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model. The important feature of the proposed scenario tspiimgsical freeze out is completely
finished in a finite time, which can be varied from 0 (freezeloygersurface) teo. The depen-
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system. The entropy evolution in such a scenario is alsdestud
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1. Introduction

In the ultrarelativistic heavy ion collisions at RHIC thdéabnumber of the produced particles
exceeds several thousands, therefore one can expectdhattoitiuced system behaves as a "mat-
ter" and generates collective effects. Indeed strong ik flow patterns have been measured at
RHIC, which suggests that the hydrodynamical models aréjusified during the intermediate
stages of the reaction: from the time when local equilibrismeached until the freeze out (FO),
when the hydrodynamical description breaks down. During F® stage, the matter becomes so
dilute and cold that particles stop interacting and streamatds the detectors freely, their momen-
tum distribution freezes out. The FO stage is essentiadiyldhbt part of a collision process and the
main source for observables.

In simulations FO is usually described in two extreme waysF® on a hypersurface with
zero thickness, B) FO described by volume emission modehdrdm cascade, which in principle
requires an infinite time and space for a complete FO. At flestap it seems that one can avoid
troubles with FO modeling using hydro+cascade two moduldehf], since in hadron cascades
gradual FO is realized automatically. However, in a suchemago there is an uncertain point,
actually uncertain hypersurface, where one switches frgdrddynamical to kinetic modeling.
First of all it is not clear how to determine such a hyperstgfarlhis hypersurface in general may
have both time-like and space-like parts. Mathematicallyproblem is very similar to hydro to FO
phase transition on the infinitely narrow FO hypersurfaberdfore for example all the problems
discussed for FO on the hypersurface with space-like novewbrs will take place here. Another
complication is that while for the post FO domain we have omgtof non-interacting ideal gases,
now for the hadron cascade we should generate distribufiimribe interacting hadronic gas of all
possible species, as a starting point for the further caseaolution. The volume emission models
are based on the kinetic equations [2, 3] defining the ewmiutf the distribution functions, and
therefore these also require to generate initial distidoufunctions for the interacting hadronic
species on some hypersurface.

In this paper we present a simple kinetic FO model, whichriless the freeze out of particles
from a Bjorken expanding fireball [4]. The important featwiethe proposed scenario is that
physical freeze out is completely finished in a finite timejclican be varied from 0 (freeze out
hypersurface) te. In the other words our freeze out happens in a layer, i.e doraain restricted
by two parallel hypersurfaces= 1, andt = 11 + L (7 is the proper time). The present model
describes simultaneously freeze out and Bjorken expanaiahthus, it is more physical extension
of the oversimplified FO models without expansion [3, 5, 68]7,In Ref. [6] authors have also
adopted kinetic gradual FO model to Bjorken geometry, batlmioed it with Bjorken expansion on
the consequent, not on the parallel basis: system expandsdaty to Bjorken hydro scenario, but
when it reaches beginning of the FO process system stopssgpaand gradually freezes out in a
fixed volume. It was shown in [6] that although such a modelvedl to obtain analytical results, it
is not physical, the simultaneous modeling of expansionfagete out is required in order to avoid
decreasing of the total entropy. And now we propose such ergéred model.
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2. Finitelayer freeze out description

Let us briefly review gradual FO model, which we are going galiwe including expansion.
Many building blocks of the model are Lorentz invariant aad e applied to both time-like and
space-like FO layers, so at the beginning we will write thesgeneral way. Starting from the
Boltzmann Transport Equation, introducing two componaitthe distribution function,f: the
interacting, f', and the frozen outff ones, ¢ = f' + '), and assuming that FO is a directed
process (i.e. neglecting the gradients of the distributimttions in the directions perpendicular to
the FO direction comparing to that in the FO direction) we chtain the following system of the
equations [7, 9]: _ _

dff Peseri fea® = A Peseys 2.1)

ds TFo Tth ds Tro
The FO direction is defined by the unit vecbo,,. FO happens in a layer of given thickndss
with two parallel boundary hypersurfaces perpendiculatdg, ands= doy,x is a variable in the
FO direction. We work in the reference frame of the front, veao,, is either(1,0,0,0) for the
time-like FO, or(0,1,0,0) for the space-like FO. Tha-o is some characteristic length scale, like
mean free path or mean collision time for time-like FO. Thineemalization of the interacting
component is taken into account via the relaxation time @ppration, wheref; approaches the
equilibrated Juttner distributiorfeq(s), with a relaxation length/timeg,. The system (2.1) can be
solved semi-analytically in the fast rethermalizationitifi].

