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Preface

This thesis is based on the work conducted in the group of Prof. Dr. Harald Schwalbe
at the Institute for Organic Chemistry and Chemical Biology and the Center for Biomolecu-
lar Magnetic Resonance at the Johann Wolfgang Goethe-University in Frankfurt am Main
in the period between May 2003 and May 2007. An abstract of this thesis can be
found directly following this preface.

The thesis describes experiments for the investigation of structural and dynamical
properties of non-native states of hen egg white lysozyme and several variants and
mutants thereof and discusses enhanced and newly developed methods as well as
the novel insights from the obtained results in the context of preexisting data. It is
divided in three major chapters:

The introductory Chapter 1 (starting at page 1) gives an overview of protein folding
and the nature of non-native states of proteins. This section is followed by a short
discussion of methods used for the elucidation of these states and a more detailed
overview of NMR parameters suitable for the study of proteins in general and non-
native states of proteins in particular. The chapter is concluded by a survey of the
current knowledge on hen egg white lysozyme, its folding and non-native states and
a short outline of the aims of the work this thesis is based on.

Chapter 2 (starting at page 35) describes the materials, methods and experiments
used of the work that is summarized in this thesis.

Chapter 3 (starting at page 63) includes the results and findings and their discus-
sion in the general context.

In addition, an appendix (starting on page 107) lists the more extended tables of
experimental conditions and results that otherwise would harm the readability of
the previous chapters. The cited references can be found starting from page 149. A
summary in German can be found near the end of the thesis (page 171). A section
with the acknowledgements (page 177) and a short curriculum vitae of the author (page
179) conclude this document.
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Abstract

The formation and maintenance of a defined three-dimensional structure is a pre-
requisite for most proteins in order to fulfill their function in the native context.
However, there are proteins, which are intrinsically unstructured and thus natively
unfolded. In addition, the misfolding and aggregation of many proteins can lead
to severe diseases. The investigation of non-native states of proteins significantly
contributes to the understanding of protein folding and misfolding. Nuclear mag-
netic resonance (NMR) spectroscopy is the only known technique that can provide
information on structure and dynamics of non-native states of proteins at atomic
resolution.

Unfolded and non-native states of proteins have to be treated as ensembles of
rapidly interconverting conformers and their observed properties are ensemble and
time averaged. In this thesis, hen egg white lysozyme (HEWL) and mutants thereof
have been investigated by NMR spectroscopy. The reduction of its four disulfide
bridges and the successive methylation of the cysteine residues renders HEWL per-
manently non-native (‘HEWL-SMe’). Alternatively, the exchange of the eight cys-
teines for alanines results in very similar states (‘all-Ala-HEWL’). Under these con-
ditions, HEWL-SMe and all-Ala-HEWL do not resemble random coil conformations,
but exhibit residual secondary and tertiary structure. The presence of hydrophobic
clusters and long-range interactions around the proteins six tryptophan residues and
the modulation of these properties by single-point mutants has been observed.

For the NMR spectroscopic investigation, HEWL has been isotopically labelled in
E. coli by expression into inclusion bodies. After purification, the 1HN, 15NN, 13Cα,
13Cβ, 13C’, 1Hα and 1Hβ resonances of HEWL-SMe and all-Ala-HEWL have been as-
signed almost completely using three-dimensional NMR experiments. The analysis
of secondary chemical shifts revealed regions in the proteins sequence — particu-
larly around the six tryptophan residues — with significantly populated α-helix like
conformations. In order to further elucidate the influence of the tryptophan side
chains, a set of two new pulse sequences has been developed that allowed for the
successful assignment of the 13Cγ, 15Nε and 1HN

ε resonances in these side chains.
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Abstract

This knowledge was eventually exploited in the interpretation of two-dimensional
15N-1H photo-CIDNP spectra, which revealed a differential solvent accessibility of
the tryptophan residues in all-Ala-HEWL but not in the single point mutant W62G-
all-Ala-HEWL. In addition, heteronuclear R2 relaxation rates have been determined
for the indole 15Nε nuclei of all-Ala-HEWL and W62G. While in the wild-type like
all-Ala-HEWL, the rates are different among the six tryptophan residues, in W62G
they are more uniform. Together with relaxation data from the amide backbone,
these results indicate the significant destabilization of the hydrophobic clusters in
the absence of W62. In contrast, in the W108G mutant the profile of the R2 relaxation
rates was not found to be significantly altered. No evidence was found by R1ρ relax-
ation rates and relaxation dispersion measurements for conformational exchange on
slower (micro- to millisecond) timescales.

Residual dipolar couplings have been determined for non-native HEWL in order
to retrieve structural information of these states. The differences of the W62G and
the wild-type like non-native HEWL is also picked up in NH-RDCs of these pro-
teins aligned in polyacrylamide gels. Significant positive RDCs are observed in the
regions of the hydrophobic clusters in all-Ala-HEWL, but to a much lesser degree
in W62G. So far, all attempts to simulate RDCs from generated non-native ensem-
bles failed even when including long-range contacts or specific φ,ψ backbone angle
propensities. However, the measured RDCs can be used to cross-validate structural
ensembles of non-native HEWL generated by molecular dynamics simulations that
are based on restraints from the other experimental data, such as the differential
solvent accessibilities from the photo-CIDNP experiments and the data on the hy-
drophobic clustering gained from the combined mutational and relaxation studies.

Finally, non-native HEWL has been investigated for the first time using two-di-
mensional NMR in organic solvents, which are able to induce secondary structures
and ultimately lead to amyloid formation. Under these conditions severe line broad-
ening was observed, which was attributed to exchange between different — mostly
α-helical — conformations.

In summary, in this thesis methods have been developed, optimized and success-
fully applied for the structural and dynamical characterization of non-native states
of proteins and the effect of single-point mutants on the properties of such ensem-
bles has been investigated. Data has been gained that can considerably contribute
to the further elucidation of the nature of non-native states of HEWL by molecular
dynamics simulations.

xx



1. Introduction

1.1. Protein folding and non-native states of proteins

1.1.1. Overview

Proteins are the main mediators of biochemical reactions and biomechanical activi-
ties of living cells and organisms. Their functions are very diverse and encompass
all kinds of activities ranging from synthesis and degradation of other bio(macro)-
molecules and signal transduction to motion and regulation of biological processes.
They consist of amino acids and are produced by formation of peptide bonds follow-
ing a mRNA template in a process called translation at the ribosomes — organelles
consisting of RNA and proteins. In many cases, proteins are modified during synthe-
sis or post-translationally in order to gain their functional structure or localization.
The process of the formation of a more or less defined three-dimensional structure
from the amino acid sequence of the polypeptide chain is called protein folding (An-
finsen, 1973). Protein structure can be described at different levels: The sequence
of amino acids is designated primary structure, the formation of repetitive structural
elements stabilized by hydrogen-bonds such as α-helices and β-sheets is called sec-
ondary structure, while the overall shape of a protein is referred to as the tertiary
structure and is stabilized for example by disulfide bonds between cysteine residues
or by hydrophobic interactions. The organization of proteins to oligomeric entities
occurs at the level of the quaternary structure. Thus, protein folding, together with the
transcription of DNA into mRNA and the translation of mRNA into a polypeptide, is
the key process in the transformation of genetic information into biological activity.

However, in living cells protein folding usually takes place within seconds after
initiation of the translation and in many cases — especially for smaller proteins —
this process is even faster. After many decades of research dedicated to this problem,
the process of protein folding is still under investigation. In particular, the very
short time in which proteins are folded after translation is remarkable. Thus, protein
folding cannot be explained by a simple random search through the space of allowed
conformations of the peptide backbone after or during synthesis at the ribosome, for
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such an approach would take more than 100 billion years even for a small protein of
100 residues (Levinthal, 1969).

Instead, protein folding is a highly cooperative process in which domains and sub-
domains of a protein can fold parallelly and partially folded intermediate states are
populated. During protein folding, secondary structure is formed locally and con-
tacts between residues that are far apart in the sequence occur in addition. The main
tertiary interactions are the formation of disulfide bridges and hydrophobic clusters.
The formation of tertiary contacts instead of the rapid formation of secondary struc-
ture elements is assumed to be the rate-limiting step in protein folding in theoretical
folding models (Yon, 2002).

Figure 1.1.: Schematic representation of the folding funnel. The width of the funnel is a
measure for the entropy, while its depth is a measure of the energy (modified after Yon,
2002).

Protein folding can be described using energy landscapes and folding funnel mod-
els defined by the amino acid sequence in order to treat the thermodynamic and
kinetic properties of the transition of an ensemble of non-native states into the dom-
inant native state (Dobson, 2003). During such a transition, parallel pathways can be
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1.1. Protein folding and non-native states of proteins

followed. In a folding funnel representation (as in figure 1.1 on the facing page) the
number of possible conformations and the entropy of the protein decrease from the
completely unfolded states at the top of the funnel to the completely folded native
state at the bottom. The steepness of the funnel is a measure for the rate of fold-
ing. During folding partially folded or misfolded proteins can get trapped in local
minima and finally aggregate.

Figure 1.2.: Overview of protein folding and misfolding in living cells. Peptide chains
are depicted in red, the ribosome in orange and molecular chaperones in blue. The
folded protein is symbolized by a conformer of the liquid NMR structural ensemble of
native hen egg white lysozyme (Schwalbe et al., 2001, PDB: 1E8L).

An overview of different states a protein can assume during folding in a living cell
is shown in figure 1.2. Already during synthesis at the ribosomes, the nascent pep-
tide chains can be bound by auxiliary proteins that assist with the correct folding.
This is necessary to prevent proteins from aggregation or other unwanted interac-
tions and to facilitate the process of folding. Such helper proteins are called molec-
ular chaperones, a term first used for the protein nucleoplasmin which facilitates the
assembly of nucleosomes from histones and DNA (Laskey et al., 1978). Hartl and
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coworkers define a molecular chaperone as ‘a protein which transiently binds to and

stabilizes an unstable conformer of another protein, and through regulated binding and

release, facilitates its correct fate in vivo: be it folding following de novo synthesis, tran-

sit across a membrane, or stress-induced denaturation, oligomeric assembly, interaction

with other cellular components, switching between active and inactive conformations, in-

tracellular transport, or proteolytic degradation, either singly or with the help of co-factors’

(Agashe and Hartl, 2000; Hendrick and Hartl, 1993). In addition to molecular chap-
erones, other proteins such as protein disulfide isomerases (Freedman et al., 2002) and
peptidyl prolyl cis/trans isomerases (Shaw, 2002) assist in protein folding by catalyzing
the formation of disulfide bridges and the isomerization of cis/trans prolyl-peptidyl
bonds.

A massive drawback for protein folding is the high molecular crowding and the
resulting excluded volume effects in living cells (300 g/L of protein and other macro-
molecules (Ellis, 2001a,b)), so that nascent, partially folded and misfolded proteins
can easily aggregate due to interactions of their exposed hydrophobic surfaces. By
protecting exposed hydrophobic surfaces of proteins, molecular chaperones inhibit
aggregation. Protein aggregation itself is defined as the ‘association of two or more

polypeptide chains to form nonfunctional structures’ (Ellis, 2006), whereas protein mis-
folding involves the formation of conformations that cannot proceed to the native
conformation on a biological relevant timescale. A protein conformation is desig-
nated to be native when the protein is existent in its biological functional and rele-
vant form. However, there are proteins which are intrinsically unstructured and thus
natively unfolded (Wright and Dyson, 1999). Such proteins or protein domains are
mostly characterized by a low compactness, the absence of globularity, a low sec-
ondary structure content and a high flexibility. They usually have a low content
of hydrophobic amino acid residues but a high net charge and a low complexity,
e.g manifested in repetitive sequences (Uversky, 2002). Other members of the class
of natively unfolded proteins are more compact and resemble a molten globule state.
Molten globules are folding intermediates occurring on the (re-)folding pathway
of some but not all proteins. They are relatively compact states, comprise a high
amount of secondary structure, but a lack well-defined tertiary structure (Creighton,
1997; Ptitsyn, 1995). Their NMR spectra usually contain very broad peaks due to
conformational exchange on the intermediate timescale.

As of May 2007, more than 460 proteins have been reported to be completely or
partially natively unfolded (Database of Protein Disorder (DisProt) (Vucetic et al.,
2005)). Many of them function as regulators in key cellular processes and fold upon
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1.1. Protein folding and non-native states of proteins

ligand binding. One benefit of proteins being natively unstructured is their high
flexibility and the ability to bind a high number of binding partners. However, the
existence of such proteins requires the reconsideration of a fundamental paradigm in
biochemistry, the structure-function relationship. It describes the correlation of a par-
ticular function of a protein to a defined structure and has already been postulated
more than a century ago (Fischer, 1894).

A large number of severe and widespread human diseases is related to protein
misfolding and aggregation. These range from neurodegenerative disorders such as
Alzheimer’s disease, Parkinson’s disease and spongiform encephalopathies to amyloidoses
and Type II diabetes. Most of these diseases are sporadic, many are hereditary and a
few are even transmissible (Chiti and Dobson, 2006). The failure of a protein in fold-
ing correctly or remaining in the correctly folded state can lead to a reduction of the
quantity of the respective protein in the cell and thereby keeping it from playing its
normal role. However, the vast majority of protein misfolding diseases is associated
with the conversion of soluble peptides or proteins into insoluble extra- or intra-
cellular fibrillar aggregates. These highly ordered structures are designated amyloid
fibrils. The proteins capable of forming amyloid fibrils are very diverse in structure,
size and function, some are natively unfolded, such as the amyloid β peptide re-
sponsible for Alzheimer’s disease or the N-terminal domain of the prion proteins,
that can cause spongiform encephalopathies. Nevertheless, the amyloid fibrils are
structurally similar, having a diameter of 5 to 13 nm. They are straight, rigid and un-
branched and usually comprise β strands perpendicular to and backbone hydrogen
bonds parallel to the fibril axis (Rochet and Lansbury, 2000). Amyloid fibrillogenesis
in most cases requires the partial unfolding of the fibril-forming proteins. The amy-
loid fibrils are formed by a nucleated growth mechanism, in which initially nuclei are
formed from aggregation-prone species of the protein. This lag phase is followed by
an exponential growth phase.

Hence, the characterization of non-native states of proteins (both on and off the
folding pathway) is adding to the understanding of protein folding and misfold-
ing and thus to the understanding of folding-related diseases. Non-native states
of proteins can be produced in vitro either by denaturation of the native protein or
directly by (bio-)synthesis of non-native variants of the protein. Denaturation can
be achieved for example by a heat shock or maintaining a low pH. The addition of
high concentrations of denaturing chaotropic agents, such as urea or guanidine hy-
drochloride (GdnHCl), yields unfolded states by destabilization of hydrogen bonds.
Detergents, such as sodium dodecyl sulfate (SDS), and disulfide reducing reactants,
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such as 2-mercaptoethanol or dithiothreitol (DTT), are widely used as denaturants.
Organic solvents, particularly alcohols, can also act as denaturants, but unlike other
chemical denaturants they do not induce random coil structure but rather stabilize
well-ordered local structures such as α-helices, though the induced secondary struc-
tures are not necessarily native-like (Hamada and Goto, 2005). The denaturation
of proteins often is reversible, allowing for example the determination of melting
curves.

A completely unstructured polypeptide chain would resemble a random coil, i.e. a
statistical ensemble of rapidly interconverting conformers with a random distri-
bution of (sterically allowed) bond angle distributions and no non-random inter-
actions (McCarney et al., 2005; Smith et al., 1996b). However, even under highly
denaturing conditions, many proteins still exhibit residual local structure and/or
long-range contacts (Mittag and Forman-Kay, 2007), which can be native-like or non
native-like. For the first time, residual structure in a protein under strongly dena-
turing conditions was reported for the 434-repressor protein, for which native-like
hydrophobic contacts in the presence of 7 M urea have been reported (Neri et al.,
1992). To date, many examples are known of proteins with residual secondary struc-
ture in their denatured or unfolded state, among them the acyl-CoA binding protein
(ACBP) (Fieber et al., 2004), α-synuclein (Bussell and Eliezer, 2001), apomyoglobin
(Yao et al., 2001), barnase (Arcus et al., 1995), the immunoglobulin binding domain
of streptococcal protein G (Frank et al., 1995; Sari et al., 2000), the SH3 domain of drk
(Blanco et al., 1998) and hen egg white lysozyme (Schwalbe et al., 1997; Wirmer et al.,
2004). Examples for which long-range interactions or tertiary structure have been re-
ported under denaturing conditions include staphylococcal nuclease (Gillespie and
Shortle, 1997a,b; Shortle and Ackerman, 2001), apomyoglobin (Lietzow et al., 2002),
α-synuclein (Bertoncini et al., 2005), ACBP (Fieber et al., 2004; Lindorff-Larsen et al.,
2004), mutants of the Fyn SH3 domain (Neudecker et al., 2006), protein L (Yi et al.,
2000), human and bovine α-lactalbumin (Wirmer et al., 2006a) and hen egg white
lysozyme (Klein-Seetharaman et al., 2002; Wirmer et al., 2004). However, other pro-
teins such as ubiquitin show no significant residual structure in their denatured state
and therefore resemble a random coil (Wirmer et al., 2006b), although recent studies
suggest the significant population of conformations with native-like β-hairpins even
under highly denaturing conditions (Meier et al., 2007). The unfolded state of a pro-
tein is generally determined by its primary sequence. Local secondary structure and
long-range interactions can act as nucleation sites for the folding towards the native
conformation.
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1.1. Protein folding and non-native states of proteins

Ensembles of random coil conformers can be calculated by Monte Carlo proce-
dures using φ, ψ distributions extracted from high resolution structures from protein
databases (Fiebig et al., 1996; Schwalbe et al., 1997). Even highly denatured proteins
have to be treated as heteropolymer chains with residue-specific and local sequence-
dependent properties (Tran and Pappu, 2006).
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1.1.2. The investigation of protein folding and non-native states of proteins

The properties of unfolded or non-native states of proteins as well as the process of
protein folding can be investigated using a wide variety of different biophysical tech-
niques (Buchner and Kiefhaber, 2005; Dobson, 2004; Plaxco and Dobson, 1996). The
secondary structure of proteins can be probed by far-ultraviolet (UV) (180-250 nm)
circular dichroism (CD) spectroscopy, which is based on the differential absorption
of circularly polarized light by secondary structure elements (Kelly et al., 2005). Simi-
larly, Fourier transform infrared (FTIR) spectroscopy can provide information on the
backbone conformation and thus the secondary structure. In contrast, near-UV (250-
350 nm) CD can report on certain aspects of the tertiary structure of proteins, such
as the environment of aromatic side chains and the existence of disulfide bridges
and therefore is particularly valuable to monitor protein folding. The same is true
for fluorescence and ultraviolet absorbance spectroscopy, either of the intrinsic fluo-
rophores or chromophores of a protein or with the use of external probes such as flu-
orescence quenchers or external dyes (e.g. 1-anilino-8-naphthalene sulfonate (ANS)).
These agents are suitable for the investigation of extended hydrophobic patches and
clefts and the exposure of aromatic side chains to the solvent. Fluorescence reso-
nance energy transfer (FRET) can be used to monitor distances in a protein during
folding processes or to screen for protein variants with increased thermodynamic
stability (Philipps et al., 2003). Small angle X-ray scattering (SAXS) allows for the de-
termination of the radius of gyration of a protein state of interest and thus yields
very useful data e.g. of misfolded species. Deuterium pulse labelling techniques
combined with mass spectrometry (MS) can report on the formation and the per-
sistence of hydrogen bonds in folding intermediates and thus provide information
on the secondary structure.

For the investigation of protein aggregates and amyloid structures, multiple tech-
niques are available: Different dyes (including Congo red and thioflavin) can be used
to probe and stain amyloid fibers, while X-ray fiber diffraction, solid-state NMR,
atomic force microscopy (AFM) and electron microscopy (EM) report on the struc-
ture of such entities at different levels.

However, most of the insights on non-aggregated structures from the methods
described above, can also be obtained using liquid-state nuclear magnetic resonance
(NMR) spectroscopical techniques, which in addition allow for atomic resolution.
The potency of solution NMR spectroscopy for the investigation of non-native states
of proteins and protein folding and the corresponding NMR parameters will be dis-
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cussed in the following sections.
Time-resolved data on protein (re-)folding can be obtained by the combination of

spectroscopic methods with stopped-flow techniques. Another possibility — espe-
cially when combined with NMR — is the investigation of protein folding induced
by laser-triggered ion release (Kühn and Schwalbe, 2000; Wirmer et al., 2001).
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1.2. Background: Nuclear magnetic resonance spectroscopy

1.2.1. Overview

Nuclear magnetic resonance (NMR) spectroscopy is a very powerful tool to inves-
tigate structures, dynamics and interactions of biomacromolecules. Its main advan-
tages include the possibility to investigate at atomic resolution and to study the
molecules of interest in solution. Challenges of this method include the need for
relatively high concentrations (usually in the mM range), a drawback that in part
has been overcome by the development of cryogenic probes and high field magnets,
which enable experiments at the medium to high µM concentration range. A limita-
tion of liquid-state NMR spectroscopy still is the size of the investigated molecules,
which not only leads to significant resolution problems due to overlapping signals,
but also to severe broadening of the signals. The larger a molecule is, the slower
it tumbles in solution. This in turn leads to an increase of relaxation processes and
thereby to line broadening and resolutional and experimental efficiency problems.
In addition, intermediate chemical exchange can also lead to severe line broadening.

The prerequisite for the investigation of biomacromolecules at atomic resolution
is the assignment of resonances to particular nuclei, which itself is based on the
labeling of the molecules of interest with NMR active isotopes. Modern assignment
experiments are based on the incorporation of 13C and 15N nuclei into the molecules
and the selective transfer of magnetization between 1H, 13C and 15N nuclei. This will
be explained in detail in section 2.2 on page 40.

A large number of NMR parameters can be used for the characterization of pro-
teins and other biomacromolecules. Those used for the investigation of non-native
lysozyme in this thesis will be discussed in more detail in section 1.2.2 on page 12. It
should be emphasized, that the NMR parameters observed for non-native proteins
are averaged over time and the ensemble of interconverting conformers.

Chemical shifts are not only a measure for the position of distinct peaks in the spec-
tra, but also can provide information on secondary structures (see page 12).

Scalar coupling constants, particularly vicinal (3J) coupling constants, can report
on protein conformations since they depend on the torsion angle between the con-
nected spins. The relationship between coupling constants and dihedral angles is
given by so-called Karplus relations (Karplus, 1963). Karplus relations exist for a
large number of coupling constants reporting on the backbone torsion angles (φ, ψ)
in proteins. Since the Karplus relations are not single-valued, but give up to four
possible solutions for every constant, multiple experiments have to be combined in
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order the obtain the correct main chain torsion angles. The analysis of coupling con-
stants in the case of non-native states of proteins is performed by comparison with
predictions from a random coil model (Fiebig et al., 1996; Schwalbe et al., 1997; Smith
et al., 1996a,b) or with experimental values from random coil peptides (Plaxco et al.,
1997).

For folded proteins, the homonuclear nuclear Overhauser effect (NOE) yields through-
space distance restraints up to 5-6 Å that are routinely used for structure calculations
and are also used for sequential assignments. In non-native proteins NOEs are rarely
observed because in the ensemble of conformers on average two protons are not
close enough (Dyson and Wright, 2004).

Long-distance information can instead be gained from paramagnetic spin labels co-
valently attached to cysteine, histidine or lysine residues or the N-terminus of the
protein. Paramagnetic resonance enhancement (PRE) leads to broadened amide pro-
ton peaks in 1H-15N-HSQC spectra of residues in up to 15 Å distance to the spin
label and has already been applied to non-native proteins (Argirevic, 2006; Gillespie
and Shortle, 1997a,b). Nitroxide containing spin-labels or paramagnetic ions such as
Mn2+ or Gd3+ are most frequently used in such approaches.

NMR diffusion measurements can be used to determine the hydrodynamic radii (Rh)
of spherical proteins or population averaged ensembles of non-native states. Pulse
field gradient (PFG) NMR experiments are performed for this purpose with a PG-
SLED (pulse gradient-simulated echo longitudinal encode-decode) sequence with
varying strengths of a bipolar gradient pulse. Determination of the hydrodynamic
radius for the protein of interest is achieved by comparison with an internal stan-
dard, e.g. dioxane.

Amide proton hydrogen exchange methods can be used to identify protons that are
involved in hydrogen bonds or are buried in the protein core, because these protons
are protected against exchange with the solvent. Hydrogen exchange therefore can
provide valuable information on protein folding intermediates, unfolded states and
the folding kinetics, when combined with pulse labeling techniques. Since the ex-
change of hydrogen for deuterium (and vice versa) is strongly pH dependent, pH
jumps can be used for the quenching of the exchange reaction.

An introduction to secondary chemical shifts, heteronuclear relaxation, photo-
CIDNP and residual dipolar couplings (RDCs) and the application of these parame-
ters for the characterization of non-native proteins is given in the next section.

11



1. Introduction

1.2.2. NMR parameters utilized in this thesis

Secondary chemical shifts

After the assignment of the backbone resonances of a given peptide chain, chemical
shift values are available and can readily be used to extract residue-specific struc-
tural information assuming their correct referencing. Since chemical shifts depend
on the exact chemical environment of the nucleus of interest, they do not only reflect
a sequence-dependency but are also influenced by the presence of secondary struc-
ture (Spera and Bax, 1991; Wishart et al., 1991) and tertiary contacts. Secondary chem-
ical shifts (∆δ) are the difference of the measured and correctly referenced chemical
shifts (δexp) and random coil chemical shifts (δrc) from the literature:

∆δ = δexp − δrc (1.1)

An NMR spectrum of an ideal random coil polypeptide would resemble a spectrum
of the mixture of the amino acids comprising this peptide (McDonald and Phillips,
1969). Random coil chemical shifts have been collected from random coil regions
of proteins (Wishart and Sykes, 1994a; Wishart et al., 1992) and unstructured pep-
tides (Schwarzinger et al., 2000). Furthermore, effects of neighboring residues on
the random coil chemical shifts of distinct residue types have been extracted from
suitable peptides (Schwarzinger et al., 2001; Wishart et al., 1995a). In general, spec-
tra of non-native states of proteins exhibit a considerable smaller signal dispersion
than the spectra of folded proteins. Figure 1.3 on the facing page illustrates this at
the example of the 1H-15N-HSQC spectra of refolded, native HEWL and non-native
all-Ala-HEWL. There is more dispersion in the 1HN, 15NH and 13C´ resonances in
unstructured proteins than in the 1Hα, 1Hβ, 13Cα and 13Cβ resonances, reflecting the
sensitivity of the former nuclei to the nature of the neighboring amino acids in the
primary sequence of the protein (Yao et al., 2001).

In α-helical structures the 13Cα and 13C´ chemical shifts are shifted downfield,
while they are shifted upfield in β-sheets. For 13Cβ and 1Hα the situation is inverse
(Wishart and Sykes, 1994b; Zhang et al., 2003).

In so-called chemical shift index (CSI) plots, chemical shift deviations from the ran-
dom coil chemical shifts are normalized to 1, 0 and -1 depending on their direction
and extent and then plotted against the sequence of the protein (Wishart and Sykes,
1994a; Wishart et al., 1992). This provides a quick and reliable method to identify
and illustrate stretches of secondary structural elements in proteins.
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Figure 1.3.: Differences in chemical shift dispersion: 1H-15N-HSQC spectra of refolded
HEWL at pH 3.8 (left) and all-Ala-HEWL at pH 2.0 (right).
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Photo-CIDNP

CIDNP is an effect known in NMR spectroscopy already for 40 years and historically
but misleadingly named after the term Chemically induced dynamic nuclear polariza-
tion (Bargon, 2006; Bargon et al., 1967; Lawler, 1967; Ward and Lawler, 1967). Certain
lines in NMR spectra are selectively enhanced by temporary interactions of radical
pairs and can be detected as absorptive or emissive NMR signals. The IUPAC de-
fines CIDNP as a ‘Non-Boltzmann nuclear spin state distribution produced in thermal or

photochemical reactions, usually from colligation and diffusion, or disproportionation of

radical pairs, and detected by NMR spectroscopy by enhanced absorption or emission

signals’ (Nic et al., 2006). Since the discovery of this phenomenon and its elucidation
(Closs, 1969; Kaptein and Oosterhoff, 1969), photo-CIDNP methods have particu-
larly been developed further for the investigation of biomacromolecules (Hore and
Broadhurst, 1993; Kaptein et al., 1978; Mok and Hore, 2004). In such experiments,
the radical is temporarily generated by irradiation with light, usually a laser beam
is used. A major advantage of CIDNP methods versus conventional NMR spec-
troscopy is its signal enhancement and thus the improved sensitivity.

Photo-CIDNP NMR methods have two major applications for the investigation
of protein folding and unfolded proteins: Firstly, they can be used to probe solvent
accessibilities of aromatic residues (Broadhurst et al., 1991; Kaptein et al., 1978; Lyon
et al., 1999) and secondly they can be used in combination with time-resolved NMR
spectroscopy to follow the kinetics of protein folding (Dobson and Hore, 1998; van
Nuland et al., 1998; Wirmer et al., 2001).

Photo-CIDNP NMR experiments rely on the temporary interaction of a photoex-
cited dye — primarily a flavin such as riboflavin 5’-mononucleotide (FMN) — with
an aromatic amino acid side chain (tryptophan, tyrosine and histidine) or to a much
lesser degree with methionine. The photoexcitation of the dye is usually achieved by
a short laser pulse. The laser beam is coupled into the NMR-tube with optical fibers
and triggered by the NMR pulse program. Applying the photo-CIDNP method to
a protein results in the signal enhancement and in a better resolution in the aro-
matic region of the NMR spectrum. Intensities of photo-CIDNP signals depend on
the polarization efficiency (Trp > Tyr � His � Met) and on the solvent accessibil-
ity of the residues. In 1H photo-CIDNP emissive signals are observed for tyrosine
residues, whereas the signals of tryptophan and histidine are absorptive. Figure 1.4
on the next page illustrates the photo-CIDNP effect on the example of the aromatic
region of the spectra of native α-lactalbumin: Comparable signal-to-noise ratios re-
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quire much more scans (in this case 128 vs. 1) for conventional one-dimensional
NMR spectra than for the photo-CIDNP spectrum. Photo-CIDNP-spectra are usu-
ally recorded as differences between light (photo-excited) and dark spectra. During
a photo-CIDNP experiment a photo cycle as shown in figure 1.5 on the following
page is passed through. Upon light irradiation by the laser beam, the photosensi-
tizer (e.g. FMN) is excited to a triplet state and a triplet radical pair is formed after
an electron (or a hydrogen in the case of tyrosine) is transferred from the amino acid
side chain to the photosensitizer. This triplet radical pair can either evolve to a sin-
glet radical pair and eventually by an electron back transfer to the ground state of
the two reactants ("recombination products"), or it can separate to form individual
free radicals and finally after an encounter of the two species and recombination the
ground states ("escape products"). The chemical reactivities of the recombination
and escape pathways depend on the nuclear spin state. This results eventually in a
non-Boltzmann distribution of the spins in the aromatic side chain and therefore a
signal enhancement is observed (Hore and Broadhurst, 1993; Mok and Hore, 2004).

Figure 1.4.: The photo-CIDNP effect: Comparison of a standard one-dimensional NMR
spectrum (128 scans) with a photo-CIDNP spectrum (1 scan) of folded α-lactalbumin.
Spectra taken from Wirmer (2005).

