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Chapter 1

Introduction and main results

1.1 Introduction

In naturally reproducing populations one usually encounters an average number
of more than one offspring per individual. However, given non-extinction, classi-
cal supercritical branching processes grow beyond all bounds. This is unrealistic
because of bounded resources.

An efficient counteraction to unbounded population growth is achieved by a
population-size dependent regulation of the reproduction dynamics. An example
is the so called logistic branching process (Lambert [23]) in which, in addition to
the “natural” births and deaths in a supercritical branching mechanism, there are
deaths resulting from a competition between any two individuals in the population.
In Feller’s diffusion limit, this leads to a negative drift term which is proportional
to the squared population size. To be more precise, for N ≥ 1 and b, d, γ, β > 0,
let (ZN

t )t≥0 be a pure birth-death process with state space N0 where each particle
splits into two particles at rate β + b

N
, each particle dies at rate β + d

N
and each

ordered pair of particles coalesces into one particle at rate γ
N2 . All these events

occur independently of each other. If
ZN0
N

converges weakly to Z0 as N →∞ then(ZNtN
N

)
t≥0

converges weakly to
(
Zt
)
t≥0

as N →∞ where (Zt)t≥0 is the solution of

(1.1) dZt = (b− d)Zt dt− γZ2
t dt+

√
2βZtdBt.

Here, (Bt)t≥0 is a standard Brownian motion. See Section 4.4 for the proof of
a similar convergence. The square in (1.1) prevents the population size from
escaping to ∞. However, the process (Zt)t≥0 converges weakly to zero as t→∞.

An attempt to combat this extinction is to consider infinite populations mod-
eled by a spatially extended version of the logistic branching process, with sub-
populations living in discrete demes arranged in the d-dimensional lattice Zd, and

1



2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

with a (homogeneous) migration between the demes. This leads to the following
system X = (Xt)t≥0 = (Xt(i))t≥0,i∈Zd of interacting Feller diffusions with logistic
growth where Xt(i) ∈ [0,∞) denotes the population size of deme i ∈ Zd at time
t ≥ 0:

dXt(i) =α

∑
j∈Zd

m(i, j)Xt(j)−Xt(i)

 dt

+ γXt(i)
(
K −Xt(i)

)
dt+

√
2βXt(i) dBt(i) i ∈ Zd.

(1.2)

Here, the B(i) are independent standard Brownian motions, m is the transition
matrix of a random walk on Zd, and α, β, γ are nonnegative constants describing
the rates of migration, branching and competition, respectively. The constant
K ≥ 0 is called the capacity; it is the ratio of the coefficient of supercriticality, γK,
and the competition rate γ. Interacting Feller diffusions with logistic growth are a
prototype example for interacting locally regulated diffusions which we introduce
below.

Models with competition have been studied by various authors: Mueller and
Tribe [26] and Horridge and Tribe [16] investigated an SPDE analogue of (1.2),
with d = 1 and R1 instead of Z1, and Etheridge [10], motivated by the work of
Bolker and Pacala [3], investigated system (1.2) and its measure-valued analogue
(with Zd replaced by Rd). These models also include long range competition. We
emphasize that our methods make use of the fact that the interactions due to
competition are solely within the same lattice site.

A central question of this thesis is whether the solution (Xt)t≥0 of (1.2) suffers
extinction as t → ∞. First of all, we clarify what we mean by “extinction”. We
say that (Xt)t≥0 suffers local extinction if (Xt)t≥0 converges weakly to the zero
configuration as t → ∞. For this, let the topology on [0,∞)Z

d
be given by the

product topology. Furthermore, we speak of global extinction if (|Xt|)t≥0 converges
weakly to zero as t → ∞. Throughout the thesis, |x| :=

∑
i∈Zd xi denotes the

total mass of x ∈ [0,∞)Z
d
. Notice that global extinction implies local extinction.

Furthermore, the two notions local extinction and global extinction would coincide
if Zd was replaced by a finite set. In the context of local extinction, it is typically
assumed that the law of X0 is translation invariant. For global extinction, we
assume that |X0| <∞ almost surely.

Using arguments from oriented percolation, Etheridge [10] shows that system
(1.2) and also similar systems with non-local competition, when started from a
spatially homogeneous initial state, do not suffer local extinction provided the
capacity K is large enough. On the other hand, it was shown in the same paper
by a coupling and comparison with subcritical branching (similar as in Mueller
and Tribe [26]) that a measure-valued analogue of (1.2) with certain non-local
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competition mechanisms suffers local extinction. The question whether lattice-
based systems like (1.2) suffer local extinction for suitably small K remained
open. In Chapter 2, we answer this question in the affirmative for the system (1.2)
(Theorem 2). More precisely, we specify a strictly positive constant K such that
for all capacities K ≤ K system (1.2) suffers local extinction. The constant K is
the unique solution of

(1.3)

∫ ∞
0

exp
(
Kγy − γβ

2
y2
)
·α exp

(
−αy

)
dy = 1

and depends on the rates α, β and γ of migration, branching and competition,
respectively, but is uniform in all dimensions d and migration matrices m.

The second main result of Chapter 2 concerns convergence of (Xt)t≥0 as t→∞.
We construct the maximal process X(∞), which is the solution of (1.2) entering
from infinity at time 0 (Theorem 1). An important property of X(∞) is that this
process dominates every solution of (1.2) in a stochastic order to be introduced

below. As time tends to infinity, (X
(∞)
t )t≥0 converges monotonically in distribution

to the upper invariant measure of (1.2). In Theorem 5, we prove ergodic behaviour
of the process (Xt)t≥0 as t→∞, that is, the process forgets its initial configuration
as t→∞. More precisely, we show that the solution (Xt)t≥0 of (1.2), when started
in a translation invariant nontrivial initial state, converges weakly to the upper
invariant measure as t → ∞. For the proof, we will exploit the following self-
duality. Let X be the solution of (1.2) with parameters α, β, γ > 0 and migration
matrix m and let X† be the solution of (1.2) with parameters α, β, γ and migration
matrix m† which is the transpose of m. Theorem 3 states that

(1.4) Ex exp
(
−γ
β
〈Xt, y〉

)
= Ey exp

(
−γ
β
〈x,X†t 〉

)
∀ x ∈ Eσ, y ∈ Eσ† ,

where the state spaces Eσ and Eσ† will be defined in Section 1.2. Throughout
the thesis, superscripts as in Ly, Py or Ey refer to the initial configuration of a
process.

Self-duality was used to prove ergodicity by other authors, e.g. Horridge and
Tribe [16] and Athreya and Swart [2]. In the latter paper, self-duality was estab-
lished for the resampling selection model which is the solution of (1.2) where the
Feller term

√
2βXt(i) is replaced by the Fisher-Wright term

√
2βXt(i)(1−Xt(i))

and where K ≤ 1. Furthermore, Athreya and Swart study a branching coalesc-
ing particle model which in Feller’s diffusion limit leads to the solution of (1.2).
For both models, they prove existence of the maximal process and of the upper
invariant measure.

We obtain the local extinction result and the result about existence of the
maximal process and of the upper invariant measure for a more general class
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of interacting locally regulated diffusions. The system of stochastic differential
equations we consider is

dXt(i) =α

(∑
j∈G

m(i, j)Xt(j)−Xt(i)

)
dt

+ h
(
Xt(i)

)
dt+

√
2·g
(
Xt(i)

)
dBt(i), i ∈ G,

(1.5)

where G is an at most countable Abelian group. Notice that the two models (1.2)
and (1.5) coincide in the case G = Zd, h(x) = γx(K − x), g(x) = βx. We will
specify an appropriate state space, namely the Liggett-Spitzer space Eσ ⊂ [0,∞)G,
in Section 1.2 and sufficient conditions on the regulation function h : [0,∞) → R

and on the diffusion function g : [0,∞) → [0,∞) for existence and uniqueness of
the process X in Proposition 1.2.1. Figure 1.1 and 1.2 show generic examples for
a regulation function and for a diffusion function, respectively.

Figure 1.1: A generic example for a reg-
ulation function.

Figure 1.2: A generic example for a dif-
fusion function.

The name “interacting locally regulated diffusions” derives from “interacting
diffusions” which denotes the solution of (1.5) in the case h ≡ 0. Interacting dif-
fusions have been studied by various authors, among others: Cox and Greven [4],
Cox, Fleischmann and Greven [5], Greven, Klenke and Wakolbinger [12]. The
process (Xt)t≥0 is “locally regulated” because the regulation term h

(
Xt(i)

)
de-

pends on Xt only through the local population size Xt(i). If h(Xt(i)) in (1.5) was
replaced by hi(Xt) with hi : [0,∞)G → R then the regulation would be (possibly)
long-range.

In Theorem 1, we prove existence of the maximal process (X
(∞)
t )t≥0 and con-

vergence of (X
(∞)
t )t≥0 to the upper invariant measure as t → ∞. For this we

need an assumption which ensures that the drift is “sufficiently negative” for large
values of Xt(i) so that the process “comes down from infinity”. We assume for
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Theorem 1 that h is bounded by a function ĥ which is negative and concave on
some interval [x0,∞) and satisfies

(1.6)

∫ ∞
x0

1

−ĥ(x)
dx <∞.

Then there exists a solution (X
(∞)
t )t≥0 of (1.5) which starts in X

(∞)
0 (i) = ∞,

i ∈ G, and satisfies EX
(∞)
t (i) <∞ for all t > 0 and i ∈ G, see Theorem 1. Notice

that the above condition on h is satisfied in the case of interacting Feller diffusions
with logistic growth with ĥ(x) := γx(K − x).

Theorem 2 specifies conditions on α, h and g under which the solution (Xt)t≥0

of (1.5) suffers local extinction. Let the law of X0 be any distribution on the state
space Eσ. Assume that h is concave and is bounded by a function ĥ which is
negative on some interval [x0,∞) and satisfies condition (1.6). If

(1.7)

∫ ∞
0

h(y)

g(y)
exp

(∫ y

1

−αx+ h(x)

g(x)
dx

)
dy ≤ 0,

then (Xt)t≥0 converges weakly to the zero configuration as t → ∞. We mention
that, in the case h(x) = γx(K − x) and g(x) = βx, condition (1.7) is equivalent
to K ≤ K where K is the solution of (1.3); see Proposition 2.3.1. The proof of
the above local extinction result is achieved by comparing (1.5) with a mean field
model associated with (1.5), given by the solution M = (Mt)t≥0 of

(1.8) dMt = α(EMt −Mt) dt+ h(Mt) dt+
√

2·g(Mt) dBt , M0 ∈ [0,∞),

where (Bt)t≥0 is a standard Brownian motion. To be more precise, if h is concave
and if the law of X0 is translation invariant and associated (to be defined in (1.36)),
then Proposition 1.2.2 shows that

(1.9) Ee−λXt(i) ≥ Ee−λMt , t, λ ≥ 0, i ∈ G,

where M0 := X0(i). Consequently, extinction of (Mt)t≥0 as t→∞ implies extinc-
tion of (Xt(i))t≥0 as t → ∞ for every i ∈ G. We will see that (Mt)t≥0 converges
weakly to zero as t → ∞ if δ0 is the only equilibrium distribution of the mean
field model. In addition, if h has at most one strictly positive root and is negative
in a neighbourhood of infinity, then Proposition 2.3.1 shows that δ0 is the only
equilibrium distribution of the mean field model if and only if inequality (1.7)
holds. Furthermore, if inequality (1.7) fails to hold, then we obtain in Proposi-
tion 2.3.1 that there exists exactly one nontrivial invariant measure for the mean
field model (1.8).

The following approximation illuminates the appearance of the mean field
model as a comparison model for interacting locally regulated diffusions. For
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N ≥ 1, let ΛN := Z/NZ. Denote by (XN
t )t≥0 the solution of (1.5) with G := ΛN

and with m(i, j) := 1
N

, i, j ∈ ΛN . Furthermore, let (XN
0 (i))i∈Z/NZ be indepen-

dent and identically distributed with common law µ. Then (XN
t (i))N≥1 converges

weakly to Mt as N → ∞ for every fixed t ≥ 0 and i ∈ Z where M0 has distribu-
tion µ. The proof of this assertion is similar to the proof of Theorem 1.4 in [32].
However, we will not work out the details. Loosely speaking, the mean field model
belongs to the closure of the class of interacting locally regulated diffusions and
its migration mechanism spreads out mass as uniformly as possible. Motivated by
the above approximation, we conjecture that if (1.7) fails to hold then there exists
a countable set G and a migration matrix

(
m(i, j)

)
i,j∈G such that the solution

of (1.5) does not suffer local extinction.

A consequence of the self-duality (1.4) for the solution of (1.2) is that local
extinction is equivalent to global extinction. In Corollary 4, we conclude from the
local extinction result that the solution of (1.2) suffers global extinction whenever
K ≤ K. For the solution of (1.5), however, there is in general no global extinction
result yet. We conjecture that there exists a dominating process for which it is
easier to obtain a criterion for global extinction. However, we will not prove this
conjecture in this thesis. As a candidate for a comparison model, we now introduce
a model which we call Virgin Island Model. For this model, we will prove in
Chapter 3 a global extinction result. In analogy to the local extinction result, a
comparison result of system (1.5) with the Virgin Island Model would lead to a
global extinction result for the system of interacting locally regulated diffusions.
To motivate the Virgin Island Model, consider, for N ≥ 1, the solution (XN

t )t≥0

of (1.5) with G := Z/NZ and with m(i, j) := 1
N

, i, j ∈ Z/NZ. Furthermore, let
XN

0 (0) := x0 ∈ (0,∞) and XN
0 (i) := 0 for i ∈ Z/NZ \ {0}. The probability that

two emigrants migrate to the same island is equal to 1
N

, which tends to zero as
N → ∞. In the Virgin Island Model, every emigrant moves to an unpopulated
island.

We characterise the Virgin Island Model by a recursive construction. On the
first island evolves a diffusion Y = (Yt)t≥0 with state space [0,∞) given by the
strong solution of the stochastic differential equation

(1.10) dYt = −αYt dt+ h(Yt) dt+
√

2g(Yt)dBt, Y0 = y ≥ 0,

where (Bt)t≥0 is a standard Brownian motion. Notice that Y is equal in distribu-
tion to X(0) if m(i, j) = 0 for all i, j ∈ G := Zd and if X0(0) := y. We assume
that Y is regular on (0,∞) and that zero is an exit boundary for this process,
that is, zero is absorbing and is reached in finite time with positive probability.
In Assumption A3 below, we give an equivalent condition for this in terms of α,
h and g.
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Mass emigrates from the first island at rate α, which is modeled by the term
−αYtdt in (1.10). An emigrant founding the population on an unpopulated island
has mass zero in the diffusion limit. The law of excursions of Y from the trap zero
is the key ingredient in the construction of the Virgin Island Model. Denote the
set of excursions from zero by

(1.11) U :=
{
χ ∈ C

(
[0,∞), [0,∞)

)
: T0 ∈ (0,∞], χt = 0 ∀ t ∈ {0} ∪ [T0,∞)

}
where Ty = Ty(χ) := inf{t > 0: χt = y} is the first hitting time of y ∈ [0,∞).
The set U is furnished with locally uniform convergence. The excursion law Q̄Y

is a σ-finite measure on U . It has been constructed by Pitman and Yor [28] as
follows: Under Q̄Y , the trajectories come from zero according to an entrance law
and then move according to the law of Y . In Section 3.1, we approximate the
excursion measure with a suitably rescaled law of Y . For this, define

(1.12) s̄(z) := exp
(
−
∫ z

1

−αx+ h(x)

g(x)
dx
)
, S̄(y) :=

∫ y

0

s̄(z) dz, z, y > 0.

Note that S̄ is a scale function, that is,

(1.13) Py
(
Tb(Y ) < Ta(Y )

)
=
S̄(y)− S̄(a)

S̄(b)− S̄(a)

holds for all 0 ≤ a < y < b < ∞, see Section 6 of [21]. In Theorem 6, we will
prove the convergence

(1.14) lim
y→0

1

S̄(y)
EyF (Y ) =

∫
F (χ)Q̄Y (dχ)

for all bounded continuous F : C
(
[0,∞), [0,∞)

)
→ R for which there exists an

ε > 0 such that F (χ) = 0 whenever supt≥0 χt < ε. Note that the well established
Itô excursion theory does not apply here because zero is no regular point.

The existence of Q̄Y suffices to construct the Virgin Island Model and to formu-
late results. For the proof of a global extinction result for the Virgin Island Model,
however, we need a stronger assertion, namely the convergence stated in (1.17)
below. To obtain (1.17), we assume that

(1.15) Py
(
T1(Y ) < T0(Y )

)
∼ cy as y → 0

for some constant c ∈ (0,∞). Equivalent to (1.15) is that S̄
′
(0) exists and is

positive. Assumption A4 below gives a sufficient condition for (1.15) in terms of
α, h and g. Under Assumption A4, we may define

(1.16) QY := S̄
′
(0)Q̄Y .
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With this, the convergence (1.14) reads as

(1.17) lim
y→0

1

y
EyF (Y ) =

∫
F (χ)QY (dχ)

By an abuse of notation, we denote both QY and Q̄Y as “the excursion measure
of Y ”.

Employing the excursion measure QY , we now define the Virgin Island Model
on subsequent islands. The first island is called the 0-th generation. The (n+1)-st
generation is the collection of all islands which have been colonised from islands of
the n-th generation, n ≥ 0. We denote the collection of all islands as Virgin Island
Model. Furthermore, we refer to the total mass of the Virgin Island Model as the
Virgin Island process V = (Vt)t≥0 and to the total mass of the n-th generation as

the n-th generation process V (n) =
(
V

(n)
t

)
t≥0

. Let (V
(0)
t )t≥0 be a random path with

distribution Lx
(
(Yt)t≥0

)
, x ≥ 0. For a recursive construction, let the total mass

V (n) of the n-th generation, n ≥ 0, be defined. Conditioned on V (n), let Π(n) be
a Poisson point process on [0,∞)× U with intensity measure αV

(n)
t dt⊗QY (dχ).

With this, the (n+ 1)-st generation process is defined as

(1.18) V
(n+1)
t :=

∫
χt−sΠ

(n)(ds, dχ) t ≥ 0.

Emigrants leave islands of the n-th generation at the time dependent rate αV
(n)
t

and move to unpopulated islands. An island which has been founded at time s
contributes mass χt−s at time t. For definiteness, identify paths χ ∈ U with paths
χ ∈ C

(
R, [0,∞)

)
satisfying χt = 0 for all t ≤ 0. The Virgin Island process V is

the total mass of all generation processes:

(1.19) Vt :=
∑
n≥0

V
(n)
t t ≥ 0.

The sum in (1.19) has finite expectation and thus is finite almost surely by
Lemma 3.3.1.

There are similarities between the Virgin Island Model and the infinitely-many-
alleles model (see [11]). In the latter model, every mutant is of a new type,
which corresponds to migration to unpopulated islands. The infinitely-many-
alleles model can be characterised by a martingale problem. However, we could
not construct the Virgin Island Model by a martingale problem with respect to an
operator G with G ⊂ Cb(E)×Cb(E) for some complete and separable metric space
(E, d). Instead, we give a fairly explicit construction for the total mass process in
which the evolution on one single island is incorporated by the excursion law, and
in which the different generations may be studied separately.
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There is an inherent branching structure in the Virgin Island Model. One
offspring island together with all its offspring islands is again a Virgin Island Model
but with a typical excursion instead of Y on the first island. This branching
structure is similar to Crump-Mode-Jagers branching processes (see [19] under
”general branching process“) but with continuous mass instead of particles. We
recall that a Crump-Mode-Jagers process is a particle process where every particle
i gives birth to particles at the time points of a point process ξi until its death at
time λi, and (λi, ξi)i are independent and identically distributed.

In Theorem 7, we identify conditions under which the Virgin Island Model
suffers global extinction. Generally speaking, branching particle processes survive
iff the expected number of offspring per particle is strictly greater than one, e.g.
a Crump-Mode-Jagers process survives iff Eξi[0, λi] > 1. For the Virgin Island
Model, the decisive parameter for survival is α times the expected area under an
excursion

(1.20)

∫ ∫ ∞
0

χt dtQY (dχ).

We denote the expression in (1.20) also as “expected man-hours” of the excursion
law. For the following Theorem 7 and Theorem 8, we assume that the expected
man-hours are finite. In Assumption A5 below, we give an equivalent condition
for this in terms of α, h and g. In Theorem 7, we will prove that the Virgin
Island process suffers global extinction, that is, (Vt)t≥0 converges weakly to zero
as t→∞, if and only if

(1.21)

∫ ∞
0

αy

g(y)
exp

(∫ y

0

−αu+ h(u)

g(u)
du
)
dy ≤ 1.

The method of proof is to study an integro-differential equation (see Lemma 3.3.2)
which the Laplace transform of V solves. Furthermore, we will show in Lemma
3.1.5 that α times the expression in (1.20) is equal to the left-hand side of (1.21).

Under Assumption A4, the conditions (1.7) and (1.21) are equivalent, see
Proposition 2.3.1. Consequently, under Assumptions A3, A4 and A5, the mean
field process suffers extinction if and only if the Virgin Island process dies out
globally. We conjecture two more analogies between the mean field model and
the Virgin Island Model. Firstly, the mean field model dominates the system of
interacting locally regulated diffusions in the sense of (1.9) if the law of X0 is
translation invariant. As mentioned before, we conjecture that the Virgin Island
process dominates the total mass of (Xt)t≥0 in some stochastic order. Secondly,
we mentioned above that there is a sequence (XN)N∈N of interacting locally regu-
lated diffusions such that (XN

t (i))N∈N converges weakly to Mt as N →∞ for every
t ≥ 0, i ∈ Z. For the Virgin Island Model, we conjecture that if XN

0 (0) = V0 ≥ 0
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and XN
0 (i) = 0 for all i ∈ Z/NZ \ {0} then (|XN

t |)N∈N converges weakly to Vt as
N →∞ for every t ≥ 0.

An interesting quantity of the Virgin Island process is the expectation of the
total man-hours, i.e., the expected area under the path of V . In Theorem 8, we
prove that this quantity is finite exactly in the subcritical situation, that is, (1.21)
holds with strict inequality, in which case we give an expression for the expected
man-hours in terms of α, h and g. In addition, in the critical case and in the
supercritical case, we obtain the asymptotic behaviour of the expected man-hours
of V up to time t

(1.22)

∫ t

0

ExVs ds

as t→∞ for all x ≥ 0.
The Virgin Island Model combines the following two properties. On the one

hand, it incorporates competition among individuals. On the other hand, there
exists a (rather) explicit criterion for the phase transition from extinction to sur-
vival. Thus, the Virgin Island Model might be interesting for applications as it
is more realistic than models with independent branching but simple enough to
bear (rather) explicit formulas.

The self-duality (1.4) is a strong tool for analysing interacting Feller diffusions
with logistic growth. We will prove it in Section 2.5 analytically by means of a
generator calculation. In Chapter 4, we take a different approach by explaining the
dynamics of the processes via basic mechanisms on the level of particles. Thereby,
we obtain a stochastic picture for the self-duality (1.4) which provides insight
into the role of the logistic regulation function γx(K − x) in (1.2) for the self-
duality (1.4), and which gives an explanation for the involvement of the function
exp

(
− γ
β
〈x, y〉

)
in (1.4). For simplicity, we only consider the non-spatial case, i.e.,

m(i, j) = 1i=j for i, j ∈ Zd.
In order to state a slightly more general duality than (1.4), let (Xt)t≥0 denote

the strong solution of

(1.23) dXt = ςXt dt− γX2
t dt+

√
2βXt dBt,

where ς ∈ R, γ, β ≥ 0 and (Bt)t≥0 is a standard Brownian motion. We call
this process the logistic Feller diffusion with parameters (ς, γ, β). Let (Yt)t≥0 be a
logistic Feller diffusion with parameters (ς, rβ, γ/r) for some r > 0. In Section 4.4,
we prove

(1.24) Ex
[
e−rXt·y

]
= Ey

[
e−rx·Yt

]
x, y ∈ [0,∞), t ≥ 0.

The approach which we introduce below applies not only to (1.24) but also to
another duality which has been proven analytically by Athreya and Swart [2]. Let
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b, c, d ≥ 0. Denote by Xt ∈ N0 the number of particles at time t ≥ 0 of the
branching-coalescing particle process defined by the initial value X0 = n and the
following dynamics: Each particle splits into two particles at rate b, each particle
dies at rate d and each ordered pair of particles coalesces into one particle at rate c.
All these events occur independently of each other. In the notation of Athreya and
Swart [2], this is the (1, b, c, d)-braco-process. Its dual process (Yt)t≥0 is the unique
strong solution with values in [0, 1] of the one-dimensional stochastic differential
equation

(1.25) dYt = (b− d)Yt dt− bY 2
t dt+

√
2cYt(1− Yt) dBt, Y0 = y,

where (Bt)t≥0 is a standard Brownian motion. Athreya and Swart [2] call this
process the resampling-selection model with selection rate b, resampling rate c and
mutation rate d, or shortly the (1, b, c, d)-resem-process. They prove the duality

(1.26) En
[
(1− y)Xt

]
= Ey

[
(1− Yt)n

]
∀n ∈ N0, y ∈ [0, 1], t ≥ 0.

The duality relations (1.24) and (1.26) include as special cases (see Remark 4.4.2
and Remark 4.4.4) the duality of Feller’s branching diffusion with a deterministic
process, the duality of the Fisher-Wright diffusion with Kingman’s coalescent, and
the duality of the (continuous time) Galton-Watson process with a deterministic
process.

Chapter 4 provides a unified stochastic picture for the duality relations (1.24)
and (1.26). For every N ∈ N, we construct approximating Markov processes(
XN
t

)
t≥0

and
(
Y N
t

)
t≥0

with càdlàg sample paths and state space {0, 1}N and with

the following properties. The processes (XN
t )t≥0 and (Y N

t )t≥0 are dual in the sense
that

(1.27) PxN
[
XN
t ∧ yN = 0

]
= PyN

[
xN ∧ Y N

t = 0
]
, ∀ xN , yN ∈ {0, 1}N ∀ t ≥ 0.

The notation xN ∧ yN denotes component-wise minimum and 0 denotes the zero
configuration. If |XN

0 | = n, for some fixed n ≤ N , then
(
|XN

t |
)
t≥0

converges
weakly to a branching-coalescing particle process as N →∞. We use the notation
|x| :=

∑N
i=1 xi for x ∈ {0, 1}N . Assume that the set of càdlàg-paths is equipped

with the Skorohod topology (see e.g. [11]). If n = n(N) depends on N such that
n/N → x ∈ [0, 1] as N →∞, then (|XN

t |/N)t≥0 converges weakly to a resampling-

selection model. If n = n(N) satisfies n/
√
N → x ≥ 0, then

(
|XN

t
√
N
|/
√
N
)
t≥0

converges weakly to Feller’s branching diffusion with logistic growth. The process
(Y N

t )t≥0 differs from (XN
t )t≥0 only by the set of parameters and by the initial

condition.
We will derive the duality (1.26) and the duality (1.24) from (1.27) in the

following way. Let the random variable XN
0 be uniformly distributed over all
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configurations xN ∈ {0, 1}N with total number of individuals of type 1 equal to
|xN | = n = n(N) for a given n(N) ≤ N . Similarly, choose Y N

0 uniformly in {0, 1}N
with |Y N

0 | = k = k(N) for a given k(N) ≤ N . We will prove in Proposition 4.3.1
that property (1.27) implies a prototype duality relation, namely

(1.28) lim
N→∞

E
[
1− k

N

]∣∣XN
tTN

∣∣
= lim

N→∞
E
[
1−

∣∣Y N
tTN

∣∣
N

]n
, t ≥ 0,

under some assumptions – including the existence of both limits – on the two
processes and on the sequence (TN)N≥1 ⊂ [0,∞). Choosing n fixed, k such that
k
N
→ y ≥ 0 and let TN = 1, we will deduce from (1.28) (and from the convergence

properties of (XN
t )t≥0 and of (Y N

t )t≥0) the duality (1.26) of a branching-coalescing
particle process with a resampling-selection model (cf. Theorem 4.4.1). In order
to obtain the duality (1.24), choose n, k such that n√

N
→ x ≥ 0, k√

N
→ y ≥ 0 and

TN =
√
N . Notice that (1− y√

N
)x
√
N converges to e−xy uniformly in 0 ≤ x, y ≤ x̃

as N → ∞ for every x̃ ≥ 0. This together with the weak convergence of the
rescaled processes will imply

(1.29) lim
N→∞

E
[
e
−|XN

t
√
N
|·y
/√

N
]

= lim
N→∞

E
[
e
−x·|Y N

t
√
N
|
/√

N
]
.

The approximating processes (XN
t )t≥0 and (Y N

t )t≥0 are constructed in the fol-
lowing way. We call every function f : {0, 1}2 → {0, 1}2 a basic mechanism. A fi-
nite tuple (f1, ..., fm), m ∈ N, of basic mechanisms together with rates λ1, ..., λm ∈
[0,∞) defines a process by means of the following graphical representation, which
is in the spirit of Harris [14]. With every k ≤ m and every ordered pair (i, j) ∈
{1, ..., N}2, i 6= j, we associate a Poisson process with rate parameter λk. At
every time point of this Poisson process, the configuration of (i, j) changes ac-
cording to fk. For example, if the configuration was (1, 0) before, then it changes
to fk(1, 0) ∈ {0, 1}2. All Poisson processes are independent. In Section 4.2, we
will specify which property (to be called “dual”) of a pair of two basic mechanisms
leads to the duality relation (1.27). Furthermore, we will identify all dual pairs of
basic mechanisms.