The basis of the model, i.e. the invariant escape rate witier=O layer of the thickneds,
for both time-like and space-like normal vectors is givetise® Refs. [7, 8, 10] for more details)

(L pday
Pesc= (L—s) ( > O(pHday), (2.2)

where pH is a particle four-momenturmy# is the flow velocity. In fact the model based on the
escape rate (2.2) is a generalization of a simple kineticatsostudied in Refs. [3, 5, 6], which
can be restored in tHe— oo limit. Here we will concentrate on the time-like case only)exe the
aboveO function is unity.

The important feature of the escape rate in the form (2.2)as physical freeze out is com-
pletely finished whers =L, i.e. it requires finite space/time. Furthermore, now we @y this
layer thicknessl., from O (freeze out hypersurface) éoand study how the post FO distribution
depends on the layer thickness. Interesting and unexpessett was found in [7, 8, 10], for both
space-like and time-like FO layers, namely thdt i§ large enough, at least severap, then post
FO distribution gets some universal form, independent endier thickness.

Simple semianalytically solvable FO models studied in [&,%, 8] are missing an important
ingredient - the expansion of the freezing out system. Tlemauestion is whether the discussed
above features of the FO will survive if the system expanigancluded. In this work we are going
to build a model, which includes both gradual FO and Bjorkk@-expansion of the system, and
answer this question.

3. Bjorken expansion with gradual freeze out

Let us first remind the reader the basics of the Bjorken model Bjorken model is one-
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dimensional in the same sense as discussed before eq. ¢hly)the proper timer = v/t2 — X2,
gradients are considered. Here the reference frame ofdhe & = (1,0,0,0), is the same as
the local rest framey# = (1,0,0,0). The evolution of the energy density and baryon density is
given by the following equations:

de e+P dn n

sz 3.1

dr T 7 dr T’ (3.1)
whereP is the pressure. The initial conditions are given at sameTty: €(1p) = €y, N(Tp) = No.
This system can be easily solved:

em —a ()", nin)—no (). (3.2)

whereP = c3eis the equation of state (EoS) in general form.

It is important to remember that if we want to have a finite wodufireball, we need to put
some boarders on the system. Here we assume that our systseribdd by the Bjorken model, is
situated in the spacial domaliin| < ng or what is the samg| < zz(1) = tsinhng (n = 3In (%)
is pseudorapidity). Within this boarder system is unifodong t = consthyperbolas; outside we
have vacuum with zero energy and baryon densities as welleasyre. Thus, we have a jump, a
discontinuity on the border, which stays there during alékolution. Certainly, to prevent matter
expansion through such a border (due to strong pressureegtasiome work is done on the border
surface [11]. One can find about it as about putting someteféepressure to the vacuum, exactly
the one which would remove discontinuity, then this the wawhke by the expanding system against
some pressure. As system expends the volume of the firebedldses as

V(1) = 2Axysinhngr, (3.3)
whereA,y is the transverse area of the system. Work done by the exp@gegstem\V, is given by
c
dW=PdvV = \Nuy:@w<1—(?)>, (3.4)
where we denot¥y =V (1p). One can easily check then the energy conservation:
Eiot = (T)V(T) +W(T) = egVp = const. (3.5)

Applying our FO model to such a system, we obtain:

i dr’ L dr’ i
df'(r') = Lol T fi(7') + ™ [feq(T') — '(1)] (3.6)
dr’ L
dﬁﬁ@:+ﬁgL_ﬂﬂﬁU, (3.7)

where FO begins at = 1; and 17’ = 1 — 1;. Taking the fast rethermalization limit, similarly to
what is done in [6], we can obtain simplified equations fbr which is a thermal distribution
fi(1) = feq(7), T’ as well as foe,n' ande’, n:

de d L dn n oL

- - = = 3.8

dr’ TeoL—1/7 dr/ TeoL—1""’ (3.8)
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def e L dn’ o L
drY  TeolL—-7" dr  TeoL-—T1""
Now the idea is to create a system of equations which woulcritesa fireball which simulta-

neously expands and freezes out. Let us put our two compofeeate + ef) into the first equation
of (3.1) and do some simple algebra:

