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Chapter 1

Introduction

The biological complexity comprises of several levels, starting with single

molecules, going through biochemical reactions, cells, tissues, organisms

and ending up at ecosystems [121]. All of these levels are at the interest of

theoretical research in the domain of Systems Biology and Computational

Biology and can be modeled mathematically [49], [68], [158] and simulated

with computational methods [76], [135], [201] in order to unveil the mecha-

nisms determining the organization at each level and support experimental

research [122] [123].

The level of molecular interaction networks (MIN), is a good example of

how the theoretical research can contribute to understanding vital biological

and medical problems, such as regulation of gene expression [25], intracel-

lular signaling [97], regulation of metabolism [211] or drug discovery [139].

Thus, it is of general interest to develop efficient approaches for modeling

of MIN [45] [128], [135], [190]. This work presents one such approach.

1.1 Features of MIN in the cell

1.1.1 Definition of molecular interaction

Living cells are filled with a number of molecule types, proteins in par-

ticular, that can potentially interact with each other [24], [145]. Pairwise

interactions can be combined into pathways which generate complex cellular

responses [166], [167].

There are 3 established standards for interaction data exchange and

modeling: Proteomics Standards Initiative Molecular Interaction XML for-

3



4 CHAPTER 1. INTRODUCTION

mat (PSI MI) [104] [105], Systems Biology Markup Language (SBML) [83], [109]

and Biological Pathways Exchange format (BioPAX) [28]. All these stan-

dards consider interactions to be always based on simple physical contact

of molecules [200].

Furthermore, the mentioned standards differentiate between several ba-

sic types of physical interaction, such as binding or enzymatic modification.

The PSI MI defines only one type of physical interaction - aggregation (bind-

ing), formalized description of other interaction types, such as enzymatic

modification is under development [162]. The SBML is able to describe

binding, transformation and transport, which can be related to kinetic rate

laws. The BioPAX offers the broadest descriptive scope with such cate-

gories as: complex assembly, catalysis, modulation, transport (see [200] for

review).

Finally, the basic interaction types can be further classified into nu-

merous sub-types, depending on different existing structural motifs of pro-

teins [26],[46].

A modeling framework can consider any of the above levels of detail

(physical contact - biochemical character of interaction - structure of inter-

acting protein regions). In this work, we will define molecular interaction

as any physical contact between two molecules in the cell, especially: bind-

ing, enzymatic modification or transport. We will further assume, that any

regulatory relationships between interactions (like cooperative binding or

inhibition of enzymatic reactions), can be also exerted only by means of

physical contact. We will put no further limitations on the biochemical

nature of the interacting molecules (type of molecule, shape etc.).

1.1.2 Detection of interactions and networks

Molecular interactions in the cell can be detected using several biochemical

methods (see [127] fo review). Interaction detection on systematical basis is

possible thanks to the advancement of high throughput methods (Hi-Tru),

such as: a) yeast two-hybrid assay (Y2H) [57], [81], b) tandem affinity purifi-

cation (TAP) [170], [176] coupled with mass spectrometry (MS) [148], [164],

c) synthetic lethality [205] and development of bioinformatical approaches,

such as d) literature mining (see [177] for review) or e) comparative ge-

nomics [175]. The molecular interaction data resulting from these heteroge-

neous sources is stored in numerous databases (see [85], [151] for reviews).

The binary interactions between the molecules in the cell can be put

together into a network [165]. Large-scale protein interaction maps covering
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substantial parts of the genome exist already for some model organisms,

such as:

• budding yeast Saccharomyces cerevisiae - several maps based on var-

ious methods: Y2H [111], [210], Y2H combined with literature re-

search [189], TAP/MS [88], [107] and synthetic lethality [206].

• fruit fly Drosophila melanogaster - several maps, all based on Y2H [84], [91]

or modified Y2H [194].

• nematode Caenorhabditis elegans - single map based on Y2H and in-

dependently confirmed with TAP [142].

• human - several maps based on various methods: Y2H [178], [197], lit-

erature mining [171], manual curation of literature and databases [86]

and in silico comparisons with other species [50], [141], [168].

For a specific organism, the above maps represent only subsets of a com-

plete MIN and they show little overlap witch each other, even if obtained

using the same method [84], [111]. For instance, different human interac-

tion maps share only about 10% of interactions [54]. This incompleteness,

together with relatively noisy character of Hi-Tru interaction data [215] con-

tribute to partially contradictory results when analyzing network properties

of different maps, as will be described in the next section.

First developments towards complete, genome wide MINs enabling a

consistent structural analysis have been made by combining and curating

the fragmentary maps into more exhaustive MIN for budding yeast [174]

and human [54].

1.1.3 Topological characteristics of MIN

One of key structural properties of any MIN its the density of connections,

which can be measured by degree distribution. A degree of a node is the

number k of its connections to other nodes, in our case it is the number of

interactions that a molecular species is involved in. In a random network,

the degree distribution over nodes has a Poisson character and is centered

around an average value of k in this network, whereas MIN are characterized

by a non-random distribution, with most of the nodes having only a few

links and only a few nodes, having many links [30].

The highly connected nodes are called hubs and can be divided into two

types - ”party” hubs and ”date” hubs [99]. Party hubs are co-expressed
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and co-localized with their partners, and thus can be involved in many si-

multaneous interactions [99]. This is facilitated by the fact, that party hub

proteins are usually long and contain many binding domain repeats [69].

Date hubs interact with partners expressed at different times and locations

and thus are involved in many transient interactions [99] which is facilitated

by a feature called intrinsic disorder [67]. Intrinsically disordered proteins

and protein regions lack an unique 3-D structure and exist in a dynamic

ensemble of conformations [102]. Binding of a partner to a disordered region

invokes an disorder-to-order transition which enables highly reversible in-

teractions while maintaining high specificity [192]. Date hub proteins have

significantly more disordered regions compared to party hubs [192].

The existence of hubs influences network robustness, i.e. ability to

maintain function upon removal of nodes - the MIN are robust to removal

of peripheral nodes but sensitive to knock-out of hubs. In one study, the

likelihood that removal of a protein will prove lethal to the cell clearly cor-

relates with the number of interactions the protein has [113]. However, in

another study such correlation was not found, instead, number of interac-

tions a hub has with other hubs turned to be a good predictor of its influence

on network robustness[31].

Another apparent feature of MIN is the small-world organization - a

travel between any pair of nodes in the network requires hopping through

a low number of intermediate nodes [216]. This is related to the fact that

MIN usually contain locally dense regions (clusters) that are sparsely con-

nected to other clusters [216]. These clusters are thought to correspond to

functional modules responsible for a specific process [87], [99]. However,

the modular structure of MIN is also open to discussion, since an stratic

(layer-like) structure, also empirically founded, has been proposed as an

alternative [31].

As evident from above examples, the exact characterization of structural

features of MIN still needs to be elaborated, since the current results may

be biased by data incompleteness of existing interactome maps. This fact

makes definition of precise modeling requirements difficult. However, at

least one apparently well-founded implication of the above considerations

is that a successful modeling approach for MIN must be able to depict hub

nodes with their potentially many simultaneous connections.
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1.1.4 Combinatorial complexity in MIN

The term ’combinatorial explosion’ origins from administration and com-

puting, where it means a rapidly accelerating increase in lines of communi-

cation as organizations are added in a process [6]. In analogy, in a system

of interacting molecules various combinations of multimolecular complexes

with different properties can occur [34]. This feature is called ’combinato-

rial complexity’ [106] and it results from both multivalent binding (different

structures of multimolecular assemblies) and multivalent enzymatic mod-

ification (different properties of these assemblies) [130]. For instance, a

protein with n binding or covalent modification sites can have up to 2n dis-

tinct states [73]. Thus, the number of possible species can exceed 106 for

n > 20 which clearly poses a difficulty on modeling of MIN.

Combinatorial complexity has been observed experimentally in many bi-

ological systems, like signaling pathways, where multimolecular complexes

occur (signalosomes) [48]. For instance, T-cell receptor (TCR) signaling

involves assembly of various multimolecular complexes, both transient [51]

and stabilized with multivalent cooperative interactions [52]. Similar re-

lationships occur in metabolism due to many-to-many relationships be-

tween enzymes and substrates [101]. Thus, combinatorial complexity im-

plies existence of highly branched, physiologically meaningful signaling and

metabolic pathways as opposite to the traditional, linear approach [37] [96].

Thus, successful modeling needs to treat combinatorial complexity both

in terms of large variable numbers and branched, interconnected pathway

structure. Several approaches exist to achieve these goals:

• rule-based description. The system is described using a limited set

of rules related to binary interactions from which all combinatorial

molecular assemblies and related chemical reactions can be automat-

ically derived by the simulation software [73], [74]. This approach

relies on parameter extrapolation [147], thus only a limited parame-

ter set specified in the rules is sufficient to derive the combinatorial

description [37]. However, the rule-based approach can potentially

lead to a problem of unwanted polymerization, where the simulation

software generates erroneous polymeric structures if multiple binary

interactions are possible between the same pair of molecules [47], [147].

• domain-exclusion. The total number of possible combinations of

molecules is reduced by excluding all combinations containing molecules

targeting the same physical site on a scaffold or receptor protein [60].
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For instance, in a molecule with single site to which potentially n part-

ners can bind, the total number of molecular combinations is reduced

from 2n to (n + 1), where 1 stands for the completely unbound state.

• domain-separation. Two physical sites located on the same protein

but not influencing each other in any way (e.g. by regulation) are

dissected and treated as parts of two independent molecules [42] [43].

For instance, in a molecule with two mutually independent groups of n

and m sites, respectively, the total number of molecular combinations

is reduced from 2n+m to 2n + 2m.

• on-the-fly combination. At a given time point of the simulation,

only the combinations of molecules that are actually involved in the

currently simulated reactions enter the variable list [147]. This ap-

proach relies on an observation that under most conditions only a

small portion of the MIN is active [75]. However, this active portion

can change dramatically with conditions [75].

1.2 Models of MIN

A model can be defined as any representation of a system [70]. In this work,

we will narrow this definition to mathematical representation. For MIN, this

representation can be constructed at different levels of abstraction, from

structural (top-down) to mechanistic (bottom-up) approaches [110], [198].

1.2.1 Overview of modeling strategies

Structural representations

The top-down models describe components of the MIN (e.g. molecular

species) and connections between them (e.g. biochemical interactions). At

this level of abstraction, the components can be generalized to higher-level

entities, e.g. pathway modules [35]. Similarly, the connections can be ab-

stracted from direct physical interactions to higher level relations, like gene-

gene relationships [198]. Such generalized connections can be described in

terms of conditional probabilities [64].

Mechanistic representations

The bottom-up models describe both the network structure and dynam-

ics, i.e. behavior in time. Thus, the MIN components are described with
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time-dependent variables (e.g. concentrations of molecular species) and the

relations between them are described in terms of coupling functions having

these variables as arguments:

Xi(tn+1) = fi[X(tn)] if time is discrete (1.1)

dXi/dt = fi[X(t)] if time is continuous (1.2)

Where X is the set of variables and f is the set of coupling functions.

Within the mechanistic models, also different levels of abstraction are

possible. A relatively abstract category of mechanistic models is based on

Boolean networks, where variables Xi have a binary value (e.g. ’active’ -

’inactive’) and change according to logical rules [115]. More detailed descrip-

tion is possible using kinetic models, where variables can have real-number

(concentrations) or integer values (number of molecules) and change accord-

ing to deterministic or probabilistic rules [71], [129] [160].

The selection of most suitable modeling abstraction level depends on

the intended scope of the model. In this work we present a detail-oriented

modeling framework that is based on the kinetic approach. Thus, we will

describe the category of kinetic models in a more detail below.

1.2.2 Kinetic models

The kinetic models rely on the law of mass action formulated in 1864 by

C. Guldberg and P. Waage based on experimental results of M. Berthelot

and P. St. Gilles on ethylacetic ester synthesis [134]. It states, that the rate

(velocity) v of a reaction is proportional to the quantity Q of the reacting

substances [62], [214]:

v = kΠn
i=0Qi (1.3)

Where: k - rate constant, n-number of interacting molecular species

(n > 2 is considered to be highly improbable).

Reaction rate constants in kinetic models

The rate constant k depends on several physical factors as outlined in the

Eyring equation [72]:

k =
RT

NAh
e

∆S‡
R

−∆H‡
RT (1.4)

where: T - absolute temperature in K (Kelvin degrees), R - molar gas con-

stant = 8.314472 J mol−1 K−1 [156], NA - Avogadro constant = 6.0221415 1023
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mol−1 [156], h - Planck constant = 6.6260693 10−34 J s [156], ∆S‡ - ac-

tivation entropy in J mol−1 K−1, i.e. the probability that reaction occurs

because substrates are properly arranged in space [62], ∆H‡ - activation

enthalpy in J mol−1, i.e. the energy necessary for the substrates to form the

intermediate complex [62].

Since the value of k can be influenced by the above factors, a term ’rate

coefficient’ would be more appropriate [196]. However, this work deals pri-

marily with kinetic models that assume constant temperature and pressure,

thus we will keep the traditional nomenclature of k as ’rate constant’.

The values of constants k are often unknown and need to be assumed,

which is a major limitation of the kinetic models [110]. For some reactions,

experimentally measured values of k or related parameters (like Michaelis

constants of enzymatic reaction) are available from several databases, such

as: BRENDA [187], [188], TECRDB [92] or SABIO-RK [217]. This data

is, however, not always applicable in a straightforward manner due to dis-

crepancies between the in vivo conditions assumed in the simulation and

the in vitro conditions of the measurement [143]. Values of k can be also

estimated using various computational methods, such as numerical opti-

mization, neural networks, genetic and evolutionary algorithms (see [116],

[157], [207], [212] for reviews).

Stochastic and deterministic kinetic models

The molecular quantity Q can be represented in two ways [147]:

• as an integer molecule number changing in a discrete manner by

probabilistic rules (stochastic description) [89]. The stochastic ap-

proach is based on the notion, that interacting molecules move ran-

domly through the reaction volume and if a reaction takes place,

the molecular quantities can only change by integer amounts [89].

Thus, the time evolution of the system is probabilistic and discrete

in time, which allows for modeling of systems with low molecular

quantities, where the continuity of concentration changes can not be

assumed [118].

• as a real-valued concentration changing in a continuous manner ac-

cording to a differential equation that leads to a defined state in the

future (deterministic description) [158]. The deterministic approach is

a widely accepted way of describing many cellular processes in terms

of temporary changes of molecular concentrations due to biochemical
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reactions [196]. We assume, that a realistic unit range for concen-

tration is 1nM to 1µM based on experimental observations for some

MIN [41]. This implies the number of molecule in a given reaction

volume in the order of 1014 - 1017 (based on the Avogadro constant),

which is compliant with the assumption of infinite molecular quanti-

ties underlying the deterministic description. Assuming such concen-

tration units implies that the units of rate constants k can be set to

µM−1s−1 for bimolecular and s−1 for unimolecular reactions (taking

s as a time unit is somewhat arbitrary but commonly practiced).

Spatial and non-spatial kinetic models

The cell can be assumed to be a homogenous, well-stirred reactor and thus

diffusion is not taken into account in the model [103]. Alternatively, the

cell is assumed to be a collection of compartments with fluxes of molecules

between them [193]. Thus, the concentrations of molecular species change

both in time and space, due to biochemical reactions and diffusion [71].

This allows for simulation of systems, where the spatial resolution plays

an important role, for instance signal transduction in neurons, that has

been modeled with both deterministic [146] and stochastic [199] spatial

approaches.

1.2.3 Elementary and approximated mass action approach

The differentiation between deterministic/stochastic and spatial/non-spatial

kinetic models leads to four possible model classes [147], from which the

non-spatial, deterministic approaches based on ordinary differential equa-

tions (ODE) require the least computational power and / or parameter set

and thus are a popular approach to modeling of systems where spatial reso-

lution and low numbers of molecules do not have to be considered (see [71],

[129], [160] for reviews). Henceforth, whenever speaking about ODE models

of MIN, we will mean the non-spatial, deterministic, ODE-based models.

However, classical ODE formulations, with the most prominent example

of Michaelis-Menten kinetics, rely on several approximations, e.g. concern-

ing the steady state of enzyme-substrate complex and enzyme saturation

[62], which are not necessarily valid for MIN [41], [59]. We will henceforth

call such approximated kinetic ODE formalisms Approximated Mass Ac-

tion (AMA) as opposed to non-approximated ones, which we will call El-

ementary Mass Action (EMA).
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Definition of EMA and AMA

We will define EMA as a non-spatial, kinetic ODE formalism describing

molecular interactions in terms of elementary association-dissociation reac-

tions in the form of law of mass action (Eq. 1.4). Of course, other general

approximations underlying the ODE kinetic modeling in general (Sec.1.3)

do still hold for EMA. That is why prefer calling this model class ’elemen-

tary’ but not ’exact’.

We will further define AMA as a non-spatial, kinetic ODE formalism de-

scribing molecular interactions with forms derived from an EMA description

based on additional assumptions simplifying the conservation relationships

(like negligibility of the enzyme-substrate complex) or dynamics of some

variables in the system (like the quasi-steady state approximation for the

enzyme substrate complex).

Description of enzymatic systems with EMA and AMA

The difference between EMA and AMA can be illustrated with the standard

example of an enzymatic reaction, where a substrate S is converted into a

product S∗ by an enzyme E. This reaction can be seen as a composition

of an elementary association-dissociation reaction [E] + [S] � [ES] (rate

constants: k1 and k−1) with an added transformation step [ES] → [E]+[S∗]

(rate constant k11) [62].

The EMA description following from this scheme is: (cf. Eq. 2.6)

d[S]/dt = −k1[S][E] + k−1[ES]

d[ES]/dt = +k1[S][E]− k−1[ES]− k11[ES]

d[S∗]/dt = +k11[ES]

d[E]/dt = −k1[S][E] + (k−1 + k11)[ES] (1.5)

With following conservation equations:

[ST ] = [S] + [ES] + [S∗]

[ET ] = [E] + [ES] (1.6)

The AMA description of this system is based on two additional assump-

tions. First, the enzyme concentration is assumed to be at least one order of

magnitude smaller than the concentration of the substrate: [ET ] << [ST ].

This allows to neglect the [ES] within the total concentration of S, i.e.:

[ST ] ≈ [S] + [S∗]. Second, the [ES] is assumed to reach steady state much
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quicker than other variables in the system, thus d[ES]/dt ≈ 0. Based on

the two above assumptions, an AMA description of the enzymatic reaction

can be derived:

d[S∗]/dt =
Vmax[ST ]

[ST ] + KM
(1.7)

Where: Vmax = k11[ET ] and the Michaelis constant KM = (k−1 + k11)/k1.

The Eq. 1.7 is the standard Michaelis-Menten description of an enzy-

matic reaction [62], which is the canonical way of describing enzymatic

systems, such as metabolic networks. However, the assumptions under-

lying AMA are considered to be impropriate for modeling of enzymatic

cascades [41], [59], especially because in such case both enzyme and sub-

strate of a given reaction are proteins and can come in concentrations of the

same order of magnitude [23]. Thus, the AMA and EMA applied to MIN

modeling can produce significantly different results [59] [155].

However, describing MIN in terms of EMA increases both the number

and length of ODE for a given system. Thus, it is difficult to unify the

descriptive detail of EMA with the combinatorial complexity of larger sys-

tems.

1.3 Summary of modeling requirements and al-

ternatives

The biological background and existing mathematical approaches applica-

ble to modeling of MIN outlined in previous sections can be summarized to

following requirements for a novel and advantageous MIN modeling frame-

work:

• Description of different types of molecular interactions like binding

or enzymatic reactions. This description should be based on the as-

sumption, that interactions and regulations rely on physical contact

of molecules.

• Description of molecular species having many simultaneous interac-

tions in order to depict network hubs.

• Management of combinatorial complexity, i.e. automatic derivation

of all possible combinations of interacting molecular species in the
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system and related reaction pathways while avoiding artificial creation

of non-existing polymers. This can be eventually achieved using rule-

based system description and domain-oriented definition of molecular

species.

• Modeling abstraction level suitable for the intended scope of the model

and computational efficiency.

• Possibly far-reaching automation of model construction for MIN of

arbitrary size and complexity.

We believe that the above requirements can be met by applying ODE-

based modeling approaches, since this class of models allows relatively de-

tailed, mechanism-oriented description in terms of molecular concentrations

that can be well related to physiological states of the cell [208]. However,

we have to be aware of following limitations of the ODE-based approaches:

• Assumption of isobaric and isothermal conditions (constant tempera-

ture and pressure).

• Deterministic description in terms of concentrations is unable to cor-

rectly describe systems with low molecular quantities.

• Assumption of spatial homogeneity (all concentrations are uniform in

the volume of the study). Thus, no spatial resolution can be included

into the model.

• Existing ODE formulations are based on several approximations (AMA)

which are not compliant with the nature of MIN. Application of an

EMA formalism in this respect is more appropriate.

Through this work, we will develop an EMA-based formalism for kinetic

modeling of MIN with ODE (Chapter 2) that allows automated model con-

struction for MIN of arbitrary size and complexity (Chapter 3). We will

also apply this formalism to investigation of several biological systems and

compare the outcomes with results of a classical AMA description (Chap-

ter 4).



Chapter 2

Formal description of molecular

interaction networks

This chapter presents a novel formal description of MIN addressing the re-

quirements and limitations discussed in Chpt. 1. The presented approach

relies on automated combination of EMA ODE modules based on a set

of simple, user-defined rules. This allows for a far-reaching automation of

the modeling process and treating network complexity without compromis-

ing mathematical precision. The descriptive scope of our formalism covers

following aspects: a) basic interaction types (binding and enzymatic reac-

tions, synthesis and degradation), b) regulation of those (including cases of

multiple regulators and logical relationships between them) and c) abstract

biological functions, as outlined in the following sections.

2.1 Conceptual framework

The most common approach to depict MIN is to treat each molecular

species (for example proteins) as a network node and the interactions be-

tween species (like binding or enzymatic modification) as the network links

(Sec. 5.1.1). In such a description, capturing regulation, i.e. relationships

between different interactions of the same species, is either impossible or

requires introduction of many additional nodes representing various combi-

nations of the regulated species with its regulators. The same combinatorial

work is required for translating the network structure into a set of variables.

In the case of species with a high number of interactions, like the network

15
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hubs typical for MIN (Sec. 1.1.3), such an approach turns out to be espe-

cially inefficient and error-prone due to combinatorial explosion of variables

and parameters. Here we propose an alternative approach based on a two-

level description of MIN as outlined in Fig. 2.1.

Two-level, agent-based framework for kinetic modeling of MIN

Species Y Species B

Species Z

Species X Each species is a cluster of nodes and has a numeric value 

(= concentration in the cell)

Regulation links nodes within one species

and has a numeric value (= regulation coefficient)

Each node is an interaction interface of a species and has a Boolean value

( = partner species is bound/unbound)

Interaction links nodes between two species

and has a numeric value (= rate constant)

Figure 2.1: Conceptual framework of the proposed approach to MIN mod-

eling. In this example, a species B can bind three different partners: X,

Y , and Z. Each of these partners has a binding interface to B and B has

three binding interfaces, one for each partner. The binding of X to B can

regulate the binding of Z to B.

2.1.1 Two-level network representation

The key idea of the proposed approach is to split the network representation

into two levels, where each molecular species is not a single node but a

network cluster composed of several nodes. We define following main model

components: species, interfaces, interactions, regulations and phenomena.

These components are described in detail in the Sec. 2.1.2 and the relations

between them are summarized in Tab. 2.1.
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main entity entity name entity-related value

level 1 cluster of nodes species concentration

level 2 single node interface Boolean

link type link name link-related value

level 1 connects interfaces of 2 species* interaction rate constant

level 2 connects interfaces of 1 species regulation regulation coefficient

Table 2.1: Main components of the proposed network representation. * -

with exceptions (see text for details).

2.1.2 Components of the model

Species.

We will define species as any basic type of molecule (for example a type of

protein) included in the MIN. A numerical concentration value is assigned

to all species. This concentration is a variable of an ODE system describing

behavior of the MIN in time. As outlined in Sec. 1.2.2, such ODE can be

derived based on the law of mass action, which assumes a large number

of molecules of each given species in the reaction volume. We will refer to

species as an abstract category and when talking explicitly about an amount

of molecules we will use the term species concentration. In case of single

molecule of a given species we will refer to it as species molecule later in

text.

Interface.

Species can bind to each other in various combinations. To capture these

combinations, we describe a species as a collection of interaction inter-

faces to other species. Each interface has a Boolean value telling if a given

interaction is taking place or not in a specific combination of molecules. We

will denote interfaces with the Greek letter σ. Interfaces typically refer to

physical regions of the molecule (e.g. binding sites) but for mathematical

consistency need to be considered as abstract terms. Especially, for two

species X and Y binding at the same physical site to species Z, we will

assign two distinct interfaces of Z - because they are related to different

binding rate constants. For the same reason, if n molecules of X can bind

to a single molecule of Z at different physical sites, the species X will receive

n different interfaces.
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Sub-species.

