,609 
§ In parentheses the enrichment factor for the false-negative class is present. 
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Table 4.3.6 Results of false-negative mining of assay A. 

 MOE 2D§ CATS 2D§ CATS 3D§ 

False-negatives 55 55 55 Basic 

Size 664,876 664,876 664,876 

False-negatives 4 (EF=6.74) 46 (EF=48) 9 (EF=1.46) Set 2 

Size 7,172 11,589 8,089 

False-negatives 28 (EF=10.9) 55 (EF=9) 44 (EF=1.01) Set 3 

Size 31,195 73,906 57,275 

False-negatives 12 (EF=246) 0 2 (EF=3.92) 

Class 1 

BRANN 

Size 590 736 670 

False-negatives 24 24 24  Basic 

Size 664,876 664,876 664,876 

False-negatives 6 (EF=22.8) 14 (EF=33.3) 5 (EF=17.5) Set 2 

Size 7,288 11,642 8,267 

False-negatives 17 (EF=15.1) 22 (EF=8.26) 8 (EF=4.04) Set 3 

Size 31,248 73,770 57,213 

False-negatives 2 (EF=73.9) 0 1 (EF=58.1) 

Class 2 

BRANN 

Size 750 1,053 498 

False-negatives 23 23 23 Basic 

Size 664,876 664,876 664,876 

False-negatives 0  1 (EF=2.51) 3 (EF=4.43) Set 2 

Size 7,190 11,501 8,189 

False-negatives 10 (EF=9.39) 12 (EF=4.73) 14 (EF=3.02) Set 3 

Size 30,799 73,343 56,095 

False-negatives 0  1 (EF=40.54) 0 

Class 3 

BRANN 

Size 742 713 731 
§ In parentheses the enrichment factor for the false-negative class is present.  
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Table 4.3.7 Results of false-negative mining of assay B. 

 MOE 2D§ CATS 2D§ CATS 3D§ 

False-negatives 546 546 546 Basic 

Size 549,619 549,619 549,619 

False-negatives 306 (EF=10.3) 175 (EF=4.53) 105 (EF=3.01) Set 2 

Size 29,962 38,903 36,460 

False-negatives 479 (EF=4.71) 359 (EF=2.28) 148 (EF=1.2) Set 3 

Size 102,350 158,300 124,029 

False-negatives  4 (EF=1.04.) 69 (EF=16.6) 105 (EF=43.7) 

Class 1 

BRANN 

Size 3,889 4,126 2,421 

False-negatives 269 269 269 Basic 

Size 549,619 549,619 549,619 

False-negatives 131 (EF=9.12) 170 (EF=9.24) 89 (EF=5.4) Set 2 

Size 29,363 37,585 36,673 

False-negatives 226 (EF=4.58) 232 (EF=3.08) 133 (EF=2.18) Set 3 

Size 100,765 153,969 124,414 

False-negatives  153 (EF=73.3) 70 (EF=40.9) 94 (EF=78.6) 

Class 2 

BRANN 

Size 4,267 3,496 2,445 

False-negatives 196 196 196 Basic 

Size 549,619 549,619 549,619 

False-negatives 28 (EF=2.69) 75 (EF=5.61) 21 (EF=1.61) Set 2 

Size 29,200 37,469 36,578 

False-negatives 80 (EF=2.23) 150 (EF=2.73) 38 (EF=0.86) Set 3 

Size 100,390 154,216 124,058 

False-negatives 35 (EF=24.7) 11 (EF=8.47) 4 (EF=5.01) 

Class 3 

BRANN 

Size 3,981 3,653 2,241 
§ In parentheses the enrichment factor for the false-negative class is present. 

 

Assay A showed a low hit rate of 0.3%. The size of the false-negative classes was small 

compared to assay B and TGF-β HTS. For the latter two assays screening sizes were reduced 

to around 3,500 compounds after BRANN classification. For assay A the screening size was 

reduced to around 700 compounds. A close-by idea to capture more of the false-negatives in 

assay A is to lower the classification threshold (see 3.5.4) and by that increase the screening 

size. Figure 4.3.7 shows the false-negative rates and false-positive rates obtained for set 3 and 
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the false-negative class two of assay A in combination with MOE 2D descriptors. The 

classification threshold was systematically increased form 0 to 1. 
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Figure 4.3.7 False-negative rates (magenta) and false-positive rates (blue) obtained for different classification 

threshold in the range of 0 and 1. BRANN classification results were used obtained for set 3, class 2, assay A 

and the MOE 2D descriptors.  

 

Results show a crossing of the false-positive rate curve and the false-negative rate curve at a 

classification threshold of 0.23. At this point 14 out of 17 false-negatives were identified. The 

screening data size comprised 3,952 compounds. This size is comparable to assays B and 

TGF-β HTS. Similar curve progressions were obtained in combination with CATS 2D and 

CATS 3D descriptors. Another possibility to cope with the low hit identification rate of assay 

A is to combine predictions obtained with all descriptor sets. Entries of the test set of false-

negative class 1 of assay A were sorted according to the classification values in descending 

order. A disjunctive combination of the first 1,000 compounds of all three descriptors was 

created. In total 15 false-negatives were maintained and the screening size increased to 2,846. 

Compounds of the MOE 2D data set contributed 12 false-negatives, whereas compounds of 

the CATS 2D and CATS 3D data sets contributed one and two false-negatives, respectively. 

The observed almost orthogonal disjunctive combination of result lists shows that with 

different descriptor sets different molecules were identified. This is a consequence of the 

descriptors’ ability to describe different aspects of the molecules. Thereby different molecules 

or molecular scaffolds can be retrieved [Fechner et al., 2003; Renner & Schneider, 2006]. 

Each descriptor set has its unique strength. According to the obtained results a preference 
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cannot be given. Describing the molecules with a combination of all descriptor sets might 

improve the results but has to be evaluated.  

An observation was that result lists, obtained form dendrograms with CATS 2D descriptors 

were larger. As a consequence more of the false-negatives were identified. Compared to the 

other descriptor sets for final BRANN classification the training sets were more unbalanced 

towards the non-hits. This led to less sensitive models. Thus the positive aspect of identifying 

more false-negatives had a negative impact on the final classification. In light of this a 

preference might be given for the MOE 2D or the CATS 3D descriptors. The data sets 

employing the CATS 3D descriptors were more high dimensional (N = 420) compared to the 

CATS 2D (N = 150) and the MOE 2D descriptors (N = 146). This resulted in an increased 

calculation time and RAM deployment. Despite of that no clearly superior results were 

obtained in combination with this descriptor set. Consequently if larger data sets are used and 

RAM is a limiting factor the lower dimensional descriptor sets might be more useful.  

Hert et al. proposed a method called data fusion. The method performs similarity searches 

around different reference structures in a data set and keeps the best similarity value of the 

molecules in the data set. The highest scoring entries define the hit list [Hert et al., 2006]. The 

main difference compared to the present study is that compounds are ranked based on the 

maximum similarity and not on the outcome of a supervised classification method. Whether 

this alternative ranking is superior to the proposed method has to be examined.  

In 4.1.9 it was shown that the conjunction of result lists obtained with the NIPALSTREE 

algorithm and the hierarchical k-means resulted in a reduction of false-positives. The true hits 

were maintained. For assay A, instead of performing a final (supervised) classification, the 

combination of result lists obtained with both algorithms might offer an alternative method. 

For assay B and the TGF-β HTS assay the result lists were too large. Pre-experiments 

examining this property matched expectations but a more detailed analysis has to be 

performed. 

The presented results show that the retrospective identification of false-negative scaffolds 

with the hierarchical k-means is possible. By combining results with a final supervised 

ranking improved enrichment factors can be obtained. This makes the author confident that 

the same holds true in a prospective screening application.  
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4.3.4 Conclusions 
 

Three HTS assays were retrospectively analyzed. The histogram in Figure 4.3.1 shows that 

the assays are setup with the % CTL threshold that a clear separation of hits from non-hits is 

achieved. The correlation between the % CTL values of the hits of the primary measurement 

and the confirmation measurement underlines the reproducibility and robustness of the 

experiments (Figure 4.3.2). The IC50 of the confirmed hits were at most below 20 μM. They 

showed no correlation to the % CTL values. It shows that HTS is suited to identify hits 

(Figure 4.3.2) [Golebiowski et al., 2001; Golebiowski et al., 2003]. However no quantitative 

conclusion can be drawn from the % CTL values, most likely because affinity is measured in 

a narrow data range (e.g. 0% CTL - 50% CTL) whereas IC50 values cover several orders of 

magnitude. Enrichment factors were calculated for not-confirmed hits having a primary 

screening % CTL value within a certain data range (Figure 4.3.3). They confirmed the 

theoretical considerations of Zhang et al.,: the closer the % CTL value of a primary screening 

hit to the hit threshold, the higher is the likelihood, that it translates into a non-confirmed hit 

[Zhang et al., 2000]. This makes the author confident that the same holds true for false-

negatives. 

The hierarchical k-means algorithm was employed to mine primary screening data of the three 

HTS assays (prior to confirmation measurement). The aim was to identify not confirmed hits 

and false-negatives. All entries were extracted from terminal clusters containing hits. No 

correlation was observed between the cluster size (i.e. similar molecules), the number of hits 

in a cluster and the proportion of not confirmed hits (Figure 4.3.4). A conservative rule 

catalogue was developed rating hits in terminal clusters based on the cluster size, the % CTL 

values of the entries in a cluster, the overall hit rate, the hit rate in the cluster and the 

environment of a cluster in the dendrogram. The results let conclude that it is possible to 

identify not confirmed hits with the approach (Table 4.3.1). These hits resemble the case 

where a few hits were co-clustered with many similar non-hits. The data show that not all not-

confirmed hits were predicted correctly (this is evident from Figure 4.3.4) and that confirmed 

hits were falsely predicted. The latter indicates that several confirmed hits were grouped with 

a high proportion of similar non-hits. These hits are difficult for follow-up studies and should 

be de-prioritized. Consequently the rule catalogue provides a powerful tool for rating hits in 

the data based on the knowledge of non-hits [Schreyer et al., 2004].  

Compounds were extracted from terminal clusters containing primary screening hits. These 

molecules were employed for training BRANN models with the aim to separate hits from 
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non-hits. Applying the models to identify not confirmed hits showed a high specificity of 0.93 

but a low sensitivity of 0.5 (i.e. half of the hits are missed). This renders them unsuited for 

further application. The histogram in Figure 4.3.5 shows that the classification technique 

predicted hits uniformly in the classification range from 0 to 1. No classification threshold 

could be set clearly separating hits from non-hits. Although additional supervised techniques, 

different descriptor sets and different parameter settings have yet to be evaluated. It is 

assumed that the primary screening data of HTS assays are not suited for predicting these 

cases. 

False-negative classes were retrospectively created using a scaffold based approach. The 

hierarchical k-means algorithm was employed to cluster the data of the three HTS assays. The 

rule catalogue was applied to de-prioritize hits/clusters. From the remaining terminal clusters 

containing hits, entries were extracted and analyzed. With one exception it was possible to co-

extract and enrich false-negatives. The proposed clustering based method can be compared to 

nearest-neighbour searching. The results confirm the observation made by 

Shanmugasundaram et al. that it is possible to retrieve false-negatives from HTS hits by using 

hit-directed nearest-neighbour searching [Shanmugasundaram et al. 2005]. Although hit-

directed similarity searching is computationally more efficient and a comparison of both 

methods has to be performed, the clustering based approach offers the advantage of providing 

a hierarchical grouping of the compounds and not a sorted list. This additional information 

allows the application of the rule catalogue for (de-) prioritizing hits. It provides an alternative 

grouping of the compounds around virtual centroids. The incorporation of similarity searches 

for the identification of false-negatives in this study was able to retrieve more false-negatives 

but it had at most a negative influence on the enrichment. It mirrors the alternative grouping 

by clustering and underlines the advantage of the clustering based approach. 

The hit lists of the cluster-based false-negative mining comprised too many non-hits for 

reordering and testing. In order to rationalize the selection BRANN models were trained. The 

non-hits identified with additional similarity searches were projected through the model. For 

assay B and the TGF-β HTS assay this led to a marked improvement of enrichment factors 

and to the provision of a suitable amount of data for retesting. For the assay A procedures 

were demonstrated allowing to achieve the same results. Conclusively, the combined 

approach of unsupervised classification with a final supervised ranking is a well chosen 

strategy for identifying false-negative classes.  

A question is, whether other classification techniques might be better suited for identifying 

false-negatives in HTS. This was addressed previously. It was shown that SVM, binary kernel 
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discrimination, recursive partitioning and naïve Bayes’ classifier can be applied in a similar 

context  [Harper et al., 2001; Glick et al., 2005; van Rhee et al., 2001]. In a comparative 

study, SVMs outperformed recursive partitioning and naïve Bayes’ classification [Glick et al., 

2005]. Different in house studies at Boehringer Ingelheim showed the superiority of SVM and 

BRANN over PLS for classification. No marked differences in prediction accuracy were 

obtained when comparing SVM to BRANN [unpublished results]. As an advantage BRANN 

are computationally more efficient compared to SVM (one week on a single CPU compared 

to one month on 10 CPUs). Further pre-experiments employing a naïve Bayes’ classifier 

approach of Pipeline Pilot [SciTegic, San Diego, USA] were not able to identify any of the 

false-negatives. This makes the author confident that the employed BRANN was a well 

chosen alternative for the classification. 

