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1. The QGP phase transition

Lattice QCD calculations yield a phase diagram [1, 2] (Fig. 1) showing a crossing, but no first-
order phase transition to the quark-gluon plasma (QGP) for vanishing or small chemical potentials
µB, i.e. for conditions accessible at central rapidities at full RHIC energy. A first-order phase
transition is expected to occur only at high baryochemical potentials or densities, i.e. at lower
SPS and RHIC energies (

√
s≈ 4−12 A GeV) and in the fragmentation region of RHIC,y≈ 3−5

[3, 4]. Here, the critical baryochemical potential is predicted [1, 2] to be large,µc
B ≈ 400±50 MeV,

and the critical temperature to beTc ≈ 150− 160 MeV. We expect a first-oder phase transition
also at finite strangeness [5]. Predictions for the phase diagram of strongly interacting matter for
realistic non-vanishing net strangeness are urgently needed to obtain a comprehensive picture of
the QCD phase structure in all relevant dimensions (isospin, strangeness, non-equilibrium) of the
EoS. Multi-strange degrees of freedom are very promising probes for the properties of the dense
and hot matter [6].

1.1 Thermodynamics in theT- µB plane

Figure 1 shows a comparison of the QCD predictions with the thermodynamic parameters
T and µB extracted from the UrQMD transport model in the central overlap regime of Au+Au
collisions [7]. Full dots with errorbars denote the ’experimental’ chemical freeze-out parameters
– determined from fits to the experimental yields – taken fromRef. [8]. Triangular and quadratic
symbols (time-ordered in vertical sequence) stand for temperaturesT and chemical potentialsµB

taken from UrQMD transport calculations in central Au+Au (Pb+Pb) collisions at RHIC [9] as
a function of the reaction time (separated by 1 fm/c steps from top to bottom). Open symbols
denote nonequilibrium configurations and correspond toT parameters extracted from the transverse
momentum distributions, whereas the full symbols denote configurations in approximate pressure
equilibrium in longitudinal and transverse direction.

During the nonequilibrium phase (open symbols) the transport calculations show much higher
temperatures (or energy densities) than the ’experimental’ chemical freeze-out configurations at all
bombarding energies (≥ 11 A GeV). These numbers are also higher than the critical point (circle) of
(2+1) flavor lattice QCD calculations by the Bielefeld-Swansea-collaboration [2] (large open circle)
and by the Wuppertal-Budapest-collaboration [1] (the stardenotes earlier results from [1]). The
energy density atµc,Tc is of the order of≈ 1 GeV/fm3. At RHIC energies a cross-over is expected
at midrapidity, when the temperature drops during the expansion phase of the ’hot fireball’. The
baryon chemical potentialµB has been obtained from a statistical model analysis by the BRAHMS
collaboration based on measured antihadron to hadron ratios [10] for different rapidity intervals at
RHIC energies. At midrapidity one findsµB ≃ 0, whereas at forward rapiditiesµB increases up
to µB ≃ 130 MeV aty = 3. Thus only a forward rapidity measurement (y ≈ 4− 5) will allow to
probe largeµB at RHIC. The STAR and PHENIX detectors at RHIC offer a unique opportunity
to reach higher chemical potentials and the first-order phase transition region at midrapidity in the
high-mu-RHIC-running at

√
s= 4−12 A GeV in the coming year. The International FAIR Facility

at GSI will be offering a fully devoted research program in the next decade.
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Figure 1: Phase diagram with the critical end point atµB ≈ 400 MeV,T ≈ 160 MeV as predicted by Lattice
QCD calculations. In addition, the time evolution in theT − µB–plane of a central cell in UrQMD calcu-
lations (from Bravinaet al.) [9] is depicted for different bombarding energies. Note that the calculations
indicate that bombarding energiesELab . 40 A GeV are needed to probe a first-order phase transition. At
RHIC this point is accessible in the fragmentation region only (from Bratkovskayaet al.) [7].