1.2 Main results

In this section, we state the main results for the system (Xt)t≥0 of interacting
locally regulated diffusions, which solves (1.5), and for the Virgin Island process
(Vt)t≥0, which has been defined in (1.19). First of all, we introduce an appropriate
state space for (Xt)t≥0, namely the Liggett-Spitzer space Eσ. Then we provide
conditions on the regulation function h : [0,∞)→ R and on the diffusion function
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g : [0,∞) → [0,∞) which guarantee existence and uniqueness of a strong Eσ-
valued solution of (1.5).

Unless stated otherwise, we will assume for the migration matrix m appearing
in (1.5) that

∑
i∈Gm(0, i) = 1, that m is translation invariant, i.e., m(i, j) =

m(0, j − i), and that m is irreducible, i.e., ∀ i, j ∃n : m(n)(i, j) > 0. Let α ≥ 0.
An appropriate state space for (1.2) and (1.5) is provided by a construction going
back to Liggett and Spitzer [25]: For given m, let σ = (σi)i∈G be summable and
strictly positive such that

(1.30)
∑
i∈G

σim(i, j) ≤ CLSσj, j ∈ G,

for some CLS <∞. With this, define the Liggett-Spitzer space

(1.31) Eσ :=
{
x ∈ [0,∞)G : ‖x ‖σ :=

∑
i∈G

σi|xi| <∞
}
.

Notice that every translation invariant measure µ on [0,∞)G with
∫
x0 µ(dx) <∞

is supported by Eσ.
The following assumptions on the regulation function and on the diffusion

function guarantee existence and uniqueness of a strong Eσ – valued solution of
system (1.5).

Assumption A1. The functions h : [0,∞) → R and g : [0,∞) → [0,∞) are
locally Lipschitz continuous in [0,∞) and satisfy h(0) = g(0) = 0. In addition,
the function h is upward Lipschitz continuous, i.e.,

(1.32) sgn(x− y)
(
h(x)− h(y)

)
≤ Ch|x− y|

for all x, y ≥ 0 and for some constant Ch. Furthermore, g is strictly positive on
(0,∞) and satisfies the growth condition

(1.33) lim sup
x→∞

√
g(x)

x
<∞.

Proposition 1.2.1. Assume A1. Then, for any x ∈ Eσ, the system (1.5) has a
unique strong solution X = (Xt)t≥0 starting in x and with paths in Eσ which are
a.s. continuous with respect to the norm on Eσ.

This proposition will be proved in Section 2.1. The following theorem, whose
proof will be given in Section 2.2, provides for the existence of a maximal pro-
cess and of a distinguished equilibrium state of (1.5), called the upper invariant
measure. For the proof of Theorem 1, we will exploit the following assumption.
Condition (1.34) ensures that the drift is “sufficiently negative” for large values of
Xt(i) so that the process “comes down from ∞”.
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Assumption A2. There exists a function ĥ ≥ h such that, for some x0 > 0, ĥ is
negative and concave on [x0,∞) and satisfies

(1.34)

∫ +∞

x0

1

−ĥ(x)
dx <∞.

For the interacting Feller diffusions with logistic growth (1.2), the functions h
and g are of the form

(1.35) h(x) = γx(K − x), g(x) = βx.

In this case, Assumptions A1 and A2 are clearly satisfied if γ, β > 0.

To prepare for Theorem 1, we need a bit of notation. If µ1, µ2 are probability
measures on a partially ordered set S, then we say that µ1 is stochastically smaller
than or equal to µ2, and we write µ1 ≤ µ2, if there exists a random pair (Y1, Y2)
with marginal laws L (Yi) = µi, i = 1, 2 and Y1 ≤ Y2. We say that a sequence
of probability measures µn increases stochastically to a probability measure µ∞,
denoted by µi ↑ µ∞, if there exists a random sequence (Yi) which a.s. increases
to Y∞ and has marginal distributions L (Yi) = µi, i = 1, 2, ..,∞. Furthermore, a
probability measure µ on S is called associated if

(1.36)

∫
f1·f2 dµ̄ ≥

∫
f1 dµ̄

∫
f2 dµ̄

for all bounded, coordinate-wise nondecreasing f1, f2 : Eσ → R.

Theorem 1. Assume A1 and A2. There exists an Eσ-valued process (X
(∞)
t )t>0

with the following properties:

a) For each ε > 0, (X
(∞)
t )t≥ε is a solution of (1.5) starting at time t = ε.

b) The first moment of ‖X(∞)
t ‖σ is finite for every t > 0.

c) Let x(n) = (x
(n)
i )i∈G, n = 1, 2, ..., be an increasing sequence in Eσ such that for

all i ∈ G

(1.37) x
(n)
i ↑ ∞ as n→∞.

If (X
(n)
t )t≥0 is the solution of (1.5) starting in x(n) ∈ Eσ at time zero, then

(1.38) L
(
X

(n)
t

)
↑ L

(
X

(∞)
t

)
as n ↑ ∞ (t > 0).
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d) There exists an equilibrium distribution ν̄ (called the upper invariant measure)
for the dynamics (1.5) such that

(1.39) L
(
X

(∞)
t

)
↓ ν̄ as t ↑ ∞.

e) Any Eσ-valued solution (Xt)t≥0 of (1.5) satisfies

(1.40) L
(
Xt

)
≤ L

(
X

(∞)
t

)
(t > 0).

In particular, any equilibrium ν is stochastically smaller than or equal to ν̄.

f) Both the upper invariant measure ν̄ and L
(
X

(∞)
t

)
are translation invariant and

associated.

Theorem 2 specifies conditions on α, h and g under which the process (Xt)t≥0

suffers local extinction. A first glance at system (1.2) might tempt one to believe
that even for small capacities K (and α fixed), a suitably mobile migration m
in the dynamics (1.2) could prevent the system from suffering local extinction.
However, Theorem 2 and condition (1.43) below reveal that this is not the case.

Theorem 2. Assume A1 and A2. Denote by X the solution of equation (1.5)
for an arbitrarily prescribed initial distribution on Eσ. If there exists a concave
function h̄ ≥ h which satisfies

(1.41)

∫ ∞
0

h̄(y)

g(y)
exp

(∫ y

1

−αx+ h̄(x)

g(x)
dx

)
dy ≤ 0,

then the process suffers local extinction, i.e.,

(1.42) L (Xt) =⇒ δ0 as t→∞.

Here, 0 denotes the zero configuration.

In the logistic Feller case (1.35), condition (1.41) simplifies to

(1.43)

∫ ∞
0

exp
(
Kγy − γβ

2
y2
)
·α exp

(
−αy

)
dy ≤ 1;

see the proof of Corollary 2.3.2 at the end of Section 2.3.
The proof of Theorem 2 will be given in Section 2.4. Its main idea is a com-

parison with a mean field model corresponding to (1.5), given by the solution M
of (1.8). We will show that, for every t ≥ 0, the marginal distributions of Xt

are bounded by the distribution of Mt in the ≤icv – order (where “icv” stands for
“increasing, concave”, see [30] for this and related notions). More precisely, in
Section 2.4 we will prove the following proposition.
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Proposition 1.2.2. Assume A1 and concavity of h. Let X be a solution of (1.5)
whose initial distribution µ̄ is associated. Assume that the X0(i), i ∈ G, are iden-
tically distributed and have finite expectation. Let M̄t = (M̄t(i))i∈G be a system
of processes coupled through the initial state M̄0(i) = X0(i), i ∈ G, but follow-
ing independent mean field dynamics, i.e., every M̄t(i) solves equation (1.8) with
standard Brownian motion B(i), where the B(i), i ∈ G, are independent. Then

(1.44) Eµ̄f
(
Xt

)
≤ Eµ̄f

(
M̄t

)
, t ≥ 0,

for all bounded, coordinate-wise nondecreasing and concave functions f : Eσ → R

depending only on finitely many coordinates.

In the following two theorems, we exploit the specific form of the dynamics (1.2)
of the interacting Feller diffusions with logistic growth. As it turns out, the solution
of equation (1.2) has a property of self-duality which is helpful for the investigation
of convergence to equilibria. For the formulation of the self-duality result, write
m† for the transpose of the matrix m, choose a σ† satisfying (1.30) with m† instead
of m, and recall that Eσ† denotes the corresponding Liggett-Spitzer space.

Theorem 3. Assume β > 0. Let X and X† be solutions of (1.2) with migration
kernels m and m†, respectively. Then we have the following self-duality:

(1.45) Ex exp
(
−γ
β
〈Xt, y〉

)
= Ey exp

(
−γ
β
〈x,X†t 〉

)
for all x ∈ Eσ, y ∈ Eσ†, t ≥ 0.

A similar (though non-self-) duality for interacting Feller diffusions (also called
super- random walks), that is (1.2) with γ = 0, is given by

Ex exp
(
−〈Xt, y〉

)
= exp (−〈x, vt〉) ,(1.46)

where v = (vt(i)) solves the initial value problem

(1.47)
d

dt
vt(i) =

∑
j∈G

m(i, j)
(
vt(j)− vt(i)

)
− vt(i)2, i ∈ G, v0 = y,

see e.g. Chapter 4 of [6].
The proof of Theorem 3 is contained in Section 2.5. The main advantage of

the self-duality (1.45) is that instead of starting in a configuration with infinite
total mass we can analyse the evolution of the process started with finite total
mass. For example, choose y = λδ0 and x with x(i) ≡ const. Then the self-duality
tells us that it makes no difference whether we study the law of Xt(0) started in
x, or that of the total mass |X†t | :=

∑
iX
†
t (i) with X† started in λδ0, λ > 0. This

leads to the following corollary (see Lemma 2.5.1 together with Theorem 2):
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Corollary 4. Assume β, γ > 0. Let the parameters α, β, γ,K be such that in-
equality (1.43) holds. Then the solution X of (1.2) started from an initial state
of finite total mass (i.e.,

∑
iX0(i) <∞) hits 0 in finite time a.s.

Theorem 3 will be the principal tool for proving convergence to the upper
invariant measure specified in Theorem 1. This convergence will be the subject
of Theorem 5 below. On an intuitive level, the reason for this convergence is as
follows: There are two forces working against each other, supercritical branching
and individual competition. The third ingredient is migration which is important
for spreading out newly produced mass. Supercritical branching increases mass,
whereas competition amongst the individuals decreases it. If a (local) population
size is large then competition is stronger, whereas, as long as a local population
size is small then competition is negligible in comparison to the mass producing
branching. Thus, there should be some attracting equilibrium state in which the
two forces balance each other. This is the upper invariant measure.

Theorem 5. Assume β, γ > 0. Let X be a solution of (1.2) and suppose that
L (X0) ≥ µ where µ is a measure on Eσ which is translation invariant and does
not charge the zero configuration 0. Then

(1.48) L (Xt) =⇒ ν̄ as t→∞

where ν̄ is the upper invariant measure.

From this it is clear that the only extremal translation invariant equilibrium
distributions are δ0 and ν̄. They coincide in case of local extinction and differ in
case of survival. Section 2.6 is devoted to the proof of Theorem 5.

Now we turn to the Virgin Island Model which we introduced in Section 1.1. By
Proposition 1.2.1, Assumption A1 guarantees existence and uniqueness of the so-
lution (Yt)t≥0 of (1.10). Furthermore, under Assumption A1, zero is an absorbing
boundary for (1.10), i.e., Yt = 0 implies Yt+s = 0 for all s ≥ 0. The key ingredient
in the construction of the Virgin Island Model is the law of excursions of (Yt)t≥0

from the absorbing boundary zero. The excursion measure Q̄Y is a σ-finite mea-
sure on U (defined in (1.11)) and has been constructed by Pitman and Yor [28].
Theorem 6 below proves the approximation result (1.14) which will prove useful in
the proofs of our results for the Virgin Island Model. For this approximation, we
additionally assume that (Yt)t≥0 hits zero in finite time with positive probability.
The following assumption formulates a necessary and sufficient condition for this
(see Lemma 6.2 of [21]). Recall the scale function S̄ from (1.12).

Assumption A3. The parameter α and the functions g and h satisfy

(1.49)

∫ x

0

S̄(y)
1

g(y)s̄(y)
dy <∞
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for some and then all x > 0.

For example, Assumption A1 and Assumption A3 hold whenever h(y) = σy−γy2,
γ > 0 and g(y) = yκ for some 1 ≤ κ < 2. Assumption A3 is not met by h ≡ 0 and
g(y) = y2 because then s̄(z) = zα, S̄(y) = yα+1/(α + 1) and condition (1.49) fails
to hold.

Pitman and Yor [28] describe the σ-finite measure they construct “in a prelim-
inary way as”

(1.50) lim
y→0

1

S̄(y)
Ly (Y )

where the limit indicates weak convergence of finite measures on C
(
[0,∞), [0,∞)

)
away from neighbourhoods of the zero-trajectory. Furthermore, they prove that

(1.51)
1

S̄(y)
Ey
[
S̄(Yt)f(Yt)

]
→
∫
f dµt as y → 0, ∀ f ∈ Cb([0,∞)),

where µt is a sub-probability measure on [0,∞), t > 0. We prove the exis-
tence of the limit in (1.50) in Theorem 6 below. For this, let the topology on
C
(
[0,∞), [0,∞)

)
be given by locally uniform convergence. Furthermore, recall

the definition of U from (1.11) and the definition of S̄ from (1.12).

Theorem 6. Assume A1 and A3. Then there exists a σ-finite measure Q̄Y on U
such that

(1.52) lim
y→0

1

S̄(y)
EyF (Y ) =

∫
F (χ)Q̄Y (dχ)

for all bounded continuous F : C
(
[0,∞), [0,∞)

)
→ R for which there exists an

ε > 0 such that F (χ) = 0 whenever supt≥0 χt < ε.

For our proof of a global extinction result for the Virgin Island Model, we
need to have that the scaling function S̄ in (1.52) essentially behaves linear in a
neighbourhood of zero. More precisely, we need to assume that S̄ ′(0) exists in
(0,∞). Looking at the definition (1.12) of S̄, we see that a sufficient condition for
this is given by the following assumption.

Assumption A4. The integral
∫ 1

ε
−αy+h(y)

g(y)
dy has a limit in (−∞,∞) as ε→ 0.

It follows from dominated convergence and from the local Lipschitz continuity of
h that Assumption A4 holds if

∫ 1

0
y
g(y)

dy is finite.

Recall the definition of the Virgin Island process (Vt)t≥0 and of the n-th gen-

eration process (V
(n)
t )t≥0 from (1.19) and (1.18), respectively. Lemma 3.3.1 shows
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that Vt is finite almost surely for every t ≥ 0. In the next theorem, we give a crite-
rion for extinction of the Virgin Island process. As mentioned in the introduction,
the decisive parameter is the expected area under an excursion of Y . The following
short calculation gives an idea why this is the right quantity. By equation (1.18),
the expected total man-hours of the (n+ 1)-st generation are

Ex

∫ ∞
0

V (n+1)
s ds = Ex

∫ (∫ ∞
0

χt−s dt

)
Π(n)(ds, dχ)

= Ex

∫ ∞
0

∫ (∫ ∞
s

χt−s dt

)
QY (dχ)αV (n)

s ds

= α

∫ ∞
0

∫
χtQY (dχ) dt·Ex

∫ ∞
0

V (n)
s ds.

(1.53)

Thus, α times the expected area under an excursion of Y is equal to the ratio
of the expected area under the path of the (n + 1)-st generation process and the
expected area under the path of the n-th generation process.

For Theorem 7 and Theorem 8, we assume that the expected man-hours of Y
are finite. Lemma 3.1.7 shows that, under Assumptions A1 and A3, an equivalent
condition for this is given in Assumption A5 below.

Assumption A5. The parameter α and the functions g and h satisfy

(1.54)

∫ ∞
x

y

g(y)s̄(y)
dy <∞

for some and then for all x > 0.

We mention that if Assumptions A1, A3 and A5 hold, then the process Y hits
zero in finite time almost surely (see Lemma 3.1.6 and Lemma 3.1.7). A generic
example for h and g is h(y) = c1y

κ1 − c2y
κ2 , g(y) = c3y

κ3 with c1, c2, c3 > 0.
The Assumptions A1, A2, A3, A4 and A5 are all satisfied if κ2 > κ1 ≥ 1 and if
κ3 ∈ [1, 2).

For the formulation of the extinction result, we define

(1.55) s(z) := exp
(
−
∫ z

0

−αx+ h(x)

g(x)
dx
)
, S(y) :=

∫ y

0

s(z) dz, z, y > 0,

which is well-defined under Assumption A4. Notice that S̄(y) = S(y)S̄
′
(0). Recall

the Virgin Island process from (1.19) and the excursion measure QY from (1.16).

Theorem 7. Assume A1, A3, A4 and A5. Then the Virgin Island process (Vt)t≥0

started in x > 0 dies out (i.e., converges in probability to zero as t→∞) iff

(1.56)

∫ ∫ ∞
0

αχs dsQY (dχ) ≤ 1.



20 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

The expression on the left-hand side may be explicitly expressed in terms of α, h
and g as

(1.57)

∫ ∞
0

αy

g(y)s(y)
dy =

∫ ∫ ∞
0

αχs dsQY (dχ).

In case of survival, Vt converges weakly as t → ∞ to a random variable V∞
satisfying

(1.58) Px(V∞ = 0) = 1−Px(V∞ =∞) = Ex exp
(
−q
∫ ∞

0

αYs ds
)

for all x ≥ 0 and some q > 0.

In the critical case, that is, equality in (1.56), Vt converges to zero as t→∞.
However, it turns out that the expected area under the graph of V is infinite.
Furthermore, we obtain in Theorem 8 the asymptotic behaviour of the expected
man-hours of V up to time t as t→∞. For this, define

(1.59) w(x) :=

∫ ∞
0

S(x ∧ z)
z

g(z)s(z)
dz, x ≥ 0.

If Assumptions A1, A3, A4 and A5 hold, then w(x) is finite for fixed x <∞; see
Lemma 3.1.7.

Theorem 8. Assume A1, A3, A4 and A5. If the left-hand side of (1.56) is strictly
smaller than one, then, for all x ≥ 0, the expected value of the total man-hours of
V is equal to

(1.60) Ex

∫ ∞
0

Vs ds =
Ex
(∫∞

0
Ys ds

)
1−

∫ (∫∞
0
αχs ds

)
QY (dχ)

=
w(x)

1−
∫∞

0
αz

g(z)s(z)
dz
,

which is finite. Otherwise, the left-hand side of (1.60) is infinite. In the critical
case, that is, equality in (1.56),

1

t

∫ t

0

ExVs ds→
Ex
(∫∞

0
Yu du

)
∫ (∫∞

0
uαχu du

)
QY (dχ)

=
w(x)∫∞

0
αw(y)
g(y)s(y)

dy
∈ [0,∞)(1.61)

as t → ∞ where the right-hand side is interpreted as zero if the denominator is
equal to infinity. In the supercritical case, i.e., if (1.56) fails to be true, let β > 0
be such that

(1.62)

∫ ∞
0

e−βu
∫
αχuQY (dχ) du = 1.
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Then the order of convergence of the expected man-hours of V up to time t can be
read off from

(1.63) e−βt
∫ t

0

ExVs ds→
∫∞

0
e−βuEx

∫ u
0
Ys ds du∫∞

0
ue−βu

∫
αχuQY (dχ)du

∈ (0,∞)

as t→∞ for all x ≥ 0.

Remark 1.2.3. The parameter β defined in (1.62) is called Malthusian parameter
(see [19]).

1.3 Outline

Fast readers may want to proceed directly to the proof of a specific theorem.
Theorem 1, Theorem 2, Theorem 3 and Theorem 5 will be established in Sec-
tion 2.2, Section 2.4, Section 2.5 and Section 2.6, respectively. The proof of
Proposition 1.2.2 is contained in Section 2.4. Furthermore, we prove Theorem 6,
Theorem 7 and Theorem 8 in Chapter 3, more precisely in Section 3.1, Section 3.4
and Section 3.2, respectively.

The main results of Chapter 2 are the local extinction result for interacting
locally regulated diffusions (Theorem 2) and the convergence result of interacting
Feller diffusions with logistic growth (Theorem 5). In Section 2.1, we obtain the
existence and uniqueness result of Proposition 1.2.1. Furthermore, Lemma 2.1.3
provides for a comparison of two solutions of equation (1.5) which differ in the reg-
ulation function h. This comparison result is an important ingredient in the proof
of the existence of the maximal process (Theorem 1) which is included in Sec-
tion 2.2. Section 2.3 contains an extinction result for the mean field model (1.8).
The main step for this is Proposition 2.3.1 which determines the number – depend-
ing on the parameters – of equilibrium distributions of the mean field model (1.8).
Furthermore, the calculations of Proposition 2.3.1 yield the condition for local
extinction, that is, (1.41). Lemma 2.3.3 exploits the properties of the maximal
process to conclude that the mean field process dies out if there is no nontrivial
equilibrium distribution. Section 2.4 establishes Proposition 1.2.2, that is, the
comparison between the mean field model and the system of interacting locally
regulated diffusions. Together with the results of Section 2.3, this leads to a proof
of Theorem 2. The self-duality stated in Theorem 3 is the key ingredient in our
proof of the ergodicity result of Theorem 5. Section 2.5 contains an analytical
proof of Theorem 3, and Section 2.6 establishes Theorem 5.

The Virgin Island Model is the subject of Chapter 3. Section 3.1 is devoted
to the one-dimensional diffusion (1.10). After proving Theorem 6, we calculate
the explicit formulas of both Theorem 7 and of Theorem 8 in Lemma 3.1.3 and
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in Lemma 3.1.5, respectively. In Section 3.2, we prove Theorem 8 which specifies
the asymptotic behaviour of the expected man-hours of V up to time t as t→∞.
Section 3.3 contains the key lemma for the extinction result of Theorem 7. More
precisely, we prove in Lemma 3.3.2 that the Laplace transform of the Virgin Island
process satisfies a certain integro-differential equation. This equation will then be
used in Section 3.4 to prove Theorem 7.

In Chapter 4, we obtain a graphical representation of the two duality rela-
tions (1.24) and (1.26). The definition of duality of a pair of basic mechanisms is
contained in Section 4.2. In the same section, we construct processes (XN

t )t≥0 and
(Y N

t )t≥0, which satisfy equation (1.27), by means of a graphical representation.
From (1.27), the prototype duality (1.28) is derived in Section 4.3. Finally, we
show the convergence of the approximating processes in Section 4.4.



Chapter 2

Local extinction and ergodic
behaviour

The system (Xt)t≥0 of interacting locally regulated diffusions is the solution of
equation (1.5). Its state space is the Liggett-Spitzer space Eσ which has been
defined in Section 1.2. In Section 2.1, we prove Proposition 1.2.1 which claims
existence and uniqueness of a strong solution of (1.5). In the same section,
Lemma 2.1.3 provides for a comparison of two solutions of equation (1.5) which
differ in the regulation function h. This comparison result is the key ingredient in
the proof of the existence of the maximal process (Theorem 1) which we prove in
Section 2.2.

In Section 2.4, we prove the local extinction result of Theorem 2. The main
steps for this are as follows. An application of Theorem 1 will show that we may
assume that L (X0) satisfies the assumptions of Proposition 1.2.2, which we prove
in Section 2.4. Proposition 1.2.2 asserts that (Xt)t≥0 is dominated by the mean
field model (Mt)t≥0 which is the solution of (1.8). Hence, it suffices to establish
an extinction result for (Mt)t≥0 which is included in Section 2.3.

The proof of the convergence result of Theorem 5 consists of two steps. First,
we prove the duality relation (1.45) of Theorem 3 in Section 2.5. By Theorem 3,
it suffices to consider the total mass process defined by |Xt| :=

∑
i∈Zd Xt(i), t ≥ 0.

The second step is to prove that the total mass process with probability one
either converges to zero or converges to infinity, see Lemma 2.6.1. Both the proof
of Lemma 2.6.1 and the proof of Theorem 5 are contained in Section 2.6.

2.1 Preliminaries

For the proof of existence and uniqueness of the solution of equation (1.5), we
need three preliminary lemmas. In the first two of these, we obtain bounds on the

23
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first moment and on the second moment of X. For this, we define

(2.1) bi(x) := α

(∑
j∈G

m(i, j)xj − xi
)

+ h(xi), x ∈ Eσ,

where σ = (σi)i∈G satisfies (1.30). Denote z+ := z ∨ 0. By inequality (1.30) and
Assumption A1, there exists a finite constant C1 such that

(2.2)
∑
i∈M

σi1xi−yi≥0

(
bi(x)− bi(y)

)
≤ C1‖

(
x· − y·

)+ ‖
σ
, ∀ x, y ∈ Eσ

for every subset M ⊆ G. From inequality (2.2), we will obtain monotonicity in
the initial configuration. This monotonicity is a crucial property which we will
exploit several times. First, we prove boundedness of second moments.

Lemma 2.1.1. Suppose that h and g satisfy Assumption A1. Let (Xt) be any
weak solution of equation (1.5) with E ‖X0 ‖2

σ < ∞, whose paths are continuous
in Eσ. Then there exists a constant C <∞ such that for each T ≥ 0

(2.3) sup
t≤T

E ‖Xt ‖2
σ ≤

(
1 + E ‖X0 ‖2

σ

)
eCT <∞.

Proof. Let Gk be finite subsets of G which monotonically exhaust G as k → ∞.
Denote ‖x ‖σ,k :=

∑
i∈Gk σi|xi|. Applying Itô’s formula, we obtain

d ‖Xt ‖2
σ,k = 2 ‖Xt ‖σ,k

∑
i∈Gk

σi

(
bi(Xt) dt+

√
2g
(
Xt(i)

)
dBt(i)

)
+2
∑
i∈Gk

σ2
i g
(
Xt(i)

)
dt.

(2.4)

Let n ∈ N. The continuous function g is bounded on the interval [0, n/σi] for
every i ∈ Gk. Thus, the stochastic integrals on the right hand side of (2.4) are L2-
martingales when stopped at time τn := inft≥0{‖Xt ‖σ ≥ n}. By path continuity,
we have τn → ∞ as n → ∞ almost surely. Taking expectations, inequality (2.2)
with y = 0 implies

(2.5) E‖Xt∧τn ‖
2
σ,k ≤ E‖X0 ‖2

σ,k + 2E

∫ t∧τn

0

(
C1‖Xs ‖2

σ +
∑
i∈G

σ2
i g
(
Xs(i)

))
ds.

By the growth condition (1.33), we know that g(x) ≤ C2(1+x2) for some constant
C2 <∞. Letting k →∞ and using monotone convergence, we obtain

(2.6) E‖Xt∧τn ‖
2
σ ≤ E‖X0 ‖2

σ + C3

∫ t

0

(
1 + E‖Xs∧τn ‖

2
σ

)
ds
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for some constant C3 < ∞. Applying Gronwall’s inequality to the function t 7→
1 + E‖Xt∧τn ‖

2
σ, we arrive at

(2.7) E‖Xt∧τn ‖
2
σ ≤

(
1 + E‖X0 ‖2

σ

)
eC3t − 1.

Letting n→∞, Fatou’s lemma completes the proof.

In the proof of Proposition 1.2.1, we need a stronger uniformity than Lemma
2.1.1 provides.

Lemma 2.1.2. Assume A1. Let (Xt) be any weak solution of equation (1.5)
satisfying condition (2.3). Then, for each T ≥ 0, there exists a constant C̃T <∞
such that

(2.8) E sup
t≤T
‖Xt ‖σ ≤ C̃T

(
1 + E ‖X0 ‖σ + E ‖X0 ‖2

σ

)
<∞.

Proof. Recall the definition of Gk and ‖ . ‖σ,k from the proof of Lemma 2.1.1.
Multiplying by σi and summing over i ∈ Gk in (1.5), we obtain for t ≤ T

‖Xt ‖σ,k − ‖X0 ‖σ,k =

∫ t

0

∑
i∈Gk

σibi(Xs) ds+

∫ t

0

∑
i∈Gk

σi

√
2g
(
Xs(i)

)
dBs(i)(2.9)

The estimate (2.2) implies that
∑

i∈Gk σibi(Xs) ≤ C1‖Xs ‖σ. Thus, denoting the

rightmost term in (2.9) by Mk
t , we obtain

(2.10) sup
u≤t
‖Xu ‖σ,k ≤ ‖X0 ‖σ +

∫ t

0

C1 sup
r≤s
‖Xr ‖σ ds+ sup

u≤T
|Mk

u |.

The process (Mk
t ) is an L2-martingale since, by the assumption g(x) ≤ C(1 + x2)

and condition (2.3), the integrands
√

2g(Xs(i)) in (2.9) are square integrable, and

the second moment E|Mk
T |

2
=
∫ T

0
2
∑

i∈Gk σ
2
iEg

(
Xs(i)

)
ds is bounded by C̄T (1 +

E‖X0 ‖2
σ) for some constant C̄T . Thus, using the estimate z ≤ 1+z2, we conclude

from Doob’s L2-inequality that

(2.11) E sup
u≤T
|Mk

u | ≤ 1 + E|Mk
T |

2 ≤ 1 + C̄T (1 + E‖X0 ‖2
σ).

Therefore, taking expectations in (2.10) and applying monotone convergence, we
obtain

(2.12) E sup
u≤t
‖Xu ‖σ ≤ E‖X0 ‖σ+C1

∫ t

0

E sup
r≤s
‖Xr ‖σ ds+1+C̄T

(
1 + E ‖X0 ‖2

σ

)
for all t ≤ T . Now the assertion follows from Gronwall’s inequality.
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The following monotone coupling lemma will be an important tool.