The combined application of an unsupervised classification with a supervised ranking 

provided high enrichment factors. However supervised classification methods are available 

which can cope directly with data sets of the size of HTS assays. Examples are the naïve 

Bayes’ classifier approach [Xia et al., 2004] or recursive partitioning [van Rhee et al., 2001]. 

They might offer an alternative to the proposed approach. However the pre-filtering of non-

hits by the unsupervised classification (clustering) creates more focussed training sets. It 

assumes that more precise and accurate local models are created. As already proposed by 

Harper et al. a single method is not able to explain the SAR in HTS data [Harper et al., 2001]. 

In light of this the approach provides a new tool for the chemoinformatic toolbox. It is 

applicable to large data sets and it provides a rational for identifying false-negatives from 

primary screening data of HTS assays. 
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4.4 Prospective Analysis of Dopamine D3 Receptor Antagonists 
 

 

 

 

 

A virtual screen for new dopamine D3 receptor-preferring antagonists (see 1.4) was performed 

employing both, NIPALSTREE and hierarchical k-means. In addition, self- organizing maps 

(SOM) were used. Molecules were ordered and Ki values were determined at both dopamine 

D2 and D3 receptors. Different computational methods were prospectively evaluated, namely 

pharmacophore-based virtual screening, docking and regression-based affinity prediction. 4.4 

presents the results of the prospective evaluation. 

4.4.1 Characterization of the Dopamine Data Set 
 

Starting point of the data analysis was a characterization of the data set (see 3.1.5 and 

Appendix A) in combination with literature research on antagonists/partial agonists at 

dopamine D2 like receptors. The aim was to identify ligands with different scaffolds, high 

affinity and selectivity for dopamine D3 receptors. Results of the SAR are summarized in 

1.4.3. The second characterization of the data set was regarding the Ki profile at dopamine D2 

and D3 receptors. 386 compounds were selected having a Ki < 1 mM at both receptor 

subtypes. Histograms were created for the Ki values (Figure 4.4.1 A and B). The majority of 

the compounds has a Ki < 60 nM at both receptor subtypes. A more fine-grained histogram 

focusing on the Ki data range from 0.33 to 60 nM (Figure 4.4.1 C and D.) shows that the data 

set is shifted towards high affinity binding values below 20 nM for Ki values at dopamine D3 

receptors (KiD3). The histogram for Ki values at dopamine D2 receptors (KiD2) shows a broad 

distribution in the range between 0.33 and 60 nM. When analyzing selectivity ratio 

histograms of either KiD3/KiD2 (dopamine D2 receptor selectivity, Figure 4.4.1 E.) or 

KiD3/KiD2 (dopamine D3 receptor selectivity, Figure 4.4.1 F.) with the focus on selectivity 

ratios above one, it can be seen that more compounds were selective towards dopamine D3 

receptors. Most compounds had only a low selectivity ratio below 10. However in the 

dopamine D3 receptor selectivity histogram (Figure 4.4.1 F) a high amount of entries is 

present showing a selectivity ratio above 10 fold.  
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Figure 4.4.1 Histogram analysis of Ki values for dopamine D2 and D3 receptors in the dopamine data set 

(Appendix A). A. Histogram of all Ki values for dopamine D2 receptors. B. Histogram of all Ki values for 

dopamine D3 receptors. C. Histogram of Ki values for dopamine D2 receptors. Only the data range between 0.3 

nM and 60 nM is shown. D. Histogram of Ki values for dopamine D3 receptors. Only the data range between 0.3 

nM and 60 nM is shown. E. Histogram of the selectivity ratios of Ki values for dopamine D3 receptors versus Ki 

values for dopamine D2 receptors. Only ratios above one are shown. F. Histogram of the selectivity ratios of Ki 

values for dopamine D2 receptors versus Ki values for dopamine D3 receptors. Only ratios above one are shown. 
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4.4.2 Clustering-Based Virtual Screening 
 
For the virtual screening experiments two data sets, DS_MOE and DS_CATS3D, were 

created (Table 4.4.1) consisting of the dopamine data set and the SPECS catalogue (version of 

June, 2003). Both descriptor sets were clustered employing the NIPALSTREE algorithm, the 

hierarchical k-means algorithm or a SOM. For both hierarchical clustering algorithms 

similarity thresholds Θ were determined as stop criterion as described in 4.1.5. The Euclidean 

metric was employed. The focus was on terminal clusters containing members of the 

dopamine set (see 4.3.3). Co-clustered SPECS molecules were further analysed. For the 

NIPALSTREE algorithm 37 additional SPECS molecules were identified and for the 

hierarchical k-means algorithm 144. The SOM approach was performed as illustrated in 

Figure 4.4.2.  

 

Table 4.4.1 Data sets used for virtual screening. 

 Dopamine D3 + SPECS Dopamine D3 + SPECS 

Data size 230,130 230,130  

Descriptor set MOE2D CATS3D 

Original number of descriptor 146 420 

UFS R2-based pruning 110 338 

Entropy-based pruning 53 35 

Final data set name DS_MOE DS_CATS3D 

Threshold Θ 2.6 2.1 

 
A SOM was trained with 30x20 neurons using the complete data set (that is, an average of 

384 compounds per field). The obtained map was coloured according to the relative frequency 

of the DS_MOE data set (Figure 4.4.2 B, red over black to blue fields correspond to fields 

with a high, medium and low frequency respectively) and according to the relative frequency 

of the 472 dopamine D3 receptor ligands (Figure 4.4.2 A). A clustering of the latter molecules 

can be seen, highlighted by the black box. All compounds belonging to these enriched fields 

were further considered (N = 1,551). A new map of size 15x10 was trained (that is an average 

of 10 compounds per field). The obtained map was coloured according to the relative 

frequency of the 1,551 molecules (Figure 4.4.2 D) and according to the relative frequency of 
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the remaining dopamine D3 receptor ligands (Figure 4.4.2 C). Fields were selected containing 

at least five dopamine receptor ligands. By that 52 co-clustered SPECS molecules were 

retrieved. 
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Figure 4.4.2 SOM based virtual screening of DS_MOE. A, B A SOM was trained with DS_MOE and coloured 

according the relative frequency of (A) dopamine D3 ligands of DS_MOE and (B) all entries of DS_MOE. Red 

over black to blue represents a high to low frequency, respectively. The fields highlighted by the black box in A 

were enriched with dopamine D3 receptor ligands. All corresponding entries in B, highlighted by the magenta 

box, were used for calculating a new SOM shown in C and D, with C being coloured according to relative 

frequency of dopamine D3 receptor ligands and D being coloured according to relative frequency of all entries. 

 

All obtained SPECS compounds were pooled, which were in total 207 molecules (N = 26 

duplicates were avoided). By visual inspection, molecules were eliminated from the list which 

were too similar to known actives, did not possess a positively charged nitrogen essential for 

receptor binding [Hackling & Stark, 2002] or did not show drug-like properties [Muegge, 

2003]. From the remaining list a maximum diverse subset of 17 molecules was chosen and 

ordered. The selected molecules have displayed calculated logP values in the range of 2.14 – 

5.62 i.e. they possess lipophilicity in the range of central nervous system penetrating drugs 

[Bodor & Buchwald, 2003]. For this diverse subset of molecules binding affinities were 

determined by radioligand competition assays at dopamine D2 and D3 receptors. Results are 

listed in Table 4.4.2 for compounds 42-58. 
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Table 4.4.2 Dopamine receptor affinities of compounds from the first and second virtual screening cycles. 

No. Chemical Structure log P -log Ki 
(D2)a 

-log Ki 
(D3)a 

Ratio Ki 
(D2/D3)a

 

42 
         N

N

O

N
H

O

 

 
4.18 

 

6.10b 

(6.05, 6.14) 7.19 ± 0.05c 12.6 

43 
 

S
N
H

O

Cl
N  

5.62 6.12b 

(6.05, 6.18) 
6.58b 

(6.54, 6.61) 2.9 

44 
      

N
NO

O

N

 
4.77 5.21b 

(5.11, 5.31) 
6.04b 

(5.86, 6.21) 6.4 

45         
N N

H

O

N  
4.18 4.97 ± 0.22c 5.6b 

(5.49, 5.71) 4.6 

46     
N S

N
H

O

N  
5.39 5.40b 

(5.47, 5.32) 
6.60b 

(6.67, 6.53) 15.9 

47 
        

N
H

O

O
N

 
5.39 5.59b 

(5.55, 5.63) 
6.24b 

(6.24, 6.24) 4.5 

48 
          

O
N
H

O N

 
2.93 6.04b 

(5.96, 6.11) 
6.02b 

(6.01, 6.03) 1.0 

49 
             

N

O

O
N

N  
2.72 4.83b 

(4.66, 5.00) 
5.36b 

(5.34, 5.37) 3.6 

50 
                 

N

O

O

N  
5.43 6.12b 

(6.10, 6.13) 6.65 ± 0.31d 2.9 

51 N
H

O

O

Cl

N

 
4.18 4.80b 

(4.62, 4.97) 
5.70b 

(5.7, 5.69) 8.5 
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O
N
H

O N

 
3.58 5.26b 

(5.15, 5.36) 
5.64b 

(5.64, 5.64) 2.5 

53 
             

N
HN

O

N

 
2.14 4.67 ± 0.27c 5.23b 

(5.46, 4.99) 3.4 
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N

N

O

O

N

 

4.93 4.44b 

(4.97, 3.91) 
5.27b 

(5.18, 5.36) 12.3 
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O
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3.84 5.38b 

(5.49, 5.26) 6.74 ± 0.13c 23.1 
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O

N N

 
4.56 4.79b 

(4.96, 4.62) 
5.35b 

(5.52, 5.18) 3.7 
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4.68 6.61b 

(6.67, 6.55) 
5.59b 

(5.57, 5.61) 0.1 
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4.24 6.28b 

(6.31, 6.24) 
6.09b 

(5.96, 6.21) 0.6 
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Table 4.4.2 (continued) 

No. Chemical Structure log P -log Ki 
(D2)a 

-log Ki 
(D3)a 

Ratio Ki 
(D2/D3)a

 

59 

      

N

O

O

N
N

O

 

4.78 6.80 ± 0.07d 7.19 ± 0.06c 2.5 

60 

      

N

O

O

N
N Cl

 

5.46 5.87 ± 0.10c 6.31 ± 0.07d 2.7 

61 

          

N

O

N

 

6.53 5.87 ± 0.09c 5.44b 

(5.50, 5.39) 0.6 

62 

            

N

N

N

N

N

N
N

 

7.25 5.36 ± 0.03c 5.58b 

(5.54, 5.62) 1.7 

aKi values (mean value with standard deviation (SD)) were measured in CHO cells stably expressing hD2s and 

hD3 receptors in triplicates by using [³H]spiperone. bTwo independent experiments. cThree independent 

experiments. dFour independent experiments. All compounds were aligned according to the basic nitrogen. 

 

4.4.3 SAR 
 
Defining compounds with a Ki threshold below 1 μM a “hit”, nine structures were active at 

dopamine D3 receptors and six at dopamine D2 receptors. Among the molecules five 

compounds possessed a Ki below 300 nM for dopamine D3 receptors (42, 43, 46, 50, 55) and 

one compound (57) demonstrated a Ki value of 250 nM for dopamine D2 receptors. Six 

molecules (45, 49, 51, 53, 54, 56) totally lacked of affinity binding for dopamine D2 receptors 

(> 10 µM) and demonstrated low affinity binding for dopamine D3 receptors (2 - 7 µM). 

Compound 42 was the top scoring molecule with a Ki value of 65 nM and a 13-fold 

preference for dopamine D3 receptors. 14 out of 17 structures showed a preferred selectivity 

for dopamine D3 receptors and compound 55 displayed the best selectivity ratio (23-fold) of 

dopamine D3 versus D2. By analysing the structures of these quite encouraging results, a 

novel promising structural feature, a benzamide moiety, was recognized and described for the 

first time. This benzamide element, incorporated as a linker in between the aryl moiety and 

the amine residue, was well tolerated by both dopamine D2 and D3 receptors. Benzamides 

have been described as aryl moieties in the atypical antipsychotics sulpiride and raclopride, 

showing high affinities for dopamine D2 and D3 receptors [Luedke & Mach, 2003]. 
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It was published recently [Hackling et al., 2003] that the exchange of an alkyl chain into a 

rigid xylene spacer resulted in moderate to good affinity binding for dopamine D2 and D3 

receptors. In the present study the training set also beard compounds with xylene spacer 

explaining the newly identified benzamide spacer. Benzamides are synthetically easy 

accessible and allow to produce a large variety of derivatives using parallel synthesis. By this 

an extended knowledge about (Q)SAR of the compound class might be easily derived. 

Two novel structural features for the aryl moiety were identified, bicycle[2.2.1]heptane (42) 

and an aryl-thioether structure (43, 46). Similarity to well-known drugs for the treatment of 

neuropsychiatric disorders can be seen in compound 55 and 57. The former, bearing a 

dibenzocycloheptadiene residue, is closely related to tricyclic antipsychotic drugs (e.g. 