1.2 Hydrodynamic flow

Hydrodynamic flow and shock formation has been proposed early [11, 12] as the key mecha-
nism for the creation of hot and dense matter in relativisticheavy-ion collisions [13]. The full three-
dimensional hydrodynamical flow problem is much more complicated than the one-dimensional
Landau model [14]: the 3-dimensional compression and expansion dynamics yields complex triple
differential cross-sections which provide quite accuratespectroscopic handles on the EoS. The
bounce-off,v1(pT) (i.e., the strength of the directed flow in the reaction plane), the squeeze-out,
v2(pT) (the strength of the second moment of the azimuthal particleemission distribution) [11, 12,
15, 16, 17, 18, 19], and the antiflow [15, 16, 17, 18, 19] (thirdflow component [20, 21]) serve as
differential barometers for the properties of compressed,dense matter from SIS to RHIC. In partic-
ular, it has been shown [12, 15, 16, 17, 18, 19] that the disappearance or so-called collapse of flow
is a direct result of a first-order phase transition.

Several hydrodynamic models [22] have been used in the past,starting with the one-fluid ideal
hydrodynamic approach. It is well known that this model predicts far too large flow effects. To
obtain a better description of the dynamics, viscous fluid models have been developed [23, 24, 25].
In parallel, so-called three-fluid models, which distinguish between projectile, target and the fireball
fluid, have been considered [26]. Here viscosity effects appear only between the different fluids,
but not inside the individual fluids. The aim is to have at our disposal a reliable, three-dimensional,
relativistic three-fluid model including viscosity [24, 25].

Flow can be described very elegantly in hydrodynamics. However, also consider microscopic
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Figure 2: Measured SIS and AGS protondpx/dy-slope data compared to a one-fluid hydrodynamical cal-
culation. A linear extrapolation of the AGS data indicates acollapse of flow atELab ≈ 30 A GeV (see also
Ref. [39]), i.e. for the lowest SPS- and the upper FAIR- energies at GSI (from Paechet al.) [40]. The point
at 40 A GeV is calculated using the NA49 central data which clearly shows the proton antiflow even at near
central collisions (cf. Altet al.) [41].

multicomponent (pre-)hadron transport theory, e.g. models like qMD [27], IQMD [28], UrQMD
[29], or HSD [30], as control models for viscous hydrodynamics and as background models to
subtract interesting non-hadronic effects from data.

1.3 AGS and SPS results - a review

Microscopic (pre-)hadronic transport models describe theformation and distributions of many
hadronic particles at AGS and SPS quite well [31]. Furthermore, the nuclear EoS has been extracted
by comparing the calculation results to flow data which are described reasonably well up to AGS
energies [20, 32, 33, 34, 35, 36]. On the other hand, ideal hydrodynamical calculations predict
far too much flow at these energies [23], what shows that viscosity effects have to be taken into
account.

In particular, ideal hydrodynamical calculations yield factors of two higher for the sideward
flow at SIS [23] and AGS, while the directed flowpx/m measurement of the E895 collaboration
shows that thep andΛ data are reproduced reasonably well [34, 37] by UrQMD calculations, due
to the reasonable cross-sections, i.e. realistic mean-free-path of the constituents in this hadronic
transport theory.

Only ideal hydrodynamical calculations predict the appearance of a third flow component [20]
the so-calledantiflow [37, 38] in central collisions. We stress that this only holds if the matter
undergoes a first-order phase transition to the QGP. The signal is that around midrapidity the di-
rected flow,px(y), of protons develops a negative slope. In contrast, a hadronic EoS without QGP
phase transition does not yield such an exotic antiflow (negative slope) wiggle in the proton flow
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v1(y). The ideal hydrodynamic time evolution of the directed flow,px/N, for the purely hadronic
EoS shows a clean linear increase ofpx(y) [38], just as the microscopic transport theory and as the
data [34], whereas for an EoS including a first-order phase transition to the QGP, the proton flow
collapses. The collapse occurs around midrapidity. This observation is explained by an antiflow
component of protons, developing when the expansion from the plasma sets in [39].

The ideal hydrodynamic directed proton flowpx (Fig. 2) shows even negative values between
8 and 20 A GeV. An increase back to positive flow is predicted with increasing energy, when the
compressed QGP phase is probed. But, where is the predicted minimum of the proton flow in the
data? Hydrodynamical calculations suggest this ”softest-point collapse” is atELab≈ 8 A GeV. This
has not been verified by the AGS data. However, a linear extrapolation of the AGS (Fig. 2) data
indicates a collapse of the directed proton flow atELab ≈ 30 A GeV.