In solution NMR spectroscopy photo-CIDNP is usually performed in 1H spectra,
although higher signal enhancements have been reported for 15N nuclei (Lyon et al.,
1999). An important advantage of photo-CIDNP NMR for unfolded states of pro-
teins is the better resolution due to the fact that only few residues are polarized.
It is therefore often possible to assign peaks in unlabeled proteins to the respective

15



1. Introduction

residues and furthermore follow the changes in accessibility in different unfolded
states (Broadhurst et al., 1991).

Heteronuclear two-dimensional photo-CIDNP experiments have been introduced
to overcome the resolution limitations of one-dimensional NMR (Scheek et al., 1984,
1985). A 15N,1H heteronuclear photo-CIDNP experiment has been reported and ap-
plied to native and urea-denatured HEWL (Lyon et al., 1999). This experiment has
the advantage, that only 15N-bound protons are detected and a much larger signal
enhancement is observed due to the differences in the hyperfine coupling and in the
Boltzmann polarization of 15N.
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Figure 1.5.: The photo-CIDNP cycle. F is the photosensitizer (e.g. FMN) and A is the
solvent-accessible amino acid side chain.
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Residual dipolar couplings

Residual dipolar couplings (RDCs) are very valuable parameters in structure determi-
nation by modern solution NMR spectroscopy (Lipsitz and Tjandra, 2004; Prestegard
et al., 2000). They yield relative orientations of bond vectors, which can be put into
calculations as long-distance restraints. Dipolar couplings itself are based on the
direct interaction of two proximate magnetic dipoles through space depending on
their orientation with respect to the external magnetic field B0. However, in solution
dipolar couplings are averaged out because molecules tumble isotropically and all
orientations are equally probable. If, for any reason, one orientation is preferred,
residual dipolar couplings can be detected. The size of the RDCs is tunable by the
degree of anisotropy, i.e. to which extent the molecules are aligned in the medium.
Usually the residual dipolar couplings between two directly bonded nuclei (e.g. 1H-
15N) are determined. An alignment of a factor of 10-3 to 10-4 as compared to an
ordered solid is desired in order to obtain RDC values in the order of 25 Hz (as
opposed to 25 kHz in a crystal) for the amide 1H-15N bond in protein backbones
(Prestegard et al., 2004).

The value of the dipolar coupling Dij for a pair (i,j) of spin 1
2 nuclei in a magnetic

field is dependent on their effective distance rij and the angle θ of their internuclear
vector (e.g. their bond) to the magnetic field (see figure 1.6 on the next page). Equa-
tion (1.2) describes this dependency, where γi,j are the gyromagnetic ratios, µ0 is the
permittivity of space and h is Planck’s constant. The averaging over the fast molec-
ular motion in the laboratory frame is denoted by the brackets around the angular
term, which is only zero for a completely isotropic situation.

Dij = −
γiγjµ0h
8π3r3

ij

〈
3cos2θ − 1

2

〉
(1.2)

The averaging can also be expressed by the introduction of a molecular frame
in which the mean orientation of the whole molecule is given with respect to the
magnetic field (angles ξX, ξY and ξZ in figure 1.6). The orientation of the internuclear
vector of interest is then given relative to the molecular frame (angles ζX, ζY and ζZ).
Therefore cosθ in equation (1.2) has to be replaced by equation (1.3):

cosθij =

 cosζx

cosζy

cosζz


 cosξx

cosξy

cosξz

 = cosζxcosξx + cosζxcosξz + cosζzcosξz (1.3)
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This yields equation (1.4) for the left term of equation (1.2), assuming the molecule
to be rigid:〈

3cos2θ − 1
2

〉
=

3
2
〈(cosζxcosξx + cosζxcosξz + cosζzcosξz)2〉 − 1

2
(1.4)

With Ci = cosθi and ci = cosξi this can be transformed to equation (1.5):

〈
3cos2θ − 1

2

〉
=

3
2
[〈c2

x〉C2
x + 〈c2

y〉C2
y + 〈c2

z〉C2
z

+ 2〈cxcy〉CxCy + 2〈cxcz〉CxCz + 2〈cycz〉CyCz]−
1
2

(1.5)

Here, the averaging only occurs for the orientation relative to B0, since the orien-
tation of the internuclear vector with respect to the molecular frame was assumed
to be rigid. The preferential orientational averaging can then be described in terms
of a symmetric 3x3 order matrix A (i.e. the alignment tensor) (Saupe, 1968), whose
elements Akl are:

Akl =
3
2
〈cosξkcosξl〉 −

1
2

δkl (1.6)

δkl in equation (1.6) is the Kronecker Delta and the trace of the matrix is zero.

Figure 1.6.: Orientation of a bond vector relative to the B0 field (angle θ) and the molecu-
lar frame (angles ζX , ζY and ζZ). The orientation of B0 relative to the molecular frame is
given by the angles ξX , ξY and ξZ. Modified after Blackledge (2005) and Mathieu (2007).

Individual RDCs can then be described by equation (1.7) on the facing page:
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1.2. Background: Nuclear magnetic resonance spectroscopy

Dij = −
γiγjµ0h
8π3r3

ij,eq
∑
kl

Aklcosζkcosζl (1.7)

r3
ij,eq has been implemented in this equation to account for the averaging of this

term and in order to gain a static equation. Diagonalization of the so-called Saupe
matrix gives a description that is more convenient to handle and introduces a new
molecular frame, the principal axis system (PAS, see figure 1.7) with the new diagonal
elements Axx, Ayy and Azz. The off-diagonal elements in this matrix are zero and
the orientation of the PAS with respect to the coordinate frame can be described by
a three-dimensional Euler rotation R(α, β, γ).

Figure 1.7.: Schematic representation of a bond vector in the principal axis system. The
polar angles φ and θ are used to define its orientation in the principal axis system. Mod-
ified after Blackledge (2005) and Mathieu (2007).

Therefore, the measured RDC can be described using the polar angles θ and φ

(figure 1.7) by equation (1.8):

Dij(θ, φ) = −
γiγjµ0h

8π3r3
ij,e f f

[Azzcos2θ + Axxsin2θcos2φ + Ayysin2θsin2φ] (1.8)

The absolute value of Azz by convention is the largest component, while Axx is the
smallest. In this case the axial component is Aa = Azz/2 and the rhombic component
is Ar = (1/3)(Axx − Ayy):
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Dij(θ, φ) = −
γiγjµ0h

16π3r3
ij,e f f

[
Aa(3cos2θ − 1) +

3
2

Arsin2θcos2φ

]
(1.9)

The maximum value for a residual dipolar coupling will be reached for a orien-
tation of the internuclear vector along the z-axis of the alignment tensor and more
generally the five parameters Aa, Ar, α, β and γ determine the alignment tensor.
Therefore, five or more independent sets of RDCs are needed to determine these pa-
rameters or alternatively a singular value decomposition can be performed (Loson-
czi et al., 1999).

However, a measured RDC still will not yield an unambiguous orientation of the
internuclear vector (see figure 1.8). To solve this problem, one can either measure
sets of RDCs for different internuclear vectors, whose relative orientations to each
other are known or one can measure in different independent alignment media. A
combination of both approaches is possible by measuring RDCs for different pairs
of nuclei in only two independent alignment media (Al-Hashimi et al., 2000).

Figure 1.8.: Distribution of RDC values for the possible orientations. The RDC value is
color coded, a maximal RDC is observed when the orientation is along the z-axis, the
minimal value at an orientation along y. Modified after Blackledge (2005) and Mathieu
(2007).

The situation in unfolded proteins is different: While for a folded protein the sign
and value of a RDC is determined by the orientation of each bond vector with respect
to the alignment tensor of the whole molecule (or molecular domain), unfolded pro-
teins have to be treated as chains of statistical segments. Each segment has its own
alignment tensor and in addition, the RDCs are dependent on the presence of tran-
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sient secondary structure. In such polypeptide chains, conformational averaging
and internal motions result in very small residual dipolar couplings. In ideal random
flight chains smooth bell-like distributions have to be expected (Louhivuori et al.,
2003; Obolensky et al., 2007) that can be explained by extended or polyproline II
conformations (Mohana-Borges et al., 2004).

Significant RDC have been measured in proteins under denaturing conditions,
which have been attributed to the persistence of native-like structure in the cases of
the ∆131∆ fragment of staphylococcal nuclease in 8 M urea (Gebel et al., 2006; Shortle
and Ackerman, 2001) and denatured eglin C (Ohnishi et al., 2004) and to local con-
formational propensities in the cases of apomyoglobin (Mohana-Borges et al., 2004)
and the thermally unfolded B1 domain of protein G (Ding et al., 2004). Long-range
interactions have been shown to significantly modulate the RDCs in the natively
unfolded α-synuclein (Bernadó et al., 2005a) and acid-denatured acyl-CoA binding
protein (ACBP) (Fieber et al., 2004).

It has been shown that RDCs can be predicted in some cases for unfolded proteins
from ensembles of unfolded structures generated using statistical φ,ψ propensities
taken from loop regions of databases (Bernadó et al., 2005b; Jha et al., 2005). This
method has been refined by including information on the bulkiness of amino acid
side chains (Cho et al., 2007) and long-range contacts (Bernadó et al., 2005a). For
the natively unfolded tau protein, the presence of β and β-turn structural motifs
is reflected in the measured residual dipolar couplings (Mukrasch et al., 2007a,b).
Long-range HN-HN-RDCs have been used in urea-denatured ubiquitin to probe the
significant population of native-like β-hairpin conformations under these conditions
(Meier et al., 2007).

Partial alignment of samples to gain an anisotropic distribution of orientations
of the molecules of interest can be achieved by a variety of different methods. In
early times, high magnetic fields have been used to align molecules exploiting the
anisotropies in their magnetic susceptibilities (Tolman et al., 1995). Similarly, para-
magnetic lanthanide ions have been incorporated in some proteins in order to align
them along the magnetic field (Bertini et al., 2000; Ma and Opella, 2000). Lanthanide-
binding tags (Martin et al., 2007; Wöhnert et al., 2003) can be attached for that purpose
to proteins that do not bind lanthanides specifically. However, special alignment me-
dia have been developed in which biomacromolecules can be aligned. The first such
medium contained so-called bicelles, i.e. a mixture of different phosphatidylcholine
derivatives that form liquid crystalline particles, which align in the magnetic field
and thereby lead to a net anisotropic orientation of the sample molecules by steric
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obstruction (Losonczi and Prestegard, 1998; Tjandra and Bax, 1997). In a similar way,
solutions containing filamentous bacteriophages have been used (Clore et al., 1998;
Hansen et al., 1998), though the alignment of the sample molecules in this case is
based on electrostatic interactions with the highly charged coat protein of the phages.

A very different method to induce partial alignment in an NMR sample is the use
of compressed or stretched polymeric gels. The alignment in such strained gels is
independent of the direction of the magnetic field and the orientation of the sam-
ple molecules is based on the anisotropic environment. Highly cross-linked poly-
acrylamide gels (Sass et al., 2000; Tycko et al., 2000) are most commonly used. Com-
pressed gels with a smaller diameter than the diameter of an NMR tube are prepared
and than compressed until they fill the whole diameter of the tube (Tycko et al., 2000).
In contrast, stretched polyacrylamide gels are casted with a larger diameter and then
pressed into the NMR tube by suitable devices. Thereby, strands of the polymer with
preferred direction are produced. Strained polyacrylamide gels are particularly well
suited for the use with unfolded proteins that could otherwise bind to hydrophobic
surfaces of most of the other available media. In addition, polyacrylamide gels can
be used at low pH, a condition that is often a requirement for the investigation of
unfolded proteins.

Variations and combinations of the described methods and other techniques for
the alignment of samples are discussed in more detail in Prestegard et al. (2004).
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Protein dynamics by heteronuclear relaxation

Many biological processes, e.g. ligand binding, protein folding or enzymatic catal-
ysis, require conformational changes in proteins. Therefore, proteins must not be
completely rigid but contain more or less flexible regions. Figure 1.9 illustrates the
timescales of different motions in proteins and of NMR parameters suitable for their
investigation.

Figure 1.9.: Time-scales of molecular motions and NMR-techniques. Modified after
Boehr et al. (2006).

Conformational dynamics on timescales faster than the overall rotational corre-
lation time τc of the molecule can be accessed by spin relaxation methods. For a
spherical molecule τc is proportional to the volume of the molecule and the vis-
cosity of the medium. The amide 15N spin in proteins is the most frequently used
nucleus to probe backbone dynamics. The heteronuclear 15N longitudinal (R1) and
transverse (R2) relaxation rates and the heteronuclear 1H-15N-NOE (hetNOE) are
sensitive to motions on the subnanosecond timescale and to slow conformational
exchange in the microsecond timescale. These NMR parameters are not only influ-
enced by local fluctuations (e.g. of the NH bond vector) but are also dependent on
the overall rotational correlation time τc of the molecule. This dependence is shown
for a isotropically tumbling rigid molecule in figure 1.10 on the following page.
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Figure 1.10.: Dependence of R1, R2 and the heteronuclear NOE on the overall rotational
correlation time τc of the molecule in the absence of internal motions and isotropic tum-
bling. Modified after Wirmer et al. (2005).

The R1 and R2 heteronuclear relaxation rates and the hetNOE of an amide 15N
nucleus with its bound proton are dominated by the dipolar interaction and the
chemical shift anisotropy (CSA) (Wagner, 1993). The exact formulae in terms of spectral
density functions are given in equations (1.10) to (1.12) (Farrow et al., 1994):

R1 = d2[J(ωH −ωN) + 3J(ωN) + 6J(ωH + ωN)] + c2 J(ωN) (1.10)

R2 =
d2

2
[4J(0) + J(ωH −ωN) + 3J(ωN) + 6J(ωH) + 6J(ωH + ωN)]

+
c2

6
[4J(0) + 3J(ωN)]

(1.11)

hetNOE = 1 +
d2

R1

γH

γN
[6J(ωH + ωN)− J(ωH −ωN)] (1.12)

The constants c2 (for the CSA contribution) and d2 (for the dipolar interaction) are
defined in equations (1.13) and (1.14), respectively:

c2 =
2
15

γ2
N H2

0(σ‖ − σ⊥)2 (1.13)
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d2 = 0.1
γ2

Hγ2
Nh2

4π2

〈
1

r3
NH

〉2

(1.14)

γH and γN are the gyromagnetic ratios of 1H and 15N, ωH and ωN are the Larmor
frequencies, rNH is the 1H-15N internuclear distance, h is Planck’s constant, H0 is the
magnetic field strength, and σ‖ − σ⊥ gives the parallel and perpendicular compo-
nents of the chemical shift tensor. To account for conformational exchange contribu-
tions (Rex) in addition to the dipolar interactions (T2,DD) and the CSA contributions
(T2,CSA), equation (1.11) for the transverse relaxation (R2) has to be expanded:

R2 =
1

T2,DD
+

1
T2,CSA

+ Rex (1.15)

Usually, for a protein the complete set of R1and R2 relaxation rates and hetNOE
data are recorded. The analysis of these relaxation rates for folded proteins in terms
of backbone dynamics is generally done using the model-free formalism (Lipari and
Szabo, 1982a,b). This approach assumes that the overall tumbling of the protein (τc)
and the internal motions of the backbone amides (τe) occur on different timescales.
Therefore, at a known τc value, internal motions can be analyzed independently. The
order parameter S2 is a measure for the spatial restriction of the internal motion, it
can assume values from 0 to 1, with 1 being the completely rigid case. Figure 1.11 on
the next page illustrates the dependence of 15N heteronuclear R2 relaxation rates on
the internal motion (τe, S2) and the global correlation time τc. The higher the internal
motions the smaller are the measured relaxation rates. However, for unfolded pro-
teins the assumption of the separability of global and internal motions is no longer
valid, and thus the Lipari-Szabo model-free approach cannot be applied.

An alternative to the measurement of transverse relaxation rates (R2) is the deter-
mination of the rotating frame spin-lattice relaxation rates R1ρ (Dayie and Wagner,
1994; Deverell et al., 1970; Szyperski et al., 1993). R1ρ is in principal the same as R2,
but deviations can be observed in the presence of conformational exchange, since
the exchange contributions are included in the R2 rates but not in R1ρ. In general,
slow (micro- to millisecond) dynamics can be investigated not only by R1ρ experi-
ments, but also by CPMG relaxation dispersion methods (Palmer et al., 2001). Both
techniques rely on the dispersion in the transverse relaxation rates as a function of
the applied radio frequency field strength and exchange rates can be extracted from
fits of model functions to the relaxation dispersion profile (Palmer, 2004). These
methods are not restricted to 15N amide relaxation, but have also been successfully
applied to 13Cα nuclei (Lundström and Akke, 2005).
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Figure 1.11.: Dependence of 15N R2 heteronuclear relaxation rates on the correlation
times for global (τc) and internal (τe) motions and the order parameter (S2) from a
model-free approach.
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1.3. Hen egg white lysozyme

Hen egg white lysozyme (HEWL) is one of the best studied proteins, its structure
and folding has been investigated for many decades. Lysozymes (systematically
classified as EC.3.2.1.17) are ubiquitous in many species and play an import role
in the defense against pathogenic bacteria. They hydrolyze β-1,4-glycosidic bonds
between N-acetyl muramic acid and N-acetylglucosamine which occur in peptido-
glycans found in the cell walls of certain microorganisms, especially Gram-positive
bacteria (Stryer, 1998). The term lysozyme for this class of enzymes has been formed
by Alexander Fleming in 1922, when discovering these proteins and their functions
(Fleming, 1922). Human lysozyme occurs mainly in mucosal secretions and despite
its beneficial role, several single-point mutations have been found to be associated
with hereditary forms of systemic amyloidosis (Merlini and Bellotti, 2005; Pepys
et al., 1993).

The lysozyme from hen egg white is a monomeric 129-residue protein with a
molecular mass of approximately 14.5 kDa (Canfield, 1963) and its native structure
has been first determined by X-ray crystallography in 1965 (Blake et al., 1965). It
consists of two domains: the α-domain (residues 1-35 and 85-129) comprises four
α-helices and a 310-helix, the β-domain (residues 36-84) contains a triple-stranded
anti-parallel β-sheet, a 310-helix and an extended loop region. In the native state,
its eight cysteine residues form four disulfide bridges. Figure 1.12 on the following
page shows one member of the high resolution NMR solution structure ensemble
(Schwalbe et al., 2001), the two domains are colored differently.

The kinetics of the refolding of HEWL from denaturing conditions with its four
disulfide bridges intact has been investigated by a variety of techniques, includ-
ing hydrogen-exchange labeling NMR and MS and stopped-flow CD, fluorescence
and absorbance spectroscopy. Under the in vitro refolding conditions, a hydropho-
bic collapse that is accompanied by the formation of native-like secondary struc-
ture is observed within a few milliseconds (Matagne and Dobson, 1998). After the
initial hydrophobic collapse, the folding kinetics are heterogeneous, intermediate
states are populated and multiple slow and fast folding pathways exist. Cis/trans-
isomerization of one or both prolines in HEWL can slow down the folding for a
significant portion of the population. During refolding of HEWL, intermediates are
observed for parts of the population that show a structured α-domain and the fold-
ing of the β-domain seems to be the rate limiting step (Matagne et al., 1998).

Oxidative refolding from the disulfide reduced form of the protein is more com-
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plicated as the correct disulfide bridges have to be formed by the end and thus the
refolding of reduced HEWL takes much longer than for the oxidized form. Interme-
diate states with one, two and three disulfide bridges are being formed and signifi-
cantly populated (Fischer, 1996).

N-terminus

W62

W63

W123

W111
W108

W28

C-terminus

Figure 1.12.: One member of the high resolution NMR solution structure ensemble of
native hen egg white lysozyme (PDB: 1E8L) (Schwalbe et al., 2001). The tryptophan
residues are highlighted in red, the α domain is colored in blue, the β domain is in light
green. This image has been produced using PyMOL (DeLano Scientific, San Carlos, CA,
USA).

HEWL was one of the first proteins to be investigated with NMR spectroscopy
(Cohen and Jardetzky, 1968; Meadows et al., 1967; Sternlicht and Wilson, 1967). How-
ever, it was not until more than 20 years later that an assignment of the backbone and
first structural data was available (Redfield and Dobson, 1988; Smith et al., 1991).
The first solution NMR structure of hen egg white lysozyme was published in 1993
(Smith et al., 1993). The assignment of backbone amide and side chain 15N reso-
nances in native HEWL allowed for the investigation of the dynamics by heteronu-
clear relaxation measurements. The relaxation-derived order parameters, which are
a measure of the flexibility of the backbone and the side chains, have been found to
agree very well with the structure of the protein (Buck et al., 1995a).

Not only native HEWL and the process of its refolding have been studied, but also
the nature of non-native states under various denaturing conditions has been a sub-
ject to research for many years. The structural and dynamical properties of oxidized
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(i.e. disulfide intact) and reduced, S-methylated HEWL in 8 M urea have been stud-
ied by NMR already in 1997 using short- and medium-range NOEs and 3J(HN,Hα)
coupling constants to probe residual local structure (Schwalbe et al., 1997). In the
same work longitudinal (R1), transverse (R2) and rotating-frame (R1ρ) relaxation
rates and the heteronuclear 1H-15N-NOE have been used to investigate the dynam-
ics of the backbone under these conditions. The experimental data for both states
have been compared to predicted values for a random coil (Fiebig et al., 1996) and
found to agree well for most of the chain, although significant deviations especially
in the relaxation rates have been observed for parts of the sequence. Differences
between the unbranched reduced lysozyme chain and the cross-linked, disulfide-
intact peptide chain have been observed as expected in the flexibility of the regions
around the disulfide bridges (Collins et al., 2005; Schwalbe et al., 1997). The devia-
tions from the random coil behavior have primarily been attributed to long-range
interactions and hydrophobic clustering (Klein-Seetharaman et al., 2002). Further-
more, these effects have also been observed in the reduced and S-methylated HEWL
(HEWL-SMe) in water at pH 2. Hydrophobic clusters and long-range interactions in
non-native states have also been reported for a variety of other proteins (Neri et al.,
1992; Ropson and Frieden, 1992; Saab-Rincón et al., 1996), suggesting the role of these
hydrophobic clusters as nucleation sites in protein folding.

Figure 1.13.: Distribution of hydrophobicity in HEWL. Normalized hydrophobicity val-
ues are calculated according to Abraham and Leo (1987). A Gaussian least-squares fit-
ting of hydrophobic clusters is shown as a black curve, the clusters are designated 1-6
(data taken from Wirmer et al., 2004).
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Figure 1.14.: 15N R2 relaxation rates in HEWL-SMe and the A9G, W62G, W62Y, W111G,
and W123G single point mutants of HEWL-SMe. The baselines from the segmental mo-
tion model (see equation (3.1) on page 86) are given in red, the Gaussian fits are indi-
cated by blue curves. The grey curves in the plots for the single point mutants indicate
the relaxation rates for the wild-type. Diffusion derived radii of hydration (Rh) are given
for HEWL-SMe and some of the mutants (all data taken from Wirmer et al., 2004).
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Six hydrophobic clusters have been identified in HEWL-SMe from elevated R2 re-
laxation rates (compare upper left section of figure 1.14 on the facing page): around
residues A9-A11 (cluster 1), around W28 (cluster 2), around W62/W63 (cluster 3),
region around A82 (cluster 4), around W108/W111 (cluster 5) and around W123
(cluster 6) (Klein-Seetharaman et al., 2002; Wirmer et al., 2004). Interestingly, the el-
evated relaxation rates coincide with the calculated hydrophobicity (Abraham and
Leo, 1987) along the amino acid sequence of HEWL very nicely (see figure 1.13 on
page 29). These findings underlined the importance of hydrophobic residues and
tryptophans in particular and led to the introduction of a single point mutation at
position 62 to replace this tryptophan with a glycine. This mutation resulted in the
nearly complete disappearance of the elevated relaxation rates in all of the clusters,
suggesting long-range interactions of W62 with the other hydrophobic clusters and
the absence of such clusters in the W62G mutant of HEWL-SMe. The situation is
somewhat different in the oxidized form of HEWL and W62G-HEWL in 8 M urea,
where the intact disulfide bridges lead to additional restraints in flexibility and hence
to higher relaxation rates in these regions. The role of W62 in the mediation of the
hydrophobic clustering and the long-range contacts in the denatured states is re-
markable, given its high mobility and its position at the surface in the native protein
(Blake et al., 1965; Buck et al., 1995b; Schwalbe et al., 2001). Taken all data together,
native-like as well as non native-like hydrophobic contacts seem to exist in non-
native states of HEWL.

A number of conservative and non-conservative single-point mutants of HEWL-
-SMe has been prepared in order to further investigate the importance of hydropho-
bic residues for the residual tertiary structure in non-native states of this protein
(Wirmer et al., 2004). The replacement of W62 by a tyrosine leads to a very similar
relaxation profile as for HEWL-SMe, while A9G only attenuates the first cluster and
W111G and W123G significantly modulate all clusters. W111G weakens cluster 5,
in which it is located and clusters 2 and 6, while for the central cluster 3 only mi-
nor effects are observed. In W123G cluster 6 disappears and cluster 2, 3 and 5 are
weakened (figure 1.14 on the facing page).

The modulation of the hydrophobic clustering in non-native lysozyme by the
single-point mutants is also reflected in the compactness of these mutants. This has
been shown by the determination of the radii of hydration (Rh) by diffusion NMR
(Wirmer et al., 2004): While native HEWL has an Rh of 20.5 Å, HEWL-SMe in water
has an Rh of 26.9 Å. Even more extended are the W62G and W111G mutants with
radii of hydration of 32.1 Å and 29.3 Å. The W123G mutant of HEWL-SMe has a
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comparable compactness as the wild-type HEWL-SMe. The more the hydrophobic
clusters are weakened, the more extended are the non-native states of HEWL. Fig-
ure 1.15 illustrates the effect of compactness on the basis of randomly chosen con-
formations with the Rh values corresponding to the ones for the different mutants of
HEWL-SMe.

Figure 1.15.: Conformations with the amino acid sequence of HEWL randomly chosen
to represent distinct radii of hydration (Rh) (modified after Wirmer et al., 2004).
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1.4. Motivation and aims

As outlined in the preceding sections, the investigation of non-native states of pro-
teins can contribute to the understanding of protein folding and misfolding, espe-
cially to the early events on the way of structure formation. Hen egg white lysozyme
has been a model protein in this context for many years. Its non-native states exhibit
significant residual secondary and tertiary structure, and thus cannot be interpreted
as random coils. The exact nature of the non-native states of hen egg white lysozyme
can be modulated by single-point mutants.

Hitherto, the existing data on the nature of non-native states of HEWL was de-
rived from either the overall properties of the non-native ensemble of conformers
or residue-specific for the peptide backbone. Since the side chain type determines
the hydrophobic clustering and especially the tryptophan residues play the key role
in the long-range interactions, a method is desired to look at these residues at the
side chain level. In the context of NMR, the prerequisite in achieving this goal is
the assignment of resonances in these side chains. This can be addressed by the
development and application of novel pulse sequences.

So far, mainly the dynamical properties of the non-native states of HEWL have
been investigated at atomic resolution, while the non-local structural information
is rare, especially regarding the environment of the tryptophan residues. Conse-
quently, the second major aim of this thesis is the determination of structural NMR
parameters, such as residual dipolar couplings (RDCs) that can add to the under-
standing of the situation in non-native lysozyme and mutants thereof.

In addition, the dynamical properties of a lysozyme variant with all cysteines re-
placed by alanines are to be investigated at different time-scales by relaxation mea-
surements to pick up fast and possible slower motions.
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2.1. Sample preparation

2.1.1. Overview

The synthetic genes encoding for hen egg white lysozyme (HEWL) with an N-ter-
minal methionine (designated wild-type HEWL for simplification throughout this
text) (Schlörb, 2003) and its respective all-Ala mutant with all cysteines residues re-
placed by alanines (Ackermann, 2003), were obtained from Entelechon, Regensburg,
Germany in vector pCR4-TOPO, and subsequently cloned into the pET11a expres-
sion vector. The N-terminal methionine, which is not present in the wild-type hen
protein, has been introduced for expression in E. coli. This modification has been
shown to have no effect on the structure and dynamics of the non-native states of
this protein (Schlörb et al., 2005). Traditionally, hen egg white lysozyme has been
rendered non-native by maintaining a pH value of 2.0, by reduction of its four disul-
fide bridges and the successive S-methylation of the eight cysteine residues (Schlörb,
2003). In order to circumvent the drawbacks of this method, such as unwanted side-
reactions, incomplete methylation and losses during purification, an alternative ap-
proach has been introduced, in which all cysteines in hen egg white have been re-
placed by alanines (designated all-Ala-HEWL) (Ackermann, 2003). This variant of
the protein has very similar properties at pH 2.0 as compared to the S-methylated
protein and therefore is a suitable replacement in the studies of the non-native states
of hen egg white lysozyme.

All chemicals used in this work were at least of analytical grade and ordered at
Sigma-Aldrich/Fluka (St. Louis, MO, USA) or Carl Roth GmbH (Karlsruhe, Ger-
many) unless indicated otherwise.
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2.1.2. Expression and purification

Transformation of BL21(DE3) cells

Aliquots of competent E. coli BL21(DE3) cells (Stratagene, La Jolla, CA, USA) have
been transformed with the pET11a (Novagen, Merck, Darmstadt, Germany) based
vectors containing the gene coding for hen egg white lysozyme and its mutants, re-
spectively. The cells have been thawed on ice and 1.0 µL plasmid DNA (approx.
200 ng/mL) has been added to 50 µL of the cell suspension. After a 45 min incu-
bation period on ice, the reaction mix has been heat-shocked for 45 sec at 42°C and
cooled for 2 min on ice. Following the addition of 250 µL SOC medium (Invitro-
gen, Karlsruhe, Germany), the cells were allowed to grow for 40 min at 37°C and
170 rpm in a shaker. The cell suspension was then plated on ampicillin-containing
(100 µg/mL) LB agar plates and incubated over night at 37°C. The pET11a based
vectors contain a gene for ampicillin resistance and a IPTG inducible T7 promotor
for protein expression.

Expression of isotope-enriched proteins

Hen egg white lysozyme and its variants have been expressed heterologously in
E. coli to allow for the uniform isotope enrichment of either nitrogen nuclei alone or
nitrogen and carbon nuclei simultaneously with NMR active isotopes (15N and 13C).
The 15N,13C labeling is necessary for the sequential assignment of resonances using
NMR experiments depending on the correlation of 15N and 13C nuclei, while 15N-
only labeled proteins have been used for all other NMR experiments in this work.
Uniform 15N and 13C isotope labeling was assured by providing 15N ammonium
chloride and 13C6 D-glucose (both obtained from Cambridge Isotope Laboratories,
Andover, MA, USA) in the growth medium as the sole source for nitrogen and car-
bon, respectively. M9 medium (Sambrook and Russel, 2001) was used as a minimal
medium for isotope enrichment during protein expression.