Clozapine or Olanzapine) [Härtter & Hiemke, 2002]. Compound 57 is a butyrophenone 

derivative. It is closely related to haloperidol [Abraham, 2003], a neuroleptic drug. It showed 

moderate affinity binding and a 10-fold selectivity for D2 receptors, as seen for haloperidol 

[Abraham, 2003]. This dopamine D2 receptor preference has also been noticed for 58, a 

chromen-2-one derivative. Compound 48 has the same moderate affinity for both receptor 

subtypes. It can be explained by its short distance between the amide oxygen and the 

positively charged nitrogen. Compound 50 (Ki (D3) = 264 nM) is unusual since the amide 

residue is completely missing. Instead, two ether oxygen atoms are conjugated with a phenyl 

ring. Partial charge calculations with the software package Gaussian [Gaussian Inc., 

Pittsburgh, USA] revealed that both ether oxygen atoms have – due to the aromatic 

conjugation – a partial charge comparable to the BP 897 amide oxygen (data not shown). This 

makes the author assume, that one of the ether atoms might overtake the role of the amide 

oxygen. The results have demonstrated that both hierarchical clustering algorithms and SOM 

were able to identify new and dopamine D3 receptor-preferring ligands. 

4.4.4 GOLD Docking 
 
Docking techniques are designed to identify correct binding modes of a ligand in the binding 

pocket of a receptor. By using a scoring function the discrimination between strong binders 

(hits) and weak binders (non-hits) is assumed to be possible [Kitchen et al., 2004]. The 

scoring might be used as a post-processing filter for the clustering-based virtual screening. In 

addition to that an insight into the binding mode of the newly identified compounds can be 

obtained. This may allow identifying positions in a ligand which can be extended in order to 

optimize the binding affinity of a compound. Therefore docking was prospectively applied 

(i.e. prior to compound testing). A 3D homology model of the dopamine D3 receptor was 
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available due to a previous investigation and shown to produce meaningful results [Byvatov et 

al., 2005]. This model was employed for docking analyses. Compounds 42 – 58 were docked 

into the homology model using GOLD (see 3.7.1). Only positive score values were obtained 

indicating that all compounds fitted into the binding pocket. The Gold scores represented by 

the best binding mode of each molecule were plotted against the experimentally determined 

log10Ki(D3) values (Figure 4.4.3).  
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Figure 4.4.3 Plot of determined GOLD scores for the best binding modes of compounds 42 - 58 (y-axis) against 

experimentally determined log10 Ki(D3) values (x-axis). 

 

No correlation was observed (R² = 0.03), a result already described in literature as a general 

limitation of current docking algorithms [Warren et al., 2006]. In this context the approach is 

not suited as a post-processing filter and a manual analysis of the different binding modes is 

required to identify the putative accurate mode. During this binding mode analyses it has been 

observed that the ligands bind with their aryl moiety into two alternative binding pockets of 

the homology model of the dopamine D3 receptor. This is exemplified in Figure 4.4.4 A for 

two different binding modes of compound 42 (yellow) and compound 55 (light-grey) and in 

Figure 4.4.4 B for BP 897 (grey) and the phenylpiperazinebenzoxazinone (green), previously 

identified in a SVM based virtual screening [Byvatov et al., 2005]. Close proximity of the 

ligands was observed to aspartic acid 110, phenylalanine 345, phenylalanine 346, serine 192 

and threonine 369, which have been claimed to be important interaction partners of dopamine 

D3 receptor ligands [Varady et al., 2003, Byvatov et al., 2005, Hackling et al., 2003]. A 
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hydrogen bond was only observed between the positively charged nitrogen of the ligands to 

aspartic acid 110.  
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Figure 4.4.4 Two different binding modes of compound 42 (yellow, A), molecule 55 (light-grey, A), BP 897 

(grey, B), and its morpholino analogue (green, B) docked into the homology model of the dopamine D3 receptor. 

The ligands bind with their aryl moiety into alternative parts of the binding pocket. 

4.4.5 Pharmacophore-Based Virtual Screening 
 

In a preliminary experiment a dopamine D3 antagonist pharmacophore model was created 

reflecting the 2D model in Figure 1.11 (see 1.4.3). It contains an aromatic PPP in the aryl 

moiety, an acceptor PPP at the position of the oxygen amide, a hydrophobic or aromatic PPP 

in the spacer region, an essential cationic PPP and an aromatic PPP in the amine rest (Figure 

4.4.5).  Three of the five potential pharmacophore points had to match for screening. A shape 

filter in terms of inclusion or exclusion volume was not specified. The model was validated 

employing two data sets. The first set contained 374 of the 386 dopamine ligands having Ki 

values at both receptors below 1 mM (the missing 12 compounds did not pass prior drug-like 

filters) and 1,500 randomly selected SPECS compounds. 27 of the SPECS compounds did not 

pass prior drug-like filters. 305 dopamine D3 ligands were correctly predicted and only 6 

additional SPECS compounds were identified. The 69 false-negative dopamine D3 receptor 
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ligands were analogues of a dopamine D3 receptor agonist (pramipexole), which has been 

described to require a different pharmacophore model [Klabunde & Evers, 2005]. For further 

prospective validation the model was applied to compounds 42 - 58. Setting a Ki(D3) 

threshold to 3 μM, 15 compounds were correctly classified and two false-positives occurred. 

The results suggest that a good antagonist model has been created and is well suited for 

virtual screening or as a post-processing filter of virtual screening. Both data sets contained 

dopamine D3 and D2 receptor-preferring ligands. They were all identified with the 

pharmacophore model. Consequently the model is not suited as a selectivity filter. 
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Figure 4.4.5 Dopamine D3 receptor antagonist pharmacophore model in combination with BP 897. 

 

To identify compounds which bind into both predicted aryl pockets, the pharmacophore 

model was extended as shown in Figure 4.4.6. In addition to the above described PPPs, an 

extra aromatic PPP was introduced describing the alternative aryl binding pocket. All PPPs 

were required as essential with the exception of the acceptor and the pharmacophore in the 

spacer region. Screening the entire SPECS catalogue 35 molecules were identified obeying 

the specified rules. To draw conclusions about the effect of the two aryl residues, three 

compounds remained being only different in the aryl pocket compared to antagonists in the 

dopamine data set. These molecules and an additional molecule (62) were ordered and 

experimentally tested at dopamine D3 and D2 receptors. Results are shown in Table 4.4.2 for 

compounds 59 - 62. 

Considering the additional aromatic residue for the alternative second binding pocket, only 

structure 59 and 60, both containing a benzhydrylidene substituted pyrrolidindione residue, 

have shown good (59) and moderate (60) affinities and a slight dopamine D3 receptor-

preference. Consequently, planar rigidized molecules are tolerated at dopamine receptors. 

Compound 59 displayed a good affinity binding for dopamine D3 receptors with a Ki value of 

65 nM. The more flexible dibenzylcarbamoylbenzyl substituted 1,2,3,4-tetrahydroiso-
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quinoline molecule 61 and the bulky benzimidazole substituted phenylpiperazine compound 

62 clearly decreased affinity binding for both receptor subtypes. Too bulky features like in 62 

might give a suitable explanation for the loss of affinity binding. To understand the missing 

affinity of compound 61 (yellow), it was aligned to 59 (red), giving the acceptor and the 

charged nitrogen a high weight (Figure 4.4.7). As can be seen in the alignment the branching 

point where both putative aryl elements are split is closer to the acceptor oxygen in 61 

compared to 59. This might give an explanation for the observed differences. 
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Figure 4.4.6 BP 897 and its morpholino analogue in combination with PPPs used for virtual screening of 

molecules containing both predicted aryl moieties. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.7 Molecule alignment of 61 (yellow) and 59 (red). The charge and acceptor moiety was given a 

higher weight. The black arrows indicate the branching points of the two putative aryl moieties. 

 
In summary the combined application of homology modelling, docking into the homology 

model for hypothesis generation and pharmacophore based virtual screening translated into 

one compound out of four showing good affinity at dopamine D3 receptors. Although the 

overall results are controversial it shows that the approach is suited to extend the current SAR 

and find novel lead structures. 
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4.4.6 Regression-Based Activity Prediction 
 
Docking was not able to predict the affinity of compounds 42 - 58 correctly. It showed its 

value as idea generator by hinting on a putative alternative binding pocket in the dopamine D3 

receptor. Still a method predicting affinity values for compounds received via virtual 

screening would be worthwhile since it allows filtering false-positives. Ultimately it might 

help gain a deeper understanding of the QSAR of the identified compounds. The dopamine 

data sets included measured Ki values for both dopamine D2 and D3 receptors. It offered the 

possibility to employ these ligands to prospectively predict the affinities for compounds 42 - 

58. To keep the influence of experimental errors as low as possible, a focus was set on a high 

quality subset of 89 molecules, tested under the same condition as the ordered molecules. The 

data set was employed with either MOE 2D, CATS 2D or CATS 3D descriptors listed in 

Table 4.4.3. Descriptors were mean centred and scaled to unit variance. Further descriptors 

were selected according to UFS (R2 = 0.99, see 3.3.5). As regression techniques one non-

linear method, support vector based regression (SVR, see 3.5.2), and a linear technique, 

partial least squares (PLS, see 3.5.1) were used. Models were trained on pKi values. Prior to 

model calculation a PCA was performed for the training set. Compounds 42 - 58 were 

projected onto the score vectors. According to “distance to model” calculations the molecules 

did not show outlier behaviour indicating that they are part of the models applicability domain 

[Eriksson et al., 2001]. Model qualities were assessed by calculating R² (goodness of fit) and 

Q² (goodness of prediction) values. 

 
Table 4.4.3 Dopamine data sets used for regression based affinity predictions. 

 Dopamine_MOE2D Dopamine_CATS2D Dopamine_CATS3D 

Data size 89 89 89 

Descriptor set MOE2D CATS2D CATS3D 

Original number of 

descriptors 

146 150 420 

UFS R2-based 

pruning 

38 46 75 

 

PLS model training was performed as indicated in 3.5.1 for pKi(D3) and pKi(D2) values. As a 

training set all compounds listed in Table 4.4.3 were used. Q² values for the three different 

descriptor sets were obtained by 7-fold cross validation. As a validation set compounds 42 - 

58 were employed. Results are shown in Table 4.4.4. 
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Table 4.4.4 Q² and R² values obtained by PLS for the dopamine data set 

 MOE 2D CATS 2D CATS 3D 

R(D2)² (training set)$ 0.55 0.5 0.74 

Q(D2)² (training set)$ 0.51 0.41 0.56 

R(D2)² (validation set)§ 0.09 0.01 0.33 

R(D3)² (training set)$ 0.27 0.33 0.33 

Q(D3)² (training set)$ 0.16 0.15 0.18 

R(D3)² (validation set)§ 0 0.02 0.01 
$Compounds of Table 4.4.3 were employed.  §Compounds 42 - 58 were employed 

 

SVR model training was performed as indicated in 3.5.2 for pKi(D3) and pKi(D2) values. The 

data sets listed in Table 4.4.3 were divided into 25% test set and 75% training set either based 

on a maximum diverse selection (see 3.3) or on random selection. In total three different 

random sets (Random 1 – Random 3) and one maximum diverse set (SCA) were created. The 

support vector regression model was selected best predicting the test set (maximum R²). As a 

validation set compounds 42 - 58 were employed. Resulting R² and Q² values are present in 

Table 4.4.5. In Figure 4.4.8 all R² values are represented as a histogram obtained with the 

methods for the validation set. It contains six sections, one for the PLS models, four for the 

different SVR models (SCA and random 1 - 3) and one for a majority voting of all models for 

both receptor subtypes. Beneath each other the pKi(D3) (red) and pKi(D2) (blue) R² histogram 

bars are located for each descriptor set, starting with MOE 2D descriptors, over CATS 2D 

descriptors to CATS 3D descriptors.  

R2 of the Training and Test Set and Q2 of the Training Set 

Support vector machines are intended to create models with high R² values for the training set 

[Smola & Schölkopf, 1998]. They reached their aim in the present study since R² values were 

in all cases above 0.8. For further discussion the focus was set on the more meaningful Q² of 

the training set and R² of the test and validation sets. For the PLS models both R² and Q² of 

the training set and R2 of the validation set were considered. When analyzing the R² and Q² 

values, predictions were clearly better for pKi (D2) values. The Q² for pKi (D2) exceeded, with 

one exception (PLS with CATS2D) 0.5 indicating a predictive ability for pKi values at 

dopamine D2 receptors. This was different for the pKi (D3) models, where both Q2 and R2 

values were low. Since the data set was shifted towards high affine ligands for the D3 receptor 

it might be concluded that pKi (D3) models were either sensitive to outliers in the biological 

response or that the data range in the biological response was not coarse grained enough for 

robust model training. Neither of the created models allowed a robust prediction for the 
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validation set. For the pKi (D3) prediction this was already indicated by the low R2 and Q2 

values. For the pKi (D2) models only the R2 and Q2 values of the training set of the PLS 

models allowed drawing such conclusion. 

Effects of the Test Set Selection 

For the SVR approaches the training set was selected based on a maximum diversity 

algorithm and on random selection. To analyse whether any of the selection methods might be 

given a favour Q² of the training sets or R² of test and validation set were examined. To date 

no clear advantage can be given for any of the methods. However for a valid conclusion more 

examinations would be required employing different diversity selection algorithms, different 

data sets and differently large test and training sets. 

Descriptor Preference for the Model Creation 

One point of interest was whether a preference can be given for any of the descriptor sets. 