Recently, substantial support for this prediction has beenobtained by the low energy 40 A GeV
SPS data of the NA49 collaboration [41]. These data clearly show the first proton antiflow around
mid-rapidity (cf. Fig. 2, in contrast to the AGS data as well as to UrQMD calculations involving
no phase transition.

Thus, at bombarding energies of 30−40 A GeV, the predicted effects of the first-order phase
transition to the baryon-rich QGP are most likely observed,hence the first-order phase transition
line in theT-µB-diagram has been crossed. In this energy region the new FAIRfacility at GSI will
operate. There are good prospects that the baryon flow collapse and other first-order QGP phase
transition signals can be studied soon at the lowest SPS energies as well as at the RHIC planned
HiMu-run (

√
s= 4−12 A GeV) at midrapidity and possibly in the fragmentation region y > 4−5

for the highest RHIC and LHC-collider energies. These experiments will enable a detailed study
of the first-order phase transition at highµB and of the properties of the baryon-rich QGP in the
near future.

2. Proton elliptic flow collapse at 40 A GeV - more evidence fora first-order phase
transition at highest net baryon densities

At SIS energies, microscopic transport models reproduce the data on the excitation function
of the proton elliptic flowv2 quite well: A soft, momentum-dependent EoS [42, 43] seems to
account for the data. The observed proton flowv2 below∼ 5 A GeV is smaller than zero, which
corresponds to the squeeze-out predicted by hydrodynamicslong ago [11, 12, 15, 16, 17, 18, 19].
The AGS data exhibit a transition from squeeze-out to in-plane flow in the midrapidity region. The
change in sign of the protonv2 at 4−5 A GeV is in accord with transport calculations (UrQMD
calculations [34] for HSD results see Ref. [35, 36]). At higher energies (10−160 A GeV) a smooth
increase of the flowv2 is predicted from hadronic transport simulations. In fact,the 158 A GeV
data of the NA49 collaboration suggest that this smooth increase proceeds between AGS and SPS
as predicted. Accordingly, UrQMD calculations without phase transition give considerable 3%v2

flow for midcentral and peripheral protons at 40 A GeV (cf. Ref. [37, 34]).
This is in strong contrast to recent NA49 data at 40 A GeV (see Ref. [41]): A sudden collapse

of the proton flow is observed for midcentral as well as for peripheral protons. This collapse ofv2

for protons around midrapidity at 40 A GeV is very pronouncedwhile it is not observed at 158 A
GeV.
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The dramatic collapse of the flowv1 also observed by NA49 [41], again around 40 A GeV,
where the collapse ofv2 has been observed yields again evidence for the hypothesis of the obser-
vation of a first-order phase transition to QCD. This is, according to Ref. [1, 2] and Fig. 1, the
highest energy at which a first-order phase transition can bereached at central rapidities of rela-
tivistic heavy-ion collisions. We therefore conclude thata first-order phase transition at the highest
baryon densities accessible in nature has been seen at theseenergies in Pb+Pb collisions. Moreover,
Ref. [44] shows that the elliptic flow clearly distinguishesbetween a first-order phase transition and
a crossover.

3. Partonic jet induced Mach shocks in an expanding QGP

Sideward peaks have been recently observed [45, 46, 47, 48] in azimuthal distributions of
secondaries associated with the high-pT hadrons in central Au+Au collisions at

√
s= 200 GeV.

In Ref. [37] such peaks had been predicted as a signature of Mach shocks created by partonic
jets propagating through a QGP formed in heavy–ion collisions. Analogous Mach shock waves
were studied previously in cold hadronic matter [11, 15, 19,49, 50] as well as in nuclear Fermi
liquids [51, 52]. Recently, Mach shocks from jets in the QGP have been studied in Ref. [53] by
using a linearized fluid–dynamical approach.