A 4 mL LB-culture (containing 100 µg/mL ampicillin) was allowed to grow for 3-4
hours at 37°C and 170 rpm in a shaker after inoculation with a single colony from
a plate. This pre-pre-culture was then transferred into a 50 mL M9-pre-culture (see
table A.1 on page 107 for the composition of M9 minimal medium). The pre-culture
was incubated over night at 37°C and 170 rpm in a shaker to a OD600 of about 2.0.
Cells were harvested by centrifugation at 5,500 g for 10 min (Heraeus Biofuge primo
R) and resuspended in M9 medium. The centrifugation/resuspension step was re-
peated twice for washing. After washing, a 2 L M9-main-culture was inoculated
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from the pre-culture to a initial OD600 of about 0.1. Cells were allowed to grow to
a OD600 of 0.8 at 37°C and 170 rpm in a shaker and then protein expression was
induced by the addition of 1 mg/L IPTG. After 3 hours of protein expression, the
cells were harvested by centrifugation for 30 min at 6,000 g in a centrifuge (Beckman
Coulter Avanti J-20XP). The cell pellet was stored at -80°C until further processing.

Solubilization of inclusion bodies

Recombinant hen egg white lysozyme and all of its mutants and variants have been
expressed into inclusion bodies in E. coli. The inclusion bodies are formed since the
protein cannot be folded correctly in the E. coli cells. In the case of wild-type HEWL,
the redox conditions inside the cells do not allow the formation of the four disulfide
bridges (Makrides, 1996); for all-Ala-HEWL the formation of the native conformation
is completely impossible as there are no cysteine residues present.

For the solubilization of the inclusion bodies, the cells were resuspended after
thawing in 40 mL (per initial L M9 medium) sonication buffer (containing 50 mM Tris,
25 % sucrose, and 1 mM EDTA, pH 7.5; all buffers for the solubilization of the inclu-
sion bodies are summarized in table A.2 on page 108), 10 units DNase I (1 µL; New
England Biolabs, Ipswich, MA, USA) and 1.5 mL 100 mM MgCl2 were added and
the suspension was sonicated four times for 1 min at 40 % power to disrupt the cells.
The cell extract was washed once by centrifugation (10,000 g, 30 min), resuspended
in sonication buffer and spun down again at the same conditions. The pellet obtained
was resuspended in washing buffer (containing 20 mM Tris, 1 % Triton X-100, and
1 mM EDTA, pH 7.5) and centrifuged for 30 min at 10,000 g. This additional wash-
ing step removes the cell membrane fragments. To finally solubilize the inclusion
bodies, the pellet was resuspended in denaturation buffer (containing 20 mM Tris,
50 mM NaCl, 8 M urea, 5 mM EDTA, and 0.1 M DTT, pH 7.5) and spun down for
10 min at 10,000 g. The supernatant contained the solubilized inclusion bodies.

Protein purification

The solubilized inclusion bodies were further purified by ion exchange chromato-
graphy, the buffers used for the purification are listed in table A.3 on page 108. The
isoelectric point (pI) calculated from the amino acid sequence (Gasteiger et al., 2005)
is between 9.3 and 10.5 for all variants of HEWL used in this work, therefore a cation
exchange column (CM sepharose, 8 ml column volume, column dimensions: 1.0 cm
x 10 cm x 8.0 cm) was chosen for purification at a buffer pH of 7.5. The column was
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equilibrated with 10 column volumes of buffer A (50 mM Tris, 50 mM NaCl, 4 M
urea, 1 mM EDTA, and 5 mM 2-mercaptoethanol) before the solubilized inclusion
bodies were loaded. The protein was eluted from the column at a flow of 0.7 mL/min
using a linear salt gradient from buffer A to buffer B (50 mM Tris, 300 mM NaCl, 4 M
urea, 1 mM EDTA, and 5 mM 2-mercaptoethanol). A Bio-Rad BioLogic LP (Bio-Rad,
Hercules, CA, USA) FPLC system equipped with a UV light detector (280 nm) and
a fraction collector (fraction size 3.5 mL) was used for the chromatography. Suitable
fractions containing the desired protein (judged from SDS-PAGE, 15 % gels) were
pooled. For all-Ala-HEWL and its single point mutants the pooled fractions were
dialyzed against 7 L deionized water pH 2 for 4-5 times in a dialyzing tube (3,500 Da
MWCO, Spectrum Laboratories, Rancho Dominguez, CA, USA). The solution was
then freeze-dried, resuspended in approx. 5 mL water pH 2 and further purified us-
ing reversed-phase HPLC with a linear water-to-acetonitrile (containing 0.1 % TFA)
gradient on an RP4-column.

For the case of wild-type HEWL see section 2.1.3.

2.1.3. S-Methylation of cysteine residues

The pooled fractions of wild-type HEWL were concentrated to a final concentration
of about 1 mg/mL using centrifugal filter devices (Vivaspin 15, 5,000 Da MWCO,
Sartorius, Göttingen, Germany). The cysteine groups of the protein were methylated
as described before (Heinrikson, 1971; Wirmer, 2005) using methyl-p-nitrobenzene-
sulfonate in buffer containing 8 M urea and 25 % (v/v) acetonitrile. Reduced S-
methylated HEWL (designated HEWL-SMe) was dialyzed against deionized water
pH 2, purified by reversed-phase HPLC using a linear water-to-acetonitrile gradient,
and freeze-dried as described for all-Ala-HEWL.

2.1.4. Site-directed mutagenesis

The genes coding for W62G-all-Ala-HEWL and W108G-all-Ala-HEWL have been
generated by site-directed single point mutation of the all-Ala-HEWL gene in the
pET11a vector using the QuikChange® Site-Directed Mutagenesis Kit (Stratagene, La
Jolla, CA, USA) and appropriate forward and backward primers (see table A.4 on
page 108).
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2.1.5. Biochemical analysis

A 15 % SDS polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli, 1970) has
been conducted for various samples during protein expression, inclusion body solu-
bilization and protein purification to monitor these processes and check for protein
purity. The gels have been stained with Coomassie Brilliant Blue.

The check the success of the PCR for the site-directed mutagenesis, 0.8 % agarose
gels have been casted, run for the mutated vectors and stained with ethidium bro-
mide (Sambrook and Russel, 2001).

2.1.6. NMR samples

The NMR samples of HEWL-SMe, all-Ala-HEWL and the mutants thereof have been
prepared by dissolving the lyophilized protein in deionized water pH 2 containing
10 % D2O. Insoluble fractions of the proteins have been pelleted down by centrifuga-
tion and thereby removed from the samples. The concentrations of the samples were
determined by UV light absorption at 280 nm using the extinction coefficients calcu-
lated from the amino acid sequence (ε = 37,980 M-1 cm-1 and ε = 37,470 M-1 cm-1

for HEWL-SMe and all-Ala-HEWL, respectively) (Gasteiger et al., 2005). Protein con-
centrations in the NMR samples have been adjusted to approx. 0.5 - 0.7 mM unless
otherwise stated. Norell 507-HP standard NMR tubes (Norell Inc., Landisville, NJ,
USA) and Shigemi-type NMR tubes (Shigemi Inc., Allison Park, PA, USA) have been
used unless otherwise stated.
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2.2. Backbone resonance assignment

2.2.1. Overview

The assignment of the backbone resonances is the prerequisite for the further charac-
terization of structure, interactions and dynamics of any given protein at atomic res-
olution by NMR spectroscopy. The assignment strategy involves the labeling of the
protein with the NMR-observable 15N and 13C isotopes. Therefore, the non-native
lysozyme variants investigated in this thesis have been labeled uniformly with these
isotopes as described in section 2.1.2 on page 36. The labeling of nitrogen and carbon
nuclei together with the abundant 1H nuclei allows for the intra- and inter-residual
correlation of 1HN, 15NH, 13Cα, 1Hα and 13C´ nuclei through scalar couplings along
bonds in a series of three-dimensional NMR experiments (Sattler et al., 1999), thus
enabling the sequential mapping of resonances to the protein’s amino acid sequence.
In addition, some of these assignment experiments can also provide correlations to
the side chain 1H and 13C resonances.

2.2.2. Acquisition of two- and three-dimensional spectra and sequential
backbone assignment

A different set of three-dimensional NMR experiments has been conducted for HEWL-
-SMe and all-Ala-HEWL, respectively, as different combinations of NMR experiments
can in fact yield comparable results in the process of assigning the protein back-
bone. Figure 2.1, figure 2.2 and figure 2.3 on pages 43 to 45 summarize the three-
dimensional experiments used for the assignment of HEWL-SMe and all-Ala-HEWL
and illustrate the magnetization transfers and assignment paths. However, the core
experiment in both cases was the HNCACB experiment (Muhandiram and Kay,
1994; Wittekind and Mueller, 1993), which correlates the 1HN

i and 15NH
i nuclei with

the 13Cα,i, 13Cβ,i, 13Cα,i-1 and 13Cβ,i-1 nuclei. In principle, HNCACB spectra can yield
complete sequential 1HN, 15NH, 13Cα and 13Cβ assignments. Unfortunately, in non-
native proteins the low dispersion of NMR signals leads to significant overlapping
of resonances and assignment ambiguities. Therefore, additional experiments not
only provide the resonance frequencies of other nuclei, but also give important in-
formation to unambiguously assign the peaks to specific amino acid residues. The
CBCA(CO)NH experiment (Grzesiek and Bax, 1992a, 1993) correlates the 1HN

i and
15NH

i nuclei only with the 13Cα,i-1 and 13Cβ,i-1 nuclei and thereby helps to distinguish
i and i-1 signals from each other. A prerequisite of the sequential assignment using
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three-dimensional spectra is the picking of backbone amide 1HN
i, 15NH

i correlation
peaks in highly resolved two-dimensional HSQC (Bodenhausen and Ruben, 1980)
spectra. All HSQC spectra recorded were of the fast-HSQC-type (FHSQC) to mini-
mize losses due to chemical exchange of amide protons with the solvent water (Mori
et al., 1995).

The chemical shift patterns in the spectra in many cases can serve as good in-
dicators for the identification of the amino acid type especially in non-native pro-
teins, where these shifts closely resemble random coil chemical shifts available from
the literature (e.g. Schwarzinger et al., 2000). Alanine, glycine, threonine and serine
residues are particularly easy to identify because of their unique peak patterns and
chemical shifts and thus suitable starting points for the sequential assignment. In
addition, previous assignments of similar states of HEWL under similar conditions
have been available (Grimshaw, 1999; Schlörb, 2003), which also contributed to the
initial assignments of HEWL-SMe, despite their incomplete and partially inaccurate
data (Grimshaw, 1999).

For HEWL-SMe, in many cases the amino acid type of a specific spin system has
been determined using the distinct peak patterns in (H)CC(CO)NH and H(CC)-
(CO)NH (both Montelione et al., 1992) spectra. These experiments correlate 13Ci-1

or 1Hi-1 nuclei of the side chains by TOCSY-type transfers (Bax and Davis, 1985;
Shaka et al., 1988) and via scalar couplings with the backbone 1HN

i and 15NH
i nuclei.

The 1Hα,i-1 and 1Hβ,i-1 peaks have been picked from HBHA(CO)NH (Grzesiek and
Bax, 1993) spectra, where these nuclei are correlated with the backbone 1HN

i and
15NH

i nuclei. The backbone carbonyl 13C resonances have been picked in a HNCO
(Grzesiek and Bax, 1992b; Kay et al., 1994; Schleucher et al., 1993) spectrum, which
correlates the 13C’i-1 with the 1HN

i and 15NH
i nuclei.

For all-Ala-HEWL, an approach with three lines of sequential correlations has been
used in order to speed-up the assignment process: In addition to the HNCACB and
CBCA(CO)NH experiments, a HN(CA)CO (Clubb et al., 1992) spectrum has been
recorded, which correlates the 13C’i-1 and 13C’i with the 1HN

i and 15NH
i nuclei. The

third correlation stems from a HNN (Bhavesh et al., 2001; Panchal et al., 2001) exper-
iment, which correlates 15NH

i-1 and 15NH
i+1 with the 1HN

i and 15NH
i nuclei. Addi-

tionally, HBHA(CO)NH and (H)CC(CO)NH experiments have been conducted and
13Cα,i-1 and 13Cα,i correlations with 1HN

i and 15NH
i nuclei have been extracted from

a HNCA (Grzesiek and Bax, 1992b; Kay et al., 1994) spectrum to further support the
HNCACB data.

However, the assignment strategy applied in the case of all-Ala-HEWL is favor-
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able over the set of experiments used for the assignment of HEWL-SMe as it pro-
vides three independent lines of sequential connectivities with the same amount of
measurement time (compare section 3.2 on page 66).

All assignment experiments conducted (except for the HNN experiment) are stan-
dard Bruker implementations of the published pulse sequences released with XWIN-
NMR 3.5 using watergate (Piotto et al., 1992; Sklenar et al., 1994) water suppres-
sion. All spectra have been processed using either XWIN-NMR 3.5 or TOPSPIN
1.3 software (Bruker Biospin, Karlsruhe, Germany), the acquisition parameters are
listed in tables A.5 and A.6. The sequential assignments of HEWL-SMe and all-Ala-
HEWL have been carried out using the XEASY (version 1.5; Bartels et al., 1995) and
CARA (version 1.5.4; Keller, 2004) software, respectively. The 1H chemical shifts
have been referenced directly to the external standard 2,2-dimethyl-2-silapentane-
5-sulfonic acid (DSS), while 15N and 13C chemical shifts have been referenced in-
directly to the resulting 1H carrier frequency (Cavanagh et al., 1996; Wishart et al.,
1995b).
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teins (I). Resonance transfer by scalar coupling is indicted by blue arrows. Coupling
constants (in Hz) for the transfers are given in blue. Detected nuclei are indicated by
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adjacent residues i and i-1 (modified after Duchardt, 2005).

43



2. Materials and Methods

Ca

Cb

R

N

H
N

C’ Ca

Cb

R

N

H
N

C’Ca

Cb

R

N

H
N

C’

i-1 i i+1

HN(CA)CO

94

7

w(H )
N

w(C’)

i-1 i

55

11

55

t2

t3

t1 t1

C’
i-1

C’
i

C’
i-2

C’
i-1

Ca

Cb

R

N

H
N

C’ Ca

Cb

R

N

H
N

C’Ca

Cb

R

N

H
N

C’

i-1 i i+1

HNCO

94

15

w(H )
N

w(C’)

i-1 i

t2

t3

t1

C’
i-1

C’
i-2

Ca

Cb

R

N

H
N

C’ Ca

Cb

R

N

H
N

C’Ca

Cb

R

N

H
N

C’

i-1 i i+1

HNN

94

11
7

7
11

94
94

t2

t2 t2

t3

t3t3

w(H )
N

i-1 i

w(N)

i+1

N
i-1

N
i

N
i+1

N
i-1

N
i

N
i-2

N
i+1

N
i

N
i+2

t

Figure 2.2.: Relevant backbone resonance assignment experiments for (non-native) pro-
teins (II). Resonance transfer by scalar coupling is indicted by blue arrows. Coupling
constants (in Hz) for the transfers are given in blue. Detected nuclei are indicated by
white boxes and the symbols for the detection periods are given (t1, t2 and t3). The res-
onance patterns for relevant planes in the experiments are indicated on the left for the
adjacent residues i, i+1 and i-1.

44



2.2. Backbone resonance assignment

Cα

Cβ

R

N

H
N

C� Cα

Cβ

R

N

H
N

C�Cα

Cβ

R

N

H
N

C�

i-1 i i+1

H(CC)(CO)NH

15

ω(H )
N

ω(Hα/β/x)

i-1 i

35 94
55

Hβ Hβ

Hα

140

130

H
x 35

130

t2

t3t1

t1

t1

t1

α
i-1

β
i-1β

i-2

α
i-2

γ
i-1

γ
i-2

δ
i-2

Cα

Cβ

R

N

H
N

C� Cα

Cβ

R

N

H
N

C�Cα

Cβ

R

N

H
N

C�

i-1 i i+1

(H)CC(CO)NH

15

ω(H )
N

ω(C )α/β/x

i-1 i

35 94
55

Hβ Hβ

Hα

140

130

H
x 35

130

t2

t3

t1

t1

t1

α
i-1

β
i-1

β
i-2

α
i-2

γ
i-1

γ
i-2

δ
i-2

Cα

Cβ

R

N

H
N

C� Cα

Cβ

R

N

H
N

C�Cα

Cβ

R

N

H
N

C�

i-1 i i+1

HBHA(CO)NH

15

ω(H )
N

ω(Hα/β)

i-1 i

35 94
55

Hβ Hβ

Hα

140

130 130

t2

t3t1t1

t1

α
i-1

β
i-1

β
i-2

α
i-2

Figure 2.3.: Relevant backbone resonance assignment experiments for (non-native) pro-
teins (III). Resonance transfer by scalar coupling is indicted by solid blue arrows, trans-
fers through TOCSY mixing sequences are indicated by broken blue arrows. Coupling
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2.3. Assignment of tryptophan side chains

2.3.1. General assignment strategy

As tryptophan side chains play key roles in the formation of hydrophobic clusters
and the mediation of long-range contacts in non-native states of proteins (Klein-
Seetharaman et al., 2002; Wirmer et al., 2004), it is desired to assign the resonances in
the side chains of these residues. The nomenclature of tryptophan side chain atoms
is depicted in figure 2.4.
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Figure 2.4.: Assignment strategy for the tryptophan side chain resonances. Resonance
transfer by scalar coupling is indicted by solid blue arrows. Coupling constants (in Hz)
for the transfers are given in blue. Detected nuclei are indicated by white boxes and the
symbols for the detection periods are given (t1, t2 and t3).

A conventional method for the assignment of tryptophan side chains in proteins
is based on the combination of side chain specific TOCSY and NOESY spectra (Slup-
sky et al., 1998). In such an approach, the 13Cβ resonances are correlated with the
aromatic 1Hδ1 resonances via a selective (HB)CB(CGCD)HD experiment (Yamazaki
et al., 1993). The 1Hδ1 resonances are then correlated to the 15Nε and 1HN

ε reso-
nances by exploiting their scalar and NOE couplings to the 1Hδ1 nucleus. However,
such strategies fail in unfolded proteins due to the massive overlap of resonances in
the aromatic side chains.

Another previously published experiment for the sequence-specific assignment of
tryptophan aromatic 1H, 13C and 15N resonances in proteins (Löhr et al., 2002) could
also not be applied in the case of non-native lysozyme. The described HN(CDCG)CB
experiment correlates the indole protons in tryptophan side chains with 13Cβ reso-
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2.3. Assignment of tryptophan side chains

Table 2.1.: Approximate chemical shifts in tryptophan residues of all-Ala-HEWL.

Nucleus Chemical shift [ppm]
1HN 7.2 - 8.0
15NH 120 - 123
13Cα 55
13Cβ 27
13Cγ 110
13Cδ1 127
13Cδ2 129
13Cε2 138
15Nε 130 - 131
1HN

ε 9.9 - 10.0

nances in a series of magnetization transfers via one-bond scalar couplings. In the
case of non-native proteins like HEWL-SMeor all-Ala-HEWL, the 13Cβ resonances are
not well enough resolved to allow for the unambiguous assignment of the trypto-
phan side chain resonances.

Since the existing experiments for the assignment of tryptophan side chain reso-
nances in native proteins are not suitable in the case of some non-native proteins due
to the resonance overlap, a set of two new NMR experiments had to be developed
in this thesis. In these experiments, the tryptophan side chain indole resonances are
assigned by the correlation of both the side chain and the backbone 15NH resonances
with the 13Cγ resonances of these residues. The 13Cγ resonances exhibit a reasonable
resolution even in non-native HEWL, which is a prerequisite for the unambiguous
assignment. In addition, the 13Cγ resonances are well separated from other aro-
matic carbon resonances. The two experiments have been entitled HN(CACB)CG
and HN(CD)CG and are described in detail in section 2.3.2 on the following page
and section 2.3.3 on page 49, respectively. While the HN(CACB)CG experiment cor-
relates the backbone amide 1HN/15NH resonances with the 13Cγ resonances in the
side chain, the HN(CD)CG experiment correlates the side chain indole 1HN

ε/15Nε

resonances with the 13Cγ resonances. This way, the 13Cγ resonances can be assigned
via the HN(CACB)CG experiment assuming the backbone assignment is available.
This in turn enables the assignment of the side chain indole resonances using the
HN(CD)CG experiment.
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Both experiments are of the out-and-back type, are derived from the HNCACB ex-
periment (Muhandiram and Kay, 1994; Wittekind and Mueller, 1993) and use soft-
WATERGATE water-suppression pulse schemes (Piotto et al., 1992; Sklenar et al.,
1994). The specificity of these experiments for tryptophan side chains highly de-
pends on the selectivity of the applied pulses and transfer delays in the pulse se-
quences.

Figure 2.4 on page 46 summarizes the courses of both experiments and depicts
the exploited scalar couplings along the transfer pathways in Hz, while in table 2.1
on the previous page the typical chemical shifts of the nuclei in tryptophan residues
of non-native proteins are listed. 13C,15N doubly labeled all-Ala-HEWL was used to
develop this set of two new NMR experiments.

2.3.2. The HN(CACB)CG experiment

Figure 2.5 on page 51 shows the pulse sequence of the HN(CACB)CG experiment.
It comprises four successive steps to transfer magnetization via 1J one-bond scalar
couplings from the 1HN to the 13Cγ nuclei. Amplitude modulated shaped pulses
are used for the inter-carbon transfers and the decoupling of the 1J(Cγ,Cδ1) and
1J(Cγ,Cδ2) couplings during t1 and to refocus 13Cβ chemical shifts during 2τ’+t1. The
delay τ’ for the magnetization transfer from the 13Cβ to the 13Cγ is adjusted to ap-
proximately 1/(2 1J(Cβ,Cγ)), conducting a HMQC (Bax et al., 1983) scheme. To gain
maximal transfer efficiency, the 13Cα-13Cβ transfer delay is set to 1/(2 1J(Cα,Cβ)), un-
like in a standard HNCACB pulse sequence, where this delay duration is adjusted
to 1/(4 1J(Cα,Cβ)).

Narrow and wide filled bars in figure 2.5 correspond to rectangular 90° and 180°
pulses applied with RF field strengths of 23.6 kHz (1H) and 6.8 kHz (15N), respec-
tively. RF field strengths of 12.9 kHz and 28.7 kHz on 13C resonances are used for the
standard Q3 and Q5 Gaussian cascades (Emsley and Bodenhausen, 1992). Selective
pulses and gradients are indicated by semi-ellipses and the default pulse phase is x.

Fixed delays are adjusted as follows: ∆ = 4.6 ms (1/(2 1J(NH,HN))), ∆’ = 4.9 ms,
T = 24.8 ms (1/(4 1J(Cα,NH))), τ = 7.2 ms (1/(4 1J(Cα,Cβ))), τ’ = 8.5 ms (1/(2 1J(Cβ,Cγ))).
Proton and nitrogen carrier frequencies are centered at the water (4.7 ppm) and the
amide 15N region (118 ppm), respectively. The carbon carrier frequency changes
during the course of the experiment as indicated by vertical dashed lines and the
value of the 13C offset.

The shaped 180° decoupling pulses on carbonyl carbon resonances are Q3 Gaus-
sian cascades with durations of 2 ms and have offsets of 172 ppm. The shaped 180°
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decoupling pulse on the Cβ and Cδ resonances during the carbon t1 time is based on
a Q3 Gaussian cascade and has duration of 1.7 ms.

1 ms water flip-back square pulses are applied after the first INEPT (Morris and
Freeman, 1979) step and during the back transfer from the 15NH to the 1HN.

Asynchronous GARP decoupling (Shaka et al., 1985) is used to suppress 15N-
1H heteronuclear scalar coupling during acquisition. Proton decoupling using the
DIPSI-2 (Shaka et al., 1988) composite pulse decoupling is applied during most of
the pulse sequence.

The pulsed field gradients of 1 ms length are sine-bell shaped, applied along
the z-axis and have the following strengths: G1 = 27.5 G cm-1, G2 = 22 G cm-1,
G3 = 33 G cm-1, G4 = 16.5 G cm-1.

Phase cycling is: φ1 = 4(x), 4(-x); φ2 = 16(x), 16(-x); φ3 = y, -y; φ4 = 8(x), 8(-x); φ5 =
32(x), 32(-x); φ6 = 2(x), 2(-x); φrec = R, 2(-R), R, -R, 2R, -R, where R = 2(x), 4(-x), 2(x). In
addition, φ4 is incremented in a States-TPPI (Marion et al., 1989) manner to achieve
quadrature detection in the ω1 direction.

The HN(CACB) pulse sequence in the standard Bruker pulse sequence program-
ming language is listed in the appendix (section A.6.3 on page 139).

2.3.3. The HN(CD)CG experiment

Figure 2.6 on page 52 shows the pulse sequence of the HN(CACB)CG experiment.
In this experiment, magnetization is transferred from the 1HN

ε to the 13Cγ nuclei in
three successive steps: The initial INEPT transfer step from the indole proton to the
nitrogen is followed by the transfer to the 13Cδ1 nucleus and the successive transfer
to the 13Cγ. The pulses for the magnetization transfer between 13Cδ1 and the 13Cγ are
selective as well as the decoupling pulse on the 13Cβ and the 13Cδ1/2 carbons during
t1. The offset for this transfer is on the 13Cγ and all pulses are off resonance on the
13Cδ1/2 chemical shift region (117 ppm).

Narrow and wide filled bars in figure 2.6 correspond to rectangular 90° and 180°
pulses applied with RF field strengths of 23.6 kHz (1H) and 6.8 kHz (15N), respec-
tively. RF field strengths of 12.9 kHz and 28.7 kHz on 13C resonances are used for the
standard Q3 and Q5 Gaussian cascades (Emsley and Bodenhausen, 1992). Selective
pulses and gradients are indicated by semi-ellipses and the default pulse phase is x.

Fixed delays are adjusted as follows: ∆ = 4.6 ms (1/(2 1J(NH
ε,HN

ε))), ∆’ = 4.9 ms,
T = 27.4 ms (1/(4 1J(Cδ1,NH

ε))), τ = 6.4 ms (1/(4 1J(Cδ1,Cγ))). Proton and nitrogen
carrier frequencies are centered at the water (4.7 ppm) and the indole 15N region
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(129.2 ppm), respectively. The carbon carrier frequency changes during the course
of the experiment as indicated by vertical dashed lines and the value of the 13C offset.

The shaped 180° decoupling pulses on aromatic 13Cε resonances are Q3 Gaussian
cascades with durations of 2 ms and have offsets of 141 ppm. The shaped 180°
decoupling pulse on the 13Cβ and 13Cδ carbon resonances during the carbon t1 time
is based on a Q3 Gaussian cascade and has duration of 1.15 ms.

1 ms water flip-back square pulses are applied after the first INEPT step and dur-
ing the back transfer from 15NH

ε to 1HN
ε.

Asynchronous GARP decoupling (Shaka et al., 1985) is used to suppress 15N-
1H heteronuclear scalar coupling during acquisition. Proton decoupling using the
DIPSI-2 (Shaka et al., 1988) composite pulse decoupling is applied during most of
the pulse sequence.

The pulsed field gradients of 1 ms length are sine-bell shaped, applied along
the z-axis and have the following strengths: G1 = 27.5 G cm-1, G2 = 22 G cm-1,
G3 = 33 G cm-1, G4 = 16.5 G cm-1.

Phase cycling is: φ1 = 8(x), 8(-x); φ2 = x; φ3 = y; φ4 = 2(x), 2(-x); φ5 = 4(x), 4(-x);
φrec = 2R, 2(-R), where R = 2(x), 2(-x). In addition, φ2 and φ3 are incremented in a
States-TPPI (Marion et al., 1989) manner to achieve quadrature detection in the ω1

direction.
The HN(CD)CG pulse sequence in the standard Bruker pulse sequence program-

ming language is listed in the appendix (section A.6.4 on page 144).
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2.4. Photo-CIDNP experiments

2.4. Photo-CIDNP experiments

For the characterization of non-native states of proteins and the investigation of pro-
tein folding, photo-CIDNP experiments have turned out to be very useful tools (see
introductory section 1.2.2 on page 14 and references therein). In the context of the
structural analysis of non-native lysozyme, the differential surface exposure of the
six tryptophan residues is especially interesting. However, one-dimensional spec-
tra are not well enough resolved in the indole region of the tryptophan side chains
of non-native lysozyme to discriminate between these residues in HEWL-SMe or
all-Ala-HEWL. Therefore, two-dimensional 15N-1H photo-CIDNP experiments have
been performed following a method that exploits the larger CIDNP enhancement
of 15N compared to 1H (Lyon et al., 1999). The magnetization of the 15N nuclei is
transferred in a single reverse INEPT step and detected on the 1H, the water sig-
nal is suppressed by a hard-Watergate pulse scheme. The pulse sequence of this
experiment is shown in figure 2.7 and listed in the standard Bruker pulse sequence
programming language in section A.6.1 on page 133.

Figure 2.7.: Pulse sequence of the 2D photo-CIDNP experiment. ∆ = 5.5 ms, φ1: x, -x;
φ2: 2(x), 2(-x); φ3: 4(y), 4(-y); φrec: x, -x, x, -x, -x, x, -x, x.

The scheme of the laser set-up used for the photo-CIDNP experiments is shown
in figure 2.8 on the next page. A continuous-wave argon ion laser (Spectra-Physics,
Darmstadt, Germany; model 2017) emitting at 488/515 nm has been used as the light
source. The laser beam was transferred to the NMR tube via a set of mirrors and
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lenses and an optical fiber (Ceram Optec, Bonn, Germany; core diameter 1 mm) (cp.
Wirmer et al., 2001). A spectrometer-controlled shutter was used and the fiber was
coupled into standard NMR tubes through an 2 mm stem coaxial insert (Wilmad-
LabGlass, Buena, NJ, USA), which was inserted into the NMR tube so that the end
of the fiber was dipping into the sample not more than 2 mm (cp. Scheffler et al.,
1985). The output power of the laser has been adjusted to 500 mW at the end of the
fiber.

Figure 2.8.: Laser set-up for photo-CIDNP experiments.

The samples contained 200 µM of 15N-labeled all-Ala-HEWL or W62G-all-Ala-
HEWL and the equimolar concentration of the photo-sensitizer riboflavin 5’-mono-
nucleotide (FMN) (see figure 2.9 on the facing page). The pH of the samples was
adjusted to 2.0 and 10 % D2O was added.
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Figure 2.9.: Riboflavin 5’-mononucleotide (FMN).

The 15N-1H two-dimensional photo-CIDNP experiments have been carried out
at a temperature of 303 K with laser pulses of 50 ms length at a 700 MHz Bruker
spectrometer equipped with a 5 mm 1H,13C,15N cryogenic probe. Two scans have
been conducted for each increment and 64 increments have been recorded in the
indirect dimension. The carrier frequency of the indirect dimension was set to the
center of the expected signals and a sweep width of 355 Hz was chosen.

Unlike for conventional one-dimensional photo-CIDNP spectra, where the final
spectrum is the difference between the light (i.e. with laser irradiation) and the dark
spectrum (i.e. without laser irradiation), no such correction of the baseline is neces-
sary for the two-dimensional spectra, since the dark spectra have very low intensities.

The photo-CIDNP set-up and the pulse sequence for the two-dimensional experi-
ments have been optimized in exploratory experiments on samples containing 15N-
labeled tryptophan.

In addition to the 15N-1H two-dimensional photo-CIDNP experiment, an analo-
gous 13C-1H experiment has been developed and applied to 13C,15N-labeled all-Ala-
HEWL. The associated pulse sequence is listed in section A.6.2 on page 136. A spec-
trum has been recorded on a 600 MHz Bruker spectrometer equipped with a 5 mm
1H,13C,15N cryogenic probe under the same conditions and with the same settings
as for the 15N,1H case. The sweep width was set to 3771 Hz.