With the exception of CATS 3D descriptors in combination with PLS and pKi (D2) values no 

noticeable differences in the R² and Q² values for the test and training sets were observed for 

either of the descriptor sets. For the validation set and pKi (D2) values the SVR models 

obtained with CATS 3D or CATS 2D descriptors tended to outperform models obtained with 

the MOE 2D descriptors. For the PLS models only the CATS 3D descriptors showed this 

tendency.  For pKi (D3) prediction in the validation set a preference might be given for the 

CATS 2D descriptors in combination with SVR. 

Model Preference 

To analyse whether any of the regression methods might be given a preference, R² and Q² 

values were examined for the training and test sets. SVRs outperformed PLS, an observation 

already described elsewhere [e.g. Zhao et al., 2004; Sorich et al., 2003]. However this was 

given to the cost of introducing non-linearity. This makes later interpretation more difficult. 

When judging the methods according their capability of predicting the validation set none of 

the methods was able to perform overall correct predictions, since R2 did not exceed 0.34. All 

methods and all descriptor sets contributed at least one best prediction (data not shown). If a 

preference should be given for any of the descriptor sets and regression methods, the CATS 

2D descriptors in combination with SVR seemed to perform best for pKi(D3) and CATS 3D in 

combination with PLS for pKi(D2). A majority voting combining all models leads for the pKi 

(D2) prediction to a R² comparable to the best method. For pKi (D3) prediction R² drops 

markedly (R2 = 0.06). The reason for this remains elusive to the author. 
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Figure 4.4.8 R² values obtained for compounds 42 - 58. As regression technique PLS and support vector based 

regression in combination with four different training sets (see 3.8) were used. Besides each other R² values are 

shown for pKi(D2) (red) and pKi(D3) (blue) obtained for the MOE 2D, CATS 2D and CATS 3D descriptor sets 

(Table 4.4.3). The last section shows a majority voting of all methods and all descriptor sets. 
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The top scoring PLS model for pKi (D2) in combination with the CATS3D descriptor set was 

employed to analyze descriptor importance according to “variable importance plots” (VIP) 

and coefficients of loadings [Eriksson et al., 2001]. It was possible to confirm observations 

already presented in literature: (i) a distance of 6 to 7 Å between the acceptor oxygen of the 

amide and the basic nitrogen is favourable for D3  [Hackling et al., 2003]. This was expressed 

by a high weighting of the +A07 descriptor (positively charged moiety and acceptor group 

with a distance of 6-7 Å). (ii) The spacer defines the distance between the amine moiety and 

aryl rest [Hackling et al., 2003; Newman et al., 2005]. This is expressed by the descriptor 

HH12 requiring the distance of two hydrophobic residues to be between 11 and 12 Å. (iii) The 

dopamine data set contained several analogues of pramipexole, which is a dopamine D3 

receptor-preferring agonist [Schneider & Mierau, 1987; Biglan & Holloway, 2002; Kushida, 

2006] (Table 1.1). In the PLS model descriptors +H04 (positively charged moiety and 

hydrophobic group with a distance of 3-4 Å) and AH03 (acceptor atom and hydrophobic 

group with a distance of 2-3 Å) were given a high weight and were present only in this class 

of analogues. A recent publication described potential pharmacophore points for dopamine D3 

receptor agonists including pramipexole [Elsner et al., 2005]. Both identified features, +H04 

and AH03 fit nicely into their models. It shows that by analysis of VIP and of the coefficients 

of loadings it is possible to simultaneously identify important features in different structural 

classes.  

Summarizing results showed that by employing different descriptor sets and different 

regression techniques robust models can be created. However their application to structurally 

diverse sets obtained by virtual screening was of limited success. Several reasons might be 

thought of explaining the low R² values for compounds 42 - 58. One is that the training set 

was not diverse enough to construct predictive models for this data set. Another is that the 

training and test sets were optimized for dopamine D3 receptor affinity whereas the validation 

set contained only five highly affine compounds with Ki (D3) below 300 nM. A regression 

based affinity prediction is usually performed for structural classes during lead optimization. 

Here it was tried to predict activities for novel and diverse structural classes in lead 

identification. The conclusion was that in this context an affinity prediction for virtual 

screening data is not accurate enough to provide reliable results. 
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4.4.7 Conclusions 
 

In this study, for the first time, NIPALSTREE and the hierarchical k-means were 

prospectively applied to identifying false-negatives. In combination with self organizing maps 

novel lead candidates for dopamine D3 receptors were identified. As new structural motive, a 

benzamide was recognized and described for the first time in context of a linker in between 

the aryl moiety and the amine residue. It was well tolerated by both dopamine D2 and D3 

receptors. Two novel structural features for the aryl moiety were identified, 

bicycle[2.2.1]heptane (42) and an aryl-thioether structure (43, 46). This confirms the 

observation of the retrospective HTS analyses that false-negatives with novel scaffolds can be 

identified employing the clustering techniques.  

The clustering based virtual screening was performed employing a data set containing at most 

dopamine D3 receptor-preferring ligands (see Figure 4.1.1 F). Not all newly identified 

compounds were active and even less were selective towards dopamine D3 receptors. 

Different attempts were tried, either to colour the calculated SOMs or the resulting cluster 

dendrograms according to the selectivity of Ki(D3)/Ki(D2) or vice versa. It was not possible to 

identified clusters enriched with selective compounds (data not shown). Consequently an 

unsupervised classification of the ligands based on the descriptors used in this study is not 

sufficient to explain selectivity. This is supported by the fact that the regression methods 

trained on selectivity and applied to compounds 42 – 58 were not able to address selectivity 

correctly (R2 < 0.05, data not shown). It is assumed that more complex models are required 

employing exact 3D structures of the ligands (bound to the respective receptor and unbound) 

and quantum chemical descriptors/calculation to enlighten new discriminating molecular 

features for both receptors. Until now these methods are too time- and space-consuming for 

early phase screening applications. 

Docking studies were committed employing a dopamine D3 receptor homology model and 

compounds 42 – 58. The approach was not able to accurately distinguish active from not 

active molecules. Possible reasons might be the limited set of docked compounds not 

allowing to draw statistically relevant conclusions, the potential error in the homology model 

or the putative lack of parameterization of the scoring function for this receptor. The clear 

advantage of docking is the visualization of ligands in the binding pocket leading in the 

present study to the identification of two putative binding pockets for the aryl moiety of 

dopamine D3 receptor antagonists. Although experimental results obtained for molecules 

simultaneously requiring both aryl binding pockets are controversial, it shows that docking 
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analyses have great impact as an idea generator and are thus irreplaceable in the drug 

discovery process.  

A pharmacophore model was constructed for dopamine D3 receptor ligands and prospectively 

and retrospectively evaluated. The results showed that a robust antagonist model was created 

filtering hits from non-hits. To enlighten the role of the different binding modes, the 

pharmacophore model was extended simultaneously requiring both binding modes. After 

screening the SPECS catalogue four molecules remained. The best compound possessed a Ki 

value of 65 nM at dopamine D3 receptors. The data successfully shows how to translate new 

ideas, made by docking, into a model allowing to extend the current SAR. 

Two regression techniques, PLS and SVR, were employed with three different descriptor sets 

(MOE 2D, CATS 2D and CATS 3D). Predictive models were obtained for dopamine D2 and 

D3 pKi values. This is underlined by the VIP analysis for the PLS model with CATS 3D 

descriptors and pKi (D2) values. It was possible to identify descriptors explaining SAR already 

made in literature for dopamine D3 antagonists and agonists [Hackling et al., 2003, Newman 

et al., 2005, Elsner et al., 2005]. The prospective application of the created models to 

compounds 42 – 58 was not able to perform overall correct predictions. Even so outlier 

behaviour of the compounds was checked prior to the prediction. The conclusion is that an 

activity prediction for diverse and novel (virtual) screening data is not accurate enough to 

provide reliable results in this context. 

An objective of the study was to examine the applicability of virtual screening methods in 

early stages of drug discovery process for the generation of structurally new leads. The 

clustering approaches provided new compounds, the docking served as an idea generator for a 

pharmacophore model providing a new insight into SAR and the regression methods were 

able to identify important molecular features. It shows that different methods are necessary to 

explain the SAR in the data [Harper et al., 2001]. By strategic combination of the techniques a 

successful finding of novel “lead” candidates for the dopamine D3 receptor was possible. To 

clarify whether both hypothesized aryl pockets exist and whether they can be used to design 

ligands with more suited pharmacokinetic and pharmacodynamic properties has to be 

addressed by chemical synthesis of structural analogues. This “lead optimization” might be 

supported by de novo design techniques allowing a further fine tuning [Fechner & Schneider, 

2005]. 
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The scope of the thesis was to identify SAR in the primary screening data of HTS assays. By 

hierarchical clustering of the compounds, assigning the primary screening data to the clusters 

and employing the clusters in combination with their relationship to each other, models 

should be derived which identify false-negatives, not confirmed hits, singletons and clusters 

enriched with hits. For this purpose two hierarchical clustering algorithms, NIPALSTREE and 

hierarchical k-means, have been developed. A GUI was implemented for working with the 

clustering results. Both retrospective and prospective applications of the clustering approach 

were performed. A combination of clustering with different computational methods was 

committed to obtain an extended SAR. What were the key findings and what were the main 

conclusions? Are primary screening HTS data suited for extraction of SAR? Is the clustering-

based approach applicable to find SAR in HTS?  

The two hierarchical clustering algorithms, NIPALSTREE and hierarchical k-means were 

developed. They demonstrated the successful application and clustered large data sets with 

more than 700,000 data points. Both clustering methods were validated and compared to each 

other. The hierarchical k-means algorithm seemed to outperform NIPALSTREE. The 

conjunctive application of both clustering algorithms was able to improve EFs without 

loosing high proportions of lead classes. The NIPALSTREE algorithm provides the loading 

vector which allows drawing a conclusion about the importance of descriptors. First insights 

into SAR were gained. According to this no clear preference can be given for any of the 

algorithms. Future investigations might aim at the extension of the hierarchical k-means to 

cope with fingerprints [Engels et al., 2006], the re-clustering of the clustering results using a 

maximum common substructure approach [Nicolaou et al., 2002] and the comparison of both 

algorithms to other hierarchical clustering algorithms. However these algorithms are at most 

characterized by a quadratic complexity and are not applicable to data sets with more than 

100,000 data points.  

A GUI was developed allowing the display of and the navigation in the clustering results. It 

provides functionalities to analyse the dendrogram, a cluster in the dendrogram and the 

molecules in a cluster. Measures were introduced to identify clusters enriched with actives, to 

characterize singletons and to analyse selectivity and specificity. The scaling of EFs for an 

inhibitor class to the logarithm of the dendrogram level was able to simultaneously retrieve 

and separate the different structural classes of the inhibitor class, irrespective of the 

dendrogram level. By analysing co-clustered molecules an extended SAR was obtained. It 

offers the possibility to construct focussed screening libraries. Singletons in the dendrogram 

were investigated as a source of alternative lead structures. It was possible to reduce the 
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number of singletons by additional similarity searching and nearest neighbour analysis. 

However for a final conclusion a manual analysis was necessary. Relative frequencies of 

different protease inhibitor classes were extracted from clusters of a dendrogram level. The 

values were clustered and compared to a phylogenetic multiple sequence alignment of the 

corresponding proteins. Both overlap and differences in the dendrograms were observed. This 

new clustering provides an alternative ligand-based view on the relationships of the binding 

pockets of a set of proteins. A deeper insight into SAR of an inhibitor class was obtained, 

providing hints about adverse side effects or related enzymes for which counter screens 

should be performed [Arnold et al., 2004]. The GUI has reached a state where it is possible to 

draw a conclusion about the SAR in the clusters. A variety of extensions of the GUI might be 

considered in the future. This might include approaches to further visualize SAR like R-group 

decomposition [Kibbey & Calvet, 2005] or the supporting of the singleton analysis with a 

maximum common substructure comparison [Stahl & Mauser, 2005].  

Three HTS assays were analyzed in a retrospective study. Comparing the % CTL values to 

the IC50 values it is obvious that no quantitative conclusion can be drawn from % CTL values. 

It was possible to confirm the theoretical considerations of Zhang et al.,: the closer the % CTL 

value of a primary screening hit to the hit threshold, the higher is the likelihood, that it 

translates into a not confirmed hit [Zhang et al., 2000]. A valid conclusion is that the same 

holds true for false-negatives. The hierarchical k-means was used to cluster the data and 

analyze its capacity to retrospectively identify not confirmed hits and false-negative scaffolds.  

No correlation was observed between cluster size (i.e. between similar entries), the number of 

hits in a cluster and the proportion of not confirmed hits. A rule catalogue was implemented 

rating hits in terminal clusters based on the cluster size, the % CTL values of the entries in a 

cluster, the overall hit rate, the hit rate in the cluster and the environment of a cluster in the 

dendrogram. With this approach it was possible to identify not confirmed hits. Further the 

method provides a way of rating hits in context of non-hits [Schreyer et al., 2004]. This is a 

unique ability of the hierarchical clustering. False-negative scaffolds were created and the 

data were clustered. Compounds were extracted from terminal clusters containing hits. It was 

possible to co-extract and enrich false-negatives. To minimize the number of false-positives in 

the extracted lists, BRANN classification models were trained with the data. Applying the 

models clearly improved the enrichment factors of the false-negative scaffolds. It can be 

concluded that the combined approach of unsupervised pre-classification with a final 

supervised ranking is a well chosen strategy to identifying and enriching false-negatives in 

HTS assays. As an outlook the approach bears the opportunity to construct a local 
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classification model for each cluster. By integration of all models it might be possible to 

obtain overall higher prediction accuracies. This has been already demonstrated for smaller 

data sets by combining self organizing maps with supervised neural networks [Spycher et al., 

2005; Gini et al., 2004]. 