Lemma 2.1.3. Let h1, h2 and g satisfy Assumption A1, and let B =
(
B(i)

)
i∈G

be a system of independent Brownian motions defined on some filtered probability
space. For ι = 1, 2, assume that X ι is defined on the same probability space,
satisfies equation (1.5) with Brownian motions B(i), drift function hι and initial
configuration xι ∈ Eσ, and has continuous paths in Eσ. Then

(2.13) h1 ≤ h2 together with x1 ≤ x2 implies X1
t ≤ X2

t ∀ t ≥ 0 a.s.

Proof. The first part of the proof follows that of Theorem 3.2 in [18]. Let 1 >
a1 > · · · > an > · · · > 0 be defined by

(2.14)

∫ 1

a1

1

u
du = 1,

∫ a1

a2

1

u
du = 2, ...,

∫ an−1

an

1

u
du = n, ...

Notice that an → 0 as n→∞. For every n = 1, 2, .., define a continuous function
ψn(u) with support in (an, an−1) such that

(2.15) 0 ≤ ψn(u) ≤ 2

nu
and

∫ an−1

an

ψn(u) du = 1.

Furthermore, define

(2.16) φn(x) := 1x>0

∫ x

0

dy

∫ y

0

ψn(u) du, x ∈ R.

These functions satisfy φn ∈ C2(R), |φ′n(x)| ≤ 1, φ
′′
n(x) = 1x>0ψn(x), φn(x) ≤ x+

and φn(x)→x+ as n→∞. Fix i ∈ G and let τk := inf{t ≥ 0: X1
t (i)∨X2

t (i) ≥ k}.
Write ∆i

t := X1
t (i)−X2

t (i) and let bιi be as in equation (2.1) with h replaced by
hι, ι = 1, 2. By Itô’s formula,

φn
(
∆i
t∧τk

)
− φn

(
∆i

0

)
=

∫ t∧τk

0

φ
′

n

(
∆i
s

)[√
2g
(
X1
s (i)
)
−
√

2g
(
X2
s (i)
)]
dBs(i)

+

∫ t∧τk

0

φ
′

n

(
∆i
s

)[
b1
i

(
X1
s

)
− b2

i

(
X2
s

)]
ds

+
1

2

∫ t∧τk

0

φ
′′

n

(
∆i
s

)[√
2g
(
X1
s (i)
)
−
√

2g
(
X2
s (i)
)]2

ds.

(2.17)

As n→∞, the left hand side converges to
(
∆i
t∧τk

)+−
(
∆i

0

)+
in L1 by dominated

convergence and Lemma 2.1.1. In the rest of the proof, C1, C2, ... will be suitably
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chosen finite constants. By Assumption A1, there exists a constant C1 such that
g(x) ≤ C1(1 + x2). Thus, Lemma 2.1.1 implies Eg(X ι

t (i)) < ∞ and we have by
dominated convergence

(2.18) E

∫ t∧τk

0

(
1∆i

s>0 − φ
′

n

(
∆i
s

))2(√
2g(X1

s (i))−
√

2g(X2
s (i))

)2

ds
n→∞−−−→ 0.

Hence, the first (stochastic) integral on the right hand side converges in L2 to
the same expression with φ

′
n(x) replaced by 1x>0. For the second integral, notice

that bιi is globally Lipschitz continuous on {x : xi ≤ k}. Thus, for s ≤ τk, |bιi(X ι
s)|

is bounded by C2‖X ι
s ‖σ, which has finite expectation by Lemma 2.1.1, and we

obtain by dominated convergence

(2.19)

∫ t∧τk

0

∣∣1∆i
s>0 − φ

′

n

(
∆i
s

)∣∣ · ∣∣b1
i (X

1
s )− b2

i (X
2
s )
∣∣ ds n→∞−−−→ 0.

Finally, we consider the third integral on the right hand side of equation (2.17).
The local Lipschitz continuity of g implies that

√
g is globally 1/2-Hölder con-

tinuous on the interval [0, k]. Therefore, the last integral in (2.17) is bounded
by

(2.20)

∫ t∧τk

0

2

n|∆i
s|
· C3|∆i

s| ≤
2C3t

n
→ 0 as n→∞.

Putting these calculations together, equation (2.17) implies

(
∆i
t

)+ −
(
∆i

0

)+
=

∫ t

0

1∆i
s>0

[√
2g
(
X1
s (i)
)
−
√

2g
(
X2
s (i)
)]
dBs(i)

+

∫ t

0

1∆i
s>0

[
b1
i

(
X1
s

)
− b2

i

(
X2
s

)]
ds

(2.21)

for all t ≤ τk almost surely. By path continuity, we have τk → ∞ almost surely
as k → ∞ and thus, equation (2.21) holds for all t ≥ 0. The stochastic integral
on the right hand side is an L2-martingale because of g(x) ≤ C1(1 + x2) and
Lemma 2.1.1. Taking expectations, we arrive at

E

[∑
i∈G

σi
(
∆i
t

)+ −
∑
i∈G

σi
(
∆i

0

)+

]

=

∫ t

0

E
∑
i∈G

σi1∆i
s>0

[
b1
i

(
X1
s

)
− b2

i

(
X2
s

)]
ds

≤ C4

∫ t

0

E
∑
i∈G

σi
(
∆i
s

)+
ds.

(2.22)
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In the last step, we used b1
i ≤ b2

i and inequality (2.2). By Gronwall’s inequality,
we obtain

(2.23) E ‖
(
∆i
t

)+ ‖
σ
≤ ‖

(
∆i

0

)+ ‖
σ
eC4t, i ∈ G.

For later use, we note that this inequality implies

(2.24) E ‖∆i
t ‖σ ≤ ‖∆i

0 ‖σe
C4t, i ∈ G.

if b1 = b2. For this, notice that |x1
i − x2

i | = (x1
i − x2

i )
+

+ (x2
i − x1

i )
+

. The right
hand side of inequality (2.23) is zero by the assumption x1 ≤ x2, which finishes
the proof of the monotonicity result for fixed t ≥ 0. Finally, X1

t ≤ X2
t follows for

all t ∈ Q≥0 and then by continuity of paths for all t ≥ 0 almost surely.

Proof of Proposition 1.2.1. Let B = (Bi)i∈G be a system of independent Brownian
motions, and fix an initial condition x ∈ Eσ. We will prove existence of a solution
of (1.5) similarly as in [12], where the system (1.5) is studied in the case h = 0.
To this end, for finite Λ ⊆ G and i, j ∈ G, we define mΛ(i, j) := m(i, j)1i,j∈Λ and
consider the finite dimensional system

dXΛ
t (i) =α

∑
j∈Λ

mΛ(i, j)XΛ
t (j) dt− αXΛ

t (i) dt

+ h
(
XΛ
t (i)

)
dt+

√
2·g
(
XΛ
t (i)

)
dBt(i), i ∈ Λ.

(2.25)

Under Assumption A1, equation (2.25) has a unique solution XΛ starting in
(xi)i∈Λ. We extend XΛ to an infinite sequence (still denoted by the same symbol)
by putting XΛ

t (i) := 0 for i ∈ G \ Λ. Following the arguments in the proof of
Theorem 1 in [12], one can show that there exists a process X = (Xt(i)) arising
as the monotone limit

(2.26) XΛ
t (i) ↑ Xt(i) as Λ ↑ G.

To show that X has a.s. continuous paths in Eσ, we first note that for each finite
Λ ⊆ G the process XΛ, being a finite dimensional diffusion, has a.s. continuous
paths and therefore satisfies

(2.27) lim
δ→0

P
(

sup
|t−s|≤δ, s,t≤T

‖XΛ
t −XΛ

s ‖σ ≥ ε
)

= 0

for all ε > 0 and T > 0.
For all finite Λ ⊆ G, the process XΛ satisfies the assumptions of Lemma 2.1.1,

with m(i, j) in (1.5) replaced by mΛ(i, j). Consequently, XΛ also satisfies (2.3),
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where the constant C can be chosen uniformly in Λ. Therefore, by the monotone
convergence (2.26), X satisfies (2.3) and, due to Lemma 2.1.2, also (2.8).

Next, we set out to show that for all ε > 0 and T ≥ 0

(2.28) lim
Λ↑G

P
(
sup
t≤T
‖Xt −XΛ

t ‖σ ≥ ε
)

= 0.

For this purpose, let Gk and ‖x ‖σ,k be as in the proof of Lemma 2.1.1. From (2.26)
together with the a.s. component-wise continuity of X and Dini’s theorem we
conclude that for all T > 0 and k ∈ N:

(2.29) sup
t≤T
‖Xt −XΛ

t ‖σ,k → 0 a.s. as Λ ↑ G.

By (2.8) and dominated convergence we therefore have

(2.30) E sup
t≤T
‖Xt −XΛ

t ‖σ,k → 0 a.s. as Λ ↑ G.

For every finite Λ ⊆ G and k ∈ N we estimate

E sup
t≤T
‖Xt −XΛ

t ‖σ ≤ E sup
t≤T
‖Xt −XΛ

t ‖σ,k + 2E sup
t≤T

∑
i 6∈Gk

σiXt(i).(2.31)

The rightmost term in (2.31) does not depend on Λ and converges to 0, again
because of (2.8) and dominated convergence. Together with (2.30) this implies
that the left hand side of (2.31) converges to zero, and proves (2.28).

For ε, δ and T > 0 we have the estimate

(2.32) P
(

sup
|t−s|≤δ, s,t≤T

‖Xt −Xs ‖σ ≥ 3ε
)

≤ P
(

sup
|t−s|≤δ, s,t≤T

‖XΛ
t −XΛ

s ‖σ ≥ ε
)

+ 2P
(
sup
t≤T
‖Xt −XΛ

t ‖σ ≥ ε
)
.

Because of (2.27) and (2.28) the left hand side of (2.32) converges to 0 as δ → 0.
This implies almost sure pathwise continuity.

For uniqueness, we proceed as follows. In the situation of Lemma 2.1.3, choose
h1 = h2 and x1 = x2. Then pathwise uniqueness follows by applying Lemma 2.1.3
twice. Uniqueness in law and strong existence follow then from a Yamada-Watana-
be type argument (see [31], Theorem 2.2). For the existence of a strong solution, it
remains to show that the dependence of the unique solution on the initial configura-
tion is measurable. This follows from the monotonicity result of Lemma 2.1.3.

Lemma 2.1.4. Let h and g satisfy Assumption A1. The strong solution Xt of sys-
tem (1.5) is monotonically continuous in its initial configuration in the following

sense: Let x(n), x ∈ Eσ be the starting points of X
(n)
t and Xt, such that

(2.33) x(n) ↑
(
↓
)
x as n ↑ ∞.
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Then

(2.34) X
(n)
t ↑

(
↓
)
Xt ∀ t ≥ 0 as n ↑ ∞ a.s.

Proof. In equation (2.24), let h1 = h2 := h, X1
t := Xt and X2

t := X
(n)
t . Letting

n → ∞, this implies L1-convergence of Xt − X
(n)
t for fixed time t ≥ 0. The

monotonicity result of Lemma 2.1.3 finishes the proof.

2.2 The upper invariant measure. Proof of The-

orem 1

Proof of Theorem 1. To fix notation, let us write Lx(Xt) for the distribution of
Xt (the solution of (1.5)) starting from an element x ∈ Eσ. For N ∈ N we define
the element N ∈ Eσ by N(i) ≡ N , i ∈ G. Let XN

t be the process started from
N . By Lemma 2.1.3, the sequence XN

t is nondecreasing in N for all t > 0; let us

write X
(∞)
t for its a.s. limit.

Now let (x(n)) be a sequence as in Theorem 1(c). For all n ∈ N we conclude
from Lemma 2.1.4 that

(2.35) L
(
X

(∞)
t

)
↖

N→∞
LN
(
Xt

)
≥ Lx(n)∧N(Xt

)
↗

N→∞
Lx(n)(

Xt

)
Again by Lemma 2.1.4 we obtain for all N ∈ N

(2.36) Lx(n)∧N(Xt

)
↗
n→∞

LN
(
Xt

)
Thus, by a diagonal argument, there is a subsequence x(nN ) of x(n) such that

(2.37) Lx(nN )∧N(Xt

)
↗

N→∞
L
(
X

(∞)
t

)
.

Together with inequality (2.35) and monotonicity (Lemma 2.1.3), this results in

(2.38) Lx(nN )(
Xt

)
↗

N→∞
L
(
X

(∞)
t

)
.

As (x(n)) is an increasing sequence, (2.38) is equivalent to (1.38).
The next step shows that the limit is finite almost surely. Let ĥ ≥ h be the

function given by Assumption A2. Notice that ĥ may be replaced by ĥ + C for
every constant C ≥ 0. Furthermore, h is bounded above. Thus, the function ĥ
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may be modified such that, in addition, ĥ is concave. By Itô’s formula, Lemma
2.1.1 and translation invariance,

(2.39)
d

dt
EXN

t (i) = Eh(XN
t (i)) ≤ Eĥ

(
XN
t (i)

)
≤ ĥ

(
EXN

t (i)
)
.

For the last step, we applied Jensen’s inequality. Therefore, the expectation is
bounded above by the deterministic function y(t, x) satisfying

(2.40)
d

dt
y(t, x) = ĥ

(
y(t, x)

)
, y(0, x) = x.

The concave function ĥ(x) converges to −∞ as x → ∞. Choose x0 such that
ĥ is strictly negative for all x ≥ x0. Then for all x > x0 and t > 0 we have
x0 < y(t, x) < x. From (2.40) we obtain by separation of variables that the
solution satisfies

(2.41) t = −
∫ x

y(t,x)

1

ĥ(z)
dz ≤

∫ ∞
y(t,x)

1

−ĥ(z)
dz ↓

∫ ∞
lim
x→∞

y(t,x)

1

−ĥ(z)
dz as x→∞.

For the monotone convergence, notice that y(t, x) is nondecreasing in x and that
all integrals are finite by inequality (1.34). Hence, if lim

x→∞
y(t, x) was infinite for

t > 0 then we would face the contradiction 0 < t ≤ 0. Therefore, we arrive at

(2.42) E
wwX(∞)

t

ww
σ

=
∑
i∈G

σi ↑ lim
N→∞

EXN
t (i) ≤

∑
i∈G

σi lim
x→∞

y(t, x) <∞, t > 0.

From Lemma 2.1.4 it is then clear that for all ε > 0 the solution of (1.5) which

starts at time t = ε from X
(∞)
ε is the a.s. monotone limit (as N → ∞) of the

solutions of (1.5) starting from X
(N)
ε at time ε, or equivalently starting from N

at time 0. At the beginning of the proof we defined X
(∞)
t as this limit; hence we

have so far proved parts a), b) and c) of Theorem 1.
A similar argument as in (2.35) proves that the process with initial measure µ

is dominated by the maximal process, which is part (e).
To prove part (d), fix 0 < s < t. By part (e),

(2.43) L
(
X(∞)
r

)
≥ LX

(∞)
t−s (Xr).

Using this with r = s, we get the inequality

(2.44) L
(
X(∞)
s

)
≥ LX

(∞)
t−s (Xs) = L

(
X

(∞)
t

)
,

where the last equality follows from the Markov property. We conclude from this
monotonicity that L

(
X

(∞)
t

)
↓ ν̄ for some probability measure ν̄ on Eσ, which by
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continuity in the initial configuration (Lemma 2.1.4) is an equilibrium distribution
of the dynamics (1.5).

Next, we show that the upper invariant measure is translation invariant and
is associated. Both properties are preserved under weak limits. Furthermore, we
will argue that these properties are preserved under the dynamics. The constant
configuration XN

0 ≡ N is both translation invariant and associated. Hence, both

XN
t and X

(∞)
t have these properties for all t > 0. Therefore, the claim follows.

The translation invariance of the migration kernel implies that the dynam-
ics (1.5) preserves translation invariance. To prove the preservation of associated
measures, we will argue in a similar way as in [4] where the analogue of (1.5) with
h = 0 and [0, 1]G instead of RG

≥0 was treated. We first consider the approximation
scheme (XΛ,Λ) with finite Λ ⊂ G, used to prove the existence part of Proposition
1.2.1. For fixed Λ, Theorem 1.1 in [15] together with a uniform approximation
of h and g on compact intervals by smooth and bounded functions hk and gk
with infx≥0 gk(x) > 0 shows that, for an associated initial distribution L(X0), the
projections of L(XΛ

t ) to RΛ
≥0 are associated. Since L(XΛ

t ) approximates L(Xt) as
Λ ↑ G, the claim follows.

2.3 The mean field model

In this section we study the dynamics

(2.45) dMt = α(EMt −Mt)dt+ h(Mt)dt+
√

2g(Mt)dBt.

It can be shown (but will not be required for the subsequent proofs) that (2.45)
arises as the limit of a sequence of processes following the dynamics (1.5), where
G is replaced by a finite set Gn of cardinality n and m(n)(i, j) = 1/n for i, j ∈ Gn.
This type of limit is known as mean field or Vlasov-McKean limit; we will therefore
address (2.45) briefly as mean field model. Intuitively, a uniform migration which
spreads out mass as far as possible should be good for survival, and conversely, ex-
tinction of (Mt)t≥0 governed by (2.45) should imply extinction of (Xt)t≥0 governed
by (1.5). With this motivation in mind, we investigate in this section conditions
on h and g under which the dynamics (2.45) admits a nontrivial equilibrium dis-
tribution.

To this end, we consider the following

Proposition 2.3.1. Suppose that Assumption A1 holds and that

(2.46) ∃ y0 > 0: h
∣∣
[0,y0]
≥ 0 and 0 6≡ h

∣∣
[y0,∞)

≤ 0.

There is no nontrivial invariant measure for the dynamics (2.45) if and only if

(2.47)

∫ ∞
0

h(y)

g(y)
exp

(∫ y

y0

−αx+ h(x)

g(x)
dx

)
dy ≤ 0.
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If condition (2.47) is not satisfied then there is exactly one nontrivial invariant
measure. Under Assumption A1 and Assumption A4, condition (2.47) is equiva-
lent to

(2.48)

∫ ∞
0

αy

g(y)
exp

(∫ y

0

−αx+ h(x)

g(x)
dx

)
dy ≤ 1.

Proof. Let θ > 0 and consider the process given by

(2.49) dM θ
t = α(θ −M θ

t )dt+ h(M θ
t )dt+

√
2g(M θ

t )dBt.

By standard theory (e.g. pages 220f and 241 in Karlin and Taylor [21]), the
equilibrium distribution of (2.49) is

(2.50) Γθ(dy) =
Cθ
g(y)

exp

(∫ y

y0

α(θ − x) + h(x)

g(x)
dx

)
dy =: Cθ Φ(y) dy,

where Cθ ∈ (0,∞) is the normalising constant. Indeed, existence of an equi-
librium of (2.49) is clear since the drift in zero is positive in zero and becomes
sufficiently negative near ∞; formally, this follows from the finiteness of the inte-
gral

∫∞
0

Φ(y) dy, which can be checked easily.
Obviously, (2.45) admits a nontrivial equilibrium if and only of

∫
yΓθ(dy) = θ

has a positive solution. Hence, all we need to do is to characterise the situations
where

(2.51) @θ > 0: f(θ) := α

∫
y − θ
Cθ

Γθ(dy) = 0.

We eliminate one occurrence of θ on the left hand side of (2.51) by an integration
by parts:

f(θ) =

∫ ∞
0

α(y − θ)
g(y)

exp

(∫ y

y0

α(θ − x)

g(x)
dx

)
exp

(∫ y

y0

h(x)

g(x)
dx

)
dy

= lim
ε→0

[
exp

(∫ y

y0

α(θ − x) + h(x)

g(x)
dx

)]ε
1/ε

+

∫ ∞
0

h(y)

g(y)

(
exp

(∫ y

y0

α

g(x)
dx

))θ
exp

(∫ y

y0

−αx+ h(x)

g(x)
dx

)
dy.

(2.52)

We now analyse the two boundary terms on the right hand side of (2.52). In
the following calculations, Ci are finite constants. Recall that h is nonpositive for
large arguments. Furthermore, in Assumption A1 we assumed g(x) ≤ Cx2 for
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some constant C and all x ≥ y0 > 0. With this, the expression coming from the
boundary value 1/ε tends to zero as ε→ 0:

exp

(∫ 1/ε

y0

α(θ − x) + h(x)

g(x)
dx

)
≤ C1 exp

(∫ 1/ε

y0∨θ

α(θ − x)

Cx2
dx

)
ε→0−−→ 0.(2.53)

For the other boundary term, we recall that h is nonnegative for small arguments
and estimate

0 ≤ exp

(
−
∫ y0

ε

α(θ − x) + h(x)

g(x)
dx

)
≤ C2 exp

(
−
∫ y0∧(θ/2)

ε

αθ/2

g(x)
dx

)
ε→0−−→ C3 exp

(
−θα

2

∫
0+

1

g(x)
dx

)
.

(2.54)

By assumption, g is locally Lipschitz continuous in zero and thus g(x) ≤ C4x in a
neighbourhood of zero. Together with θ > 0, this implies that all boundary terms
vanish. Notice that the expression coming from the boundary value ε does not
need to be zero in case θ = 0.

At this point we have seen that f can be rewritten as

f(θ) =

∫ ∞
0

h(y)

g(y)

(
exp

(∫ y

y0

α

g(x)
dx

))θ
exp

(∫ y

y0

−αx+ h(x)

g(x)
dx

)
dy.(2.55)

for θ > 0. We will show that f is strictly decreasing and continuous in θ > 0. For
this, consider the function

(2.56) θ 7→ h(y)

(
exp

(∫ y

y0

α

g(x)
dx

))θ
for fixed y ≥ 0. If y < y0 then h(y) ≥ 0 and the integral is negative. If y > y0 then
h(y) ≤ 0 and the integral is positive. In both situations, the function in (2.56) is
non-increasing. Furthermore, there is an interval [y1, y2] with y0 ≤ y1 < y2 where
h(y) < 0 and where the function in (2.56) is strictly decreasing and converging
to −∞. The integral over [0, y0] on the right hand side of (2.55) is continuous
and non-increasing in θ > 0, and bounded in θ ≥ 1. This follows from dominated
convergence and the fact that the integral over [0, ε] on the right hand side of (2.55)
is bounded above by∫ ε

0

1

g(y)
exp

(∫ y

ε

αθ̄

2g(x)
dx

)
dy· sup

x≤y0
h(x) exp

(∫ ε

y0

α(θ̄ − x) + h(x)

g(x)
dx

)
≤ exp

(∫ y

ε

αθ̄

2g(x)
dx

)∣∣∣∣ε
0

·C <∞
(2.57)
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for all θ ≥ θ̄ > 0, where ε > 0 is such that |αx− h(x)| ≤ αθ̄/2 for all x ≤ ε. By
monotone convergence, the integral over [y0,∞) on the right hand side of (2.55)
is continuous and strictly decreasing in θ > 0, and decreases to −∞. Thus, the
function f is continuous and strictly decreasing in θ > 0 with f(∞) = −∞.
Hence, condition (2.51) is satisfied if and only if limθ→0 f(θ) ≤ 0. Note that by
strict monotonicity of f , there is at most one nontrivial invariant measure.

For the limit θ → 0 in equation (2.55), we use monotone convergence (for the∫ y0
0

part) and dominated convergence (for the
∫∞
y0

part). Thus, we have

(2.58) lim
θ→0

f(θ) =

∫ ∞
0

h(y)

g(y)
exp

(∫ y

y0

−αx+ h(x)

g(x)
dx

)
dy

Therefore, limθ→0 f(θ) ≤ 0 is equivalent to condition (2.47).

Now, additionally assume that limε→0

∫ y0
ε
−αx+h(x)

g(x)
dx exists in (−∞,∞]. Then

reversing the calculation in (2.52) with θ = 0, we arrive at

lim
θ→0

f(θ) =

∫ ∞
0

αy

g(y)
exp

(∫ y

y0

−αx+ h(x)

g(x)
dx

)
dy

− exp

(
−lim
ε→0

∫ y0

ε

−αx+ h(x)

g(x)
dx

)
.

(2.59)

If the limit on the right hand side is ∞ then limθ→0 f(θ) > 0 and a nontrivial
invariant measure exists. The assertion is true in this case because the left hand
side of (2.48) is ∞. Otherwise, the limit on the right hand side of (2.59) is

finite. Then multiply the equation with exp
(∫ y0

0
−αx+h(x)

g(x)
dx
)

and merge the two

integrals
∫ y0

0
and

∫ y
y0

into one integral. Hence, we see that (2.47) and (2.48) are
equivalent.

We now specialise this result to the logistic Feller case, where condition (2.48)
can be simplified.

Corollary 2.3.2. Consider the mean field model (2.45) with h(x) = γx(K − x)
and g(x) = βx. Assume α, γ, β > 0 and let K > 0 be uniquely determined by

(2.60)

∫ ∞
0

exp
(
Kγy − γβ

2
y2
)
·α exp

(
−αy

)
dy = 1.

There is no nontrivial invariant measure for (2.45) if and only if 0 ≤ K ≤ K.

Proof. First of all, convince yourself that Assumptions A1 and A2 hold. Thus,
Proposition 2.3.1 applies if K > 0. After an integration and a change of variables
(y → βy), condition (2.48) takes the form (1.43). The left hand side in (1.43)
is strictly increasing in K, tends to ∞, is continuous in K by monotone conver-
gence and is smaller than one for K = 0. Hence, K exists and is unique. By
monotonicity, condition (1.43) holds if and only if K ≤ K.
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For example, in the case α = γ = β = 1 formula (2.60) gives the numerical
value K = 0.6973....

The following extinction result for the mean field dynamics is a fairly direct
consequence of Proposition 2.3.1.

Lemma 2.3.3. Consider the mean field model given by (2.45). Suppose that
Assumptions A1, A2 and condition (2.46) hold. Then inequality (2.47) implies
local extinction:

(2.61) L (Mt) =⇒ δ0 (as t→∞)

for any initial law.

Proof. Paralleling the arguments in Section 2.2, one infers the existence of the
maximal process M (∞) for the dynamics (2.45), which obeys L(M

(∞)
t ) ≥ L (Mt).

Again, this maximal process converges to an invariant measure. However, by
Proposition 2.3.1 and condition (2.47), the trivial measure δ0 is the only invariant
measure. This implies the assertion.

2.4 Comparison with the mean field model.

Proof of Theorem 2

The main idea for the proof of Theorem 2 is the assertion that the interacting
locally regulated diffusions are dominated by the mean field model. The intuition
behind this is that a uniform spread of mass reduces competition and therefore
is good for survival, and that the mean field model arises as a limit of uniform
migration models (see Section 2.3).

We proceed in two steps to prove Theorem 2. Firstly, we establish a comparison
between the system of interacting locally regulated diffusions (1.5) and the mean
field model (2.45) which implies that it is more likely for the latter to survive. Then
we exploit the fact (proved in Section 2.3) that for some parameter configurations
not even the mean field model survives.

The proof of the comparison result will first treat the case where the functions
h and g satisfy the following assumptions.

Assumption A6. The set I is a closed finite interval of the form [0, c], 0 < c <
∞. The functions h : I → R and

√
g : I → R are twice continuously differentiable

on I and satisfy h(0) = g(0) = g(c) = 0 > h(c). Furthermore, g is strictly positive
on (0, c).

The proof of Proposition 1.2.2 is based on the following lemma.
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Lemma 2.4.1. Let h and g satisfy Assumption A6. Suppose that h is concave
and that the set Λ is finite and nonempty. Then the semigroup of the solution of
equation (2.25) preserves the function cone

F = {f ∈ C2
b1(RΛ

≥0) :
∂

∂xi
f ≥ 0 ∀ i, ∂2

∂xi∂xj
f ≤ 0 ∀ i, j},(2.62)

where C2
b1(RΛ

≥0) denotes the space of all bounded C2- functions f : RΛ
≥0 → R with

bounded first partial derivatives.

Proof. This lemma is an addendum to Proposition 17 in [5]. There, the preser-
vation of F was proved for h ≡ 0 and matrices m with

∑
j∈Λm(i, j) = 1 for all

i ∈ Λ. This proof also works for more general matrices m which only satisfy∑
j∈Λm(i, j) ≤ 1 for i ∈ Λ. To extend the argument to the case h 6= 0, let y(t, x)

be the solution of

(2.63)
∂

∂t
y(t, x) = h

(
y(t, x)

)
y(0, x) = x ∈ I.

This defines a deterministic Markov process whose semigroup is given by Stf(x) :=
f(y(t, x)). Similar as in [5] we only need to establish that this semigroup preserves
F if h is twice continuously differentiable. A little calculation shows that it is
enough to prove that y(t, x) is increasing and concave in x. To show concavity,
notice that differentiating equation (2.63) results in

(2.64)
∂

∂t

∂2

∂x2
y(t, x) = h

′′
(y(t, x))·

(
∂

∂x
y(t, x)

)2

+ h
′
(y(t, x))· ∂

2

∂x2
y(t, x).

For fixed x, write (2.64) as z
′
t = at + bt·zt with z0 = 0. The solution for this is

(2.65) zt = exp

(∫ t

0

bs ds

)∫ t

0

exp

(
−
∫ s

0

br dr

)
as ds.

Since h(x) is concave, at is negative, implying the claimed concavity. A similar,
even simpler argument shows monotonicity.

Proof of Proposition 1.2.2. We make use of the approximation scheme XΛ defined
in the proof of Proposition 1.2.1; recall that XΛ is the solution of (2.25). Since
XΛ
t ↑ Xt, it suffices to show the inequality (1.44) with Xt replaced by XΛ

t , and f
depending only on the coordinates xi with i ∈ Λ.