It is well known [14] that a point–like perturbation moving with supersonic speed in the spa-
tially homogeneous ideal fluid produces the so–called Mach region of the perturbed matter. In the
fluid rest frame (FRF) the Mach region has a conical shape withan opening angle with respect to
the direction of particle propagation given by the expression1 θ̃M = sin−1(cs/ṽ) , wherecs denotes
the sound velocity of the unperturbed (upstream) fluid andṽ is the particle velocity with respect to
the fluid. In the FRF, trajectories of fluid elements (perpendicular to the surface of the Mach cone)
are inclined at the angle∆θ = π/2− θ̃M with respect tõv . Strictly speaking, the above formula is
applicable only for weak, sound–like perturbations. It is not valid for space–time regions close to a
leading particle. Nevertheless, we shall use this simple expression for a qualitative analysis of flow
effects [37, 54]. Following Refs. [37, 53, 54], one can estimate the angle of preferential emission of
secondaries associated with a fast jet in the QGP. Assuming the particle velocity to bẽv= 1 and the
sound velocity to becs = 1/

√
3 leads to∆θ ≃ 0.96 . This agrees well with positions of maxima of

the away–side two–particle distributions observed in central Au+Au collisions at RHIC energies.

4. Deformation of Mach shocks due to radial flow

Assuming that the away–side jet propagates with velocityv parallel to the matter flow velocity
u andu does not change with space and time, one sees that after performing the Lorentz boost to
the FRF, a weak Mach shock has a conical shape with the axis along v . In this reference frame,
the shock front anglẽθM is again given bỹθM = sin−1(cs/ṽ) . Transformation from the FRF to
the center of mass frame (CMF) shows that the Mach region remains conical, but the Mach angle
becomes smaller in the CMF, tanθM = (1/γu) tanθ̃M , whereγu ≡ (1−u2)−1/2 is the Lorentz factor
corresponding to the flow velocityu . Using the above Eqns. leads to the expression for the Mach

1Quantities in the FRF are marked by tilde.
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Figure 3: Angles of Mach region created by a jet moving transversely (solid and dashed curves) and
collinearly (dashed–dotted line) to the fluid velocityu in the CMF. All curves correspond toc2

s = 1/3.
The arrow marks the valueu = cs (from Satarov et al.) [54].

angle in the CMF

θM = tan−1

(
cs

√
1−u2

ṽ2−c2
s

)
, (4.1)

whereṽ=(v∓u)/(1∓vu) and the upper (lower) sign corresponds to the jet’s motion in(or opposite
to) the direction of collective flow. For ultrarelativisticjets (v→ 1) it is ṽ≃ 1 what leads to

θM ≃ tan−1
(

csγs

γu

)
= sin−1

(
cs

√
1−u2

1−u2c2
s

)
, (4.2)

with γs = (1−c2
s)

−1/2 . According to Eq. (4.2), in the ultrarelativistic limitθM does not depend on
the direction of flow with respect to the jet. The Mach cone becomes more narrow as compared to
jet propagation in static matter. This narrowing effect hasa purely relativistic origin. Indeed, the
difference betweenθM from Eq. (4.2) and the Mach angle in absence of flow given by limu→0 θM =

sin−1cs is of second order in the collective velocityu.

The case of a jet propagating at nonzero angle with respect tothe flow velocity is more com-
plicated. Mach shocks become nonconical for non–collinearflows. For simplicity, we study only
the case when the jet and flow velocities are orthogonal to each other,v ⊥ u. Let axesOX andOY
be directed alongu andv , respectively. We first make the transition to the FRF by performing a
Lorentz boost along theOX axis which leads to a jet velocitỹv.

Assume a jet propagating along the pathOA = ṽt̃ during the time interval̃t in the FRF. At
the same time, the wave front from a point–like perturbation(created at the originO) reaches a
spherical surface with radiusOB = OC = cs̃t. Two tangent linesAB and AC border the Mach
regio with the symmetry axisOA. This region only exists for̃v > cs what can be fulfilled by
v > cs or u > cs. It has a conical shape with opening anglesθ̃ determined by the expressions
sinθ̃ = OC/OA= cs/ṽ≃ cs.
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Performing inverse transformation from FRF to CMF, it is easy to show that the Mach region
is modified in two ways. First, it is no longer symmetrical with respect to the jet trajectory in the
CMF. The boundaries of the Mach wave have different angles,θ+ 6= θ−, with respect tov in this
reference frame. One can interpret this effect as a consequence of transverse flow which acts like
a wind deforming the Mach cone along the directionOX. On the other hand, the angles of the
Mach front with respect to the beam axis are not changed underthe transformation to the CMF. We
conclude that, due to effects of transverse flow, the Mach region in the CMF should have a shape
of a deformed cone with an elliptic base. Figure 3 shows numerical values of the Mach angles
for an ultrarelativistic jet moving through the QGP transversely or collinearly to its flow velocity.
We point out a much stronger sensitivity of the Mach anglesθ± to the transverse flow velocity as
compared with the collinear flow.