We will define sub-species of a given species as any possible combina-

tion of its interface values. Precisely this representation of sub-species as

Boolean vectors allows for efficient and automated treating of combinatorial

complexity. Henceforth we will denote sub-species by adding to the species

name an index specifying values of all interfaces in this sub-species. For

example, for a species X that can interact with 3 other species and thus

has 3 interfaces σX
1−3, the symbol X010 means a sub-species of X, where

σX
1 = false, σX

2 = true and σX
3 = false, i.e. a bimolecular complex of

X with its second interaction partner. Alike species, sub-species are also

abstract categories and will be distinguished from sub-species concen-

tration and sub-species molecule later in text. All sub-species have also

a numerical concentration value that is a variable of the ODE system.

Interaction.

We will define interaction as any type of relation that can be measured

with a biochemical rate constant, in particular: binding of two molecules,

enzymatic modification, synthesis and degradation. Defined in such way, an

interaction does not necessarily involve two species; specific cases of bind-

ing (homopolymerization) and enzymatic reaction (autocatalysis) and most

cases of synthesis and degradation involve molecules of only one species. In

general, interactions are translated into ODE by multiplication of the rate

constant with a species concentration term (Sec. 2.2). The interaction rate

constants are parameters of the model.

Regulation.

We will define regulation as any type of relation between two interfaces

of the same species, especially activation or inhibition of one interaction by

the other. Regulations are translated into ODE by multiplication of a rate

constant with a regulation coefficient (Sec. 2.4) Alike rate constants, the

regulation coefficients are parameters of the model.

Phenomena.

Finally, we define a special category of model components that allows incor-

porating meaningful biological functions such as ’cell mass’ or ’cell division’

into the model. We will call these components phenomena. They can

have either a quantitative or a qualitative character and thus correspond to
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a real-valued or a Boolean system variable. Translation of phenomena and

their links with species into differential equations is explained in detail in

Sec. 2.5.

2.1.3 Agent-like view of the network

The outlined conceptual framework allows to treat each molecular species

as an individual agent, with a specific interaction menu and a resulting set

of sub-species (Sec. 2.2). We refer here to a very broad definition of ’agent’

as an ’an entity that is capable of perception and action’, not to the specific

term related to ’agent-based computing’ [21].

The above interaction menu is defined as a list of rules, which allows

an automatic creation of possible sub-species and reaction pathways in the

system and thus efficient treatment of combinatorial complexity as will be

presented in Chpt. 3.

Such agent-like representation relies on the biologically founded assump-

tion that all interactions and regulations are based on direct physical contact

between molecules (Sec. 1.1.1). Thus, the only sub-species of A that can be

tracked in the system refer to combinations of A with its direct interaction

partners, irrespectively of further combinatorial status of these partners.

With such approach, we cannot track some polymeric structures composed

of repetitive units. For example, if A has two interfaces to B, we can only

track sub-species A, AB and ABB but not ABABAB. . . etc. This is, how-

ever, consistent with the assumption about direct physical contact, from

which it follows that in this case any potential function of A can be regu-

lated only by 0, 1 or 2 interactions with B irrespectively if a given molecule

of A is a part of a longer chain or not. Actually, artificial creation of such

polymer chains is regarded as a methodological problem reported for other

rule-based modeling formalisms [147]. In our approach, this problem does

not occur by definition.

Moreover, the agent-like approach allows for a substantial reduction of

the number of combinatorial variables. In a system with n species each

having k interactions to each other, the number of possible sub-species per

species = 2k. The resulting total number of sub-species in the system in a

non-agent approach can potentially equal to 2nk, whereas in our approach

it is reduced to n2k.
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2.2 Representation of basic interactions

Graphically, species are represented as rectangles, interfaces as dots placed

on the edges of rectangles, interactions and regulations as links between

these dots as shown in Fig. 2.2. To facilitate future representation of regu-

latory influence on synthesis and degradation, we introduce ’empty’ nodes

linked to synthesis and degradation constants as shown in Fig. 2.2 C-E.

However, these nodes do not depict any interaction interfaces.

Mathematically, each link translates into an ODE module which, ac-

cording to the law of mass action, consists of coefficients describing the

interaction (e.g. rate constants) and species concentration terms. We will

define both a graphical and mathematical description for several follow-

ing basic interaction types: binding (Sec. 2.2.1), enzymatic modification

(Sec. 2.2.2), synthesis (Sec. 2.2.3) and degradation. (Sec. 2.2.3).

2.2.1 Representation of binding

Binding is the most basic interaction. In our example case from Fig. 2.2 A,

species A and B bind to each other with the rate constant k1 and unbind

with the constant k−1. Thus, A and B have each one interface, σA
1 and σB

1 ,

respectively, that can be either true or false. The only possible sub-species

for A and B are:

• A0 (σA
1 = 0 ) - free fraction of A.

• A1 (σA
1 = 1 ) - fraction of A bound to B (complex AB).

• B0 (σB
1 = 0 ) - free fraction of B.

• B1 (σB
1 = 1 ) - fraction of B bound to A (complex BA).

Note that in this simple case, the sub-species A1 and B1 correspond to an

identical biochemical entity (complex AB = complex BA). This artificial

distinction results from the modeling assumptions necessary for our agent-

like approach (as outlined in Sec. 2.1). Such correspondence of sub-species

proves useful for treatment of more complicated cases where degradation or

regulation occur (Sec. 2.2.3).

Thus, for future reference we will define here a corresponding sub-

species set of A towards B as such set of sub-species of A that corre-

sponds to an identical biochemical entity as some specific set of sub-species

of B. From this it immediately follows, that the concentrations of sub-

species in corresponding sets must be identical. In the case of basic binding
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A

B

E

Binding

Enzymatic reaction

Species Akdegr
X

Species Aksynth
A

Synthesis

Degradation

Gene A Protein Aksynth
A

Synthesis of proteins

D

C

Species B Species A

σ1
A

k1 k–1

σ1
B

Species SSpecies E

P

σ1
S

σ2
S

k11

k1 k–1

σ1
E

Figure 2.2: Graphical representation of basic molecular interactions. Rect-

angles represent species, lines and arrows represent interactions, kn denote

rate constants, filled dots represent interfaces, σX
n denote interfaces, empty

circles are introduced only for visual convenience (see text for details). The

enzymatic reaction (B) refers in particular to phosphorylation and dephos-

phorylation.
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of A to B, there is only one correspondence relation (quadratic brackets

indicate concentrations): [A1] = [B1].

The differential equations describing the basic binding interaction have

the following EMA form (rate constants as in Fig. 2.2 A):

d[A0]/dt = −k1[A0][B0] + k−1[A1]

d[A1]/dt = +k1[A0][B0]− k−1[A1]

d[B0]/dt = −k1[B0][A0] + k−1[B1]

d[B1]/dt = +k1[B0][A0]− k−1[B1] (2.1)

With following conservation equations:

[AT ] = [A0] + [A1] (2.2)

[BT ] = [B0] + [B1] (2.3)

Note, that the conditions in Eq. Sys. (2.3) are automatically fulfilled be-

cause the Eq. Sys. (2.1) sums up to zero. This is an universal feature of our

modeling approach resulting from consequent application of EMA and it

has a fundamental meaning, since it allows modular composition of differ-

ential equations for basic motifs when describing the more complicated cases

without violating the mass conservation relationships in the system. Such

violation can often occur when applying AMA in a modular way, which may

affect the calculated results. We analyze this problem in detail in Chpt. 4.

2.2.2 Representation of enzymatic reactions

Enzymatic reaction is also a basic reaction type defined in our approach,

however a bit more complicated one. In the most general case, one can de-

scribe the enzymatic reaction between an enzyme E transforming substrate

S into a product S∗ as follows [62] (quadratic brackets indicate concentra-

tions, � indicate bidirectional reactions):

[E] + [S] � [ES] � [ES∗] � [E] + [S∗] (2.4)

Where [ES] and [ES∗] are the enzyme-substrate and enzyme-product com-

plexes, respectively. This scheme can be simplified based on following as-

sumptions:

• The step [ES] � [ES∗] is much faster than other steps in the scheme

2.4 and thus we can omit this step in the mathematical representation.



2.2. REPRESENTATION OF BASIC INTERACTIONS 23

• The step [ES∗] � [E] + [S∗] is mostly irreversible in biological condi-

tions, especially if we consider reactions of covalent modifications of

proteins, like phosphorylation. For simplicity, we will assume this step

to be always irreversible. We further assume a conversion of [S∗] back

to [S] as perfectly possible, but only in a separate reaction carried out

by a different enzyme.

• The concentration of ATP and related nucleotides consumed in phos-

phorylation reactions and concentration of phosphate groups pro-

duced in dephosphorylation reactions is assumed to be in an excess and

thus can be parameterized within the rate constants for the substrate-

product conversion.

The above assumptions yield a following simplified enzymatic reaction scheme [62]:

[E] + [S] � [ES] → [E] + [S∗] (2.5)

In this representation, the enzymatic reaction can be seen as a binding

reaction [E] + [S] � [ES] (rate constants: k1 and k−1) with an added

transformation step [ES] → [E] + [S∗] (rate constant k11). This scheme is

depicted in Fig. 2.2 B.

For the binding part, both species S and E have one interface, σS
1 and

σE
1 , respectively. The substrate species S has a second interface σS

2 corre-

sponding to the enzymatic modification site at which [E] transforms [S] (σS
2

= 0) into [S∗] (σS
2 = 1). Depending o the combinations of states of σ1 and

σ2, the possible sub-species of E and S are:

• E0 (σE
1 = 0) - free fraction of enzyme E.

• E1 (σE
1 = 1) - enzyme-substrate complex ES

• S00 (σS
1 = 0, σS

2 = 0) - free fraction of substrate S.

• S10 (σS
1 = 1, σS

2 = 0) - enzyme-substrate complex ES.

• S01 (σS
1 = 0, σS

2 = 1) - product S∗.

Here again we have one sub-species correspondence relation [E1] = [S10].

Note that from the assumptions leading to the simplified enzymatic reaction

scheme 2.5 it follows immediately, that it is not allowed to create a sub-

species of S where both the E is still bound and the S is already transformed

into S∗ (σS
1 = 1, σS

2 = 1).
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The ODE describing the basic enzymatic interaction with EMA are as

follows (quadratic brackets indicate concentrations, rate constants as in

Fig. 2.2 E:

d[S00]/dt = −k1[S00][E0] + k−1[S10]

d[S10]/dt = +k1[S00][E0]− k−1[S10]− k11[S10]

d[S01]/dt = +k11[S10]

d[E0]/dt = −k1[S00][E0] + (k−1 + k11)[E1]

d[E1]/dt = +k1[S00][E0]− (k−1 + k11)[E1] (2.6)

With following conservation equations (again automatically fulfilled):

[ST ] = [S00] + [S10] + [S01]

[ET ] = [E0] + [E1] (2.7)

Note that for the enzyme, the transformation step [ES] → [E] + [S∗] also

means a release from the enzyme-substrate complex, thus the rate constants

of both processes, i.e. ES dissociation (k−1) and transformation (k11) are

added up. A reaction of enzyme unbinding from substrate is an example of

composed rate problem. Composed rates need special treatment in the

case of enzymatic regulation, as will be outlined in the Sec. 2.4.1, with the

use of the sub-species correspondence concept explained in the Sec. 2.2.1.

2.2.3 Representation of synthesis and degradation

In the most basic case (Fig. 2.2 C and D), both synthesis and degradation

refer to a single species A and thus do not involve any second interaction

partner. This results from a semi-phenomenological treatment of these pro-

cesses, where we assume the possibly participating species such as RNA

polymerase, tRNA, ribosomes (for synthesis) or proteasomes, ubiquitin etc.

(for degradation) to be in the cell in an abundant quantity and thus their

concentrations and catalytic activity can be parameterized within a sin-

gle synthesis or degradation rate constant, ksynth and kdegr, respectively.

Different values of these constants for different species capture the species-

specific efficiency of both processes (e.g. highly expressed vs. low expressed

proteins, unstable vs. stable molecules etc.).

For this reason, the basic mathematical representation of synthesis and

of degradation involves only a single rate constant:

d[A0...0]/dt = +ksynth (2.8)

d[An]/dt = −kdegr[An] (2.9)
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The parameterization of the synthesis/degradation machinery compo-

nents concentrations is an efficient modeling approach but it disables the

incorporation of regulation of these two processes into the model. Within

our framework, we propose two ways of handling the regulation of syn-

thesis/degradation: on the entirely phenomenological level, as presented in

Sec. 2.5 or on the level of molecular interactions as presented in Sec. 2.4.2

and Sec. 2.4.3.

Note, that we allow a synthesis term (2.8) only in the equation of the

first, most basic sub-species A0...0 of the species A, where all σA
n = 0. This

important modeling assumption comes from biological reasons, as we as-

sume that any molecule needs to be synthesized in its basic form before

it can get involved in any interaction. On the other hand, a degradation

term (2.9) is allowed in the equation of any sub-species An of the species

A as we assume that a molecule can be degraded having any interaction

status.

Note, that in any of the proposed approaches, both synthesis and degra-

dation terms by definition disobey the conservation relationship [AT ] =

const. since they directly influence the total concentration of A.

An important calculative aspect of degradation is that it causes com-

posed rates introduced in Sec. 2.4.1 - an unbinding rate from any partner

needs to be summed up with the degradation rate of this partner.

The composed rate constants for basic interaction types are shown in

Fig. 2.3. Due to introduction of degradation rates, the EMA description of

these motifs need to be modified as follows:

- for binding reactions (cf. Eq.(2.1):

d[A0]/dt = −k1[A0][B0] + (k−1 + kB
degr)[A1]− kA

degr[A0]

d[A1]/dt = +k1[A0][B0]− (k−1 + kB
degr)[A1]− kA

degr[A1]

d[B0]/dt = −k1[B0][A0] + (k−1 + kA
degr)[B1]− kB

degr[B0]

d[B1]/dt = +k1[B0][A0]− (k−1 + kA
degr)[B1]− kB

degr[B1] (2.10)

- for enzymatic reactions (cf. Eq.(2.6):

d[S00]/dt = −k1[S00][E0] + (k−1 + kE
degr)[S10]− kS

degr[S00]

d[S10]/dt = +k1[S00][E0]− (k−1 + k11 + kE
degr)[S10]− kS

degr[S10]

d[S01]/dt = +k11[S10]− kS
degr[S01]

d[E0]/dt = −k1[S00][E0] + (k−1 + k11 + kS
degr)[E1]− kE

degr[E0]

d[E1]/dt = +k1[S00][E0]− (k−1 + k11 + kS
degr)[E1]− kE

degr[E1] (2.11)
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In the case of degradation regulation, the composed rates need special

treatment with the use of sub-species correspondence concept explained in

Sec. 2.2.1. This procedure will be outlined in the Sec. 2.4.3.

P
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Figure 2.3: Combination of basic interactions with degradation requires

summation of unbinding and degradation rate constants. Rectangles rep-

resent species, lines and arrows represent interactions, kn denote rate con-

stants, filled dots represent interfaces, σX
n denote interfaces, empty circles

are introduced only for visual convenience.
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2.3 Composition of basic interactions into com-

plex modules

2.3.1 Multiple binding

The basic binding motif is easily extendable to cases, where a given species

A has more than one physical binding site for the partner B, i.e. there

are n > 1 molecules of B binding to 1 molecule of A. In this case, both

interacting species (A and B) have each n interfaces. In the example shown

in Fig. 2.4 A, species A has 2 binding sites for B and thus 2 interfaces σA
1

and σA
2 . Note, that we also assign 2 interfaces to B, although 1 molecule

BA
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Figure 2.4: Interaction scheme of partners binding at two different sites

per molecule. The kn denote rate constants, σX
n interfaces. A - graphical

representation of the system, B - possible sub-species in the system (SubX)

, C - conversion coefficients of transition between sub-species belonging to

a given species (CX) based on rate constants depicted in A.

of B can bind maximally 1 molecule of A. This distinction is necessary

in the cases where the binding sites of A differ in terms of rate constants
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or regulation mechanisms. However, the fact that B has only one physical

binding site is accounted for by not allowing both interfaces of B to be

simultaneously true. Thus, we can differentiate 4 sub-species of A and 3

sub-species of B as specified in Fig. 2.4 B.

Due to the number of sub-species, the easiest way to represent the EMA

ODE describing the multiple binding interaction is to use the conversion

coefficient matrices C depicted in Fig. 2.4 C. These matrices are com-

posed for each species based on its sub-species library (Fig. 2.4 B) and

interaction menu (Fig. 2.4 A). An algorithm for automatic composition of

these matrices will be presented in the Sec. 3.4. In short, for every sub-

species of A we identify possible conversion links to all other sub-species

based on following rules:

• Conversion of sub-species Ai into sub-species Aj can only occur in

the course of single interaction. Consequently, Ai and Aj can only

differ by opposite values of one single interface (e.g. partner un-

bound → bound). One exception is the second step of enzymatic

reaction, where the linked Ai and Aj must differ by opposite values of

2 interfaces (enzyme bound → unbound and enzymatic site unmodi-

fied → modified).

• The rates of conversion of Ai into Aj depend on the rate constants kn

of corresponding interactions (Fig. 2.4 A).

• For all binding reactions, the rate constants kn are multiplied by the

concentrations of partner species participating in binding. Note, that

in the matrix CB in Fig. 2.4 C, specific summation terms ([A00]+[A10])

and ([A00] + [A01]) occur. Such summation terms can be expected

whenever a partner species is involved in several interactions and thus

has many sub-species. Then for each interaction it has to be decided

which of the many sub-species can participate in it as a sum like just

described. Determination, which sub-species of the interaction part-

ner are allowed to interact and thus contribute their concentration to

the conversion coefficient is an algorithmic task, based on the conver-

sion matrix of the partner, and it is described in the Sec. 3.4.4 in a

more detail.

Based on the conversion coefficient matrices CA and CB from Fig. 2.4 C.,

we can compose following EMA ODE for each sub-species Ai (quadratic

brackets indicate concentrations; they have been omitted in the CA matrices
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for visual convenience only):

d[Ai]/dt = −ΣjC
A
ij [Ai] + ΣjC

A
ji[Aj] (2.12)

Note, that in this representation (Eq. 2.12), each term from the conversion

matrix CA enters the equation twice - once with a positive and once with

a negative sign. This illustrates best, that all the EMA equations sum up

to zero and thus automatically fulfill conservation relationships that can be

defined in the most general form as follows:

[AT ] = ΣiAi (2.13)

Another important relationship that we can derive algorithmically from

the structure of conversion matrices CA and CB from Fig. 2.4 C. is the

correspondence of sub-species sets between A and B. Here we have following

correspondence relationships: [B10] = [A10]+[A11] and [B01] = [A01]+[A11].

The algorithm to derive such relationships is described in Sec. 3.4.4.
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2.3.2 Coupled forward and backward enzymatic reactions

Description of a basic enzymatic reaction [E] + [S] � [ES] → [E] + [S∗] is

outlined in Sec. 2.2.2. As mentioned there, the conversion of product [S∗]

back to substrate [S] by an enzyme different from E is perfectly possible,

and actually very common in nature, with the most prominent example of

phosphorylation and dephosphorylation. A basic motif consisting of two

coupled enzymatic reactions proceeding in two opposite directions is de-

picted in the Fig. 2.5 where the forward reaction enzyme (e.g. a kinase)

is labeled E1 and the backward reaction enzyme (e.g. a phosphatase) is

labeled E2.
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Figure 2.5: Coupled forward and backward enzymatic reactions. The kn

denote rate constants, σX
n interfaces. Dashed lines depict a backward en-

zymatic reaction, e.g. dephosphorylation. A - graphical representation of

the system, B - possible sub-species in the system (SubX) , C - conversion

coefficients of transition between sub-species belonging to a given species

(CX) based on rate constants depicted in A.
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The reaction scheme can be set up analogically to (2.5):

[E1] + [S] � [E1S] → [E1] + [S∗] (2.14)

[E2] + [S∗] � [E2S∗] → [E2] + [S] (2.15)

As shown in Fig. 2.5 B, the species E1 has sub-species E10 and E11 identical

to E0 and E1 in the example of a basic enzymatic reaction in Sec. 2.2.2.

Analogically, the 2 sub-species of E2 correspond to free E2 (E20) and to

the enzyme-substrate complex E2S∗ (E21, since the product S∗ is actually

a substrate of E2). The addition of E2 into the system requires adding a

new interface σS
3 to the species S, which results in 4 sub-species of S:

• S000 (σS
1 = 0, σS

2 = 0, σS
3 = 0) - free fraction of substrate S.

• S100 (σS
1 = 1, σS

2 = 0, σS
3 = 0) - enzyme-substrate complex E1S.

• S010 (σS
1 = 0, σS

2 = 1, σ3 = 0) - transformed fraction of substrate S∗.

• S011 (σS
1 = 0, σS

2 = 1, σS
3 = 0) - enzyme-product complex E2S∗.

Here we have following correspondence relationships: [E11] = [S100] and

[E21] = [S011]. Note, that sub-species E1S∗ (σS
1 = 1, σS

2 = 1) is excluded

for the same reasons as in the previous example, and for E2 we analogically

do not allow a sub-species E2S (σS
1 = 0, σS

3 = 1). We also additionally

assume, that two enzymes targeting the same enzymatic modification site

cannot bind simultaneously to the same substrate, which excludes states

E1E2S (σS
1 = 1, σS

2 = 0, σS
3 = 1) and E1E2S∗ (σS

1 = 1, σS
2 = 1, σS

3 = 1.

The algorithm for composing sub-species lists (Sec. 3.4.2) and conversion

matrices (Sec. 3.4.3) takes these restrictions into account. The EMA ODE

describing the whole system can be derived from the conversion coefficient

matrices presented in Fig. 2.5 B using the universal equation 2.12.

2.3.3 Multiple coupled enzymatic reactions

In analogy to extending the basic binding reaction scheme (Sec. 2.2.1) to

multiple binding (Sec. 2.3.1), the forward-backward enzymatic reaction mo-

tif (Sec. 2.3.2) is extensible to several cases discussed below.

Substrate with independent enzymatic reactions.

The simplest extension is to pool several independent enzymatic modifica-

tion sites within one substrate. An example in Fig. 2.6 shows such substrate

with two modification sites.
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Figure 2.6: Substrate with several independent enzymatic modification

sites. The kn denote rate constants, σX
n interfaces. Dotted lines depict

a backward enzymatic reaction, e.g. dephosphorylation. A - graphical rep-

resentation of the system, B - possible sub-species in the system (SubX) ,

C - conversion coefficients of transition between sub-species belonging to a

given species (CX) based on rate constants depicted in A.
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The substrate S has 16 possible sub-species that are independent combi-

nations of the four basic sub-species S1−S4 of the forward-backward motif

presented in Sec 2.3.2, which already demonstrates combinatorial complex-

ity of even relatively simple systems. A regular pattern of conversion matrix

CS (Fig. 2.6 C) indicates the independent character of the two enzymatic

sites. This pattern can be broken by adding a single regulatory relation be-

tween the enzymatic modification sites as presented in the matrix CS from

(Fig. 2.6 C) describing a allosteric regulation of enzymatic reactions.

Competition between enzymes over a substrate.

Another possible combination of enzymatic reactions is a system where

several enzymes target the same modification site (Fig. 2.7).

In this case, the library of allowed sub-species is less numerous as in

the previous example (6 vs. 16), because some substrate sub-species are

excluded due to following rules:

• Binding of a modifying enzyme to an already modified substrate (esp.

a kinase to a phosphorylated substrate) or an unmodifying enzyme to

the substrate (esp. a phosphatase to an unphosphorylated substrate),

as explained in Sec 2.3.2.

• Simultaneous binding to the substrate of more than one enzyme acting

on the same modification site. If that was allowed, one of the com-

peting enzymes would modify the substrate, unbind and leave other

enzymes still attached to an already modified substrate, which was

forbidden in the previous point.

These simple exclusion rules reduce combinatorial complexity of systems

containing competing enzymes and they are taken into account by the

equation-composing algorithm described in Sec. 3.4.

Competition between substrates over an enzyme.

A reverse situation is an enzyme targeting several substrates (Fig. 2.8).

This case automatically fulfills the scheme of competitive inhibition,

especially, when the affinity of enzyme to substrate S1 is significantly higher

than to the substrate S2. This means, that the enzyme-S1 complex is more

stable: k1 >> k3 and (k−1 + k11) << (k−3 + k33) and thus blocks the S2

from being processed. This can especially happen when S1 is ’mimicking’ S2

having a very similar spatial structure of the modification site that ’locks’
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Figure 2.7: Competition between enzymes targeting the same modification

site within a single substrate. The kn denote rate constants, σX
n interfaces.