(3.9)

dei+d_ef__é'+Pi_e_f_i' L d L

_— — 4+ -
dr dr T T TeoL—T7T TeoL-—-T1"

(3.10)

where last two terms add up to zero; the free component, akephas no pressure. So far our
ed. (3.10) is completely identical to the first equation ofLl{3 Our assumption is that our system
evolves in such away that eq. (3.10) is satisfied as a systenoaeparate equations for interacting
and free components [12]: _ _ _ _

dée e+pP € L

e 3.11
dr T TroL+171—T° ( )
def el ¢ L
—_— 3.12
dr T+T|:OL—|—T1—T ( )
Similarly we can obtain equations for baryon density [12]:
j i i
db _ mom L (3.13)
dr T TrolL4+T1—T1
dnf nfn L
B T e S 3.14
dr T +TFOL+T1—T ( )
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Figure 1. Evolution of the temperature of the interacting matter fiffiedent FO layersT; (1o = 0.05 fm) =

835MeV, Tro = 180MeV. "No Freeze Out" means that we used standard Bjorken hydesdics even in
phase II.

Thus, finally, we have the following simple model of firebalkated in relativistic heavy ion
collision.
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Initial state, T =15 €, Ny
Phasel, Pure Bjorken hydrodynamics, 1o <1< 11

e(T) :eo(%)lﬁg, n(t)=no (?) (3.15)

Phasell, Bjorken expansion and gradual FO, 11 <7< T1T;+L
Solving Egs. (3.11,3.13) we obtain:

L/Tro
d(1) = e (%)”"g (Lﬁ) , (3.16)
i To L+np—1 L/teo
() () o

The difference with respect to the pure Bjorken solutiod%3is in the last multiplier, and we see
that, as expected, the interacting component completebpgiear them reaches = L + 13.

With these last equations we have completely determinelditmo of the interacting compo-
nent [12]. Knowinge (1) and EoS we can find temperatufig,7). Due to symmetry of the system
ut (1) = u¥(10) = (1,0,0,0). Finally, (1) is a thermal distribution with give (1), n'(t), u” (7).

However for us the more interesting is free component, wisithe source of the observables.
Egs. (3.12,3.14) give us the evolution of tgeandn;, and one can easily check that these two
equations are equivalent to the following equation on tis&itution function:

dff ff fi L
9 T Tnolint (3.18)

The measured post FO spectra are giveri b + 11).

4. Solution of the model for massless boson gas

Aiming for a qualitative illustration of the FO process weghbelow the results for the mass-
less ideal gas without conserved charges with Juttneribraigd distribution [13]:

; 1
f'('[jp) - We \pl/T.(T)’

. . . 3
Pl=€/3, &=_T" (4.2)

(4.1)

We have taken the following values of the parametges= 5.4, Ay = nR?Au, whereRy, = 7.685
fm is the Au radius, 1o = 0.05 fm, Ti(7p) = 835MeV; 11 =5 fm, Ti(11) = Tro = 180 MeV;
Tro = 0.5 fmand we present results for different values of FO time

Fig. 1 shows the evolution of the temperature of the intérgehatter {i(1) = %(ei)l/“), and
Figs. 2 present the evolution of the energy densities formtegacting and free components (these
satisfy the energy conservativi{t) (€ (1) +€ (1)) +W(1) = eg\Vp). We can analytically solve egs.
(3.11) and (3.12) also ih — oo limit:

142 -t

é(1) :%(E) e o, (4.3)

T
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Figure 2: Evolution of the energy densities for the interacting (upgget) and free (lower plot) components
for different FO layers during phase (1o = 0.05 fm) = 835MeV, Tro = 180MeV.

what is also shown in the Figs 1 and 2.
As it was already shown in [6, 8] the final post FO particleritisitions, shown on Fig. 3, are

non-equilibrated distributions, which deviate from thatranes particularly in the low momentum
region. By introducing and varying the thickness of the Fgetal, we are strongly affecting the
evolution of the interacting component, see Fig. 1, but thal fbost FO distribution shows strong
universality: forL > 21g¢ it already looks very close to that for an infinitely long FQocaations

- see Fig. 3. The inclusion of the expansion into our consiilam does not smear out this very

important feature of FO. "No Expansion™ curve is given byahnalytical expression:

f1(P) = ~ il 1) @.4)

)