For each two-dimensional photo-CIDNP spectra, a corresponding HSQC spec-
trum has been recorded with the same carrier frequencies and sweep widths to allow
for the comparison of CIDNP vs. non-CIDNP peak intensities.

55



2. Materials and Methods

2.5. Protein Dynamics

2.5.1. Heteronuclear relaxation rates

Heteronuclear relaxation rates are routinely used to characterize the pico- to nano-
second dynamics of biomacromolecules. For all-Ala-HEWL, several different ap-
proaches have been employed in this work. A general discussion of protein dy-
namics and a detailed description of the NMR experiments used for its elucidation
can be found in the introductory section 1.2.2 on page 23, whereas the results are
discussed in section 3.6 on page 83.

The pulse sequences used for the determination of the heteronuclear 15N R1, R1ρ

and R2 relaxation rates and the heteronuclear 1H-15N-NOE of the backbone amides
are standard implementations provided by Bruker with the TOPSPIN 1.3 software
(Kay et al., 1989; Palmer and Case, 1992). All experiments have been carried out at a
temperature of 293 K on a Bruker 600 MHz spectrometer equipped with a 5 mm
1H,13C,15N pulsed field XYZ-triple-gradient probe. A 0.5 mM sample of all-Ala-
HEWL at pH 2 has been used. The R1, R1ρ and R2 experiments have been con-
ducted in their pseudo-three-dimensional versions, while the heteronuclear NOEs
have been determined with the NOE and no-NOE spectra recorded in an interleaved
manner. For the R2 and R1ρ (Dayie and Wagner, 1994; Deverell et al., 1970) experi-
ments, 15 different relaxation delays have been used each, ranging from 17 to 304 ms
and from 0.01 to 0.5 s, respectively. For the determination of R1 relaxation rates,
seven different relaxation times have been used, ranging from 0.01 to 1.5 s. In all
three cases, three relaxation times have been repeated to account for the error. A
total of 128 real points at a spectral width of 2189 Hz in the 15N dimension has been
recorded in each case.

The respective relaxation rates have been obtained by fitting the peak intensities
measured as a function of the relaxation delay to a two-parameter single-exponential
decay with the Sparky 3.112 software (Goddard and Kneller, 2006).

Heteronuclear transverse 15N R2 relaxation rates have also been determined for
the tryptophan side chains of all-Ala-HEWL under the same conditions as described
for the amide backbone 15N rates, but with 64 increments in the indirect dimension at
a sweep width of 355 Hz. In addition, backbone 15N R2 rates have been determined
for the W108G mutant of all-Ala-HEWL. Intensities for the tryptophan side chains
have been extracted in the Felix 2004 software (Accelrys Inc. San Diego, CA, USA)
and fitted to a two-parameter single-exponential decay with SigmaPlot 10.0 (Systat
Software, Erkrath, Germany).
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2.5. Protein Dynamics

2.5.2. Relaxation dispersion

A single-quantum coherence 15N relaxation dispersion experiment (Tollinger et al.,
2001) for all-Ala-HEWL has been conducted to study micro- to millisecond time scale
exchange processes. The pseudo three-dimensional implementation of the pulse se-
quence provided by Bruker with the TOPSPIN 1.3 software was used. A total of 16
experiments with different CPMG field strengths — ranging from 50 to 1000 Hz —
have been performed. Two experiments have been repeated to account for the error.
The constant time delay was set to 80 ms. A spectrum with no CPMG field applied
has been recorded as the reference. All spectra have been recorded at a temperature
of 298 K with 128 real points and a sweep width of 24 ppm in the 15N dimension. For
the analysis of the relaxation dispersion data for any given peak, the effective relax-
ation rates (R2

eff) are plotted against the CPMG field strength. R2
eff is calculated from

the peak intensities of the peaks with I(νCPMG) and without (I0) the CPMG periods
and the length of a single CPMG train (T/2) as described in equation (2.1) (Mulder
et al., 2001).

Re f f
2 (νCPMG) = − 1

T
ln

I(νCPMG)
I0

(2.1)

A general discussion of relaxation dispersion in the context of protein dynamics and
a description of the related NMR methods can be found in the introductory sec-
tion 1.2.2 on page 23, whereas the results are discussed in section 3.6 on page 89.
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2.6. Residual dipolar couplings

2.6.1. Experimental determination of RDCs

Sample preparation

In order to determine residual dipolar couplings, the molecules in the sample have
to be aligned with respect to the static magnetic field. For the theoretical background
and a discussion of the different alignment methods, see section 1.2.2 on page 17. For
unfolded proteins at low pH, stretched or compressed polyacrylamide gels (Sass
et al., 2000; Tycko et al., 2000) have turned out to be the most feasible alignment
media.

Here, stretched polyacrylamide gels have been used to align all-Ala-HEWL and
W62G-all-Ala-HEWL. An apparatus (New Era Enterprises Inc., Vineland, NJ, USA;
obtained via CortecNet, Paris, France) for casting, stretching and transferring the
gels into special NMR tubes has been employed to prepare the samples (Chou et al.,
2001).

260 µL of a 7 % (w/v) acrylamide solution was prepared from a stock solution
containing 40 % (w/v) acrylamide and 1.07 % (w/v) bisacrylamide. This solution
was allowed to polymerize in the gel casting apparatus with an inner diameter of
6 mm upon addition of N,N,N’,N’-tetramethylethylenediamine (TEMED) and 0.5 %
(w/v) ammonium persulfate (APS). Two hours after initialization of the polymeriza-
tion reaction, the gel was transferred into a 50 mL washing solution of water pH 2.
After 20-24 hours of washing, the gel was dried at 37 °C for 24 hours. The dried gel
was allowed to reswell for more than 24 hours in 400 µL of protein solution (500 µM,
pH 2) in the casting chamber. Following the swelling, the gel was transferred via the
attached funnel into the NMR tube, which has a diameter of only 4.2 mm.

NMR experiments

1J(HN,NH) scalar couplings have been determined for the unaligned (i.e. isotropic)
samples using the standard Bruker implementation of an in-phase/anti-phase (IPAP)
HSQC experiment (Ishii et al., 2001; Ottiger et al., 1998), where in a set of two sub-
spectra, the in-phase and anti-phase signals are added or subtracted, respectively.
The coupling is read out from the difference of the respective peak positions in the
two-spectra. The sum of the scalar 1J(HN,NH) and dipolar 1D(HN,NH) couplings in
the aligned (i.e. anisotropic) sample is measured in the same way, the 1D(HN,NH)
couplings therefore result from the subtraction of the values of the isotropic case
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2.6. Residual dipolar couplings

from the values in the anisotropic case. All IPAP-HSQC spectra have been recorded
with four scans and 512 real points and processed with 4096 points, yielding a reso-
lution of 0.4 Hz in the 15N dimension.

2.6.2. Simulation of RDCs

A series of simulations of residual dipolar couplings of structural ensembles repre-
senting peptide chains with the amino acid sequence of all-Ala-HEWL in a neutral
alignment medium has been conducted in order to compare it with the experimental
RDC values. These simulations have been performed in collaboration with Dr. Mar-
tin Blackledge (Institut de biologie structurale (IBS) Jean-Pierre Ebel, Grenoble, France),
who — together with his coworkers — developed and provided the software for
these calculations based on the "flexible-meccano" algorithm (Bernadó et al., 2005a,b).

In this approach, statistical ensembles of coil conformations are created and av-
eraged RDCs are calculated over the entire population of these ensembles (Bernadó
et al., 2005b; Jha et al., 2005). The "flexible-meccano" algorithm sequentially generates
peptide chains with randomly selected φ,ψ backbone pairs. These angle pairs are
extracted from a database of amino acid specific conformations occurring in loop re-
gions of a set of 500 high-resolution X-ray structures (Lovell et al., 2003). During the
generation of the ensembles of conformers, steric overlap is avoided by the use of
a simple volume-exclusion model (Levitt, 1976). The alignment tensor of each con-
former is predicted employing a model that is based on the hydrodynamic shape of
the molecule and that makes use of the similarity between the alignment tensor and
the radius of gyration tensor in the case where the alignment is solely caused by steric
exclusion (Almond and Axelsen, 2002; Zweckstetter and Bax, 2000). RDCs are then
calculated from these tensors using the relationship given in equation (2.2), where
Aa and Ar are the axial and rhombic components of the alignment tensor, and θ and
φ are the polar angles of the vector with respect to these axes (see the description of
equation (1.2) on page 17 for further explanations and the meaning of all symbols).

Dij(θ, φ) = −
γiγjµ0h

16π3r3
ij,e f f

[Aa(3cos2θ − 1) +
3
2

Arsin2θcos2φ] (2.2)

The generated ensembles generally consisted of 50,000 conformers and the pre-
dicted individual RDCs have been averaged over the whole ensemble to ensure con-
vergence.

Furthermore, calculations have been performed with additional restraints in in-
dependent approaches. Firstly, one or more restrained contacts between residues
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have been implemented to take the clustering into account. Secondly, a tryptophan-
tryptophan φ,ψ sampling has been incorporated for the residue pair W62/W63 to
consider the particular φ,ψ distribution of this motif. This backbone angle distribu-
tion has been extracted from a database of known crystal and solution structures and
provided by Jun.-Prof. Dr. Holger Gohlke (Institute for Cell Biology and Neuroscience,
Johann Wolfgang Goethe-University, Frankfurt, Germany).
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2.7. Residual structure in organic solvents

The influence of the organic solvents ethanol and 2,2,2-trifluoroethanol (TFE) on
the secondary structure of HEWL-SMe and all-Ala-HEWL was studied by circular
dichroism (CD) and NMR spectroscopy. HEWL-SMe has been prepared from native
HEWL obtained from Fluka by reduction of the disulfide bridges and the succes-
sive S-methylation of the cysteine residues as described in section 2.1.3 on page 38.
The preparation of all-Ala-HEWL followed the protocol discussed in section 2.1.2 on
page 36.

The samples of HEWL-SMe and all-Ala-HEWL for CD spectroscopy had concentra-
tions in the range from 20 to 45 µM, while the temperature during the experiments
was set to 293 K. The CD spectra have been recorded on a Jasco J-810 (Jasco GmbH,
Groß-Umstadt, Germany) CD spectrometer equipped with a Jasco PTC-423S Peltier
type temperature control system using quartz cuvettes with 0.2 mm path lengths.
The ellipticity was calibrated with (+)-10-camphorsulfonic acid and is reported as
mean molar residual ellipticity, [θ] (deg cm2 dmol-1). Data were collected at 0.2 nm
increments from 260 to 190 nm.

Samples have been prepared with various concentrations (all percentages are vol-
ume of organic solvent per total volume) of ethanol (30 %, 60 %, 90 %) and 2,2,2-
trifluoroethanol (10 %, 30 %, 50 %) at pH 2. A sample with 90 % ethanol was
prepared at pH 10 and a spectrum of native HEWL has been recorded at pH 3.8.
Samples with the highest respective concentrations of organic solvents have been
monitored for changes over a period of 96 hours.

The mean molar residual ellipticity at 222 nm, θ222, is assumed to be linearly re-
lated to the mean helix content, f H, following the modified Lifson-Roig model for
helix-coil transitions (Lifson and Roig, 1961; Rohl et al., 1996). The mean helix con-
tent is calculated using equation (2.3) (together with equations (2.4) and (2.5), where
θC and θH are the baseline ellipticities of the random coil and the complete helix,
respectively, T is the temperature in °C and Nr is the chain length in residues) given
by Rohl and Baldwin (Rohl and Baldwin, 1997).

fH =
θ222 − θC

θH − θC
(2.3)

θC = 2220− 53T (2.4)
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θH = (−44000 + 250T)(1− 3
Nr

) (2.5)

For the recording of 1H-15N-HSQC spectra, samples of 0.5 mM all-Ala-HEWL
with various concentrations of deuterated ethanol-d6 (30 %, 60 %, 90 %) and 2,2,2-
trifluoroethanol-d3 (50 %) have been prepared. All spectra have been recorded at
a temperature of 293 K on a Bruker 600 MHz spectrometer equipped with a 5 mm
1H,13C,15N cryogenic probe. All spectra were of the FHSQC-type (Mori et al., 1995)
and comprised 128 real points at a sweep width of 28 ppm in the indirect dimension.
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3.1. Sample preparation

The isotope labeling of HEWL is required in order to investigate its non-native
states with NMR spectroscopy at atomic resolution. Here, the expression of HEWL
in E. coli using an isotope enriched medium is reported. The expression in E. coli
usually is less time-consuming, easier to implement, and isotope enrichment is less
cost-intensive due to a less complex medium than in eukaryotic expression systems
such as Pichia pastoris (Mine et al., 1999) and Aspergillus niger (MacKenzie et al., 1996;
Spencer et al., 1999) that have been traditionally used for the expression of HEWL.

The expression of HEWL and all-Ala-HEWL in E. coli typically yielded about 15 mg
15N singly or 13C,15N doubly labeled protein per liter M9 minimal medium. Most
of the protein was produced in the first hour after induction. The bulk amount of
the overproduced lysozyme was expressed into inclusion bodies as shown in the SDS-
PAGE analysis of the different steps of the washing and solubilization process (see
figure 3.1 on the following page), where the supernatants of the washing steps (S1
to S3) did not contain any significant amounts of lysozyme, while the solubilized
inclusion bodies (S4) primarily consisted of this protein. After purification with CM
sepharose ion exchange chromatography, the protein was already more than 95 %
pure as judged from SDS-PAGE analysis (see figure 3.2 on the next page).

HEWL expressed in E. coli and purified from inclusion bodies can be refolded into
the native and fully active form of this enzyme by rapid dilution into a refolding
buffer (containing 5 mM reduced glutathione and 0.5 mM oxidized glutathione)
(Schlörb et al., 2005). Figure 3.3 on page 65 shows 1H-15N-HSQC spectra of success-
fully refolded HEWL (left) and of all-Ala-HEWL (right). The spectrum of refolded
HEWL is identical to a spectrum of HEWL expressed in A. niger (Buck et al., 1995a).

Following the reduction and S-methylation of the cysteine residues, HEWL-SMe

partially aggregated and redissolved in water pH 2 after several days and dialysis
steps. The reduction and S-methylation renders the hen egg white lysozyme perma-
nently non-native, as the four disulfide bridges that stabilize the native structure can-

63



3. Results and Discussion

Figure 3.1.: Coomassie-stained 15 % SDS polyacrylamide gel of various samples con-
taining all-Ala-HEWL during inclusion body washing and solubilization. M: Roche Low
Range Marker (Roche Diagnostics, Mannheim, Germany); S1: supernatant 1; S2: super-
natant 2; S3: supernatant 3; S4: solubilized inclusion bodies. The molecular weights of
the marker proteins are indicated on the right.

Figure 3.2.: Coomassie-stained 15 % SDS polyacrylamide gel of various samples con-
taining all-Ala-HEWL during ion exchange chromatography. FT: flow-through; M:
Roche Low Range Marker; 20-25: various fractions after the CM ion exchange column.
The molecular weights of the marker proteins are indicated on the left.

not be formed. A mimic of this situation is the all-Ala mutant, in which all of the eight
cysteines have been replaced by alanines. The low pH value of used throughout the
experiments in this work, is a denaturing factor and helps to prevent the proteins
from aggregating. It has turned out that the preparation of all-Ala-HEWL samples
is less time consuming and more reproducible than the generation of HEWL-SMe

samples. Therefore, all-Ala-HEWL and single point mutants thereof are used for the
characterization of the structural and dynamical properties of non-native states of
lysozyme.

The NMR samples of HEWL-SMe, all-Ala-HEWL and the mutants in water pH 2
turned out to be stable over many months. Only after several months, faint peaks
start to appear in the spectra, indicating a slow degradation of the proteins.

The generation of the single-point mutants W62G and W108G of all-Ala-HEWL
using the Stratagene mutagenesis kit was straightforward. The DNA sequences of
the resulting plasmids have been verified (SRD GmbH, Oberursel, Germany), the
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Figure 3.3.: 1H-15N-HSQC spectra of refolded HEWL at pH 3.8 (left) and all-Ala-HEWL
at pH 2.0 (right).

expression yield and the purification procedures have been identical to those of all-
Ala-HEWL.
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3.2. Backbone resonance assignment

The assignment of the backbone resonances of HEWL-SMe, all-Ala-HEWL and mu-
tants thereof is the prerequisite to study their properties with NMR spectroscopy
at atomic resolution. The right panel in figure 3.3 illustrates the difficulties for the
unambiguous assignment of resonances caused by the low dispersion and signal
overlap in non-native states as compared to folded proteins. Nevertheless, for 120 of
the 130 residues (i.e. 94 % of all residues without the two prolines and the N-terminal
methionine) of HEWL-SMe the 1HN, 15NH, 13Cα, 13Cβ and 13C’ backbone resonances
have been completely assigned in water pH 2 at 293 K. This assignment rate is com-
parable or even higher, than the rates for S-methylated HEWL in water or reduced
and oxidized HEWL in 8 M urea that have been published before (Grimshaw, 1999;
Hennig et al., 1999; Schwalbe et al., 1997). For all-Ala-HEWL the rate of backbone
assignment is even higher, with 125 residues being assigned (98 % of the 127 in prin-
ciple assignable residues). The assignments for HEWL-SMe and all-Ala-HEWL have
been deposited in the Biological Magnetic Resonance Data Bank (BMRB) under the ac-
cession codes 6622 and 15198, respectively.

In general, the HNCACB experiment proved to be the most important spectra for
the assignment of the backbone residues of HEWL-SMe and all-Ala-HEWL. Combi-
nations of alanine, glycine, serine or glycine residues in the amino acid sequences in
most cases have been the most valuable starting points for the sequential correlation
of the resonances because of their very characteristic peak patterns especially in the
HNCACB spectra. An example for the sequential assignment using strip represen-
tations from the HNCACB spectrum of all-Ala-HEWL is shown in figure 3.4 on the
next page for the residues N39 to N46.

The lower assignment rate for HEWL-SMe compared to all-Ala-HEWL mainly re-
sults from the additional HNN experiment carried out for the latter, which helped
to overcome ambiguities in the other spectra. Especially the high number of alanine
residues (20) in all-Ala-HEWL made the assignment difficult, yet only two could not
be assigned unambiguously. Figure 3.5 on page 68 shows a sequential walk through
aligned strips from the HNN spectrum of all-Ala-HEWL for residues G22 to V29. An
important advantage of the HNN experiment is the presence of cross-peaks for both
i-1 and i+1 residues, which allows for an unambiguous assignment in most cases.

In addition to the 1HN, 15NH, 13Cα and 13Cβ, which have been assigned from the
HNCACB spectra, 13C’ resonances have been picked and assigned from the HNCO
(for HEWL-SMe) or HN(CA)CO (for all-Ala-HEWL) experiments. The side chain 1Hα
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3.2. Backbone resonance assignment

Figure 3.4.: Sequential backbone resonance assignment using the HNCACB experiment
(shown exemplarily for residues N39 to N46 of all-Ala-HEWL). The walk between ad-
jacent Cα peaks (blue) is indicated by black lines, the walk between adjacent Cβ peaks
(red) is indicated by dashed grey lines.
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Figure 3.5.: Sequential backbone resonance assignment using the HNN experiment
(shown exemplarily for residues G22 to V29 of all-Ala-HEWL). The walk between Ni-1
and Ni peaks is indicated by black lines, while Ni and Ni+1 peaks are connected by
dashed grey lines. Please note, that the i+1 cross-peak to a glycine residue has an in-
verted phase.
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3.2. Backbone resonance assignment

and 1Hβ resonances have been assigned for the sake of completeness with the help
of HBHA(CO)NH experiments for HEWL-SMe and all-Ala-HEWL.

Figure 3.6 on the next page shows the result for the assignment of all-Ala-HEWL
annotated in a 1H-15N-HSQC spectrum. All of the major peaks have been assigned.
However, a very small set of weak peaks, remains unassigned. These peaks might
stem from copurified peptides, degradation products or weakly populated alterna-
tive conformations.

The 1HN and 15NH resonances of the single point mutants W62G- and W108G-all-
Ala-HEWL have been assigned by thorough comparison of their 1H-15N-HSQC spec-
tra with the all-Ala-HEWL-HSQC spectrum. This way, 117 (W62G) and 122 (W108G)
residues have been assigned, respectively.
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3. Results and Discussion

Figure 3.6.: Annotated 1H-15N-HSQC spectrum of 0.5 mM all-Ala-HEWLin water pH 2.0
at 293 K. Unassigned peaks indicated by stars (*) may stem from copurified peptides,
degradation products or weakly populated alternative conformations.
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3.3. Chemical shift analysis

As pointed out in section 1.2.2 on page 12, secondary chemical shifts can provide in-
formation on the (residual) structure of proteins. Secondary chemical shifts (∆δ) are
the difference of the measured and correctly referenced chemical shifts (δexp) and
random coil chemical shifts (δrc) from the literature (e.g. from Schwarzinger et al.,
2000). The 1Hα and 13Cα secondary chemical shifts of all-Ala-HEWL are represented
in figure 3.7 on the next page against the residue number. The most prominent de-
viations from random coil chemical shifts are situated in three parts of the protein’s
sequence: residues 5 to 12 (sequence: RAELAAAM), residues 60 to 67 (sequence: SR-
WWANDG), and residues 107 to 113 (sequence: AWVAWRN). The same pattern of
secondary chemical shifts has been observed for HEWL-SMe (Schlörb, 2003; Wirmer
et al., 2004). Averaging over all (assigned) residues, the fractional helicity, i.e. the pro-
portion of α-helical-like populations, was found to be 12.3 %, while circular dichro-
ism measurements yielded a helicity of 13.9 % for the whole protein HEWL-SMe

(see section 3.8 on page 96). Interestingly, these short segments coincide with the
hydrophobic clusters 1, 3 and 5, known already from combined relaxation and mu-
tational studies (Klein-Seetharaman et al., 2002; Wirmer et al., 2004). The direction of
these deviations from random coil chemical shifts in these three segments is towards
chemical shifts of αR-helical conformations (cf. RefDB, Zhang et al., 2003). In the case
of the residues 5 to 12, this is already known from the analysis of scalar couplings of
lysozyme based peptides (Graf et al., 2007). In this study, two HEWL-SMe based pep-
tides have been investigated at pH 2 by a joint NMR and molecular dynamics (MD)
approach: The first peptide consisted of residues 6 to 14 (9mer with the amino acid
sequence: CMeELAAAMKR) and the second contained residues 1 to 19 (19mer with
the amino acid sequence: KVFGRCMeELAAAMKRHGLDN) of the HEWL sequence,
where CMe stands for a S-methylated cysteine. While the conformational distribu-
tion in the central three alanine residues of the 9mer was found to be similar to the
mainly poly-L-proline II helix-like structures of the short poly-alanine peptides Ala3

to Ala7, the 19mer significantly samples αR-helical structures.

In addition, the secondary 1Hα and 13Cα chemical shifts of the 9mer and the 19mer
support these findings and indicate a higher α-helical population for the longer pep-
tide (Graf, 2006). Figure 3.8 on page 73 shows an overlay of zooms into the alanine
region of the 1H-15N-HSQC spectra of the 9mer (blue peaks) and 19mer (red) pep-
tides and of HEWL-SMe (black). The peaks for alanine 9 to 11 nicely overlay for
the 19mer peptide and HEWL-SMe, but not for the 9mer. This also indicates a simi-
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3. Results and Discussion

Figure 3.7.: Secondary chemical shift plots for 1Hα and 13Cα of all-Ala-HEWL. The differ-
ence of experimental chemical shifts and random coil chemical shifts (Schwarzinger et al.,
2000) is plotted against the residue numbers. Residues preceding prolines have not been
included in the 13Cα plot, due to their unusual chemical shifts. Numbers from 1 to 6 are
given for the hydrophobic clusters. α-helical or β-sheet propensities are indicated by
red and blue arrows, respectively.
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Figure 3.8.: Overlay of zooms into the alanine regions of the 1H-15N-HSQC spectra of
the 9mer (blue peaks) and 19mer (red) peptides and of HEWL-SMe (black). The spectra
for the peptides are taken from Graf (2006).

lar structure for the longer peptide and the corresponding section of the non-native
HEWL. Together, these findings indicate, that at least for the sequence around the
three alanine residues in cluster 1, the propensity for α-helical conformations might
be intrinsic to this specific amino acid sequence. It is not known so far, to which de-
gree the α-helix-like conformations in clusters 3 and 5 are sequence dependent (i.e. a
local effect) or whether they are induced by long-range interactions.

73



3. Results and Discussion

3.4. Assignment of tryptophan side chains

The assignment of the resonances in tryptophan side chains in non-native lysozyme
enables new possibilities to study structural and dynamical properties of the protein
that occur at the level of these side chains, such as hydrophobic clustering and other
possible interactions. As mentioned in section 2.3 on page 46, the major obstacle
for the unambiguous assignment of the tryptophan side chain nuclei in non-native
proteins is the low dispersion of their signals due to the considerably lower degree
of structure in non-native proteins compared to native proteins. The dispersion of
the side chain indole peaks in all-Ala-HEWL (0.07 ppm in the 1H and 0.25 ppm in
the 15N dimension; compare table A.8 on page 115) is about tenfold lower than the
dispersion of the backbone amide signals (around 0.7 ppm in the 1H and 2.7 ppm in
15N dimension, see table 3.1).

Table 3.1.: Chemical shifts of tryptophan side chain nuclei of all-Ala-HEWL.

Residue δ(1HN
ε) [ppm] δ(15Nε) [ppm] δ(13Cγ) [ppm]

W28 10.109 130.62 110.36

W62 10.182 130.68 110.41

W63 10.108 130.76 110.22

W108 10.131 130.51 110.57

W111 10.141 130.72 110.23

W123 10.109 130.62 110.40

However, the dispersion of the six 13Cγ peaks (less than 0.4 ppm, see table 3.1) was
promising enough to use these nuclei as the connection between the assigned back-
bone resonances and the 1HN

ε and 15Nε indole resonances of the side chains. By ex-
panding and adjusting the known HNCACB experiment to a HN(CACB)CG exper-
iment, the 13Cγ peaks have readily been assigned. In the left half of figure figure 3.9
on the facing page, the correlation of the tryptophan backbone amide peaks in a
1H-15N-HSQC spectrum with the peaks in the 1HN-13Cγ plane of the HN(CACB)CG
spectrum is indicated by blue lines.

The HN(CD)CG experiment is also a modification of the basic HNCACB experi-
ment but has been optimized for the situation in tryptophan side chains. Figure 3.9
on the next page illustrates the correlation of the indole 1HN

ε and 15Nε peaks in a 1H-
15N-HSQC spectrum of the tryptophan side chain region with the 1HN

ε-13Cγ plane
of the HN(CD)CG spectrum. Their connection is indicated by red lines. Unfortu-
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3.4. Assignment of tryptophan side chains

nately, the chemical shifts of W28 and W123 heavily overlap in the 1HN
ε and the

15Nε dimensions of the spectra and therefore cannot be resolved properly. The cor-
relation of the 13Cγ in the 1H-13C planes of the HN(CACB)CG and the HN(CD)CG
spectra is demonstrated by black lines.

The HN(CACB)CG and HN(CD)CG pulse sequence are shown in figures 2.5 and
2.6 on pages 51 and 52 and listed in the standard Bruker pulse sequence program-
ming language in the appendix (section A.6.3 on page 139 and section A.6.4 on
page 144).
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Figure 3.9.: Results of the assignment strategy for the tryptophan side chain indole
1H/15Nε resonances by correlation with the aromatic 13Cγ resonances.

In principle, this set of two experiments is suitable for the assignment of tryp-
tophan side chains in any protein. In most cases, like for all-Ala-HEWL, only the
two two-dimensional planes mentioned above are needed. Together, the recording
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3. Results and Discussion

of these two spectra took less than 11 hours of measurement time in the case of all-
Ala-HEWL. However, in cases where peaks are overlapping in one dimension, the
three-dimensional versions are also available and have been used to double-check
and verify the assignments of the tryptophan side chains in all-Ala-HEWL.

The four tryptophan residues most involved in the hydrophobic clusters, namely
W62, W63, W108 and W111 (Klein-Seetharaman et al., 2002; Wirmer et al., 2004), are
well resolved and unambiguously assignable. Interestingly, the peaks of the trypto-
phans 62 and 108 in the 1H-15N-HSQC spectrum of the side chain region are consid-
erably broadened compared to the other peaks. This coincides with their crucial role
in hydrophobic clustering in non-native lysozyme.
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3.5. Photo-CIDNP experiments

3.5.1. Two-dimensional 15N-1H photo-CIDNP

As pointed out in the introductory section 1.2.2 on page 14, photo-CIDNP experi-
ments can be used to probe solvent accessibilities of aromatic side chains in proteins.
Here, the results of a 15N-1H photo-CIDNP experiment of the tryptophan side chain
region of all-Ala-HEWL and its W62G mutant are described. The recorded 1H-15N-
HSQC spectra of the tryptophan side chain region of all-Ala-HEWL (see figure 3.10
on the next page) are very similar to the 15N-1H photo-CIDNP spectra in terms of
peak distribution and signal-to-noise ratio. The same is true for the comparison of
the two spectra of the W62G mutant. The difference between the spectra of the wild-
type-like all-Ala-HEWL and the W62G-all-Ala-HEWL are the disappearance of the
W62 and W63 peaks. The absence of a W62 peak confirms the introduction of the
mutation at this position. A closer look at the peak intensities of the spectra reveals
that the W63 peak moved to the position of the W108 peak in the mutant. This is not
unexpected, since W63 is right next to the mutated position and it is believed that
the W62G mutation breaks the clusters. Therefore, the change of the chemical shift
resulting in the overlapping with W108 is not surprising. Unfortunately, the W28
and W123 peaks overlap as well, preventing a separated treatment of these residues.

However, the relative intensity distribution among the individual peaks in the
photo-CIDNP spectra is different from the intensity distribution in the HSQC spec-
tra. This is due to the dependency of the CIDNP spectra on the accessibility of
the tryptophan side chains to the photochemically activated FMN. In figure 3.11 on
page 79 the intensity ratios of CIDNP versus HSQC peak intensities (ICIDNP/IHSQC)
are plotted, where the highest CIDNP/HSQC ratio - resulting from the combined
W28/W123 peak - is normalized to 1.0 and the other ratios are scaled accordingly.
The peak intensities have been used for resolution purposes instead of the integrals.
Where possible, the integration of the resolved peaks yielded comparable results.
The errors for the peak intensities have been extracted from the signal-to-noise ratio
of the spectra and the error-bars in figure 3.11 on page 79 have been calculated by
error propagation from the intensity errors. The analysis of the CIDNP/HSQC ratio
in terms of accessibility to the solvent is semi-quantitative as discussed by Moro-
zova et al. (Morozova et al., 2004). Only time-resolved CIDNP data would allow for
a quantitative analysis.