NIPALSTREE, hierarchical k-means and SOM were prospectively applied to identify novel 

lead candidates for dopamine D3 receptors. It was possible to retrieve compounds with novel 

scaffolds and low nanomolar binding affinity (65 nM for compound 42) confirming the 

retrospective HTS analysis. Different computational methods were examined for their 

applicability to generate structurally new leads and explain SAR. Both strength and 

limitations of each technique were observed. Docking studies were performed. The visual 

inspection of the binding modes revealed the hypothesis of two alternative binding pockets for 

the aryl moiety of dopamine D3 receptor antagonists. However it was not possible to 

distinguish “hits” from “non-hits”. A pharmacophore model was created which 

simultaneously required both aryl moieties. Virtual screening by applying this model 

identified a nanomolar hit (65 nM) corroborating the hypothesis. SVR and PLS were 

examined. It was possible to create predictive models for dopamine D2 and D3 pKi values. A 

VIP analysis was performed for one PLS model. Descriptors explaining SAR were identified 

[Hackling et al., 2003, Newman et al., 2005, Elsner et al., 2005]. The prospective application 

of the models to diverse and novel virtual screening data was not able to predict activity 

correctly. The data clearly shows that different methods are able to explain different parts of 

the SAR [Harper et al., 2001]. Key to success is their combined application employing the 

strength of each method. 

Is the proposed clustering based approach suited to identify SAR in the data and, is it possible 

to identify SAR in the primary screening data of HTS assays? The presented data shows that 

SAR can be identified in HTS with the clustering algorithms. They can be used to identify 

false-negatives. The data also suggest that limitations are present resulting from both HTS 

data and the clustering approach. From the data obtained with the BRANN classification and 

the dopamine D3 receptor virtual screening it is concluded that each method has its own 

strength and that each method provides a different view on the SAR in HTS. This mirrors a 

multi-disciplinary approach viewing the data from different perspectives. Such multi-

disciplinary settings with computational chemistry as one integral part are necessary to 

successfully pass the hurdles of the early phase drug discovery and decipher new lead series. 
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The aim of the thesis was to identify structure activity relationships (SAR) in the primary 

screening data of high-throughput screening (HTS) assays. The strategy was to perform a 

hierarchical clustering of the molecules, assign the primary screening data to the created 

clusters and derive models from the clusters. The models should serve to identify singletons, 

clusters enriched with actives, not confirmed hits and false-negatives. Two hierarchical 

clustering algorithms, NIPALSTREE and hierarchical k-means have been developed and 

adapted for this purpose, respectively. A graphical user interface (GUI) has been implemented 

to extract SAR from the clustering results. Retrospective and prospective applications of the 

clustering approach were performed. SAR models were created by combining the clustering 

results with different chemoinformatic methods. 

NIPALSTREE projects a data set onto one dimension using principle component analysis. 

The data set is sorted according to the scoring vector and split at the median position into two 

subsets. The algorithm is applied recursively onto the subsets. The hierarchical k-means 

recursively separates a data set into two clusters using the k-means algorithm. Both algorithms 

are capable of clustering large data sets with more than a million data points. They were 

validated and compared to each other on the basis of different structural classes. 

NIPALSTREE provided with the loading vectors first insights into SAR whereas the 

hierarchical k-means yielded superior results. 

A GUI was developed allowing the display of and the navigation in the clustering results. 

Functionalities were integrated to analyse the clusters in the dendrogram, molecules in a 

cluster, and physicochemical properties of a molecule. Measures were developed to identify 

clusters enriched with actives, to characterize singletons and to analyse selectivity and 

specificity. Different protease inhibitors of the COBRA database were examined using the 

hierarchical k-means algorithm. Supported by similarity searches and nearest neighbour 

analyses thrombin inhibitor singletons were quickly isolated and displayed in the dendrogram. 

By scaling enrichment factors to the logarithm of the dendrogram level, clusters enriched with 

different structural classes of factor Xa inhibitors were simultaneously identified. The 

observed co-clustering of other protease inhibitors provided a deeper insight into selectivity 

and specificity and shows the utility of the approach for constructing focussed screening 

libraries. Specificity was analyzed by extracting and clustering relative frequencies of the 

protease inhibitors from the clusters of dendrogram level 7. A unique ligand based point of 

view on the pocketome of the protease enzymes was obtained.  

To identify not confirmed hits and false-negatives in the primary screening data of HTS 

assays, three assays were retrospectively analysed with the hierarchical k-means algorithm. A 
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rule catalogue was developed judging hits in terminal clusters based on the cluster size, the 

percent control values of the entries in a cluster, the overall hit rate, the hit rate in the cluster 

and the environment of a cluster in the dendrogram. It resulted in the identification of a high 

proportion of not confirmed hits and provided for each hit a rating in context of related non-

hits. This allows prioritizing compounds for follow-up studies. Non-hits and hits were 

retrieved from terminal clusters containing hits. Molecules bearing false-negative scaffolds 

were co-extracted and enriched. To minimize the number of false-positives in the extracted 

lists, Bayesian regularized artificial neutral network classification models were trained with 

the data. Applying the models marked improvement of enrichment factors for the false-

negatives was obtained. It proofs the scaffold-hopping potential of the approach. 

NIPALSTREE, the hierarchical k-means algorithm and self-organising maps were 

prospectively applied to identify novel lead candidates for dopamine D3 receptors. 

Compounds with novel scaffolds and low nanomolar binding affinity (65 nM, compound 42) 

were identified. To provide a deeper insight into the SAR of these molecules, different 

alternative computational methods were employed. Support vector-based regression and 

partial least squares were examined. Predictive models for dopamine D2 and D3 receptor 

binding affinity values were obtained. Important features explaining SAR were extracted from 

the models. The prospective application of the models to the diverse and novel virtual 

screening data was of limited success only. Docking studies were performed using a 

homology model of the dopamine D3 receptor. The visual inspection of the binding modes 

resulted in the hypothesis of two alternative binding pockets for the aryl moiety of dopamine 

D3 receptor antagonists. A pharmacophore model was created simultaneously requiring both 

aryl moieties. Virtual screening with the model identified a nanomolar hit (65 nM, compound 

59) corroborating the hypothesis of the two binding pockets and providing a new lead 

structure for dopamine D3 receptors. 

The presented data shows that the combined approach of hierarchically clustering a data set in 

combination with the subsequent usage of the clusters for model generation is suited to extract 

SAR from screening data. The models are successful in identifying singletons, clusters 

enriched with actives, not confirmed hits and false-negative scaffolds.  
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Das Ziel der Arbeit war es, Struktur-Aktivitätsbeziehungen (SAR) in primären Screeningdaten von 

Hochdurchsatzscreening (HTS)- Assays zu finden. Als Strategie sollten die Moleküle hierarchisch 

geclustert werden, die primären Screeningdaten den gebildeten Clustern zugeordnet und Modelle 

aus den Clustern abgeleitet werden. Die Modelle sollten das Auffinden von Singletons, mit Hits 

angereicherter Cluster, nicht bestätigter Hits und falsch Negativer ermöglichen. Zu diesem Zweck 

wurden zwei hierarchische Clusteralgorithmen, NIPALSTREE und hierarchischer k-means, 

entwickelt bzw. angepasst. Eine graphische Benutzeroberfläche (GUI) wurde implementiert, um 

SAR aus den Ergebnissen der Clusterung abzuleiten. Retrospektive und prospektive Anwendungen 

wurden mit den Clusteransätzen verfolgt. SAR Modelle wurden durch Verwendung der Ergebnisse 

der Clusterung mit verschiedenen chemoinformatischen Verfahren erstellt. 

NIPALSTREE projiziert mit Hilfe der Hauptkomponentenanalyse einen Datensatz auf eine 

Dimension. Der Datensatz wird anhand des Scoringvektors sortiert und, basierend auf dem Median, 

in zwei Teilmengen aufgetrennt. Der Algorithmus wird rekursiv auf die neu gebildeten Mengen 

angewandt. Der hierarchische k-means Algorithmus trennt, basierend auf dem k-means 

Algorithmus, einen Datensatz rekursiv in zwei Cluster auf. Beide Algorithmen sind in der Lage, 

große Datenmengen mit mehr als einer Million Datenpunkte zu clustern. Sie wurden anhand 

verschiedener Strukturklassen validiert und miteinander verglichen. NIPALSTREE erbrachte mit 

dem Loadingvektor erste Einblicke in die SAR, wohingegen der hierarchische k-means zu besseren 

Ergebnissen führte.  

Eine GUI wurde entwickelt, die es erlaubt, die Clusterergebnisse darzustellen und darin zu 

navigieren. Funktionalitäten wurden bereitgestellt, um die Cluster im Dendrogramm, die Moleküle 

eines Clusters und die physikochemischen Eigenschaften eines Moleküls zu analysieren. Verfahren 

wurden entwickelt, um mit Hits angereicherte Cluster zu finden, Singletons zu charakterisieren und 

Selektivität und Spezifität zu analysieren. Verschiedene Proteaseinhibitoren aus der COBRA-

Datenbank wurden mit dem hierarchischen k-means Algorithmus näher betrachtet. Mit Hilfe von 

Ähnlichkeitssuchen und nächsten Nachbaranalysen wurden Thrombininhibitorsingletons im 

Dendrogram in kürzester Zeit isoliert und dargestellt. Cluster, die mit verschiedenen Strukturklassen 

von Faktor-Xa-Inhibitoren angereichert waren, wurden, durch Skalierung des Anreicherungsfaktors 

auf den Logarithmus der Dendrogrammebene, gleichzeitig im Dendrogramm identifiziert. Eine 

Clusterung der Faktor-Xa-Inhibitoren mit anderen Proteaseinhibitoren wurde beobachtet. Sie 

erbrachte einen vertieften Einblick in Selektivität und Spezifität und zeigt die Anwendbarkeit des 

Ansatzes zur Erstellung fokussierter Screeningbibliotheken. Durch Extrahierung und Clusterung der 

relativen Anteile der Proteaseinhibitoren aus den Clustern von Dendrogrammebene sieben wurde 
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die Spezifität der Proteaseinhibitoren analysiert. Eine spezifische, Liganden basierte Betrachtung des 

Pocketoms der Proteaseenzyme wurde erhalten.  

Um nicht bestätigte Hits und falsch Negative in den primären Screening Daten von HTS Assays zu 

finden, wurden drei Assays in Retrospektive mit dem hierarchischen k-means analysiert. Ein 

Regelwerk wurde entwickelt, welches Hits anhand der Clustergröße, des Prozent-Kontrollwertes der 

Einträge eines Clusters, der Gesamthitrate, der Hitrate in einem Cluster und der Umgebung des 

Clusters im Dendrogramm bewertet. Das Regelwerk führte zum Auffindung eines großen Anteils 

nicht bestätigter Hits. Zudem wurde für jeden Hit eine Bewertung im Kontext verwandter Nichthits 

erhalten. Dies erlaubt ein Priorisieren von Molekülen für Folgeuntersuchungen. Nichthits und Hits 

wurden aus Endcluster, die Hits enthielten, extrahiert. Moleküle mit falsch negativen 

Molekülgrundgerüsten wurden koextrahiert und angereichert. Um falsch Positive in den extrahierten 

Listen zu minimieren, wurden Bayesische regularisierte neuronale Klassifizierungsnetze mit den 

Daten trainiert. Die Anwendung der Modelle ergab eine deutliche Verbesserung der 

Anreicherungsfaktoren der falsch Negativen. Es zeigt, dass die Methode in der Lage ist, einen 

Molekülgrundgerüstwechsel durchzuführen. 

NIPALSTREE, der hierarchische k-means und selbst organisierende Karten wurden prospektiv 

angewandt, um neue Leitstrukturkandidaten für Dopamin-D3-Rezeptoren zu finden. Moleküle mit 

neuen Molekülgrundgerüsten und Bindungsaffinitäten im niedrigen nanomolaren Bereich wurden 

gefunden (65 nM für Molekül 42). Um einen tieferen Einblick in die SAR dieser Moleküle zu 

erhalten, wurden verschiede Computerverfahren verwendet. Supportvektorregression und PLS 

(„partial least squares“) wurden untersucht. Es war möglich, voraussagende Modelle für Dopamin-

D2 und D3 Bindungsaffinitäten zu erstellen. Die SAR erklärende Moleküleigenschaften konnten aus 

den Modellen extrahiert werden. Die prospektive Anwendung der Modelle auf die diversen und 

neuen virtuellen Screeningdaten war nur von begrenztem Erfolg. Dockingstudien wurden mit einem 

Homologiemodell des Dopamin-D3-Rezeptors durchgeführt. Die visuelle Begutachtung der 

Bindemoden führte zur Hypothese zweier alternativer Bindetaschen für den Aryl-Rest von 

Dopamin-D3-Rezeptorantagonisten. Ein Pharmakophormodell wurde erstellt, welches beide Aryl-

Reste gleichzeitig benötigt. Ein virtuelles Screening mit dem Modell identifizierte einen 

nanomolaren Hit (65 nM für Molekül 59), welcher die Hypothese unterstützt und eine neue 

Leitstruktur für Dopamin-D3-Rezeptoren darstellt.  