Dotted lines depict a backward enzymatic reaction, e.g. dephosphorylation.

A - graphical representation of the system, B - possible sub-species in the

system (SubX) , C - conversion coefficients of transition between sub-species

belonging to a given species (CX) based on rate constants depicted in A.
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Figure 2.8: Competition between substrates over a single enzyme. The

kn denote rate constants, σX
n interfaces. Dotted lines depict a backward

enzymatic reaction, e.g. dephosphorylation. The kn denote rate constants.

A - graphical representation of the system, B - possible sub-species in the

system (SubX) , C - conversion coefficients of transition between sub-species

belonging to a given species (CX) based on rate constants depicted in A.
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the active site of the enzyme but disables its dissociation from S1, in such

case of perfect inhibition k11 = 0. In an even more extreme case, both

k11 = 0 and k−1 = 0 and then the inhibition is irreversible.

In the example presented in (Fig. 2.8 B), the multi-substrate enzyme E1

has thus 3 possible sub-species: E00 - free enzyme, E10 - enzyme-substrate

complexes with S1, E01 - enzyme-substrate complexes with S2. A simul-

taneous binding of the enzyme to more than one substrate is not allowed,

since we assume this is also commonly the case in nature.

Multi-site enzymatic reaction.

Finally, we can imagine a situation when a single enzyme targets several

sites within a single substrate (Fig. 2.9).

Note, that we have created two different interfaces σS
1 and σS

4 for the

same enzyme, since it can potentially bind at the two different sites of the

substrate with two different constants (k1 6= k1). However, for simplicity,

we will not allow sub-species where such binding occurs simultaneously.

This situation is a hybrid of two already described cases. The substrate

S with two sites has almost the same sub-species as in the independent

site case (Fig. 2.6 B), with the exclusion of the sub-species S6 there, which

has a not allowed interface value combination σS
1 = 1 and σS

4 = 1. On

the other hand, the enzyme has the same sub-species as in the competition

over enzyme case (Fig. 2.8 B) and if reaction constants for both sites also

invoke substantially different affinities, like: k1 >> k3 and (k−1 + k11) <<

(k−3 +k33) or the other way round), a specific case of competitive inhibition

is also possible.

However, an opposite situation occurs often in nature, where an enzy-

matic modification on one site is activating, not inhibiting the modification

of the other site of the same substrate via a positive regulatory link. This

situation is presented in (Sec. 2.4.1, Par. ’Cooperative multi-site enzymatic

reaction’).

This and previous examples illustrate the potential of our approach to

describe complex network motifs by modular composition of basic motifs

with use of simple rules. Following, we will show that our framework can also

capture further important features of biological systems, such as regulation.
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Figure 2.9: Multi-site enzymatic reaction, where a single substrate has sev-

eral enzymatic modification sites that compete over a single enzyme. The

kn denote rate constants, σX
n interfaces. Dotted lines depict a backward en-

zymatic reaction, e.g. dephosphorylation. A - graphical representation of

the system, B - possible sub-species in the system (SubX) , C - conversion

coefficients of transition between sub-species belonging to a given species

(CX) based on rate constants depicted in A.
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2.4 Representation of regulation

In Sec. 2.1.2, we have defined regulation as a relation between two interfaces

of the same species, σi and σj, such that the rate constant kj related to σj

can change depending on the state of σi. We will call a species containing σi

and σj a host, a species interacting with host at σi a master and a species

interacting at σj a slave. Restriction of regulation to a process taking place

within one host comes from an assumption that it can be only exhibited by

direct (though not necessarily simultaneous) physical contact between the

molecules of host and master and between the molecules of host and slave.

In most cases, the regulatory influence corresponds to a physical process.

For example, interaction with master at one physical site (corresponding to

σi) might invoke conformational changes of the host molecule that affect the

shape and thus properties of its other physical site where the slave interacts

resulting in an altered binding affinity at σj and thus a new value of kj.

In our approach, regulation is translated into EMA ODE by multiplica-

tion of kj with some regulation coefficient α. A given kj can be potentially

regulated by a number of masters. This is specified by a Boolean matrix R

and a corresponding matrix α of dimensions (n), (n + 2), where n equals

to the host’s number of interfaces and 2 stands for the possibility to as-

sign a slave status to a synthesis or a degradation rate of host. An entry

Rij = true means that the interaction at σi regulates the interaction at σj

by a coefficient αij. We propose distinguishing 4 types of regulatory links,

as presented in the Fig. 2.10 A:

• exclusion: αij = 0, if: σiRij = 1, else: αij = 1.

• inhibition: αij = α < 1, if: σiRij = 1, else: αij = 1.

• activation: αij = α > 1, if: σiRij = 1, else: αij = 1.

• necessity: αij = 0, if: (1− σi)Rij = 1, else: αij = 1.

2.4.1 Regulation of binding and enzymatic reactions

Regulation of binding is depicted in (Fig. 2.10). For binding reactions we

assume that the regulatory modification affects the binding affinity and thus

the binding rate k1 (Sec. 2.2.1) to a slave partner (k1 = kj):

k∗
1 = k1Πiαij (2.16)
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The unbinding rate k−1 is left unchanged, otherwise the regulation would

influence reaction velocity but not affinity.

Regulation of enzymatic reactions is depicted in (Fig. 2.11). For enzy-

matic reactions, we take a simplifying assumption that both binding rate

k1 and modification rate k11 belonging to a slave enzymatic reaction are

multiplied by the same regulation coefficient α, which changes both the

enzyme-substrate affinity and the overall speed of enzymatic conversion:

k∗
1 = k1Πiαij (2.17)

k∗
11 = k11Πiαij (2.18)

Again, the backward rate k−1 remains unchanged. Thus, to keep consis-

tency with the mathematical description of enzymatic reactions defined in

Section 2.2.2, the unbinding rate of the enzyme, (k−1 + k11), is transformed

under regulatory influence to (k−1 + k∗
11).

Further, since enzymatic reactions involve two interfaces of the sub-

strate: for enzyme binding σS
1 and for enzymatic modification σS

2 , we make

a simplifying assumption that an enzyme can execute a master regulatory

role only via the modification site, thus only σS
2 = σi and the state of σS

1 is

irrelevant here, i.e. the regulation does not occur in enzyme-substrate com-

plexes before the modification step. Note, that it automatically implies,

that if more enzymes target the same modification site σS
2 , they can all

play the same master role towards an interaction with a given slave. This

involvement is irrespective of if such enzymes act in a forward or a back-

ward modification reaction, like phosphorylation and dephosphorylation,

respectively.

The host-slave-master approach outlined above enables an uniform treat-

ment of various specific regulation cases common in nature, such as cooper-

ativity, allostery, regulation of transcription and regulation of degradation,

as presented in the following sections.
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Figure 2.10: Graphical representation of regulation of binding reactions.

Rectangles represent species, green lines represent interactions, kn denote

rate constants, purple arrows represent regulation, αn denote regulation

coefficients, filled dots represent interfaces, σX
n denote interfaces.
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Figure 2.11: Graphical representation of regulation of enzymatic reactions.
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n denote interfaces.
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Cooperative binding

Cooperative binding (Fig.2.12) is an extension of the multiple binding case

presented in Sec. 2.3.1 by linking the interaction sites σA
1 and σA

2 with a

regulatory relationship, such that σA
1 = σi (master) and σA

2 = σj (slave)

(Fig.2.12 A). Note, that in this case both σi and σj refer to the same inter-

action partner B which is thus simultaneously a master and a slave.
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Figure 2.12: Cooperative regulation of binding. The kn denote rate con-

stants, αn regulation coefficients, σX
n interfaces. A - graphical represen-

tation of the system, B - possible sub-species in the system (SubX) , C -

conversion coefficients of transition between sub-species belonging to a given

species (CX) based on rate constants and regulation coefficients depicted in

A.

Potentially, a regulatory behavior can occur in all those sub-species of

host A where:

• σi = 1, so that the master interaction has taken place.

• σj = 0, so that the slave interaction can potentially take place in the

course of a transition to another sub-species where σj = 1.
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In the given example, only one sub-species, A10 meets these requirements

(Fig.2.12 B). Consequently, all binding rate constants related to A10 in the

conversion matrix CA shown in Fig. 2.12 C are modified. In this case,

there is only one such term: CA
2:4 = αk2B00. It is obtained by multiplying

term CA
2:4 from the conversion matrix describing a case of multiple binding

without regulation (Fig. 2.4 C) with the regulation coefficient α. Note,

that for visual convenience we omit in this example regulation by necessity,

where we would simply have to consider the sub-species 00 (σi = 0 and

σj = 0) instead of A10.

Another important notion is that α needs also to enter the conversion

matrix CB whenever A10 appears too, in this case in the term CB
1:3 = k2(A1+

αA2) (Fig. 2.12 C).

Cooperative multi-site enzymatic reaction

similarly to cooperative binding, cooperativity can also occur in enzymatic

reactions with multiple modification sites, as shown in Fig. 2.13 A. The

multi-site enzymatic reaction described in Sec. 2.3.1 is supplemented here

with a regulatory link between the enzymatic modification sites σS
2 and σS

5 ,

such that σS
2 = σi (master) and σS

5 = σj (slave). From this automatically

follows, that σS
4 = σj too, as explained in Sec. 2.4.1).

In this example case, there are several sub-species of S that fulfill the

condition σi = 1 and σj = 0; these are: S3, S4, S6 and S7 as specified in

Fig. 2.13 B. Accordingly, rate constants associated to these sub-species are

multiplied with α. This is evident from a comparison OF the conversion

matrix terms CS
3:6, CS

4:7, CS
6:10 and CS

7:11 shown in Fig. 2.13 C to the respec-

tive terms of matrix CS in Fig. 2.9 C, which describes a corresponding,

unregulated case (Sec. 2.3.3).

Since the regulation is also related to the master-slave enzyme E1, the

regulatory coefficient α also needs to enter the conversion matrix CE1. For

the regulated E1 − S binding reactions, α appears simply whenever the

regulated sub-species S3 and S4 do, i.e. in the term CE1
1:3 , in analogy to the

cooperative binding case shown in Fig. 2.12.

This is, however, more complicated for the regulated E1− S unbinding

reaction in the conversion matrix term CE1
3:1 = (k−3 + βk33), since this case

represents a composed rate problem. The unbinding rates of enzymes are

composed of two terms: substrate unbinding rate constant k−3 and substrate

modification rate constant k33, from which only k33 is regulated ( Sec. 2.2.2).

The regulation of such composed rates can’t be described in terms of EMA
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rate constants, αn regulation coefficients, σX
n interfaces. Dotted lines depict

a backward enzymatic reaction, e.g. dephosphorylation. A - graphical

representation of the system, B - possible sub-species in the system (SubX)

, C - conversion coefficients of transition between sub-species belonging to
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depicted in A.
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using the original regulation coefficient α, because that would violate mass

conservation. Namely, in the term CE1
3:1 the regulated rate k33 is multiplied

with a concentration term [E101]. Based on the species correspondence

concept outlined in Sec. 2.2.1: [E101] = [S5] + [S6] + [S7], where only [S6]

and [S7] are regulated via α. Based on this, we can calculate a new EMA-

compliant regulatory coefficient β as follows:

[E13] (k−5 + βk55) = [E13]k−5 + [E13]βk55

[E13] k−5 + [E13]βk55 = [E13]k−5 + ([S5] + α[S6] + α[S7])k55

([S5] + [S6] + [S7])βk55 = [E13]k−5 + ([S5] + α[S6] + α[S7])k55

β =
[S5] + α[S6] + α[S7]

[S5] + [S6] + [S7]
(2.19)

From the above derivation we immediately see, that β is simply a dimen-

sionless weighted average of α where the weights are the concentrations of

corresponding sub-species. This situation illustrates well the application

of sub-species correspondence concept introduced in Sec. 2.2.1. The com-

posed unbinding rates resulting from regulated degradation are handled in

identical way as will be shown in Sec. 2.4.3. The algorithm for calculation

of β coefficients and their incorporation into the equation is presented in

Sec. 3.4.4 and Sec. 3.5.2.

Allosteric regulation

Allosteric regulation is another regulation mechanism of enzymatic activity

common in nature, it relies on binding a regulatory molecule (master) to

an enzyme (slave) at a site different than the enzyme’s active site. Thus, it

is similar to cooperativity with the difference that the regulatory molecule

is always a species different from the slave enzyme. It can be either a

binding partner or a modifying enzyme; here we present the later example

(Fig.2.14).

An allosteric regulation mechanism of one enzymatic reaction by another

can be well derived from the basic example of substrate with independent

enzymatic reactions presented in Sec. 2.3.1 that was modified by linking

the enzymatic modification sites σ2 and σ5 with a regulatory relationship,

such that σ2 = σi and σ5 = σj (additionally σ4 = σj too, as explained in

Sec. 2.4). This results in modifying the values of some rate constants in

the conversion matrices shown in Fig. 2.14 C in comparison to the original

matrices from Fig. 2.6 C. The terms CS
3:7, CS

4:8, CS
7:11, CS

8:12 and CE3
1:2 are
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Figure 2.14: Allosteric regulation of enzymatic reactions. The kn denote

rate constants, αn regulation coefficients, σX
n interfaces. Dotted lines depict

a backward enzymatic reaction, e.g. dephosphorylation. A - graphical

representation of the system, B - possible sub-species in the system (SubX)

, C - conversion coefficients of transition between sub-species belonging to

a given species (CX) based on rate constants and regulation coefficients

depicted in A.
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modified with the regulation coefficient α and the term CE3
2:1 is modified

with the regulation coefficient β. In analogy to Eq. (2.19), β = ([S5] +

[S6] + α[S7] + α[S8])/([S5] + [S6] + [S7] + [S8]) here.

2.4.2 Regulation of protein synthesis

The regulation of protein synthesis can also be described using the host-

slave-master approach introduced in Sec. 2.4.3. For this purpose, for a

given protein species A, we introduce a corresponding gene species gA that

is a host of regulation. This approach relies on following assumptions:

• For a given protein species A, there is only one corresponding gene

species gA with fixed total concentration [gAT ] = 1.0. Thus, the con-

centration of of any subspecies [gAj] can be considered as percentage

fraction: [gAj] = [gAj]/[gAT ].

• Synthesis of A, as described in the Eq. 2.8, does not necessarily involve

any interactions of A itself and can only happen through physical

contact of gA with the protein synthesis machinery. Thus, only gA

can be a host of the regulation of synthesis of A, the basic synthesis

rate of A, kA
synth, is a slave and different interaction partners of gA

can be masters here.

The kA
synth is modified depending on the interaction status of gA. Different

combinations of gA with regulators (e.g. transcription factors) result in

many possible sub-species gAj. The fractional concentrations [gAj]/[gA]

act as percentage weights used to calculate the overall synthesis rate of A:

kA∗
synth = Σj([gAj]/[gA]kA

synthΠiαij) (2.20)

An example of multiple regulated synthesis with following weights con-

tributing to the modified kA∗
synth is presented in the Fig. 2.15.

The outlined approach allows a detailed though uniform description of

various protein synthesis regulation motifs in terms of EMA. However, the

application of a gene concentration term [gA] is questionable in terms of

mass action law, since in the reality there are too few copies of the gene in

the cell for the mass action approximation to be valid. Thus, the [gA] term

should be seen as a parameterization of several factors, such as promoter

activity and mRNA concentration. An alternative solution could be either

to use stochastic modeling algorithms (Sec. 1.2.2) or a phenomenological

description as presented in Sec. 2.5.
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2.4.3 Regulation of degradation

The regulation of degradation can also be described with the host-slave-

master approach introduced in Sec. 2.4, based on following assumptions:

• Degradation of any molecule of species A can only happen by spon-

taneous disintegration or by physical contact with the degradation

machinery molecules (ubiquitin, proteasomes etc.). Thus only A itself

can be the host of regulation and its basic degradation rate, kA
degr a

slave of regulation.

• Regulation of degradation can happen only by physical contact be-

tween host and its partners. Thus, any interaction partner of host

can be a master of regulation.

• If a regulation of degradation in a given sub-species Aj occurs, its

degradation rate is modified depending on the values of all interfaces

related to master partners in this sub-species.

• The regulation of degradation can have any of four kinds: activation,

inhibition, necessity and exclusion, where the latest means, that a

related master prevents A from degradation.

The basic degradation rate kdegr of species A is modified for a given

sub-species Aj depending on its interaction status:

k
Aj

degr = kdegrΠiαij (2.21)

An example of multiple regulated degradation with following individual

kdegr for each Aj is presented in the Fig. 2.16.

The introduction of degradation rates for host results also in composed

unbinding rates for its interaction partners, as shown in Fig. 2.16. Handling

of such composed rates in the case of degradation regulation is identical to

the enzymatic regulation case presented in the Sec. 2.4.1. Following from

there, the regulation coefficients β1 and β2 are calculated using the basic

regulation coefficients α1 and α2 and the species correspondence relation-

ships: [B12] = [A4] + [A5] + [A6] and [B22] = [A3] + [A6]. From feeding

those terms into the weighted average formula 2.19, we obtain:

β1 =
α1[A4] + α1[A5] + α1α2[A6]

[A4] + [A5] + [A6]

β2 =
α2[A3] + α1α2[A6]

[A3] + [A6]
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Figure 2.16: Regulation of degradation. The kn denote rate constants,

αn regulation coefficients, σX
n interfaces. A - graphical representation of

the system, B -possible sub-species of the regulated species A and their

individual degradation rates C - possible sub-species of interaction partners

B1 and B2 and their conversion coefficient matrices containing composed

rates resulting from the degradation of A.
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The outlined approach allows a detailed though uniform description of

various degradation regulation motifs. An alternative approach is given on

the phenomenological level as presented in Sec. 2.5.

2.5 Representation of phenomena

Phenomena are an abstract category of species representing meaningful bi-

ological functions such as ’cell mass’ or ’phosphorylated A’. Their specific

character results from following assumptions:

• Any phenomenon species is an abstract term describing some aspect

of the system’s behavior. Thus, they can not be involved in physical

interactions and consequently posses interaction interfaces.

• Prohibition of interaction interfaces to phenomena means that they

can not have any sub-species. Consequently, each phenomenon species

corresponds to only one variable of the system, which can be either

real-valued (e.g. ’cell mass’ = 1.0) or Boolean (e.g. ’cell division’ =

true).

• Phenomena can be linked to each other by means of algebraic-Boolean

functions (Sec. 2.5.2) and to molecular species (especially proteins)

by simple algebraic rules (Sec. 2.5.1 and Sec. 2.5.3). These couplings

determine the value of phenomena-related variables.

The introduction of phenomena species allows to enrich the modeling

framework with following features:

• Incorporation of meaningful biological functions such as ’cell mass’

or ’cell division’ into the model.

• Selection of a meaningful subset of sub-species of a given species

(Sec. 2.5.1), e.g. ’active A’. This allows to reduce the simulation

output to an user-defined shortlist of variables.

• Phenomenological description of synthesis and degradation

(Sec. 2.5.3).

• Phenomenological description of different processes if the ex-

act molecular mechanisms or parameters are unknown or beyond the

scope of a given model.
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lation, αn denote regulation coefficients, blue arrows represent links with

phenomena, filled dots represent interfaces, σX
n denote interfaces, empty

circles are introduced only for visual convenience.
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There are three ways of connecting phenomena to other species as shown

in Fig. 2.17 and discussed below. similarly to the graphical representation

of synthesis and degradation (Sec. 2.2), we use ’empty’ nodes that allow a

convenient visual linking of phenomena to each other and to other species.

Again, these nodes do not depict any interaction interfaces.

2.5.1 Species-to-phenomenon relationship.

This relation allows reducing the simulation output to an user-defined short-

list of meaningful variables like: ’active A’ = ’A bound to B but not to C’.

The user can determine, which interactions of species A should or should

not contribute to a given phenomenon P using the same input format as for

regulation. In the given example: host = ’A’, slave = ’active A’ , master1

= ’B’, type1 = ’necessity’, master2 = ’C’, type2 = ’exclusion’.

Based on the values of master interfaces σi in every sub-species Aj, it can

be decided if this Aj can contribute its concentration to the value of P or

not. The only regulatory relationship allowed to be used here is ’necessity’

or ’exclusion’. The value of P is simply calculated as a sum of all the

concentrations [Aj] that are allowed to contribute to P by the regulation

coefficient αij:

P = Σj([Aj]Πiαij) (2.22)

An example of a species A linked to a phenomenon P by means of regu-

lation along with the sub-species Aj allowed and not-allowed to contribute

to P is presented in Fig. 2.17 A.

2.5.2 Phenomenon-to-phenomenon relationship.

The relationships between phenomena, both real-valued and Boolean ones,

can be described with user-defined, Boolean and arithmetic rules, like: ’IF

concentration of ’phosphorylated A’ exceeds threshold TA, phenomenon ’ex-

ocytosis’ is true’.

The interconnection of phenomena allows capturing various relation-

ships, such as logical gates, threshold behavior etc. As shown in Fig. 2.17 B,

a phenomenon P can be linked to any set of other phenomena D1 . . . Dn

by means of arbitrary Boolean-algebraic coupling terms F with any set of

assistant Boolean or numerical arguments X1 . . . .Xk:

P = F (D1 . . . Dn, X1 . . . .Xk) (2.23)
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Where F () can for instance mean: ’IF D1 > threshold X2, THEN P =

P/D4. The structure of expressions is formalized in Sec. 3.2.4.

Such phenomenological treatment can be an useful alternative for han-

dling unknown mechanisms or rate constants in some specific cases. How-

ever, this feature shifts the focus away from molecular mechanisms of inter-

action towards a phenomenological system description.

2.5.3 Phenomenon-to-species relationship.

As shown in Fig. 2.17 C, a real number phenomenon P can be linked to

species A via a phenomenological rate constant kphen which is treated as an

additional degradation (kphen < 0) or synthesis (kphen > 0) rate of A that

decreases/increases the concentration of A:

d[A]/dt = kphenP if kphen > 0

d[A]/dt = kphenP [A] if kphen < 0 (2.24)

This relation allows the phenomenological description of synthesis and

degradation and their regulation. For instance, if we know that some forms

of species B influence the synthesis of species A, e.g. ’phosphorylated B

promotes synthesis of A’ we can create a phenomenon P for the desired

subset of B (Sec. 2.5.1) and link this phenomenon back to A by means of

kphen. For instance, if the phenomenon ’phosphorylated B’ corresponds to

2 sub-species Ba and Bb, then d[A]/dt = +kphen([Ba] + [Bb]).



Chapter 3

Automated model construction

and simulation

We have implemented the formalism presented in Chpt. 2 with JavaTM as

described below. The resulting software, called aceSim, allows an auto-

matic MIN model construction, simulation and analysis based on a limited

input set of interaction rules. The acronym ’ace’ refers to ’automated,

combinatorial, elementary (mass action)’, which we believe to be the key

characteristics of the presented simulator.

In the aceSim framework, a MIN is described with a set of simple, user-

defined rules containing names of interacting species, reaction rate con-

stants and optional regulation coefficients. These parameters are extrapo-

lated into ODE modules, which are automatically combined into an ODE

system describing all combinatorial reaction pathways possible in the mod-

eled network. Thus, no further parameters need to be entered nor manual

modification of the existing parameters is required to obtain the system

description.

The ODE modules have an EMA form, which ensures compliance with

mass conservation laws even for large and complicated systems and thus

greater mathematical precision compared to AMA-based descriptions. The

purely automated parameter extrapolation and module combination is facil-

itated by an agent-like, Boolean representation of combinatorial molecular

species.

55
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3.1 General algorithm

The general algorithm of the automated model construction and simulation

can be summarized to following steps:

1. Download the job file containing a tabular description of the system

(Sec. 3.2).

2. Create a repository of all agents, i.e. interacting species in the system

(Sec. 3.3).

3. Create several tables capturing relations between agents (Sec. 3.4):

• Create an all-to-all Agent Connection Matrix .

• Determine number of interfaces per agent based on the number

of its interaction partners

• Create Sub-Species Library, i.e. all possible combinations of in-

terface states of each agent.

• Create Conversion Matrix containing all possible conversions be-

tween sub-species resulting from interactions.

• Create Phenomena Matrix capturing species-to-phenomenon and

phenomenon-to-species relationships.

4. Define dynamical variables (Sec. 3.5.1).

5. Derive from the above tables ODE describing the system (Sec. 3.5.2).

6. Integrate equations (Sec. 3.5).

7. Analyze results with built-in analysis features (Sec. 3.5).

We will illustrate our implementation of this algorithm with an exam-

ple of a kinase-phosphatase system (see Section 2.3.2) as outlined in Fig-

ures 3.1 and 3.3.