The ratio for W111 in all-Ala-HEWL is only about half of the value for W28/W123
and the other tryptophan residues also exhibit significantly lower ratios. This agrees
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Figure 3.10.: 1H-15N-HSQC (upper row) and 2D photo-CIDNP (lower row) spectra of
all-Ala-HEWL (left column) and W62G-all-Ala-HEWL (right column).

with the formation of hydrophobic clusters and long-range interactions seen in non-
native HEWL (Klein-Seetharaman et al., 2002; Wirmer et al., 2004). The tryptophans
involved in the most pronounced clusters are W62, W63 (designated cluster 3) and
W111 (designated cluster 5) as judged from R2 transverse relaxation rates. The struc-
tural findings from solvent accessibility information obtained by the two-dimension-
al photo-CIDNP studies therefore support the data on the dynamics (see section 1.3
on page 27 and section 3.6 on page 83). The CIDNP/HSQC ratio distribution in the
W62G mutant of all-Ala-HEWL is different from the distribution in all-Ala-HEWL:
Only W111 shows a similar ratio, while the other ratios are significantly elevated,
suggesting a similar solvent accessibility for all tryptophans in the W62G mutant
but for W111. This is in accordance with mutational studies (Wirmer et al., 2004)
where it has been shown that the W62G mutation abolishes most of the clustering in
non-native lysozyme. In the same publication, it has been reported that the breakage
of the long-range interactions by the W62G mutation results in an increase of 12 % in
the measured radius of hydration (Rh), which reflects a shift towards more extended
conformations. This, in turn, explains the lower relative accessibilities of the trypto-
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Figure 3.11.: CIDNP/HSQC normalized intensity ratios of all-Ala-HEWL (white) and
W62G-all-Ala-HEWL (grey). *: The W28 and W123 peaks are degenerated in all-Ala-
HEWL and W62G-all-Ala-HEWL. **: The W63 and W108 peaks are degenerated in
W62G-all-Ala-HEWL.

phans involved in the hydrophobic clustering in the wild-type-like all-Ala-HEWL. In-
terestingly, the W62G mutation neither influences the accessibility of W111 to FMN
nor does it change the relaxation properties of the backbone amide and side chain
indole 15N nuclei (see results in section 3.6 on page 83). This indicates that the cluster
around W111 does not interact with the other clusters, despite its sequential proxim-
ity to W108. Thus, W108 and W111 may either be involved in two different clusters
or the mutations disrupt interactions of only some of the participating side chains.
In general, the applicability of two-dimensional photo-CIDNP experiments for the
structural characterization of non-native states of a protein — even at low protein
concentrations — has been proven with this work. In addition, the data from such
experiments might help to test the results from molecular dynamics simulations of
non-native states of proteins.

In the publication first reporting on the application of heteronuclear two-dimen-
sional photo-CIDNP (Lyon et al., 1999), hen egg white lysozyme has been investi-
gated in its native and urea-unfolded states. In native HEWL, only W62 and W123
are accessible to the solvent (see figure 1.12 on page 28) and thus are visible in the
photo-CIDNP spectra. The HSQC and the photo-CIDNP spectra of HEWL in 10 M
urea look similar to the spectra of all-Ala-HEWL in terms of peak distribution and
signal-to-noise. However, these spectra seem to be inverted along the 15N axis, most
likely due to improper processing of the data and no assignment was available for
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the tryptophan side chains at the time of the publication. The experiments by Lyon
et al. have been conducted at a higher temperature (318 vs. 303 K) and a higher
pH value (3.6 vs. 2.0) than the ones in this thesis. Indeed, the photo-CIDNP effect
was found to be very temperature dependent in the exploratory experiments of this
thesis (the signal intensities have found to be more than 25 % higher at 303 K than
at 293 K). Therefore, these experiments have been performed at a higher tempera-
ture than all other experiments described in this work. In contrast to the findings
of Lyon et al. but in line with earlier publications (Tsentalovich et al., 2002), the low
pH maintained during the photo-CIDNP experiments did not seem to deteriorate
the quality of the tryptophan region of the spectra. Furthermore, in contrast to the
earlier studies cited above no addition of hydrogen peroxide to the samples was
necessary to prolong the lifetime of the sample by the reoxidizing of reduced FMN.
Rather, it was possible to record at least two two-dimensional spectra with 64 in-
crements each, without the observation of any bleaching of the flavin. It should be
stressed, that only a very moderate laser illumination (500 mW output power at the
tip of the fiber and 50 ms duration of each pulse) had to be used for these experi-
ments. However, no significant CIDNP enhancement has been observed in the 2D
experiments in contrast to the one-dimensional CIDNP spectra.
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3.5.2. Two-dimensional 13C-1H photo-CIDNP

After successfully employing the 15N-1H photo-CIDNP experiment on all-Ala-HEWL,
the question arose, whether this technique was transferable to a 13C-1H correlated
two-dimensional photo-CIDNP experiment. The pulse scheme for this experiment is
analogous to the one listed in figure 2.7 on page 53. In figure 3.12 1H-13C-HSQC and
13C-1H 2D photo-CIDNP of the aromatic region are shown for all-Ala-HEWL. Nei-
ther in the HSQC nor in the photo-CIDNP spectrum, the peaks could be assigned
to individual residues. Most likely, the respective tryptophan side chain peaks of
the six tryptophans overlap. In addition, the complex multiplet pattern primarily
caused by 1J(C,C) couplings in the aromatic side chain also contributes to the com-
plexity of the HSQC and photo-CIDNP spectra. However, from the characteristic
chemical shifts taken from the BMRB (Seavey et al., 1991) distinct types of nuclei
have been assigned to groups of peaks where possible. The nomenclature of trypto-
phan side chains is illustrated in figure 3.13 on the following page.
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Figure 3.12.: 1H-13C-HSQC (left) and 13C-1H 2D photo-CIDNP (right) spectra of all-
Ala-HEWL. Some peaks have been assigned to distinct side chain nuclei of tryptophan
residues but not to individual tryptophan residues. Unassigned peaks in the HSQC
spectrum may arise from other aromatic residues.

Absorptive (positive) signals are observed for the 13Cε3 and 13Cζ2 signals, whereas
the 13Cδ1 , 13Cε2 , 13Cη2 and 13Cη3 are emissive (negative). The signs of the photo-
CIDNP peaks depend on the signs of the hyperfine coupling constant and whether
the g-factor of the amino acid radical is larger or smaller than that of the dye radical
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(Kaptein, 1971).
The two-dimensional 13C-1H photo-CIDNP spectrum presented here is the first of

its kind in solution NMR. The signal-to-noise ratio of this spectrum is very promis-
ing given the comparable low protein concentration and the short and weak laser
irradiation. Unfortunately, the resolution of the peaks is not sufficient for the analy-
sis of structural properties of the non-native HEWL, though an application to folded
proteins, where the signal dispersion is better and only few residues are exposed to
the solvent, might turn out to be very useful, e.g. to investigate ligand binding or to
characterize surface accessibilities and contact surfaces of binding partners.

Figure 3.13.: Nomenclature of tryptophan side chains.
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3.6. Protein dynamics by heteronuclear relaxation

Heteronuclear relaxation rates can report on the dynamics in proteins. They are rou-
tinely used to probe the flexibility of the peptide backbone. Most frequently the
amide 15N nuclei are utilized for this purpose. All R1, R2 and R1ρ heteronuclear re-
laxation rates presented here for the backbone amides of all-Ala-HEWL, have been
obtained by fitting peak heights to two-parameter single-exponential decay func-
tions. This has been shown to be the most accurate way to determine these rates
(Viles et al., 2001). Particularly when overlapping peaks are present, the use of peak
heights rather than peak volumes is preferable. The errors from the fits are negligible
in general, given the spectra are of good quality. Therefore, the errors have been esti-
mated to be ± 2 % in the case of the relaxation rates and ± 5 % for the heteronuclear
NOEs. In figure 3.14 on the next page, the results for all relaxation rates mentioned
above are combined and plotted over the sequence of all-Ala-HEWL. These relax-
ation profiles closely resemble the profiles for HEWL-SMe in 8 M urea (Schwalbe
et al., 1997) and the R2 profile is very similar to the profile of HEWL-SMe in water
(see figure 3.15 on page 85; Klein-Seetharaman et al., 2002; Wirmer et al., 2004).

In this work R2 rates have been determined for more residues than in the previous
work for HEWL-SMe and less scattering is observed. The R2 rates for HEWL-SMe are
slightly higher than for all-Ala-HEWL, but this effect can most probably attributed
to a different temperature calibration during acquisition of the experiment. If the
temperature in the previous experiments was to be lower by only a few degrees, the
rates would expected to be somewhat higher due to a lesser degree of mobility.

Due to significantly higher protein concentrations (3-4 mM) and/or the use of
high concentrations of urea (8 M) in some of the earlier works (Buck et al., 1995a;
Grimshaw, 1999; Schwalbe et al., 1997), the amplitudes of the R2 relaxation rates de-
termined therein for various non-native states of HEWL are not directly comparable
to the data presented here.

The R2 rate profile for all-Ala-HEWL has a baseline slightly above 2 s-1 and six
more or less defined regions with elevated rates: Region 1 (around residue A10),
region 2 (around W28 and A30), region 3 (around W62/W63), region 4 (around A82),
region 5 (around W108/A110/W111) and region 6 (around W123/I124). Of these six
regions, regions 3 and 5 are the most pronounced with peaks around 5 s-1 and 4 s-1,
respectively. The R1ρ rates are almost identical to the R2 rates, indicating the absence
of chemical exchange on the micro- to millisecond time-scale (Dayie and Wagner,
1994; Deverell et al., 1970; Szyperski et al., 1993).
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Figure 3.14.: Heteronuclear relaxation rates for all-Ala-HEWL
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Figure 3.15.: Comparison of R2 relaxation rates of all-Ala-HEWL and HEWL-SMe. The
baselines from the segmental motion model (see equation (3.1) on the next page) are
given in blue, the Gaussian fits are indicated by red curves (data for HEWL-SMe are
taken from Klein-Seetharaman et al., 2002).

The R1 rates and the steady-state heteronuclear 1H-15N-NOE in principal follow
the profile of the R2 rates but with much less pronounced amplitudes for they are
less sensible to motional restrictions. However, the hetNOE values are close to zero,
which indicates a general flexibility of the chain. For rigid parts in folded proteins,
higher values are to be expected.

However, the analysis of the R1 and R2 relaxation rates together with the heteronu-
clear 1H-15N-NOEs using the model-free approach (Lipari and Szabo, 1982a,b) to cal-
culate the order parameters along the sequence is not possible for all-Ala-HEWL,
as the assumption of the separability of global and internal motions is not true for
non-native proteins (also see page 26 in section 1.2.2). Nevertheless, elevated re-
laxation rates can be interpreted in terms of decreased flexibility and the regions of
raised relaxation rates in the sequence of all-Ala-HEWL in figure 3.14 correspond
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to the hydrophobic clusters already identified for HEWL-SMe in previous studies
(Klein-Seetharaman et al., 2002; Wirmer et al., 2004). The R2 rates of all-Ala-HEWL
and HEWL-SMe in figure 3.15 on the preceding page have been fitted to a Gaussian
equation (equation (3.2)), which includes a term for the hydrophobic clusters (red
line in figure 3.15).

Rrc
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For a random coil peptide chain without any tertiary contacts, the relaxation profile is
expected to follow a segmental motion model (Schwalbe et al., 1997), which is based on
equation (3.1) and gives a baseline (blue line in figure 3.15) for the relaxation rates.
The segmental motion model has been derived from polymer theory and assumes
that the relaxation properties of a given amide (i) are only determined by segmental
motions of parts of the polypeptide chain, independent from the overall tumbling
of the molecule and the type of the neighboring residues (j). In equation (3.1), Rint

is the intrinsic relaxation rate, that depends on the temperature and viscosity of the
solution, λ0 is the persistence length of the polypeptide chain and N is the total
number of residues. Equation (3.2) takes the presence of hydrophobic clusters into
account, with χcluster as the position of each cluster in the chain, λcluster as the width
of each cluster and Rcluster as the distinct relaxation rate for each cluster.

As mentioned above, the R1ρ experiment did not reveal any significant dynamics
in all-Ala-HEWL on slower (micro- to millisecond) timescales. The same is true for
the CPMG relaxation dispersion measurements conducted. Figure 3.17 on page 89
exemplarily shows the dispersion curves (effective R2 rate as a function of the CPMG
frequency) for six residues, including the hydrophobic residues in the most pro-
nounced clusters. The dispersion curves for all other analyzed residues gave the
same picture. If conformational exchange is present, the dispersion curves should
show significant dependence on the CPMG field.

As discussed in section 1.3 on page 31 and shown in figure 1.14 on page 30, vari-
ous single-point mutants have been shown to significantly alter the relaxation profile
of HEWL-SMe (Wirmer et al., 2004). The most pronounced effect has been observed
for the exchange of the tryptophan at position 62 for a glycine (W62G), where in
all six clusters the relaxation rates are reduced and the central cluster 3 (around the
positions G(W)62 and W63) completely disappears. In the W111G mutant, clusters
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2 (around W28) and 3 are weekended, while clusters 5 (W108/W111) and 6 (W123)
completely disappear. In the W123G mutant, clusters 2, 3 and 5 exhibit decreased
relaxation rates, while the C-terminal cluster six around the mutation vanishes (the
numbering of the clusters is also shown in figure 3.16). Taken together, these data
suggest a crosstalk between these clusters, since effects in one hydrophobic clus-
ter are translated to the other clusters. Interestingly, the W108G mutant of all-Ala-
HEWL produced in the course of this thesis, shows a relaxation profile very similar
to that of the wild-type HEWL-SMe and all-Ala-HEWL, except for cluster 5, which is
modulated such that only residues N106 and A107 show increased relaxation rates
figure 3.16. This suggests, that the tryptophan 108 might not be as critical as W62 or
W111 for the overall hydrophobic clustering in non-native HEWL.

Figure 3.16.: Comparison of R2 relaxation rates of all-Ala-HEWL and W108G-all-Ala-
HEWL. The location of the single point mutation is indicated by a red arrow.

At the tryptophan side chain level, 15N-R2 relaxation rates have been determined
for all-Ala-HEWL and its W62G mutant. Together with the assignment of the tryp-
tophan side chain resonances (see section 2.3 on page 46), this gives a more detailed
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picture. Table 3.2 lists these rates for the six tryptophan residues. Due to the overlap
of the tryptophan 28 and 123 peaks, only a combined rate is given for these residues.
W62 and W63 show significantly higher rates than the other tryptophans, the rate for
W111 is only slightly higher. In the W62G single-point mutant, the rates are more
uniform, with the rate of W63 being clearly smaller than in the wild-type like all-
Ala-HEWL. Backbone and side chain data nicely converge at this point. In general,
the rates for the tryptophan side chains are in the order of 2 to 3 s-1, and thus on
average around 1 s-1 smaller than the rates of the respective backbone signals. This
might be due to a higher flexibility in the side chains and differences in the NH bond
lengths. Unfortunately, no reliable data is available to directly compare these bond
lengths, although in general XH bond lengths in aromatic systems are smaller than
in aliphatic systems (Lide, 1996). However, following equation (1.11) on page 24, a
smaller NH bond distance would result in a larger rate.

Table 3.2.: Heteronuclear 15N transverse relaxation rates in the tryptophan side chains
of all-Ala-HEWL and W62G-all-Ala-HEWL.

R2 in [s-1]
Residue

all-Ala-HEWL W62G-all-Ala-HEWL

W28 2.3 ± 0.1 2.0 ± 0.1

W62 3.0 ± 0.1 —

W63 3.1 ± 0.1 2.2 ± 0.1

W108 2.4 ± 0.1 2.2 ± 0.1

W111 2.6 ± 0.1 2.4 ± 0.1

W123 2.3 ± 0.1 2.0 ± 0.1
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3.6. Protein dynamics by heteronuclear relaxation

Figure 3.17.: 15N single-quantum relaxation rates as a function of CPMG frequency for
various residues of all-Ala-HEWL.
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3.7. Residual dipolar couplings

In order to further characterize the structural aspects of the non-native ensemble of
all-Ala-HEWL in water at pH 2, NH-RDCs have been determined for this protein
in stretched 7 % polyacrylamide gels. The preparation of these aligning gels is de-
spite the availability of a convenient casting apparatus (see Materials and Methods,
page 58), not a routine procedure and multiple trials were needed in order to pro-
duce properly aligned samples. The integrity of the gels in the NMR tube and the
process of the gel transfer into the tubes, was found the be the limiting step. The
proper shimming of these samples in the magnet was challenging, but the suppres-
sion of natural-abundance gel signals in the two-dimensional 1H-15N-HSQC and
IPAP spectra was not critical, for these peaks did not overlap with the signals in the
amide region of the protein. The alignment of the samples was checked with one-
dimensional 2H spectra, in which the 2H quadrupolar splitting in the HDO signals
can be detected. Typically, splittings in the range of 5 to 20 Hz have been observed
(figure 3.18 gives an example). The NH-RDCs have been calculated from the dif-

Figure 3.18.: Quadrupolar splitting in HDO in a 2H 1D spectrum of a stretched 7 %
polyacrylamide gel to assess the degree of alignment of the sample.

ference of the couplings in the isotropic medium (water pH 2) and the anisotropic
medium (7 % PAG, pH 2), with the latter being the sum of the scalar 1J(HN,NH)
and the dipolar 1D(HN,NH) couplings. The couplings itself have been determined in
the 15N dimension by picking the two respective peaks in the 1H-15N-IPAP experi-
ments. The final resolution of the processed spectra was 0.4 Hz. For 95 of the 125
assigned residues in all-Ala-HEWL unambiguous NH-RDCs have been extracted,
figure 3.19 on the facing page shows the occurrence distribution of their values. In
addition to the bell-shaped distribution of the bulk RDCs around -2 Hz, a number
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of positive RDCs are present. When plotted over the amino acid sequence of HEWL
(upper panel in figure 3.20 on the next page), most of these positive RDCs are lo-
cated in the regions, where hydrophobic clustering had been identified by the re-
laxation experiments. Most pronounced is the occurrence of these positive RDCs in
the clusters 2, 3 and 5, which are centered around W28, W62/W63 and W108/W111,
respectively. Large negative RDCs are observed for the residues preceding the two
prolines in HEWL. Similarly, NH-RDCs have been determined for the W62G mu-
tant of all-Ala-HEWL (lower panel in figure 3.20). The overall RDC profile plotted
over the sequence is very similar to the profile found for all-Ala-HEWL. However, in
W62G positive RDCs are only observed in the regions identified as clusters 5 and 6
at the C-terminus of the protein. The NH-RDC profile for non-native HEWL in no

Figure 3.19.: Occurrence of distinct NH-RDC-values in all-Ala-HEWL aligned in a 7 %
polyacrylamide gel. The values have been rounded up or down to the nearest whole
number.

way resembles the profile determined for the native protein in two different bicel-
lar alignment media (figure 3.21 on page 93, data taken from Schwalbe et al. (2001)),
which is not surprising, since no considerable native-like structural motifs are ex-
pected to be present in non-native HEWL and the alignment tensor in the different
media should be independent. As for the other NMR parameters, in order to inter-
pret the residual dipolar couplings in unfolded proteins, the measured values may
be compared to predicted values based on models. The observed RDCs are aver-
aged over the whole ensemble of interconverting conformers. Therefore, in simula-
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Figure 3.20.: NH-RDCs plotted over the sequence of all-Ala-HEWL and the W62G single
point mutant aligned in a 7 % polyacrylamide gel. The position of the six previously
identified hydrophobic clusters is indicated by their numbers.

tion approaches such ensembles have to be created and averaged residual dipolar
couplings have to be calculated. As described in section 2.6.2 on page 59, the flexible-
meccano algorithm (Bernadó et al., 2005a,b) can be used for this purpose. In contrast
to smooth bell-like distributions of RDCs that are expected for ideal random flight
chains (Louhivuori et al., 2003; Obolensky et al., 2007), the flexible-meccano approach
includes φ,ψ backbone angle propensities extracted from databases of amino-acid
specific conformations occurring in loop regions of proteins. When applied for the
amino acid sequence of HEWL, the flexible-meccano algorithm yields an RDC distri-
bution as shown in figure 3.22A, which, however, does not resemble the experimen-
tal data. This is not surprising, since no long-range contact information is included
in this calculations. Therefore, distance restraints have been implemented into the
flexible-meccano algorithm, in order to generate more realistic ensembles of confor-
mations. Figure 3.22B-D shows the results for single distance restraints between
two sites at a time: A 15 Å contact restraint between clusters 2 (around W28) and
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3.7. Residual dipolar couplings

Figure 3.21.: NH-RDCs in native HEWL aligned in 5 % DMPC:DHPC (black bars) and
7.5 % DMPC: DHPC:CTAB (grey bars) (data taken from Schwalbe et al., 2001).

3 (around W62/W63) (B), a 15 Å contact restraint between clusters 2 and 5 (around
W108/W111) (C) and an 10 Å contact restraint between clusters 3 and 5 (D). All
simulations are averaged over 50,000 conformers to allow for convergence. None
of these simulations runs resulted in a relaxation profile similar to the experimental
data and no significant positive RDCs have been predicted at all. The introduction of
a single contact between two clusters at a time consequently leads to the introduction
of a turn and a kink in the RDC profiles halfway between the respective contacting
clusters. The effort to include multiple contacts between clusters at a time, was not
feasible, since the generation of such ensembles takes to much computer time. An at-
tempt to restrict the φ,ψ backbone angles of the tryptophan-tryptophan motif in the
central hydrophobic cluster to values extracted from a database in order to generate
ensembles which resemble the non-native all-Ala-HEWL, did not give any useful re-
sults. The residual structure in all-Ala-HEWL seems to be less easy to simulate than
for other non-native or natively unfolded proteins, for which long-range contacts
(Bernadó et al., 2005a) or the presence of β and β-turn structural motifs (Mukrasch
et al., 2007a,b) have been picked up by the flexible-meccano approach.
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Figure 3.22.: Simulated NH-RDCs from flexible-meccano. A: no further restraints, B:
with 15 Å contact restraint between clusters 2 and 3, C: with 15 Å contact restraint be-
tween clusters 2 and 5, D: with 10 Å contact restraint between clusters 3 and 5. All
simulations averaged over 50,000 conformers

Instead, another way of generating ensembles of non-native conformers of HEWL
has to be thought of in order to simulate RDCs that match the experimental data not
only for the wild-type like all-Ala-HEWL but also for its single point mutants. The
most promising way to interpret the experimental RDCs for all-Ala-HEWL, seems to
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3.7. Residual dipolar couplings

be the calculation of RDCs from ensembles of conformers generated using molecular
dynamics simulations with restraints from other experimental data, such as relax-
ation rates in combination with mutational studies, the solvent accessibilities from
the photo-CIDNP experiments or the distance information from PREs (Argirevic,
2006).
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3.8. Residual structure in organic solvents

Organic solvents such as ethanol and 2,2,2-trifluoroethanol (TFE) are known to in-
duce specific secondary structures in proteins and in some cases induce the forma-
tion of amyloid fibrils.The structural changes of HEWL-SMe and all-Ala-HEWL in-
duced in the presence of various concentrations of ethanol and TFE in the solvent
have been studied here by circular dichroism (CD) and nuclear magnetic resonance
(NMR) spectroscopy. In CD spectroscopy, the ellipticity of originally circularly po-
larized light is measured after it has been partially absorbed by the sample (Kelly
and Price, 2000). The peptide bonds are the main chromophores in far-UV CD spec-
troscopy (240 to 180 nm). Different secondary structure motifs, such as α-helices and
β-sheets, absorb the light differently and therefore yield characteristic CD spectra
(Johnson, 1990). The spectra of real proteins, native or (partially) unfolded, can be
interpreted as combinations of spectra of the different possible secondary structure
elements, including random coil. In addition, ellipticities at distinct wavelengths can
be used to estimate the fraction of a certain secondary structure in a protein. The
ellipticity at 222 nm is particularly characteristic for α-helices (Kelly et al., 2005) and
has been used in this work to characterize non-native lysozyme. The formulae used
to convert the measured ellipticities into α-helical fractions (Rohl and Baldwin, 1997)
are discussed in section 2.7 on page 61. However, the values derived from single
wavelengths only allow for a rough estimate of secondary structure content.

In figure 3.23 on the next page, the CD spectra of native HEWL and HEWL-SMe

are compared. As expected, the spectrum of the non-native protein, compared to
the native state, is shifted towards lower wavelengths, resembling a mostly ran-
dom coil spectrum with only about 14 % α-helical content (see table 3.3 on page 98).
The native protein in turn is mostly in an α-helical conformation, which is in com-
plete agreement with the available three-dimensional structures of this enzyme (see
e.g. figure 1.12 on page 28). With roughly 18 %, the fractional helicity of all-Ala-
HEWL is very similar to the one in HEWL-SMe, given the limited accuracy of this
method.

Figure 3.24 on page 99 shows the far-UV CD spectra of HEWL-SMe in solutions
containing 0 %, 10 %, 30 % and 50 % 2,2,2-trifluoroethanol (TFE). An increase in
the concentration of the organic solvent leads to a left shift in the minima of the
spectra, indicating an increase in α-helicity. The calculated helicity values (table 3.3
on page 98) for 10 - 50 % TFE in the solution are all around 30 %, suggesting, that a
small fraction of TFE is sufficient to induce helix formation.
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3.8. Residual structure in organic solvents

Figure 3.23.: Circular dichroism spectra of HEWL-SMe and native HEWL. θMRW: mean
residue molar ellipticity in [deg cm2 dmol-1]; λ: wavelength in [nm].

Figure 3.25 on page 100 shows the far-UV CD spectra of HEWL-SMe in solutions
containing 0 %, 30 %, 60 % and 90 % ethanol (EtOH). Increasing concentrations of
ethanol lead to increasing helical fractions, ranging from around 30 % helicity at
30 % EtOH to nearly 60 % helical content at 90 % EtOH. Interestingly, the samples
containing 50 % TFE also reach an α-helical content of around 60 % after incubation
for several hours (see table 3.3 on the next page). The helicity of HEWL-SMe in 90 %
EtOH is nearly constant for at least 30 hours. After 4 days, the helicity is decreasing
to under 50 %. However, the related spectra (figure 3.26 on page 101) show a shift
to higher β-sheet-like fractions after several hours of incubation, indicated by spec-
tral minima at around 215 nm, in contrast to the α-helical double minima at 208 and
222 nm. Most interestingly, a titration of the sample containing 90 % ethanol with
NaOH to a pH of 10, lead to spectra (figure 3.27 on page 102) indicating a very pro-
nounced transition to β-sheet-like structures which at the same time is accompanied
by a dramatic decrease of the α-helical fraction.

Figure 3.28 on page 102 shows a 1H-15N-HSQC spectrum of all-Ala-HEWL in wa-
ter pH 2, while figure 3.29 on page 103 shows spectra of the same protein in the
presence of 30 % and 60 % EtOH and figure 3.30 on page 103 in the presence of 90 %
EtOH and 50 % TFE, respectively. With increasing concentrations of the organic sol-
vents, the peaks get broader, most dramatically at 90 % EtOH, where some peaks
are already broadened beyond detection. More strikingly, the signal dispersion es-
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Table 3.3.: Fractional helicity for various samples of HEWL as calculated from the
molecular ellipticity at 222 nm.

Sample pH corg
a tinc

b f H
c

native HEWL 2.0 – – 53.0 %

HEWL-SMe 2.0 – – 13.9 %

all-Ala-HEWL 2.0 – – 17.5 %

HEWL-SMe 2.0 10 % TFE – 27.4 %

HEWL-SMe 2.0 30 % TFE – 39.3 %

HEWL-SMe 2.0 50 % TFE – 32.0 %

HEWL-SMe 2.0 30 % EtOH – 25.9 %

HEWL-SMe 2.0 60 % EtOH – 45.0 %

HEWL-SMe 2.0 90 % EtOH – 59.7 %

HEWL-SMe 10.0 90 % EtOH – 27.5 %

HEWL-SMe 2.0 50 % TFE 23 h 55.7 %

HEWL-SMe 2.0 50 % TFE 30 h 56.7 %

HEWL-SMe 2.0 50 % TFE 96 h 56.6 %

HEWL-SMe 2.0 90 % EtOH 5 h 64.8 %

HEWL-SMe 2.0 90 % EtOH 23 h 54.8 %

HEWL-SMe 2.0 90 % EtOH 30 h 54.2 %

HEWL-SMe 2.0 90 % EtOH 96 h 47.5 %

aconcentration of organic solvent
btime of incubation with organic solvent
cFractional helicity

pecially in the 1H dimension of the spectra is increasing with the concentration of
the organic solvent, indicating the induction of additional structure. Moreover, the
peak pattern changes in a way, that an unambiguous identification of specific peaks
is almost unfeasible in most cases already at 30 % EtOH. Interestingly, the peak dis-
tribution in the spectrum of all-Ala-HEWL in TFE clearly looks different from the
spectra of this protein in water and in the various percentages of ethanol.

The line broadening in the presence of organic solvents cannot completely be at-
tributed to slower tumbling due to the higher viscosity of these solutions, since the
viscosity of azeotropic ethanol-water mixtures has a maximum at around 50 % EtOH
(Lide, 1996; Wensink et al., 2003) and therefore line broadening should be maximal
in this range and not at 90 % as observed in the experiment. Instead, fast chemi-

98



3.8. Residual structure in organic solvents

Figure 3.24.: Circular dichroism spectra of HEWL-SMe in the presence of various concen-
trations of trifluoroethanol. θMRW: mean residue molar ellipticity in [deg cm2 dmol-1];
λ: wavelength in [nm].

cal exchange between different — mostly α-helical — conformers must be the most
important contributing factor.

NMR spectroscopy has been used in numerous other studies to elucidate the in-
fluence of organic solvents on structural and dynamical properties of HEWL in its
oxidized — disulfides intact — form. It has been shown by 1Hα chemical shift pertur-
bations, NOEs, 3J(HN,Hα) scalar couplings, hydrogen exchange protection and 15N
R2 relaxation rates that HEWL in 50-70 % TFE is partially folded with more α-helical
content than in the native protein, but exhibits few tertiary interactions (Buck et al.,
1993, 1995b, 1996; Povey et al., 2007). The refolding kinetics of HEWL from the state
in 60 % TFE are similar to the refolding kinetics from 6 M guanidine hydrochloride
(GdnHCl), but low concentrations of TFE present during refolding accelerate the
process (Lu et al., 1997). In contrast to TFE, unfolding in GdnHCl results in states
with very little secondary and tertiary structure present. In 10-50 % dimethylsulfox-
ide (DMSO), HEWL forms another intermediate state with residual structure present
(Bhattacharjya and Balaram, 1997). The effects of different organic solvents to HEWL
are compared in a paper by Knubovets et al. (1999), suggesting that the native-like
structure retention in HEWL is favored in very hydrophilic solvents with strong hy-
drogen bonding propensities.

The effect of induced α-helical structure in HEWL in the presence of TFE, has also

99



3. Results and Discussion

Figure 3.25.: Circular dichroism spectra of HEWL-SMe in the presence of various con-
centrations of ethanol. θMRW: mean residue molar ellipticity in [deg cm2 dmol-1]; λ:
wavelength in [nm].

been observed by CD spectroscopy and small angle X-ray scattering (Hoshino et al.,
1997). Stopped-flow CD and differential scanning calorimetry (DSC) have been used
to characterized the folding transitions in the presence of various organic solvents
(Lai et al., 2000).

The induction of α-helical structure by TFE in reduced HEWL has also been shown
using CD spectroscopy by Prabha and Rao (2004), who in addition found that TFE
does not facilitate the oxidative refolding of this protein.

The influence of TFE and other organic solvents on the secondary and tertiary
structure has also been shown by NMR for other proteins and peptides (Fan et al.,
1993; Jaravine et al., 2001; Live et al., 1984; Thanabal et al., 1994). These findings are
all in line with the results in this thesis and the articles cited above.