To discuss possible observable effects we consider three events with different di–jet axes with
respect to the center of a fireball. In the first event, the away–side jet propagates along the diameter
of the fireball, i.e. collinearly with respect to the collective flow. In the other cases, the di–jet
axes are oriented along chords close to the boundary of the fireball. In these events, the fluid
velocity has both transverse and collinear components withrespect to the jet axis. By this the
Mach fronts are deformed in an expanding matter. The radial expansion of the fireball should
cause a broadening of the sideward peaks in the∆φ–distributions of associated hadrons. Due to
the radial expansion, the peaks will acquire an additional width of the order of〈θ+−θ−〉. Here
θ± are local values of the Mach angles in individual events. Theangular brackets represent the
averaging over the jet trajectory in a given event and over all events with different positions of
di–jet axes. Assuming that the particle emission is perpendicular to the surface of Mach cone
and taking〈u〉 ∼ 0.4, c2

s ≃ 1/3, we estimate the angular spread of emitted hadrons in the range
30◦ − 50◦. This is comparable with the half distance between the away–side peaks of the∆φ
distribution observed by the STAR and PHENIX collaborations [45, 46, 47, 48]. On the basis of
this analysis we conclude that in individual events the sideward maxima should be asymmetric and
more narrow than in an ensemble of different events. Due to a stronger absorption of particles
emitted from the inner part of the shock, the outer two peaks may have different amplitudes. We
think that these effects can be observed by measuring three–particle correlations.

There is one more reason for broadening of the∆φ–distributions which one should keep in
mind when comparing with experimental data: due to the momentum spread of the initial parton
distributions,∆p∗ . 1 GeV, the di–jet system has a nonzero total momentum with respect to the
global CMF. As a consequence, the angleθ∗ between the trigger– and the away–side jet is generally
speaking not equal toπ , as was assumed above. Taking typical momenta of initial partons asp0 ,
with p0 > 4−6 GeV [45, 46, 47, 48], we estimate the angular spread as|π −θ∗| ∼ ∆p∗/p0 . 0.1 .
Therefore, the considered broadening should be much less than the typical shift of the Mach angles
due to the collective flow.

5. Angular Correlations of Jets – Can jets fake the largev2-values observed?

Figure 4 shows the angular correlation of high-pT particles for the 5% most central Au+Au
collisions at

√
s = 200 GeV as well asp+ p reactions from the HSD-model [55] in comparison to

the data from STAR forp+ p collisions [45]. Gating on high-pT hadrons (in the vacuum) yields
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Figure 4: STAR data on near-side and away–side jet correlation compared to the HSD model for p+p and
central Au+Au collisions at midrapidity forpT(NTrig) = 4. . .6GeV/c andpT = 2GeV/c. . . pT(NTrig) [from
Cassinget al.] [55, 56].

Figure 5: High pT correlations: in-plane vs. out-of-plane correlations of the probe (jet+secondary jet
fragments) with the bulk (v2 of the plasma atpT > 2GeV/c) prove the existence of the initial plasma state
(STAR-collaboration, preliminary).

near–side correlations in Au+Au collisions which are closeto the near–side correlations observed
for jet fragmentation in the vacuum (p+p). This is in agreement with the experimental observa-
tion [45, 57]. However, for the away–side jet correlations,the authors of Ref. [55] get only a∼50%
reduction, similar to HIJING, which has only parton quenching and neglects hadron rescattering.
Clearly, the observed [45] complete disappearance of the away–side jet (see Fig. 5) cannot be ex-
plained in the HSD-(pre-)hadronic cascade even with a smallformation time of 0.8fm/c. Hence,
the correlation data provide another clear proof for the existence of the bulk plasma.