3.2 Structure of the job file

The job file has a worksheet structure divided into several tables as out-

lined in Fig. 3.2. The most important one is the interaction table jobI. It

lists basic binding and enzymatic reactions, from which all combinatorial

reaction pathways possible in the system will be automatically generated.
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An example of such table for a kinase-phosphatase system is depicted

in Figure 3.1 A. It contains 2 rows, corresponding to one phosphorylation

reaction of substrate B by kinase A1 and one dephosphorylation reaction

of B by phosphatase A2, respectively.

As depicted in Fig. 3.2 A, a jobI record contains names of species par-

ticipating in a given interaction, interaction type and corresponding rate

constants (see Sec. 3.2.1 for details).

The job file can also contain 3 optional tables listing: a) regulatory

relationships (Sec. 3.2.2), b) initial values and basic synthesis/degradation

rates for selected species (Sec. 3.2.3), c) phenomenon-to-phenomenon re-

lations (Sec. 3.2.4). The compact form of the job file allows rule-based

description of both interactions and their regulation and thus far-reaching

automation of the modeling process. Below we characterize the fields of the

job file tables in a more detail. An overview of these fields is presented in

Fig. 3.2. All entries referred to as ’number’ were implemented using the

double precision numbering format (8 byte encoding) [8].

Job file: Interactions

Message Board: Interactions

Determination of interface number

protA1 , (k–1 + k11)k1
σ1

A1

protA2 , (k–2 + k22)k2
σ1

A2

protB , k–1k1

, k–2k2

, k22k11 

σ1
B

σ2
B

σ3
B

A

B

C

k22k–2k2--dephosphorylationprotBprotA2

k11k–1k1--phosphorylationprotBprotA1

kenzkunbindkbind
enz
site

bind 
sitereaction typename2name1

k22k–2k2
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'phosphatase'
protA2 

k11k–1k1
--

'kinase'
protA1 

k22k–2k2k11k–1k1

'substrate''substrate'
-protB

protA2protA1protB

Figure 3.1: Implementation example based on a kinase-phosphatase motif.

See text for details.
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Structure of the job file

- pre-defined entry format

- optional field

- obligatory field
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Figure 3.2: Structure of the job file in a spreadsheet format. ’prot’ - any pro-

tein species, ’gene’ - any gene species, ’phen’ - any quantitative phenomena

species. See text Sec. 3.2 for further details.
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3.2.1 Job file - Interactions

Structure of the Interaction Table (jobI) is based on the formal descrip-

tion of interactions presented in Sec. 2.2 and Sec. 2.3. The jobI contains

following fields:

• name1 and name2 (string) - the names of interacting partners. All

names have standardized first 4 characters defining the type of species,

e.g.: prot for proteins, gene - for genes, phen - for real-valued phe-

nomena, pheb - for Boolean phenomena. For instance, a cyclin D gene

and protein could be named ’geneCyclinD’ and ’protCyclinD’, respec-

tively. For enzymatic reactions, the enzyme is by convention entered

as name1 and the substrate as name2.

• type (string) - the type of interaction can be specified as follows: B

- binding reaction, E1 - enzymatic modification reaction, esp. phos-

phorylation, in which case the name1 is a kinase, E2 - enzymatic

demodification reaction, esp. dephosphorylation, in which case the

name1 is a phosphatase and V - abstract relation for linking phenom-

ena to species, in which case name1 is a phenomenon.

• bind site and enz site (string, optional) - explicit labels for binding

and modification sites, respectively. By convention, the label starts

with the character ’@’ (e.g.’@0’ or ’@Tyr115’).

• kn, k−n, knn (number) - rate constants for, respectively: binding of

name1 to name2, unbinding of name1 from name2 and modification

of name2 by name1. In a more detail, the knn is a forward rate of an

enzymatic transformation from enzyme-substrate complex to enzyme

and product and it exists only if int type = E1 or int type = E2.

The jobI can list phenomenon-to-species relations with corresponding

kphen as described in Sec. 2.5.3. By convention, the phenomenon is entered

as name1, kphen ≥ 0 as kn, kphen < 0 as k−n and type is set to ’V’.

The jobI can also list interactions where name2 has n > 1 binding sites

to name1 or can be enzymatically modified at n > 1 sites, as described in

Sec. 2.3.1 and Sec. 2.3.3, respectively (by convention, the species having such

multiple sites is entered as name2). In this case, each binding/enzymatic

reaction related to a specific site is entered as a separate row of the jobI

table; these rows contain the same pair of species names but differ in the

values of bind site or bind enz fields.



60
CHAPTER 3. AUTOMATED MODEL CONSTRUCTION AND

SIMULATION

3.2.2 Job file - Regulation

Structure of the optional Regulation Table (jobR) is based on the formal

description of regulation presented in Sec. 2.4. The jobR contains following

fields:

• host, master and slave (string) - the names of species involved in

a regulatory relationship as described in Sec. 2.4. For a regulation

between a given host, master and slave to be valid, There must be a

host-master and a host-slave interaction listed in the (jobI) table.

• reg type (string) - the type of regulation can be specified as follows:

A - activation, I - inhibition, E - exclusion, N - necessity.

• master site and slave site (string, optional) - site labels that were

assigned in the jobI to host-master or host-slave interaction, respec-

tively. By convention, for enzymatic reactions, the master site can

only be an enz site and the slave site can only be a bind site. This is

because we assume, that master enzymes can only execute regulation

of their substrate after its enzymatic modification has taken place and

that regulation of slave enzymes influences their activity already at

the stage of substrate binding.

• α (number, optional) - the value of regulation coefficient α.

The jobR can list species-to-phenomenon relations as described in Sec. 2.5.3.

The phenomenon is by convention entered as slave. This only refers to real-

valued phenomena and the regulation type can only be ’N’ or ’E’.

The jobR can also list host’s synthesis and degradation regulation, as

described in Sec. 2.4.2 and Sec. 2.4.3, respectively. In this case, the slave is

entered as a pre-defined tag ’synthesis’ or ’degradation’.

3.2.3 Job file - Initial Values

The optional Initial Values Table (jobV ) contains following fields:

• name1 (string, optional) - the name of the species for which the sub-

sequent fields of jobV are specified.

• ini (number, optional) - initial concentration of species name1.

• iniBoolean (Boolean, optional) - initial value for phenomena with

Boolean value.
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• ksynth, kdegr (number, optional) - respectively, the value of basic syn-

thesis or degradation rate constant for name1.

By convention, for all species appearing in jobI but not in jobV , the

default initial concentration, synthesis and degradation rates are set to 0,

except for gene species where the concentration is fixed at 1 thorough the

whole simulation. For Boolean phenomena, the default initial value is false.

Note, that for real-valued phenomena we also allow synthesis and degrada-

tion rates, in order to simulate some dynamical phenomena, such as cell

growth.

3.2.4 Job file - Phenomena

The optional phenomena table (jobP ) lists phenomenon-to-phenomenon re-

lations in form of user-defined, logic-algebraic expressions as described in

(Sec. 2.5.2). Every record of the jobP is a single rule in the form of Eq. 2.23.

It can contain names of real-valued and Boolean phenomena from in the jobI

and jobV tables, arithmetical operators and user-defined numbers. These

components are combined using following formalized syntax:

IF(condition argument, condition operator, condition parameter)

THEN(output argument, output operator, output parameter)

For example, cell division can be simulated by setting a rule by which a

phenomenon ’cell size’ is halved whenever it reaches the threshold value T :

IF(phenCellSize,=,T ) THEN(phenCellSize,/,2).

The above syntax elements correspond to the following fields of jobP :

• condition argument (string) - name of any phenomenon.

• condition operator (character) - ’=’, ’>’, or ’<’.

• condition parameter (string or number) - name of any real-valued

phenomenon or an user-defined number to which the condition argu-

ment will be compared using condition operator.

The IF() part of the rule can always be evaluated in Boolean terms. If the

result is true, the THEN() part will be executed. If output argument is a

Boolean phenomenon, it will be simply set to true and that the fields output

operator and output parameter do not need to be entered.
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• output argument (string) - name of any phenomenon that will be

modified by the rule.

• output operator (character, optional) - ’+’, ’-’, ’*’ or ’/’.

• output parameter (string or number, optional) - name of any real-

valued phenomenon or an user-defined number used together with

output operator to modify the value of output argument if the IF()

part of the rule returns true.

The above syntax allows representing some basic biological relationships

like thresholds or logical gates. It can be further developed to increase the

descriptive scope of our formalism on the phenomenological level.

3.3 Definition of agents

In the first step, the job file is parsed to automatically create the global

list aALL, which is a repository of all agents, i.e. the interaction partners

in the system. The aALL contains following fields:

• name (string) - name of the agent. Field copied from the jobI table.

• type (string) - first four characters of the agent’s name. Can have val-

ues: ’prot’ (proteins), ’gene’ (genes), ’phen’ (real-valued phenomena),

’pheb’ (Boolean phenomena).

• synth (number, optional) - basic synthesis rate. Field copied from

the jobV table.

• degr (number, optional)- basic degradation rate. Field copied from

the jobV table.

• ini (number) - total initial value. Field copied from the jobV table.

To simplify further data processing, aALL is filtered according to the

aALLtype into following sub-lists:

• global list of proteins and genes (a) - contains prot and gene

entries only. This list contains an additional field: ref (integer, op-

tional) - reference of indexes on the a between each prot species and

a corresponding gene species if such exists.

• global list of real-valued phenomena - (aP ) - phen entries only.
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• global list of Boolean phenomena - (aB) - pheb entries only.

The lists a, aP and aB are generated with following algorithm

1. Collect all distinctive names from the jobI table fields name1 and

name2 into a shortlist aALL.

2. For each entry aALLi, set the aALLtype
i to first 4 characters of aALLname

i .

3. For each aALLi, parse the jobV and find an entry j such that aALLname
i =

jobV name
j and set following fields to values copied from jobV if avail-

able or default values as indicated in the brackets: aALLsynth
i =

jobV
ksynth

j (0.0), aALLdegr
i = jobV

kdegr

j (0.0), aALLini
i = jobV ini

j (1.0

for prot and gene species, 0.0 for phen species and false for pheb

species).

4. Filter the aALL into following sub-lists based on the value of the type

field as indicated in the brackets: a (type = prot or type = gene), aP

(type = phen), aB (type = pheb).

5. Parse the a for pairs of entries Ai and Aj where: aname
i = aname

j (apart

from the first 4 characters), atype
i =′ gene′, atype

j =′ prot′. If such pair

Ai, Aj is found, set aref
j = i.

3.4 Communication between agents via mes-

sage board

After a shortlist of all molecular species in the MIN has been created, rela-

tions between these agents are captured in several multidimensional matri-

ces, from which equations describing the system’s behavior can be derived

(Sec. 3.5.2). These matrices are composed of following dimensions:

• n - number of prot and gene agents in the system (i.e. number of

entries in the a list)

• k - number of distinctive sites of interaction between a given pair of

agents Ai and Aj.

• s - number of sub-species of a given agent Ai. The dimension s is a

function of n and k as described below.

• p - number of phen agents in the system (i.e. number of entries in the

aP list)
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These dimensions are combined in following five message board tables:

• Message Board Interactions (I) - {n, n, k} (Sec. 3.4.1).

• Message Board sub-species (S) - {n, s} (Sec. 3.4.2).

• Message Board Conversions (C) - {n, s, s} (Sec. 3.4.3).

• Message Board Relations (R) - {n, n, k, s} (Sec. 3.4.4).

• Message Board Phenomena (P ) - {n, s, p} (Sec. 3.4.5).

The automatic construction of message board tables is described below

in detail.
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Figure 3.3: Implementation example based on a kinase-phosphatase motif

(continuation). See text for details.

3.4.1 Message board - Interactions

The I table represents all interactions between species in the system, as ex-

emplified in Fig. 3.1 B. An empty cell Iij means, that there is no interaction

between the agents Ai and Aj. Each non-empty cell Iij corresponds to one
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interaction between Ai and Aj and can contain k records that correspond

to the sites of this interaction.

Each column of I corresponds to an individual interaction menu of a

given agent A. Then, one interface of A is created per each non-empty

entry in the column plus one common interface for all enzymatic reactions.

Reactions with differently labeled binding or enzymatic sites receive sep-

arate interfaces. An example of interface derivation from the I table is

depicted in Fig. 3.1 C.

Each record Iijk contains following fields:

• type (string, optional) - type of interaction between Ai and Aj; field

copied from jobI.

• status (string) - describes the status of Ai in respect to Aj. Depending

on the field type and the number k of interaction sites between Ai and

Aj, the field Iijk status can have values: ’complex’, ’multiple ligand’,

’multiple receptor’, ’enzyme’, ’multiple enzyme’, ’substrate’, ’multiple

substrate’.

• bind (string, optional) - label of the k-th binding interface of Ai to

Aj; field copied from jobI.

• bind index (string) - a running number for all binding interaction

interfaces of a given agent Aj. Exists also if the corresponding bind

field is empty. Note, that for multiple partners binding to the same

physical site, we assign individual interfaces and thus different indexes

for each partner.

• enz (string, optional) - label of the k-th interface of enzymatic modi-

fication of Aj by Ai; field copied from jobI.

• enz index - a running number for all enzymatic modification sites of

a given agent Aj. Exists also if the corresponding enz field is empty.

For enzymatic sites targeted by n > 1 enzymes and thus appearing in

several interaction entries of Ai, a single interface and thus an identical

index number is created.

• k1, k−1, k11 (number) - rate constants of the reaction between Ai and

Aj; fields copied from jobI.

The I table is created using following algorithm:
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1. For each agent Ai listed in a search for interaction partners Aj in the

table jobI.

2. If for the given Ai an interaction entry with partner Aj at site k is

found, copy the corresponding fields of jobI into Iijk.

3. Set Istatus
ijk depending on the value of I type

ijk and number of sites in the

Iij entry (i.e. the value of dimension k).

4. For every column Ij, Set the subsequent entries Ibindindex
ijk to a running

number b starting from 0 end ending at bfin.

5. Simultaneously, collect all distinctive names from Ienz
ijk and save them

to a shortlist ’enzymatic sites’. For sites without name use one and

the same string label e.g. ’noname’.

6. For every entry i in the column Ij, where Istatus
ijk = ’enzyme’ or ’mult

enzyme’, set Ienzindex
ijk = bfin + 1 + e, where e is the index of Ienz

ijk on

the ’enzymatic sites’ shortlist.

3.4.2 Message board - sub-species

The S table represents all possible sub-species of each agent in the sys-

tem. Thus, for a given species A, the S lists all possible combinations of

its interface values in form of Boolean vectors, as described in Sec. 2.1 and

exemplified in Fig. 3.3 A. This list is filtered by removing vectors correspond-

ing to sub-species not allowed in enzymatic reactions (e.g. enzyme-product

complexes) or due to regulation by necessity/exclusion (e.g. complexes of

A with a slave and simultaneously with a master excluding this slave).

The S has a matrix form with 2 dimensions {n, s}. Each Six record

corresponds to one sub-species Aix of the agent Ai and contains following

fields:

• sub (Boolean vector) - a possible combination of σ interface states of a

given agent Ai; every such combination corresponds to one sub-species

Aix. The length of this vector equals the total number of interfaces

that Ai has.

• tot (number) - initial total concentration of the Aix.

• perc (number) - fraction of Aix to Ai.
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• prot (Boolean) - determines if a given Aix corresponds to the initial

state of a protein and thus can be influenced by a protein synthesis

rate. The Six prot = true only if atype
i = ’prot’ and Ssub

ixp = false∀ p

• degr - (number, optional) the degradation rate of Aix depending on

the adegr
i and eventual regulation coefficients α listed in jobR. If

atype
i = ’gene’, Sdegr

ix = 0.0 by default.

• synth - (number, optional) the synthesis rate of Aix depending on

the asynth
i and eventual regulation coefficients α listed in jobR. If

atype
i = ’prot’, Ssynth

ix 6= 0 only if Sprot
ix = true. If atype

i = ’gene’, a

specific convention is used, by which Ssynth
ix refers to the synthesis

rate of a corresponding ’prot’ species, as listed in the aref
i . Thus, a

Ssynth
ix of a ’gene’ sub-species Aix is a multiplication of all applicable

regulation coefficients listed in jobR.

The S table is created using following algorithm:

1. For each agent Ai, determine the number of interfaces r which is the

highest number in the column Si in the fields bind index or enz index.

2. Create x = 2r Boolean vectors of length r representing all possible

combinations the r interface states of Ai, i.e. the sub-species Aix.

3. Filter out all Aix not allowed by rules for enzymatic interactions or

due to regulation by necessity/exclusion listed in jobR.

4. Save the Boolean representation of each remaining Aix to Ssub
ix .

5. Set the Stot
ix , Sperc

ix and Sprot
ix as follows:

• If any entry in the vector Ssub
ix is true, set the above fields to:

0.0, 0.0 and false, respectively.

• If all entries in the vector Ssub
ix are false and atype

i = ’gene’, set

the above fields to: 1.0, 1.0 and false, respectively.

• If all entries in the vector Ssub
ix are false and atype

i = ’prot’, set

the above fields to: aini
i , 1.0 and false, respectively.

3.4.3 Message board - Conversions

The conversion matrix C describes all possible conversions between sub-

species Aix and Aiy of each agent in the system using a matrix form with 3
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dimensions: {n, s, s}. An example of such matrix for the kinase-phosphatase

system is presented in Fig. 3.3 B.

An entry Cixy 6= 0 means, that a conversion of sub-species Aix into

Aiy is possible. We assume that such conversion can only occur in the

course of a single interaction. Consequently, Aix and Aiy can only differ by

opposite values of one single interface (e.g. partner unbound → bound). An

exception is the second step of enzymatic reaction, where the linked Aix and

Aiy must differ by opposite values of 2 interfaces (enzyme bound→ unbound

and enzymatic site unmodified → modified).

The choice of an ODE module for describing conversion of Aix into Aiy

depends on the interaction type as presented in Chpt. 2.

An empty record Cixy means that such conversion is not possible be-

cause: the sub-species Aix and Aiy differ by more than 1 interface value or

by 2 interface values not associated with the same enzymatic reaction or

because participation in interaction is not allowed for these sub-species due

to regulation.

Each Cixy record contains following fields:

• on (number) - forward transition rate from Aix to Aiy where the value

of the responsible interface σ changes from 0 to 1. The value of on is

copied from jobIkn or jobIknn .

• off (number) - backward transition rate from Aix to Aiy where the

value of the responsible interface σ changes from 1 to 0. The value of

off is copied from jobIk−n .

• reg (number) - regulation coefficient associated with the on field. The

value of reg is calculated as a product of all regulation coefficients α

from jobR that are applicable to the transition from Aix to Aiy.

• bind (integer vector) - indexes i and k of the binding partner Aj listed

in Iijk. Exists if I type
ijk = ’B’.

• enz (integer vector) - indexes i and k of the enzymatic partner Aj

listed in Iijk. Exists if I type
ijk = ’E1’ or ’E2’.

• degr (integer vector) - indexes i and k of the partner Aj listed in Iijk.

Exists if adegr
j 6= 0.

The C table is created using following algorithm:
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1. For each agent Ai, compare pairwise its all sub-species ({Aix, Aiy})
represented as Boolean vectors in Ssub

i and check for following condi-

tion sets:

2. Condition set 1:

• Vectors Ssub
ix and Ssub

iy differ only by value of 1 entry at the index

p.

• Ssub
ixp = false and Ssub

iyp = true (this is potentially a forward bind-

ing reaction).

• Record Iijk exists, where Ibindindex
ijk = p.

3. If the conditions listed in the condition set 1 are simultaneously ful-

filled, set following fields:

• Con
ixy = Ikn

ijk.

• Cbind
ixy = {j, k}.

• Coff
iyx = I

k−n

ijk .

• Cdegr
iyx = {j, k}.

4. Condition set 2:

• Vectors Ssub
ix and Ssub

iy differ only by value of 2 entries p and q

• p < q (potentially, p refers to an enzyme binding and q to an

enzymatic modification interface).

• Ssub
ixp = true and Ssub

iyp = false (the enzyme is unbinding).

• Record Iijk exists, where: Ibindindex
ijk = p, Ienzindex

ijk = q.

• For the same record, I type
ijk = ’E1’ and Ssub

ixq = false and Ssub
iyq =

true (the enzymatic modification occurs) OR I type
ijk = ’E2’ and

Ssub
ixq = true and Ssub

iyq = false (the enzymatic modification is

removed).

5. If the conditions listed in the condition set 2 are simultaneously ful-

filled, set set following fields:

• Con
ixy = Iknn

ijk .

• Cenz
ixy = {j, k}.
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6. If a transition from Aix to Aiy was validated by compliance with con-

dition set 1 or 2, parse the table jobR to check if records jobRr and

Iimn exist, so that following condition set is fulfilled:

7. Condition set 3:

• jobRhost
r = Ai, jobRslave

r = Aj, jobRmaster
r = Am.

• jobRslave site
r = Ibind

ijk or jobRslave site
r = Ienz

ijk .

• jobRmaster site
r = Ibind

imn or jobRmaster site
r = Ienz

imn.

• Ssub
ixp = true at index p, such that:

• I type
imn = ’B’ and Ibindindex

imn = p OR I type
imn = ’E1’(’E2’) and Ienzindex

imn =

p (a regulator is bound or a regulating enzymatic site is modi-

fied).

8. If the conditions listed in the condition set 3 are simultaneously ful-

filled, set Creg
ixy = jobRα

r .

9. If n > 1 records jobRr fulfilling the condition set 3 are found, set

Creg
ixy = Πn

r=1αr.

3.4.4 Message board - Relations

The R table connects the I and S tables by specifying which sub-species

of the interacting agents are taking part in the interaction. Thus, the R

table uses a matrix form with 4 dimensions; {n, n, k, s}. Each record Rijkx

corresponds to one sub-species Aix that interacts with an agent Aj at the

site k and is constructed from following fields:

• bind (Boolean) - specifies if sub-species Aix can participate in a bind-

ing interaction with Aj at the site k.

• bindreg (number) - eventual regulation coefficients α for bind. The

default value is 1 (no regulation).

• enz (Boolean) - specifies if sub-species Aix can participate in a enzy-

matic transformation of Ai at the site k.

• enzreg (number) - eventual regulation coefficients α for enz. The

default value is 1 (no regulation).

• degr (Boolean) - specifies if sub-species Aix can contribute with its

degradation rate kdegr to the unbinding from Aj at the site k.
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• degrreg (number) - eventual regulation coefficients α for degr. The

default value is 1 (no regulation).

The R table is created using following algorithm:

1. For each record Iijk, parse the conversion matrix of species Ai to check

if a record Cixy exists, such that following condition sets are fulfilled:

2. Condition set 1:

• Con
ixy 6= 0.0

• Cbind
ixy = {j, k}

3. If the conditions in the condition set 1 are simultaneously fulfilled,

set:

• Rbind
ijkx = true

• Rbindreg
ijkx = Creg

ixy

4. Condition set 2:

• Con
ixy 6= 0.0

• Cenz
ixy = {j, k}

5. If the conditions in the condition set 2 are simultaneously fulfilled,

set:

• Renz
ijkx = true

• Renzreg
ijkx = Creg

ixy

6. Condition set 3:

• Coff
ixy 6= 0.0

• Cdegr
ixy = {j, k}

7. If the conditions in the condition set 3 are simultaneously fulfilled,

set:

• Rdegr
ijkx = true

• Rdegrreg
ijkx = Sdegr

ix . Note, that in this case we derive the sub-

species-specific regulation coefficient from the S table, not the C

table.
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3.4.5 Message board - Phenomena

The P table connects the quantitative phenomena agent list aP with the

protein and gene sub-species table S by specifying which sub-species of a

given agent Ai contribute to the value of a given phenomena Pq (Sec. 2.5.1)

and vice versa, i.e. which phenomena contribute to the changes of con-

centration of which agents. Thus, the P table has a matrix form with 3

dimensions: {n, s, p} and contains following fields:

• phen2prot (number) - an entry P phen2prot
ixq = kphen 6= 0 means, that

the phenomenon Pq influences the concentration changes of the sub-

species Aix by the coefficient kphen. This approach allows description

of synthesis (kphen > 0) and degradation (kphen < 0) on the phe-

nomenological level, as described in Eq. (2.24). Consistent with this,

we allow negative kphen for any Aix but positive kphen only for those

Aix, where Sprot
ix = true. Values of kphen are copied from jobIkn and

jobIk−n .

• prot2phen (Boolean) - an entry P prot2phen
ixq = true means, that the

concentration of sub-species Aix needs to be included into the value

calculation of the phenomenon Pq as described in Eq. (2.22).