In addition, it has been shown in the literature, that hen egg white lysozyme can
form amyloid fibrils at low pH in the presence of organic solvents when incubated
for several hours at high temperatures or several days to weeks at room temperature
(Goda et al., 2000; Krebs et al., 2000).

However, the investigation of the formation of amyloid fibrils was not subject of
this thesis, since this topic has been investigated in-depth in the references cited
above. Similar projects on the fibril formation starting from non-native states of
proteins — especially variants of the prion protein and lysozyme — are currently
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Figure 3.26.: Circular dichroism spectra of HEWL-SMe in the presence of 90 % ethanol at
different times of incubation. θMRW: mean residue molar ellipticity in [deg cm2 dmol-1];
λ: wavelength in [nm].

dealt with in our group by other researchers.
In summary, the findings from the CD and NMR spectroscopical investigations of

the non-native HEWL-SMe and all-Ala-HEWL proteins in organic solvents described
in this thesis are very similar to the results found in the literature that started from
the native HEWL protein. For the first time, the structural changes in a non-native
protein induced by organic solvents have been studied here using two-dimensional
heteronuclear NMR. Unfortunately, an unambiguous assignment under this condi-
tions was not possible by simple comparison with the spectrum in pure water. It
has been shown with this work that the influence of organic solvents on non-native
HEWL can be monitored using 2D NMR spectroscopy. This enables in principle
time-resolved studies of the structural changes at atomic resolution, possibly even
including fibril formation. However, at least a partial assignment of the resonances
under these conditions is needed to gain more valuable information on these pro-
cesses.
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Figure 3.27.: Circular dichroism spectra of HEWL-SMe in the presence of 90 % ethanol at
pH 2 and 10. θMRW: mean residue molar ellipticity in [deg cm2 dmol-1]; λ: wavelength
in [nm].
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Figure 3.28.: 1H-15N-HSQC spectrum of all-Ala-HEWL.
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Figure 3.29.: 1H-15N-HSQC spectra of all-Ala-HEWL in 30 % (left) and 60 % (right)
ethanol.
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Figure 3.30.: 1H-15N-HSQC spectra of all-Ala-HEWL in 90 % ethanol (left) and in 50 %
TFE (right).

103



3. Results and Discussion

3.9. Conclusions and outlook

Taken together, the results presented in this thesis contribute to the further under-
standing of the structural and dynamical properties of non-native HEWL, which in
this context serves as a model protein. The routine production of non-native HEWL
for these investigations was facilitated by the introduction of all-Ala-HEWL, the pro-
duction of which is reliable and reproducible. Single-point mutants can readily be
produced by site-directed mutagenesis and be used to modulate the properties of
non-native states of this protein.

Unlike for folded native proteins, a direct structure determination for more or less
unfolded proteins is not feasible, because these states exist as ensembles of intercon-
verting conformers. The observed properties, e.g. the measured NMR parameters,
are therefore averaged over the whole ensemble and over time, depending on the
timescale in which the respective method is sensitive. For the analysis, the exper-
imental data can be compared to predictions from model calculations and conclu-
sions can be drawn from deviations of experimental data from the predicted values.
The ultimate goal would be to generate ensembles of conformers, for which the pre-
dicted properties completely resemble the experiments.

As the prerequisite for the investigation of HEWL-SMeand all-Ala-HEWL the NMR
resonances of these proteins have been assigned almost to completion despite the
difficulties caused by the limited dispersion of the peaks and signal overlap. Suit-
able combinations of three-dimensional spectra have been used for the purpose of
assignment. The use of multiple lines of correlation between the residues in the
sequence of the protein, e.g. the combination of HNCACB and HNN experiments,
greatly enhanced quality and rate of assignment.

Secondary chemical shifts and CD spectroscopy revealed the presence of residual
secondary structure in non-native HEWL at pH 2, particularly the population of α-
helix-like conformations in parts of the sequence. Comparison with peptide data
(Graf et al., 2007) revealed that for the triple-aline motif in cluster 1, the structural
propensities towards α-helical-like conformations are intrinsic to the sequence and
not induced by long-range interactions. It is not known so far, to which degree
this is also the case for other regions of the sequence that exhibit such propensities,
e.g. clusters 3 and 5. An approach to solve this open question would be to synthesize
and characterize peptides corresponding to this segments of the lysozyme sequence.
Another possibility would be to investigate the secondary chemical shifts for the
single point mutants W62G, W108G and W111G of HEWL-SMe or all-Ala-HEWL.
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Unfortunately, 13C,15N doubly-labeled samples of these mutants do not exist so far
and therefore the most indicative 1Hα and 13Cα secondary chemical shifts are not
available.

The importance of at least some of the six tryptophan side chains for the properties
of non-native states of lysozyme has been pointed out repeatedly in this thesis. In an
effort to assign the NMR resonances of the tryptophan side chains, a set of two new
pulse sequences has been developed, which taken together for the first time allowed
for the unambiguous and residue specific assignment of the 13Cγ, 15Nε and 1HN

ε

resonances. This knowledge was eventually exploited in the interpretation of two-
-dimensional 15N-1H photo-CIDNP spectra, which revealed a differential solvent
accessibility of the tryptophan residues in all-Ala-HEWL but not in W62G-all-Ala-
HEWL. These findings are in line with the data from the combined relaxation and
mutational studies and the determined radii of hydration, which suggested more
extended conformations for W62G and other mutants with disrupted hydropho-
bic clusters (Wirmer et al., 2004). In a more extended conformation caused by the
decrease of long-range contacts between hydrophobic residues, the accessibility of
single tryptophan side chains for the CIDNP dye will be more uniform than in a sit-
uation, where some of the tryptophans are more involved in hydrophobic clustering
than others. This is also supported by the comparison of the heteronuclear R2 relax-
ation rates of the indole 15Nε nuclei in all-Ala-HEWL with the corresponding rates
in it W62G mutant. While in the wild-type like all-Ala-HEWL, the rates are different
among the six tryptophan residues, in W62G they are more uniform.

A W108G mutant of all-Ala-HEWL has been created and R2 relaxation have been
determined. W108, together with W111, forms the core of the second most pro-
nounced hydrophobic cluster in non-native HEWL. Interestingly, this mutation does
— unlike W108G or W111G — not significantly alter the relaxation profile of the
protein. Apparently, W108 is to a much lesser degree involved in the hydrophobic
clustering than W62 or the neighboring W111.

The various relaxation rates and the relaxation dispersion data show no evidence
for a slow conformational exchange in all-Ala-HEWL, as it is for example observed
around the disulfide bridges in fully and partially oxidized HEWL (Collins et al.,
2005).

The differences of the W62G and the wild-type like non-native HEWL is also
picked up in NH-RDCs of these proteins aligned in polyacrylamide gels. Signifi-
cant positive RDCs are observed in the regions of the hydrophobic clusters in all-
Ala-HEWL, but to a much lesser degree in W62G. So far, all attempts to simulate
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RDCs from generated non-native ensembles failed even when including long-range
contacts or specific φ,ψ backbone angle propensities. Hopefully, approaches will
be developed that can more accurately generate ensembles of conformers, that re-
semble the properties of non-native HEWL. Most promising are molecular dynam-
ics approaches, that use restraints from the relaxation data and the surface acces-
sibilities determined by the photo-CIDNP method. RDCs from such approaches
should closely match the experimental data not only for all-Ala-HEWL, but also for
the single-point mutants.

Another source of information about the structure in non-native proteins are dis-
tance restraints derived from paramagnetic resonance enhancements (PREs) caused
by paramagnetic spin labels. First data are available for a paramagnetic spin label
covalently attached at position 73 of the R73C mutant of all-Ala-HEWL (Argirevic,
2006). The results of this experiment showed that residues in cluster 1 and 5 are close
to the spin label.

In the meantime, RDC data can be acquired for additional single-point mutants of
all-Ala-HEWL and paramagnetic spin labels can be attached at various positions in
the sequence of the protein in order to gain new distance restraints from PREs.

From the literature it is known, that non-native HEWL can form amyloid fibrils
under certain conditions, including the presence of organic solvents (Goda et al.,
2000; Krebs et al., 2000) and sodium maleate (Mishima et al., 2006). Most interest-
ingly, the rate of amyloid formation has been found to differ among various single-
point mutants, with W62G not forming fibrils under these conditions (Mishima et al.,
2006). However, molecular dynamics simulations showed that the W62G mutant is
less stable than wild-type HEWL (Zhou et al., 2007). An overall picture that unifies
all these findings is still desired, but findings from this thesis may contribute to a
better understanding of the properties of non-native HEWL and its mutants.
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A.1. List of buffers, media and primers

A.1.1. M9 minimal media

Table A.1.: M9 minimal media.

15N M9 medium 15N,13C M9 medium

42 mM Na2HPO4 42 mM Na2HPO4

22 mM KH2PO4 22 mM KH2PO4

8.5 mM NaCl 8.5 mM NaCl

1 g/L NH4Cl (15N) 1 g/L NH4Cl (15N)

0.1 mM CaCl2 0.1 mM CaCl2

2 mM MgSO4 2 mM MgSO4

10 g/L D-glucose (sterile) 2.5 g/L 13C 6 D-glucose (sterile)

1 mL/L trace elements stocka 1 mL/L trace elements stocka

30 µM FeCl3 30 µM FeCl3

5 ng/L thiamine 5 ng/L thiamine

1 mL/L ampicillin stockb 1 mL/L ampicillin stockb

atrace elements stock solution contains 1 mM Cu2+, Zn2+, Mn2+, Co2+, Ni2+, MoO4-

bstock solution contains 100 mg/mL ampicillin in water
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A.1.2. Protein purification buffers

Table A.2.: Inclusion bodies solubilization buffers.

Sonication Washing Denaturation
buffer buffer buffer

50 mM tris/HCl 20 mM tris/HCl 20 mM tris/HCl

pH 7.5 pH 7.5 pH 7.5

25 % sucrose (w/v) 1 % Triton X-100 (w/v) 0.1 M DTT

1 mM EDTA 1 mM EDTA 5 mM EDTA

50 mM NaCl

8 M urea

Table A.3.: Ion exchange buffers.

Low salt buffer High salt buffer
(buffer A) (buffer B)

20 mM tris/HCl 20 mM tris/HCl

pH 7.5 pH 7.5

10 mM 2-mercaptoethanol 10 mM 2-mercaptoethanol

1 mM EDTA 1 mM EDTA

4 M urea 4 M urea

300 mM NaCl

A.1.3. Primer for site-directed mutagenesis

Table A.4.: Primers for site-directed mutagenesis.

Primer Sequence

W62G forward 5’-cagatcaacagccgcgggtgggcgaacgacgg-3’

W62G reverse 5’-ccgtcgttcgcccacccgcggctgttgatctg-3’

W108G forward 5’-gcaacggcatgaacgcgggggtggcctggcgtaacc-3’

W108G reverse 5’-ggttacgccaggccacccccgcgttcatgccgttgc-3’

108



A.2. NMR aquisition and processing parameters

A.2. NMR aquisition and processing parameters
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A.3. Resonance assignments

A.3. Resonance assignments

A.3.1. HEWL-SMe

Table A.7.: Resonance assignment for HEWL-SMe.

δ(1HN) δ(15NH) δ(13Cα) δ(13Cβ) δ(13C’) δ(1Hα) δ(1Hβ)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
M-11,2 — — — — — — —

K1 8.694 126.10 56.15 32.96 171.88
V2 8.260 124.10 61.73 32.89 176.35 4.070 1.946
F3 8.522 126.32 57.75 39.77 175.57 4.623 3.053
G4 8.368 111.87 44.90 — 176.08 3.913
R5 8.279 121.90 56.30 30.52 173.84

A61 — — — — — 4.541 2.907
E7 8.527 124.53 56.07 28.37 175.37 4.347 2.014
L8 8.206 124.48 55.53 42.07 176.08 4.264 1.595
A9 8.247 125.55 53.01 18.66 177.42 4.362 1.385

A10 8.158 123.27 53.09 18.58 176.64 4.205 1.400
A11 8.180 123.54 53.16 18.66 178.37 4.212 1.393
M12 8.116 119.79 56.07 32.66 178.37
K131 — — — — — — —
R141 — — — — — — —
H151 — — — — — — —
G16 8.444 111.29 45.13 — 174.75 3.943 —
L17 8.223 122.76 55.38 42.30 173.89 4.324 1.572
D18 8.525 120.51 52.78 37.86 177.26 4.623 2.769
N19 8.309 120.22 53.01 38.40 174.69 4.638 2.686
Y20 8.069 121.78 57.91 38.47 174.69 4.489 2.963
R21 8.247 124.60 55.99 30.13 175.75 4.182 1.673
G22 7.752 109.96 44.98 — 176.23 3.808 —
Y23 7.948 120.98 57.60 38.85 173.55 4.556 2.930
S24 8.262 118.76 57.98 63.95 175.80 4.399 3.786
L25 8.218 125.15 55.53 63.87 174.25 4.287 1.595
G26 8.194 109.71 45.21 — 177.67 3.786 —
N27 8.169 119.79 53.01 38.63 173.73 4.668 2.672
W28 8.073 122.76 57.52 29.21 174.89 4.616 3.225
V29 7.844 122.83 62.34 32.66 176.16 3.920 1.909
A30 8.134 123.88 55.30 36.87 175.67 4.362 2.814

1Backbone unassigned
2The N-terminal methionine has been introduced for expression in E. coli
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Table A.7 (continued)

δ(1HN) δ(15NH) δ(13Cα) δ(13Cβ) δ(13C’) δ(1Hα) δ(1Hβ)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
A31 8.385 127.82 52.93 18.81 174.85 4.205 1.370
A32 8.111 123.62 52.78 18.81 177.51 4.182 1.325
K33 8.027 120.48 56.38 32.66 177.94 4.257 1.774
F34 8.219 122.54 55.69 42.30 173.91 4.310 1.561
E35 8.278 122.50 55.61 28.99 177.21 4.317 1.972
S36 8.278 117.81 58.59 63.57 175.71 4.324 3.793
N37 8.347 121.29 53.01 38.85 174.19 4.646 2.686
F38 8.149 121.46 58.06 39.08 174.94 4.549 3.038
N39 8.345 121.25 53.16 38.55 175.51 4.698 2.754
T40 8.113 115.62 65.86 175.46
Q41 8.329 123.22 56.15 29.06 174.75 4.302 2.040
A42 8.280 125.98 52.78 18.89 175.91 4.317 1.385
T43 8.101 113.87 61.96 69.69 177.99 4.302
N44 8.382 121.97 53.09 38.17 174.37 4.683 2.757
R45 8.337 122.55 56.22 30.52 175.14 4.317 1.793
N46 8.494 120.73 53.24 38.55 176.05 4.736 2.799
T47 8.178 115.18 62.04 69.54 175.71 4.302
D48 8.494 122.01 52.93 37.86 174.69 4.758 2.881
G49 8.410 110.49 45.36 — 175.64 3.965 —
S50 8.170 116.65 58.36 63.80 174.28 4.481 3.876
T51 8.211 116.75 61.88 69.54 174.89 4.272 4.085
D52 8.380 122.10 52.78 38.09 174.32 4.683 2.716
Y53 8.131 121.99 58.52 38.32 174.73 4.459 2.990
G54 8.278 110.88 45.28 — 176.37 3.868 —
I55 7.838 120.78 61.43 38.40 174.18 4.145 1.856
L56 8.228 126.11 48.80 176.32

Q571 — — — — — 4.287 1.980
I58 8.109 122.68 61.65 38.47 176.16 4.003 1.804
N59 8.354 122.67 53.16 38.55 176.03 4.683 2.769
S60 8.228 117.29 58.59 63.64 177.69 4.272 3.827
R61 8.194 123.05 56.22 29.67 174.82 4.010 1.430
W62 7.786 121.59 57.60 29.21 176.33 4.541 3.217
W63 7.398 121.60 57.37 28.99 176.12 4.466 2.960
A64 7.728 121.93 55.30 36.87 175.76
N651 — — — — — 4.623 2.761
D66 8.352 119.96 53.24 37.86 175.05 4.631 2.866

1Backbone unassigned
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Table A.7 (continued)

δ(1HN) δ(15NH) δ(13Cα) δ(13Cβ) δ(13C’) δ(1Hα) δ(1Hβ)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
G67 8.331 109.57 45.43 — 175.48 3.838 —
R68 7.964 120.86 55.92 30.75 173.55 4.407 1.804
T69 8.247 118.29 59.67 69.46 174.78
P701 — — — — — 4.706 2.821
G71 8.485 110.55 45.13 — 175.98 3.943 —
S72 8.115 116.61 58.59 63.87 174.28 4.414 3.868
R73 8.420 123.69 56.15 30.52 174.69 4.317 1.763
N74 8.424 120.73 53.16 38.55 175.87 4.661 2.765
L75 8.297 123.87 61.96 41.99 175.09 1.587
A76 8.295 120.91 55.30 37.10 177.12 4.406 2.874
N77 8.507 122.29 52.78 38.47 174.59 4.691 2.739
I78 8.020 123.87 58.59 38.40 174.41

P791 — — — — — 4.414 2.253
A80 8.499 121.60 56.07 36.79 176.76 4.444 2.911
S81 8.515 119.15 58.98 63.41 175.66 4.347 3.876
A82 8.212 126.92 52.78 18.96 174.55 4.302 1.378
L83 7.960 121.35 55.30 41.99 177.78 4.287 1.587
L84 8.045 123.15 55.23 42.07 177.55 4.362 1.617
S85 8.231 117.12 58.59 63.57 177.67 4.407 3.876
S86 8.247 118.29 58.59 63.64 176.26 4.451 3.876
D87 8.406 121.98 53.01 37.94 174.35
I881 — — — — — 4.190 1.901
T89 8.174 119.20 61.88 69.54 176.55
A90 8.262 127.49 52.55 18.96 174.27 4.332 1.393
S91 8.285 116.47 58.36 63.72 177.76
V92 8.070 122.37 175.18 4.107 2.096
N93 8.477 122.76 45.78 175.96 4.661 2.709
A94 8.220 121.73 174.07 4.459 2.907
A95 8.382 127.04 52.55 18.81 174.85 4.302 1.385
K96 8.122 123.14 56.38 32.66 176.64 4.242 1.774
K97 8.262 124.31 56.22 32.89 176.33 4.287 1.744
I98 8.269 124.60 60.89 38.32 176.23 4.152 1.826
V99 8.340 126.41 62.27 32.66 176.25 4.152 2.043
S100 8.447 120.91 58.06 63.80 175.96 3.823
D101 8.583 122.63 52.78 38.01 174.34 4.706 2.911
G102 8.393 110.63 45.28 — 175.64 3.928 —

1Backbone unassigned
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Table A.7 (continued)

δ(1HN) δ(15NH) δ(13Cα) δ(13Cβ) δ(13C’) δ(1Hα) δ(1Hβ)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
N103 8.359 119.71 53.24 38.63 174.05 4.706 2.814
G104 8.474 110.36 45.51 — 176.00 3.928 —
M105 8.215 121.00 55.92 32.20 174.59 4.407 2.021
N106 8.407 120.44 53.77 38.40 176.39 4.586 2.709
A107 8.218 124.94 53.39 18.66 175.55 4.197 1.310
W108 8.049 120.91 58.44 28.99 178.01 4.504 3.292
V109 7.793 122.19 63.57 32.35 176.80 3.711 1.879
A110 8.015 125.60 53.54 18.50 176.41 4.063 1.348
W111 7.899 120.35 58.52 28.91 178.64 4.414 3.292
R112 7.984 121.94 57.22 29.83 177.16 3.905 1.558
N113 8.063 118.93 53.47 38.40 176.57 4.571 2.758
R114 7.899 121.68 56.76 30.21 175.46 4.227 1.767
A115 8.203 121.25 55.69 36.79 176.35 4.429 2.802
K116 8.374 124.39 56.22 32.50 175.14 4.257 1.782
G117 8.360 110.96 45.13 — 176.87 3.980 —
T118 8.069 114.42 61.96 69.69 174.18 4.347 4.227
D119 8.549 122.66 52.70 37.78 174.35 4.728 2.933
V120 8.098 122.07 62.88 32.20 175.12 3.950 2.013
Q121 8.365 124.29 56.30 28.68 176.26 4.160 1.879
A122 8.144 125.33 52.86 18.89 175.91 4.205 1.318
W123 7.984 120.86 57.45 29.14 177.51 4.608 3.217
I124 7.899 123.79 61.43 38.63 176.35 3.988 1.722
R125 8.173 125.17 56.61 30.13 175.94 4.107 1.767
G126 8.302 110.63 45.05 — 176.73 3.928 —
A127 8.129 120.96 55.38 37.25 173.86 4.474 2.814
R128 8.507 124.99 55.76 30.44 174.71 4.279
L129 8.337 125.97 54.23 41.76 175.78

114



A.3. Resonance assignments

A.3.2. all-Ala-HEWL

Table A.8.: Resonance assignment for all-Ala-HEWL.

δ(1HN) δ(15NH) δ(1Hα) δ(1Hβ) δ(13Cα) δ(13Cβ) δ(13C’)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
M-11,2 — — — — — — — —

K1 8.706 126.11 4.411 1.731 56.23 32.82 173.33
V2 8.253 123.71 4.138 2.011 61.83 32.79 173.41
F3 8.508 126.24 4.704 3.167 3.036 57.50 39.80 173.95
G4 8.357 111.82 3.994 45.02 171.91
R5 8.308 122.25 4.252 1.876 57.02 30.31 174.81
A6 8.492 125.48 4.290 1.442 53.22 18.52 176.44
E7 8.217 120.72 4.299 2.071 56.62 28.01 174.69
L8 8.170 124.22 55.85 41.92 175.66

A91 — — — — — — — —
A10 8.039 122.87 4.239 2.754 53.47 18.47 176.48
A11 8.108 123.13 4.252 1.465 53.39 18.41 176.47
M12 8.091 119.51 4.216 1.454 56.02 32.46 176.49
K13 8.060 122.81 4.290 1.862 56.69 32.51 174.74
R14 8.145 122.21 4.299 1.824 56.38 30.38 174.15
H15 8.464 120.17 4.739 3.349 3.235 55.38 28.70 172.65
G16 8.425 111.09 4.007 45.13 171.83
L17 8.201 122.70 4.392 1.624 55.23 42.20 175.13
D18 8.531 120.36 4.681 2.896 2.826 52.82 37.64 172.56
N19 8.297 120.16 4.709 2.738 52.91 38.30 172.57
Y20 8.072 121.73 4.546 3.027 58.10 38.30 173.62
R21 8.246 124.54 4.230 1.799 1.650 56.09 30.11 174.14
G22 7.773 109.88 3.889 45.03 171.46
Y23 7.943 121.02 4.611 3.041 2.938 57.77 38.78 173.69
S24 8.270 118.77 4.471 3.861 57.92 63.90 172.17
L25 8.225 125.17 4.348 1.645 55.51 42.01 175.62
G26 8.233 109.59 3.866 45.21 171.79
N27 8.192 119.93 4.730 2.749 53.08 38.41 172.87
W28 8.088 122.98 4.611 3.297 57.91 29.07 174.10
V29 7.746 123.47 3.873 1.941 62.52 32.58 173.57
A30 8.038 127.55 4.221 1.409 52.62 18.66 175.69
A31 8.098 123.75 4.229 1.409 52.64 18.70 175.93
A32 8.116 123.79 4.234 1.368 52.64 18.69 175.93

1Unassigned
2The N-terminal methionine has been introduced for expression in E. coli
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Table A.8 (continued)

δ(1HN) δ(15NH) δ(1Hα) δ(1Hβ) δ(13Cα) δ(13Cβ) δ(13C’)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
K33 8.071 120.70 4.201 1.712 56.62 32.54 174.35
F34 8.105 121.59 4.616 3.162 3.072 57.89 39.25 173.59
E35 8.155 122.68 4.360 2.099 1.964 55.55 28.53 173.60
S36 8.273 117.77 4.383 3.866 58.59 63.67 172.09
N37 8.351 121.28 4.704 2.738 53.32 38.54 172.82
F38 8.154 121.48 4.602 3.167 3.031 58.01 39.09 173.40
N39 8.346 121.25 4.756 2.882 2.747 53.24 38.49 173.38
T40 8.120 115.60 4.321 4.294 62.13 69.50 172.64
Q41 8.331 123.18 4.350 2.151 2.029 55.90 28.96 173.78
A42 8.282 125.97 4.374 1.442 52.64 18.82 175.89
T43 8.103 113.86 4.325 4.171 61.89 69.70 172.26
N44 8.381 122.09 4.753 2.863 53.13 38.46 173.04
R45 8.334 122.54 4.360 1.908 1.782 56.14 30.34 173.96
N46 8.500 120.70 4.802 2.906 2.840 53.34 38.49 173.57
T47 8.180 115.17 4.364 4.344 61.90 69.47 172.57
D48 8.510 121.95 4.757 2.976 53.08 37.67 173.49
G49 8.388 110.62 4.029 45.31 172.15
S50 8.175 116.63 4.541 3.931 58.50 63.79 172.77
T51 8.214 116.76 4.332 4.173 61.89 69.59 172.00
D52 8.388 122.12 4.751 2.780 53.01 38.33 172.60
Y53 8.139 121.98 4.503 3.112 2.972 58.52 38.11 174.25
G54 8.279 110.88 3.926 45.37 172.09
I55 7.847 120.85 4.178 1.908 61.41 38.30 174.20
L56 8.221 126.06 4.366 1.563 55.33 42.01 175.15
Q57 8.274 122.46 4.339 2.081 1.972 55.66 28.83 174.04
I58 8.099 122.63 4.057 1.858 61.74 38.21 173.95
N59 8.359 122.71 4.751 2.840 53.29 38.41 173.27
S60 8.201 117.45 4.290 3.903 3.833 58.95 63.54 172.83
R61 8.234 123.34 4.066 1.517 56.44 29.50 174.34
W62 7.820 121.80 4.566 3.240 57.71 29.02 174.16
W63 7.396 121.87 4.471 3.139 2.980 57.26 28.96 173.82
A64 7.724 125.22 4.178 1.251 52.57 18.66 175.30
N65 8.113 118.12 4.658 2.887 2.710 53.16 38.41 173.11
D66 8.331 119.53 4.662 2.953 2.844 53.09 37.56 173.35
G67 8.316 109.46 3.889 45.44 171.94
R68 7.964 120.99 4.452 3.942 55.75 30.63 174.13
T69 8.251 118.25 59.82 69.51 170.91
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Table A.8 (continued)

δ(1HN) δ(15NH) δ(1Hα) δ(1Hβ) δ(13Cα) δ(13Cβ) δ(13C’)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
P701 — — — — — — — —
G71 8.483 110.54 4.005 45.13 172.15
S72 8.126 116.63 4.471 3.926 58.53 63.83 172.58
R73 8.421 123.75 4.364 1.890 1.773 56.08 30.42 173.72
N74 8.440 120.85 4.723 2.892 2.752 53.09 38.39 173.02
L75 8.269 124.28 4.346 1.647 55.21 41.98 174.92
A76 8.190 124.58 4.313 1.409 52.40 18.87 175.17
N77 8.282 118.42 4.709 2.840 2.733 52.73 38.54 172.44
I78 8.023 123.96 58.66 38.43 172.23

P791 — — — — — — — —
A80 8.494 125.66 4.262 1.456 53.16 18.53 176.36
S81 8.259 114.97 4.366 3.939 58.68 63.41 172.69
A82 8.232 126.97 4.374 1.433 52.62 18.78 175.75
L83 7.979 121.50 4.339 1.645 55.38 41.97 175.42
L84 8.043 123.18 4.420 1.670 55.30 42.04 175.59
S85 8.232 117.14 4.448 3.945 58.69 63.57 172.70
S86 8.271 118.36 4.489 3.953 58.68 63.59 172.30
D87 8.403 121.99 4.798 2.971 53.01 37.58 173.12
I88 8.082 122.49 4.234 1.969 61.77 38.16 174.51
T89 8.168 119.20 4.297 4.270 62.07 69.54 172.27
A90 8.262 127.34 4.374 1.456 52.70 18.84 175.91
S91 8.280 116.55 4.475 3.930 58.65 63.57 172.98
V92 8.178 123.21 4.116 2.136 62.93 32.24 174.18
N93 8.426 122.59 4.714 2.887 2.780 53.44 38.48 173.23
A94 8.207 125.74 4.285 1.450 52.74 18.74 175.60
A95 8.149 123.60 4.299 1.442 52.60 18.70 175.81
K96 8.105 121.23 4.290 1.843 56.25 32.73 174.38
K97 8.214 123.85 4.341 1.806 56.18 32.69 174.16
I98 8.226 124.42 4.204 1.891 60.94 38.30 174.17
V99 8.323 126.35 4.201 2.096 62.09 32.53 173.90
S100 8.457 120.92 4.534 3.898 58.03 63.75 172.19
D101 8.583 122.59 4.830 2.962 52.68 37.70 173.47
G102 8.412 110.46 4.010 45.44 171.91
N103 8.359 119.71 4.766 2.876 53.19 38.62 173.86
G104 8.479 110.41 3.996 45.36 172.46
M105 8.216 120.99 4.467 2.071 55.73 32.19 174.23

1Unassigned
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Table A.8 (continued)

δ(1HN) δ(15NH) δ(1Hα) δ(1Hβ) δ(13Cα) δ(13Cβ) δ(13C’)
Residue

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]
N106 8.408 120.43 4.644 2.766 53.73 38.29 173.35
A107 8.213 124.94 4.248 1.377 53.46 18.51 175.81
W108 8.049 120.93 4.583 3.325 58.35 28.90 174.63
V109 7.768 122.35 3.782 1.927 63.42 32.34 174.21
A110 8.033 125.82 4.130 1.413 53.44 18.33 176.46
W111 7.905 120.32 4.481 3.339 58.37 28.75 175.03
R112 7.972 122.18 3.959 1.684 1.545 57.05 29.92 174.34
N113 8.095 119.17 4.625 2.887 2.710 53.47 38.36 173.26
R114 7.909 122.14 4.238 1.931 56.44 30.17 173.99
A115 8.183 125.59 4.276 1.368 52.56 18.72 175.67
K116 8.224 121.58 4.285 1.858 56.56 32.65 175.07
G117 8.376 110.91 4.047 45.15 172.13
T118 8.067 114.32 4.389 4.266 61.82 69.75 172.23
D119 8.573 122.63 4.798 2.887 52.68 37.71 172.94
V120 8.104 122.04 4.015 2.067 62.77 32.19 174.12
Q121 8.367 124.49 55.97 28.67 173.69
A1221 — — — — — — — —
W123 7.995 120.96 4.677 3.274 57.20 29.08 174.09
I124 7.879 124.16 4.042 1.772 61.11 38.43 173.73
R125 8.191 125.59 4.144 1.836 1.754 56.50 30.07 174.63
G126 8.327 111.20 3.968 45.00 171.53
A127 8.068 124.83 4.327 1.382 52.26 19.13 175.24
R128 8.296 121.51 4.327 1.866 1.740 55.72 30.36 173.98
L129 8.387 125.83 53.98 41.69 176.97

1Unassigned
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A.3.3. W62G- and W108G-all-Ala-HEWL

Table A.9.: Resonance assignment for W62G-all-Ala-HEWL and W108G-all-Ala-HEWL.