IWe choose the limiting pseudorapidity for our fireball to i@ to the rapidity of the colliding nuclei in Lab

frame at RHIC for,/s= 100 GeV/nucl.
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Figure 3: Final post FO distribution for different FO layers as a fuowctof the momentum in the FO
direction,p = p*in our case Y = p*=0). The initial conditions are specified in the text. "No Exp@n"
curve is given by the analytical expression from Ref. [6], @d4).

from Ref. [6], where gradual freeze out and Bjorken expansiere combined on the consequent,
not on the parallel basis: system expands according to &johlydro scenario, but when it reaches
beginning of the FO process system stops expansion andaiafheezes out in a fixed volume.
Although such a scenario is unrealigtibut due to this universality of the final post FO distributio

it gives rather good description of the final spectrum.

If we makeL very small,L < 0.5t ¢, then the final post FO distribution is practically a thermal
distribution: Fig. 3 lower plot. Here the FO process doedaot enough time to distort the thermal
shape of the distribution. More results can be found in [12].

In our opinion these results may justify the use of FO hyp#ase in hydrodynamical models
for heavy ion collisions, but with a proper non-thermal pbé&t distributions. If the FO layer is
thick enough, say. > 21r0, then it doesn’t matter how thick was FO layer, we do not need t
model the FO dynamics in details. Once we have a good parapatien of the post FO spectrum

2The necessity of the expansion was proven in Ref. [6] basewordecreasing entropy condition.
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(still asymmetric, non-thermal), for example analyticaspFO distribution obtained in Ref. [6]
(see Fig. 3), then the parameters of this distribution cafobed from the conservation laws, as
it is usually done for sharp FO, with some volume scalingdatbd effectively account for the

expansion during FO.
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Figure4: Evolution of the entropy densities for the interacting (epplot) and free (lower plot) components
for different FO layers during phase II. The initial condits are specified in the text.

It is important to always check the non-decreasing entramdition [12, 14] to see whether
such a process is physically possible. Figs. 2 present thieitean of the entropy densities for
the interacting and free components, but the total entr8fy), is not a sum of these two densi-
ties multiplied by volume of the system, but it should be gkted based on the full distribution

function, f(p) = f'(p) + ' (p):

s(r):/d3pf(r) [1-In((2m)3F(1))], S(1)=Ss(T)V(T).

(4.5)

Evolution of the total entropy versus initial entrof®, = S(1p), is shown on Fig. 5. As expected
during pure Bjorken phase total entropy is constant, but @ starts the total entropy makes a
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wiggle: first decreasing and then increasing until FO isfieds From this figure we can make two
very important conclusions. The first one is that long graflegze out produces entropy. In our
simulation for the FO layer as thick as 2.5-5 fm/c the totdte@py production reaches 5-10%. The
second important conclusion is that thin FO layers, Wwith 3t-o are physically forbidden, because
this would lead to entropy decrease. And this put as intd_tfegjion, where the universality of the
final post FO distribution really takes place.
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Figure 5: Evolution of the total entropy for different FO layers. Thndtial conditions are specified in the
text.

5. Conclusions

In this paper we presented FO model with Bjorken like exganai our FO model, in contrast
to the older versions [3, 5, 6, 7, 8], which allows us to stu@if a layer of any thickness, from
0 to . Another good feature of the proposed model is that it cotsrtbe pre FO hydrodynamical
guantities, like energy density, baryon densityn, with post FO distribution function in a relatively
simple way, and furthermore allows analytical analysegtersimplest systems such as pion gas.

The results show that the inclusion of the expansion into F@eth although strongly affects
the evolution of the interacting component, does not smetthe universality of the final post FO
distribution, observed already in Refs. [6, 7, 8]: for- 21r¢ it already looks very close to that for
an infinitely long FO calculations - see Fig. 3. Furthermdme ion-decreasing entropy condition
tell us that only relatively thick FO layers, > 3tro, are physically allowed. In one of the older
works, Ref. [6], authors obtained the analytical exprasfio the final post FO spectrum, which is
in a good agreement with the results obtained in more addamalel presented here. Thus, our
consideration advises to try to fit experimental data usimgrequilibrated distributions, given by
eq. (4.4).

Another conclusion of this work, stressing once again thpoirtance to always check the
non-decreasing entropy condition [12, 14], is that longlged freeze out may produce substantial
amount of entropy, as shown on Fig. 5.
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