The P table is created using following algorithm:

1. Parse the jobI table. For all entries Ia, where I type
a =′ V ′ determine

indexes q and i, where:

• q = index of Iname1
a from the phenomena list aP .

• i = index of Iname2
a from the gene and protein list a.

2. Parse the sub-species in Ssub
i . Set P phen2prot

ixq = jobIkn
a only if Sprot

ix =

true. Set P phen2prot
ixq = jobIk−n

a ∀Aix.

3. Parse the jobR table. For all entries, where Rslave
a is a phenomenon

Pq, determine indexes q and i, where:

• q = index of Rslave
a from aP .

• i = index of Rhost
a from a.

4. Parse the sub-species in Ssub
i . For each Aix, parse the jobR table

again and for every entry, where Pq is a slave and Ai is a host, check

if all applicable regulation rules are simultaneously fulfilled by the
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Boolean representation Ssub
ix (in the same way as described in the C

table construction algorithm Pt. 6 - 9). If this is the case, set

P prot2phen
ixq = true.

3.5 Simulation and analysis

3.5.1 Definition of dynamical variables

Following variables change in the course of simulation:

• S (number array of dimensions {n, s}). Each entry Six is a total

concentration of a protein or gene sub-species Aix with dynamics de-

scribed in Eq. (3.5).

• T (number vector of length {n}). Each entry Ti is a total concentra-

tion of a protein or gene species Ai as described in Eq. (3.12).

• P (number vector of length {o}) - Each entry Pi is the value of a

real-valued phenomenon with dynamics described in Eq. (3.10 - 3.11).

• B (number vector of length {p}) - Each entry Bi is the value of a

Boolean phenomenon with dynamics described in Eq. (3.11).

Initial conditions:

Six = Stot
ix (3.1)

Ti = aini
i (3.2)

Pi = aP ini
i (3.3)

Bi = aBini
i (3.4)

In the kinase-phosphatase example, the dynamical variable S corre-

sponds to the sub-species listed in Section 2.3.2 with following initial val-

ues: [B000 = 1], [B100 = 0], [B010 = 0], [B011 = 0], [A10 = 1], [A11 = 0],

[A20 = 1], [A21 = 0].

3.5.2 Derivation of equations from message board

The equations (3.5) - (3.12) describing the dynamical behavior of a simu-

lated system are derived automatically from the message board tables in
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following way:

Elementary mass action equations:

dSix/dt = −ΣySix

{
Con

ixy Creg
ixy β + Coff

ixy + δ
}

+ ΣySix

{
Con

iyx Creg
iyx β + Coff

iyx + δ
}

−Sdegr
ix Six

+ Ssynth
ix γ

+ π (3.5)

Where:

β =


ΣzSjzR

bind
jikzR

bindreg
jikz if I type

jik = ’B’ where: {j, k} = Cbind
ixy

(ΣzSjzR
enz
jikzR

enzreg
jikz )/(ΣzSjzR

enz
jikz) if I type

jik = ’E’ where: {j, k} = Cenz
ixy

(3.6)

δ =


(ΣzSjzR

degr
jikz Sdegr

jz /(ΣzSjzR
degr
jikz ) if kon

yx 6= 0 where: {j, k} = Cdegr
ixy

0 if kon
yx = 0

(3.7)

γ =


(ΣzSjzS

synth
jz )/(Sjz) if atype

j =′ gene′ where: j = aref
i

1 if atype
j 6=′ gene′

(3.8)

π =


ΣqPqP

phen2prot
ixq if P phen2prot

ixq ≥ 0

ΣqPqP
phen2prot
ixq Six if P phen2prot

ixq < 0

(3.9)

Equations for phenomenological terms:

Pq = ΣΣixP
prot2phen
ixq Six (3.10)

jobPi(P, B) (3.11)

Conservation relationships:

Ti = ΣxSix (3.12)
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In the kinase-phosphatase example, a following set of equations is auto-

matically composed by the simulation framework:

d[B000]/dt = −k1[B000][A10] + k−1[B100] + k22[B011]

d[B100]/dt = k1[B000][A10]− k−1[B100]− k11[B100]

d[B010]/dt = −k2[B010][A20] + k−2[B011] + k11[B100]

d[B011]/dt = k2[B010][A20]− k−2[B011]− k22[B011]

d[A10]/dt = −k1[B000][A10] + (k−1 + k11)[A11]

d[A11]/dt = +k1[B000][A10]− (k−1 + k11)[A11]

d[A20]/dt = −k2[B010][A20] + (k−2 + k22)[A21]

d[A21]/dt = +k2[B010][A20]− (k−2 + k22)[A21] (3.13)

Note, that the job file for this system presented in Fig. 3.1 contains only

2 rows, compared to 8 ODEs that are automatically derived from this input

(Equation System 3.13), which demonstrates the advantage of automation

already for relatively simple systems.

3.5.3 Numerical integration

The automatically derived Eq. (3.5) - (3.12 ) are subsequently integrated

numerically using a standard Runge-Kutta fourth order algorithm [66] with

dynamical time step size.

For any first-order ODE system in a general form: dS/dt = f(S, t) with

initial conditions S(t0) = S0, the fourth-order Runge-Kutta algorithm allows

stepwise calculation of S(t) using following general form:

St+dt = RK4(St) (3.14)

where:

RK4(St) = St +
dt

6
(Q1 + 2Q2 + 2Q3 + Q4) (3.15)

Q1 = f(S, t)

Q2 = f(S + dt
2

Q1, t + dt
2
)

Q3 = f(S + dt
2

Q2, t + dt
2
)

Q4 = f(S + dtQ3, t + dt)

As defined in Eq. (3.15), the calculated variable change per time step (St+dt−
St) is a weighted average of four estimates (Q1 to Q4) with total accumulated
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error εT = dt4 and error per step ε = dt5. Calculations presented in this

work were conducted with dt <= 0.001 which gives error values εT ≤ 10−12

and ε <= 10−15.

Additionally, a dynamical time step control based on the conservation

equations has been implemented. For this purpose, Eq. (3.5) is split into

two parts: conservation-dependent (f1) and conservation-independent (f2):

f1(S) = −ΣySix

{
Con

ixy Creg
ixy β + Coff

ixy + δ
}

+ ΣySix

{
Con

iyx Creg
iyx β + Coff

iyx + δ
}

(3.16)

f2(S) = −Sdegr
ix Six + Ssynth

ix γ + π (3.17)

Where β, δ, γ, π, are defined as for Eq. (3.5).

For every species Ai, The f1 captures changes in concentration of its sub-

species Aix (variable Six) resulting from binding and enzymatic interactions.

Thus, these changes can only affect distribution of sub-species within the

total concentration of Ai but not the absolute value of this concentration

Ti:

IF (St+dt) = f1(St, Tt) ) ⇒ Tt+dt = Tt.

(3.19)

On contrary to f1, the f2 describes changes of Six resulting from synthesis

or degradation, which can by definition alter the absolute value Ti.

These properties of f1 and f2 are utilized for controlling the time step

size when calculating S(t+dt), from St, with use of following algorithm:

1. Set dt = dt0.

2. Calculate f1(St) using the RK4 procedure and the conservation Eq. (3.12).

3. Check condition (3.18) and eventually redo previous steps with dtn <

dt(n−1) until this condition is fulfilled.

4. Calculate f2(St) and Eq. (3.10) using the RK4 procedure.

5. Calculate the algebraic equations Eq. (3.11) - (3.12).
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As evident from the above algorithm, dynamical time step size control

was applied only to the conservation-sensitive f1 part of Eq. (3.5). However,

we assume this extent of control to be sufficient since f2 contains only rate

constants that refer to phenomenological description of processes happening

on slower time scales (synthesis and degradation). Thus, it seems reasonable

to expect the rate constants in f2 to be of one or more orders of magnitude

lower than the rate constants in f1 and thus not carry risk of driving the

system into explosion.

Another important aspect of the time-course integration reliability is

the open question of updating strategy while executing the user-defined

algebraic relationships between phenomena defined in Eq. (3.11). Currently,

Synchronous updating is implemented.

3.5.4 Steady state analysis

Time courses of species and sub-species concentrations (T(t) and S(t)) cal-

culated by means of numerical integration as described above can eventually

stabilize at a set of steady-state values that corresponds to a specific phys-

iological state of the cell.

Possible steady states of an ODE system can be inferred by examination

of eingenvalues of the Jacobian matrix representing this system [22]. It

remains to be determined, if an automated eigenvalue derivation is possible

for equation systems in the form of Eq. (3.5) - (3.12). So far, the analytical

capabilities of aceSim are limited to identification of stable steady states

by running the simulation for a sufficiently long time. More complicated

forms of system’s behavior, such as limit cycles, can be only examined by

visual inspection of time course plots. Thus, the functionalities related to

steady-state examination should be subject of future development.

3.5.5 Parameter exploration and bifurcation diagrams

One of typical approaches is to test system’s behavior for various values of

parameters, such as rate constants or initial concentration values. Automa-

tion of this functionality is implemented by extending the job file with two

lists:

• jobSig (string vector) - list of labels that can be entered into the job

file instead of numeric values (eg: jobIkn
a = ’A to B binding rate’

instead jobIkn
a = 0.001).
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• jobSigRange (number array) - a mapping of the jobSig list to value

ranges, e.g. ’A to B binding rate’ = 0.001, 0.002, 0.003 etc.

By this means, the core program can be wrapped in loops corresponding to

the dimensions of jobSigRange and return an array of steady-state values

corresponding to different parameter ranges. currently, the parameter space

can be scanned with a superposition of two parameter sets in order to ob-

tain two-dimensional parameter sensitivity surfaces or bifurcation diagrams

(cf. Sec. 4.2.3).

3.5.6 Comparison with experimental data

A further extension was implemented to allow comparison of the simulation

results with two data types:

• Downloaded data array. This feature can be applied to compare sim-

ulation results with experimental data.

• Data array automatically generated by integration of a manually-

entered ODE system. This requires at least some of variable names

and parameter labels of the entered system to be identical with names

of the agents and rate constant labels in the job file describing the sim-

ulated system. This feature allows comparison of simulation results

of two alternative descriptions of the same system, e.g. using EMA

vs. AMA formalisms. This approach was applied to obtain the results

presented in Chpt. 4.

The comparison refers to two aspects of dynamics of a given variable: time

course and value at steady state.

3.5.7 Mutation and knock-out analysis

The presented framework enables testing of many real-life relevant hypothe-

ses such as:

• gene knock-out over/under expression (by altering initial concentra-

tions)

• effects of mutations on changed enzymatic activity (by altering rate

constants).

• effects of pharmacological interventions on changed enzymatic activity

(by altering both rate constants and initial concentrations).



Chapter 4

Simulation of selected biological

systems

The kinase-phosphatase motif described in Sec. 2.3.2 is perhaps the most

common building block of enzyme signaling cascades and other biological

systems [181], [183], [208]. In this chapter, we will analyze the behavior

of a basic kinase-phosphatase motif (Sec. 4.1.1) and increasingly complex

systems composed of this motif: a linear cascade (Sec. 4.1.2) and several

branched cascades, including a core mechanism of the entry into mitosis in

the eukaryotic cell cycle (G2/M transition, Sec. 4.1.3).

We will investigate the behavior of the above systems by means of pa-

rameter sensitivity and bifurcation analysis. We will also examine the influ-

ence of Michaelis-Menten approximation and combinatorial complexity on

the kinetic modeling of these systems by comparing outcomes of EMA and

AMA.

4.1 Description of analyzed systems

The Sec. 4.1.1 presents a standard Michaelis-Menten form for the kinase-

phosphatase motif (Eq. 4.1), from which AMA descriptions of other ana-

lyzed systems can be easily derived as presented in Eq. (4.2)and Eq. (4.3) -

(4.4).

The EMA descriptions are automatically generated by the simulation

software aceSim described in this work (Chpt. 2 and 3). A manual approach

would require writing of tens of equations (e.g. 36 for he branched cascade).

79
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Thus, this investigation demonstrates well the modeling capabilities of the

aceSim.

4.1.1 Kinase-phosphatase motif

A basic kinase-phosphatase motif consists of one kinase A1 and one phos-

phatase A2 acting on the same substrate protein B1 as depicted in Fig. 4.1 A.
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Figure 4.1: Graphical representation of a basic kinase-phosphatase motif

(A) and an enzymatic cascade composed of two such motifs (B). Rate con-

stants and arrows conform the formalism introduced in Sec. 2.2. In par-

ticular, the arrow with symbol ’n’ indicates, that phosphorylation by A1 is

necessary for B1 to carry out its enzymatic function on C1.

Elementary mass action description of the kinase-phosphatase motif is

defined in the Equation System (3.13). For the same variables and pa-

rameters, an AMA description can be derived using a simplifying assump-

tion that concentrations of enzyme-substrate complexes [B1100] and [B1011]

are negligible in respect to the total substrate concentration [B1T ], thus
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[B1T ] ≈ [B1000] + [B1010]. This results in following equation based on

Michaelis kinetics [94]:

d[B1010]

dt
=

k11[A1T ][B1000]

[B1000] + k−1+k11

k1

− k22[A2T ][B1010]

[B1010] + k−2+k22

k2

(4.1)

Analytical steady-state solutions exist for both the EMA description (3.13)

and AMA description (4.1). The EMA steady-state solution is a third -

order polynomial, thus up to three steady-state solutions of the system are

possible. This will be discussed in sec. 4.3.1 in a more detail. The AMA

steady-state solution is a quadratic polynomial with only one non-negative

root, known as the Goldbetter-Koshland function [94] and it has been ap-

plied, together with Eq. 4.1, in modeling of several MIN underlying such

phenomena as cell division [55] or embryonic development [153]. However,

it is not always clear if the assumptions underlying the derivation of these

AMA steady-state forms are realistic for biological systems [41], [155]. As

shown in Sec. 4.3, for some parameter ranges substantial discrepancies can

occur between an EMA and AMA description of analyzed systems.

4.1.2 Linear cascade

Fig. 4.1 B presents a simple, linear enzymatic cascade, where the phospho-

rylated substrate B1 from previous example can itself act as a kinase on

a downstream substrate C1. The C1 can also be dephosphorylated by a

phosphatase B2. We further assume, that only the phosphorylated form of

B1 is able to perform kinase activity.

An AMA description of such cascade can be easily derived from Eq. 4.1

upon analogue assumptions [B1T ] ≈ [B1000]+[B1010] and [C1T ] ≈ [C1000]+

[C1010]:

d[B1010]

dt
=

k11[A1T ][B1000]

[B1000] + k−1+k11

k1

− k2[A2T ][B1010]

[B1010] + k−2+k22

k22

d[C1010]

dt
=

k33[B1010][C1000]

[C1000] + k−3+k33

k3

− k44[B2T ][C1010]

[C1010] + k−4+k44

k4

(4.2)

Where: B1000, C1000 are unphosphorylated and B1010, C1010 are phospho-

rylated forms of B1 and C1, respectively. Rate constants kn as in Fig. 4.1 B.

An EMA description of the above cascade contains 18 equations and it

was generated automatically by aceSim.
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4.1.3 Branched cascade and G2/M transition pathway.

Fig. 4.2 A presents a branched cascade, where both the kinase B1 and

phosphatase B2 acting on substrate C1 are themselves regulated by a ki-

nase/phosphatase pair, A1/A2 and D1/D2, respectively. We further as-

sume, that only the phosphorylated forms of B1 and B2 are able to perform

enzymatic activity on C1.

An AMA description of such branched cascade can be easily derived from

Eq. 4.1 upon following assumptions: [B1T ] ≈ [B1000] + [B1010], [B2T ] ≈
[B2000] + [B2010] and [C1T ] ≈ [C1000] + [C1010]:

d[B1010]

dt
=

k11[A1T ][B1000]

[B1000] + k−1+k11

k1

− k22[A2T ][B1010]

[B1010] + k−2+k22

k2

(4.3)

d[C1010]

dt
=

k33[B1010][C1000]

[C1000] + k−3+k33

k3

− k44[B2010][C1010]

[C1010] + k−4+k44

k4

(4.4)

d[B2010]

dt
=

k55[D1T ][B2000]

[B2000] + k−5+k55

k5

− k66[D2T ][B2010]

[B2010] + k−6+k66

k6

(4.5)

Where: B1000, B2000, C1000 are unphosphorylated and B1010, B2010, C1010

are phosphorylated forms of B1, B2 and C1, respectively. Rate constants

kn as in Fig. 4.2 A.

An EMA description of the branched cascade contains 28 equations and

was generated automatically by aceSim.

Such branched cascade can be further modified by adding feedback loops,

leading to a structure presented in Fig. 4.3 B. This system constitutes a

core mechanism of entry into mitosis in eukaryotic cells, where the cyclin-

dependent kinase cdk1 (C1) is inactivated by the kinase Wee1 (B1) and

activated by the phosphatase CDC25 (B2) [24], [145]. The activated cdk1 in

complex with a regulatory protein Cyclin B (omitted here for simplicity) is

called the Mitosis Promoting Factor (MPF) and can itself inhibit Wee1 and

activate CDC25, which results in a double negative and a double positive

feedback loop, respectively [112], [120] [144].

The whole MIN responsible for cell cycle progression of course far more

complicated [44] (see also [195] for a recent review). However, the above

idealized mechanism explains well the peak of activated MPF triggering

entry into mitosis and has been applied at the heart of several cell cycle

models [63], [150], [161].
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Branched cascade
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Figure 4.2: Graphical representation of a branched enzymatic cascade com-

posed of 3 kinase-phosphatase motifs, without feedback loops (A) or with

one positive feedback loop (B). Rate constants and arrows conform the for-

malism introduced in Sec. 2.2. In particular, an arrow with symbol ’n’

indicates, that phosphorylation is necessary for a given protein to carry out

its enzymatic function, whereas an arrow with symbol ’e’ indicates that

phosphorylation disables this function.
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Branched cascade with two feedback loops
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Figure 4.3: Graphical representation of a branched enzymatic cascade com-

posed of 3 kinase-phosphatase motifs, with one positive and one negative

feedback loop (A) or with a positive and a double-negative feedback loop

(B). The structure depicted in (B) represents a basic mechanism of the

G2/M transition in the eukaryotic cell cycle. Rate constants and arrows

conform the formalism introduced in Sec. 2.2. In particular, an arrow with

symbol ’n’ indicates, that phosphorylation is necessary for a given protein to

carry out its enzymatic function, whereas an arrow with symbol ’e’ indicates

that phosphorylation disables this function.



4.1. DESCRIPTION OF ANALYZED SYSTEMS 85

In order to investigate the role of each structural component in the G2/M

transition pathway behavior, we will modify and analyze the basic branched

pathway in a step-by step manner:

• First, a feedback loop can be added by replacing the upstream ki-

nase A1 by the downstream kinase C1 (Fig. 4.3 A). To conform the

aimed G2/M transition pathway structure, we assume that only un-

phosphorylated C1 can perform kinase activity on B1. This means,

that the feedback has a negative character: C1 activates B1, which

in turn inactivates C1. In the AMA description, an introduction of

such negative feedback requires replacing the term [A1T ] in Eq. 4.3

with [C1000].

• Further, a second feedback loop can be added by replacing the up-

stream kinase D1 by the downstream kinase C1 (Fig. 4.2 B). Again,

to conform the aimed G2/M transition pathway structure, we assume

that only unphosphorylated C1 can perform kinase activity on B2.

Since B2 is a phosphatase, such feedback has a double positive char-

acter: C1 activates B2, which in turn activates C1 by dephospho-

rylation. In the AMA description, an introduction of such positive

feedback requires replacing the term [D1T ] in Eq. 4.5 with [C1000].

• Finally, we modify the first negative feedback into a double negative

feedback by assuming that only unphosphorylated B1 can perform ki-

nase activity on C1 (Fig. 4.3 B): C1 and B1 can inactivate each other

by phosphorylation. This requires replacing the term [B1010] in Eq. 4.4

with [B1000]. Such antagonism can intuitively lead to two states, one

with activated B1 / inactivated C1 (i.e. low MPF concentration) and

one with a reverse situation (i.e. high MPF concentration). These

states correspond to the G2 and M phases of cell cycle and the de-

scribed pathway structure enables a rapid G2/M transition; we will

investigate this behavior in a more detail in Sec. 4.3.3.

Addition of interactions between C1 and B1 and B2 increases the number

of possible combinatorial states of C1, thus an EMA description of such

system generated by the aceSim contains 36 equations.
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4.2 Methods.

4.2.1 Definition of response

In general, we will define here the system’s response π as a fractional con-

centration of all phosphorylated forms [AP ] of a given protein A to its

total concentration [AT ] at the steady state, i.e. π = [AP ]/[AT ]. For the

kinase-phosphatase motif, the response vector contains only π1, i.e. the

phosphorylated B1. For other systems, it contains additionally π2 and π3,

i.e. phosphorylated B2 and C1, respectively. Such fractional definition

implies that π is dimensionless and can only take values between 0 and 1.

The difference between EMA and AMA description has also impact on

the response. For the kinase-phosphatase motif, the elementary response

πE
1 = ([B1010]+[B1011])/[B1T ]. However, since the term [B1011] is neglected

in AMA description, the approximated response πA
1 = [B1010]/[B1T ]. simi-

larly for other systems, πA
2 = [B2010]/[B2T ] and πA

3 = [C1010]/[C1T ]. Due to

a large number of combinatorial forms in the EMA description, the elemen-

tary πE
1 , πE

2 and πE
3 are defined automatically by aceSim for each system

by subsuming concentrations of all phosphorylated sub-species of B1, B2

and C1, respectively.

4.2.2 Definition of parameters

The investigated parameters were defined individually for each system in a

sequential manner as described below.

Parameter set for the kinase-phosphatase motif

For the kinase-phosphatase motif, we have set following parameters: a) rela-

tive enzyme-substrate binding rate k1/k2(dimensionless), b) relative enzyme-

substrate unbinding rate k−1/k−2(dimensionless), c) relative transforma-

tion rate k11/k22 (dimensionless), d) relative kinase-phosphatase concentra-

tion [A1]/[A2] (dimensionless), e) absolute kinase-substrate binding rate

k1 (µM−1s−1), f) absolute kinase-substrate unbinding rate k−1 (s−1), g)

absolute phosphorylation rate k11 (µM−1s−1) and h) absolute kinase con-

centration [A1] (µM). The relative rates a/b were investigated in the range

of log a/b ∈ 〈−2, 2〉 and the absolute rates a in the range a ∈ 〈0, 1〉 with

the corresponding dephosphorylation reaction parameter b (k2, k−2, k22 and

[A2], respectively) fixed at a/b = 2.



4.2. METHODS. 87

Parameter set for the linear cascade

Based on the parameter sensitivity results for the kinase-phosphatase motif

(Sec. 4.3.1), only the relative (thus dimensionless) rates k1/k2, k−1/k−2 and

k11/k22 were chosen for further investigation in the linear cascade.

The relative concentrations [A1]/[A2] were excluded, because they showed

similar sigmoidal sensitivity as the relative rates k1/k2 and k11/k22. More-

over, these rates determine concentrations of active forms of downstream

enzymes; investigation of influence of the active, not total enzyme concen-

trations seems to be biologically more meaningful. The total concentrations

of all enzymes were fixed at 1.

The absolute rates and concentrations were not further investigated, be-

cause they showed in general relatively flat sensitivity curves and in some

cases big discrepancies between πE and πA (Sec. 4.3.1). These discrepan-

cies would probably dominate the behavior of the cascade, interfering with

investigation of other features.

Parameter set for the branched cascade

Based on the parameter sensitivity results for the linear cascade (Sec. 4.3.2),

only the relative (thus dimensionless) transformation rates κ12 = k11/k22,

κ34 = k33/k44 and κ56 = k55/k66 were chosen for further investigation in

the branched cascade. This is because on both levels of the linear cascade,

i.e. π1 and π2, the parameters k1/k2 and k11/k22 showed almost identical

sigmoidal response and the parameter k−1/k−2 a relatively flat response

(Sec. 4.3.2). Reaction rates not included in a given κ parameter were fixed

at kn = 1, k−n = 0, knn = 1, where n = 1, . . . , 6.

4.2.3 Calculations.

Based on the response and parameter sets defined above, we have calcu-

lated response π levels at steady state for two-dimensional combinations

of parameter values. Initial levels of π, ranging from 0 to 1, were treated

as one of the parameters, which results in bifurcation plots for the second

parameter. This method allows only investigation of steady states stable

in respect to a single dimension of the parameter space. More fundamental

analytical approaches , e.g. based on Lyapunov exponents, do not seem to

be feasible for large EMA systems.

The approximated response πA was measured for the kinase-phosphatase

motif, linear cascade and branched cascade by integrating the Eq. Sys-
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tems (4.1), (4.2) and (4.3 - 4.4), respectively, using a standard Runge-Kutta

4th order algorithm. Modifications of the branched cascade were considered

in the Eq.(4.3 - 4.4) as described in Sec. 4.1.3. The elementary response πE

was calculated using the aceSim framework.