The question if the attenuation of jets ofpT ≥ 5 GeV/c can actually fake the observedv2-values

9
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Figure 6: Illustration of jets traveling through the late hadronic stage of the reaction. Only jets from the
region close to the initial surface can propagate and fragment in the vacuum [11, 55, 58]. The other jets will
interact with the bulk, resulting in wakes with bow waves travelling transversely to the jet axis.

at pT ≈ 2GeV/c comes about since due to fragmentation and rescattering a lot of momentum-
degraded hadrons will propagate in the hemisphere defined bythe jets. However, their momentum
dispersion perpendicular to the jet direction is so large that it could indeed fake a collective flow
that is interpreted as coming from the early high-pressure plasma phase.

On first sight, Fig. 5 shows that this could indeed be the case:the in-planev2 correlations are
aligned with the jet axis, the away–side bump, usually attributed to collectivev2 flow (dashed line),
could well be rather due to the stopped, fragmented and rescattered away–side jet. However, this
argument is falsified by the out-of-plane correlations (circles in Fig. 5). The near-side jet is clearly
visible in the valley of the collective flowv2 distribution. Note thatv2 peaks atϕ = π/2 relative
to the jet axis! The away–side jet, on the other hand, has completely vanished in the out-of-plane
distribution (cf. Fig. 6).

Where are all the jet fragments gone and why is there no trace left? Even if the away–side
jet fragments completely and the fragments get stuck in the plasma, leftovers should be detected at
momenta below 2GeV/c. Hadronic models as well as parton cascades will have a hard time to get
a quantitative agreement with these exciting data.

We propose future correlation measurements which can yieldspectroscopic information on
the plasma:

• If the plasma is a color-electric plasma [37, 59], experiments will - in spite of strong plasma
damping - be able to search for wake-riding potential effects. The wake of the leading jet
particle can trap comoving companions moving through the plasma in the wake pocket with
the same speed as the leading particle. This can be particular stable for charmed jets due to
the deadcone effect (proposed by Kharzeevet al.[60]) which will guarantee little energy loss,
i.e. constant velocity of the leading D-meson. The leading D-meson will practically have
very little momentum degradation in the plasma and therefore the wake potential following
the D will be able to capture the equal speed companion, whichcan be detected [61].

• The sound velocity of the expanding plasma might be measuredby the emission pattern
of the plasma particles travelling sideways with respect tothe jet axis: The dispersive wave

10
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Figure 7: Contour plots of the laboratory energy density att = 12.8 fm/c for an ideal gas EoS (upper panel)
and for a hadron gas with first-order phase transition to QGP (lower panel) for different initial locations of
the jet (see text).

generated by the wake of the jet in the plasma yields preferential emission to an angle relative
to the jet axis given by the ratio of the leading jet particles’ velocity, devided by the sound
velocity in the hot dense plasma rest frame. The speed of sound for a non-interacting gas
of relativistic massless plasma particles iscs ≈ 1/

√
3 ≈ 57%c, while for a plasma with

strong vector interactions,cs = c holds. Hence, the emission angle measurement can yield
information of the interactions in the plasma. A hydrodynamical study of this point will be
discussed in the following.

6. (3+1)dimensional hydrodynamical study of jet evolution

The STAR and PHENIX collaborations published the observation [45, 62, 57] that the away–
side jet in Au+Au collisions for high-pT particles (4< pT (trigger)< 6 GeV/c,pT (assoc)> 2 GeV/c)
with pseudo-rapidity|y|< 0.7 is suppressed as compared to the away–side jet in p+p collisions (see
Fig. 5).

This is commonly interpreted as parton energy loss, the so-called jet quenching [37, 63]. One
part of the back-to-back jet created in the collision escapes (near-side jet), the other one (away–side
jet) deposits a large fraction of its energy into the dense matter.