Furthermore, we assume for the rest of the proof that h and g satisfy Assump-
tion A6. The general case follows then by approximating h and g pointwise by
functions hk and gk satisfying Assumption A6. See Lemma 19 of [5] for the details.
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In addition, we may assume that f ∈ F; otherwise approximate f by func-
tions in F and use dominated convergence. Denote by St the strongly continuous
semigroup of XΛ defined on C

(
IΛ
)
. When applied to ϕ ∈ F, the generator of XΛ

takes the form (see e.g. Theorem 7.3.3 of [27])

(2.66) Gϕ(x) =
∑
i∈Λ

[
α
(∑
j∈Λ

m(i, j)xj − xi
) ∂
∂xi

+ h(xi)
∂

∂xi
+ g(xi)

∂2

∂x2
i

]
ϕ(x).

By Proposition 1.1.5 c) of [11], we know that

(2.67)
d

dt
Stf = GStf.

Let M̄t = (M̄t(i))i∈Λ be a system of processes coupled through the initial state
M̄0(i) = X0(i), i ∈ Λ, but following independent mean field dynamics:

df(M̄t) =α
∑
i∈Λ

∂

∂xi
f(M̄t)

(
Eµ̄M̄t(i)− M̄t(i) + h

(
M̄t(i)

))
dt

+
∑
i∈Λ

∂2

∂x2
i

f(M̄t)g
(
M̄t(i)

)
dt+

∑
i∈Λ

∂

∂xi
f(M̄t)

√
2g
(
M̄t(i)

)
dBt(i),

(2.68)

where B(i)i∈Λ are independent Brownian motions. Write µ̄t := L
(
M̄t

)
; for brevity

we suppress in this notation the dependence on Λ. By equation (2.68) the evolution
of µ̄t is given by

d

dt
µ̄tf = α

∑
i∈Λ

[
Eµ̄
[(

Eµ̄M̄t(i)− M̄t(i)
)( ∂
∂xi

f
)
(M̄t)

]
+ µ̄t

[
h(xi)

∂

∂xi
f + g(xi)

∂2

∂x2
i

f
]]
.

(2.69)

Integration by parts yields

(2.70)

∫ t

0

(
d

ds
µ̄s

)
St−sf ds =

[
µ̄sSt−sf

]t
0
−
∫ t

0

µ̄s
d

ds
St−sf ds.

In view of (2.67) this reads as

(2.71) µ̄tf − µ̄Stf =

∫ t

0

(
d

ds
µ̄s − µ̄sG

)
St−sf ds.

We will show that the integrand is nonnegative. From Lemma 2.4.1, we know
that ϕ := St−sf (for 0 ≤ s ≤ t fixed) is an element of F. By equations (2.66)
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and (2.69),

( d
ds
µ̄s − µ̄sG

)
ϕ

= α
∑
i∈Λ

Eµ̄M̄t(i)E
µ̄
[( ∂
∂xi

ϕ
)
(M̄t)

]
− α

∑
i,j∈Λ

m(i, j)Eµ̄
[
M̄t(j)

( ∂
∂xi

ϕ
)
(M̄t)

]
≥ α

∑
i∈Λ

Eµ̄M̄t(i)E
µ̄
[( ∂
∂xi

ϕ
)
(M̄t)

]
− α

∑
i,j∈Λ

m(i, j)Eµ̄M̄t(j)E
µ̄
[( ∂
∂xi

ϕ
)
(M̄t)

]
.

(2.72)

Note that under the assumptions on µ̄ we have L
(
M̄(i)

)
= L

(
M̄(0)

)
for all

i ∈ Λ. The right hand side of (2.72) is nonnegative because of
∑

j∈Λm(i, j) ≤ 1.

To see the inequality in (2.72), notice that − ∂
∂xi
ϕ is bounded and component-wise

increasing by Lemma 2.4.1. The claimed inequality thus follows from the fact
that L

(
M̄t

)
is associated, which we now prove. Independent real-valued random

variables are associated (see p.78 of [24]), and µ̄ is associated by assumption.
Hence

Eµ̄
[
f(M̄t)g(M̄t)

]
= Eµ̄

[
E
[
f(M̄t)g(M̄t)|M̄0

]]
≥ Eµ̄

[
E
[
f(M̄t)|M̄0

]
E
[
g(M̄t)|M̄0

]]
≥ Eµ̄

[
E
[
f(M̄t)|M̄0

]]
Eµ̄

[
E
[
g(M̄t)|M̄0

]]
= Eµ̄

[
f(M̄t)

]
Eµ̄
[
g(M̄t)

]
,

(2.73)

showing that L
(
M̄t

)
is associated.

Proof of Theorem 2. As in the proof of Theorem 1, we may w.l.o.g. assume that
the function ĥ from Assumption A2 is concave. Furthermore, w.l.o.g. we may
assume that h itself is concave and satisfies both (1.34), with ĥ replaced by h,
and (1.41), with h̄ replaced by h. Otherwise, by Lemma 2.1.3, (Xt)t≥0 is dominated

by the solution of (1.5) with h replaced by the concave function h̄∧ĥ which satisfies
both (1.34) and (1.41).

Let y0 := max{y ≥ 0 : h(y) = 0}. Assume for the moment that y0 > 0.

The measure µ̄ := L
(
X

(∞)
1

)
is associated, shift invariant and its first moment is

finite by Theorem 1. Let (Mt) be the solution of (2.45) with initial distribution

µ := L
(
X

(∞)
1 (0)

)
. Theorem 1(e), (a) and Proposition 1.2.2 imply

(2.74) Ee−λXt+1(i) ≥ Ee−λX
(∞)
t+1 (i) = Eµ̄e−λX

(∞)
t (i) ≥ Eµe−λMt .

It follows from Lemma 2.3.3 that, under the stated assumptions, Ee−λMt → 1 for
all λ > 0 as t→∞. This proves the assertion for the case y0 > 0.
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If y0 = 0 then h̃(x) :=
(
h(x)− h(1)

)
∧ 0 satisfies h ≤ h̃ ≤ 0 because h is

concave. Let X̃ be the solution of (1.5) with h replaced by h̃ and with the same
family of Brownian motions. By the previous step, X̃ suffers local extinction.
Lemma 2.1.3 implies X ≤ X̃ which completes the proof.

2.5 Self-duality. Proof of Theorem 3

In the rest of the paper, we exploit the specific form of the dynamics (1.2) for
the interacting Feller diffusions with logistic growth. Theorem 3 states that the
process is “dual to itself” via

(2.75) Ex exp
(
−γ
β
〈Xt, y〉

)
= Ey exp

(
−γ
β
〈x,X†t 〉

)
.

We will prove this for the solution XΛ of (2.25). By (2.27), we know that the
process XΛ monotonically approximates X. Hence, the assertion follows by dom-
inated convergence.

For the rest of the proof, we consider XΛ. We write X instead of XΛ and x, y
instead of xΛ, yΛ. The duality function isH(x, y) = exp

(
− γ
β
〈x, y〉

)
. Recall the def-

inition of C2
b1(RΛ

≥0) from Section 2.4. Define the linear operator GX : C2
b1(RΛ

≥0)→
C(RΛ

≥0) by
(2.76)

GXf(x) =
∑
i∈Λ

[
α

(∑
j∈Λ

mΛ(i, j)xj − xi
)
∂

∂xi
f + γxi(K − xi)

∂

∂xi
f + βxi

∂2

∂x2
i

f

]
.

By Itô’s formula, the process (Xt)t is a solution of the martingale problem for(
GX ,C2

b1(RΛ
≥0

)
. In order to apply Theorem 4.4.11 of [11] (with the choice α, β = 0),

we will show that

(2.77) GXH(·, y)(x) = GX†H(x, ·)(y) ∀ x, y ∈ RΛ
≥0.

We prove equation (2.77) by considering the different parts of (2.76) separately.
Since H is a function ρ(〈x, y〉) of the scalar product, it is easy to see that the
migration terms of both sides are equal. To establish equation (2.77), it remains
to show that

γxi(K − xi)
∂

∂xi
H(x, y) + βxi

∂2

∂x2
i

H(x, y)

= γyi(K − yi)
∂

∂yi
H(x, y) + βyi

∂2

∂y2
i

H(x, y)

(2.78)
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for all i ∈ Λ. Observe that this equation is symmetric in x and y. Consider the
left hand side of equation (2.78) divided by H(x, y):

(2.79) γxi(K − xi)·(−
γ

β
yi) + βxi·y2

i

(γ
β

)2

= −γ
2K

β
xiyi +

γ2

β
x2
i yi +

γ2

β
xiy

2
i .

The right hand side of (2.79) is symmetric in x and y and therefore, by interchang-
ing the roles of x and y, is also equal to the right hand side of equation (2.78)
divided by H(x, y).

Theorem 4.4.11 of [11] is applicable if we prove that

(2.80) sup
s,t≤T

|GXH(Xs, X
†
t )|

is integrable for all T < ∞ where X and X† are independent. It is not hard to
see that

(2.81) |GXH(x, y)| ≤ C
(
|x||y|+ |x|+ |y|

)
, ∀ x, y ∈ RΛ

≥0

for a finite constant C. For this, use that z exp(−z) is bounded in z ≥ 0. Inte-
grability of (2.80) therefore follows from the independence of X and X† and from
Lemma 2.1.2.

Let us write Mc(Z
d) for the set of configurations in RZd

≥0 with finite support.
As a consequence of the self-duality, we prove the following characterisation of the
upper invariant measure in terms of the finite mass process.

Lemma 2.5.1. Assume β, γ > 0. The upper invariant measure ν̄ of (1.2) is
uniquely determined by

(2.82)

∫
exp

(
−γ
β
〈x, λ〉

)
ν̄(dx) = Pλ(∃t ≥ 0 such that X†t = 0), |λ| <∞,

where X† is the solution of (1.2) with the transpose migration matrix m†.

Proof. Fix a configuration λ ∈ Mc(Z
d) and consider the process

(
X

(n)
t

)
started

in the constant configuration n(i) ≡ n. This process converges to the maximal
process as n→∞. Therefore, the self-duality implies for t > 0

E exp
(
−γ
β
〈X(∞)

t , λ〉
)

= lim
n→∞

E exp
(
−γ
β
〈X(n)

t , λ〉
)

= Eλ lim
n→∞

exp
(
−γ
β
〈X†t , n〉

)
= Pλ

(
X†t = 0

)
= Pλ

(
∃s ≤ t : X†s = 0

)
.

(2.83)

For the second equality, we used monotone convergence. Letting t → ∞, the
assertion follows from Theorem 1(d). For general λ with |λ| < ∞, use monotone
convergence.
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2.6 Convergence to the upper invariant measure.

Proof of Theorem 5

Proof of Theorem 5. Let µ be a translation invariant distribution on Zd which
satisfies µ(0) = 0. For analysing the long-term behaviour of the interacting Feller
diffusion with logistic growth started in µ we can assume without loss of generality
that µ has finite first moment and satisfies µ(x0 = 0) = 0. Otherwise we let the
system run for a little time ε > 0, obtaining

(2.84) lim
t→∞
Lµ (Xt) = lim

t→∞
LL

µ
(
Xε

)
(Xt).

A comparison with the maximal process (see Theorem 1 (e), (b)) yields EµXε(0) <
∞. Furthermore, after a fixed positive time ε > 0 every component is strictly
positive almost surely (see Lemma 2.6.2).

Let X and X† be solutions of (1.2) with migration matrix m and its transpose
m†, respectively. In Lemma 2.6.1 we will show that the total mass hits zero in
finite time or tends to infinity. Hence, we get by self-duality (Theorem 3)

Eµ exp
(
−γ
β
〈Xt, λ〉

)
=

∫
µ(dx)

(
Eλ
[
1|X†s |→∞ exp

(
−γ
β
〈x,X†t 〉

)]
+Eλ

[
1∃s : X†s=0 exp

(
−γ
β
〈x,X†t 〉

)])
.

(2.85)

We treat the two terms on the right hand side separately and begin with the first
term. Apply Hölder’s inequality to the integral with respect to µ. For this, let
1/pi = X†t (i)/|X

†
t | if this is positive. Thus, we obtain

Eλ

[
1|X†s |→∞

∫
µ(dx)exp

(
−γ
β
〈x,X†t 〉

)]

≤ Eλ

[
1|X†s |→∞

∏
i∈Zd

(∫
µ(dx)exp

(
−γ
β
xi|X†t |

))X
†
t (i)

|X†t |
]

= Eλ

[
1|X†s |→∞

∫
µ(dx)exp

(
−γ
β
x0|X†t |

)]
→ 0 as t→∞.

(2.86)

The equality is a consequence of the translation invariance of µ. The last ex-
pression tends to zero because of dominated convergence and the assumption
µ(x0 = 0) = 0. As to the second term on the right hand side of (2.85), dom-
inated convergence gives∫

µ(dx)Eλ
[
1∃s : X†s=0 exp

(
−γ
β
〈x,X†t 〉

)]
→
∫
µ(dx)Eλ

[
1∃s : X†s=0

]
(2.87)
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as t→∞. Using Lemma 2.5.1 we arrive at

lim
t→∞

Eµ exp
(
−γ
β
〈Xt, λ〉

)
= Pλ(∃t ≥ 0 s.t. X†t = 0) =

∫
exp

(
−γ
β
〈x, λ〉

)
ν̄(dx).

Starting in L (X0) ≥ µ, the process L (Xt) is bounded below by Lµ (Xt) (Lemma

2.1.3) and is bounded above by L
(
X

(∞)
t

)
(Theorem 1(e)) which both converge to

ν̄. This concludes the proof of Theorem 5.

We have to append

Lemma 2.6.1. Assume β > 0. Let X be a solution of (1.2) starting in x ∈ Eσ
with finite total mass |x| <∞. Then with probability 1 either

• there is a t ≥ 0 such that Xs = 0 for all s ≥ t or

• |Xt| → ∞ as t→∞.

Proof. The intuition behind this is the following. The process always has a positive
probability of hitting the lower trap. Whenever the total mass stays bounded, the
process will seize its chance.

This is made precise in Theorem 2 of [20]. In order to apply this result, we only
need to verify that there always is the risk of extinction in the following sense:

(2.88) ∀ y : inf
|x|≤y

Px
(
∃t : Xt = 0

)
> 0.

Let Yt be a solution of (1.5) with G = Zd, h(x) = γKx and g(x) = βx. By
Lemma 2.1.3, X and Y may be coupled such that Xt is bounded above by Yt
almost surely. Furthermore, |Yt| is equal in distribution to Feller’s branching
diffusion Ft with super-criticality γK started in |x|. The extinction probability
of Ft is strictly positive, see e.g. Appendix 6.2 of [7]. Therefore condition (2.88)
follows from

Px
(
∃t ≥ 0: Xt = 0

)
≥ P|x|

(
∃t ≥ 0: Ft = 0

)
≥ Py

(
∃t ≥ 0: Ft = 0

)
> 0(2.89)

for every x with |x| ≤ y.

Lemma 2.6.2. Suppose that h and g satisfy Assumption A1. Let X be a solution
of (1.5). If its initial law µ is translation invariant and does not charge the zero
configuration 0, then, for every fixed time t0 > 0,

(2.90) Xt0(i) > 0 ∀ i ∈ G Pµ − a.s.
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Proof. Assume, that h ≤ 0. Otherwise, compare Xt with the process defined with
h ∧ 0 instead of h.

Let h̃(θ) = −αθ + h(θ). For ε > 0, define the solution of

(2.91) dY ε,i
t = αεdt+ h̃

(
Y ε,i
t

)
dt+

√
2g(Y ε,i

t )dBi
t, Y ε,i

0 ≥ 0,

on the same probability space as X by using the same system of Brownian motions.
This system satisfies P0(Y ε,i

t > 0) = 1 for all t > 0. Otherwise, continuity in the
initial value would imply that there is a t > 0 and a θ0 such that Pθ(Y ε,i

t =
0) > 0 for all θ ≤ θ0. Integrating this with the equilibrium distribution Γε (see
equation (2.50), it exists because of h ≤ 0) yields Γε(0) > 0 which is false. Thus,
we have

(2.92) Y
εm(i,j),i
δ > 0 ∀ ε ∈ (0, 1) ∩Q ∀ δ ∈ (0, 1) ∩Q ∀ i, j s.t. m(i, j) > 0 a.s.

Denote the event {Xt(j) ≥ ε ∀ t ∈ [t0 − δ, t0]} by Aε,δ. On Aε,δ we compare X
with the solution of (2.91):

Xt(i) = Xt0−δ(i) +

∫ t

t0−δ
α
∑
k

m(i, k)Xs(k) ds

+

∫ t

t0−δ
h̃
(
Xs(i)

)
ds+

∫ t

t0−δ

√
2g
(
Xs(i)

)
dBs(i)

≥
∫ t

t0−δ
αm(i, j)ε ds+

∫ t

t0−δ
h̃
(
Xs(i)

)
ds+

∫ t

t0−δ

√
2g
(
Xs(i)

)
dBs(i).

(2.93)

for all t ∈ [t0 − δ, t0]. By standard comparison results (e.g. Theorem (V.43.1)

in [29] and a stopping argument), this implies Xt0(i) ≥ Y
m(i,j)ε
δ on Aε,δ a.s. By

path continuity, Aε,δ approximates {Xt0(j) > 0} as δ, ε → 0. It follows that on
Xt0(j) > 0 we have Xt0(i) > 0 for all i such that m(i, j) > 0 a.s. With the
migration kernel being irreducible every site can be reached from j. By induction
we conclude that every component of Xt0 is positive a.s. given Xt0(j) > 0.

Starting in a nontrivial translation invariant measure the system a.s. never hits
0. Therefore, there is a location j with Xt0(j) > 0 a.s. This proves the lemma.



Chapter 3

The Virgin Island Model

Chapter 3 is devoted to the Virgin Island process (Vt)t≥0 which has been defined

in (1.19) as total sum over all n-th generation processes (V
(n)
t )t≥0, n ≥ 0. The 0-th

generation process is the one-dimensional diffusion (Yt)t≥0 which is the solution
of (1.10). The key ingredient in the construction of the Virgin Island process is the
law Q̄Y of excursions of (Yt)t≥0 from the absorbing boundary zero. The excursion
measure Q̄Y is defined through Theorem 6 which we prove in Section 3.1. In
addition, Section 3.1 contains a number of preliminary lemmas. Fast readers may
want to proceed directly to Section 3.2.

Section 3.4 includes our proof of the extinction result (Theorem 7). The key
step for this proof is Lemma 3.3.2 which asserts that the Laplace transform of
the Virgin Island process satisfies a certain integro-differential equation. This key
equation is related to a concave function which is studied in Lemma 3.4.1. The
concavity of this function is the second important observation in the proof of
Theorem 7.

In Section 3.2, we prove Theorem 8 which specifies the asymptotic behaviour
of the expected man-hours of V up to time t as t → ∞. We will show that the
expression in (1.22) satisfies a renewal equation, see equation (3.72). Thus, the
main part of the proof of Theorem 8 consists of known results from renewal theory.
The explicit formulas in (1.60) and in (1.61) are derived in Lemma 3.1.3 and in
Lemma 3.1.5.

3.1 Excursions from a trap of one-dimensional

diffusions. Proof of Theorem 6

Recall the Assumptions A1, A3, A4 and A5 from Section 1.2. The process (Yt)t≥0,
the scale function S̄ and the excursion set U have been defined in (1.10), in (1.12)

45
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and in (1.11), respectively.
In this section, we define the excursion measure Q̄Y and prove the convergence

result of Theorem 6. We follow Pitman and Yor [28] in the construction of the
excursion measure. Under Assumptions A1 and A3, zero is an absorbing point for
Y . Thus, we cannot simply start in zero and wait until the process returns to zero.
Informally speaking, we instead condition the process to converge to infinity. One
way to achieve this is by Doob’s h-transformation. Note that

(
S̄(Yt∧Tε)

)
t≥0

is a

bounded martingale for every ε > 0, see Section V.28 in [29]. In particular,

(3.1) Ey
[
S̄(Yt∧Tε)

]
= S̄(y)

for every y < ε by the optional stopping theorem. For ε > 0, consider the diffusion
(Y ↑,εt )t≥0 on [0,∞) – to be called the ↑-diffusion stopped at time Tε – defined by
the semigroup (T εt )t≥0

(3.2) T εt f(y) :=
1

S̄(y)
Ey
[
S̄(Yt∧Tε)f(Yt∧Tε)

]
, y > 0, t ≥ 0.

The sequence of processes
(
(Y ↑,εt )t≥0, ε > 0

)
is consistent in the sense that

(3.3) Ly
(
Y ↑,ε+δ�∧Tε

)
= Ly

(
Y ↑,ε�

)
for all y, ε, δ > 0. Therefore, we may define a process Y ↑ = (Y ↑t )0≤t≤T∞ which
coincides with (Y ↑,εt )t≥0 until time Tε for every ε > 0. Note that the ↑-diffusion
possibly explodes in finite time.

The following important observation of Williams has been quoted by Pitman
and Yor [28]. Because we assume that zero is an exit boundary for the 0-diffusion,
zero is an entrance boundary but not an exit boundary for the ↑-diffusion. Indeed,
the ↑-diffusion started at its entrance boundary zero and run up to the last time it
hits a level y > 0 is described by Theorem 2.5 of Williams [33] as the time reversal
back from T0 of the ↓-diffusion started at y, where the ↓-diffusion is the 0-diffusion
conditioned on T0 < ∞. Hence, the process

(
Y ↑t
)
t≥0

may be started in zero but
takes strictly positive values at positive times.

Pitman and Yor [28] define the excursion measure Q̄Y as follows. Under

(3.4) Q̄Y (�|Tε < T0),

that is, conditional on “excursions reach level ε”, an excursion follows the ↑-
diffusion until time Tε and then follows the 0-diffusion. With this in mind, define
a process Ŷ ε :=

(
Ŷ ε
t

)
t≥0

which satisfies

Ly
(
(Ŷ ε

t∧Tε)t≥0

)
= Ly

(
(Y ↑,εt )t≥0

)
(3.5)

Ly
(
(Ŷ ε

Tε+t)t≥0

)
= Lε

(
(Yt)t≥0

)
(3.6)
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for y ≥ 0. In addition, (Ŷ ε
t , t ≤ Tε) and (Ŷ ε

t , t ≥ Tε) are independent. Define the
excursion measure Q̄Y on U by

(3.7) 1Tε<T0Q̄Y (dχ) :=
1

S̄(ε)
P0
(
Ŷ ε ∈ dχ

)
, ε > 0.

This is well-defined if

(3.8) 1Tε+δ<T0

1

S̄(ε)
P0
(
Ŷ ε ∈ dχ

)
=

1

S̄(ε+ δ)
P0
(
Ŷ ε+δ ∈ dχ

)
holds for all ε, δ > 0. The critical part here is the path between Tε and Tε+δ.
Therefore, (3.8) follows from

1

S̄(ε)
Eε
[
F (Y )1Tε+δ<T0

]
=

1

S̄(ε+ δ)
Eε
[
F (Y )|Tε+δ < T0

]
=

1

S̄(ε+ δ)
Eε
[
F (Ŷ ε+δ)

]
=

1

S̄(ε+ δ)
E0
[
F (Ŷ ε+δ

Tε+�)
]
.

(3.9)

The first equality follows from equation (1.13) with a = 0, y = ε and b = ε+δ. The
last equality is the strong Markov property of Y ↑,ε+δ. The last but one equality is
the following lemma.

Lemma 3.1.1. Assume A1 and A3. Let 0 < y < ε. Then

(3.10) Ly
(
Y |Tε < T0

)
= Ly

(
Ŷ ε
)
.

Proof. We begin with the proof of independence of (Ŷ ε
t , t ≤ Tε) and of (Ŷ ε

t , t ≥ Tε).
Let F and G be two bounded continuous functions on the path space. Denote by
FTε the σ-algebra generated by (Yt)t≤Tε . Then

Ey
[
F
(
YTε∧�

)
G
(
YTε+�

)
|Tε < T0

]
= Ey

[
F
(
YTε∧�

)
Ey
[
G
(
YTε+�

)
|FTε

]
|Tε < T0

]
= Ey

[
F
(
YTε∧�

)
|Tε < T0

]
Eε
[
G
(
Y�

)]
.

(3.11)

The last equality is the strong Markov property of Y . Choosing F ≡ 1 in (3.11)
proves that the left-hand side of (3.10) satisfies (3.6). In addition, equation (3.11)
proves the desired independence. For the proof of

(3.12) Py
(
(Y ↑,εt )t≥0

)
= Py

(
(Yt∧Tε)t≥0|Tε < T0

)
,

we exploit the fact that

(3.13) Ey

[ n∏
i=1

fi
(
Y ↑,εti

)]
=

1

S̄(y)
Ey

[
S̄(Ytn∧Tε)

n∏
i=1

fi
(
Yti∧Tε

)]
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for bounded, continuous functions f1, ..., fn and time points 0 ≤ t1 < ... < tn. By
equation (1.13) with a := 0,

(3.14) S̄(Ytn∧Tε) = S̄(ε)PYtn∧Tε
[
Tε < T0

]
= S̄(ε)Ey

[
1Tε<T0|Ftn∧Tε

]
Py–almost surely where Ftn∧Tε is the σ-algebra generated by (Ys)s≤tn∧Tε . Insert
this identity in the right-hand side of (3.13) to obtain

(3.15) Ey

[ n∏
i=1

fi
(
Y ↑,εti

)]
=

1

Py
(
Tε < T0

)Ey

[
1Tε<T0

n∏
i=1

fi
(
Yti∧Tε

)]
.

This proves (3.12) because finite dimensional distributions determine the law of a
process.

Now we prove convergence to the excursion measure Q̄Y .

Proof of Theorem 6. Let F : C
(
[0,∞), [0,∞)

)
→ R be a bounded continuous

function for which there exists an ε > 0 such that F (χ)1T0<Tε = 0 for every path
χ. Let 0 < y < ε. With Lemma 3.1.1, we obtain

1

S̄(y)
EyF (Y ) =

1

S̄(ε)Py(Tε < T0)
Ey
[
F (Y )1Tε<T0

]
=

1

S̄(ε)
EyF (Ŷ ε) =

1

S̄(ε)
E0F (Ŷ ε

Ty+�).
(3.16)

The last equality is the strong Markov property of the ↑-diffusion. The random
time Ty converges to zero almost surely as y → 0. Another observation we need
is that every continuous path (χt)t≥0 is uniformly continuous on any compact set
[0, T ]. Hence, the sequence of paths

(
(χTy+t)t≥0

, y > 0
)

converges locally uniformly

to the path
(
χt
)
t≥0

almost surely as y → 0. Therefore, the dominated convergence
theorem implies

lim
y→0

E0F (Ŷ ε
Ty+�) = E0 lim

y→0
F (Ŷ ε

Ty+�) = E0F (Ŷ ε
� ).(3.17)

Putting (3.16) and (3.17) together, we arrive at

lim
y→0

1

S̄(y)
EyF (Y ) =

1

S̄(ε)
E0F (Ŷ ε) =

∫
F (χ)1Tε<T0Q̄Y (dχ)

=

∫
F (χ)Q̄Y (dχ),

(3.18)

which proves the theorem.
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We require the convergence (1.52) of Theorem 6 to hold for functionals F
which are not included in the assertion of Theorem 6. For example, we will prove
in Lemma 3.1.5 together with Lemma 3.1.7 that

(3.19) lim
y→0

1

S̄(y)
Ey
(∫ ∞

0

Ys ds
)

=

∫ (∫ ∞
0

χs ds
)
Q̄Y (dχ) =

∫ ∞
0

z

g(z)s̄(z)
dz

provided that Assumptions A1, A3 and A5 hold. The first equality in equa-
tion (3.19) cannot be concluded directly from Theorem 6 because the functional
(χs)s≥0 7→

∫∞
0
χs ds is neither bounded nor is it equal to zero whenever supt≥0 χt ≤

ε for some ε > 0. The following lemmas prepare for the proof of (3.19).

Lemma 3.1.2. Assume A1 and A3. Let the continuous function f have compact
support in (0,∞). Furthermore, let the continuous function φ : [0,∞)→ [0,∞) be
either nonnegative and nondecreasing, or Lebesgue-integrable. Then

(3.20)
1

S̄(y)
Ey
(∫ Tb

0

φ(s)f(Ys) ds
)
−→

∫ (∫ Tb

0

φ(s)f(χs) ds
)
Q̄Y (dχ) (y → 0)

for every b ≤ ∞.

Proof. Let ε > 0 be such that ε < inf supp f and let y < ε. W.l.o.g. we assume
f ≥ 0. Using Lemma 3.1.1, we see that the left-hand side of (3.20) is equal to

1

S̄(y)
Ey

[∫ Tb

0

φ(s)f(Ys) ds1Tε<T0

]
=

1

S̄(ε)
Ey

[∫ Tb

0

φ(s)f(Ŷ ε
s ) ds

]
=

1

S̄(ε)
E0

[∫ Tb

Ty

φ(s− Ty)f(Ŷ ε
s ) ds

]
y→0−−→

∫ ∫ Tb

0

φ(s)f(χs) ds1Tε<T0Q̄Y (dχ).

The second equality is the strong Markov property of Y ↑,ε and the change of
variable s 7→ s − Ty. For the convergence, we applied the dominated conver-
gence theorem or the monotone convergence theorem, respectively, depending on
whether φ is Lebesgue-integrable or not.