In the obtained bifurcation plots (Fig. 4.4, 4.6, 4.8, 4.10, and 4.12), the

bifurcation parameter is indicated on the abscissa and the measured π on

the ordinate. The πE is marked with blue diamonds and the πA is marked

with red circles.

For selected parameter values, time course plots of the π are presented

with time marked on the abscissa and the π on the ordinate. The πE is

marked with light and dark blue lines and the πA is marked with magenta

and red lines.

For validation, we have recalculated the steady state levels for the kinase-

phosphatase motif from existing analytical solutions of both EMA and

AMA description ([94]) for the same bifurcation parameter values using

MathematicaTM and obtained results of relative difference < 10−5 per data

point to both πE
1 and πA

1 .

4.3 Results

4.3.1 Simulation of a kinase-phosphatase motif

Fig. 4.4 presents response sensitivity of the basic kinase-phosphatase mo-

tif described in Sec. 4.1.1 for the parameter set defined in Sec. 4.2.2 and

Fig. 4.5 depicts time courses of the phosphorylated substrate concentration

for selected parameter values.

The relative rates k1/k2 (Fig. 4.4 A), k11/k22 (Fig. 4.4 C) and concen-

trations [A1]/[A2] (Fig. 4.4 D) show a similar sigmoidal sensitivity pattern.

The transition from low (π1 ≈ 0) to high ()π1 ≈ 1) response values occurs

around the point of equal rates (concentrations), i.e. log a/b = 0, with πA
1

having slightly steeper sensitivity curves than πE
1 . Still, steepness of this

transition does not have a jump character and thus does not indicate ul-

trasensitivity [94]. The relative rate k−1/k−2 shows also a sigmoidal, but

relatively flattened sensitivity pattern (Fig. 4.4 B). The relaxation time of

π is similar for different relative parameter values and also between πA
1 and

πE
1 for a given parameter value (Fig. 4.5 A-D).

The absolute parameters are set in such a way, that for a changing value

of a rate (concentration) a related to the phosphorylation reaction (k1, k−1,

k11 and [A1]), a corresponding rate (concentration) b of the dephosphory-
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Figure 4.4: Bifurcation diagrams for different kinetic parameters of the

kinase-phosphatase motif. For definition of the parameters kn and [An]

and the response π1, see Sec. 4.2. Blue diamonds - steady state π1 levels

calculated with EMA, red circles - steady state π1 levels calculated with

AMA.

lation reaction (k2, k−2, k22 and [A2], respectively) is set to a/b = 2. The

π relaxes substantially quicker for higher absolute parameter values, ex-

cept for the kinase unbinding rate k−1, where this effect is not significant

(Fig. 4.5 E - H).

The πE
1 stabilizes at a constant level of roughly 2/3 (Fig. 4.4 E - H).

However, πA
1 shows some substantial discrepancies here, especially a much

higher sensitivity to the transformation rate k11 (Fig. 4.4 G). Moreover, πE

slightly diminishes when the absolute value of parameters increases. This

can be attributed to a simultaneously decreasing amount of phosphatase-

product complex. This complex is neglected in the AMA description, thus

πA
1 is completely insensitive to kinase-substrate binding rate k1 (Fig. 4.4 E)

and kinase concentration [A1] (Fig. 4.4 H).

Thus, the AMA description can produce overestimated response levels
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Figure 4.5: Time courses of phosphorylated protein B1 in the kinase-

phosphatase motif. Tested kinetic parameters in A - H correspond to the

parameters presented in Fig. 4.4 A - H, respectively. For definition of the

parameters and the response π1, see Sec. 4.2. Time courses are color-coded

depending on parameter value p and response type, i.e. πA vs. πE. A - D:

magenta - πA
1 , p=−2; red - πA

1 , p=2; light blue - πE
1 , p=−2; dark blue

- πE
1 , p=2. E - H: magenta - πA

1 , p=0.05; red - πA
1 , p=1.05; light blue

- πE
1 , p=0.05; dark blue - πE

1 , p=1.05.

for either very small transformation rates k11 and k22 (and thus possibly

low Michaelis constants) or when enzyme-substrate concentrations are of

the same order of magnitude (in the presented case: [A1] = [A2] = [B1] =

1), which is an realistic assumption for MIN based on kinase-phosphatase

motifs ([41]).

As shown in Fig. 4.4, the response π1, both πA
1 and πE

1 , is monostable

towards all tested parameter ranges. This is consistent with πE
1 recalculation

using the analytical steady state solution in form of a 3rd order polynomial

as described in Sec. 4.2.3, where for each tested bifurcation parameter value,

only one of the obtained roots was biologically realistic, i.e. 0 ≤ πE
1 ≤ 1.
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4.3.2 Simulation of a linear cascade

Fig. 4.6 shows response sensitivity of the linear cascade described in Sec. 4.1.2

to the parameter set defined in Sec. 4.2.2 and Fig. 4.7 depicts concentration

time courses of phosphorylated proteins in the cascade for selected param-

eter values.
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Figure 4.6: Bifurcation diagrams for different kinetic parameters of the

linear cascade. For definition of the parameters kn and the response π1 and

π2, see Sec. 4.2.2. Blue diamonds - steady state π1 and π2 levels calculated

with EMA, red circles - steady state π1 and π2 levels calculated with AMA

At the upstream cascade step, π1, the sensitivity and dynamics of the

response are identical as for the basic kinase-phosphatase motif (Fig. 4.6 A-

C and Fig. 4.7 A-C).

At the downstream cascade step, π3, the sigmoidal response sensitivity

for k1/k2 and k11/k22 is substantially damped: π3 reaches only the maximal

level of 0.5 compared to 1 achieved by π1 for the same parameter ranges

(Fig. 4.6 D-F). This is because the level of π3 is additionally determined

by the concentration of active B1 and B2. While the level of active B2
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Figure 4.7: Time courses of phosphorylated proteins B1 (A - C) and C1

(D - F) in the linear cascade. Tested kinetic parameters in A - F correspond

to the parameters presented in Fig. 4.6 A - F, respectively. For definition

of the parameters and the response π1 and π3, see Sec. 4.2. Time courses

are color-coded depending on parameter value p and response type, i.e. πA

vs. πE: magenta - πA, p =−2, red - πA, p = 2, light blue - πE, p =−2,

dark blue - πE, p=2.

is equal to total concentration B2T = 1, the level of active B1 depends

on its phosphorylation, i.e. is equal to π1 ≤ 1. This demonstrates how

the superposition of basic kinase-phosphatase motif sensitivity leads to the

dampening of the response level in a linear cascade. In Sec 4.3.3, we will

investigate such superposition in the case when the activity of both B1 and

B2 depends on their phosphorylation.

Additionally, the relaxation time of π3 is slightly longer when compared

with the time courses of π1 for the same values of respective parameter

(Fig. 4.7 D-F).

Again, both πA
3 and πE

3 are monostable and have similar sensitivity

patterns for a given parameter, with πA
3 having slightly steeper curves than
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πE (Fig. 4.4 A-D). Both πE
3 and πA

3 stabilize after similar relaxation time

(Fig. 4.5 A-D).

4.3.3 Simulation of a branched cascade and the G2/M

transition pathway.

Response sensitivity of different branched cascade variations described in

Sec. 4.1.3 to the parameter set defined in Sec. 4.2.2 is presented in Fig. 4.8,

4.10 and 4.12. Each figure presents the steady state phosphorylation level

of one of the three main pathway components: upstream kinase B1 (π1), up-

stream phosphatase B2 (π2) and downstream kinase C1 (π3), respectively.

Time courses of π1, π2 and π3 for selected parameter values are shown in

Fig. 4.8, 4.10 and 4.12, respectively.

Branched cascade

In a basic branched cascade without feedback loops (Fig. 4.2 A), the phos-

phorylation level of B1, B2 and C1 is sensitive only to the parameters of

reactions in which the given protein is directly involved; i.e. κ12 for B1

(Fig. 4.8 A - C and Fig. 4.9 A - C), κ56 for B2 (Fig. 4.10 A - C and

Fig. 4.11 A - C) and κ34 for C1 (Fig. 4.10 A - C and Fig. 4.13 A - C). The

sigmoidal sensitivity pattern and dynamics are identical here as in the basic

kinase-phosphatase motif (cf. Fig. 4.4 C and Fig. 4.5 C).

However, π3 is also sensitive to κ12 and κ56. These parameters determine

concentrations of active (i.e. phosphorylated) enzymes B1 and B2, which in

turn directly influence the phosphorylation level of C1. The sensitivity pat-

tern for κ12 and κ56 is a slightly damped sigmoid, but not as much as for the

linear cascade, where the response reaches maximally π3 = 0.5 (Sec. 4.3.2).

This shows, that the response damping in a linear cascade can be reduced

in a branched cascade, where both kinase and phosphatase determining the

response are regulated. However, the relaxation time of π3 in the branched

cascade remains longer than in the linear cascade (Fig. 4.12 B).

Branched cascade with negative feedback

Addition of a negative feedback loop between C1 and B1 (C1 activates B1,

which in turn inactivates C1; Fig. 4.2 B) causes a superimposed sensitivity

pattern for response and parameters related directly to these two proteins,

i.e. π1, π3 and κ12, κ34. This pattern has a form of a bisigmoidal curve , i.e.

with one sigmoid leveling off around log κ = 0 and other sigmoid starting
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on the top of it (Fig. 4.8 D, E, Fig. 4.12 D, E) and it is also related to

extended relaxation times, especially for κ12 = 2 and κ34 = 2 (Fig. 4.9 D, E,

Fig. 4.13 D, E).

Furthermore, the feedback transmits the sensitivity of π3 to κ56 onto

π1 with a dumped sigmoid pattern similar to the π3 in linear cascade but

with different dynamics (Fig. 4.8 F and Fig. 4.9 F). Due to lack of such a

feedback link for π2, its sensitivity pattern and dynamics remain unchanged

from the case without feedback (Fig. 4.10 D - F and Fig. 4.11 D - F).

Branched cascade with positive and negative feedback

A further positive feedback loop can be added between C1 and B2 (C1 acti-

vates B2, which in turn activates C1 by dephosphorylation; Fig. 4.3 A). The

positive feedback makes sigmoidal responses to κ34 and κ56 more extreme

(Fig. 4.8 H, J, Fig. 4.10 H, J and Fig. 4.12 H, J). However, the relaxation

times of π3 get slightly longer when compared to the single feedback case

(Fig. 4.13 H, J).

The sensitivity to κ12 exhibits a very interesting pattern with substantial

discrepancies between πA and πE (Fig. 4.8 G, Fig. 4.10 G and Fig. 4.12 G).

Investigation of time courses in the long run reveals also substantial differ-

ences in the dynamics of πA vs. πE for selected values of κ12 (Fig. 4.14).

Especially, if log κ1 = 2, the πE levels off continuously, while the πA shows

damped oscillations, which last at least 5 times longer than the relaxation

time of πE
1 (Fig. 4.14 A). These oscillations are transmitted also to πA

2 and

πA
3 (Fig. 4.14 B, C).

G2/M transition cascade

Reversal of the feedback between C1 and B1 in the G2/M transition cas-

cade (C1 and B1 can inactivate each other by phosphorylation; Fig. 4.3 B)

leads to ultrasensitive behavior of π1, π2 and π3 for all tested parameters

(Fig. 4.8 K - M, Fig. 4.10 K - M and Fig. 4.12 K - M). Interestingly, the

ultrasensitve transition point is shifted from log κ = 0 to log κ ≈ 1 or −1.

Through all tested cascade variations, the sensitivity curves for πA are

slightly steeper than for πE; this holds even for the ultrasensitive curves of

the G2/M transition cascade.

The antagonsim between C1 and B1 leads to bistability, which occurs

for π3 in the range of log κ12 > 1 (Fig. 4.12 K). Strikingly, πA
3 exhibits

bistability also for some ranges of κ34 and κ56, which is not the case for πE
3

(Fig. 4.12 L - M). This demonstrates, that G2/M transition models based
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on AMA can produce bistable behavior which does not exist according to

the EMA description.
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Figure 4.8: Bifurcation diagrams for different kinetic parameters of

branched cascade variations (Sec. 4.1.3) on the level of phosphorylated

protein B1. For definition of the parameters κn and the response π1, see

Sec. 4.2. Blue diamonds - steady state π1 levels calculated with EMA, red

circles - steady state π1 levels calculated with AMA.
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Figure 4.9: Time courses of phosphorylated protein B1 in the branched

cascade variations (Sec. 4.1.3). Tested kinetic parameters in panels A -

M correspond to the parameters depicted in Fig. 4.8 A - M, respectively.

For definition of the parameters and the response π1, see Sec. 4.2. Time

courses are color-coded depending on parameter value p and response type

πA vs. πE: magenta - πA
1 , p=−2, red - πA

1 , p=2, light blue - πE
1 , p=−2,

dark blue - πE
1 , p=2.
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Figure 4.10: Bifurcation diagrams for different kinetic parameters of

branched cascade variations (Sec. 4.1.3) on the level of phosphorylated

protein B2. For definition of the parameters κn and the response π2, see

Sec. 4.2. Blue diamonds - steady state π2 levels calculated with EMA, red

circles - steady state π2 levels calculated with AMA.
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Figure 4.11: Time courses of phosphorylated protein B2 in the branched

cascade variations (Sec. 4.1.3). Tested kinetic parameters in panels A -

M correspond to the parameters depicted in Fig. 4.10 A - M, respectively.

For definition of the parameters and the response π2, see Sec. 4.2. Time

courses are color-coded depending on parameter value p and response type

πA vs. πE: magenta - πA
2 , p=−2, red - πA

2 , p=2, light blue - πE
2 , p=−2,

dark blue - πE
2 , p=2.
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Figure 4.12: Bifurcation diagrams for different kinetic parameters of

branched cascade variations (Sec. 4.1.3) on the level of phosphorylated

protein C1. For definition of the parameters κn and the response π3, see

Sec. 4.2. Blue diamonds - steady state π3 levels calculated with EMA, red

circles - steady state π3 levels calculated with AMA.
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Figure 4.13: Time courses of phosphorylated protein C1 in the branched

cascade variations (Sec. 4.1.3). Tested kinetic parameters in panels A -

M correspond to the parameters depicted in Fig. 4.12 A - M, respectively.

For definition of the parameters and the response π3, see Sec. 4.2. Time

courses are color-coded depending on parameter value p and response type

πA vs. πE: magenta - πA
3 , p=−2, red - πA

3 , p=2, light blue - πE
3 , p=−2,

dark blue - πE
3 , p=2.
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Figure 4.14: Time courses of phosphorylated proteins B1 (A), B2 (B)

and C1 (C) in the branched cascade with two feedback loops for selected

values of the κ12. For definition of the parameter κ12 and the response π1,

π2 and π3, see Sec. 4.2. Time courses are color-coded depending on κ12

value and response type πA vs. πE: magenta - πA, logκ12 =−2, yellow -

πA, logκ12 = 1, red - πA, logκ12 = 2, light blue - πE, logκ12 =−2, cyan -
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Chapter 5

Discussion

This work presents a combinatorial, EMA-based formalism for MIN de-

scription together with a formalized visual representation of such networks

(Chpt. 2), a software implementation of this formalism, called aceSim (Chpt. 3)

and simulation results of various enzymatic cascades conducted with aceSim

(Chpt. 4).

In this chapter, we discuss related work in the domain of graphical and

mathematical representation of MIN (Sec. 5.1), existing MIN simulation

software packages (Sec. 5.2) and behavior of enzymatic cascades simulated

with various approaches (Sec. 5.3).

5.1 Formal description

In this section we discuss various approaches to graphical and mathematical

representation of MIN in context of the formalism introduced in Chpt. 2.

We discuss the advantages of structure-oriented formalisms over the process-

oriented approaches in graphical representing of combinatorial complexity.

We further discuss EMA, AMA-based and other mathematical approaches

to the ODE description of MIN.

5.1.1 Graphical description of MIN

Graphical representation of various kind of systems, such as electric circuits,

buildings, social organizations etc., can focus on several aspects, including:

structure (system’s components and relations between them), information

103
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flow through the system (e.g. signal processing algorithms), processes (se-

quence of events taking place while the system works) etc. [124].

In the domain of MIN, the numerous existing approaches to graphical

representation can be divided into two main groups according to their de-

scriptive focus:

• structure-oriented - these approaches depict simultaneously all pos-

sible interactions between molecular species. The most established

example are Molecular Interaction Maps (MIM) [131], [133]. Other

examples include the extended MIM (xMIM) [124], [132] and the uni-

versal visual language for systems biology (BioD) [61]. Formalism

presented in this work (aceSim) is to a large extent a combination of

these approaches and falls also in the structure-oriented category.

• process-oriented - these approaches depict sequentially a subset of

interactions in the system that corresponds to a specific biological

process, e.g. a signaling pathway. The most established example is

the Process Diagram (PD) [124], [125], [126] with many related forms

commonly used for depicting signaling and metabolic pathways. An-

other example is the rule-based signal transduction modeling language

(BioNetGen) [38], [73], [74].

As presented in Fig. 5.1, the aceSim formalism can be compared with

other approaches according to following criteria: managing combinatorial

complexity, temporal sequence and information flow, descriptive scope, avail-

ability of mathematical translation and computer implementation.

Combinatorial complexity

Typically, combinatorial complexity is handled by explicit assignment of

network nodes to any possible combinatorial sub-species [40]. The sub-

species not allowed by regulation are simply not depicted. However, this

plethora of resulting network nodes can be reduced in the structure-oriented

approaches as described below.

The MIM formalism pictures always only one labeled instance of the

species and reduces all combinatorial sub-species to nodes in form of singular

dots. These dots can be connected with each other to depict higher-level

complexes. However, The same dot can be duplicated along an interaction

line which may be confusing and it is not always easy to track higher-level

complexes back to their basic parts.
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Figure 5.1: Graphical formalisms for representation of MIN. Comments:

1 - Only basic node labeled, all combinatorial nodes are generic nodes

depicted as a dot. These dots can be connected with each other to depict

higher-level complexes. Isolated nodes for homodimers. 2 - The same

node can be duplicated along interaction line which may be confusing. 3 -

Interfaces are abstract and do not correspond literally to physical sites of

the molecule. 4 - Both inside and outside possible. 5 - AND and

NOR via ’exclusion’ and ’necessity’, respectively. 6 - Authors postulate

an extension to depict event sequences derived from the network structure.

7 - ’aceSim’ (Java). 8 - ’CellDesigner’ (Java). Most simulation software

packages use this or similar graphic formalism. 9 - BioNetGen’ (Perl).

10 - Without transport

.
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BioD offers a visually simpler approach by expanding species nodes to a

second level networks consisting of interaction interfaces. The combinatorial

sub-species can be read out from such a diagram only implicitly, by tracking

interaction links between species and the eventual regulatory influences.

However, we believe such description has a sufficient level of detail, since

the functional roles of multimolecular complexes can be tracked back to

functionalities of single species modulated by regulation from interacting

partners in the complex (see Sec. 2.1 for details).

The two-level network approach of BioD was adapted in other presented

formalisms, also the process-oriented ones, to express combinatorial com-

plexity. Especially, xMIM and aceSim employ the interface concept in the

same visually simplistic way as originally BioD.

The xMIM uses interfaces for a more concise representation of regulation,

placing it inside the basic species node, but still displays dot-nodes for

combinatorial sub-species. Actually BioD does not exclude an option for

extra nodes for combinatorial sub-species. As described in Sec. 2.1, aceSim

consequently restricts the network representation to the two-level network

approach without extra nodes for combinatorial sub-species, also for the

description of gene regulation (Sec. 2.4.2) and phenomena (Sec. 2.5).

aceSim is unique in defining interfaces as abstract variables not liter-

ally corresponding to physical sites of the molecule, which is necessary to

represent interface states with Boolean values. This is in contrast to other

formalisms, where the interfaces are related to physical interaction sites

and are allowed to have multiple states. We believe the Boolean notation

facilitates to a large extent automation of mathematical description.

aceSim uses also a slightly different set of interface types compared to

BioD and xMIM. These two formalisms introduce a special interface type

’active site’ for enzymes. aceSim reduces this case to a ’binding site’ in-

terface, since we argue that an enzymatic modification reaction on the side

of enzyme can be seen as a simple binding-unbinding reaction. Further-

more, on the substrate side, aceSim splits the ’modification site’ into two

interfaces (binding to enzyme and modification). This allows assigning to

each interface the maximum of two reaction rates (binding and unbinding or

modification and demodification) and Boolean description of the interface

state.
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Temporal sequence

The process-oriented formalisms by definition depict sequences of distinct

network states corresponding to subsequent events in a given process.

Structure-oriented formalisms, also by definition, do not have such ca-

pability and would have to be extended with special parsing algorithms to

derive possible process pathways from the network structure. Importantly,

it would be feasible to derive possible process pathways from a given net-

work structure, as postulated in the case of BioD [61]. However, the reverse

is not necessary true.

Information flow

Process-oriented formalisms allow also for explicit representation of informa-

tion flows through the system (e.g. signal transduction). Structure-oriented

approaches, on the other hand, depict the whole information-processing cir-

cuits, since species can be regarded as computational units wired with one

another via the interaction and regulation links.

The information processing infrastructure can be conveniently visualized

using formalisms combining the two-level network approach with depiction

of regulations inside the node, which is the case in BioD, xMIM and aceSim.

This explicitly shows species as computational units containing logical cir-

cuits.

The logical operations can be depicted either with logical gates between

regulatory links (xMIM) or using Boolean regulatory categories such as

’necessity’ and ’exclusion’ (aceSim). MIM employs the same logical-gate

approach as xMIM, however, it depicts regulations outside the node which

we do not consider optimal for visual tracking of the information processing.

BioD depicts regulations inside node, but it does not offer explicit logical

relationships between them.

Descriptive scope

A very basic requirement for MIN description is the ability to represent var-

ious types of interactions (binding, enzymatic reactions, synthesis, degra-

dation, transport etc.) and regulations (activation, inhibition) etc. This

requirement is fulfilled by all discussed formalisms, with the exception that

aceSim is incapable of representing transport. This could be achieved by

adapting one of the existing interaction formats, e.g. enzymatic modifica-

tion, but is not yet present in the software implementation.
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The interface approach allows domain-specific description of interaction

and was adapted by all formalisms. However, only the process-oriented ones

are capable of depicting case-specific structural features of combinatorial

complexes by symbolic shapes, e.g., imitating ligands, receptors, antibodies

etc.

Another aspect of description is an explicit incorporation of nodes rep-

resenting phenomena into the network. This is allowed by all discussed

structure-oriented formalisms. aceSim allows additionally linking of phe-

nomena with the rest of the network as described in Sec. 2.5.

Mathematical translation and computer implementation

Among the discussed formalisms, only BioNetGen and aceSim have a corre-

sponding ODE-based mathematical formalism and a software implementa-

tion. BioNetGen is implemented with a program of the same name written

in Perl. aceSim is implemented in JavaTM , however uses a relatively simple

spreadsheet input mask that should be further developed. The details of

both mathematical representation and software implementation of aceSim

and BioNetGen will be discussed in detail in the Sec. 5.2.

Process Diagram is implemented with Java as software called CellDe-

signer with feature-rich GUI for drawing MIN diagrams. It is not related

to any explicit mathematical formalisms but it allows model export in the

SBML format for further simulation via the multi-software platform Sys-

tems Biology Workbench [182]. Moreover, process-oriented formalisms simi-

lar to the PD are in fact a standard for the most software packages for MIN

simulation and are typically related to the AMA description of reaction

systems as described in Sec. 5.2.

5.1.2 ODE-based description of MIN

As outlined in the Sec. 1.2, MIN can be described mathematically in various

ways, including systems of coupled ODE describing the dynamics of species

concentration. These equations can take various forms, as outlined below.

Elementary mass action (EMA)

This type of equations is commonly used to describe binding reactions and

as we argue in the results section, it is also most appropriate for describing

enzymatic reactions in a stepwise manner. Description of synthesis, degra-

dation or transport at this level is rather rare, however one can imagine
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Figure 5.2: Mathematical formalisms for MIN representation. ’EMA’ -

elementary mass action (see Sec. 1.2.3 for definition), ’AMA’ - approximated

mass action (see Sec. 1.2.3 for definition), ’phenomenological’ - a single rate

constant approximation, ’Boolean-algebraic’ - user-defined expressions with

logical operators.
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detailed kinetic rate laws for protein synthesis taking into account concen-

trations of nucleotides, aminoacids, polymerases or ribosomes etc. or for

degradation considering proteasomes and ubiquitine or transport consider-

ing transporter proteins.