We use (3+1)dimensional ideal hydrodynamics, employ the (3+1)dimensional SHASTA (SHarp
And Smooth Transport Algorithm) [64], and follow the time evolution of a fake jet that deposits

11



Hydrodynamic Flow and Jet Induced Mach Shocks at RHIC and LHC Horst Stöcker

 0

 200

 400

 600

 800

 1000

 1200

 1400

2π3π/2ππ/20

dE
la

b/
dφ

 [G
eV

]

φ [rad]

 0

 200

 400

 600

 800

 1000

 1200

 1400

2π3π/2ππ/20

dE
la

b/
dφ

 [G
eV

]

φ [rad]

Figure 8: Azimuthal angular distributions of the laboratory energy at t = 12.8 fm/c for an ideal gas EoS
(left) and for a hadron gas with first-order phase transitionto QGP (right). No background is subtrackted.

its energy and momentum completely during a very short time in a 2 fm3 spatial volume of a
spherically symmetric expanding system.

The medium has an initial radius of 5 fm, an initial energy density of e0 = 1.68GeV/fm3 and
an initial profile velocity increasing by radius asv(r) = 0.02r/R.

The initial energy density of the jet is increased by∆e = 5GeV/fm3 as compared to the
medium and the jet material has an initial velocity ofvx = 0.96 c. In Fig. 7 we display the contour
plots of the jet evolution at late statet = 12.8 fm/c for an ultrarelativistic ideal gas EoS (upper row)
and a hadron gas with a first-order phase transition to QGP (lower row). The jet is initially located
in the region between−5fm < x < 3fm, |y| < 0.5fm, |z| < 0.5fm (left column) and in the retion
between−3fm < x < −1fm, 2.5fm < y < 3.5fm, |z| < 0.5fm (right column).

The jet-induced shock front and a deflection of the jet for a finite impact parameter is clearly
visible. Note, that in case of the Bag Model EoS the system reaches the mixed-phase. Therefore,
the hydrodynamical evolution slows down and causes a broadend shock wave.

Figure 8 shows the azimuthal angular distributions of the laboratory energy att = 12.8 fm/c for
an ideal gas EoS (left) and for a hadron gas with first-order phase transition to QGP (right). Here,
the jet was originally located between−5fm < x < 3fm, |y| < 0.5fm, |z| < 0.5fm. One clearly
sees that sideward peaks occur in case of a first-order phase transition. They are a signal of conical
emission and agree well with the 2 and 3 particle correlations from STAR and PHENIX [45, 62, 57].

7. Summary

The NA49 collaboration has observed the collapse of both,v1- andv2-collective flow of pro-
tons, in Pb+Pb collisions at 40 A GeV, which presents evidence for a first-order phase transition in
baryon-rich dense matter. It will be possible to study the nature of this transition and the properties
of the expected chirally restored and deconfined phase both at the HiMu/low energy and at the
forward fragmentation region at RHIC, with upgraded and/orsecond generation detectors, and at
the future GSI facility FAIR. According to lattice QCD results [1, 2], the first-order phase transi-
tion occurs for chemical potentials above 400 GeV. Ref. [44]shows that the elliptic flow clearly
distinguishes between a first-order phase transition and a crossover. Thus, the observed collapse of
flow, as predicted in Ref. [11, 12], is a clear signal for a first-order phase transition at the highest
baryon densities.
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A critical discussion of the use of collective flow as a barometer for the EoS of hot dense
matter at RHIC showed that hadronic rescattering models canexplain< 30% of the observed flow,
v2, for pT > 2 GeV/c. We interpret this as evidence for the production of superdense matter at
RHIC with initial pressure way above hadronic pressure,p > 1 GeV/fm3.

The fluctuations in the flow,v1 andv2, should be measured. Ideal hydrodynamics predicts that
they are larger than 50 % due to initial state fluctuations. The QGP coefficient of viscosity may be
determined experimentally from the fluctuations observed.

We propose upgrades and second-generation experiments at RHIC, which inspect the first-
order phase transition in the fragmentation region, i.e., at µB ≈ 400 MeV (

√
s= 4−12 A GeV or

y ≈ 4− 5 at full energy), where the collapse of the proton flow analogous to the 40 A GeV data
should be seen.

The study of jet-wake-riding potentials and bow shocks caused by jets in the QGP formed at
RHIC can give further clues on the EoS and transport coefficients of the QGP.
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