The explicit formula on the right-hand side of (3.19) originates in the explicit
formula (3.21) below, which we recall from the literature. The proof of the second
equality in (3.19) is essentially contained in Lemma 3.1.5 below.

Lemma 3.1.3. Assume A1 and A3. If f ∈ Cb[0,∞) or if f ∈ C
(
[0,∞), [0,∞)

)
,

then

(3.21) Ey
(∫ T0∧Tb

0

f(Ys) ds
)

=

∫ b

0

(
f(z)

S̄(b)− S̄(y ∨ z)

S̄(b)

S̄(y ∧ z)

g(z)s̄(z)

)
dz

for every 0 ≤ y ≤ b.
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Proof. See e.g. Section 15.3 of Karlin and Taylor [21].

Let (Yt)t≥0 be a Markov process with càdlàg sample paths and state space E
which is equipped with a Polish topology. For an open set O ⊂ E, denote by τ
the first exit time of (Yt)t≥0 from the set O. Notice that τ is a stopping time. For
m ∈ N0, define

(3.22) wm(y) := Ey
(∫ τ

0

smf(Ys) ds
)
, y ∈ E,

for a given function f ∈ C
(
O, [0,∞)

)
. In the following lemma, we derive expres-

sions for w1 and w2 for which Lemma 3.1.3 is applicable.

Lemma 3.1.4. Let (Yt)t≥0 be a time homogeneous Markov process with càdlàg
sample paths and state space E which is equipped with a Polish topology. Let wm
be as in (3.22) with an open set O ⊂ E and with a function f ∈ C

(
O, [0,∞)

)
.

Then

Ey
(∫ τ

0

sf(Ys) ds
)

= Ey
(∫ τ

0

w0(Ys) ds
)

(3.23)

Ey
(∫ τ

0

s2f(Ys) ds
)

= Ey
(∫ τ

0

2w1(Ys) ds
)

(3.24)

for all y ∈ E.

Proof. Let y ∈ E be fixed. For the proof of (3.23), we apply Fubini to obtain

w1(y) = Ey
(∫ τ

0

∫ s

0

drf(Ys) ds
)

= Ey
(∫ τ

0

∫ τ

r

f(Ys) ds dr
)

=

∫ ∞
0

Ey
(
1r<τ

∫ ∞
0

1s+r<τf(Ys+r)ds
)
dr

(3.25)

The last equality follows from Fubini and a change of variables. The stopping
time τ can be expressed as τ = F

(
(Yu)u≥0

)
with a suitable path functional F .

Furthermore, τ satisfies

(3.26) {r < τ} ∩ {s+ r < τ} = {r < τ} ∩ {s < F
(
(Yu+r)u≥0

)
}

for r, s ≥ 0. Therefore, the right-hand side of (3.25) is equal to∫ ∞
0

Ey
(
1r<τ

∫ ∞
0

1
s<F
(

(Yu+r)u≥0

)f(Ys+r) ds
)
dr

=

∫ ∞
0

Ey
(
1r<τE

Yr
[∫ ∞

0

1s<τf(Ys) ds
])
dr = Ey

(∫ τ

0

w0(Yr) dr
)
.

(3.27)
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The last but one equality is the Markov property of (Yt)t≥0. This proves (3.23).
For the proof of (3.24), break the symmetry in the square of w2(y) to see that
w2(y) is equal to

Ey
(∫ τ

0

f(Ys)

∫ s

0

∫ s

0

21r≤vdv dr ds
)

= 2Ey
(∫ τ

0

∫ τ

r

(s− r)f(Ys) ds dr
)

= 2

∫ ∞
0

Ey
(
1r<τ

∫ τ−r

0

sf(Ys+r)ds
)
dr = Ey

(∫ τ

0

2w1(Yr)dr
)
.

(3.28)

This finishes the proof.

The following lemma proves the second equality in (3.19). For this, denote the
monotone limit limy→∞ S̄(y) by S̄(∞) and define

(3.29) w(z) :=

∫ ∞
0

f(u)
S̄(z ∧ u)

g(u)s̄(u)
du, z ≥ 0

for f ∈ C
(
[0,∞), [0,∞)

)
. If S̄(∞) = ∞, then w(z) is the monotone limit of the

right-hand side of (3.21) as b→∞.

Lemma 3.1.5. Assume A1, A3 and S̄(∞) =∞. Let f ∈ C
(
[0,∞), [0,∞)

)
. Then∫ (∫ ∞

0

f(χs) ds
)
Q̄Y (dχ) =

∫ ∞
0

f(z)
1

g(z)s̄(z)
dz(3.30) ∫ (∫ ∞

0

sf(χs) ds
)
Q̄Y (dχ) =

∫ ∞
0

w(z)
1

g(z)s̄(z)
dz.(3.31)

If (3.30) is finite, then (3.30) is equal to

(3.32)

∫ ∞
0

f(z)
1

g(z)s̄(z)
dz = lim

y→0

1

S̄(y)
Ey
(∫ ∞

0

f(Ys) ds
)
.

If (3.31) is finite, then (3.31) is equal to

(3.33)

∫ ∞
0

w(z)
1

g(z)s̄(z)
dz = lim

y→0

1

S̄(y)
Ey
(∫ ∞

0

sf(Ys) ds
)
.

Proof. Choose fε ∈ C
(
[0,∞), [0,∞)

)
with compact support in (0,∞) for every

ε > 0 such that fε ↑ f as ε → 0. Fix ε > 0 and b ∈ (0,∞). Lemma 3.1.2 proves
that

lim
y→0

1

S̄(y)
Ey
(∫ Tb

0

fε(Ys) ds
)

=

∫ (∫ Tb

0

fε(χs) ds
)
Q̄Y (dχ).(3.34)
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Lemma 3.1.3 provides us with an expression for the left-hand side of equation
(3.34). Hence,∫ (∫ Tb

0

fε(χs) ds
)
Q̄Y (dχ) = lim

y→0

1

S̄(y)

∫ b

0

fε(z)
S̄(b)− S̄(y ∨ z)

S̄(b)

S̄(y ∧ z)

g(z)s̄(z)
dz

=

∫ b

0

fε(z)
(

1− S̄(z)

S̄(b)

) 1

g(z)s̄(z)
dz.

The last equation follows from dominated convergence and Assumption A3. Notice
that Tb

(
(χt)t≥0

)
→∞ as b→∞ for every continuous path (χt)t≥0. Letting b→∞

and ε→ 0, apply monotone convergence to arrive at equation (3.30).
Now we prove (3.32). By the monotone convergence theorem, the right-hand

side of (3.32) is equal to

lim
y→0

1

S̄(y)
lim
b→∞

Ey
(∫ Tb

0

f(Ys) ds
)

= lim
y→0

1

S̄(y)

∫ ∞
0

f(z)
S̄(y ∧ z)

g(z)s̄(z)
dz

=

∫ ∞
0

f(z)
lim
y→0

1
S̄(y)

S̄(y ∧ z)

g(z)s̄(z)
dz =

∫ ∞
0

f(z)
1

g(z)s̄(z)
dz.

(3.35)

The first equality is Lemma 3.1.3 and monotone convergence. The second equality
follows from dominated convergence and the assumption that (3.30) is finite.

Similar arguments prove (3.31) and (3.33). Instead of (3.34), consider

lim
y→0

1

S̄(y)
Ey
(∫ Tb

0

sfε(Ys) ds
)

=

∫ (∫ Tb

0

sfε(χs) ds
)
Q̄Y (dχ)(3.36)

which is implied by Lemma 3.1.2. Furthermore, instead of applying Lemma 3.1.3
to equation (3.34), apply equation (3.23) together with equation (3.21).

We will need that (Yt)t≥0 dies out in finite time. The following lemma gives a
condition for this. Recall S̄(∞) := limy→∞ S̄(y).

Lemma 3.1.6. Assume A1 and A3. Let y > 0. Then the solution (Yt)t≥0 of
equation (1.10) hits zero in finite time almost surely if and only if S̄(∞) =∞. If
S̄(∞) < ∞, then (Yt)t≥0 converges to infinity as t → ∞ on the event {T0 = ∞}
almost surely.

Proof. On the event {Yt ≤ K}, we have that

(3.37) PYt
(
∃s : Ys = 0

)
≥ PK

(
T0 <∞

)
> 0

almost surely. The last inequality follows from Lemma 15.6.2 of [21] and Assump-
tion A3. Therefore, Theorem 2 of Jagers [20] implies that with probability one
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either (Yt)t≥0 hits zero in finite time or converges to infinity as t → ∞. With
equation (1.13), we obtain

(3.38) Py
(

lim
t→∞

Yt =∞
)

= lim
b→∞

Py
(
Y hits b before 0

)
= lim

b→∞

S̄(y)

S̄(b)
=

S̄(y)

S̄(∞)
.

This proves the assertion.

The following lemma provides sufficient conditions under which the expected
area under (Yt)t≥0 and the expected area under an typical excursion of (Yt)t≥0 are
finite. Recall (Yt)t≥0 and Q̄Y from (1.10) and Theorem 6, respectively.

Lemma 3.1.7. Assume A1 and A3. Assumption A5 holds if and only if

(3.39) Ey
(∫ ∞

0

Ys ds
)
<∞ ∀ y > 0.

If Assumption A5 holds, then S̄(∞) =∞,

(3.40)

∫ (∫ ∞
0

χs ds
)
Q̄Y (dχ) =

∫ ∞
0

z

g(z)s̄(z)
dz <∞

and

(3.41) Ey
(∫ ∞

0

Ys ds
)

=

∫ ∞
0

S̄
(
y ∧ z

) z

g(z)s̄(z)
dz <∞

for all y ≥ 0.

Proof. In equation (3.21) with f(z) := z, let b→∞ and apply monotone conver-
gence to obtain

Ey
(∫ ∞

0

Ys ds
)

=

∫ ∞
0

(
z
[
1− S̄(y ∨ z)

S̄(∞)

] S̄(y ∧ z)

g(z)s̄(z)

)
dz

≤ y

∫ y

0

S̄(z)

g(z)s̄(z)
dz + S̄(y)

∫ ∞
y

z

g(z)s̄(z)
dz.

(3.42)

Hence, if Assumption A5 holds, then Assumption A3 implies that the right-hand
side of (3.42) is finite and thus the left-hand side of (3.42) is finite. Further-
more, (Yt)t≥0 does not converge to infinity with positive probability as t → ∞.
Lemma 3.1.6 implies S̄(∞) =∞. Thus, the equality in (3.42) implies (3.41). The
equation (3.40) follows from Lemma 3.1.5 with f(y) := y.

Now we prove that Assumption A5 holds if the left-hand side of (3.42) is finite.
Again, Lemma 3.1.6 implies S̄(∞) = ∞. Using monotonicity of S, we obtain for
x > 0 ∫ ∞

x

z

g(z)s̄(z)
dz ≤ 1

S̄(x)

∫ ∞
0

z
S̄(x ∧ z)

g(z)s̄(z)
dz.(3.43)



54 CHAPTER 3. THE VIRGIN ISLAND MODEL

The right-hand side is finite because the left-hand side of (3.42) is finite. Therefore,
Assumption A5 holds.

The convergence (1.52) of Theorem 6 also holds for (χs)s≥0 7→ f(χt), t fixed,
if f(y)/y is a bounded function. For this, we first estimate the first two moments
of (Yt)t≥0.

Lemma 3.1.8. Assume A1. Let (Yt)t≥0 be a solution of equation (1.10) and let
T be finite. Then there exists a constant CT such that

sup
t≤T

Ey
[
Yτ∧t

]
≤ CTy, Ey

[
sup
t≤T

Yt
2
]
≤ CT (y + y2)(3.44)

for all y ≥ 0 and every stopping time τ .

Proof. We begin with the proof of the second inequality in (3.44). Let τ be an
arbitrary stopping time and choose Ch such that h(y) ≤ Chy for all y ≥ 0. The
process (Yt)t≥0 is almost surely bounded by the solution (Zt)t≥0 of

(3.45) dZt = ChZt dt+
√

2g(Zt) dBt, Z0 = y,

where (Bt)t≥0 is the same Brownian motion as in (1.10). See Lemma 2.1.3 for this
comparison. By Itô’s formula,

dZt
2 = 2ZtChZt dt+ 2g(Zt) dt+ 2Zt

√
2g(Zt) dBt.(3.46)

The stochastic integral on the right-hand side is a martingale when stopped at
the stopping time τK := inf{t ≥ 0: Zt ≥ K}, K ≥ 0. By Assumption A1, g(y) ≤
Cg(y + y2) for all y ≥ 0 and for some constant Cg <∞. Taking expectations, we
obtain for every t ≤ T

EZ2
t∧τ∧τK

≤ y2 +

∫ t

0

E
[
2ChZ

2
s∧τ∧τK

]
ds+

∫ t

0

E2g(Zs∧τ∧τK ) ds

≤ y2 + 2CgT sup
s≤T

EZs∧τ∧τK + 2(Ch + Cg)

∫ t

0

EZ2
s∧τ∧τK ds.

(3.47)

By Gronwall’s inequality and the first inequality in (3.44), we conclude

EZ2
t∧τ∧τK ≤ (y2 + C̃Ty)e2(Ch+Cg)T(3.48)

for some finite constant C̃T . Notice that τK → ∞ as K → ∞ almost surely.
Apply Fatou’s lemma and Doob’s L2-inequality to the submartingale (Zt∧τK )t≥0

to obtain

Ey
[
sup
t≤T

Yt
2
]
≤ Ey

[
lim inf
K→∞

sup
t≤T

Z2
t∧τK

]
≤ lim inf

K→∞
Ey
[
sup
t≤T

Z2
t∧τK

]
≤ lim inf

K→∞
4Ey

[
Z2
T∧τK

]
≤ CT (y + y2)

(3.49)
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for some finite constant CT . The last inequality is (3.48).
The proof of the first inequality in (3.44) is similar to the proof of inequal-

ity (3.48). Instead of considering (3.46), stop equation (3.45) at τK and take
expectations.

Lemma 3.1.9. Assume A1, A3 and A4. Let f : [0,∞) → R be a continuous

function such that Cf := supy>0
|f(y)|
y

<∞. Then

(3.50)

∫
f(χt)Q̄Y (dχ) = lim

y→0

1

S̄(y)
Eyf(Yt) = E0

[ 1

S̄(Y ↑t )
f(Y ↑t )1t<T∞

]
<∞

for all t > 0.

Proof. W.l.o.g. we may assume f ≥ 0. Choose fε ∈ C
(
[0,∞), [0,∞)

)
with com-

pact support in (0,∞) for every ε > 0 such that fε ↑ f pointwise as ε → 0. By
Theorem 6,

(3.51)

∫
fε(χt)Q̄Y (dχ) = lim

y→0

1

S̄(y)
Eyfε(Yt).

The left-hand side of (3.51) converges to the left-hand side of (3.50) as ε → 0
by the monotone convergence theorem. Hence, the first equality in (3.50) follows
from (3.51) if the limits lim

ε→0
and lim

y→0
interchange. For this, we prove the second

equality in (3.50).
Let b ∈ (0,∞). The ↑-diffusion is a strong Markov process. Thus, by equa-

tion (3.2),

lim
y→0

1

S̄(y)
Ey
[
f(Yt)1t<Tb

]
= lim

y→0
Ey
[f(Y ↑t )

S̄(Y ↑t )
1t<Tb

]
= E0

[
lim
y→0

f(Y ↑t+Ty)

S̄(Y ↑t+Ty)
1t+Ty<Tb

]
= E0

[f(Y ↑t )

S̄(Y ↑t )
1t<Tb

]
.

(3.52)

The second equality follows from the dominated convergence theorem because

(3.53) sup
0<y≤b

f(y)

S̄(y)
≤ Cf sup

0<y≤b

y

S̄(y)
<∞.

For the last equality in (3.52), we used right-continuity of the function t 7→
f(Y ↑t )

S̄(Y ↑t )
1t<Tb . Now we let b → ∞ in (3.52) and apply monotone convergence to

obtain

(3.54) lim
b→∞

lim
y→0

1

S̄(y)
Ey
[
f(Yt)1t<Tb

]
= E0

[f(Y ↑t )

S̄(Y ↑t )
1t<T∞

]
.
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The following estimate justifies the interchange of the limits lim
b→∞

and lim
y→0

|lim
y→0

1

S̄(y)
Eyf(Yt)− lim

b→∞
lim
y→0

1

S̄(y)
Ey
[
f(Yt)1t<Tb

]
|

≤ Cf lim
b→∞

sup
y≤1

1

S̄(y)
Ey
[
Yt1sups≤t Ys≥b

]
≤ Cf lim

b→∞

1

b
sup
y≤1

y

S̄(y)
sup
y≤1

1

y
Ey sup

s≤t
Y 2
s = 0.

(3.55)

The last equality follows from S̄
′
(0) ∈ (0,∞) and from Lemma 3.1.8. Putting

(3.55) and (3.54) together, we obtain

lim
y→0

1

S̄(y)
Ey
[
f(Yt)

]
= lim

b→∞
lim
y→0

1

S̄(y)
Ey
[
f(Yt)1t<Tb

]
= E0

[f(Y ↑t )

S̄(Y ↑t )
1t<T∞

]
.(3.56)

Note that (3.56) is finite because of f(y) ≤ Cfy, Lemma 3.1.8 and because of
S̄
′
(0) ∈ (0,∞).
We finish the proof of the first equality in (3.50) by proving that the limits lim

ε→0

and lim
y→0

on the right-hand side of (3.51) interchange.

∣∣lim
ε→0

lim
y→0

1

S̄(y)
Eyfε(Yt)− lim

y→0

1

S̄(y)
Eyf(Yt)

∣∣
≤ lim

ε→0
lim
y→0

1

S̄(y)
Ey
[
f(Yt)− fε(Yt)

]
= lim

ε→0
E0
[f(Y ↑t )− fε(Y ↑t )

S̄(Y ↑t )
1t<T∞

]
= 0.

(3.57)

The first equality is (3.56) with f replaced by f − fε. The last equality follows
from the dominated convergence theorem. The function fε/S̄ converges to f/S̄
for every y > 0 as ε→ 0. Note that Y ↑t > 0 almost surely for t > 0. Integrability

of
f(Y ↑t )

S̄(Y ↑t )
1t<T∞ follows from the finiteness of (3.56).

We have settled equation (3.19) in Lemma 3.1.5 and in Lemma 3.1.7. A con-
sequence of the finiteness of this equation is that lim inft→∞

∫
χt dQ̄Y = 0. In

the proof of the extinction result for the Virgin Island Model, we will need that∫
χt dQ̄Y converges to zero as t → ∞. This convergence will follow from equa-

tion (3.19) if [0,∞) 3 t 7→
∫
χt dQ̄Y is globally upward Lipschitz continuous. We

first prove that this function is bounded in t. Lemma 3.1.9 implies this bounded-
ness if the right-hand side of (3.50) with f(y) = y is bounded. Thus, we need to
prove boundedness of the function y 7→ y/S̄(y).

Lemma 3.1.10. Assume A1, A3, A4 and A5. Then

(3.58) sup
y∈(0,∞)

y

S̄(y)
<∞.
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Proof. It suffices to prove lim infy→∞
S̄(y)
y

> 0 because y
S̄(y)

is locally bounded in

(0,∞) and S̄
′
(0) ∈ (0,∞) by Assumption A4. By Assumption A1, g(y) ≤ Cgy

2

for all y ≥ 1 and a constant Cg <∞. Together with A5, this implies

(3.59) ∞ >

∫ ∞
1

y

g(y)s̄(y)
dy ≥ 1

Cg

∫ ∞
1

1

ys̄(y)
dy.

The function R 3 x 7→ ψ(x) := 1 − (1 − x)+ ∧ 1 is continuous. From the esti-
mate (3.59), we see that

(3.60) ∞ >

∫ ∞
1

1

ys̄(y)
dy ≥

∫ ∞
1

1

y

(
1− ψ(s̄(y))

)
dy.

The last inequality follows from 1
y
≥ 1y≤1 ≥ 1− ψ(y). Consequently,

(3.61) 1 = lim
z→∞

∫ z
1

1
y
ψ(y) dy

log(z)
= lim

z→∞

1
z
ψ(s̄(z))

1
z

= lim
z→∞

ψ(s̄(z)).

The proof of the second equation in (3.61) is similar to the proof of the lemma of
L’Hospital. From (3.61), we conclude lim infy→∞ s̄(y) ≥ 1 which implies

(3.62) lim inf
z→∞

∫ z
0
s̄(y) dy

z
≥ 1.

This finishes the proof.

Lemma 3.1.11. Assume A1, A3, A4 and A5. Then

(3.63) lim
t→∞

∫
χt Q̄Y (dχ) = 0.

Proof. We will prove that the function [0,∞) 3 t 7→
∫
χtdQ̄Y is globally upward

Lipschitz continuous; see Assumption A1 for a definition of this notion. The
assertion then follows from the finiteness of the integrals in equation (3.40). Let
τK := inf{t ≥ 0: Yt ≥ K}, K ≥ 0, let CS be the upper bound from Lemma 3.1.10
and choose a constant Ch such that h(y) ≤ Chy for all y ≥ 0. From (1.10), we
obtain for y ≥ 0 and 0 ≤ s ≤ t

(3.64)
1

S̄(y)
Ey
(
Yt∧τK

)
− 1

S̄(y)
Ey
(
Ys∧τK

)
≤ Ch

∫ t

s

1

S̄(y)
Ey
(
Yr∧τK

)
dr.

Letting K → ∞ and then y → 0, we conclude from the dominated convergence
theorem, Lemma 3.1.8 and Lemma 3.1.9 that

(3.65)

∫
χt Q̄Y (dχ)−

∫
χs Q̄Y (dχ) ≤ Ch

∫ t

s

E0
[ Y ↑r

S̄(Y ↑r )
1r<T∞

]
dr ≤ ChCS|t− s|.

The last inequality follows from Lemma 3.1.10. Inequality (3.65) implies upward
Lipschitz continuity which finishes the proof.
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Fix λ, κ, t > 0 and f ∈ Cb

(
[0,∞), [0,∞)

)
. In the following lemma, we obtain

the convergence (1.52) of Theorem 6 for the functional

(3.66) C
(
[0,∞), [0,∞)

)
3 (χs)s≥0 7→ 1− exp

(
−λχt − κ

∫ t

0

χsf(s) ds
)

which is bounded and continuous but for which there is no ε > 0 such that the
functional vanishes whenever supt≥0 χt ≤ ε. Furthermore, Lemma 3.1.12 is an
essential step in establishing equation (3.93), which is the key equation for the
proof of the extinction result of Theorem 7.

Lemma 3.1.12. Assume A1, A3 and A4. Let λ, κ ≥ 0, let Y = (Yt)t≥0 be as
in (1.10) and let QY be as in (1.16). Then

− d

dy

∣∣
y=0

Ey exp
(
−λYt − κ

∫ t

0

Ysf(s) ds
)

=

∫ [
1− exp

(
−λχt − κ

∫ t

0

χsf(s) ds
)]
QY (dχ)

(3.67)

for every f ∈ Cb

(
[0,∞), [0,∞)

)
and for all t ∈ [0,∞).

Proof. Let φε ∈ C∞(R≥0) be such that φε(x) = 0 for all x ≤ ε, φε(x) = x for all
x ≥ 2ε and φε(x) ↑ x as ε→ 0. By Theorem 6 and equation (1.16), we know that

− d

dy

∣∣
y=0

Ey exp
(
−λφε(Yt)− κ

∫ t

0

φε(Ys)f(s) ds
)

=

∫ [
1− exp

(
−λφε(χt)− κ

∫ t

0

φε(χs)f(s) ds
)]
QY (dχ).

(3.68)

The right-hand side of (3.68) converges to the right-hand side of (3.67) as ε→ 0
by the monotone convergence theorem. We will prove that the left-hand side
of equation (3.68) converges to the left-hand side of equation (3.67) as ε → 0.
Define φ̄ε := x − φε(x) ≥ 0. The absolute difference of the left-hand sides of
equations (3.68) and (3.67) is bounded by

lim sup
y→0

1

y
Ey
[

exp
(
−λφε(Yt)− κ

∫ t

0

φε(Ys)f(s) ds
)

− exp
(
−λYt − κ

∫ t

0

Ysf(s) ds
)]

≤ lim
y→0

1

y
Ey
[
λφ̄ε(Yt) + κ

∫ t

0

φ̄ε(Ys)f(s) ds
]

= λ

∫
φ̄ε(χt)QY (dχ) + κ

∫ t

0

∫
φ̄ε(χs)QY (dχ)f(s) ds.

(3.69)
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The last step follows from the dominated convergence theorem together with
Lemma 3.1.8 and from Lemma 3.1.9 because the function φ̄ε(x)/S̄(x) is bounded
by Assumption A4. The integrand of the second summand on the right-hand side
of (3.69) is bounded by κCfχs uniformly in ε > 0, for some upper bound Cf of
f , which is integrable with respect to ds ⊗ QY (dχ) by Lemma 3.1.8. Thus, we
are allowed to apply dominated convergence. Letting ε → 0 in inequality (3.69)
finishes the proof.

3.2 Proof of Theorem 8

Recall (Vt)t≥0, (V
(n)
t )t≥0, (Yt)t≥0 and QY from (1.19), (1.18), (1.10) and (1.16),

respectively. Fix x ≥ 0. A calculation similar to (1.53) shows that

(3.70)

∫ t

0

ExV (n+1)
s ds =

∫ t

0

∫
αχuQY (dχ)

∫ t−u

0

ExV (n)
s ds du

for n ≥ 0 and t ≥ 0. Summing over n ≥ 0, this results in

(3.71)

∫ t

0

ExVs ds =

∫ t

0

ExYs ds+

∫ t

0

∫
αχuQY (dχ)

∫ t−u

0

ExVs ds du

for t ≥ 0. Define

(3.72) x(t) :=

∫ t

0

ExVs ds, f(t) :=

∫ t

0

ExYs ds, µ(du) :=

∫
αχuQY (dχ) du

for t ≥ 0. In this notation, equation (3.71) reads as renewal equation

(3.73) x(t) = f(t) +

∫ t

0

x(t− u)µ(du), t ≥ 0.

From this, (1.63) and the first equation in (1.60) follow from Theorem 5.2.8 and
Theorem 5.2.9 of Jagers [19], respectively. Lemma 3.1.7 implies the second equa-
tion in (1.60). The denominator on the right-hand side of (1.63) is finite because
of ue−βu ≤ 1

β
e−1, u ≥ 0, and Lemma 3.1.7.

For the proof of (1.61), define θ :=
∫∞

0
uµ(du). Corollary 5.2.14 of [19] with

c := f(∞) <∞ and n := 0 implies that

(3.74)
1

t
x(t) −→ c

θ
(as t→∞).

Note that the assumption θ <∞ of this corollary is not necessary for this conclu-
sion. By Lemma 3.1.6, we know that limy→∞ S̄(y) =∞. Lemma 3.1.7 and equa-
tion (3.31) with f(y) := y show that c

θ
is equal to the right-hand side of (1.61).

This finishes the proof.
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3.3 Recursion for the Virgin Island process

Recall the definition of (Yt)t≥0 and of (V
(k)
t )t≥0, k ≥ 0, from (1.10) and from (1.18),

respectively. We mentioned in the introduction that there is an inherent branching
structure in the Virgin Island Model. One offspring island together with all its
offspring islands is again a Virgin Island Model but with a typical excursion instead
of (Yt)t≥0 on the first island. In this section, we exploit this branching structure to
obtain a recursive equation for the Laplace transform of the Virgin Island process
in Lemma 3.3.2 below. This recursive equation is the key equation for the proof
the extinction result of Theorem 7.

For the proof of Lemma 3.3.2, we will need a bound on the first moment of the
Virgin Island process (Vt)t≥0.

Lemma 3.3.1. Assume A1 and A4. For every T < ∞, there exists a constant
CT <∞ such that

(3.75) sup
t≤T

sup
x>0

1

x
ExVt ≤ sup

t≤T

∞∑
k=0

sup
x>0

1

x
ExV

(k)
t ≤ CT .

Consequently, the Virgin Island process (Vt)t≥0 is finite for finite time points almost
surely.

Proof. Let C̃T be the constant of Lemma 3.1.8. Recall from Section 1.1 that –
conditioned on (V

(n)
t )t≥0 – Π(n) is a Poisson point process with intensity measure

αV
(n)
r dr ⊗ QY (dχ). Using the definition (1.18) and Lemma 3.1.8, we obtain for

t ≤ T

n∑
k=0

sup
x>0

1

x
ExV

(k)
t ≤ C̃T +

n∑
k=1

sup
x>0

1

x
Ex
[∫

χt−r Π(k−1)(dr, dχ)
]

≤ C̃T +
n∑
k=0

sup
x>0

1

x
Ex
[∫ t

0

(
αV (k)

r

∫
χt−rQY (dχ)

)
dr
]

≤ C̃T + αC̃T

∫ t

0

n∑
k=0

sup
x>0

1

x
ExV (k)

r dr.

(3.76)

By Gronwall’s lemma, this implies

(3.77) sup
t≤T

sup
x>0

1

x
ExVt ≤ sup

t≤T
sup
n>0

n∑
k=0

sup
x>0

1

x
ExV

(k)
t ≤ C̃T e

αC̃TT ,

which proves the lemma.
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In Lemma 3.3.2, we establish an equation for the Laplace transform of the
Virgin Island process. This equation will then be used in Section 3.4 to prove the
extinction result of Theorem 7.