Approximated mass action (AMA)

These equations are commonly used for description of enzymatic reactions

and their regulations, sometimes also for description of regulation of protein

synthesis. We argue all these schemes should be replaced by EMA for more

realistic calculations and for enabling modular composition of more complex

reaction and regulation schemes.

Phenomenological reaction rate.

These are even more simplified forms containing all mechanisms lumped

into one reaction rate. Such mechanism is common for describing transport,

synthesis and degradation and was also implemented in aceSim.

Boolean-algebraic equations.

Algebraic functions are frequently used for including conservation relation-

ships into the equation system. This application is irrelevant for aceSim

since the conservation laws are automatically fulfilled when using EMA 2.2.1.

However, algebraic equations combined with logical conditions are suitable

for describing phenomena like thresholds, discrete events etc.

In general, we argue that EMA formulations are most suitable for de-

scribing binding and enzymatic reactions as well as regulation. We also

consider Phenomenological rate constants to be a suitable alternative for

synthesis, degradation and transport, however, replacing those with EMA

formalism taking concentrations of RNA polymerases and ribosomes, pro-

teasomes or transporter proteins into account should be also considered.

Based on the results presented in chpt. 4 and discussed in Sec. 5.3, we dis-

courage the use of AMA in any case, especially for enzymatic reactions and

regulation, which is still very popular as discussed in Sec. 5.2.3.

5.2 MIN simulation software

In this section we discuss various features of existing software solutions

for ODE-based MIN modeling. A comparison with the aceSim software
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presented in Chpt. 3 reveals, that the unique character of aceSim is the

ability to automatically construct EMA-based models of systems taking

account of combinatorial complexity.

5.2.1 Existing MIN simulation software

There are several established simulation software solutions for systems bi-

ology (see [27], [33], [127], [160], [169] for reviews). Moreover, many of the

tools are integrated into larger, multifunctional platforms, such as Systems

Biology Workbench and BioSPICE [182].

Below we focus on 12 applications that primarily and explicitly deal

with MIN simulation with using deterministic (ODE-based) algorithms and

thus, as we believe, allow the most informative feature comparison with the

software presented in this work. The short descriptions are based on pub-

lished papers, technical documentation and internet presence as referenced

below. Enumerations in text follow the alphabetical order.

• BioNetGen - Allows automatic generation of mathematical models

of biological systems from user-specified rules for biomolecular interac-

tions. Uses own language for explicit indication of the parts of proteins

involved in an interaction, the conditions upon which an interaction

depends, the connectivity of proteins in a complex, and other aspects

of protein-protein interactions. Graphical front end for construction

of BioNetGen rules using graphical icons exists. Version: 2.0, ref: [38],

link: [9].

• CADLIVE - Computer-Aided Design of LIVing systEms, includes

GUI editors, Simulator and Grid Layout Program. GUI editors enable

to construct large-scale biochemical network maps. Simulator converts

biochemical network maps into dynamic models and simulates their

dynamics. Grid Layout Program places biochemical networks on 2-

dimensional squared grid. Version: 2.14, ref: [136], link: [16].

• Cellerator/kMech/Sigmoid - Mathematica package for generating,

translating, and numerically solving a potentially unlimited number of

biochemical interactions on the level of signal transduction networks,

single cells and multi-cellular tissues. Version: 1.0, ref: [191], [218] ,

link: [14].

• Cellware - Integrated environment not only for modeling and simu-

lation of gene regulatory and metabolic pathways but also other di-
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verse mathematical representations, parameter estimation and opti-

mization. First grid based modeling and simulation tool in the field

of Systems Biology. Version: 3.0, ref: [5], [65], link: [15].

• COPASI / GEPASI - COmplex PAthway SImulator for Simulation

and analysis of biochemical networks. Spreadsheet GUI for model

editing and broad analytical functions including: steady state stabil-

ity, metabolic control, sensitivity, elementary mode, mass conservation

analysis, calculation of Lyapunov exponents, Parameter scans and es-

timation, optimization of arbitrary objective functions. Version: 4.0,

ref: [7], [154], link: [17].

• Dizzy - Model definition environment and kinetic simulation of chem-

ical reaction systems with various stochastic (Gillespie, Gibson-Bruck,

Tau-Leap) and deterministic algorithms. Version: 1.11.4, ref: [172],

[173], link: [11].

• Dynetica - Biologist-oriented modeling tool for constructing, visu-

alizing, and analyzing kinetic models of biological systems. Intuitive

interface for easy model construction. Ver 1.2, ref: [219], link: [18].

• E-cell - Software platform for modeling, simulation and analysis of

complex, heterogeneous and multi-scale systems like the cell. Capa-

ble of running various different algorithms simultaneously in a single

simulation. Version: 3.0, ref: [202], [203], [204], link: [19].

• Jarnac / Jdesigner - JDesigner allows drawing a biochemical net-

work and exporting it in the form of SBML or to Jarnac as a simulation

server (via SBW). Jarnac is a language for describing and manipulat-

ing any physical system in terms of a network and associated flows,

especially metabolic, signal transduction and gene networks. Version:

2.5, ref: [1], [180], link: [12], [13].

• JigCell - A set of tools for model creation, simulation and analysis. A

spreadsheet interface allows definition of chemical species, equations,

relationships and events that occur when a user-defined condition is

met. Analysis tools include comparison of simulated and experimen-

tal data. Bifurcation analysis tools are under development. Version:

6.1.4, ref:[213], link: [10].

• MATLAB Systems Biology Toolbox - Open and user extensible

environment, in which to explore ideas, prototype and share new al-



5.2. MIN SIMULATION SOFTWARE 113

gorithms, and build applications for the analysis and simulation of

biological systems. Version: 1.6, ref: [185], [186], link: [20].

• VirtualCell - Associates biochemical and electrophysiological data

describing individual reactions with experimental microscopic image

data describing their subcellular locations. Cell physiological events

can then be simulated within the empirically derived geometries, thus

facilitating the direct comparison of model predictions with experi-

ment. Version: 4.2, ref: [2], [146], link: [4].

The detailed features of these applications along with the software presented

in this work will be compared below with focus on the automation extent

of the modeling process and the descriptive scope.
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Biochemical simulators - automation and scope of the simulation process

Figure 5.3: Simulation and analysis capabilities of existing software solu-

tions to MIN simulation. ’MCA’ - metabolic control analysis. Comments:

1 - Possible to derive data from KEGG database. 2 - Possible to derive

data from SigPath database 3 - Possible to derive data from VirtualCell

database. 4 - Available only as a stand-alone method. 5 - Sensitivity

only estimated from the nominal value without rerunning simulation. 6 -

Methods for estimating elementary rates from experimental KM and Kcat.

7 - Simulation using grid computing. 8 - Possibility to define reusable

model segments (’templates’). 9 - Multi-algorithmic simulation possible

(e.g. deterministic and stochastic). 10 - Localization of functions leading

to complex behaviors.
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5.2.2 Automation and scope of the simulation process

The process of MIN modeling can be divided into 3 generic phases: 1) def-

inition of the model, 2) numerical simulation and 3) analysis of the results.

At each stage, different features are offered by different software solutions

to facilitate the modeling process, as summarized in Fig. 5.3 and discussed

below in a more detail.

Model definition

This first stage of simulation process can be further divided into following

steps:

1. Specification of system’s components and parameters.

2. Generation of a chemical reaction list.

3. Translation of the reaction list into an equation system.

Most of the available software packages offer only automation of the

last step, so that the user needs to specify an explicit reaction list himself.

This means that the combinatorial complexity is not really being managed

by the software, since the user needs to enumerate all possible combinato-

rial sub-species and reactions between them and control manually eventual

modifications of rate constants due to regulation.

Only aceSim, BioNetGen and Cellerator are able to create a combina-

torial reaction list automatically from a limited, user-defined set of rules

specifying system’s components (species) and interactions between them in

a generalized way (as described for aceSim in Chpt. 3). Furthermore, Cell-

ware, Jarnac/Jdesigner and Virtual Cell enable automatic derivation of sys-

tem specifications from external biochemical databases, such as KEGG [114]

or SighPath [53], however, the user still has to specify resulting reaction lists

himself. It would be highly desired to combine the above feed-from-database

feature with automated reaction list composition in order to fully automate

the process of model definition. Such combination of features is to our

knowledge not available so far.

In respect to automation of the model definition, we consider aceSim to

be unique in the extent that combinatorial complexity can be automatically

managed thanks to the Boolean representation of combinatorial species and

extrapolation of reaction rates and regulatory coefficients as described in

Sec. 2.1. This allows an even more limited set of initial rules necessary

to generate the reaction list compared to the BioNetGen approach, where
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interfaces can have multiple values and thus some combinatorial cases, es-

pecially of regulation, need to still be handled individually.

Moreover, as discussed in detail in Sec.5.2.3, both BioNetGen and Celler-

ator translate the reaction lists into equations partially using mathematical

forms that we discourage (AMA and single phenomenological rates for en-

zymatic reactions and regulations).

Numerical integration of the equation system

After the model has been defined as an ODE system, it can be numerically

integrated to obtain the time-courses of species concentration changes in the

modeled system. All discussed software packages offer some standard algo-

rithms for numerical integration including Euler’s and Runge-Kutta meth-

ods [66] (see Sec. 3.5.3 for an outline of the Runge-Kutta algorithm).

Additionally, most of the packages offer stochastic algorithms such as the

Gillespie or Tau-leap method [89], [90] . This simulation procedure more

suitable for systems, where small molecular quantities occur, such as DNA

strands (esp. genes) or small cellular compartments (e.g. synaptic regions)

and thus the mass action approximation necessary for applying ODE is no

longer valid. Thus, extending aceSim with stochastic simulation capabilities

would be highly desirable.

Analysis of system’s behavior

As outlined in the Sec. 3.5, the system’s behavior can be analyzed in many

ways, including: determination of the number and stability of steady states,

comparison of the concentration time-courses with experimental data, test-

ing system’s behavior for various values of parameters, such as rate con-

stants or initial concentration values, estimation of parameter values to fit

experimental data, plotting bifurcation diagrams etc.

aceSim, CADLIVE, COPASI, e-cell, Jarnac/Jdesigner and MATLAB SB

Toolkit offer most or all of the mentioned analytic features, whereas other

packages have rather limited capabilities at this point. aceSim does not

support parameter estimation, this feature should be considered for future

development.

Special simulation strategies

Some of the packages offer sophisticated special features, including:

• Possibility to define reusable model segments called ’templates’ (Dizzy).
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• Simulation using grid computing (Cellware)

• Partitioning the model into separate simulation units, that can be

run simultaneously using different algorithms or parameters, e.g. time

step size (e-cell).

• Methods for estimating elementary rates from experimental Michaelis

constant and catalytic constant (Cellware).

• Methods for localization of functions leading to complex behaviors

within the network structure, e.g. feedback loops (MATLAB SB

Toolkit).

Input mask and model importing

Apart for the ability of the software to automate the modeling process, the

model definition can be also facilitated by a graphical user interface (GUI).

Such interface can take various forms [3], including:

• Symbolic network graph - this interface type allows composing

a graphical representation of the system using pre-defined icons and

drag-and-drop operations. As outlined in Sec. 5.1.1, the graphical

representation can have a process-oriented or a structure-oriented

form. The process-oriented approach corresponds to a reaction list,

whereas a structure-oriented approach allows defining a more limited

set of components and rules and thus a large extent of automation

of the model definition. BioNetGen, CADLIVE, Cellerator, Cellware,

Jarnac/Jdesigner and VirtualCell implement a network-graph-based

GUI, all using the process-oriented graphical formalism.

• Spreadsheet - this interface type allows specification of both reaction

lists and components/rules lists in a tabular form. Spreadsheet inter-

faces offers a compact system’s representation that for larger systems

might be easier to track comparing to the network graph representa-

tions. COPASI and JigCell employ spreadsheet interfaces for entering

reaction lists.

• Text - this is the most basic interface type and entering model spec-

ifications in this form requires learning some specific syntax. Some

packages offer this input type as an alternative to graphical interface.

Dizzy, Dynetica, e-cell and MATLAB SB Toolkit offer a text interface

only.
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aceSim has an worksheet input mask which is however still in develop-

ment and should be ideally replaced/complemented with a network graph-

based interface, necessarily using a structure-oriented graphic formalism in

order to support management of combinatorial complexity.

The model definition phase of the simulation process can be also com-

pletely omitted by using ready-made models from a model repository such as

the BioModels Database [140]. This requires capability of importing models

in some standardized, structured format. The most established standard for

coding biochemical models is the Systems Biology Markup Language level

2.0 (SBML) [83], [109].

Most of the discussed software packages support importing of models

coded in SBML. aceSim does not offer SBML support so far, since this

format does not yet support the components/rules logic for management of

combinatorial complexity. However, such extension has been proposed for

the upcoming SBML level 3.0 [82], [39].
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Figure 5.4: Descriptive scope of existing software solutions to MIN simu-

lation. Comments: 1 - Enzyme concentrations parameterized as single

flux rate. 2 - Possible to use EMA but two separate reactions per one

enzymatic modification have to be specified manually (substrate binding

and transformation). 3 - Multistep enzymatic reactions can be approxi-

mated with an integro-differential equation. 4 - Process class library with

Michaellis-related enzymatic mechanisms and simple fluxes. 5 - Enzyme

concentration parameterized as Vmax. 6 - Synthesis takes into account

concentration of nucleotides, aminoacids, polymerases, ribosomes etc. 7 -

Extensive library of approximations for enzymatic reactions, n.a. for regu-

lation of other interactions. 8 - Thresholds for enzymatic activities using

Heaviside function. 9 - Discrete events implemented with Python com-

mands. 10 - User-defined rate laws possible for any reaction with various

operators and functions. 11 - Only EMA or user-defined possible. 12 -

External XML file for user-defined rate laws. 13 - All rates user-defined

in string representation or directly as ODE. 14 - The validity of assigning

the same rate constant(s) to a set of reactions is the responsibility of the

modeler. Case specific rate modifications due to regulation need to be done

manually.
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5.2.3 Descriptive scope

Almost all analyzed software packages offer predefined reaction schemes

for the basic reactions such as binding, enzymatic reactions, degradation

and synthesis. Fewer packages support also transport, regulation and de-

scription of phenomena. An exception is MATLAB SB Tool, where only

user-defined rate laws or other equations can be entered. Copasi, Dizzy and

Jarnac/Jdesigner allow also user-defined rate laws together with pre-defined

reaction schemes. The descriptive capabilities of different software solutions

are summarized in Fig. 5.4 and discussed below in a more detail.

Binding and enzymatic reactions

Binding reactions are consistently implemented using EMA. However, en-

zymatic reactions are implemented using AMA schemes or even single phe-

nomenological rate schemes (BioNetGen, Dynetica). For the reasons out-

lined in the Sec. 5.1.2, we argue that enzymatic reactions and their reg-

ulation should be described using EMA schemes as presented in Chpt. 2.

This requirement is fulfilled for only by aceSim, CADLIVE, Cellerator and

Dizzy. However, Cellerator uses AMA forms for enzymatic regulation and

Dizzy does not support enzymatic regulation at all. CADLIVE supports

regulation with EMA schemes, but since it uses the process-oriented for-

malism, where regulated rate constants have to be specified individually for

every possible reaction, it does not really support combinatorial complexity.

Thus we believe that the combination elementary mass action description

of regulation with the capability to automate combinatorial complexity is

an unique and perhaps the most outstanding advantage of aceSim.

Synthesis, degradation and transport

All these interaction types are most often described in a phenomenological

way using single rate schemes. For transcriptional regulation, CADLIVE

and Cellware offer also AMA schemes based on the Hill equation and Dy-

netica implements an even more detailed scheme taking account of the com-

ponents of protein synthesis machinery, such as polymerases or ribosomes.

aceSim describes protein synthesis using the single phenomenological

rate scheme and it offers two further approaches for transcriptional regu-

lation. The first is based on EMA description of the interactions between

a given gene A and other molecular species that can alter the phenomeno-

logical synthesis rate of protein A (Sec. 2.4.2). The second allows linking
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the synthesis rate to values of phenomenological objects that can be de-

rived from concentrations of user-defined ensembles of combinatorial species

(Sec. 2.5.3). Both approaches are implemented using the same basic set of

rules as for other interaction types and thus can also be processed in a fully

automated way.

Such detailed schemes as the ones employed by aceSim or Dynetica for

protein synthesis could also be considered for describing degradation and

transport. Especially, aceSim should in any form support transport which

is not the case yet.

Regulation

Pre-defined regulation schemes almost exclusively rely on AMA formalism,

as it is the case for Cellerator, Cellware and COPASI. Especially COPASI

offers an extensive library of such regulation schemes for enzymatic reactions

but not for other interaction types. Only aceSim and CADLIVE implement

regulatory schemes with EMA, with the exclusive advantage of aceSim of

being fully automated as explained in Sec. 5.1.1 (regulated complexes and

rate constants do not need to be specified manually).

Phenomena

Only aceSim, CADLIVE, e-cell and JigCell offer explicit support for phe-

nomenological variables, such as discrete events, that are implemented us-

ing user-defined, Boolean-algebraic functions. Cellerator offers only limited

support for phenomena allowing thresholds for enzymatic activities using

Heaviside function.

aceSim supports phenomena as both real-valued and Boolean variables

and allows multiple ways of linking them with the molecular species and

with each other in a formalized and thus possible to automate way (Sec. 2.5).

Special descriptive features

Some of the software packages have additional specific descriptive features,

such as handling of multicellularity (Cellerator and e-cell), simulation with

spatial resolution (VirtualCell) and, last but not least, management of com-

binatorial complexity (aceSim, BioNetGen and Cellerator).
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5.3 Simulation results

In this section, we discuss the behavior of various enzymatic cascades sim-

ulated using aceSim as presented in Chpt. 4. This analysis demonstrates,

that application of our combinatorial and EMA-based formalism brings new

insights into the behavior of enzymatic cascades, in some cases contrary to

the results of the AMA-based modeling. Moreover, this investigation is

meant to demonstrate analytical capabilities of aceSim.

5.3.1 Behavior of different systems

A biological system can be described in terms of signal-response analysis,

where any of system’s parameters/variables or combination thereof can be

treated as a signal or a response [183], [208]. We have investigated the

behavior of a basic kinase-phosphatase system and various cascades com-

posed of this motif, defining the response as the fractional concentration

of the phosphorylated substrate and various types of signal as relative and

absolute kinetic rate constants of this system (Sec. 4.2). Altering of these

rate constants can e.g. result from enzymatic regulation of interacting pro-

teins [183].

The elementary response pattern, i.e. the change in the numerical value

of the response relative to the change in the value of the signal, depends

on the sensitivity of the system. A sigmoidal response pattern is in fact

common in nature; it actually resembles the response of collector current

on the base current in a transistor [183].

In extreme cases, the response changes from values close to 0 to val-

ues close to 1 (or reverse) within a very small range of signal values. This

phenomenon has been described as ultrasensitivity [58], [94]. As oppo-

site to ultrasensitivity, systems with a flat signal-response curve are called

subsensitive [138].

Ultrasensitivity has been observed experimentally in regulation of sev-

eral enzymes, such as Mitogen-Activated Protein Kinase (MAPK) in matu-

rating Xenopus oocytes [77], isocitrate dehydrogenase [137], glycogen phos-

phorylase [152], glutamine synthetase cascade in E. coli [159], AMPacti-

vated protein kinase (AMPK) [100]. The biological functions of ultrasensi-

tivity include binarization of response by means of a threshold [79], signal

amplification [80] or filtering [93]. There are several sources of ultrasensitiv-

ity in biological systems, including multisite phosphorylation [95], feedback

loops [78] or enzymes operating under saturation [94]. The last case was



5.3. SIMULATION RESULTS 123

termed zero-order sensitivity, since the enzyme saturated with substrate

operates in zero-order regime [94]. However, in many cases the enzymes

included in MIN are at concentrations of the same order of magnitude as

their substrates and thus operate in the first-order regime, which reduces

ultrasensitivity to regular sigmoidal sensitivity and even subsensitivity [41].

Similar effect was observed when the enzymes are assumed to be product-

sensitive [163], when the phosphorylation and dephosphorylation are cat-

alyzed by the same ambiguous enzyme [163] or for systems with low num-

bers of molecules simulated using stochastic approach [32]. However, our

results demonstrate, that first-order ultrasensitivity is also possible in

branched cascades containing a specific configuration of feedback loops, as

will be discussed below.

Behavior of the kinase-phosphatase system

The kinase-phosphatase system has the typical sigmoidal sensitivity pattern

for the relative enzyme substrate binding rate k1/k2 and for the relative

transformation rate k11/k22 and that it is much less sensitive to the enzyme-

substrate complex dissociation rate k−1/k−2.

This finding suggests, that assuming the rates k−1 = k−2 = 0 would not

have a major impact on the simulated behavior of systems based on the

kinase-phosphatase motif. This has a major practical consequence, since it

reduces the number of parameter required to describe such a system and al-

lows deriving the rates kn and knn from the values of KM = (k−n +knn)/kn

and Vmax = ET knn that can often be obtained experimentally (ET is the

total concentration of an enzyme catalyzing the given reaction during mea-

surement) [62]. This also motivates our assumption about linking regulatory

relationships to the association rates kn instead of the dissociation rates k−n.

Behavior of linear and branched cascades

The sensitivity on consecutive levels of a cascade has been shown to increase,

leading eventually to ultrasensitivity, if concentration gradients between

these levels exist, allowing them to operate in zero-order regions [80], [108].

The reverse has been shown for cascades where the concentrations are of

the same order of magnitude [41]. We have shown a similar drop in sen-

sitivity downstream a linear cascade described with EMA, together with

an extended relaxation time. However, we have also shown, that response

damping in a linear cascade can be reduced in a branched cascade, where
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both the kinase and the phosphatase determining the response are regu-

lated, though this involves even longer relaxation times.

Introduction of feedback can also increase sensitivity of enzymatic cas-

cades [184]. As we have shown for the branched cascade, the phosphoryla-

tion level of B1, B2 and C1 is sensitive only to the parameters of reactions

in which the given protein is directly involved; obviously, introduction of

feedback invokes in the insensitive proteins a dumped sigmoidal response

pattern to for the parameters indirectly related via feedback. Interestingly,

in a couple of proteins involved in feedback each has a specific response

pattern superimposed from two sigmoids.

Furthermore, negative feedback can bring about oscillations [93], [117] [209]

and a combination of positive and negative feedback can lead to bistability

and hysteresis [29], [36]. In a first-order cascade described with EMA, af-

ter introducing negative feedback and a negative-positive feedback, we have

only observed sharpened sensitivity patterns , but still not ultrasensitivity

or bistability.

Strikingly, oscillations were only observed in the branched cascade with

a positive and a negative feedback loop described with AMA. These oscil-

lations were damped, but for some parameter ranges, they sustained for a

longer time (Fig. 4.12 L - M).

Behavior of the G2/M transition cascade

The G2M transition cascade has a specific combination of a positive and a

double-negative feedback loop, (Sec. 4.1.3), which can invoke ultrasensitiv-

ity even in a first-order regime. The ultrasensitivity of the G2M transition

cascade was combined with bistability and hysteresis. However, in the AMA

description these phenomena have been again observed outside the param-

eter ranges where they have been exhibited by the EMA description. This

demonstrates, that G2/M transition models based on AMA description may

produce bistable behavior which does not exist according to the EMA de-

scription.

Interestingly, the zero-to-one jump point of the ultrasensitive response

was shifted away from the typical value of the signal parameter log κ = 0; a

similar effect, together with the bisiogmoidal sensitivity pattern mentioned

above, can be obtained in a cascade where the phosphorylation has a mul-

tisite character [95]. The multisite phosphorylation has also been shown

to produce bistable behavior [56], [149], though it might depend on the

exact phosphorylation mechanism [98], such as order of phosphate process-
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ing (random, sequential or distributive) and the characteristics of protein-

protein interactions [179]. Multisite phosphorylation does in fact occur in

the basic G2/transition mechanism on several points [120] [144] and has

an impact on the sensitivity of this system [119]. Thus, future research

should include multiphosphorylation into the model of the G2/M transition

pathway.

5.3.2 Effect of combinatorial complexity and EMA

Combinatorial complexity in first-order enzymatic cascades

The concentrations of enzymes and substrates in MIN, on contrary to purely

metabolic networks, can be presumed to be of the same order of magni-

tude [23]. We have taken this into account in our calculations, setting

equal concentrations of all proteins in a given modeled MIN (Sec. 4.2). The

similarity of concentrations can lead to substrate sequestration by enzyme,

which has been shown by Blüthgen et al. to reduce the zero-order ultrasen-

sitivity in the MAP kinase even to subsensitivity [41]. The authors conclude

from this, that the enzyme saturation shifting the reaction regime into first

order cannot be a primary mechanism for generating ultrasensitivity in cell

and multisite phosphorylation could be a convenient alternative here, es-

pecially because it can also generate bistability and hysteresis [41]. Our

results suggest, that ultrasensitivity, bistability and hysteresis can also be

achieved in sequestered systems, i.e. where enzymes act in the first-order

regime, by means of feedback.