W62G-all-Ala-HEWL W108G-all-Ala-HEWL
Residue

δ(1HN) [ppm] δ(15NH) [ppm] δ(1HN) [ppm] δ(15NH) [ppm]
M-11 — — — —
K1 8.690 125.96 8.71 126.22
V2 8.232 123.64 8.24 123.67
F3 8.499 126.20 8.49 126.13
G4 8.362 111.78 8.34 111.87
R5 8.287 122.09 8.31 122.35
A6 8.478 125.59 8.49 125.31
E7 8.246 120.75 8.19 120.61
L8 8.171 124.24 8.15 124.12
A9 — — — —
A10 — — 8.09 123.00
A11 8.116 123.22 — —
M12 8.089 119.56 8.09 119.39
K13 8.075 122.89 — —
R14 8.164 122.30 8.15 122.43
H15 8.485 120.32 8.42 119.93
G16 8.430 111.16 8.39 111.01
L17 8.205 122.65 8.19 122.78
D18 8.499 120.63 8.53 120.27
N19 8.301 120.10 8.28 120.14
Y20 8.075 121.74 8.08 121.76
R21 8.232 124.51 8.24 124.47
G22 7.755 109.87 7.79 109.91
Y23 7.939 120.92 7.94 121.08
S24 8.253 118.73 8.27 118.74
L25 8.205 125.10 8.22 125.19
G26 8.219 109.64 8.23 109.58
N27 8.185 119.83 8.17 119.71
W28 8.068 123.02 8.05 122.93
V29 7.720 123.55 7.76 123.22
A30 8.041 127.77 8.02 127.27
A31 8.082 123.83 — —
A32 8.116 123.88 8.08 123.57
K33 — — 8.05 120.51

1The N-terminal methionine has been introduced for expression in E. coli
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Table A.9 (continued)

W62G-all-Ala-HEWL W108G-all-Ala-HEWL
Residue

δ(1HN) [ppm] δ(15NH) [ppm] δ(1HN) [ppm] δ(15NH) [ppm]
F34 8.116 121.70 8.08 121.39
E35 8.157 122.89 — —
S36 8.273 117.82 8.25 117.67
N37 8.348 121.27 8.32 121.25
F38 8.157 121.46 8.14 121.45
N39 — — 8.34 121.23
T40 8.116 115.59 8.12 115.58
Q41 8.328 123.19 8.33 123.17
A42 8.280 126.00 8.27 125.93
T43 8.103 113.89 8.09 113.82
N44 — — 8.37 122.05
R45 8.335 122.50 8.32 122.51
N46 8.505 120.74 8.50 120.72
T47 8.185 115.13 8.17 115.19
D48 8.478 122.02 8.52 121.97
G49 8.382 110.58 8.39 110.67
S50 8.185 116.62 8.17 116.71
T51 8.205 116.68 8.21 116.80
D52 8.369 122.19 8.39 122.13
Y53 8.137 122.03 8.13 122.00
G54 8.287 110.93 8.28 110.93
I55 7.836 120.79 7.85 120.88
L56 8.219 126.29 8.24 125.92
Q57 8.294 122.65 8.27 122.41
I58 8.109 122.78 8.09 122.53
N59 8.430 122.86 8.35 122.73
S60 8.219 117.53 8.20 117.48
R61 8.287 123.32 8.24 123.40

W62/G62 8.273 110.28 7.82 121.83
W63 — — 7.39 121.77
A64 8.123 126.09 7.72 125.24
N65 8.219 118.50 8.12 118.20
D66 8.355 119.64 8.34 119.59
G67 8.362 109.66 8.32 109.55
R68 7.980 120.85 7.96 121.09
T69 8.260 118.30 8.24 118.23
P70 — — 8.48 110.65
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Table A.9 (continued)

W62G-all-Ala-HEWL W108G-all-Ala-HEWL
Residue

δ(1HN) [ppm] δ(15NH) [ppm] δ(1HN) [ppm] δ(15NH) [ppm]
G71 8.410 110.41 8.13 116.72
S72 8.137 116.56 8.41 123.79
R73 8.423 123.70 8.44 120.84
N74 — — 8.18 122.72
L75 8.266 124.25 8.25 124.26
A76 8.191 124.70 8.19 124.54
N77 8.280 118.56 8.27 118.41
I78 8.041 123.98 8.00 123.88
P79 — — — —
A80 — — 8.49 125.71
S81 8.253 115.11 8.25 114.85
A82 8.253 126.98 8.21 126.94
L83 8.000 121.58 7.96 121.44
L84 8.055 123.31 8.03 123.08
S85 8.232 117.19 8.22 117.11
S86 8.266 118.45 8.25 118.35
D87 8.389 122.02 8.41 121.97
I88 8.075 122.41 8.08 122.48
T89 8.164 119.13 8.16 119.13
A90 8.253 127.30 8.26 127.38
S91 8.273 116.45 8.28 116.58
V92 8.157 123.08 8.17 123.17
N93 8.410 122.58 8.43 122.68
A94 8.191 125.70 8.21 125.87
A95 8.137 123.58 8.16 123.70
K96 8.096 121.23 8.11 121.32
K97 8.212 123.86 8.22 123.95
I98 — — 8.23 124.45
V99 8.307 126.48 8.32 126.33
S100 8.437 120.85 8.45 120.92
D101 8.560 122.67 8.59 122.61
G102 8.492 110.39 8.42 110.57
N103 8.342 119.88 8.36 119.80
G104 8.464 110.33 8.48 110.47
M105 8.205 120.89 8.21 120.88
N106 8.396 120.38 8.19 120.01
A107 8.191 124.86 8.21 124.72
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Table A.9 (continued)

W62G-all-Ala-HEWL W108G-all-Ala-HEWL
Residue

δ(1HN) [ppm] δ(15NH) [ppm] δ(1HN) [ppm] δ(15NH) [ppm]
W108/G108 8.082 120.80 8.40 109.01

V109 7.734 122.26 7.89 122.57
A110 8.014 125.81 8.36 127.53
W111 7.877 120.14 7.94 120.28
R112 7.932 122.10 8.04 122.54
N113 8.089 119.13 8.03 122.52
R114 7.932 121.92 8.18 125.62
A115 8.171 125.52 8.26 121.83
K116 8.225 121.55 8.40 111.08
G117 8.362 110.87 8.40 111.08
T118 8.055 114.25 8.08 114.45
D119 8.539 122.76 8.59 122.66
V120 8.089 121.95 8.10 122.02
Q121 8.348 124.40 8.37 124.53
A122 — — — —
W123 8.034 120.80 8.00 120.84
I124 7.857 124.06 7.88 124.14
R125 — — 8.20 125.72
G126 8.314 111.12 8.34 111.29
A127 8.055 124.73 8.08 124.93
R128 8.280 121.46 8.30 121.55
L129 8.314 126.32 8.40 125.69
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A.4. Heteronuclear relaxation rates

Table A.10.: Relaxation rates (with errors) for all-Ala-HEWL

Residue R1 [s-1] R2 [s-1] R1ρ [s-1] hetNOE
M-11,2 — — — —

K1 0.94 ± 0.02 0.96 ± 0.02 1.28 ± 0.03 −1.487 ± −0.074
V2 1.22 ± 0.02 1.27 ± 0.03 1.48 ± 0.03 −0.560 ± −0.028
F3 1.34 ± 0.03 1.53 ± 0.03 1.75 ± 0.04 −0.584 ± −0.029
G4 1.37 ± 0.03 1.61 ± 0.03 1.83 ± 0.04 −0.379 ± −0.019
R5 1.53 ± 0.03 2.17 ± 0.04 2.37 ± 0.05 0.003 ± 0.000
A6 1.55 ± 0.03 2.44 ± 0.05 2.95 ± 0.06 −0.081 ± −0.004
E7 1.58 ± 0.03 2.49 ± 0.05 2.86 ± 0.06 0.090 ± 0.004
L8 1.63 ± 0.03 2.55 ± 0.05 2.97 ± 0.06 0.017 ± 0.001

A93 — — — —
A10 1.68 ± 0.03 3.01 ± 0.06 3.35 ± 0.07 0.163 ± 0.008
A11 1.67 ± 0.03 2.82 ± 0.06 3.40 ± 0.07 0.025 ± 0.001
M12 1.65 ± 0.03 2.75 ± 0.05 3.11 ± 0.06 −0.037 ± −0.002
K13 1.71 ± 0.03 2.94 ± 0.06 3.17 ± 0.06 0.084 ± 0.004
R14 1.68 ± 0.03 2.80 ± 0.06 2.86 ± 0.06 0.016 ± 0.001
H15 1.65 ± 0.03 2.63 ± 0.05 2.82 ± 0.06 −0.003 ± 0.000
G16 1.57 ± 0.03 2.32 ± 0.05 2.68 ± 0.05 −0.105 ± −0.005
L17 1.63 ± 0.03 2.54 ± 0.05 2.81 ± 0.06 0.129 ± 0.006
D18 1.60 ± 0.03 2.44 ± 0.05 2.69 ± 0.05 0.032 ± 0.002
N19 1.64 ± 0.03 2.56 ± 0.05 2.77 ± 0.06 0.197 ± 0.010
Y20 1.69 ± 0.03 2.85 ± 0.06 2.84 ± 0.06 0.079 ± 0.004
R21 1.75 ± 0.03 2.88 ± 0.06 3.13 ± 0.06 0.164 ± 0.008
G22 1.64 ± 0.03 2.60 ± 0.05 2.89 ± 0.06 0.071 ± 0.004
Y23 1.69 ± 0.03 2.93 ± 0.06 3.20 ± 0.06 0.294 ± 0.015
S24 1.64 ± 0.03 2.89 ± 0.06 2.93 ± 0.06 0.260 ± 0.013
L25 1.73 ± 0.03 2.88 ± 0.06 3.01 ± 0.06 0.198 ± 0.010
G26 1.51 ± 0.03 2.67 ± 0.05 2.71 ± 0.05 0.106 ± 0.005
N27 1.59 ± 0.03 2.84 ± 0.06 2.98 ± 0.06 0.163 ± 0.008
W28 1.63 ± 0.03 3.28 ± 0.07 3.35 ± 0.07 0.079 ± 0.004
V29 1.66 ± 0.03 3.52 ± 0.07 3.65 ± 0.07 0.082 ± 0.004
A30 1.66 ± 0.03 3.56 ± 0.07 4.00 ± 0.08 0.088 ± 0.004
A31 1.51 ± 0.03 3.12 ± 0.06 3.13 ± 0.06 0.054 ± 0.003
A32 1.58 ± 0.03 2.98 ± 0.06 3.41 ± 0.07 0.027 ± 0.001

1Not applicable
2The N-terminal methionine has been introduced for expression in E. coli
3Unassigned
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Table A.10 (continued)

Residue R1 [s-1] R2 [s-1] R1ρ [s-1] hetNOE
K33 1.57 ± 0.03 3.19 ± 0.06 3.34 ± 0.07 0.037 ± 0.002
F34 1.62 ± 0.03 3.16 ± 0.06 3.50 ± 0.07 0.067 ± 0.003
E35 1.64 ± 0.03 3.18 ± 0.06 3.38 ± 0.07 0.016 ± 0.001
S36 1.58 ± 0.03 2.80 ± 0.06 2.99 ± 0.06 0.137 ± 0.007
N37 1.59 ± 0.03 2.74 ± 0.05 3.03 ± 0.06 0.027 ± 0.001
F38 1.59 ± 0.03 2.76 ± 0.06 3.18 ± 0.06 0.025 ± 0.001
N39 1.59 ± 0.03 2.80 ± 0.06 3.03 ± 0.06 0.031 ± 0.002
T40 1.55 ± 0.03 2.45 ± 0.05 2.90 ± 0.06 −0.055 ± −0.003
Q41 1.66 ± 0.03 2.55 ± 0.05 2.91 ± 0.06 0.057 ± 0.003
A42 1.55 ± 0.03 2.46 ± 0.05 2.77 ± 0.06 0.125 ± 0.006
T43 1.50 ± 0.03 2.32 ± 0.05 2.45 ± 0.05 −0.121 ± −0.006
N44 1.63 ± 0.03 2.47 ± 0.05 2.85 ± 0.06 −0.073 ± −0.004
R45 1.62 ± 0.03 2.47 ± 0.05 2.52 ± 0.05 0.028 ± 0.001
N46 1.62 ± 0.03 2.52 ± 0.05 2.72 ± 0.05 0.019 ± 0.001
T47 1.55 ± 0.03 2.30 ± 0.05 2.47 ± 0.05 0.008 ± 0.000
D48 1.63 ± 0.03 2.45 ± 0.05 2.64 ± 0.05 0.051 ± 0.003
G49 1.49 ± 0.03 2.32 ± 0.05 2.45 ± 0.05 −0.111 ± −0.006
S50 1.53 ± 0.03 2.35 ± 0.05 2.49 ± 0.05 0.052 ± 0.003
T51 1.57 ± 0.03 2.56 ± 0.05 2.81 ± 0.06 0.095 ± 0.005
D52 1.62 ± 0.03 2.81 ± 0.06 3.07 ± 0.06 −0.060 ± −0.003
Y53 1.63 ± 0.03 3.20 ± 0.06 3.63 ± 0.07 −0.025 ± −0.001
G54 1.70 ± 0.03 3.44 ± 0.07 3.44 ± 0.07 0.234 ± 0.012
I55 1.70 ± 0.03 3.58 ± 0.07 3.81 ± 0.08 0.283 ± 0.014
L56 1.73 ± 0.03 3.60 ± 0.07 3.80 ± 0.08 0.245 ± 0.012
Q57 1.72 ± 0.03 3.75 ± 0.07 4.03 ± 0.08 0.314 ± 0.016
I58 1.64 ± 0.03 3.72 ± 0.07 4.01 ± 0.08 0.049 ± 0.002
N59 1.72 ± 0.03 4.23 ± 0.08 4.31 ± 0.09 0.236 ± 0.012
S60 1.67 ± 0.03 4.10 ± 0.08 4.13 ± 0.08 0.345 ± 0.017
R61 1.87 ± 0.04 4.24 ± 0.08 4.65 ± 0.09 0.434 ± 0.022
W62 1.85 ± 0.04 4.28 ± 0.09 4.50 ± 0.09 0.345 ± 0.017
W63 1.87 ± 0.04 4.63 ± 0.09 4.56 ± 0.09 0.396 ± 0.020
A64 1.83 ± 0.04 3.97 ± 0.08 4.22 ± 0.08 0.295 ± 0.015
N65 1.68 ± 0.03 3.38 ± 0.07 3.72 ± 0.07 0.136 ± 0.007
D66 1.66 ± 0.03 3.18 ± 0.06 3.58 ± 0.07 0.278 ± 0.014
G67 1.65 ± 0.03 2.85 ± 0.06 3.04 ± 0.06 0.194 ± 0.010
R68 1.71 ± 0.03 2.98 ± 0.06 3.20 ± 0.06 0.231 ± 0.012
T69 1.51 ± 0.03 2.82 ± 0.06 2.95 ± 0.06 0.202 ± 0.010

124



A.4. Heteronuclear relaxation rates

Table A.10 (continued)

Residue R1 [s-1] R2 [s-1] R1ρ [s-1] hetNOE
P701 — — — —
G71 1.54 ± 0.03 2.54 ± 0.05 2.58 ± 0.05 −0.050 ± −0.002
S72 1.54 ± 0.03 2.56 ± 0.05 2.75 ± 0.05 0.031 ± 0.002
R73 1.61 ± 0.03 2.59 ± 0.05 2.81 ± 0.06 −0.092 ± −0.005
N74 1.51 ± 0.03 2.52 ± 0.05 2.81 ± 0.06 −0.171 ± −0.009
L75 1.55 ± 0.03 2.58 ± 0.05 3.07 ± 0.06 0.085 ± 0.004
A76 1.60 ± 0.03 2.75 ± 0.05 3.40 ± 0.07 0.087 ± 0.004
N77 1.48 ± 0.03 2.61 ± 0.05 2.68 ± 0.05 0.089 ± 0.004
I78 1.51 ± 0.03 2.72 ± 0.05 3.03 ± 0.06 −0.027 ± −0.001

P791 — — — —
A80 1.54 ± 0.03 2.88 ± 0.06 3.03 ± 0.06 −0.001 ± 0.000
S81 1.51 ± 0.03 2.91 ± 0.06 3.08 ± 0.06 0.137 ± 0.007
A82 1.60 ± 0.03 3.06 ± 0.06 3.33 ± 0.07 0.154 ± 0.008
L83 1.55 ± 0.03 2.79 ± 0.06 3.08 ± 0.06 0.021 ± 0.001
L84 1.52 ± 0.03 2.96 ± 0.06 2.92 ± 0.06 −0.127 ± −0.006
S85 1.49 ± 0.03 2.69 ± 0.05 2.83 ± 0.06 0.084 ± 0.004
S86 1.50 ± 0.03 2.64 ± 0.05 2.81 ± 0.06 0.109 ± 0.005
D87 1.59 ± 0.03 2.68 ± 0.05 2.84 ± 0.06 −0.166 ± −0.008
I88 1.56 ± 0.03 2.80 ± 0.06 2.77 ± 0.06 −0.085 ± −0.004
T89 1.53 ± 0.03 2.90 ± 0.06 3.00 ± 0.06 −0.128 ± −0.006
A90 1.48 ± 0.03 2.75 ± 0.05 2.64 ± 0.05 0.103 ± 0.005
S91 1.37 ± 0.03 2.40 ± 0.05 2.56 ± 0.05 −0.058 ± −0.003
V92 1.46 ± 0.03 2.69 ± 0.05 2.62 ± 0.05 −0.055 ± −0.003
N93 1.51 ± 0.03 2.85 ± 0.06 2.70 ± 0.05 −0.271 ± −0.014
A94 1.51 ± 0.03 2.61 ± 0.05 2.83 ± 0.06 0.037 ± 0.002
A95 1.44 ± 0.03 2.63 ± 0.05 2.68 ± 0.05 −0.115 ± −0.006
K96 1.48 ± 0.03 2.70 ± 0.05 3.01 ± 0.06 −0.216 ± −0.011
K97 1.48 ± 0.03 2.64 ± 0.05 2.76 ± 0.06 −0.030 ± −0.002
I98 1.58 ± 0.03 2.59 ± 0.05 2.74 ± 0.05 0.073 ± 0.004
V99 1.52 ± 0.03 2.71 ± 0.05 2.92 ± 0.06 −0.127 ± −0.006
S100 1.56 ± 0.03 2.54 ± 0.05 2.81 ± 0.06 −0.222 ± −0.011
D101 1.48 ± 0.03 2.34 ± 0.05 2.63 ± 0.05 0.015 ± 0.001
G102 1.40 ± 0.03 2.48 ± 0.05 2.09 ± 0.04 −0.284 ± −0.014
N103 1.49 ± 0.03 2.13 ± 0.04 2.11 ± 0.04 −0.145 ± −0.007
G104 1.47 ± 0.03 2.75 ± 0.06 2.58 ± 0.05 −0.192 ± −0.010
M105 1.58 ± 0.03 2.52 ± 0.05 2.79 ± 0.06 0.121 ± 0.006
N106 1.62 ± 0.03 2.80 ± 0.06 2.87 ± 0.06 −0.032 ± −0.002

1Not applicable
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Table A.10 (continued)

Residue R1 [s-1] R2 [s-1] R1ρ [s-1] hetNOE
A107 1.72 ± 0.03 2.71 ± 0.05 3.08 ± 0.06 0.237 ± 0.012
W108 1.78 ± 0.04 3.54 ± 0.07 3.90 ± 0.08 0.252 ± 0.013
V109 1.85 ± 0.04 3.81 ± 0.08 4.22 ± 0.08 0.231 ± 0.012
A110 1.86 ± 0.04 4.04 ± 0.08 4.34 ± 0.09 0.257 ± 0.013
W111 1.87 ± 0.04 3.82 ± 0.08 3.87 ± 0.08 0.418 ± 0.021
R112 1.87 ± 0.04 3.75 ± 0.07 4.10 ± 0.08 0.379 ± 0.019
N113 1.79 ± 0.04 3.58 ± 0.07 3.89 ± 0.08 0.181 ± 0.009
R114 1.76 ± 0.04 3.09 ± 0.06 3.38 ± 0.07 0.316 ± 0.016
A115 1.65 ± 0.03 2.56 ± 0.05 2.83 ± 0.06 0.070 ± 0.004
K116 1.67 ± 0.03 2.64 ± 0.05 3.04 ± 0.06 0.157 ± 0.008
G117 1.54 ± 0.03 2.16 ± 0.04 2.27 ± 0.05 −0.076 ± −0.004
T118 1.55 ± 0.03 2.26 ± 0.05 2.46 ± 0.05 −0.063 ± −0.003
D119 1.51 ± 0.03 2.28 ± 0.05 2.36 ± 0.05 0.081 ± 0.004
V120 1.58 ± 0.03 2.42 ± 0.05 2.30 ± 0.05 −0.107 ± −0.005
Q121 1.68 ± 0.03 2.57 ± 0.05 2.91 ± 0.06 −0.011 ± −0.001
A1221 — — — —
W123 1.68 ± 0.03 2.57 ± 0.05 2.74 ± 0.05 0.167 ± 0.008
I124 1.70 ± 0.03 2.63 ± 0.05 2.95 ± 0.06 0.097 ± 0.005
R125 1.69 ± 0.03 2.58 ± 0.05 3.06 ± 0.06 0.076 ± 0.004
G126 1.48 ± 0.03 1.99 ± 0.04 2.14 ± 0.04 −0.165 ± −0.008
A127 1.43 ± 0.03 1.73 ± 0.03 1.84 ± 0.04 −0.404 ± −0.020
R128 1.25 ± 0.03 1.49 ± 0.03 1.60 ± 0.03 −0.387 ± −0.019
L129 1.08 ± 0.02 1.22 ± 0.02 1.31 ± 0.03 −1.137 ± −0.057

1Unassigned
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Table A.11.: 15N transverse relaxation rates (with errors) for W108G-all-Ala-HEWL

Residue R2 [s-1] Residue R2 [s-1] Residue R2 [s-1]
M-1 — S36 4.81 ± 0.10 S72 3.41 ± 0.07
K1 2.06 ± 0.04 N37 — — — R73 3.74 ± 0.07
V2 2.09 ± 0.04 F38 4.53 ± 0.09 N74 — — —
F3 2.45 ± 0.05 N39 — — — L75 3.18 ± 0.06
G4 2.91 ± 0.06 T40 3.82 ± 0.08 A76 3.82 ± 0.08
R5 3.25 ± 0.07 Q41 4.05 ± 0.08 N77 — — —
A6 4.36 ± 0.09 A42 3.50 ± 0.07 I78 3.77 ± 0.08
E7 3.91 ± 0.08 T43 3.13 ± 0.06 P79 — — —
L8 3.79 ± 0.08 N44 3.20 ± 0.06 A80 3.77 ± 0.08
A9 — — — R45 3.66 ± 0.07 S81 4.33 ± 0.09

A10 — — — N46 3.45 ± 0.07 A82 4.07 ± 0.08
A11 — — — T47 3.56 ± 0.07 L83 3.64 ± 0.07
M12 4.20 ± 0.08 D48 3.11 ± 0.06 L84 3.95 ± 0.08
K13 — — — G49 3.23 ± 0.06 S85 4.00 ± 0.08
R14 4.76 ± 0.10 S50 3.44 ± 0.07 S86 — — —
H15 3.49 ± 0.07 T51 3.55 ± 0.07 D87 3.49 ± 0.07
G16 — — — D52 3.75 ± 0.08 I88 — — —
L17 — — — Y53 4.77 ± 0.10 T89 3.62 ± 0.07
D18 3.29 ± 0.07 G54 4.89 ± 0.10 A90 3.70 ± 0.07
N19 3.78 ± 0.08 I55 5.13 ± 0.10 S91 2.98 ± 0.06
Y20 3.92 ± 0.08 L56 3.27 ± 0.07 V92 3.50 ± 0.07
R21 — — — Q57 5.43 ± 0.11 N93 3.49 ± 0.07
G22 3.73 ± 0.07 I58 — — — A94 3.50 ± 0.07
Y23 4.16 ± 0.08 N59 5.92 ± 0.12 A95 2.83 ± 0.06
S24 4.62 ± 0.09 S60 6.33 ± 0.13 K96 3.85 ± 0.08
L25 4.90 ± 0.10 R61 5.69 ± 0.11 K97 3.16 ± 0.06
G26 4.40 ± 0.09 W62 5.98 ± 0.12 I98 3.20 ± 0.06
N27 3.53 ± 0.07 W63 6.61 ± 0.13 V99 3.33 ± 0.07
W28 3.82 ± 0.08 A64 6.09 ± 0.12 S100 — — —
V29 5.46 ± 0.11 N65 4.78 ± 0.10 D101 — — —
A30 5.70 ± 0.11 D66 4.14 ± 0.08 G102 2.55 ± 0.05
A31 4.98 ± 0.10 G67 3.97 ± 0.08 N103 2.11 ± 0.04
A32 5.15 ± 0.10 R68 3.97 ± 0.08 G104 2.49 ± 0.05
K33 4.98 ± 0.10 T69 — — — M105 2.78 ± 0.06
F34 5.58 ± 0.11 P70 — — — N106 4.97 ± 0.10
E35 — — — G71 3.76 ± 0.08 A107 4.73 ± 0.09
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Table A.11 (continued)

Residue R2 [s-1] Residue R2 [s-1] Residue R2 [s-1]
W108 2.67 ± 0.05 K116 2.77 ± 0.06 W123 3.31 ± 0.07
V109 3.49 ± 0.07 G117 3.25 ± 0.07 I124 2.90 ± 0.06
A110 3.59 ± 0.07 T118 2.55 ± 0.05 R125 3.42 ± 0.07
W111 2.79 ± 0.06 D119 — — — G126 2.92 ± 0.06
R112 — — — V120 2.99 ± 0.06 A127 2.46 ± 0.05
N113 — — — Q121 3.28 ± 0.07 R128 2.21 ± 0.04
R114 — — — A122 — — — L129 1.95 ± 0.04
A115 3.21 ± 0.06

128



A.5. Residual dipolar couplings

A.5. Residual dipolar couplings

Table A.12.: Residual dipolar couplings for all-Ala-HEWL and W62G-all-Ala-HEWL in
7% stretched polyacrylamide gels.

all-Ala-HEWL W62G-all-Ala-HEWL
Residue 1D(HN,N) [Hz] 1D(HN,N) [Hz]

M-1 — —
K1 -4.86 -3.33
V2 -6.60 -3.75
F3 -2.58 -2.08
G4 -1.16 0.00
R5 -0.05 0.41
A6 — 2.48
E7 1.03 0.42
L8 -2.08 0.42
A9 — —

A10 — —
A11 3.39 0.83
M12 -0.50 -1.25
K13 — —
R14 — -3.09
H15 -3.90 -3.32
G16 -4.82 -1.25
L17 -2.85 -1.67
D18 -2.74 —
N19 -1.88 -1.66
Y20 0.74 0.00
R21 -0.33 -1.25
G22 -0.78 -2.08
Y23 -0.10 -1.66
S24 -2.31 -1.25
L25 — -2.91
G26 9.40 -0.83
N27 -2.79 -1.66
W28 -0.89 —
V29 3.25 0.00
A30 3.58 -0.41
A31 -2.64 —
A32 -0.88 -0.83
K33 -0.54 —
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Table A.12 (continued)

all-Ala-HEWL W62G-all-Ala-HEWL
Residue 1D(HN,N) [Hz] 1D(HN,N) [Hz]

F34 -2.19 -0.83
E35 -1.28 -1.66
S36 -1.66 -1.25
N37 — —
F38 -1.46 -0.41
N39 — —
T40 -1.99 -1.25
Q41 -1.97 -1.25
A42 -0.08 -0.01
T43 -2.04 -1.66
N44 — —
R45 -2.76 -1.66
N46 -2.08 -1.25
T47 -3.45 -2.08
D48 -1.95 -1.25
G49 -0.01 -0.01
S50 -0.75 -0.41
T51 -2.07 -2.09
D52 — -2.50
Y53 — 0.83
G54 -0.21 0.00
I55 0.04 1.25
L56 -3.41 -2.07
Q57 -3.43 -1.66
I58 — -1.25
N59 -3.71 -1.66
S60 -0.33 -1.25
R61 -2.09 -0.41
W62 8.93 0.00
W63 7.44 -2.50
A64 7.98 -0.42
N65 -3.40 -1.25
D66 -2.21 -1.99
G67 1.25 -0.41
R68 1.71 1.25
T69 — 0.41
P70 — —
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Table A.12 (continued)

all-Ala-HEWL W62G-all-Ala-HEWL
Residue 1D(HN,N) [Hz] 1D(HN,N) [Hz]

G71 -2.53 0.41
S72 -0.66 -1.66
R73 -3.68 -2.49
N74 — —
L75 -1.20 -2.49
A76 -1.08 -0.83
N77 — -2.08
I78 -7.41 -4.57
P79 — —
A80 -3.25 -3.50
S81 -0.29 -2.08
A82 0.58 -0.01
L83 -3.15 -1.25
L84 -2.01 -1.66
S85 -1.87 -0.83
S86 -0.28 -1.66
D87 -1.40
I88 -0.65 -0.41
T89 -3.28 -4.58
A90 -0.45 -0.83
S91 0.08 -0.42
V92 -0.66 -0.83
N93 -1.78 -1.67
A94 0.05 -0.29
A95 0.88 -0.83
K96 -1.89 -3.74
K97 -5.06 -2.91
I98 — —
V99 — —
S100 — —
D101 -2.22 -2.49
G102 0.75 -2.49
N103 -2.24 -1.32
G104 -1.33 0.00
M105 0.71 0.00
N106 0.35 0.41
A107 2.33 0.83
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Table A.12 (continued)

all-Ala-HEWL W62G-all-Ala-HEWL
Residue 1D(HN,N) [Hz] 1D(HN,N) [Hz]

W108 8.17 -2.08
V109 7.48 3.75
A110 5.28 1.66
W111 -0.33 -0.41
R112 — 0.41
N113 -2.08 4.99
R114 — 0.42
A115 -0.25 -1.25
K116 -2.73 -0.83
G117 -4.57 -2.50
T118 -2.03 -1.25
D119 -2.37 -2.91
V120 -3.63 -1.67
Q121 -3.61 -2.08
A122 — —
W123 1.71 4.16
I124 3.83 2.08
R125 — —
G126 -5.36 -3.32
A127 0.16 0.41
R128 -3.77 -2.50
L129 -1.30 -3.75

132



A.6. Pulse programs

A.6. Pulse programs

All pulse sequences have been written in the standard Bruker pulse sequence pro-
gramming language.