Lemma 3.3.2. The Laplace transform v(t, x) := Ex exp
(
−λVt

)
, λ ≥ 0, of the

Virgin Island process is differentiable in x = 0 for every t > 0. Furthermore, it
solves the equation

(3.78) v(t, x) = Ex exp
(
−λYt + α

∫ t

0

Ys
d

dx
v(t− s, 0) ds

)
for all λ, t, x ≥ 0.

Proof. Fix λ ≥ 0 and define

(3.79) vn(t, x) := Ex exp
(
−λ

n∑
l=0

V
(l)
t

)
, t, x ≥ 0, n ∈ N0.

We will prove by induction on n that

(3.80) − d

dx
vn(t, 0) =

∫
QY (dχ)

[
1− exp

(
−λχt + α

∫ t

0

dr χr
d

dx
vn−1(t− r, 0)

)]
for all t > 0 and that for every 0 ≤ m ≤ n and all t, x ≥ 0

(3.81) vn(t, x) = Ex exp

(
−λ

n−m∑
k=0

V
(k)
t + α

∫ t

0

ds V (n−m)
s

d

dx
vm−1(t− s, 0)

)
where v−1 ≡ 0. If n = 0, then (3.80) follows from Lemma 3.1.12 with κ := 0
and (3.81) is trivial. For the induction step, suppose that (3.80) and (3.81) hold
for all 0 ≤ ñ ≤ n−1, n ≥ 1. We prove (3.81) by induction on m, 0 ≤ m ≤ n. The
case m = 0 is trivial. Let m ≥ 1. Assume that (3.81) is true for all 0 ≤ m̃ ≤ m−1.
By the induction hypothesis and (1.18), we have for t, x ≥ 0

vn(t, x)

= Ex exp

(
−λ

n−(m−1)∑
k=0

V
(k)
t + α

∫ t

0

ds
(
V (n−(m−1))
s

d

dx
vm−2(t− s, 0)

))

= Ex exp

(
− λ

n−m∑
k=0

V
(k)
t − λ

∫
χt−rΠ

(n−m)(dr, dχ)

+ α

∫ t

0

ds
(∫

χs−rΠ
(n−m)(dr, dχ)

d

dx
vm−2(t− s, 0)

))
.

(3.82)
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Condition on (V (i))i=0,...,n−m and rewrite the Laplace transform of the Poisson
point process Π(n−m) to conclude that vn(t, x) is equal to

Ex

(
exp

(
−λ

n−m∑
k=0

V
(k)
t

)
E

[
exp

(∫ [
−λχt−r

+ α

∫ t

0

dsχs−r
d

dx
vm−2(t− s, 0)

]
Π(n−m)(dr, dχ)

)∣∣∣∣V (n−m)

])
= Ex exp

(
− λ

n−m∑
k=0

V
(k)
t − α

∫ t

0

dr V (n−m)
r∫

QY (dχ)
[
1− exp

(
−λχt−r + α

∫ t

0

ds χs−r
d

dx
vm−2(t− s, 0)

)])
= Ex exp

(
−λ

n−m∑
k=0

V
(k)
t + α

∫ t

0

dr
(
V (n−m)
r

d

dx
vm−1

(
t− r, 0

)))
.

(3.83)

In the last step, we substituted s − r → s and applied the induction hypothe-
sis (3.80) with n and t replaced by m− 1 and t− r, respectively. Equation (3.83)
proves (3.81) which finishes the induction on m. For the proof of (3.80), notice
that we have just shown (m = n)

(3.84) vn(t, x) = Ex exp

(
−λYt + α

∫ t

0

ds Ys
d

dx
vn−1(t− s, 0)

)
.

Lemma 3.1.12 with κ := α and f(s) := − d
dx
vn−1(t − s, 0) implies (3.80). This

concludes the induction on n.
Finally, let n→∞ in equation (3.84) and use monotone convergence to obtain

Exe−λVt = Ex exp

(
−λYt − α

∫ t

0

ds Ys lim
n→∞

lim
x→0

1

x
Ex
(

1− exp
(
−λ

n−1∑
k=0

V
(k)
t−s
)))

for t, x ≥ 0. Lemma 3.3.1 implies that the limits on the right-hand side may be
interchanged. This proves the assertion.

3.4 Extinction and survival in the Virgin Island

Model. Proof of Theorem 7

Recall the definition of (Yt)t≥0 from (1.10). As we pointed out in Section 1.2, the
expected area under an excursion of (Yt)t≥0 play an important role. The following
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lemma provides us with some properties of the modified Laplace transform k(z)
of the total man-hours. We will see later that these properties are crucial for our
proof of Theorem 7. Recall from Section 1.1 the excursion measure QY of the
solution (Yt)t≥0 of equation (1.10).

Lemma 3.4.1. Assume A1, A3, A4 and A5. The function

(3.85) k(z) :=

∫
1− exp

(
−zα

∫ ∞
0

χs ds
)
QY (dχ), z ≥ 0,

is concave with at most two fixed point. Zero is the only fixed point iff

(3.86) k
′
(0) = α

∫ ∫ ∞
0

χs dsQY (dχ) ≤ 1.

Denote by q the maximal fixed point. Then we have for all z ≥ 0:

z ≤ k(z) =⇒ z ≤ q(3.87)

z ≥ k(z) ∧ z > 0 =⇒ z ≥ q.(3.88)

Proof. The function k has finite values because of 1 − e−c ≤ c, c ≥ 0, and
Lemma 3.1.7. Concavity of k is inherited from the concavity of x 7→ 1 − e−xc,
c ≥ 0. Using dominated convergence (with Lemma 3.1.7), we see that

(3.89)
k(z)

z
=

∫
1− exp

(
−zα

∫∞
0
χs ds

)
z

QY (dχ)
z→∞−−−→ 0.

In addition, dominated convergence (with Lemma 3.1.7) implies

(3.90) k
′
(z) =

∫ [∫ ∞
0

αχs ds exp
(
−zα

∫ ∞
0

χs ds
)]
QY (dχ) z ≥ 0.

If α > 0, then k is strictly concave. Thus, k has a fixed point which is not zero if
and only if k

′
(0) > 1. The implications (3.87) and (3.88) follow from the concavity

of k.

The method of proof (cf. Section 6.5 in [19]) of the extinction result for a
Crump-Mode-Jagers process (Jt)t≥0 is to study an equation for (Ee−λJt)t≥0,λ>0.

The Laplace transform (Ee−λJt)λ>0 converges monotonically to P(Jt = 0) as
λ→∞, t ≥ 0. Furthermore, P(Jt = 0) = P(∃s ≤ t : Js = 0) converges monotoni-
cally to the extinction probability P(∃s ≥ 0: Js = 0) as t→∞. Taking monotone
limits in the equation for (Ee−λJt)t≥0,λ>0 results in an equation for the extinction
probability. In our situation, there is an equation for the modified Laplace trans-
form (Lλt )t>0,λ>0 as defined in (3.91) below. However, the monotone limit of Lλt as
λ→∞ might be infinite. Thus, it is not clear how to transfer the above method
of proof. The following proof of Theorem 7 directly establishes the convergence of
the modified Laplace transform.
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Proof of Theorem 7. Recall the definition of q from Lemma 3.4.1. In the first
step, we will prove

(3.91) Lt := Lλt := lim
x→0

1

x
Ex
(

1− e−λVt
)
→ q (as t→∞)

for all λ > 0. It follows from Lemma 3.3.1 that (Lt)t≤T is bounded for every finite
T . By Lemma 3.3.2, the Laplace transform v(t, x) := Ex exp

(
−λVt

)
of the Virgin

Island process satisfies

(3.92) v(t, x) = Ex exp
(
−λYt + α

∫ t

0

Ys
d

dx
v(t− s, 0) ds

)
for all λ, t, x ≥ 0. Notice that Lt = − d

dx
v(t, 0). Take derivatives in (3.92) with

respect to x in x = 0 and apply Lemma 3.1.12 to arrive at

(3.93) Lt =

∫ [
1− exp

(
−λχt − α

∫ t

0

χsLt−sds
)]
QY (dχ).

Based on (3.93), the idea of the proof of (3.91) is as follows. The term λχt vanishes
as t→∞. If Lt converges to some limit, then the limit has to be a fixed point of
the function

(3.94) k(z) =

∫ [
1− exp

(
−zα

∫ ∞
0

χs ds
)]
QY (dχ).

By Lemma 3.4.1, this function is concave. Therefore, it has exactly one attracting
fixed point. Furthermore, this fact forces Lt to converge as t→∞.

We will need the finiteness of L∞ := lim supt→∞ Lt. Seeking for a contradiction,
we assume L∞ =∞. Then there exists a sequence (tn)n∈N with tn →∞ such that
Ltn = maxt≤tn Lt. We estimate

Ltn ≤
∫ [

1− exp
(
−λχtn − α

∫ ∞
0

χs sup
r≤tn

Lr ds
)]
QY (dχ)

≤ k(Ltn) +

∫
exp

(
−α
∫ ∞

0

χsLtn ds
)(

1− e−λχtn
)
QY (dχ)

≤ k(Ltn) +

∫
λχtnQY (dχ).

(3.95)

The last summand is bounded in n by Lemma 3.1.11. Inequality (3.95) leads to
the contradiction

(3.96) 1 ≤ lim
n→∞

k(Ltn)

Ltn
+ lim

n→∞

C

Ltn
= 0.
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The last equation is a consequence of (3.89) and the assumption L∞ =∞. Using
boundedness of Lt, we prove L∞ ≤ q. Let (tn)n∈N be such that limn→∞ Ltn =
L∞ <∞. Then a calculation as in (3.95) results in

lim
n→∞

Ltn ≤ lim sup
n→∞

∫ [
1− exp

(
−α
∫ ∞

0

(
χs sup

t≥tn
Lt−s

)
ds
)]
QY (dχ)

+ lim sup
n→∞

∫
λχtnQY (dχ).

(3.97)

The last summand is equal to zero by Lemma 3.1.11. The first summand on the
right-hand side of (3.97) is dominated by

(3.98)
(

sup
t>0

Lt

)∫ (∫ ∞
0

αχs ds
)
QY (dχ) <∞.

Applying dominated convergence, we conclude that L∞ is bounded by

(3.99)

∫ [
1− exp

(
−α
∫ ∞

0

(
χs lim

t→∞
Lt−s

)
ds
)]
QY (dχ) = k

(
L∞
)
.

Thus, Lemma 3.4.1 implies lim supt→∞ Lt ≤ q. This proves Theorem 7 in the case
of q = 0.

Assume q > 0 and suppose that m := lim inft→∞ Lt = 0. Let (tn)n∈N be such
that Ltn = mint≤tn Lt → 0 as n→∞ and tn ≤ tn+1 →∞. We estimate

Ltn ≥
∫ [

1− exp
(
−α
∫ tn

0

(
χs inf

t≤tn
Lt
)
ds
)]
QY (dχ)

≥
∫ [

1− exp
(
−α
∫ tn0

0

(
χsLtn

)
ds
)]
QY (dχ)

(3.100)

for all n ≥ n0. By Lemma 3.4.1, there is a n0 such that
∫ ∫ tn0

0
αχs dsQY (dχ) > 1.

Using dominated convergence, the assumption m = 0 results in the contradiction

1 ≥ lim
n→∞

1

Ltn

∫ [
1− exp

(
−Ltn

∫ tn0

0

αχs ds
)]
QY (dχ)

=

∫ (∫ tn0

0

αχs ds
)
QY (dχ) > 1.

(3.101)

In order to prove m ≥ q, let (tn)n∈N be such that limn→∞ Ltn = m > 0. An
estimate as above together with dominated convergence yields

m = lim
n→∞

Ltn ≥ lim
n→∞

∫ [
1− exp

(
−α
∫ tn

0

(
χs inf

t≥tn
Lt−s

)
ds
)]
QY (dχ)

=

∫ [
1− exp

(
−α
∫ ∞

0

(
χslim inf

t→∞
Lt
)
ds
)]
QY (dχ) = k(m).

(3.102)
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Therefore, Lemma 3.4.1 implies lim inft→∞ Lt = m ≥ q, which yields (3.91).
Now we finish the proof of Theorem 7. Using Lemma 3.3.2 and the first step,

we see that

Exe−λVt = Ex exp

(
−λYt − α

∫ t

0

YsLt−s ds

)
→ Ex exp

(
−qα

∫ ∞
0

Ys ds

)(3.103)

as t → ∞. For this, we used dominated convergence and the fact that Yt → 0
almost surely as t → ∞ (see Lemma 3.1.6). Hence, the Virgin Island process
(Vt)t≥0 started in x ≥ 0 converges weakly as t → ∞ to a random variable V x

∞
which only takes values in {0,∞} and satisfies

(3.104) P(V x
∞ = 0) = Ex exp

(
−qα

∫ ∞
0

Ys ds
)
.

Thus, the Virgin Island Model dies out iff q = 0 which by Lemma 3.4.1 is the case
iff k

′
(0) ≤ 1. This is condition (1.56). Equation (1.57) follows from Lemma 3.1.7

and from QY = s̄(0)Q̄Y . This proves Theorem 7.



Chapter 4

Graphical representation of two
duality relations

4.1 Introduction

The self-duality (1.4) of interacting Feller diffusions with logistic growth is the
key ingredient in the proof of the ergodicity result of Theorem 5. Because of
this, we wish to gain more insight into (1.4). In this chapter, we complement the
analytical proof of Section 2.5 with a stochastic picture for the self-duality (1.4).
As mentioned in the introduction, only the non-spatial case is considered, that is,
m(i, i) = 1 for all i ∈ Zd. In the rest of the chapter, we refer to the slightly more
general duality (1.24).

Two processes (Xt)t≥0 and (Yt)t≥0 with state spaces E1 and E2, respectively,
are called dual with respect to the duality function H if H : E1 × E2 → R is a
measurable and bounded function and if Ex[H(Xt, y)] = Ey[H(x, Yt)] holds for
all x ∈ E1, y ∈ E2 and all t ≥ 0 (see e.g. [24]). Superscripts as in Px or in Ex

indicate the initial value of a process. In this chapter, E1 and E2 will be subsets of
[0,∞) or will be equal to {0, 1}N . We speak of a moment duality if H(x, y) = yx

or H(x, y) = (1 − y)x, x ∈ E1 ⊂ N0, y ∈ [0, 1], and of a Laplace duality if
H(x, y) = exp (−λx·y), x, y ∈ E1 = E2 ⊂ [0,∞), for some λ > 0.

We provide a unified stochastic picture for the moment duality (1.26) and
for the Laplace duality (1.24). In Section 4.2, we construct Markov processes
(XN

t )t≥0 and (Y N
t )t≥0 with càdlàg sample paths and state space {0, 1}N by means

of a graphical representation such that

(4.1) PxN
[
XN
t ∧ yN = 0

]
= PyN

[
xN ∧ Y N

t = 0
]
∀ xN , yN ∈ {0, 1}N ∀ t ≥ 0

for every N ≥ 1. The notation xN ∧ yN denotes component-wise minimum and 0
denotes the zero configuration. In Proposition 4.3.1, we prove that property (4.1)

67
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implies a prototype duality relation namely

(4.2) lim
N→∞

E
[
1− k

N

]∣∣XN
tTN

∣∣
= lim

N→∞
E
[
1−

∣∣Y N
tTN

∣∣
N

]n
, t ≥ 0,

under some assumptions – including the convergence of both sides – on the two
processes and on the sequence (TN)N≥1 ⊂ [0,∞). This prototype duality – to-

gether with certain convergence properties of the processes (XN
t )t≥0 and (Y N

t )t≥0

– will lead to the duality relations (1.24) and (1.26).

For the construction of the approximating processes, we interpret the elements
of {1, . . . , N} as “individuals” and the elements of {0, 1} as the “type” of an in-
dividual. In the terminology of population genetics, individuals are denoted as
“genes”, whereas in population dynamics, the statement “individual i is of type 1
(resp. 0)” would be phrased as “site i is occupied (resp. not occupied) by a parti-
cle”. Throughout the paper, we assume that in any change of the configuration at
most two individuals are involved. We call every function f : {0, 1}2 → {0, 1}2 a
basic mechanism. A finite tuple (f1, ..., fm), m ∈ N, of basic mechanisms together
with rates λ1, ..., λm ∈ [0,∞) defines a process with state space {0, 1}N by means
of the following graphical representation, which is in the spirit of Harris [14]. With
every k ≤ m and every ordered pair (i, j) ∈ {1, ..., N}2, i 6= j, of individuals, we
associate a Poisson process with rate parameter λk. At every time point of this
Poisson process, the configuration of (i, j) changes according to fk. For example,
if the pair of types was (1, 0) before, then it changes to fk(1, 0) ∈ {0, 1}2. All
Poisson processes are independent. This construction can be visualised by draw-
ing arrows from i to j at the time points of the Poisson processes associated with
the pair (i, j) (cf. Figure 4.1).

As an example, consider the following continuous time Moran model (MN
t )t≥0

with state space {0, 1}N . This is a population genetic model where ordered pairs
of individuals resample at rate β/N , β > 0. When a resampling event occurs at
(i, j), individual i bequeaths its type to individual j. Thus, the basic mechanism
is fR defined by

(4.3) fR(1, ·) := (1, 1), fR(0, ·) := (0, 0).

Figure 4.1 shows a realisation with three resampling events. At time t1, the pair
(2, 1) resamples. The arrow in Figure 4.1 at time t1 indicates that individual 2
bequeaths its type to individual 1. Furthermore, individual 5 inherits the type
of individual 3 at time t3. The dual process of the Moran model is a coalescent
process. This process is defined by the coalescent mechanism fC given by

(4.4) fC(1, ·) := (0, 1), fC(x) := x, x ∈ {(0, 0), (0, 1)},
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Figure 4.1: Three resampling events. Type 1 is indicated by black lines, absent lines
correspond to type 0.

and by the rate β/N . To put it differently, the coalescent process is a coalesc-
ing random walk on the complete oriented graph of {1, . . . , N}. In Section 4.2,
we will specify in which sense fR and fC are dual, and why this implies (4.1)
(see Proposition 4.2.3). More generally, we will identify all dual pairs of basic
mechanisms.

Our method elucidates the role of the square in (1.23) for the duality of the
logistic Feller diffusion with another logistic Feller diffusion. We illustrate this
by the Laplace duality of Feller’s branching diffusion (Ft)t≥0, which is the logistic
Feller diffusion with parameters (0, 0, β), β > 0. Its dual process (yt)t≥0 is the
logistic Feller diffusion with parameters (0, β, 0), i.e., the solution of the ordinary
differential equation

(4.5)
d

dt
yt = −β y2

t , y0 = y ∈ [0,∞).

The duality relation between these two processes is Ex[e−Fty] = e−xyt , t ≥ 0. In
Theorem 4.4.3, we prove that the rescaled Moran model

(
|MN

t
√
N
|/
√
N
)
t≥0

con-

verges weakly to (Ft)t≥0 as N → ∞. To get an intuition for this convergence,

notice that (|MN
t |)t≥0 is a pure birth-death process with size-dependent transi-

tion rates (“birth” corresponds to creation of an individual with type 1, whereas
“death” corresponds to creation of an individual with type 0). It remains to prove
that the birth and death events become asymptotically independent as N →∞. It
is known, e.g. Section 2 in [9], that the dual process of the Moran model (MN

t )t≥0,
N ≥ 1, is a coalescing random walk. Furthermore, the total number of particles
of this coalescing random walk is a pure death process on {1, ..., N} which jumps
from k to k− 1 at exponential rate β

N
k(k− 1), 2 ≤ k ≤ N . This rate is essentially

quadratic in k for large k. We will see that a suitably rescaled pure death process
converges to a solution of (4.5); see Remark 4.4.5. The square in (4.5) originates
in the quadratic rate of the involved pure death process; see the equations (4.35)
and (4.23) for details.
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In the literature, e.g. [24], the duality function H(xN , yN) = 1xN≤yN , xN , yN ∈
{0, 1}N , can be found frequently, where xN ≤ yN denotes component-wise com-
parison. Processes (XN

t )t≥0 and (Y N
t )t≥0 with state space {0, 1}N are dual with

respect to this duality function if they satisfy

(4.6) PxN
[
XN
t ≤ yN

]
= PyN

[
xN ≤ Y N

t

]
∀ xN , yN ∈ {0, 1}N , t ≥ 0.

The biased voter model is dual to a coalescing branching random walk in this sense
(see [22]). Property (4.6) could also be used to derive the Laplace duality (1.24)
and the moment duality (1.26).

dualities mentioned in this introduction. In fact, the two properties (4.1)
and (4.6) are equivalent in the following sense: If (XN

t )t≥0 and (Y N
t )t≥0 satisfy (4.1)

then (XN
t )t≥0 and (1 − Y N

t )t≥0 satisfy (4.6) and vice versa. In the configuration
1 every individual has type 1 and 1 − y denotes component-wise subtraction.
The dynamics of the process (1− Y N

t )t≥0 is easily obtained from the dynamics of

(Y N
t )t≥0 by interchanging the roles of the types 0 and 1.

4.2 Dual basic mechanisms

Fix m ∈ N and let (XN
t )t≥0 and (Y N

t )t≥0 be two processes defined by basic mecha-
nisms (f1, ..., fm) and (g1, ..., gm), respectively. Suppose that the Poisson processes
associated with k ≤ m have the same rate parameter λk ≥ 0, k = 1, . . . ,m. We
introduce a property of basic mechanisms which will imply (4.1).

Definition 4.2.1. Let f, g : {0, 1}2 → {0, 1}2 and for x = (x1, x2) ∈ {0, 1}2 let
x† := (x2, x1). The basic mechanisms f and g are said to be dual iff the following
two conditions hold:

∀x, y ∈ {0, 1}2 : y ∧
(
f(x)

)†
= (0, 0) =⇒ g(y) ∧ x† = (0, 0),(4.7)

∀x, y ∈ {0, 1}2 : x ∧
(
g(y)

)†
= (0, 0) =⇒ f(x) ∧ y† = (0, 0).(4.8)

To see how this connects to the duality relation in (4.1), we illustrate this
definition by an example.

Example 4.2.2. The resampling mechanism fR and the coalescent mechanism
fC defined in (4.3) and in (4.4), respectively, are dual. We check condition (4.7)
with f = fR and g = fC by looking at Figure 4.2. The resampling mechanism acts
in upward time (solid lines), the coalescent mechanism in downward time (dashed
lines). There are three nontrivial configurations for x, i.e., (1, 1), (1, 0) and (0, 1).
In the first two cases, we have fR(x) = (1, 1). Then only y = (0, 0) satisfies

y ∧ (fR(x))
†

= (0, 0). In the third case, every y satisfies y ∧ (fR(0, 1))
†

= (0, 0)
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Figure 4.2: The resampling mechanism and the coalescent mechanism sat-
isfy (4.7)

and has to be checked separately. We see that whenever the configuration y is
disjoint from (f(x))†, i.e., y ∧ (f(x))† = (0, 0), then g(y) is disjoint from x†. The
coalescent mechanism is the natural dual mechanism of the resampling mechanism.
Type 1 of the coalescent mechanism “traces back” the lines of descent of type 0
of the resampling mechanism. The “birth event” (0, 1) 7→ (0, 0) of an individual
of type 0 results in a coalescent event of ancestral lines.

Figure 4.3 is useful to verify condition (4.8). Again, the coalescent mechanism
is drawn with dashed lines. Here, the coalescent process is started in the nontrivial

configurations (1, 1), (1, 0) and (0, 1). In any case we obtain (fC(y))
†

= (1, 0).
Hence, all admissible x are of the form (0, ·). Condition (4.8) then follows from
fR(0, ·) = (0, 0).

0 0

00

1 1

1 0
0 1

00

1 1

1 0
0 1/0

00

1 0

1 0
0 1/0

00

0 1

1 0
? ?

??

0 0

0 0

Figure 4.3: The resampling mechanism and the coalescent mechanism sat-
isfy (4.8)

The following proposition shows that two processes are dual in the sense of (4.1)
if their defining basic mechanisms are dual (cf. Definition 4.2.1). The proofs of
both Proposition 4.2.3 and Proposition 4.3.1 follow similar ideas as in [13].

Proposition 4.2.3. Let m ∈ N and let the processes (XN
t )t≥0 and (Y N

t )t≥0 be
defined by basic mechanisms (f1, ..., fm) and (g1, ...,gm), respectively. Suppose that
the Poisson processes associated with k ∈ {1, . . . ,m} in (XN

t )t≥0 and in (Y N
t )t≥0

have the same rate parameter λk ≥ 0. If fk and gk are dual for every k = 1, . . . ,m,
then (XN

t )t≥0 and (Y N
t )t≥0 satisfy the duality relation (4.1).
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Proof. Fix T > 0 and initial values XN
0 , Y

N
0 ∈ {0, 1}N . Assume for simplicity that

m = 1 and let f := f1, g := g1. Define the process
(
Ŷ N
t

)
0≤t≤T in backward time in

the following way. Reverse all arrows in the graphical representation of (XN
t )t≥0.

At (forward) time T , start with a type configuration given by Ŷ N
0 := Y N

0 . Now
proceed until (forward) time 0: Whenever you encounter an arrow, change the
configuration according to g. Recall that the direction of the arrow indicates the
order the involved individuals. We show that the processes (XN

t )t≥0 and (Ŷ N
t )0≤t≤T

satisfy

(4.9) XN
0 ∧ Ŷ N

T = 0 ⇐⇒ XN
T ∧ Ŷ N

0 = 0 ∀ XN
0 , Ŷ

N
0 ∈ {0, 1}N ,

for every realisation. We prove the implication “ =⇒ ” by contradiction. Hence,
assume that for some initial configuration there is a (random) time t ∈ [0, T ] such
that

(4.10) XN
0 ∧ Ŷ N

T = 0 and XN
t ∧ Ŷ N

T−t 6= 0.

There are only finitely many arrows until time T and no two arrows occur at the
same time almost surely. Hence, there is a first time τ such that the processes
are disjoint before this time but not after this time. The arrow at time τ points
from i to j, say. Denote by (x−i , x

−
j ) ∈ {0, 1}2 and (x+

i , x
+
j ) the types of the

pair (i, j) ∈ {1, ..., N}2 according to the process (XN
t )t≥0 immediately before and

after forward time τ , respectively. By the definition of the process, we then have
f(x−i , x

−
j ) = (x+

i , x
+
j ). Furthermore, denote by (y−j , y

−
i ) the types of the pair (j, i)

according to (Y N
t )t≥0 immediately before backward time T − τ . We have chosen

τ, i, j such that

(4.11) (x−i , x
−
j ) ∧

(
g(y−j , y

−
i )
)†

= (0, 0) and (x+
i , x

+
j ) ∧ (y−i , y

−
j ) 6= (0, 0).

However, this contradicts the duality of f and g. The proof of the other implication
is analogous.

It remains to prove that Y N
T and Ŷ N

T are equal in distribution. The assertion
then follows from

P
[
XN

0 ∧ Y N
T = 0

]
= P

[
XN

0 ∧ Ŷ N
T = 0

]
(4.9)
= P

[
XN
T ∧ Ŷ N

0 = 0
]

= P
[
XN
T ∧ Y N

0 = 0
]
.

(4.12)

If a Poisson process is conditioned on its value at some fixed time T > 0, then
the time points are uniformly distributed over the interval [0, T ]. The uniform
distribution is invariant under time reversal. In addition, the Poisson processes
of (Y N

t )t≥0 nd (XN
t )t≥0 have the same rate parameter. Thus, (Y N

t )0≤t≤T and

(Ŷ N
t )0≤t≤T have the same one-dimensional distributions.
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We will now give a list of those maps f : {0, 1}2 → {0, 1}2 for which there exists
a dual basic mechanism (see Definition 4.2.1). The maps f and g in every row of
the following table are dual to each other. As in Example 4.2.2, it is elementary
to check this.

N o f(0, 0) f(0, 1) f(1, 0) f(1, 1) g(0, 0) g(0, 1) g(1, 0) g(1, 1)

i) (0,0) (0,0) (1,1) (1,1) (0,0) (0,1) (0,1) (0,1)
ii) (0,0) (0,1) (1,1) (1,1) (0,0) (0,1) (1,1) (1,1)
iii) (0,0) (0,0) (0,1) (0,1) (0,0) (0,0) (0,1) (0,1)
iv) (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)
v) (0,0) (1,1) (1,1) (1,1) (0,0) (1,1) (1,1) (1,1)
vi) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Check that the pair (f, g) is dual if and only if the pair (f †, g†) is dual where
f †(x) := (f(x†))†. Furthermore, the pair (f, g) is dual if and only if (f̂ , ĝ†) is dual
where f̂(x) := f(x†) and ĝ†(x) = (g(x))† for x ∈ {0, 1}2. Thus, for each of the
listed dual pairs (f, g), the pairs (f †, g†), (f̂ , ĝ†) and (f̂ †, ĝ) are also dual. Modulo
this relation, the listing of dual basic mechanisms is complete. The proof of this
assertion is elementary but somewhat tedious and is thus omitted.

Of particular interest are the dualities in i)-iii). The first of these is the dual-
ity between the resampling mechanism and the coalescent mechanism, which we
already encountered in Example 4.2.2. The duality in ii) is the self-duality of the
pure birth mechanism
(4.13)

fB : {0, 1}2 → {0, 1}2, (1, 0) 7→ (1, 1) and x 7→ x ∀x ∈ {(0, 0), (0, 1), (1, 1)}

and iii) is the self-duality of the death/coalescent mechanism

(4.14) fDC : {0, 1}2 → {0, 1}2, (1, ·) 7→ (0, 1) and (0, ·) 7→ (0, 0).