Moreover, we have observed that some part of the sigmoidal sensitivity

pattern, though still not ultrasensitivity, can be recovered by two means in

sequestered systems. First, due to branching the pathway’s structure i.e.

regulating both kinase and phosphatase. Second, because of a combina-

torial definition of the response as a total of all phosphorylated forms of

the substrate, i.e. including intermediate complexes with phosphatase. A

similar response definition has been recently proposed by [59].

Finally, we believe that sequestration of enzyme with substrate can in

some cases elevate sensitivity - if large amounts of enzyme are occupied

by a high affine substrate, then only little amounts of free active enzyme

are available for competing substrates, which may shift the enzymatic ac-

tion back to the zero-order regime. Moreover, the reaction order can be

decreased effectively by scaffold proteins which hold an enzyme and its sub-

strate together, providing it from diffusion in the bulk aqueous phase [117].
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Approximated versus elementary mass action description

We have shown, that application of AMA in first-order enzymatic cascades

can lead to some substantial discrepancies to EMA, especially in systems

with low Michaelis constant. First, the sensitivity pattern for AMA is

slightly steeper than for EMA, which leads to response under/overestimation

for extreme parameter values, which can impact threshold behavior. Simi-

lar effect may result from the fact, that the jumping points of ultrasensitive

curves resulting from AMA and EMA do not overlap, so the response value

for some limited parameter ranges differs by almost 100%.

Moreover, the superposition of even slight deviations in more complex

systems can lead to substantial discrepancies between AMA and EMA,

including differences in steady state levels or producing oscillatory and

bistable behavior by AMA where it is not exhibited by EMA.

For all these reasons, we strongly discourage the still commonly practiced

(Sec. 5.2) application of AMA for MIN modeling and suggest EMA instead.

Recently a new method has been proposed for MIN modeling in order

to omit the imperfections of AMA, called total quasi state approximation

(tQSSA), which partitions the timescales of a system described with EMA

and thus allows algebraization of relatively very slow and very fast reactions

in the system [59]. However, this method still requires manual composition

of an EMA description and its further transformation into a tQSSA form.

Thus, we consider the automated approach using aceSIM to be a convenient

alternative.

5.4 Conclusions

We propose a new, combinatorial approach to modeling of molecular inter-

action networks (MIN) with ordinary differential equations (ODE). A MIN

is described with a set of simple, user-defined rules containing names of

interacting species, reaction rate constants and optional regulation coeffi-

cients. These parameters are automatically transformed into equation mod-

ules, which are automatically combined into an equation system describing

all combinatorial reaction pathways possible in the modeled network. Thus,

no further parameters need to be entered nor manual modification of the

existing parameters is required to obtain the system description.

The ODE modules have the form of elementary mass action (EMA) ki-

netics, which ensures compliance with mass conservation laws even for large

and complicated systems and thus greater mathematical precision compared
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to approximated kinetic formalisms (AMA), such as Michaelis-Menten ki-

netics. The entirely automated parameter extrapolation and module com-

bination is facilitated by an agent-like, Boolean representation of combina-

torial molecular species.

We have implemented the above formalism with JavaTM . We have

called the resulting software ’aceSim’. The acronym ’ace’ refers to ’automated,

combinatorial, elementary (mass action)’, which we believe to be the key

characteristics of the presented simulator. AceSim offers following features:

• Automatic MIN model construction, simulation and analysis based on

a limited input set of interaction rules.

• Consistent treatment of various biological processes like signaling cas-

cades, transcriptional regulation or protein degradation

• Incorporation into the model abstract terms relating to physiological

phenomena.

The unique characteristics of SIMULATOR is that it complements a

structure-oriented approach to MIN description with a consistent mathe-

matical formalism using EMA kinetics, which by definition incorporates

conservation relationships. This combination allows for a far-reaching au-

tomation of the modeling process, successfully coping with combinatorial

complexity without compromising mathematical precision or expanding the

parameter space.

AceSim can be applied to investigation of behavior of various molecular

systems in the cell, like cell division, cell death or intracellular signaling and

aberrations of those systems related to disease mechanisms. Various analysis

tools, such as steady-state analysis or parameter sensitivity analysis allow

tracking the steady states of the system that correspond to different phys-

iological cell states and investigating cell responses to parameter changes

resulting from disease, genetic mutations or pharmacological interventions.

We have investigated several signaling cascades, including the G2/M

transition network responsible for cell division, using aceSim. This analysis

demonstrates that application of our combinatorial and EMA-based formal-

ism brings new insights into the behavior of enzymatic cascades, in some

cases contrary to the results of the AMA-based modeling.

Especially, we have shown that ultrasensitivity is possible in sequestered

enzymatic cascades by means of feedback and that combinatorial complexity

can reduce oscillatory behavior of such cascades. Our results also suggest,
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that the G2/M transition models based on AMA description may produce

bistable behavior which does not exist according to the EMA description.

Following features should be especially considered for future develop-

ment of the aceSim:

• Description of cell compartments and transport.

• Simulation with stochastic algorithms.

• Analysis of the steady state using eigenvalues of the Jacobian matrix.

• Import and export of SBML models, as soon as SBML support for

rule-based network description becomes available.

• Diagrammatic GUI for model definition
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Zusammenfassung

6.1 Einführung

Molekulare Interaktionsnetzwerke (MIN) zeichnen sich durch gleichzeitige,

multivalente Interaktionen aus [130]. Daraus ergibt sich eine Vielzahl von

möglichen Kombinationen der wechselwirkenden Moleküle [73]; diese An-

zahl wächst exponentiell mit der Größe des Systems [147]. Diese Eigen-

schaft von biologischen Netzwerken wurde als kombinatorische Kom-

plexität (engl. combinatorial complexity) bezeichnet [106] und in zahlre-

ichen biologischen Systemen beobachtet, wie z.B. zellulären Signalwegen

[48] oder Stoffwechselwegen [101]. Die kombinatorische Komplexität hat

dort eine hoch verzweigte Wegstruktur zur Folge, im Gegensatz zu der tra-

ditionellen, linearen Darstellung dieser Prozesse [37], [96]. Deshalb muss

eine Simulationssoftware eine große Anzahl von Variabeln verarbeiten und

vielschichtig aufgebaute biologische Prozesse repräsentieren können, um die

kombinatorische Komplexität erfolgreich zu bewältigen

Die MIN können auf unterschiedliche Weise mathematisch beschrieben

werden [198], [110], u.a. mit Systemen von gekoppelten, Gewöhnlichen

Differenzialgleichungen (engl. ordinary differential equations; ODE) [71],

[129], [160]. Diese Modellklasse erlaubt eine detaillierte, auf molekularen

Mechanismen basierte Beschreibung von Interaktionen [208].

Dennoch basieren die klassischen, biochemischen ODE-Formulierungen,

mit dem Standardbeispiel der Michaelis-Menten-Kinetik, auf Näherungen,

z.B. über den stationären Charakter von Enzym-Substrat -Komplexen oder

der Enzymsättigung [62]. Diese Näherungen sind für die Modellierung von

129
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MIN nicht zwingend gültig [41], [59], weil dort Proteine sowohl Enzym, als

auch Substrat sein können und dadurch sehr wohl in Konzentrationen der

gleichen Größenordnung vorhanden sein können [23]. Letzteres wurde im

Gegensatz zur Enzymsättigung als Sequestrierung bezeichnet [41]. De-

shalb werden folglich zwei Subklassen von kinetischen ODE-Formalismen

definiert: Elementare Massenwirkung (engl. elementary mass action;

EMA) und Angenäherte Massenwirkung (engl. approximated mass ac-

tion; AMA).

EMA beschreibt die molekularen Wechselwirkungen als elementare Assoziation-

Dissoziation-Reaktion in Form des Massenwirkungsgesetzes, d.h. als ein

Produkt von Ratenkonstanten und Reaktantkonzentrationen [134]. Die

Darstellung eines bestimmten Systems mit AMA basiert auf der EMA-

Beschreibung mit zusätzlichen Annahmen. Diese Annahmen vereinfachen

die Massenerhaltungsrelationen (z.B. durch Vernachlässigung des Enzym-

Substrat-Komplexes) oder die Dynamik von gewissen Systemvariablen (z.B.

durch die quasi-stationäre Näherung des Enzym-Substrat-Komplexes). Die

Beschreibung von MIN mit EMA wird für sachgerechter gehalten als mit

AMA [59], [155]. Dennoch erhöht sich die Anzahl und Länge der Gleichun-

gen für ein bestimmtes System, weshalb es schwierig ist, die Beschreibungs-

genauigkeit von EMA mit der kombinatorischen Komplexität von biologis-

chen Systemen zu vereinbaren.

Um diesem Problem entgegenzuwirken, schlagen wir einen neuartigen

Ansatz vor, der auf einer automatisierten Kombination der EMA-ODE-

Module beruht. Diese Module werden aus einem Satz simpler, benutzerdefinierter

Regeln abgeleitet, welche die Ratenkonstanten und andere Reaktionspa-

rameter beinhalten. Dabei werden die Ratenkonstanten extrapoliert. Der

Parameterraum wird also dadurch nicht vergrößert im Vergleich zu einer

AMA-Beschreibung des gleichen Systems. Wir wendeten diesen Formalis-

mus für die Untersuchung von verschiedenen biologischen Systemen an und

verglichen die Ergebnisse mit den Resultaten einer entsprechenden, klassis-

chen AMA-Beschreibung.

6.2 Methode

In unserem Ansatz wurde ein MIN mit einem Satz von einfachen, be-

nutzerdefinierten Regeln beschrieben, welche die Namen wechselwirkender

molekularer Spezies, die Ratenkostanten und optionale Regulationsparame-

ter beinhalteten. Es erfolgt eine automatische Ableitung dieser Parameter in
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Gleichungsmodule, welche wiederum automatisch zu einem Gleichungssys-

tem kombiniert werden. Dieses Gleichungssystem beschreibt alle möglichen

kombinatorischen Reaktionswege in dem modellierten Netzwerk. Um der-

artige Systembeschreibung zu erzeugen ist es nicht nötig, die vorgegebenen

Parameter per Hand zu modifizieren, oder neue Parameter einzugeben.

Die Gleichungsmodule haben eine Form von EMA, welche die Massener-

haltung auch für große und komplizierte Systeme sichert. Dadurch kann, im

Gegensatz zu AMA-Formalismen, wie der Michaelis-Menten-Kinetik, eine

größere mathematische Präzision erzielt werden.

Die komplett automatisierte Parameterextrapolation und Kombination

der Gleichungsmodule wird ermöglicht durch eine Boolesche Repräsentation

kombinatorischer molekularer Spezies. Wir definieren Spezies als eine Molekülart,

insbesondere ein Protein (z.B. Insulin oder Cyclin B), welches in einem MIN

verfügbar ist. Die Spezies können miteinander in verschiedenen Kombi-

nationen wechselwirken. Deshalb beschreiben wir ein Molekül als Samm-

lung von Interaktionsschnittstellen zu anderen Spezies. Diese Schnittstellen

können z.B. Bindungs- und Enzymmodifikationsstellen entsprechen. Jeder

Schnittstelle wird ein Boolescher Wert zugeordnet, von dem abgelesen wer-

den kann, ob die dazugehörige Wechselwirkung einer bestimmten Kom-

bination von Molekülen gerade stattfindet oder nicht. Dadurch wird das

gestammte MIN in zwei Ebenen unterteilt: (1) den Spezies entsprechende

Nezwerkcluster, (2) Schnittstellen der einzelnen Netzwerkknoten. Die Wech-

selwirkungen zwischen Spezies werden als Netzwerkkanten zwischen diesen

Knoten dargestellt.

Der oben beschriebene Ansatz führt dazu, dass die einzelnen Spezies

als individuelle Agenten betrachtet werden können, die jeweils auf Grund

einer vorgegebenen Liste von Interaktionsregeln ihre Subspezies, d.h. die

Booleschen Kombinationen von Schnittstellenwerten, bestimmen können.

Dabei ist hier der Begriff Agent als eine abstrakte, zur Wahrnehmung und

Handlung fähige Einheit zu verstehen und nicht mit dem Fachterminus

Software-Agent zu verwechseln. Unser Agent-ähnlicher Ansatz ermöglicht

eine regelbasierte Bewältigung der Kombinatorischen Komplexität. Dazu

beugt es auch eine künstliche Erzeugung von Polymermolekülarten vor,

was als methodisches Problem für andere regelbasierte Ansätze zur MIN-

Modellierung beschrieben wurde [147].

Darüber hinaus erlaubt dieser Vermittler-ähnlicher Ansatz eine beträchtliche

Minmierung der kombinatorischen Variablen. In einem System mit n Spezies,

die jeweils k Interaktionen zueinander haben, beträgt die Anzahl von möglichen

kombinatorischen Molekülarten für jede Spezies 2k und im gestammten Net-
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zwerk bis zu 2nk. In unserem Ansatz wird aber diese Zahl auf n2k reduziert.

6.3 Implementierung

Wir haben den oben beschriebenen Formalismus mit der Programmier-

sprache JavaTM implementiert. Die daraus folgende MIN-Simulationssoftware

wurde als aceSim bezeichnet, wobei die Abkürzung ace für automated,

combinatorial, elementary (automatisiert, kombinatorisch, elementar) steht,

welche die Schlüsselmerkmale unseres Modellierungsansatzes waren. Die

aceSim bietet dazu folgende Anwendungsmerkmale an:

• Automatisierte Erstellung eines MIN-Modells ,einschließlich Simula-

tion und Analyse, basierend auf einem begrenzten Eingabesatz von

Interaktionsregeln.

• Einheitliche Repräsentation von verschiedener biologischer Systeme,

wie

• Einbeziehung abstrakten Begriffen in das Modell, die physiologischen

Phänomenen entsprechen.

Ein Vergleich zu anderen vorhandenen Softwarelösungen für MIN-Modellierung

erlaubt die Formulierung verschiedener Vorteile von aceSim. Programme

in diesem Bereich basieren in der Regel auf einer prozessorientierten Net-

zwerkbeschreibungsmethode (d.h. eine sequentielle Reaktionsliste; [124],

[125], [38], [73], [74]) und können dadurch die sich aus der Vielfalt gleichzeit-

iger Reaktionen ergebende kombinatorische Komplexität nicht bewältigen.

Für diesen Zweck wäre ein in der Theorie vorhandener strukturorientierter

Ansatz besser geeignet [131], [133], [124], [132], [61]. Dennoch wurde, soweit

uns bekannt ist, bisher kein mathematischer ODE-Formalismus für struk-

turorientierte Netzwerkbeschreibungsmethoden entwickelt. Darüber hinaus

basieren die meisten Programme auf einem AMA-Formalismus, wie z.B.

die Michaelis-Menten-Kinetik, welcher für die Beschreibung von MIN unter

Umständen nicht geeignet ist, wie bereits in der Einführung erklärt wurde.

Deshalb besteht die Einzigartigkeit von aceSim darin, dass es eine struk-

turbasierte Netzwerkbeschreibung mit einem ODE-Formalismus verbindet.

Darüber hinaus beruht dieser Formalismus auf der EMA-Kinetik. Diese

Eigenschaften erlauben eine weitgehende Automatisierung der Modellierungsprozess

und eine erfolgreiche Bewältigung der kombinatorischen Komplexität, auch

bei komplizierten MIN, ohne die mathematische Präzision zu beeinträchtigen.
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Die aceSim kann zur Untersuchung verschiedener zellulärer Prozesse

angewandt werden, wie z.B. die Zellteilung, der Zelltod oder die Signalübertragung,

oder auch zur Simulation von Störungen solcher Prozesse. Dadurch können

bestimmte Krankheitsmechanismen untersucht werden. Die innerhalb von

aceSim implementierten Anwendungen erlauben verschiedene Aspekte solcher

Analysen zu betrachten. Beispielsweise ermöglicht die Dauerzustandsanal-

yse eine Verfolgung von stationären Zuständen des Systems, die unter-

schiedlichen physiologischen Zuständen der Zelle entsprechen. Die Parame-

tersensitivitätsanalyse gestattet eine Untersuchung zellulärer Reaktion auf

Parameterveränderungen, die z.B. aus Krankheit, genetischen Mutationen

oder pharmakologischen Eingriffen resultieren.

6.4 Simulation biologischer Systeme

Wir haben verschiedene enzymatische Signalkaskaden mithilfe von aceSim

simuliert, u.a. das für die Zellteilung zuständige G2/M Netzwerk. Die

Anwendung von unseren kombinatorischen, EMA-basierten Ansatz hat neue

Erkenntnisse über das Verhalten von Enzymkaskaden gebracht, die sich zum

Teil widersprüchlich zu Ergebnissen einer AMA-basierten Simulation der

gleichen Systeme erwiesen haben.

Ein biologisches System kann im Rahmen einer Signal-Reaktion-Analyse

untersucht werden, wobei jede der Systemvariabeln oder Parameter als Sig-

nal oder Reaktion bezeichnet werden kann [183], [208]. In unseren Simula-

tionen haben wir die Reaktion als Bruchkonzentration des phosphorylierten

Substrats und die Signale als verschiedene Kombinationen von Reaktion-

sratenkonstanten definiert. Die Veränderungen dieser Parameter in vivo

können z.B. aus Krankheit, genetischen Mutationen oder pharmakologis-

chen Eingriffen erfolgen. Eine Veränderung des Reaktionsniveaus relativ zu

einer Veränderung des Signalwerts wird als Sensitivität bezeichnet.

Die Sensitivitätskurven biologischer Systeme sind oftmals sigmoidal [183],

eine besonders steile sigmoidale Kurve wird als Ultrasensitivität bezeich-

net [94]. Es wurde kürzlich nachgewiesen, dass eine realistische Annahme

der Sequestrierung in den enzymatischen Kaskaden die bisher angenommene

Sensitivität, insbesondere die Ultrasensitivität am Ende der Kaskade, wesentlich

dämpfen kann [41].

Insbesondere haben wir nachgewiesen, dass die Ultrasensitivität auch in

sequestrierten Kaskaden dank Feedback möglich ist und dass die kombina-

torische Komplexität in solchen Kaskaden Oszillationen reduzieren kann.
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Unsere Ergebnisse weisen auch darauf hin, dass die AMA-basierten G2/M-

Modelle ein bistabiles Verhalten andeuten können, das in bestimmten Pa-

rameterwertbereichen laut EMA nicht vorkommt.

Die durch Sequestrierung gedämpfte Sensitivität einer enzymatischen

Kaskade kann laut unseren Befunden auch durch zwei weitere Mechanismen

zumindest teilweise wiederherstellt werden. Erstens, durch eine verzweigte

Kaskadenstruktur, wo sowohl die Kinase, als auch die entsprechende Phos-

phatase der Regulation durch Phosphorylierung unterliegt. Zweitens, durch

eine kombinatorische Definition der Systemreaktion als summarische Konzen-

tration aller phosphorylierten Substratformen, inklusive der Zwischenkom-

plexe durch die Phosphatase. Eine ähnliche Definition wurde vor kurzem

im Bezug auf EMA von [59] vorgeschlagen. Diese Ergebnisse weisen da-

rauf hin, dass eine effiziente Modulierung der Signalwege durch kinetische

Parameterveränderungen auch unter den verschärften Annahmen über kom-

binatorische Komplexität und Sequestrierung erfolgen kann.

Für unterschiedliche Kaskadenstrukturen haben wir teilweise erhebliche

Diskrepanzen zwischen den Ergebnissen einer AMA- und einer EMA-basierten

Simulation nachgewiesen, dies gilt insbesondere für Enzyme mit einer niedri-

gen Michaelis-Konstante. Die aus AMA stammenden Sensitivitätskurven

sind meistens ein wenig steiler im Vergleich zur EMA, was zur Unter-

bzw. Überschätzung des Reaktionsniveaus für extreme Parameterwerte

führt und ein Schwellenverhalten beeinflussen kann. Ähnliche Folgen kann

die Diskrepanz zwischen Schwingungspunkten von ultrasensitiven Kurven

haben, wodurch sich für gewisse Parameterwertbereiche Reaktionsniveauun-

terschiede von 100% zwischen AMA und EMA ergeben. Die Überlagerung

selbst von geringen Unterschieden zwischen AMA und EMA in komplexeren

Systemen kann zu wesentlichen Abweichungen führen, wie z.B. Differenzen

im Reaktionsniveau, Bistabilität oder Oszillationen die laut AMA vorhan-

den sind und laut EMA für die gleichen Parameterwerte nicht vorkommen.

Aus diesen Gründen halten wir eine AMA-basierte Beschreibung von

MIN für nicht empfehlenswert und schlagen einen EMA-basierten Ansatz

vor, z.B. wie die in dieser Arbeit vorgestellte Modellierungsmethode.
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Definition of concepts and

acronyms used in text

Agent - an entity that is capable of perception and action. In the mod-

eling approach presented in this work, each molecular species is treated as

an individual agent, with a specific interaction menu and a resulting set of

sub-species.

AMA - Approximated Mass Action; a non-spatial, kinetic ODE formalism

describing molecular interactions with forms derived from an EMA descrip-

tion based on additional assumptions simplifying the conservation relation-

ships (like negligibility of the enzyme-substrate complex) or dynamics of

some variables in the system (like the steady state approximation for the

enzyme substrate complex).

BioPAX - Biological Pathways Exchange; a XML-based format for bio-

logical pathway data exchange.

Combinatorial complexity - a property of MIN, where various combi-

nations of multimolecular complexes with different properties can occur. It

results from both multivalent binding (different structures of multimolecular

assemblies) and multivalent enzymatic modification (different properties of

these assemblies). For instance, a protein with n binding or covalent modi-

fication sites can have up to 2n distinct states.

Deterministic models - models based on ODE.

EMA - Elementary Mass Action; a non-spatial, kinetic ODE formalism de-

scribing molecular interactions in terms of elementary association-dissociation
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reactions in the form of law of mass action.

Hub - a species having a large number of connections to other species

in a MIN.

Interaction - physical contact of molecules resulting in binding or en-

zymatic modification. In the modeling approach presented in this work,

interactions are defined as any type of relation that can be measured with

a biochemical rate constant, in particular: binding of two molecules, enzy-

matic modification, synthesis and degradation and are represented as links

between interfaces.

Interface - in the modeling approach presented in this work it is a Boolean

variable telling if a given interaction is taking place or not in a specific com-

bination of molecules

Kinetic models - a class of dynamical models of MIN, where variables can

have real-number (concentrations) or integer values (number of molecules)

and change according to deterministic or probabilistic rules. Kinetic models

rely on the law of mass action.

Law of mass action - an experimental chemical law, which states that

the velocity of a reaction is proportional to the quantity of the reacting

substances.

MIN - Molecular Interaction Network; a system of coupled biochemical

reactions between proteins, genes and small molecules, especially binding

and enzymatic reactions.

ODE - Ordinary Differential Equation; a relation that contains functions of

only one independent variable, e.g. time, and one or more of its derivatives

(i.e. an instantaneous rate of change) with respect to that variable.

Phenomena - in the modeling approach presented in this work, it is a

special category of model components that allows incorporating meaning-

ful biological functions such as ’cell mass’ or ’cell division’ into the model.

Phenomena can have either a quantitative or a qualitative character and

thus correspond to a real-valued or a Boolean system variable.
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PSI MI - Proteomics Standards Initiative Molecular Interaction; a XML-

based format for molecular interaction data exchange.

Rate constant - a coefficient expressing influence of several factors on

the velocity of a chemical reaction, including temperature and the probabil-

ity that reaction occurs because substrates are properly arranged in space

and posses sufficient energy to form an intermediate complex.

Regulation - in the modeling approach presented in this work, it is any

type of relation between two interfaces of the same species, especially acti-

vation or inhibition of one interaction by the other

SBML - Systems Biology Markup Language; a XML-based format for rep-

resenting models of biochemical reaction networks.

Sensitivity - change in the numerical value of system’s response relative

to the change in the value of the signal, where any of system’s parame-

ters/variables or combination thereof can be treated as a signal or a re-

sponse.

Species - any basic type of molecule (for example a type of protein) in-

cluded in the MIN. In the modeling approach presented in this work, species

are represented as collections of interfaces.

Sub-species - in the modeling approach presented in this work, it is any

possible combination of the interface values of a given species.

Ultrasensitivity - a steep sigmoidal sensitivity pattern, where response

changes from values close to 0 to values close to 1 (or reverse) within a very

small range of signal values.

XML - Extensible Markup Language; a general-purpose markup language;

i.e. a language combining text and information about the text in form of

markup.
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