Die vorgestellten Daten zeigen, dass der kombinierte Ansatz aus hierarchischer Clusterung und 

anschließender Verwendung der Cluster zur Modellerstellung, SAR in HTS-Daten findet. Die 

Modelle sind geeignet zum Auffinden von Singletons, mit Hits angereichter Cluster, nicht 

bestätigter Hits und falsch negativer Molekülgrundgerüste. 
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Hochdurchsatzscreening (HTS) - Assays werden standardmäßig angewendet, um neue 

Leitstrukturen in Substanzbibliotheken mit mehr als einer Million Molekülen zu finden. Das 

Ergebnis eines Hochdurchsatzscreens ist eine Vielzahl von Aktivitätsdaten, die geordnet und 

analysiert werden müssen. Das Ziel der Arbeit war es Struktur-Aktivitätsbeziehungen (SAR) 

in den primären Screeningdaten der Assays zu finden. Die Strategie war es, alle Moleküle 

hierarchisch zu clustern, die primären Screeningdaten den Clustern zuzuordnen und die 

Cluster und deren Beziehung zueinander zu verwenden um daraus Modelle abzuleiten. Die 

Modelle sollen das Finden falsch Negativer, nicht bestätigter Hits, erster Leitstrukturklassen 

und Singletons in den Daten ermöglichen. Zu diesem Zweck wurde ein neuer hierarchischer 

Clusteralgorithmus, NIPLASTREE, entwickelt und ein zweiter Algorithmus, der hierarchisch 

k-means, angepasst. Eine graphische Benutzeroberfläche wurde implementiert, um die 

Ergebnisse der Clusterung darzustellen und daraus erste SAR abzuleiten. Beide 

Clusteralgorithmen wurden retrospektiv und prospektiv evaluiert. SAR-Modelle wurden 

durch Verbindung der Clusterergebnisse mit Dockingstudien, Pharmakophorsuchen und 

Klassifzierung- bzw. Regressionsmethoden erstellt.  

Der NIPALSTREE Algorithmus projiziert unter Verwendung der Hauptkomponentenanalyse 

einen Datensatz auf eine Dimension. Der Datensatz wird anhand des Scoringvektors sortiert 

und am Median in zwei Teilmengen aufgetrennt. Der Algorithmus wird rekursiv auf die neu 

gebildeten Mengen angewandt. Der hierarchische k-means Algorithmus trennt mit Hilfe des k-

means Algorithmus einen Datensatz in zwei Cluster auf. Durch rekursive Anwendung des 

Algorithmus auf die neu gebildeten Teilmengen wird eine hierarchische Clusterung erreicht. 

Die Algorithmen sind in der Lage, große Datenmengen mit mehr als einer Million 

Datenpunkte hierarchisch zu clustern.  

Für beide Algorithmen wurde die Berechnung des Dmax Wertes eingeführt. Die Clusterung 

wird dabei mit verschiedenen Ähnlichkeitsschwellenwerten in einem Datenintervall 

durchgeführt. Cluster, deren Mitglieder Distanzen zueinander aufweisen, die den 

Schwellenwert unterschreiten, werden nicht mehr weiter aufgetrennt. Für jeden 

Schwellenwert werden die Clusterradien der Endcluster aufsummiert. Dmax repräsentiert den 

Schwellenwert, bei dem ein Maximum der Summe erreicht wird. An diesem Punkt wird eine 

maximal dichte Packung der Endcluster erreicht. Dies entspricht dem Schwellenwert, bei dem 

maximale Homogenität und minimale Heterogenität der Moleküle in den Clustern erreicht 

wird. 

Eine Vielzahl an Bewertungsschemata wurden entwickelt bzw. angepasst, um bei der 

Ableitung von SAR im Dendrogramm zu helfen. Dies beinhaltete Formeln zur Bewertung 
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eines Clusters, Teilen des hierarchischen Clusterdendrogramms und des gesamten 

Dendrogramms. Um die Verteilung von „angiotensin converting enzyme“- und „interleukin-1 

cleaving enzyme“-Inhibitoren aus der COBRA-Datenbank auf einer Dendrogrammebene zu 

bewerten wurden der durchschnittliche Anreicherungsfaktor, die Shannon Entropie und die 

Kullback-Leibler Distanz berechnet. Durch Darstellen der berechneten Werte für jede 

Dendorgrammebene war es möglich, die Clusterung der Liganden im Dendrogramm zu 

beurteilen. Jede der drei Bewertungsfunktionen erlaubte eine unterschiedliche und sich 

gegenseitig ergänzende Sichtweise auf die Auftrennung der Inhibitoren. Sie geben einen 

direkten Hinweis auf die Ordnung der Liganden im Dendrogramm. Dadurch werden erste 

Schlüsse über das Vorhandensein von Leitstrukturserien in den Daten erhalten.  

NIPALSTREE stellt für jeden Cluster den Loadingvektor zur Verfügung. Um Deskriptoren zu 

identifizieren, die Moleküle eines Clusters von strukturell verwandten Molekülen des 

Nachbarclusters unterscheiden, wurde das Verhältnis zwischen den Deskriptorgewichtungen 

in den Loadingvektoren berechnet. Deskriptoren, für die Extremwerte erreicht wurden, boten 

eine gute Erklärung für die Unterscheidung und ermöglichten erste Einblicke in die SAR. 

Beide Clusterverfahren wurden anhand mehrerer Datensätze validiert und miteinander 

verglichen. Als Moleküldatenbanken wurden die COBRA Datenbank, die MDDR Datenbank 

und eine kombinierte Datenbank aus MDDR, COBRA und dem SPECS Substanzkatalog 

verwendet. Die Clusterung wurde basierend auf den CATS 2D Deskriptoren und den MOE 

2D Deskriptoren durchgeführt. Beide Algorithmen führten zu hierarchischen Clusterungen, 

die strukturell interpretierbar waren. Verschiedene Strukturklassen wurden voneinander im 

Dendrogramm getrennt und systematisch angereichert. Der hierarchische k-means 

Algorithmus erbrachte bessere Ergebnisse als NIPLASTREE, da für eine Auswahl 

verschiedener Ligandklassen höhere Anreicherungsfaktoren erhalten wurden. Die 

Überlegenheit des ersten Algorithmus kann durch seine polythetische Funktionsweise im 

Gegensatz zur monothetischen Funktionsweise des letzteren erklärt werden. Eine 

Schnittmengenbildung der Ergebnislisten, die mit beiden Algorithmen für die Ligandklassen 

erhalten wurde, führte zu einer deutlichen Verbesserung der Anreicherungsfaktoren. Am 

Beispiel von „angiotensin converting enzyme“-Inhibitoren wurde gezeigt, dass durch die 

Schnittmengenbildung der Verlust an Leitstrukturklassen minimal ist. Beide Algorithmen 

geben somit eine unterschiedliche und sich gegenseitig ergänzende Sicht auf die Daten. Aus 

diesem Grund ist es nicht möglich eine Präferenz für einen der beiden Algorithmen zu geben. 

Um mit den Ergebnissen der hierarchischen Clusterung arbeiten zu können, wurde eine 

graphische Benutzeroberfläche entwickelt, die es erlaubt, die Clusterergebnisse darzustellen, 

     



Ausführliche Zusammenfassung   179  
 

in den Clustern zu navigieren und experimentell ermittelte Aktivitäten den Molekülen 

zuzuordnen. Eine Vielzahl an Funktionen wurden integriert, um das Dendrogramm, die 

Cluster im Dendrogramm, die Moleküle eines Clusters und die physikochemischen 

Eigenschaften der Moleküle zu analysieren. Verfahren wurden entwickelt, um mit Hits 

angereicherte Cluster zu finden, Singletons zu charakterisieren und die Selektivität bzw. 

Spezifität einer Hitklasse zu analysieren. Verschiedene Proteaseinhibitoren aus der COBRA 

Datenbank wurden exemplarisch mit Hilfe des hierarchischen k-means Algorithmus 

untersucht. Singletons, die eine Quelle alternativer Leitstrukturen darstellen, wurden am 

Beispiel von Thrombininhibitoren im Dendrogramm charakterisiert. Durch Verwendung 

zusätzlicher Ähnlichkeitssuchen und nächster Nachbaranalysen wurden die Singletons im 

Dendrogramm in kürzester Zeit isoliert und dargestellt. Eine abschließende, visuelle 

Begutachtung wurde dadurch ermöglicht. Die Anwendung erlaubt das Identifizieren 

alternativer Leitstrukturen. 

Das Clustern aller Moleküle, die in einem HTS Assay getestet wurden, ermöglichen das 

Analysieren der Hits im Kontext der Nichthits. Dabei ist das Ziel, die verschiedenen 

Leitstrukturserien in den Daten zu identifizieren und zu bewerten. Acht Strukturklassen von 

Faktor-Xa-Inhibitoren aus der COBRA Datenbank wurden hierfür betrachtet. Die 

Anreicherungsfaktoren der Faktor-Xa-Inhibitoren wurden in den Clustern auf den 

Logarithmus der Dendrogrammebene skaliert. Cluster wurden ausgewählt, sobald der 

skalierter Anreicherungsfaktor einen Schwellenwert von fünf überschritt. Das Dendrogramm 

wurde dadurch auf sechs Cluster reduziert, in denen sechs Strukturklassen gefunden wurden. 

Das gemeinsame Auftreten einiger Strukturklassen erbrachte einen vertieften Einblick in die 

SAR. Eine Clusterung von Faktor-Xa-Inhibitoren mit anderen Serinproteaseinhibitoren wurde 

beobachtet. Dadurch wurden erste Analysen hinsichtlich Selektivität und Spezifität möglich. 

Diese Resultate zeigen die Anwendbarkeit der Methode zur Erstellung fokussierter Screening-

Bibliotheken. 

Um einen Einblick in Spezifität zu erhalten, wurde die Inhibitoren von elf verschiedenen 

Proteaseenzymen aus der COBRA Datenbank analysiert. Der relative Anteil der Inhibitoren in 

den Clustern der Dendrogrammebene sieben wurde extrahiert. Dadurch wurde ein neuer Satz 

Deskriptoren für jedes Proteaseenzym erhalten. Basierend auf diesen Deskriptoren wurden die 

Proteaseenzyme hierarchisch geclustert. Ein Vergleich der Clusterung mit einem 

phylogenetischen Stammbaum der Aminosäuresequenzen der Enzyme zeigte sowohl 

Übereinstimmungen als auch Unterschiede. Diese neue Clusterung bietet somit eine 

spezifische, Liganden basierte Betrachtung des „Pocketoms“ der Proteaseenzyme. Sie hat 
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großen Nutzen bei der Auswahl von Targets für Selektivitätsscreens, beim Erstellen 

fokussierter Screeningbibliotheken und bei der Analyse von Bindungstaschen.  

Der hierarchische k-means Algorithmus wurde verwendet, um die primären Screeningdaten 

dreier HTS Assays zu untersuchen. Einer der Assays war gegen den transformierenden 

Wachstumsfaktor-β-Rezeptor Typ I gerichtet. Das Ziel war es, die Assays zu charakterisieren 

und nicht-bestätigte Hits und falsch Negative zu identifizieren. Folgende Assaycharakteristika 

wurden beobachtet: die Assayparameter waren so eingestellt, dass anhand der Prozent-

Kontrollwerte eine deutliche Trennung von Hits und Nichthits erreicht wurde. Eine 

Korrelation zwischen IC50-Werten und Prozent-Kontrollwerten wurde nicht beobachtet. Nicht 

bestätigte Hits traten gehäuft am Prozent-Kontrollschwellenwert auf, der zur Unterscheidung 

von Hits von Nichthits diente. Eine Korrelation zwischen Clustergröße, Anzahl Hits in einem 

Cluster und dem Vorhandensein nicht bestätigter Hits wurde nicht beobachtet. 

Zum Auffinden nicht bestätigter Hits wurde ein Regelwerk entwickelt. Es bewertet Hits in 

den Endclustern anhand der Clustergröße, des Prozent-Kontrollwertes der Einträge eines 

Clusters, der Gesamthitrate, der Hitrate in einem Cluster und der Umgebung des Clusters im 

Dendrogramm. Die Anwendung des Regelwerkes auf die primären Screeningergebnisse der 

drei HTS Assays führte zur Identifizierung eines großen Anteils nicht bestätigter Hits. Zudem 

wurde für jeden Hit eine Bewertung im Kontext verwandter Nichthits erhalten. Dies erlaubt 

ein Priorisieren von Molekülen für Folgeuntersuchungen. Das Regelwerk wurde zusätzlich 

mit Bayesischen regularisierten neuronalen Klassifizierungsnetzen kombiniert. Die Netze 

wurden auf die Trennung von Hits und Nichthits trainiert. Modelle mit hoher Spezifität und 

niedriger Sensitivität wurden erhalten. Ihr Einsatz für die Vorhersage nicht bestätigter Hits ist 

daher limitiert. Dafür ermöglichen sie eine weitere Priorisierung der Moleküle für 

Folgeuntersuchungen. 