We are only interested in the effect of an basic mechanism on the total number
of individuals of type 1. The identity map in iv) does not change the number
of individuals of type 1 in the configuration. The effect of v) and vi) on the
number of individuals of type 1 is similar to the effect of ii) and iii), respectively.
Furthermore, both f † and f̂ have the same effect on the number of individuals of
type 1 as f .

Closing this section, we define processes which satisfy the duality relation (4.1).
These processes will play a major role in deriving the dualities (1.26) and (1.24)

in Section 4. For u, e, γ, β ≥ 0, let (XN
t )t≥0 = (X

N,(u,e,γ,β)
t )t≥0 be the process on

{0, 1}N with the following transition rates (of independent Poisson processes):

• With rate u
N

, the pure birth mechanism fB occurs (cf.(4.13)).
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• With rate e
N

, the death/coalescent mechanism fDC occurs (cf. (4.14)).

• With rate γ
N

, the coalescent mechanism fC occurs (cf. (4.4)).

• With rate β
N

, the resampling mechanism fR occurs (cf. (4.4)).

Together with an initial configuration, this defines the process. The processes
(X

N,(u,e,γ,β)
t )t≥0 and (X

N,(u,e,β,γ)
t )t≥0 are defined by the basic mechanisms (fB, fDC ,

fC , fR) and (fB, fDC , fR, fC), respectively. Proposition 4.2.3 then yields the fol-
lowing corollary.

Corollary 4.2.4. Let u, e, γ, β ≥ 0. Then the two processes (X
N,(u,e,γ,β)
t )t≥0 and

(X
N,(u,e,β,γ)
t )t≥0 satisfy the duality relation (4.1).

4.3 Prototype duality

In this section, we derive a prototype duality from (4.1). The main idea for this is
to integrate equation (4.1) in the variables xN and yN with respect to a suitable
measure. Furthermore, we will exploit the fact that drawing from an urn with
replacement and without replacement, respectively, is almost surely the same if
the urn contains infinitely many balls.

Proposition 4.3.1. Let (XN
t )t≥0 and (Y N

t )t≥0 be processes with state space {0, 1}N
for every N ≥ 1. Assume that (XN

t )t≥0 and (Y N
t )t≥0 satisfy the duality rela-

tion (4.1). Choose n, k ∈ {0, ..., N} which may depend on N . Define µNn (xN) :=(
N
n

)−1
1|xN |=n for every xN ∈ {0, 1}N where |xN | =

∑N
i=1 x

N
i is the total number of

individuals of type 1. Assume L
(
XN

0

)
= µNn and L

(
Y N

0

)
= µNk . Suppose that the

process (XN
t )t≥0 satisfies

(4.15)
n

N
→ 0 and

E
[∣∣XN

tN

∣∣]
N

−→ 0 as N →∞,

where tN ≥ 0. Then

(4.16) lim
N→∞

E

[(
1− k

N

)∣∣XN
tN

∣∣]
= lim

N→∞
E

[(
1−

∣∣Y NtN ∣∣
N

)n]
under the assumption that the limits exist.

Proof. A central idea of the proof is to make use of the well known fact that the
hypergeometric distribution Hyp(N,R, l), R, l ∈ {0, ..., N}, can be approximated
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by the binomial distribution B(l, R
N

) as N →∞ provided that l is sufficiently small
compared to N . In fact, by Theorem 4 of [8],

(4.17)
∣∣∣B(l, R

N
)
[
{0}
]
− Hyp(N,R, l)

[
{0}
]∣∣∣

≤ dTV

(
B
(
l, R
N

)
,Hyp(N,R, l)

)
≤ 4 · l

N
∀ R, l ≤ N,

where dTV is the total variation distance. By assumption (4.15), we have (with
R := k, l :=

∣∣XN
tN

∣∣)
E

[(
1− k

N

)∣∣XN
tN

∣∣]
= E

[
B
(∣∣XN

tN

∣∣, k
N

)[
{0}
]]

= E
[
Hyp

(
N, k,

∣∣XN
tN

∣∣)[{0}]]+ o(1)

(4.18)

as N →∞. Similarly, we have (with R :=
∣∣Y N
tN

∣∣, l := n)

E

[(
1−

∣∣Y NtN ∣∣
N

)n]
= E

[
B
(
n,

∣∣Y NtN ∣∣
N

)[
{0}
]]

= E
[
Hyp

(
N,
∣∣Y N
tN

∣∣, n)[{0}]]+ o(1)

(4.19)

as N → ∞. For fixed t ≥ 0, Hyp(N, |Y N
t |, n)[{0}] is the probability of drawing

no individual i with Y N
t (i) = 1 when picking n individuals at random without

replacement. Thus, it follows that

Hyp
(
N,
∣∣Y N
t

∣∣, n)[{0}] =

(
N

n

)−1 ∑
xN : |xN |=n

1{xN∧Y Nt =0}

= µNn
[
xN : xN ∧ Y N

t = 0
]
.

(4.20)

By the same argument as before, we also obtain

Hyp
(
N, k,

∣∣XN
t

∣∣)[{0}] = Hyp
(
N,
∣∣XN

t

∣∣, k)[{0}]
= µNk

[
yN : XN

t ∧ yN = 0
]
.

(4.21)

We denote by PxN the law of the process (XN
t )t≥0 started in the fixed initial

configuration xN ∈ {0, 1}N . Starting from the left-hand side of (4.16), the above
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considerations yield

E
[(

1− k

N

)∣∣XN
tN

∣∣]
+ o(1)

(4.18)
= E

[
Hyp(N, k,

∣∣XN
tN

∣∣)[{0}]]
(4.21)
=

∫
ExN

[
µNk
[
XN
tN
∧ yN = 0

]]
µNn (dxN)

(4.1)
=

∫ ∫
PyN

[
xN ∧ Y N

tN
= 0
]
µNk (dyN)µNn (dxN) = E

[
µNn
[
xN ∧ Y N

tN
= 0
]]

(4.20)
= E

[
Hyp(N,

∣∣Y N
tN

∣∣, n)
[
{0}
]] (4.19)

= E

[(
1−

∣∣Y N
tN

∣∣
N

)n]
+ o(1),

which proves the assertion.

4.4 Various scalings

Recall the definition of the process (X
N,(u,e,γ,β)
t )t≥0 from the end of Section 4.2.

Define XN
t := X

N,(u,e,γ,β)
t and Y N

t := X
N,(u,e,β,γ)
t for t ≥ 0 and N ∈ N. Notice

that the Poisson process attached to the resampling mechanism in the process
(Y N

t )t≥0 has rate γ. By Corollary 4.2.4, the two processes (XN
t )t≥0 and (Y N

t )t≥0

satisfy the duality relation (4.1). Let L
(
XN

0

)
= µNn and L

(
Y N

0

)
= µNk for some

n, k ∈ N to be chosen later, where µNn is defined in Proposition 4.3.1. In order
to apply Proposition 4.3.1, we essentially have to prove existence of the limits
in (4.16). Depending on the scaling, this will result in the moment duality (1.26)
of a resampling-selection model with a branching-coalescing particle process and in
the Laplace duality (1.24) of the logistic Feller diffusion with another logistic Feller
diffusion, respectively. Both dualities could be derived simultaneously. However,
in order to keep things simple, we consider the two cases separately.

Theorem 4.4.1. Assume b, c, d ≥ 0. Let X0 = n ∈ N0 and Y0 = y ∈ [0, 1].
Furthermore, denote by (Xt)t≥0 and (Yt)t≥0 the (1, b, c, d)-braco-process and the
(1, b, c, d)-resem-process, respectively. Then

(4.22) En
[
(1− y)Xt

]
= Ey

[
(1− Yt)n

]
, t ≥ 0.

Remark 4.4.2. In the special case b = 0 = d and c > 0, this is the moment
duality of the Fisher-Wright diffusion with Kingman’s coalescent. Furthermore,
choosing c = 0 and b, d > 0 results in the moment duality of the Galton-Watson
process with a deterministic process.

Proof. Choose u, e, β ≥ 0 and γ = γ(N) such that b = u + β, d = e + β and
γ/N → c as N → ∞. In the first step, we prove that the process (|XN

t |)t≥0 of
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the total number of individuals of type 1 converges weakly to (Xt)t≥0. The total
number of individuals of type 1 increases by one if a “birth event” occurs (fB

or fR) and if the type configuration of the respective ordered pair of individuals
is (1, 0). If the total number of individuals of type 1 is equal to k, then the
probability of the type configuration of a randomly chosen ordered pair to be
(1, 0) is k

N
N−k
N−1

. The number of Poisson processes associated with a fixed basic
mechanism is N(N − 1). Thus, the process of the total number of individuals of
type 1 has the following transition rates:

(4.23)
k → k + 1 : u+β

N
·N(N − 1) · k

N
N−k
N−1

k → k − 1 : e+β
N
·N(N − 1) · N−k

N
k

N−1
+ e+γ

N
·N(N − 1) · k

N
k−1
N−1

,

where k ∈ N0. Notice that the coalescent mechanism produces the quadratic term
k(k − 1) because the probability of the type configuration of a randomly chosen
ordered pair to be (1, 1) is k

N
k−1
N−1

if there are k individuals of type 1. The transition

rates determine the generator GN = GN,(u,e,γ,β) of (|XN
t |)t≥0, namely

GNf(k) =
u+ β

N
· k(N − k) ·

(
f(k + 1)− f(k)

)
+
e+ β

N
· k(N − k) ·

(
f(k − 1)− f(k)

)
+
e+ γ

N
· k(k − 1) ·

(
f(k − 1)− f(k)

)
, k ∈ {0, . . . , N},

(4.24)

for f : {0, . . . , N} → R. The (1, u+β, c, e+β)-braco-process (Xt)t≥0 is the unique
solution of the martingale problem for G (see [2]) where

Gf(k) := (u+ β)k
(
f(k + 1)− f(k)

)
+
(
(e+ β) + c(k − 1)

)
k
(
f(k − 1)− f(k)

)
,

for k ∈ N0 and for f : N0 → R with finite support. Letting N →∞, we see that

(4.25) GNf(k) −→ Gf(k) as N →∞, k ∈ N0,

for f : N0 → R with finite support. We aim at using Lemma 4.5.1 which is
given below (with EN = {0, . . . , N} and E = N0), to infer from (4.24) the weak
convergence of the corresponding Markov processes. A coupling argument shows
that (|XN

t |)t≥0 is dominated by (ZN
t )t≥0 := (|XN,(u,0,0,β)

t |)t≥0. The process (ZN
t )t≥0

solves the martingale problem for GN,(u,0,0,β). Thus, we obtain

(4.26) ZN
t − ZN

0 =

∫ t

0

GN,(u,0,0,β)ZN
s ds+ CN

t =

∫ t

0

uZN
s
N−ZNs
N

ds+ CN
t

where (CN
t )t≥0 is a martingale. Hence, (ZN

t )t≥0 is a submartingale. Taking expec-
tations, Gronwall’s inequality implies

(4.27) E[ZN
t ] ≤ E[ZN

0 ]eut, ∀ t ≥ 0.
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Let SN = TN = 1, sN = u and recall |XN
0 | = n. With this, the assumptions of

Lemma 4.5.1 are satisfied. Thus, Lemma 4.5.1 implies that (|XN
t |)t≥0 converges

weakly to (Xt)t≥0 as N →∞. Let k = kN ∈ {0, ..., N} be such that k/N → y as
N →∞. For every n̄ ∈ N, (1− k

N
)n converges uniformly in n ≤ n̄ to (1− y)n as

N → ∞. In general, if the sequence (X̃n)n∈N of random variables with complete
and separable state space converges weakly to X̃ and if the sequence (fn)n∈N, fn ∈
Cb, converges uniformly on compact sets to f ∈ Cb, then E[fn(X̃n)] → E[f(X̃)]
as n→∞. Hence,

(4.28) En
[
(1− y)Xt

]
= lim

N→∞
E

[(
1− k

N

)∣∣XN
t

∣∣]
.

The next step is to prove that the rescaled processes (|Y N
t |/N)t≥0 converge

weakly to (Yt)t≥0 as N →∞. The generator of (|Y N
t |/N)t≥0 is given by

GN,(u,e,β,γ)f
(
k
N

)
= γk

N − k
N

(
f
(
k+1
N

)
+ f
(
k−1
N

)
− 2f

(
k
N

))
+ uk

N − k
N

(
f
(
k+1
N

)
− f

(
k
N

))
+ ek

N − k
N

(
f
(
k−1
N

)
− f

(
k
N

))
+ e+β

N
k(k − 1)

(
f
(
k−1
N

)
− f

(
k
N

))
, k ∈ {0, ..., N},

(4.29)

for f ∈ C2
c ([0, 1]). Choose k = kN ≤ N such that k

N
→ y ∈ [0, 1] as N → ∞.

Notice that

(4.30) N2·
(
f
(
k+1
N

)
+ f
(
k−1
N

)
− 2f

(
k
N

))
→ f

′′
(y) as N →∞.

As N →∞, the right-hand side of (4.29) converges to

cy(1− y) · f ′′(y) + (u− e)y(1− y) · f ′(y)− (e+ β)y2 · f ′(y)

= (u− e)y · f ′(y)− (u+ β)y2 · f ′(y) + cy(1− y) · f ′′(y) =: Gf(y)
(4.31)

for every f ∈ C2
c ([0, 1]). Athreya and Swart [2] show that the (1, b, c, d)-resem-

process (Yt)t≥0 solves the martingale problem for G and that this solution is unique.

Let EN = {0, 1, . . . , N}, E = [0, 1], ZN
t := |XN,(u,0,0,γ)

t |, SN = N and TN = 1.
With this, the assumptions of Lemma 4.5.1 are satisfied and we conclude that
(|Y N

t |/N)t≥0 converges weakly to (Yt)t≥0. It follows that, for k = kN ∈ {0, ..., N}
with k/N → y,

(4.32) lim
N→∞

E

[(
1−

∣∣Y N
t

∣∣
N

)n]
= Ey

[
(1− Yt)n

]
.
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This proves existence of the limits in (4.16) with tN := t. Inequality (4.27) and
|XN

0 | = n << N imply condition (4.15). Thus, Proposition 4.3.1 establishes
equation (4.16). The assertion follows from equations (4.28), (4.16) and (4.32).

Next, we derive the Laplace duality of a logistic Feller diffusion with another
logistic Feller diffusion. Recall that the logistic Feller diffusion with parameters
(ς, γ, β) solves equation (1.23).

Theorem 4.4.3. Suppose that ς, γ, β ≥ 0, r > 0 and X0 = x ≥ 0, Y0 = y ≥ 0.
Let (Xt)t≥0 and (Yt)t≥0 be logistic Feller diffusions with parameters (ς, γ, β) and
(ς, rβ, γ/r), respectively. Then

(4.33) Ex
[
e−rXt·y

]
= Ey

[
e−rx·Yt

]
for all t ≥ 0.

Remark 4.4.4. (a) For β, γ > 0 and r = γ/β, Theorem 4.4.3 yields the self-
duality of the logistic Feller diffusion.

(b) For ς = 0, γ = 0, r = 1 and β > 0, Theorem 4.4.3 specialises to the Laplace
duality of Feller’s branching diffusion.

Proof. Choose u = uN ≥ 0 and e = eN ≥ 0 such that (u− e)
√
N → ς as N →∞.

We prove that the rescaled process (|Y N
t
√
N
|/(r
√
N))t≥0 converges weakly to (Yt)t≥0

as N →∞. The generator of the rescaled process is given by (cf. (4.29))

√
NGNf

(
k

r
√
N

)
=
√
N · γ · k (N − k)

N
·
(
f
(
k+1
r
√
N

)
+ f
(
k−1
r
√
N

)
− 2f

(
k

r
√
N

))
+
√
NuN · k

(N − k)

N
·
(
f
(
k+1
r
√
N

)
− f

(
k

r
√
N

))
+
√
NeN · k

(N − k)

N
·
(
f
(
k−1
r
√
N

)
− f

(
k

r
√
N

))
+
√
N · (eN + β) · k(k − 1)

r2N
r2 · r

√
N

r
√
N

(
f
(
k−1
r
√
N

)
− f

(
k

r
√
N

))
,

(4.34)

for k ∈ {0, . . . , N} and for f ∈ C2
c ([0,∞)). Let k = k(N) ∈ {0, . . . , N} be such

that k/(r
√
N)→ y. Letting N →∞, the right-hand side converges to

(4.35) γ
r
y · f ′′(y) + ς y · f ′(y)− βr y2 · f ′(y) =: Gf(y)

for every f ∈ C2
c ([0,∞)). Notice that the quadratic term y2 originates in the

quadratic term k(k− 1). Hutzenthaler and Wakolbinger [17] prove that (Yt)t≥0 In
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Section 2.5, we proved – in the case r = 1 – that (Yt)t≥0 is the unique solution of the
martingale problem for G. The proof for general r > 0 is analogous. Let |Y N

0 | =
k = k(N) be such that k/(r

√
N)→ y ∈ [0, 1] as N →∞ and define ZN

0 := k. As

before, (ZN
t )t≥0 := (|XN,(u,0,0,γ)

t |)t≥0 is a submartingale which dominates (Y N
t )t≥0

and which satisfies

(4.36) sup
N

1

r
√
N

E[ZN
t
√
N

] ≤ sup
N

1

r
√
N

E[ZN
0 ]euN t

√
N <∞, ∀ t ≥ 0.

Let EN := {0, . . . , N}, E := [0,∞), sN := uN , SN := r
√
N and TN :=

√
N . The

assumptions of Lemma 4.5.1 are satisfied and we conclude that (|Y N
t
√
N
|/(r
√
N))t≥0

converges weakly to (Yt)t≥0. This also proves that (|XN
t
√
N
|/
√
N)t≥0 converges

weakly to (Xt)t≥0 if |XN
0 | = n = n(N) is such that n/

√
N → x as N → ∞. It is

not hard to see that, for every z̃ ≥ 0,

(4.37)
(
1− r k/(r

√
N)√

N

)√Nz
−→ e−rzy and

(
1− r z√

N

)√N n√
N −→ e−rxz

uniformly in 0 ≤ z ≤ z̃ as N → ∞. Together with the weak convergence of the
rescaled processes, this implies

(4.38) Ex
[
e−rXt·y

]
= lim

N→∞
En

[(
1− r k/(r

√
N)√

N

)√N ·XN
t
√
N
/
√
N
]

and

(4.39) lim
N→∞

Ek

[(
1− r

Y N
t
√
N
/(r
√
N)

√
N

)n]
= Ey

[
e−rx·Yt

]
for t ≥ 0. This proves existence of the limits in (4.16) with tN := t

√
N . Inequal-

ity (4.36) and |XN
0 | = n << N imply condition (4.15). Thus, Proposition 4.3.1

establishes equation (4.16). The assertion follows from equations (4.38), (4.16)
and (4.39).

Remark 4.4.5. Assume u = e = γ = ς = 0 and r = 1 in the proof of The-
orem 4.4.3. Then (|Y N

t |)t≥0 is a pure death process on {1, ..., N} which jumps

from k to k − 1 at exponential rate β
N
k(k − 1), 2 ≤ k ≤ N . Furthermore, (Yt)t≥0

is a solution of (4.5). We have just shown that the rescaled pure death process
(|Y N

t
√
N
|/
√
N)

t≥0
converges weakly to (Yt)t≥0 as N →∞.

4.5 Weak convergence of processes

In the proofs of Theorem 4.4.1 and Theorem 4.4.3, we have established conver-
gence of generators plus a domination principle. In this section, we prove that this



4.5. WEAK CONVERGENCE OF PROCESSES 81

implies weak convergence of the corresponding processes. For the weak conver-
gence of processes with càdlàg paths, let the topology on the set of càdlàg paths
be given by the Skorohod topology (see [11], Section 3.5).

Lemma 4.5.1. Let E ⊂ R≥0 be closed. Assume, that the martingale problem for
(G, ν) has at most one solution where G : C2

c (E)→ Cb(E) is a linear operator and
ν is a probability measure on E. Furthermore, for N ∈ N, let EN ⊂ R≥0 and
let (Y N

t )t≥0 be an EN -valued Markov process with càdlàg paths and generator GN .
Let (SN)N∈N and (TN)N∈N be sequences in R>0 with yN/SN ∈ E for all yN ∈ EN
and N ∈ N. Suppose that

(4.40) yN ∈ EN , lim
N→∞

yN

SN
= y ∈ E implies TNGNf

(
yN

SN

)
→ Gf(y) as N →∞,

for every f ∈ C2
c (E). Assume that, for N ∈ N, (Y N

t )t≥0 is dominated by a process
(ZN

t )t≥0, i.e., Y N
t ≤ ZN

t for all t ≥ 0 almost surely, which is a submartingale
satisfying E[ZN

t ] ≤ E[ZN
0 ]etsN for all t ≥ 0 and some constant sN . In addition,

suppose that lim supN→∞ sNTN < ∞ and lim supN→∞
E[ZN0 ]

SN
< ∞. If Y N

0 /SN
converges weakly to ν as N →∞, then

(4.41) L
((
Y N
tTN

/
SN
)
t≥0

)
=⇒ Lν

((
Yt
)
t≥0

)
as N →∞

where (Yt)t≥0 is a solution of the martingale problem (G, ν) with initial distribution
ν.

Proof. We aim at applying Corollary 4.8.16 of Ethier and Kurtz [11]. For this,
define

(4.42) ẼN := { yN
SN

: yN ∈ EN}, G̃Nf(ỹN) := TNGNf
(
yN

SN

)∣∣∣
yN=ỹNSN

, ỹN ∈ ẼN ,

for f ∈ C2
c (E) and let ηN : ẼN → E be the embedding function. The process(

Y N
tTN

/SN
)
t≥0

has state space ẼN and generator G̃N . Now we prove the compact

containment condition, i.e., for fixed ε, t > 0 we show

(4.43)
(
∃K > 0

) (
∀N ∈ N

)
P
[
sup
s≤t

Y N
sTN

SN
≤ K

]
≥ 1− ε.

Using Y N
t ≤ ZN

t , t ≥ 0, and Doob’s Submartingale Inequality, we conclude for all
N ∈ N

P
[
sup
s≤t

Y N
sTN
≥ KSN

]
≤ P

[
sup
s≤t

ZN
sTN
≥ KSN

]
≤ 1

KSN
E
[
ZN
tTN

]
≤ 1

K
sup
N∈N

E
[
ZN

0

]
SN

· exp
(
t · sup

N∈N
(sNTN)

)
=:

C

K
.

(4.44)
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Thus, choosing K := C
ε

completes the proof of the compact containment condition.
It remains to verify condition (f) of Corollary 4.8.7 of [11]. Condition (4.40)

implies that for every f ∈ C2
c and every compact set K ⊂ E

(4.45) sup
y∈K∩ẼN

|G̃Nf(y)− Gf(y)| → 0 as N →∞.

Choose a sequence KN such that (4.45) still holds with K replaced by KN . This
together with the compact containment condition implies condition (f) of Corollary
4.8.7 of [11] with GN := KN ∩ ẼN and fN := f |ẼN . Furthermore, notice that
C2
c (E) is an algebra that separates points and E is complete and separable. Now

Corollary 4.8.16 of Ethier and Kurtz [11] implies the assertion.

Open Question: Athreya and Swart [2] prove a self-duality of the resem-
process given by (1.25). We were not able to establish a graphical representation
for this duality. Thus, the question whether our technique also works in this case
yet waits to be answered.



Bibliography

[1] Roland Alkemper and Martin Hutzenthaler. Graphical representation of some
duality relations in stochastic population models. Electron. Comm. Probab.,
12:206–220, 2007.

[2] Siva R. Athreya and Jan M. Swart. Branching-coalescing particle systems.
Probab. Theory Related Fields, 131(3):376–414, 2005.

[3] Benjamin M. Bolker and Stephen W. Pacala. Using moment equations to un-
derstand stochastically driven spatial pattern formation in ecological systems.
Theor. Popul. Biol., 52(3):179–197, 1997.

[4] J. T. Cox and Andreas Greven. Ergodic theorems for infinite systems of
locally interacting diffusions. Ann. Probab., 22(2):833–853, 1994.

[5] J. Theodore Cox, Klaus Fleischmann, and Andreas Greven. Comparison of
interacting diffusions and an application to their ergodic theory. Probab.
Theory Related Fields, 105(4):513–528, 1996.

[6] Donald A. Dawson. Measure-valued Markov processes. In École d’Été de
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Deutsche Zusammenfassung

In Populationen mit natürlicher Fortpflanzung ist die durchschnittliche Zahl an
Nachkommen pro Individuum üblicherweise strikt größer als eins. Bedingt auf
Überleben wachsen klassische superkritische Verzweigungsmodelle jedoch über al-
le Grenzen. Dies ist unrealistisch, da Ressourcen wie beispielsweise Nahrung be-
schränkt sind.

Eine effektive Gegenmaßnahme gegen unbeschränktes Populationswachstum
ist eine Regulierung der Dynamik in Abhängigkeit von der Populationsgröße. Ein
Beispiel hierfür ist der sog. logistische Verzweigungsprozess, bei dem, zusätzlich zu
den

”
natürlichen“ Geburten und Todesfällen eines superkritischen Verzweigungs-

prozesses, Todesfälle aus dem Konkurrenzkampf zwischen je zwei Individuen einer
Population resultieren. Dies führt in Fellers Diffusionslimes zu einem negativen
Driftterm, welcher proportional zur quadrierten Populationsgröße ist. Um dies zu
präzisieren, betrachte, für N ≥ 1 und b, d, γ, β > 0, einen reinen Geburts-Todes-
Prozess (ZN

t )t≥0 mit ZustandsraumN0, bei dem sich jedes Teilchen mit Rate β+ b
N

in zwei neue Teilchen spaltet, jedes Teilchen mit Rate β + d
N

stirbt und jedes ge-
ordnete Paar von Teilchen mit Rate γ

N2 zu einem Teilchen verschmilzt. Alle diese

Ereignisse geschehen unabhängig voneinander. Falls
ZN0
N

in Verteilung für N →∞
gegen Z0 konvergiert, so konvergiert

(ZNtN
N

)
t≥0

in Verteilung für N → ∞ gegen(
Zt
)
t≥0

, wobei (Zt)t≥0 die stochastische Differentialgleichung

(Z.1) dZt = (b− d)Zt dt− γZ2
t dt+

√
2βZtdBt

löst. Dabei bezeichnet (Bt)t≥0 eine Standard-Brownsche Bewegung. Das Quadrat
in (Z.1) verhindert ein unbeschränktes Anwachsen der Populationsgröße. Leider
konvergiert (Zt)t≥0 in Verteilung für t→∞ gegen Null und ist somit als Popula-
tionsmodell nur bedingt geeignet.

Um dem Aussterben entgegenzuwirken, betrachtet man eine räumlich erweiter-
te Version des logistischen Verzweigungsprozesses. Dabei leben Teilpopulationen
auf räumlich isolierten

”
Inseln“, welche im d-dimensionalen Gitter Zd angeord-

net sind und durch einen (homogenen) Migrationsmechanismus verbunden sind.
Dies führt zu folgendem System X = (Xt)t≥0 = (Xt(i))t≥0,i∈Zd von wechselwir-

87
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kenden Feller-Diffusionen mit logistischem Wachstum, wobei Xt(i) ∈ [0,∞) die
Populationsgröße auf der Insel i ∈ Zd zur Zeit t ≥ 0 bezeichnet:

dXt(i) =α

∑
j∈Zd

m(i, j)Xt(j)−Xt(i)

 dt

+ γXt(i)
(
K −Xt(i)

)
dt+

√
2βXt(i) dBt(i) i ∈ Zd.

(Z.2)

Dabei sind B(i) unabhängige Standard-Brownsche Bewegungen, m ist die Über-
gangsmatrix einer Irrfahrt auf Zd und α, β, γ sind nichtnegative Konstanten, die
die Raten von Migration, Verzweigung beziehungsweise Kompetition beschreiben.
Die Konstante K ≥ 0 nennt man Kapazität. Die Migrationsmatrix m sei eine
translationsinvariante, irreduzible stochastische Matrix. Wechselwirkende Feller-
Diffusionen mit logistischem Wachstum sind ein generisches Beispiel für ein System
wechselwirkender lokal regulierter Diffusionen (engl. interacting locally regulated
diffusions). Im Mittelpunkt dieser Arbeit steht das folgende System stochastischer
Differentialgleichungen:

dXt(i) =α

(∑
j∈G

m(i, j)Xt(j)−Xt(i)

)
dt

+ h
(
Xt(i)

)
dt+

√
2·g
(
Xt(i)

)
dBt(i), i ∈ G,

(Z.3)

wobei G eine höchstens abzählbare Abelsche Gruppe ist. Es sei bemerkt, dass die
zwei Modelle (Z.2) und (Z.3) übereinstimmen, falls G = Zd, h(x) = γx(K − x),
g(x) = βx gilt. Die folgenden Figuren 4.4 und 4.5 zeigen generische Beispiele für
eine Regulierungsfunktion h beziehungsweise für eine Diffusionsfunktion g.

Abbildung 4.4: Ein generisches Beispiel
für eine Regulierungsfunktion.

Abbildung 4.5: Ein generisches Beispiel
für eine Diffusionsfunktion.

Einen geeigneten Zustandsraum für das System (Z.3) erhält man durch folgen-
de Konstruktion, welche auf Liggett und Spitzer [25] zurückgeht. Wähle zu gege-
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bener Migrationsmatrix m eine summierbare und strikt positive Folge σ = (σi)i∈G,
für die

(Z.4)
∑
i∈G

σim(i, j) ≤ CLSσj, j ∈ G,

für eine Konstante CLS <∞ gilt. Definiere hiermit als Zustandsraum den Liggett-
Spitzer-Raum

(Z.5) Eσ :=
{
x ∈ [0,∞)G : ‖x ‖σ :=

∑
i∈G

σi|xi| <∞
}
.