A.6.1. The 2D 15N-1H photo-CIDNP pulse program

; 2dcindpcs2

; 2D photo-CIDNP with 15-N/1-H correlation via inept transfer

; by C. Schlörb, B. Fürtig, C. Richter & H. Schwalbe

; Center for Biomolecular Magnetic Resonance, JWG University of Frankfurt, Germany

; following Lyon et al. (JACS 1999, 121, 6505)

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"p22=p21*2"

"d0=3u"

"d26=1s/(cnst4*4)"

"d11=30m"

"d13=4u"

"DELTA1=d26-p2-d0*2"

"DELTA3=d19-p22/2"

"DELTA4=d26-p16-d16-p27*3-d19*5"

"DELTA5=d26-p16-d16-p27*2-p0-d19*5-8u"

1 ze

d11 pl16:f3

2 d1 do:f3 do:f2 pl8:f3

50u UNBLKGRAD

(p8 ph9):f3

p17:gp4

10u setnmr3|14 ;for use on AV700

d27

10u setnmr3^14 ;for use on AV700

d28 pl1:f1

3 d11 pl3:f3

(p21 ph3):f3

d0

(p2 ph5)

d0

DELTA1

(center (p2 ph1) (p22 ph6):f3 )

d26

(p21 ph20):f3
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4u

p16:gp2

d16

(p1 ph21)

DELTA4

p16:gp3

d16 pl18:f1

p27*0.231 ph22

d19*2

p27*0.692 ph22

d19*2

p27*1.462 ph22

DELTA3

(p22 ph6):f3

DELTA3

p27*1.462 ph23

d19*2

p27*0.692 ph23

d19*2

p0*0.231 ph23

4u

p16:gp3

d16

4u BLKGRAD

DELTA5 pl16:f3

go=2 ph31 cpd3:f3

d1 do:f3 do:f2 mc #0 to 2

F1PH(ip20 & ip6, id0)

exit

ph1=0

ph3=0 0 0 0 2 2 2 2

ph5=0 0 2 2

ph6=0

ph9=0

ph20=1 3

ph21=2

ph22=1

ph23=3

ph31=0 2 0 2 2 0 2 0

;pl1 : f1 channel - power level for pulse (default)

;pl3 : f3 channel - power level for pulse (default)

;pl8 : f3 channel - power level for pulse (default)

;pl16: f3 channel - power level for CPD/BB decoupling

;pl18: f1 channel - power level for 3-9-19-pulse (watergate)

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p8 : f1 channel - 90 degree high power pulse

;p21 : f3 channel - 90 degree high power pulse
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;p22 : f3 channel - 180 degree high power pulse

;p16 : homospoil/gradient pulse

;p17 : homospoil/gradient pulse

;p27 : f1 channel - 90 degree pulse at pl18

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d11 : delay for disk I/O [30 msec]

;d13 : short delay [4 usec]

;d16 : delay for homospoil/gradient recovery

;d19 : delay for binomial water suppression

;d26 : 1/(4J(NH))

;d27 : length of laser pulse

;d28 : delay after laser pulse

;cnst4: J(NH)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;NS: 1 * n

;DS: >= 16

;td1: number of experiments

;FnMODE: echo-antiecho

;cpd3: decoupling according to sequence defined by cpdprg3

;pcpd3: f3 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 2 : gp 3 : gp4

; 80 : 30 : 80

;for z-only gradients:

;gpz2: 80%

;gpz3: 30%

;gpz4: 80%

;use gradient files:

;gpnam2: SINE.100

;gpnam3: SINE.100

;gpnam4: SINE.100

; use setnmr0|15 and setnmr0^15 on DRX599

; use setnmr3|14 and setnmr3^14 on AV700

; cs061122
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A.6.2. The 2D 13C-1H photo-CIDNP pulse program

; 2dcindpcs2_13c

; 2D photo-CIDNP with 13-C/H-1 correlation via inept transfer

; by C. Schlörb, B. Fürtig, C. Richter & H. Schwalbe

; Center for Biomolecular Magnetic Resonance, JWG University of Frankfurt, Germany

; following Lyon et al. (JACS 1999, 121, 6505)

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"p4=p3*2"

"d0=3u"

"d4=1s/(cnst4*4)"

"d11=30m"

"d13=4u"

"DELTA1=d4-p2-d0*2"

"DELTA3=d19-p4/2"

"DELTA4=d4-p16-d16-p27*3-d19*5"

"DELTA5=d4-p16-d16-p27*2-p0-d19*5-8u"

1 ze

d11 pl12:f2

2 d1 do:f2

4u pl8:f2

50u UNBLKGRAD

(p8 ph9):f2

p17:gp4

10u setnmr3|14 ;for use on AV700

d27

10u setnmr3^14 ;for use on AV700

d28 pl1:f1

3 d11 pl2:f2

(p3 ph3):f2

d0

(p2 ph5)

d0

DELTA1

(center (p2 ph1) (p4 ph6):f2 )

d4

(p3 ph20):f2

4u

p16:gp2

d16

(p1 ph21)

DELTA4

p16:gp3
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d16 pl18:f1

p27*0.231 ph22

d19*2

p27*0.692 ph22

d19*2

p27*1.462 ph22

DELTA3

(p4 ph6):f2

DELTA3

p27*1.462 ph23

d19*2

p27*0.692 ph23

d19*2

p0*0.231 ph23

4u

p16:gp3

d16

4u BLKGRAD

DELTA5 pl12:f2

go=2 ph31 cpd2:f2

d1 do:f2 mc #0 to 2

F1PH(ip20 & ip6, id0)

exit

ph1=0

ph3=0 0 0 0 2 2 2 2

ph5=0 0 2 2

ph6=0

ph9=0

ph20=1 3

ph21=2

ph22=1

ph23=3

ph31=0 2 0 2 2 0 2 0

;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)

;pl8 : f2 channel - power level for pulse (default)

;pl12: f2 channel - power level for CPD/BB decoupling

;pl18: f1 channel - power level for 3-9-19-pulse (watergate)

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;p8 : f1 channel - 90 degree high power pulse

;p16 : homospoil/gradient pulse

;p17 : homospoil/gradient pulse

;p27 : f1 channel - 90 degree pulse at pl18

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

137



A. Appendix

;d11 : delay for disk I/O [30 msec]

;d13 : short delay [4 usec]

;d16 : delay for homospoil/gradient recovery

;d19 : delay for binomial water suppression

;d26 : 1/(4J(NH))

;d27 : length of laser pulse

;d28 : delay after laser pulse

;cnst4: J(NH)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;NS: 1 * n

;DS: >= 16

;td1: number of experiments

;FnMODE: echo-antiecho

;cpd2: decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 2 : gp 3 : gp4

; 80 : 30 : 80

;for z-only gradients:

;gpz2: 80%

;gpz3: 30%

;gpz4: 80%

;use gradient files:

;gpnam2: SINE.100

;gpnam3: SINE.100

;gpnam4: SINE.100

; use setnmr0|15 and setnmr0^15 on DRX599

; use setnmr3|14 and setnmr3^14 on AV700

; cs070112
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A.6.3. The HN(CACB)CG pulse program

; hncacbcggpwg3d

; 3D sequence for the assignment of tryptophan side-chains

; F1(H) -> F3(N) -> F2(Ca) -> F2(Cb) -> F2(Cg,t1) ->

; F2(Cb) -> F2(Ca) -> F3(N,t2) -> F1(H,t3)

;

; water suppression using watergate sequence

; by C. Schlörb, C. Richter & H. Schwalbe

; Center for Biomolecular Magnetic Resonance, JWG University of Frankfurt, Germany

; Schlörb et al. (J. Biomol. NMR 2005, 33, 95)

prosol relations=<triple>

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"p22=p21*2"

"d0=3u"

"d11=30m"

"d12=20u"

"d13=4u"

"d21=4.9m"

"d23=13.7m"

"d26=2.3m"

"in29=in10"

"in30=in10"

"d10=d23/2-p24/2"

"d29=d23/2-p24/2-p26-d21-4u"

"d30=d23/2-p24/2"

"DELTA1=d23/2-d21-p26-p24/2"

"DELTA2=d26-p16-d16-p11-12u"

"DELTA3=d23/2-p24/2"

"spoff2=0"

"spoff3=0"

"spoff5=0"

"spoff8=0"

"spoff10=bf2*(cnst20/1000000)-bf2*(cnst22/1000000)"

aqseq 321

1 d11 ze

d11 pl16:f3
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2 d11 do:f3

3 d1 pl1:f1

d12 fq=cnst22(bf ppm):f2

p1 ph1

d26 pl3:f3

(center (p2 ph1) (p22 ph1):f3 )

d26 UNBLKGRAD

(p1 ph2):f1

4u pl0:f1

(p11:sp1 ph1:r):f1

4u

p16:gp1

d16

(p21 ph3):f3

d21 pl19:f1

(p26 ph2):f1

DELTA1 cpds1:f1 ph1

(p24:sp10 ph1):f2

DELTA3

(center (p14:sp3 ph1):f2 (p22 ph1):f3 )

DELTA3

(p24:sp10 ph1):f2

DELTA3

(p21 ph1):f3

d12 fq=cnst23(bf ppm):f2

(p13:sp2 ph9):f2

d22

(p14:sp3 ph1):f2

d22

(p13:sp8 ph4):f2

d19

d12 fq=cnst24(bf ppm):f2

4u

(p23:sp9 ph10):f2

d0

(p25:sp5 ph1):f2

d0

(p23:sp11 ph11):f2

4u

d12 fq=cnst23(bf ppm):f2

d19

(p13:sp2 ph2):f2

d22

(p14:sp3 ph1):f2

d22

(p13:sp8 ph1):f2

4u do:f1

d12 fq=cnst22(bf ppm):f2

(p26 ph7):f1
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4u

p16:gp2

d16

(p26 ph2):f1

20u cpds1:f1 ph1

(p21 ph5):f3

d30

(p24:sp10 ph1):f2

d30

(center (p14:sp3 ph1):f2 (p22 ph8):f3 )

d10

(p24:sp10 ph1):f2

d29

4u do:f1

(p26 ph7):f1

d21

(p21 ph1):f3

p16:gp3

d16 pl0:f1

(p11:sp1 ph6):f1

4u

4u pl1:f1

(p1 ph1)

4u

p16:gp4

d16

DELTA2 pl0:f1

(p11:sp1 ph6):f1

4u

4u pl1:f1

(center (p2 ph1) (p22 ph1):f3 )

4u pl0:f1

(p11:sp1 ph6):f1

4u

DELTA2

p16:gp4

d16 pl16:f3

4u BLKGRAD

go=2 ph31 cpd3:f3

d11 do:f3 mc #0 to 2

F1PH(rd10 & rd29 & rd30 & ip10, id0)

F2PH(ip5, id10 & id29 & dd30)

exit

ph1=0

ph2=1

ph3=0 0 0 0 2 2 2 2

ph4=1 3
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ph5=0 0 2 2

ph6=2

ph7=3

ph8=0

ph9=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ph10=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph11=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ph31=0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2

2 2 0 0 0 0 2 2 0 0 2 2 2 2 0 0

2 2 0 0 0 0 2 2 0 0 2 2 2 2 0 0

0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2

;pl0 : 120dB

;pl1 : f1 channel - power level for pulse (default)

;pl3 : f3 channel - power level for pulse (default)

;pl16: f3 channel - power level for CPD/BB decoupling

;pl19: f1 channel - power level for CPD/BB decoupling

;sp1 : f1 channel - shaped pulse 90 degree (H2O on resonance)

;sp2 : f2 channel - shaped pulse 90 degree (Ca and Cb on resonance)

;sp3 : f2 channel - shaped pulse 180 degree (Ca and Cb on resonance)

;sp5 : f2 channel - shaped pulse 180 degree (Ca and Cb on resonance)

;sp8 : f2 channel - shaped pulse 90 degree (Ca and Cb on resonance)

;sp9 : f2 channel - shaped pulse 90 degree (Cg on resonance)

;sp10: f2 channel - shaped pulse 180 degree (C’ on resonance)

;sp11: f2 channel - shaped pulse 90 degree (Cg on resonance)

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p11 : f1 channel - 90 degree shaped pulse [1 msec]

;p13 : f2 channel - 90 degree shaped pulse

;p14 : f2 channel - 180 degree shaped pulse

;p16 : homospoil/gradient pulse [1 msec]

;p21 : f3 channel - 90 degree high power pulse

;p22 : f3 channel - 180 degree high power pulse

;p23 : f2 channel - 90 degree shaped pulse on Ca and Cb

;p24 : f2 channel - 180 degree C’ [1 msec]

;p25 : f2 channel - 180 degree in t1 time [1 msec]

;p26 : f1 channel - 90 degree pulse at pl19

;d0 : incremented delay (F1 in 3D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d10 : incremented delay (F2 in 3D) = d23/2-p14/2

;d11 : delay for disk I/O [30 msec]

;d12 : short delay [20 usec]

;d13 : short delay [4 usec]

;d16 : delay for homospoil/gradient recovery

;d19 : 1/(2J(CbCg)) [12.5 msec]

;d21 : 1/(2J(NH)) [4.9 msec]

;d23 : 1/(4J(NCa)) [13.7 msec]
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;d26 : 1/(4J(NH)) [2.3 msec]

;d29 : incremented delay (F2 in 3D) = d23/2-p24/2-p26-d21-4u

;d30 : decremented delay (F2 in 3D) = d23/2-p24/2

;cnst20: C’ chemical shift [176 ppm]

;cnst22: Ca chemical shift exact [54 ppm]

;cnst23: Ca/Cb chemical shift exact [41 ppm]

;cnst24: middle of C_delta and C_gamma [108 ppm]

;o2p: Cb chemical shift [27 ppm]

;in0: 1/(2 * SW(Ca)) = DW(Ca)

;nd0: 2

;in10: 1/(4 * SW(N)) = (1/2) DW(N)

;nd10: 4

;in29: = in10

;in30: = in10

;NS: 8 * n

;DS: >= 16

;td1: number of experiments in F1

;td2: number of experiments in F2 td2 max = 2 * d30 / in30

;FnMODE: States-TPPI (or TPPI) in F1

;FnMODE: States-TPPI (or TPPI) in F2

;cpds1: decoupling according to sequence defined by cpdprg1

;cpd3: decoupling according to sequence defined by cpdprg3

;pcpd1: f1 channel - 90 degree pulse for decoupling sequence

;pcpd3: f3 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 1 : gp 2 : gp 3 : gp 4

; 50 : 40 : 60 : 30

;for z-only gradients:

;gpz1: 50%

;gpz2: 40%

;gpz3: 60%

;gpz4: 30%

;use gradient files:

;gpnam1: SINE.100

;gpnam2: SINE.100

;gpnam3: SINE.100

;gpnam4: SINE.100

; cs061122
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A.6.4. The HN(CD)CG pulse program

; hncdcggpwg3d

; 3D sequence for the assignment of tryptophan side-chains

; F1(H) -> F3(N) -> F2(Cd) -> F2(Cg,t1) -> F2(Cd) -> F3(N,t2) -> F1(H,t3)

;

; water suppression using watergate sequence

; by C. Schlörb, C. Richter & H. Schwalbe

; Center for Biomolecular Magnetic Resonance, JWG University of Frankfurt, Germany

; Schlörb et al. (J. Biomol. NMR 2005, 33, 95)

prosol relations=<triple>

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"p22=p21*2"

"d0=3u"

"d11=30m"

"d13=4u"

"d21=4.9m"

"d23=13.7m"

"d26=2.3m"

"in29=in10"

"in30=in10"

"d10=d23/2-p24/2"

"d29=d23/2-p24/2-p26-d21-4u"

"d30=d23/2-p24/2"

"DELTA=d0*2+larger(p25,p22)-p14"

"DELTA1=d23/2-d21-p26-p24/2"

"DELTA2=d26-p16-d16-p11-12u"

"DELTA3=d23/2-p24/2"

"spoff2=bf2*(cnst24/1000000)-bf2*(cnst23/1000000)"

"spoff3=0"

"spoff5=bf2*(cnst24/1000000)-bf2*(cnst23/1000000)"

"spoff8=bf2*(cnst24/1000000)-bf2*(cnst23/1000000)"

"spoff10=bf2*(cnst20/1000000)-bf2*(cnst22/1000000)"

"spoff11=bf2*(cnst21/1000000)-bf2*(cnst23/1000000)"

aqseq 321

1 d11 ze

d11 pl16:f3
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2 d11 do:f3

3 d1 pl1:f1

d12 fq=cnst22(bf ppm):f2

p1 ph1

d26 pl3:f3

(center (p2 ph1) (p22 ph1):f3 )

d26 UNBLKGRAD

(p1 ph2):f1

4u pl0:f1

(p11:sp1 ph1:r):f1

4u

p16:gp1

d16

(p21 ph3):f3

d21 pl19:f1

(p26 ph2):f1

DELTA1 cpds1:f1 ph1

(p24:sp10 ph1):f2

DELTA3

(center (p14:sp3 ph1):f2 (p22 ph1):f3 )

DELTA3

(p24:sp10 ph1):f2

DELTA3

(p21 ph1):f3

d12 fq=cnst23(bf ppm):f2

(p13:sp2 ph9):f2

d22

(p14:sp5 ph1):f2

d22

(p13:sp8 ph4):f2

d0

(center (p25:sp11 ph1):f2 (p22 ph8):f3 )

d0

4u

(p14:sp3 ph1):f2

DELTA

(p25:sp11 ph1):f2

4u

(p13:sp2 ph2):f2

d22

(p14:sp5 ph1):f2

d22

(p13:sp8 ph1):f2

4u do:f1

d12 fq=cnst22(bf ppm):f2

(p26 ph7):f1

4u

p16:gp2

d16
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(p26 ph2):f1

20u cpds1:f1 ph1

(p21 ph5):f3

d30

(p24:sp10 ph1):f2

d30

(center (p14:sp3 ph1):f2 (p22 ph8):f3 )

d10

(p24:sp10 ph1):f2

d29

4u do:f1

(p26 ph7):f1

d21

(p21 ph1):f3

p16:gp3

d16 pl0:f1

(p11:sp1 ph6):f1

4u

4u pl1:f1

(p1 ph1)

4u

p16:gp4

d16

DELTA2 pl0:f1

(p11:sp1 ph6):f1

4u

4u pl1:f1

(center (p2 ph1) (p22 ph1):f3 )

4u pl0:f1

(p11:sp1 ph6):f1

4u

DELTA2

p16:gp4

d16 pl16:f3

4u BLKGRAD

go=2 ph31 cpd3:f3

d11 do:f3 mc #0 to 2

F1PH(rd10 & rd29 & rd30 & ip4 & ip9, id0)

F2PH(ip5, id10 & id29 & dd30)

exit

ph1=0

ph2=1

ph3=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph4=1 3

ph5=0 0 2 2

ph6=2

ph7=3
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ph8=0 0 0 0 2 2 2 2

ph9=0

ph31=0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

;pl0 : 120dB

;pl1 : f1 channel - power level for pulse (default)

;pl3 : f3 channel - power level for pulse (default)

;pl16: f3 channel - power level for CPD/BB decoupling

;pl19: f1 channel - power level for CPD/BB decoupling

;sp1 : f1 channel - shaped pulse 90 degree (H2O on resonance)

;sp2 : f2 channel - shaped pulse 90 degree (Cg and Cd on resonance)

;sp3 : f2 channel - shaped pulse 180 degree (Cd on resonance)

;sp5 : f2 channel - shaped pulse 180 degree (Cg and Cd on resonance)

;sp8 : f2 channel - shaped pulse 90 degree (Cg and Cd on resonance)

;sp10: f2 channel - shaped pulse 180 degree (Ce on resonance)

;sp11: f2 channel - shaped pulse 180 degree (Cb and Cd on resonance)

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p11 : f1 channel - 90 degree shaped pulse [1 msec]

;p13 : f2 channel - 90 degree shaped pulse

;p14 : f2 channel - 180 degree shaped pulse

;p16 : homospoil/gradient pulse [1 msec]

;p21 : f3 channel - 90 degree high power pulse

;p22 : f3 channel - 180 degree high power pulse

;p24 : f2 channel - 180 degree Ce [1 msec]

;p25 : f2 channel - 180 degree in t1 time [1 msec]

;p26 : f1 channel - 90 degree pulse at pl19

;d0 : incremented delay (F1 in 3D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d10 : incremented delay (F2 in 3D) = d23/2-p24/2

;d11 : delay for disk I/O [30 msec]

;d12 : short delay [20 usec]

;d13 : short delay [4 usec]

;d16 : delay for homospoil/gradient recovery

;d21 : 1/(2J(NH)) [4.9 msec]

;d22 : 1/(4J(CdCg)) [3.2 msec]

;d23 : 1/(4J(NCd)) [13.7 msec]

;d26 : 1/(4J(NH)) [2.3 msec]

;d29 : incremented delay (F2 in 3D) = d23/2-p24/2-p26-d21-4u

;d30 : decremented delay (F2 in 3D) = d23/2-p24/2

;cnst20: Ce chemical shift [141 ppm]

;cnst21: Cg chemical shift more [108 ppm]

;cnst22: Cd chemical shift [124 ppm]

;cnst23: Cg chemical shift [108 ppm]

;cnst24: middle of Cg and Cd [117 ppm]

;o2p: Cg chemical shift (cnst21)

;in0: 1/(2 * SW(Cg)) = DW(Cg)

;nd0: 2

;in10: 1/(4 * SW(N)) = (1/2) DW(N)

;nd10: 4

;in29: = in10
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;in30: = in10

;NS: 8 * n

;DS: >= 16

;td1: number of experiments in F1

;td2: number of experiments in F2 td2 max = 2 * d30 / in30

;FnMODE: States-TPPI (or TPPI) in F1

;FnMODE: States-TPPI (or TPPI) in F2

;cpds1: decoupling according to sequence defined by cpdprg1

;cpd3: decoupling according to sequence defined by cpdprg3

;pcpd1: f1 channel - 90 degree pulse for decoupling sequence

;pcpd3: f3 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 1 : gp 2 : gp 3 : gp 4

; 50 : 40 : 60 : 30

;for z-only gradients:

;gpz1: 50%

;gpz2: 40%

;gpz3: 60%

;gpz4: 30%

;use gradient files:

;gpnam1: SINE.100

;gpnam2: SINE.100

;gpnam3: SINE.100

;gpnam4: SINE.100

; cs061122
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Zusammenfassung

Die allermeisten Proteine müssen, um ihre Funktion in ihrer natürlichen Umgebung
wahrzunehmen, eine definierte dreidimensionale Struktur einnehmen, sie sind al-
so in ihrem nativen Zustand gefaltet. Daneben gibt es aber sowohl Proteine, die
in ihrem nativen und funktionalen Zustand unstrukturiert sind, als auch solche,
die missgefaltet sind. Letztere sind häufig an schweren Krankheitsbildern beteiligt.
Die Erforschung nicht-nativer Zustände von Proteinen hat bisher viele Erkenntnisse
zum besseren Verständnis der Proteinfaltung und -fehlfaltung erbracht. Die Kern-
magnetische Resonanzspektroskopie (NMR) ist die einzige bekannte Methode, die
zur Aufklärung der strukturellen und dynamischen Eigenschaften solcher Zustän-
de in atomarer Auflösung beitragen kann. Entfaltete und nicht-native Zustände von
Proteinen müssen als Ensemble von sich schnell ineinander umwandelten Konfor-
meren beschrieben werden, ihre beobachteten Eigenschaften sind somit populati-
onsgewichtete Mittelungen. In der vorliegenden Arbeit wurde das 129 Aminosäu-
rereste umfassende Lysozym aus dem Hühnereiweiß (HEWL) und Mutanten da-
von unter Bedingungen untersucht, unter denen diese Proteine permanent in nicht-
nativen Zuständen vorliegen. Dies wurde in einem Ansatz durch die Reduktion der
vier Disulfidbrücken und der anschließenden Methylierung der acht Cysteinreste
(„HEWL-SMe“) dieses Proteins und in einem anderen Ansatz durch das Ersetzen
der Cysteinreste durch Alanine erreicht („all-Ala-HEWL“). Unter solchen Bedingun-
gen wurde in diesem Protein residuale Sekundär- und Tertiärstruktur beobachtet, es
liegt also, anders als einige andere entfaltete Proteine, nicht als Zufallsknäuel (ran-
dom coil) vor. Insbesondere die Existenz von hydrophoben Clustern und Wechselwir-
kungen zwischen in der Peptidkette weit entfernten Resten ist dabei bemerkenswert
und war aus kombinierten Relaxations- und Mutationsexperimenten bekannt. Dabei
spielen die Tryptophanreste eine wichtige Rolle. Zu den NMR-spektroskopischen
Untersuchungen wurde nicht-natives HEWL in E. coli-Zellen in inclusion bodies iso-
topenmarkiert exprimiert und daraus aufgereinigt. Nach nahezu vollständiger Zu-
ordnung der 1HN, 15NN, 13Cα, 13Cβ, 13C’, 1Hα und 1Hβ Resonanzen konnte aus den
sekundären chemischen Verschiebungen (d. h. den Differenzen zu chemischen Ver-
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schiebungen von random coil-Peptiden aus der Literatur) auf Bereiche innerhalb der
Sequenz — vor allem rund um die sechs Tryptophanreste — geschlossen werden,
die erhöhte α-helix-artige Konformationsanteile enthalten.

 Rückgrat HSQC                       Seitenketten HSQC

HN(CACB)CG HN(CD)CG

15N

[ppm]

15N

[ppm]

13C

[ppm]

13C

[ppm]

1H

[ppm]

1H

[ppm]

1H

[ppm]

1H

[ppm]

W63

W111

W62

W28

W108
W123

W63

W62

W111

W123W28

W108

Abbildung B.1.: Ergebnis und Strategie der Zuordnung der Tryptophan-Seitenketten-
Resonanzen in all-Ala-HEWL.

Um eine genauere Untersuchung der für die residuale Struktur in nicht-nativem
Lysozym wichtigen Tryptophanreste mittels NMR zu ermöglichen, wurde eine Kom-
bination aus zwei Pulssequenzen entwickelt, mittels derer sich die 1HN

ε und 15Nε

Resonanzen in der Seitenkette über den 13Cγ-Kern mit Hilfe der bekannten 1HN und
15NH Rückgratresonanzen zuordnen ließen (siehe Abbildung B.1).

Die Zuordnung der Indolseitenkettenresonanzen ermöglichte die Interpretation
von zweidimensionalen 15N/1H photo-CIDNP-Experimenten, die über die unter-
schiedliche Zugänglichkeiten der Tryptophanseitenketten für einen Farbstoff (z.B.
FMN) im Lösungsmittel berichteten und somit strukturelle Informationen lieferten.
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Dabei wird mittels einem in das NMR-Röhrchen eingekoppelten Laserstrahl das
FMN angeregt und schließlich über die Bildung eines Radikalpaares die Trypto-
phanseitenkette polarisiert. Die unterschiedlichen relativen Intensitäten der photo-
CIDNP-Peaks deutet auf eine unterschiedliche Zugänglichkeit der Tryptophansei-
tenketten in nicht-nativem Lysozym hin. Dagegen sind die Zugänglichkeiten dieser
Reste in der W62G-Mutante von HEWL fast alle ähnlich (Abbildung B.2). Dies be-
stätigte die zentrale Bedeutung dieses Restes für die hydrophoben Cluster, die aus
vorherigen Relaxationsstudien bekannt war. Aus Diffusionsmessungen ist bekannt,
dass die W62G-Mutante über einen größeren hydrodynamischen Radius verfügt als
die nicht-nativen Zustände des Wildtyps, das konformationelle Ensemble zeigt also
ausgedehntere Strukturen und somit sind auch die Tryptophanseitenketten expo-
nierter. Eine Ausnahme scheint das Tryptophan 111 zu bilden, welches anders als
das benachbarte W108 auch in der W62G-Mutante eine geringere Zugänglichkeit
aufweist. Erstmals konnten auch zweidimensionale 13C/1H photo-CIDNP-Experi-
mente in Lösung durchgeführt werden.

0

0.2

0.4

0.6

0.8

1

1.2

W28* W62 W63** W108** W111 W123*

I C
ID

N
P
/I

H
S

Q
C

Abbildung B.2.: Normalisierte CIDNP/HSQC Intensitätsverhältnisse von all-Ala-
HEWL (grau) und W62G-all-Ala-HEWL (weiß). *: Die W28 und W123 Signale sind dege-
neriert in all-Ala-HEWL und W62G-all-Ala-HEWL. **: Die W63 und W108 Signale sind
degeneriert in W62G-all-Ala-HEWL.

Für all-Ala-HEWL ergab die Bestimmung von heteronuklearen R1 und R2 Rela-
xationsraten und des heteronuklearen 1H15N NOE einen Nachweis der verminder-
ten Mobilität in den hydrophoben Clustern. Die Durchführung von Relaxationsdi-
spersionsmessungen sowie die Messung von R1ρ Relaxationsraten erbrachten kei-
nerlei Hinweise zu konformationellen Austausch auf der Mikro- bis Millisekunden-
Zeitskala. Im Gegensatz zur W62G-Mutante zeigte eine W108G-Mutante keinen be-
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deutenden Einfluss auf das Gesamtbild der hydrophoben Cluster, sondern modu-
lierte nur Cluster 5, in dem es sich selbst befindet (Abbildung B.3).

Die Messung von dipolaren Restkopplungen (RDCs) in partiell in gestreckten Po-
lyacrylamidgelen ausgerichtetem all-Ala-HEWL zeigte erhöhte positive RDCs in den
Bereichen der hydrophoben Cluster, vorallem in den Bereichen um die Tryptopha-
ne 28, 62/62 und 108/111 (Abbildung B.4), dies deutet auf eine Strukturierung in
diesen Bereichen hin. In der W62G-Mutante waren die positiven RDCs hingegen
größtenteils nicht zu beobachten.

Bisher ließen sich in Simulationen keine Ensembles von Konformeren generie-
ren, deren berechnete RDCs den experimentellen Werten entsprechen. Ein viel ver-
sprechender aber zeitaufwendiger Ansatz hierzu ist die Generierung solcher En-
sembles mittels Molekulardynamik-Simulationen basierend auf den experimentel-
len Relaxations-Daten und den Daten zur Lösungsmittelzugänglichkeit der verschie-
denen Tryptophanreste. Die gemessenen RDCs können dann zur Validierung der
simulierten konformationellen Ensembles genutzt werden.
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Abbildung B.3.: Vergleich der R2 Relaxationsraten von all-Ala-HEWL und W108G-all-
Ala-HEWL. Die W108G-Punktmutation ist mit einem roten Pfeil gekennzeichnet. Die
rote Kurve zeigt einen Gauss-Fit der hydrophoben Cluster, während die blaue Kurve
die nach dem Segmentellen-Bewegungs-Modell zu erwartende Kurve für ein Zufallsknäuel
darstellt.
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Abbildung B.4.: NH-RDCs gezeigt über die Sequenz von all-Ala-HEWL und W62G-all-
Ala-HEWL. Die Position der sechs hydrophoben Cluster ist durch die jeweiligen Num-
mern gekennzeichnet.

In der Gegenwart von organischen Lösungsmitteln zeigte Lysozym einen hohen
Grad an induzierter α-helicaler Struktur und nach einigen Stunden der Inkubation
auch einen großen Anteil β-artiger Struktur, die als Vorstufe zur Fibrillenbildung an-
gesehen werden kann. Mittels zweidimensionaler NMR-Spektroskopie konnte Ly-
sozym in Gegenwart von Ethanol und Trifluorethanol näher charakterisiert werden
und damit die prinzipielle Beobachtbarkeit von induzierten Strukturänderungen ge-
zeigt werden.

Zusammenfassend ist festzustellen, dass in dieser Arbeit dynamische und struk-
turelle Eigenschaften verschiedener nicht-nativer Zustände von HEWL durch die
Entwicklung neuer Methoden und die Weiterentwicklung bestehender Experimente
mittels NMR-Spektroskopie charakterisiert werden konnten. Dies kommt dem bes-
seren Verständnis dieser Zustände in Proteinen allgemein zu Gute, etwa mit Hilfe
von Molekulardynamik-Simulationen.
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