Falsch negative Leitstrukturserien mit neuen Molekülgrundgerüsten wurden in den drei HTS 

Assays retrospektiv generiert. Die modifizierten primären Screeningdaten wurden 

hierarchischen Clusterungen zugeordnet, die mit MOE 2D, CATS 2D und CATS 3D 

Deskriptoren und dem hierarchischen k-means erhalten wurden. Nichthits und Hits wurden 

aus den Endclustern, die Hits enthielten, extrahiert. Falsch negative Moleküle wurden 

koextrahiert und angereichert. Da unterschiedliche falsch Negative mit den verschiedenen 

Deskriptoren gefunden wurden, kann keine Deskriptor-Präferenz gegeben werden. Um falsch 

Positive in den extrahierten Listen zu minimieren, wurden Bayesische regularisierte neuronale 

Klassifizierungsnetze mit den Daten trainiert. Die Anwendung der Modelle auf die durch 

zusätzliche Ähnlichkeitssuchen angereicherten Ergebnislisten ergab eine deutliche 
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Verbesserung der Anreicherungsfaktoren der falsch Negativen. Der kombinierte Ansatz ist in 

der Lage, einen Molekülgrundgerüstwechsel durchzuführen. 

NIPALSTREE, der hierarchische k-means und selbst organisierende Karten wurden 

prospektiv angewandt, um neue Leitstrukturkandidaten für Dopamin-D3-Rezeptoren zu 

finden. Der SPECS Substanzkatalog wurde mit einem Moleküldatensatz bekannter Dopamin-

D3-Rezeptorliganden kombiniert und unter Verwendung der MOE 2D und CATS 3D 

Deskriptoren geclustert. Substanzen des SPECS Katalogs wurden aus Endclustern extrahiert, 

die bekannte Dopamin-D3-Rezeptorliganden enthielten. Moleküle mit Bindungsaffinitäten im 

niedrigen nanomolaren Bereich wurden erhalten (z.B. Ki = 65 nM für Molekül 42). Als neue 

Molekülgrundgerüstelemente wurden Benzamide als Verbindungselement im Molekül (42-47, 

61), ein Arylthioether-Rest (43, 46) und ein Bicyclo[2.2.1]heptan-Rest (42) gefunden. Um 

einen vertieften Einblick in die SAR der Moleküle zu erhalten, wurden die Ergebnisse der 

Clusterung mit verschiedenen chemoinformatischen Verfahren kombiniert: Supportvektor 

basierte Regression und „partial least squares“ (PLS) wurden verwendet. Das Training wurde 

mit bekannten Dopamin-D3-Rezeptorliganden und den dazugehörigen Bindungsaffinitäten an 

Dopamin-D2 und -D3-Rezeptoren durchgeführt. MOE 2D, CATS 2D und CATS 3D 

Deskriptoren wurden verwendet. Voraussagende Modelle für Dopamin-D2 und -D3-

Rezeptorbindungsaffinitäten wurden erhalten. SAR erklärende Moleküleigenschaften konnten 

aus den Modellen extrahiert werden. Die prospektive Anwendung der Modelle auf die 

diversen und neuen virtuellen Screeningdaten war nur von begrenztem Erfolg. 

Dockingstudien wurden mit einem Homologiemodell des Dopamin-D3-Rezeptors 

durchgeführt. Die visuelle Begutachtung der Liganden-Bindemoden führte zur Hypothese 

zweier alternativer Bindungstaschen für den Aryl-Rest von Dopamin-D3-

Rezeptorantagonisten/Partialagonisten. Ein Pharmakophormodell wurde erstellt, welches 

beide Aryl-Reste gleichzeitig benötigt. Ein virtuelles Screening mit dem Modell identifizierte 

einen nanomolaren Hit (Ki = 65 nM für Molekül 59). Dieser unterstützt die Hypothese und 

stellt einen neuen Leitstrukturkandidaten für Dopamin-D3-Rezeptoren dar.  

Die vorgestellten Daten zeigen, dass der kombinierte Ansatz aus hierarchischer Clusterung 

und anschließender Verwendung der Cluster zur Modellerstellung erfolgreich anwendbar ist 

zur Identifizierung von SAR in primären Screeningdaten von HTS Assays. Die Modelle sind 

geeignet zum Auffinden von Singletons, mit Hits angereichter Cluster, nicht bestätigter Hits 

und falsch negativen Molekülgrundgerüsten.  
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A Dopamine D3 Receptor Ligands 
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ST393 

N
N

N

OO

O

 21.9 254.9 0.09

ST331 

S

S
N

N
O

O

O

O

N O

 2.05 20.8 0.1
EX1*  5.35 44.9 0.12

ST292 

N

N

N

S

N
O

O

 3.3 25 0.132

ST112 

N
N

O
 89.1 664 0.13

ST330 

N

N

N

S

O

O

F

 136 956 0.14

ST204 

S
N

N
O

O

N
N O

 185 1300 0.14

ST316 

S
N

N
O

O N
O

 18.1 120.1 0.15

ST329 

N

N

N

S

O

O

F

 7.4 47.4 0.16

ST222 

 

S
N

N
O

O

N
N

 190 1200 0.16

ST224 

N

O
 250 1500 0.17

 
ST332 

 

S
N

N
O

O

N

Cl

O

 6.4 36.2 0.18

     



Appendix   212  

ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 

ST207 

N N
N N

N

O O

 103 358 0.29

ST68 

NN
O

N

I

O

 117 396 0.3

ST62 

N
N

O

N

I

 336 1132 0.3

ST136 

N
NN

N
O

O
O

 15.7 52 0.3

ST345 

N N
N

O

O

O
 47.7 156 0.31

ST106 

N

N
N

O

O

 24.3 75.7 0.32

ST381 

NN

OOO
Cl

 1667 4990 0.33

ST51 

N
N

OO

F

Cl

 5.2 15 0.35

ST213 

S

N
N

O

O N
N

O

 105 300 0.35

ST73 

 

S
N

N
O

O

N
O

 85 240 0.35

     



Appendix   214  

ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 

ST1 
N N

O

O

 219000 189000 1.16

ST123 

NN

O

O

 6500 5600 1.16

ST179 

NN

O

 167 140 1.19

ST157 

N
O

NO

O

O
O

 3000 2500 1.2

ST295 

N

N

N
N

O

O
O

 12.1 10 1.21

ST118 

N

N
S

N

 670 540 1.24
EX12*  266 214 1.24

ST76 

NN

O

O

 245 196 1.25
EX13*  5570 4251 1.31

ST84 

N

N
N

O

O

O

 50 38 1.32

ST170 

N
+ N

S

N
NO

O

S
O

 
 93 70 1.33

     



Appendix   221  

ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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ID Structure KiD2[nM] KiD3 [nM] D2/D3 
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* Structure not shown due to proprietary reasons. 
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B Fisher’s Iris Data Set 
 
ID Sep_len Sep_wid Pet_len Pet_wid 
1 5.1 3.5 1.4 0.2 
2 4.9 3 1.4 0.2 
3 4.7 3.2 1.3 0.2 
4 4.6 3.1 1.5 0.2 
5 5 3.6 1.4 0.2 
6 5.4 3.9 1.7 0.4 
7 4.6 3.4 1.4 0.3 
8 5 3.4 1.5 0.2 
9 4.4 2.9 1.4 0.2 
10 4.9 3.1 1.5 0.1 
11 5.4 3.7 1.5 0.2 
12 4.8 3.4 1.6 0.2 
13 4.8 3 1.4 0.1 
14 4.3 3 1.1 0.1 
15 5.8 4 1.2 0.2 
16 5.7 4.4 1.5 0.4 
17 5.4 3.9 1.3 0.4 
18 5.1 3.5 1.4 0.3 
19 5.7 3.8 1.7 0.3 
20 5.1 3.8 1.5 0.3 
21 5.4 3.4 1.7 0.2 
22 5.1 3.7 1.5 0.4 
23 4.6 3.6 1 0.2 
24 5.1 3.3 1.7 0.5 
25 4.8 3.4 1.9 0.2 
26 5 3 1.6 0.2 
27 5 3.4 1.6 0.4 
28 5.2 3.5 1.5 0.2 
29 5.2 3.4 1.4 0.2 
30 4.7 3.2 1.6 0.2 
31 4.8 3.1 1.6 0.2 
32 5.4 3.4 1.5 0.4 
33 5.2 4.1 1.5 0.1 
34 5.5 4.2 1.4 0.2 
35 4.9 3.1 1.5 0.2 
36 5 3.2 1.2 0.2 
37 5.5 3.5 1.3 0.2 
38 4.9 3.6 1.4 0.1 
39 4.4 3 1.3 0.2 
40 5.1 3.4 1.5 0.2 
41 5 3.5 1.3 0.3 
42 4.5 2.3 1.3 0.3 
43 4.4 3.2 1.3 0.2 
44 5 3.5 1.6 0.6 
45 5.1 3.8 1.9 0.4 
46 4.8 3 1.4 0.3 
47 5.1 3.8 1.6 0.2 
48 4.6 3.2 1.4 0.2 
49 5.3 3.7 1.5 0.2 
50 5 3.3 1.4 0.2 
51 7 3.2 4.7 1.4 
52 6.4 3.2 4.5 1.5 
53 6.9 3.1 4.9 1.5 
54 5.5 2.3 4 1.3 
55 6.5 2.8 4.6 1.5 
56 5.7 2.8 4.5 1.3 
57 6.3 3.3 4.7 1.6 

 
 
 
 
 
58 4.9 2.4 3.3 1 
59 6.6 2.9 4.6 1.3 
60 5.2 2.7 3.9 1.4 
61 5 2 3.5 1 
62 5.9 3 4.2 1.5 
63 6 2.2 4 1 
64 6.1 2.9 4.7 1.4 
65 5.6 2.9 3.6 1.3 
66 6.7 3.1 4.4 1.4 
67 5.6 3 4.5 1.5 
68 5.8 2.7 4.1 1 
69 6.2 2.2 4.5 1.5 
70 5.6 2.5 3.9 1.1 
71 5.9 3.2 4.8 1.8 
72 6.1 2.8 4 1.3 
73 6.3 2.5 4.9 1.5 
74 6.1 2.8 4.7 1.2 
75 6.4 2.9 4.3 1.3 
76 6.6 3 4.4 1.4 
77 6.8 2.8 4.8 1.4 
78 6.7 3 5 1.7 
79 6 2.9 4.5 1.5 
80 5.7 2.6 3.5 1 
81 5.5 2.4 3.8 1.1 
82 5.5 2.4 3.7 1 
83 5.8 2.7 3.9 1.2 
84 6 2.7 5.1 1.6 
85 5.4 3 4.5 1.5 
86 6 3.4 4.5 1.6 
87 6.7 3.1 4.7 1.5 
88 6.3 2.3 4.4 1.3 
89 5.6 3 4.1 1.3 
90 5.5 2.5 4 1.3 
91 5.5 2.6 4.4 1.2 
92 6.1 3 4.6 1.4 
93 5.8 2.6 4 1.2 
94 5 2.3 3.3 1 
95 5.6 2.7 4.2 1.3 
96 5.7 3 4.2 1.2 
97 5.7 2.9 4.2 1.3 
98 6.2 2.9 4.3 1.3 
99 5.1 2.5 3 1.1 
100 5.7 2.8 4.1 1.3 
101 6.3 3.3 6 2.5 
102 5.8 2.7 5.1 1.9 
103 7.1 3 5.9 2.1 
104 6.3 2.9 5.6 1.8 
105 6.5 3 5.8 2.2 
106 7.6 3 6.6 2.1 
107 4.9 2.5 4.5 1.7 
108 7.3 2.9 6.3 1.8 
109 6.7 2.5 5.8 1.8 
110 7.2 3.6 6.1 2.5 
111 6.5 3.2 5.1 2 
112 6.4 2.7 5.3 1.9 
113 6.8 3 5.5 2.1 
114 5.7 2.5 5 2 
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115 5.8 2.8 5.1 2.4 
116 6.4 3.2 5.3 2.3 
117 6.5 3 5.5 1.8 
118 7.7 3.8 6.7 2.2 
119 7.7 2.6 6.9 2.3 
120 6 2.2 5 1.5 
121 6.9 3.2 5.7 2.3 
122 5.6 2.8 4.9 2 
123 7.7 2.8 6.7 2 
124 6.3 2.7 4.9 1.8 
125 6.7 3.3 5.7 2.1 
126 7.2 3.2 6 1.8 
127 6.2 2.8 4.8 1.8 
128 6.1 3 4.9 1.8 
129 6.4 2.8 5.6 2.1 
130 7.2 3 5.8 1.6 
131 7.4 2.8 6.1 1.9 
132 7.9 3.8 6.4 2 
133 6.4 2.8 5.6 2.2 
134 6.3 2.8 5.1 1.5 
135 6.1 2.6 5.6 1.4 
136 7.7 3 6.1 2.3 
137 6.3 3.4 5.6 2.4 
138 6.4 3.1 5.5 1.8 
139 6 3 4.8 1.8 
140 6.9 3.1 5.4 2.1 
141 6.7 3.1 5.6 2.4 
142 6.9 3.1 5.1 2.3 
143 5.8 2.7 5.1 1.9 
144 6.8 3.2 5.9 2.3 
145 6.7 3.3 5.7 2.5 
146 6.7 3 5.2 2.3 
147 6.3 2.5 5 1.9 
148 6.5 3 5.2 2 
149 6.2 3.4 5.4 2.3 
150 5.9 3 5.1 1.8
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C Example Structures of Reactive Functional Groups 
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Example structures of reactive functional groups 
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D Parameter file for SVR 
 