Der Liggett-Spitzer-Raum hat die wichtige Eigenschaft, dass jedes translationsin-
variante Maß auf [0,∞)G mit

∫
x0 µ(dx) < ∞ Träger in Eσ hat. Die folgenden

Annahmen an die Regulierungsfunktion h und an die Diffusionsfunktion g garan-
tieren die Existenz und die Eindeutigkeit einer Lösung von Gleichung (Z.3).

Annahme A1. Die Funktionen h : [0,∞)→ R und g : [0,∞)→ [0,∞) sind lokal
Lipschitz stetig und erfüllen h(0) = 0 = g(0). Desweiteren ist h nach oben global
Lipschitz stetig, d. h., es gilt sgn(x−y)

(
h(x)− h(y)

)
≤ Ch|x− y| für alle x, y ≥ 0

und eine Konstante Ch < ∞. Die Funktion g ist strikt positiv auf (0,∞) und
erfüllt g(x) ≤ Cg(1 + x2) für alle x ≥ 0 und ein Cg <∞.

Unter diesen Annahmen zeigt Proposition 1.2.1, dass das System (Z.3) eine ein-
deutige starke Lösung mit Werten in Eσ hat.

In Theorem 1 wird der Maximalprozess X(∞) konstruiert, welcher der Glei-
chung (Z.3) gehorcht und welcher zur Zeit Null von unendlich

”
herunter kommt“.

Hierfür wird eine Bedingung an h benötigt, die sicher stellt, dass die Drift
”
hinrei-

chend negativ“ für große Werte von X
(∞)
t (i) ist. Diese Bedingung wird in folgender

Annahme formuliert.

Annahme A2. Es existiert eine Funktion ĥ ≥ h derart, dass ĥ für ein x0 > 0
auf [x0,∞) negativ und konkav ist und

(Z.6)

∫ +∞

x0

1

−ĥ(x)
dx <∞

erfüllt.

Die entscheidende Eigenschaft von X(∞) ist, dass dieser Prozess jede Lösung
von (Z.3) in einer stochastischen Ordnung dominiert, welche nun vorgestellt wird.
Sind µ1, µ2 Wahrscheinlichkeitsmaße auf der partiell geordneten Menge Eσ, dann
heisst µ1 stochastisch kleiner oder gleich µ2, geschrieben als µ1 ≤ µ2, falls ein
zufälliges Paar (Y1, Y2) mit Randverteilungen L (Yi) = µi, i = 1, 2, existiert, für
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welches Y1 ≤ Y2 fast sicher gilt. Desweiteren sagt man, dass eine Folge (µi)i∈N
von Wahrscheinlichkeitsmaßen stochastisch gegen das Wahrscheinlichkeitsmaß µ∞
anwächst, falls eine zufällige Folge (Yi)i∈N existiert, welche fast sicher monoton
steigend gegen Y∞ konvergiert und welche L (Yi) = µi, i = 1, 2, . . . ,∞, erfüllt.
Man schreibt hierfür µi ↑ µ∞. In dieser Notation lässt sich die Existenz des Maxi-
malprozesses wie folgt formulieren.

Theorem 1. Die Annahmen A1 und A2 seien erfüllt. Dann existiert ein Eσ-
wertiger Prozess (X

(∞)
t )t>0 mit den folgenden Eigenschaften:

a) Für jedes ε > 0 ist (X
(∞)
t )t≥ε eine Lösung von (Z.3), welche zur Zeit t = ε

startet.

b) Das erste Moment von ‖X(∞)
t ‖σ ist für jedes t > 0 endlich.

c) Sei x(n) = (x
(n)
i )i∈G, n = 1, 2, ..., eine monoton steigende Folge in Eσ mit der

Eigenschaft, dass für alle i ∈ G

(Z.7) x
(n)
i ↑ ∞ für n→∞.

Falls (X
(n)
t )t≥0 die Lösung von (Z.3) mit Startpunkt x(n) ∈ Eσ zur Zeit Null

ist, dann

(Z.8) L
(
X

(n)
t

)
↑ L

(
X

(∞)
t

)
für n ↑ ∞ (t > 0).

d) Es existiert eine Gleichgewichtsverteilung ν̄ (bezeichnet als oberes invariantes
Maß) für die Dynamik (Z.3), sodass

(Z.9) L
(
X

(∞)
t

)
↓ ν̄ für t ↑ ∞.

e) Jede Eσ-wertige Lösung (Xt)t≥0 von (Z.3) erfüllt

(Z.10) L
(
Xt

)
≤ L

(
X

(∞)
t

)
(t > 0).

Insbesondere ist jede Gleichgewichtsverteilung ν stochastisch kleiner oder gleich
ν̄.

Sowohl der Maximalprozess als auch das obere invariante Maß spielen für die
folgenden Resultate eine wichtige Rolle.

Eine zentrale Frage dieser Arbeit ist, ob (Xt)t≥0 für t→∞ ausstirbt oder über-
lebt. Zuerst klären wir, was wir unter

”
Aussterben“ verstehen. Wir sprechen von

lokalem Aussterben, falls (Xt)t≥0 in Verteilung für t→∞ gegen die Nullkonfigura-
tion konvergiert. Hierfür sei die Topologie auf [0,∞)G gleich der Produkttopologie.
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Desweiteren sprechen wir von globalem Aussterben, falls (|Xt|)t≥0 für t→∞ gegen
Null konvergiert. Die gesamte Arbeit hindurch wird mit |x| :=

∑
i∈G xi die Ge-

samtmasse von x ∈ [0,∞)G bezeichnet. Es sei bemerkt, dass globales Aussterben
lokales Aussterben impliziert. Darüberhinaus stimmen diese beiden Eigenschaften
überein, falls G eine endliche Menge ist. Im Zusammenhang mit lokalem Ausster-
ben wird typischerweise Translationsinvarianz der Verteilung von X0 angenom-
men. Für globales Aussterben wird im Allgemeinen angenommen, dass fast sicher
|X0| <∞ gilt. Von lokalem beziehungsweise globalem Überleben sprechen wir, falls
das System nicht lokal beziehungsweise nicht global ausstirbt.

Mit Hilfe von Argumenten aus der Perkolationstheorie zeigt Etheridge [10],
dass das System (Z.2) und ebenso ähnliche Modelle mit nichtlokaler Kompetition
nicht lokal ausstirbt, falls die Kapazität groß genug ist und falls die Anfangsvertei-
lung translationsinvariant ist. Darüberhinaus wurde in derselben Arbeit mit Hilfe
einer Kopplung und eines Vergleiches mit subkritischer Verzweigung (ähnlich wie
in Mueller und Tribe [26]) bewiesen, dass ein maßwertiges Analogon zu (Z.2) mit
gewissen nichtlokalen Kompetitionsmechanismen lokal ausstirbt. Die Frage, ob
Systeme wie (Z.2), die auf Gitter beruhen, für sehr kleine Werte von K lokal aus-
sterben, blieb unbeantwortet. In Kapitel 2 wird diese Frage für das System (Z.2)
mit Ja beantwortet. Genauer gesagt wird eine strikt positive Konstante K̄ spezi-
fiziert, so dass das System (Z.2) für jedes K ≤ K̄ lokal ausstirbt. Die Konstante
K̄ ist die eindeutige Lösung der Gleichung

(Z.11)

∫ ∞
0

exp
(
Kγy − γβ

2
y2
)
·α exp

(
−αy

)
dy = 1

und hängt von den Parametern α, β und γ der Migration, der Verzweigung be-
ziehungsweise der Kompetition ab, ist jedoch uniform in der Dimension d und in
der Migrationsmatrix m. Für das allgemeinere Modell (Z.3) wird ein Kriterium
für lokales Aussterben in Theorem 2 formuliert.

Theorem 2. Die Annahmen A1 und A2 seien erfüllt. Sei X eine Lösung der
Gleichung (Z.3) mit einer beliebigen Anfangsverteilung auf Eσ. Falls eine konkave
Funktion h̄ ≥ h existiert, welche

(Z.12)

∫ ∞
0

h̄(y)

g(y)
exp

(∫ y

1

−αx+ h̄(x)

g(x)
dx

)
dy ≤ 0

erfüllt, dann stirbt der Prozess X lokal aus, d. h.,

(Z.13) L (Xt) =⇒ δ0 für t→∞.

Dabei bezeichnet 0 die Nullkonfiguration.
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Im Fall h(x) = γx(K − x) und g(x) = βx ist die Bedingung (Z.12) mit h̄ := h
äquivalent zu K ≤ K̄, wobei K̄ die Gleichung (Z.11) löst.

In den folgenden beiden Theoremen wird die spezielle Form der Dynamik (Z.2)
von wechselwirkenden Feller-Diffusionen mit logistischem Wachstum ausgenutzt.
Das zweite Hauptresultat von Kapitel 2 beweist Ergodizität der Lösung (Xt)t≥0

von Gleichung (Z.2) für t→∞, das heisst, der Prozess vergisst seine Anfangsver-
teilung im Grenzübergang t → ∞. Genauer gesagt konvergiert (Xt)t≥0 in Vertei-
lung gegen das obere invariante Maß für t→∞ wann immer der Prozess in einer
translationsinvarianten und nichttrivialen Anfangsverteilung startet.

Theorem 5. Sei β, γ > 0. Desweiteren sei X = (Xt)t≥0 die Lösung der Glei-
chung (Z.2). Es gelte L (X0) ≥ µ, wobei µ ein translationsinvariantes Wahr-
scheinlichkeitsmaß auf Eσ ist, welches keine Masse auf die Nullkonfiguration legt.
Dann

(Z.14) L (Xt) =⇒ ν̄ für t→∞,

wobei ν̄ das obere invariante Maß ist.

Im Beweis von Theorem 5 spielt folgende Selbstdualität eine zentrale Rolle. Sei
X die Lösung von (Z.2) mit Parametern α, β, γ ≥ 0 und Migrationsmatrix m, und
sei X† die Lösung von (Z.2) mit Parametern α, β, γ ≥ 0 und Migrationsmatrix
m†, welches die transponierte Matrix von m ist. Desweiteren sei Eσ† ein zu m†

passender Liggett-Spitzer-Raum.

Theorem 3. Es gelte β > 0. Seien X und X† Lösungen von (Z.2) mit Migrati-
onsmatrizen m beziehungsweise m†. Dann gilt die folgende Selbstdualität:

(Z.15) Ex exp
(
−γ
β
〈Xt, y〉

)
= Ey exp

(
−γ
β
〈x,X†t 〉

)
für alle x ∈ Eσ, y ∈ Eσ†, t ≥ 0.

Beispielsweise führt die Wahl y = λδ0 und x ≡ κ zu der Gleichung

(Z.16) Ex exp
(
−γ
β
λXt(0)

)
= Eλδ0 exp

(
−γ
β
κ|X†t |

)
für alle λ, κ ≥ 0, wobei δ0 die Punktmasse in 0 ∈ Zd bezeichnet. In Abschnitt 2.6
wird gezeigt, dass |X†t | mit Wahrscheinlichkeit eins für t→∞ entweder gegen Null
oder gegen unendlich konvergiert. Dies impliziert die Konvergenz der rechten Seite
von Gleichung (Z.16). Lemma 2.5.1 zeigt den Zusammenhang des Grenzwertes der
rechten Seite von (Z.16) mit dem oberen invarianten Maß.
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Eine direkte Konsequenz von Theorem 3 ist, dass ein System wechselwirken-
der Feller-Diffusionen mit logistischem Wachstum genau dann lokal ausstirbt wenn
es global ausstirbt. Dies verhält sich bei wechselwirkenden lokal regulierten Dif-
fusionen anders. Hierfür gilt Theorem 3 im Allgemeinen nicht. Bisher ist kein
allgemeines Kriterium für globales Aussterben des Systems (Z.3) bekannt. Wir
stellen nun das Virgin Island Modell vor. Für dieses Modell wird in Theorem 7
ein Kriterium für globales Aussterben hergeleitet. Desweiteren vermuten wir, dass
das Virgin Island Modell die Lösung von (Z.3) in einer geeigneten stochastischen
Ordnung dominiert. Zusammen mit Theorem 7 würde diese Vermutung zu einer
Bedingung für globales Aussterben für das System (Z.3) führen.

Wir charakterisieren das Virgin Island Modell durch eine rekursive Konstruk-
tion. Auf der ersten Insel entwickelt sich eine Diffusion Y = (Yt)t≥0 mit Zustands-
raum [0,∞), welche gegeben wird durch die stochastische Differentialgleichung

(Z.17) dYt = −αYt dt+ h(Yt) dt+
√

2g(Yt)dBt, Y0 = y ≥ 0.

Dabei ist (Bt)t≥0 eine Standard-Brownsche Bewegung. Der Prozess Y sei regulär
auf (0,∞) und Null sei ein Austrittsrand, das heisst, Null ist ein absorbierender
Rand und wird mit positiver Wahrscheinlichkeit in endlicher Zeit erreicht. Äqui-
valent hierzu ist die folgende Bedingung an α, h, g.

Annahme A3. Der Parameter α und die Funktionen g und h erfüllen

(Z.18)

∫ x

0

S̄(y)
1

g(y)s̄(y)
dy <∞

für ein und damit für alle x > 0, wobei

(Z.19) S̄(y) :=

∫ y

0

s̄(z) dz, s̄(z) := exp
(
−
∫ z

1

−αx+ h(x)

g(x)
dx
)
, y, z ≥ 0.

Beispielsweise gelten A1 und A3, falls h(y) = σy − γy2, γ > 0, und g(y) = yκ für
ein 1 ≤ κ < 2. Annahme A3 ist jedoch nicht erfüllt im Fall h ≡ 0 und g(y) = y2,
denn dann ist s̄(z) = zα, S̄(y) = yα+1/(α + 1) und Bedingung (Z.18) ist verletzt.

Masse emigriert von der ersten Insel mit Rate α. Dies wird durch den Term
−αYt dt in (Z.17) modelliert. Jeder Emigrant landet auf einer unbesiedelten Insel.
Im Diffusionslimes hat ein Emigrant Masse Null. Allerdings kann die von einem
Emigranten gegründete Population im Diffusionslimes nach positiver Zeit positiv
sein. Das Gesetz der Exkursionen von Y vom Rand Null ist deshalb ein wichtiger
Bestandteil der Konstruktion des Virgin Island Modells. Die Menge der Exkursi-
onspfade von Null sei bezeichnet mit

(Z.20) U :=
{
χ ∈ C

(
[0,∞), [0,∞)

)
: T0 ∈ (0,∞], χt = 0 ∀ t ∈ {0} ∪ [T0,∞)

}
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wobei Ty = Ty(χ) := inf{t > 0: χt = y} die erste Treffzeit von y ∈ [0,∞) sei. Die
Menge U sei versehen mit uniformer Konvergenz. Das Exkursionsmaß QY ist ein
σ-endliches Maß auf U . Wir definieren es durch Theorem 6. Hierfür benötigen wir
eine weitere Voraussetzung. Wir nehmen an, dass

(Z.21) Py
(
T1(Y ) < T0(Y )

)
∼ cy für y → 0

für eine Konstante c ∈ (0,∞) gilt. Genauer gesagt setzen wir die Gültigkeit der
folgenden etwas stärkeren Annahme voraus.

Annahme A4. Das Integral
∫ 1

ε
−αy+h(y)

g(y)
dy hat einen Grenzwert in (−∞,∞) für

ε→ 0.

Theorem 6. Die Annahmen A1, A3 und A4 seien erfüllt. Dann existiert ein
σ-endliches Maß QY auf U , sodass

(Z.22) lim
y→0

1

y
EyF (Y ) =

∫
F (χ)QY (dχ)

für alle beschränkten, stetigen Funktionen F : C
(
[0,∞), [0,∞)

)
→ R für die ein

ε > 0 existiert so dass F (χ) = gilt wann immer supt≥0 χt < ε.

Mit Hilfe des Exkursionsmaßes definieren wir nun das Virgin Island Modell
auf den nachfolgenden Inseln. Die erste Insel bezeichnen wir als 0-te Generation.
Die (n+ 1)-ste Generation ist die Menge aller Inseln, welche von Inseln der n-ten
Generation besiedelt worden sind. Die Menge aller Inseln schließlich bezeichnen
wir als Virgin Island Modell. Desweiteren verstehen wir unter dem Virgin Island
Prozess den Prozess der Gesamtmasse aller Inseln des Virgin Island Modells. Sei
(V

(0)
t )t≥0 ein zufälliger Pfad mit Verteilung Lx

(
(Yt)t≥0

)
, x ≥ 0. Für jedes n ≥ 1 de-

finieren wir nun rekursiv einen Prozess V (n) = (V
(n)
t )t≥0. Dies ist die Gesamtmasse

aller Inseln der n-ten Generation. Gegeben V (n) sei Π(n) ein Poisson Punktprozess
auf [0,∞) × U mit Intensitätsmaß αV

(n)
t dt ⊗ QY (dχ). Hiermit wird (V

(n+1)
t )t≥0

definiert durch

(Z.23) V
(n+1)
t :=

∫
χt−sΠ

(n)(ds, dχ) t ≥ 0.

Emigranten verlassen Inseln der n-ten Generation mit der zeitabhängigen Rate
αV

(n)
t und landen auf unbesiedelten Inseln. Eine Insel, welche zur Zeit s ≥ 0

besiedelt wurde, trägt zur Zeit t ≥ 0 Masse χt−s zur Gesamtmasse bei. Der Virgin
Island Prozess ist die Gesamtmasse aller Generationen:

(Z.24) Vt :=
∑
n≥0

V
(n)
t t ≥ 0.
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Nach Lemma 3.3.1 ist der Erwartungswert dieser Summe endlich.
In Theorem 7 identifizieren wir Bedingungen an α, h und g, unter welchen das

Virgin Island Modell global ausstirbt. Der entscheidende Parameter ist hierbei die
erwartete Fläche unter einer Exkursion

(Z.25)

∫ ∫ ∞
0

χt dtQY (dχ).

Für die folgenden Theoreme 7 und Theorem 8 nehmen wir an, dass der Ausdruck
in (Z.25) endlich ist. Falls die Bedingungen A1, A3 und A4 erfüllt sind, ist hierzu
die folgende Bedingung an α, h und g äquivalent.

Annahme A5. Der Parameter α und die Funktionen g und h erfüllen

(Z.26)

∫ ∞
x

y

g(y)s(y)
dy <∞

für ein und damit für alle x > 0, wobei

(Z.27) s(y) := exp
(
−
∫ y

0

−αx+ h(x)

g(x)
dx
)
, y ≥ 0.

Ein generisches Beispiel für h und g ist h(y) = c1y
κ1 − c2y

κ2 , g(y) = c3y
κ3 mit

c1, c2, c3 > 0. Die Annahmen A1, A2, A3, A4 und A5 sind alle erfüllt, falls κ2 >
κ1 ≥ 1 und κ3 ∈ [1, 2) gilt.

Theorem 7. Die Annahmen A1, A3, A4 und A5 seien erfüllt. Dann stirbt der
Virgin Island Prozess (Vt)t≥0 für jeden Startpunkt x > 0 global aus genau dann
wenn

(Z.28)

∫ ∫ ∞
0

αχs dsQY (dχ) ≤ 1

gilt. Der Ausdruck auf der linken Seite ist gleich

(Z.29)

∫ ∞
0

αy

g(y)s(y)
dy =

∫ ∫ ∞
0

αχs dsQY (dχ).

Im Falle des Überlebens konvergiert (Vt)t≥0 in Verteilung für t → ∞ gegen eine
Zufallsvariable V∞, deren Verteilung charakterisiert wird durch

(Z.30) Px(V∞ = 0) = 1−Px(V∞ =∞) = Ex exp
(
−q
∫ ∞

0

αYs ds
)

für alle x ≥ 0 und ein q > 0.
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Eine interessante Größe des Virgin Island Prozesses ist die erwartete Fläche
unter dem Graphen von (Vt)t≥0. In Theorem 8 wird die Asymptotik der erwarteten
Fläche unter dem Graphen von (Vs)s≤t für t→∞ ermittelt. Definiere

(Z.31) w(x) :=

∫ ∞
0

S(x ∧ z)
z

g(z)s(z)
dz

für x ≥ 0.

Theorem 8. Die Annahmen A1, A3, A4 und A5 seien erfüllt. Falls die linke
Seite von Ungleichung (Z.28) strikt kleiner als eins ist, dann ist, für jedes x ≥ 0,
die Fläche unter dem Graphen von (Vt)t≥0 gleich

(Z.32) Ex

∫ ∞
0

Vs ds =
Ex
(∫∞

0
Ys ds

)
1−

∫ (∫∞
0
αχs ds

)
QY (dχ)

=
w(x)

1−
∫∞

0
αz

g(z)s(z)
dz
∈ (0,∞).

Andernfalls ist die linke Seite von (Z.32) gleich unendlich. Im kritischen Fall, das
heisst Gleichheit in (Z.28), gilt

1

t

∫ t

0

ExVs ds→
Ex
(∫∞

0
Yu du

)
∫ (∫∞

0
uαχu du

)
QY (dχ)

=
w(x)∫∞

0
αw(y)
g(y)s(y)

dy
∈ [0,∞)(Z.33)

für t→∞, wobei die rechte Seite als Null interpretiert wird, falls der Zähler gleich
unendlich ist. Im superkritischen Fall, das heisst, falls Ungleichung (Z.28) nicht
erfüllt ist, sei β > 0 die eindeutige Lösung von

(Z.34)

∫ ∞
0

e−βu
∫
αχuQY (dχ) du = 1.

Damit kann die Konvergenzordnung der erwarteten Fläche unter dem Pfad von
(Vs)s≤t abgelesen werden von

(Z.35) e−βt
∫ t

0

ExVs ds→
∫∞

0
e−βuEx

∫ u
0
Ys ds du∫∞

0
ue−βu

∫
αχuQY (dχ)du

∈ (0,∞)

für t→∞ für alle x ≥ 0.

Das Virgin Island Modell vereinigt auf sich die folgenden zwei Eigenschaften.
Einerseits beinhaltet es Kompetition unter Individuen. Andererseits existiert ein
explizites Kriterium für den Phasenübergang von Aussterben zu Überleben. Somit
ist das Virgin Island Modell möglicherweise interessant für Anwendungen, denn es
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ist realistischer als klassische Verzweigungsmodelle, ist aber noch so einfach, dass
es explizite Formeln hat.

Die Selbstdualität (Z.15) ist ein starkes Werkzeug, um wechselwirkende Feller-
Diffusionen mit logistischem Wachstum zu untersuchen. Abschnitt 2.5 beinhal-
tet einen analytischen Beweis dieser Selbstdualität, welcher auf einer Generator-
rechnung beruht. In Kapitel 4 verfolgen wir einen anderen Ansatz, wobei wir die
Dynamik der Prozesse durch sogenannte Grundmechanismen auf der Ebene von
Teilchen darstellen. Dadurch erhalten wir ein stochastisches Bild für die Selbst-
dualität (Z.15), welches das Verständnis der Rolle der logistischen Regulierungs-
funktion γx(K−x) in (Z.2) für die Selbstdualität (Z.15) vertieft und welches eine
Erklärung für das Auftreten der Dualitätsfunktion exp

(
− γ
β
〈x, y〉

)
in (Z.15) liefert.

Der Einfachheit halber betrachten wir nur den nichträumlichen Fall, das heisst,
m(i, j) = 1i=j für i, j ∈ Zd.

Für eine etwas allgemeinere Dualität als (Z.15) betrachten wir die starke Lö-
sung (Xt)t≥0 von

(Z.36) dXt = ςXt dt− γX2
t dt+

√
2βXt dBt,

wobei (Bt)t≥0 eine Standard-Brownsche Bewegung ist. Wir bezeichnen den Pro-
zess (Xt)t≥0 als logistische Feller-Diffusion mit Parametern (ς, γ, β). Sei (Yt)t≥0

eine logistische Feller-Diffusion mit Parametern (ς, rβ, γ/r) für ein r > 0. In Ab-
schnitt 4.4 beweisen wir

(Z.37) Ex
[
e−rXt·y

]
= Ey

[
e−rx·Yt

]
x, y ∈ [0,∞), t ≥ 0.

Der Ansatz, den wir im Folgenden vorstellen, ist nicht nur auf (Z.37) anwend-
bar, sondern auch auf eine andere Dualität, welche analytisch von Athreya und
Swart [2] bewiesen wurde. Seien b, c, d ≥ 0. Es bezeichne Xt ∈ N0 die Anzahl der
Teilchen zur Zeit t ≥ 0 eines Verzweigungs-Verschmelzungs-Teilchenprozesses, wel-
cher durch die anfängliche Anzahl X0 = n und durch folgende Dynamik definiert
wird: Jedes Teilchen spaltet sich mit Rate b in zwei neue Teilchen, jedes Teilchen
stirbt mit Rate d und jedes geordnete Paar von Teilchen verschmilzt mit Rate c zu
einem Teilchen. Alle diese Ereignisse geschehen voneinander unabhängig. Athreya
und Swart [2] bezeichnen diesen Prozess als (1, b, c, d)-braco-Prozess. Dessen dua-
ler Prozess (Yt)t≥0 mit Zustandsraum [0, 1] ist die eindeutige starke Lösung der
stochastischen Differentialgleichung

(Z.38) dYt = (b− d)Yt dt− bY 2
t dt+

√
2cYt(1− Yt) dBt, Y0 = y.

Athreya und Swart [2] beweisen die Dualität

(Z.39) En
[
(1− y)Xt

]
= Ey

[
(1− Yt)n

]
∀n ∈ N0, y ∈ [0, 1], t ≥ 0.



98 DEUTSCHE ZUSAMMENFASSUNG

Spezialfälle der Dualitäten (Z.37) und (Z.39) sind (siehe Remark 4.4.2 und Re-
mark 4.4.4) die Dualität von Fellers Verzweigungsdiffusion mit einem deterministi-
schen Prozess, die Dualität der Fisher-Wright Diffusion mit Kingmans Coalescent
und die Dualität des Galton-Watson Prozesses (in kontinuierlicher Zeit) mit einem
deterministischen Prozess.

Kapitel 4 zeichnet ein einheitliches Bild für die Dualitäten (Z.37) und (Z.39).
Für jedes N ∈ N konstruieren wir Prozesse (XN

t )t≥0 und (Y N
t )t≥0 mit Zustands-

raum {0, 1}N . Je nach Reskalierung approximieren die Prozesse (XN
t )t≥0 und

(Y N
t )t≥0 fürN →∞ einen (1, b, c, d)-braco-Prozess, eine logistische Feller-Diffusion

oder einen (1, b, c, d)-resem-Prozess. Desweiteren sind (XN
t )t≥0 und (Y N

t )t≥0 für je-
des N ∈ N dual zueinander. Im Abschnitt 4.4 werden wir aus dieser Dualität – je
nach Reskalierung – im Grenzübergang N → ∞ die Dualität (Z.39) beziehungs-
weise die Dualität (Z.37) folgern.

Der Prozess (XN
t )t≥0 wird durch folgende graphische Repräsentation konstru-

iert, welche im Geiste von Harris [14] ist. Als Grundmechanismus bezeichnen wir
jede Funktion f : {0, 1}2 → {0, 1}2. Ein endliches Tupel (f1, . . . , fm), m ∈ N,
von Grundmechanismen und ein Tupel (λ1, . . . , λm) ∈ [0,∞)m von Raten defi-
nieren wie folgt einen Prozess. Mit jedem k ≤ m und jedem geordneten Paar
(i, j) ∈ {1, . . . , N}2, i 6= j, wird ein Poisson-Prozess mit Rate λk assoziiert. Zu
jedem Zeitpunkt dieses Poisson-Prozesses ändert sich die Konfiguration von (i, j)
gemäß fk. War die Konfiguration zuvor beispielsweise gleich (1, 0), so ändert sie
sich in fk(1, 0) ∈ {0, 1}2. Alle Poisson-Prozesse sind voneinander unabhängig. Der
Prozess (Y N

t )t≥0 wird mit Hilfe derselben Poisson-Prozesse definiert, jedoch in
umgekehrter Zeit. Ob (XN

t )t≥0 und (Y N
t )t≥0 dual zueinander sind, erkennt man

somit durch Verfolgen von Vorwärts- und Rückwärtspfaden. Dies führt zu einer
Dualitätsbedingung an korrespondierende Paare von Grundmechanismen. Diese
Dualitätsbedingung stellen wir in Abschnitt 4.2 vor. Desweiteren identifizieren
wir in Abschnitt 4.2 alle dualen Paare von Grundmechanismen.

Wie in der Literatur bekannt ist, ist das Moran Modell dual zu Kingmans
Coalescent. In der Sprache der Grundmechanismen besagt diese Dualität, dass der
Resampling-Mechanismus dual zum Coalescent-Mechanismus ist. Es stellt sich her-
aus, dass es im Wesentlichen diese Dualität ist, aus der man die Dualität (Z.37) fol-
gern kann. Der Resampling-Mechanismus führt dabei im Diffusionslimes zum Term√

2βXt dBt in Gleichung (Z.36). Die Gesamtanzahl der Teilchen eines Coalescent-
Prozesses ist ein reiner Todesprozess, welcher von k nach k− 1 mit exponentieller
Rate γ

N2k(k − 1), k ≥ 2, springt. Diese Rate ist im Wesentlichen quadratisch in
k für große k und führt im Diffusionslimes zum quadratischen Term γX2

t dt in
Gleichung (Z.36).
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