 
# parameter file for LibSVM 
# -------------------------------------------------------------------------
# file info 
working directory               :  
file with training data         :  
file with test data             :  
file with validation data       :  
file with cv results            : data.opti 
file with top models            : data.top 
log file                        : data.log 
# ------------------------------------------------------------------------- 
# data manipulations 
x statistics (yes/no, bins)     : yes, 100 
transform y (no)                : 
scale x data    (box)           : box 
lower bound for attributes (-1) : 
upper bound for attributes (1)  : 
scale y data    (no)            : 
lower bound for y (-1)          : 
upper bound for y (1)           : 
classify data (no)              : no 
separators (transformed ys)     : 
labels (-1/+1)                  : 
# ------------------------------------------------------------------------- 
# SVM specification 
SVM-type (C-SVC)                : eps-SVR 
   C-SVC                (classification) 
   nu-SVC               (classification) 
   one-class SVM        (classification) 
   eps-SVR              (regression) 
   nu-SVR               (regression) 
kernel type (RBF)               : 
   linear                       : K(u,v) = u*v 
   polynomial                   : K(u, v) = (u*v+coef0)^degree 
   RBF, radial basis function   : K(u, v) = exp(-gamma*|u-v|^2) 
   sigmoid                      : K(u, v) = tanh(gamma*u*v+coef0) 
# ------------------------------------------------------------------------- 
# model selection (note: gridsearch only for C-SVC, eps-SVR, RBF kernel) 
optimization ? (yes)            : 
start log2C (-5)                : 
end log2C (15)                  : 
step log2C (2)                  : 0.2 
start log2gamma (3)             : 
end log2gamma (-15)             : 
step log2gamma (2)              : -0.2 
cross validation mode (5)       : 7 
model selection mode (best)     : auto, 2.5 
number of top models (-1)       : 
worst cv result that is allowed : 
number of random partitions     : 10 
number of random y shuffles (-1): 
cv criterion (err/acc/corr)     : corr 
search mode (stupid / permute)  : shuffle 
compute mode (n locals / rlogin): 12 
# ------------------------------------------------------------------------- 
# SVM parameters (if not chosen via optimization procedure) 
degree (3)                      : 5 
gamma (1/attributes)            : 
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coef0 (0)                       : 
cost parameter (1)              : 
nu (0.5)                        : 
epsilon in eps-SVR (0.1)        : 0.1 
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E Parameter file for Bayesian regularized artificial neural networks 
 
#-------------------------------------------------------- 
# PARAMETER FILE FOR THE TRAINING OF  
# BAYESIAN REGULARIZED NEURAL NETS USING 
# N E A L 'S   F B M   S O F T W A R E 
# 
#-------------------------------------------------------- 
# Location of output files 
#-------------------------------------------------------- 
Working directory:  
#-------------------------------------------------------- 
# Data 
# use full paths only ! 
#-------------------------------------------------------- 
Training data:  
Test data: 
#-------------------------------------------------------- 
# Data pre-treatment 
# Exclude X variables with a stdev lower than a predefined threshold 
# Scaling 
# options: uv -     unit variance and mean centering 
#          box -    scale to [-1, 1] 
#          pareto - mean centering and 1/sqrt(stdev) 
#          center - mean centering 
# Transformation of Y variables 
# options: log10, log 
# Classification: specify boundaries as comma-separated list 
# Class labels: are generated automatically according to the 
#               class boundaries given above 
#               -> integer list: 0,1,2,3.... 
#-------------------------------------------------------- 
X threshold : 0.0005 
X scaling: uv 
#Y scaling: uv 
Classification: 0.5 
 
#-------------------------------------------------------- 
# Net architecture  
#-------------------------------------------------------- 
Units in hidden layer: 10 
#-------------------------------------------------------- 
#  priors for groups of weights, biases, and offsets: 
# 
#  ti [ ih bh th { hh ih bh th } ] { ho } io bo  [ / { ah } ao] 
# 
#  ti = offsets of input units 
#  ih = input hidden weights 
#  bh = hidden bias 
#  th = hidden unit offsets 
#  hh = hidden to hidden weights 
#  ho = hidden-output weights 
#  io = input output weights 
#  bo = output bias 
#  ah = 
#  ao = 
# 
#-------------------------------------------------------- 
#  [x]Width[:[alpha-group][:[alpha-sub-group][:[alpha parameter]]]][!] 
# 
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# examples for the prior specification for input hidden weights (can be 
empty): 
# ih x:   yes/no 
# ih width:  0.05 
# ih alpha-group: 0.5 
# ih alpha-sub-group: 
# ih alpha parameter: 
#  
#-------------------------------------------------------- 
#  prior for offsets of input units (ti) 
#-------------------------------------------------------- 
ti x:    
ti width:  
ti alpha-group:   
ti alpha-subgroup: 
ti alpha parameter: 
#-------------------------------------------------------- 
#  prior for the input hidden weights (ih) 
#-------------------------------------------------------- 
ih x:    
ih width:  0.05 
ih alpha-group:  0.5 
ih alpha-subgroup:      
ih alpha parameter: 
#-------------------------------------------------------- 
#  prior for hidden bias (bh) 
#  (value x makes no sense) 
#-------------------------------------------------------- 
bh width:  0.05 
bh alpha-group:  0.5 
bh alpha-subgroup: 
bh alpha parameter: 
#-------------------------------------------------------- 
#  prior for hidden unit offsets (th) 
#-------------------------------------------------------- 
th x:    
th width:   
th alpha-group:   
th alpha-subgroup: 
th alpha parameter: 
 
#-------------------------------------------------------- 
#  prior for hidden to output weights (ho) 
#-------------------------------------------------------- 
ho x:   yes 
ho width:  0.05 
ho alpha-group:  0.5 
ho alpha-subgroup: 
ho alpha parameter: 
 
#-------------------------------------------------------- 
#  prior for input output weights (io) 
#-------------------------------------------------------- 
io x:    
io width:   
io alpha-group:   
io alpha-subgroup: 
io alpha parameter: 
 
#-------------------------------------------------------- 
#  prior for output bias (bo) 
#  (value x makes no sense) 
#-------------------------------------------------------- 
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bo width:  100 
bo alpha-group:   
bo alpha-subgroup: 
bo alpha parameter: 
 
#-------------------------------------------------------- 
# Specify model to use for target variables: 
# 
# Models are available for regression with real-valued targets, logistic 
# regression with binary targets, generalized logistic regression with 
# targets taking on a finite set of values, and survival analysis with a 
# hazard function that may depend on various covariates, and on time. 
# 
# real noise-prior [ "acf" corr { corr } ] 
#      | binary | count | class | survival ...  
# 
# example: 
#   Target value type:  real 
#   noise prior width:   0.05 
#   noise prior alpha-group:   
#   noise prior alpha-sub-group: 
#   noise prior alpha parameter: 
# 
#-------------------------------------------------------- 
Target value type:  real 
Noise prior width:  0.05 
Noise prior alpha-group:   
Noise prior alpha-sub-group: 
Noise prior alpha parameter: 
 
#-------------------------------------------------------- 
# Training: 
# I N I T I A L      P H A S E  
#-------------------------------------------------------- 
#  A value for the fixed hyperparameters can be set here: 
#  (can be empty) 
# 
# example: 
#   value of fixed hyperparameters in the initial phase: 0.5 
#  
#-------------------------------------------------------- 
Fixed hyperparameters during initial phase: 0.5 
 
#-------------------------------------------------------- 
#  Each iteration consists of how many repetitions of the 
#  initial sample-noise heat bath hybrid Monte Carlo operations? 
# 
#  example: 
#    Number of repetitions in the initial phase: 10 
#-------------------------------------------------------- 
Repetitions during initial phase: 10 
 
#-------------------------------------------------------- 
#  Initial phase: 
#  Hybrid Monte Carlo update with a trajectory of how 
#  many leapfrog steps long? 
# 
#  example: 
#    Number of steps in the initial phase: 100 
#-------------------------------------------------------- 
Steps during initial phase: 100 
 
#-------------------------------------------------------- 
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#  Window size of states at the beginning and end of the  
#  trajectory which determines whether a state is accepted 
#  or not 
#  (can be empty; default = 1, i.e. standard hybrid Monte Carlo) 
# 
#  example: 
#    Window size in the initial phase: 10 
#-------------------------------------------------------- 
Window size during initial phase: 10 
 
#-------------------------------------------------------- 
#  Step size adjustment in the initial phase: 
# 
#  example: 
#    Step size adjustment in the initial phase: 0.2 
#-------------------------------------------------------- 
Step size adjustment during initial phase: 0.2 
 
#-------------------------------------------------------- 
#  Training: 
#  S A M P L I N G     P H A S E 
#-------------------------------------------------------- 
#  Operations executed in the sampling phase: 
# 
#  Define the operation type: 
# 
#  Two possibilities: 
#      - Standard hybrid Monte Carlo ("standard") 
#      - Persistent Hybrid Monte Carlo ("persistent") 
# 
#  example: 
#    Sampling mode: standard 
#-------------------------------------------------------- 
Sampling mode: persistent 
 
#-------------------------------------------------------- 
#  Each iteration consists of how many repetitions of the 
#  sample-noise heat bath hybrid Monte Carlo operations? 
# 
#  example: 
#    Repetitions during sampling phase: 10 
#-------------------------------------------------------- 
#Repetitions during sampling phase: 10 
 
#-------------------------------------------------------- 
#  Only in case of operation type "persistent", the decay 
#  can be specified for the heat bath operation: 
# 
#  If decay is zero (the default), the current momentum  
#  is forgotten, and new values are picked randomly from  
#  their distribution.  If decay is non-zero, the momentum 
#  variables are multiplied by decay, and Gaussian noise  
#  with variance 1-decay^2 is then added. 
# 
#  example: 
#    Heat bath decay: 0.3 
#-------------------------------------------------------- 
Heat bath decay: 0.3 
 
#-------------------------------------------------------- 
#  Hybrid Monte Carlo Method, sampling phase: 
#  How many steps? resp. number of stats along a trajectory? 
# 
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# example: 
#    Number of steps in the sampling phase: 1000 
#-------------------------------------------------------- 
Steps during sampling phase: 1000 
 
#-------------------------------------------------------- 
#  Hybrid Monte Carlo Method: 
#  Window size of states at the beginning and end of the  
#  trajectory which determines whether a state is accepted 
#  or not 
#  (can be empty; default = 1, i.e. standard hybrid Monte Carlo) 
# 
#  example: 
#    Window size in the sampling phase: 10 
#-------------------------------------------------------- 
Window size during sampling phase: 10 
 
#-------------------------------------------------------- 
#  Hybrid Monte Carlo Method: 
#  Step size adjustment in the sampling phase: 
# 
#  example: 
#    Step size adjustment in the sampling phase: 0.4 
#-------------------------------------------------------- 
Step size adjustment during sampling phase: 0.3 
 
#-------------------------------------------------------- 
# Number of iterations calculated? 
# 
# example: 
# Number of iterations: 400 
#-------------------------------------------------------- 
Number of iterations during sampling phase: 1000 
 
#-------------------------------------------------------- 
# P R E D I C T I O N 
#-------------------------------------------------------- 
# The last n iterations are used for the prediction of the 
# Y-values (calculation of the mean of the last n iterations). 
# How many iterations shall be used for the prediction? 
# Maximum number provided by the BRANN software is 200. 
# 
# default: 100 
# 
# example: 
# Number of iterations for the prediction: 100 
#-------------------------------------------------------- 
Number of iterations used for predictions: 200 
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F Parameter file for GOLD 
 
 
  GOLD CONFIGURATION FILE  
 
  generated by gold front end (GOLD v2.2) 
 
 
  POPULATION 
popsiz = 100 
select_pressure = 1.100000 
n_islands = 5 
maxops = 100000 
niche_siz = 2 
 
  GENETIC OPERATORS 
pt_crosswt = 95 
allele_mutatewt = 95 
migratewt = 10 
 
  FLOOD FILL 
radius = 12 
origin = 59.06 9.916 -9.896 
do_cavity = 1 
floodfill_atom_no = 0 
cavity_file = cavity.atoms 
floodfill_center = point 
 
  DATA FILES 
protein_datafile data.pdb 
ligand_data_file data.sdf 10 
param_file = DEFAULT 
set_ligand_atom_types = 1 
set_protein_atom_types = 1 
directory = . 
tordist_file = DEFAULT 
make_subdirs = 0 
save_lone_pairs = 1 
fit_points_file = fit_pts.mol2 
read_fitpts = 0 
 
  FLAGS 
display = 0 
internal_ligand_h_bonds = 0 
n_ligand_bumps = 0 
flip_free_corners = 0 
flip_amide_bonds = 0 
flip_planar_n = 1 
flip_pyramidal_n = 0 
use_tordist = 1 
start_vdw_linear_cutoff = 4 
initial_virtual_pt_match_max = 2.5 
 
  TERMINATION 
early_termination = 0 
n_top_solutions = 3 
rms_tolerance = 1.5 
 
  CONSTRAINTS 
force_constraints = 0 
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  COVALENT BONDING 
covalent = 0 
 
 
  SAVE OPTIONS 
save_score_in_file = 1 
save_protein_torsions = 1 
concatenated_output = results.sdf 
clean_up_option delete_all_solutions 
clean_up_option delete_redundant_log_files 
clean_up_option delete_empty_directories 
output_file_format = MACCS 
 
  RUN TYPE 
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