
BioMed CentralBMC Evolutionary Biology

ss

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main
Open AcceResearch article
Waves of genomic hitchhikers shed light on the evolution of 
gamebirds (Aves: Galliformes)
Jan Ole Kriegs*†1, Andreas Matzke†1, Gennady Churakov1, Andrej Kuritzin2, 
Gerald Mayr3, Jürgen Brosius1 and Jürgen Schmitz1

Address: 1Institute of Experimental Pathology (ZMBE) University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany, 2Department of 
Physics and Mathematics, Saint Petersburg State Institute of Technology, 26 Moskovsky av., St.-Petersburg 198013, Russia and 3Forschungsinstitut 
Senckenberg, Division of Ornithology, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany

Email: Jan Ole Kriegs* - kriegs@uni-muenster.de; Andreas Matzke - matzkea@uni-muenster.de; Gennady Churakov - churakov@uni-
muenster.de; Andrej Kuritzin - agk@lti-gti.ru; Gerald Mayr - Gerald.Mayr@senckenberg.de; Jürgen Brosius - rna.world@uni-muenster.de; 
Jürgen Schmitz - jueschm@uni-muenster.de

* Corresponding author    †Equal contributors

Abstract
Background: The phylogenetic tree of Galliformes (gamebirds, including megapodes, currassows,
guinea fowl, New and Old World quails, chicken, pheasants, grouse, and turkeys) has been
considerably remodeled over the last decades as new data and analytical methods became available.
Analyzing presence/absence patterns of retroposed elements avoids the problems of homoplastic
characters inherent in other methodologies. In gamebirds, chicken repeats 1 (CR1) are the most
prevalent retroposed elements, but little is known about the activity of their various subtypes over
time. Ascertaining the fixation patterns of CR1 elements would help unravel the phylogeny of
gamebirds and other poorly resolved avian clades.

Results: We analyzed 1,978 nested CR1 elements and developed a multidimensional approach
taking advantage of their transposition in transposition character (TinT) to characterize the fixation
patterns of all 22 known chicken CR1 subtypes. The presence/absence patterns of those elements
that were active at different periods of gamebird evolution provided evidence for a clade (Cracidae
+ (Numididae + (Odontophoridae + Phasianidae))) not including Megapodiidae; and for Rollulus as
the sister taxon of the other analyzed Phasianidae. Genomic trace sequences of the turkey genome
further demonstrated that the endangered African Congo Peafowl (Afropavo congensis) is the sister
taxon of the Asian Peafowl (Pavo), rejecting other predominantly morphology-based groupings, and
that phasianids are monophyletic, including the sister taxa Tetraoninae and Meleagridinae.

Conclusion: The TinT information concerning relative fixation times of CR1 subtypes enabled us
to efficiently investigate gamebird phylogeny and to reconstruct an unambiguous tree topology.
This method should provide a useful tool for investigations in other taxonomic groups as well.

Background
In parallel to the application of new analytical methods,
the avian phylogenetic tree has undergone substantial

changes in the past decades. But even today many branch-
ings remain highly controversial, although it is widely
accepted that modern birds fall into two major clades, (1)
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Palaeognathae, a clade comprising rheas, kiwis, ostrich,
emus,   cassowaries, and tinamous and (2) Neognathae,
comprising Galloanseres (fowl and waterfowl) and
Neoaves (all other taxa) [1,2]. Within Galloanseres, Galli-
formes (gamebirds) are traditionally classified into five
families: Megapodiidae (megapodes, brush turkey and
allies), Cracidae (currassows, guans, and chachalacas),
Odontophoridae (New world quails), Numididae
(Guinea fowl), and Phasianidae (pheasants, peacocks,
partridges, and allies) [3-6].

While virtually all studies identify megapodes and cracids
as successive sister taxa of the remaining Galliformes, the
branching orders of Odontophoridae, Numididae, and
Phasianidae, with its presumed subfamilies Tetraoninae
(grouses) and Meleagridinae (turkeys), are less clear. Espe-
cially, the interrelationships between Numididae, Odon-
tophoridae, and Phasianidae are considered a "major
puzzle" of galliform phylogeny [7]. Also debated are the
exact affinities of Tetraoninae and Meleagridinae. In tradi-
tional classifications, these two taxa are separated from
the other Phasianidae, whereas molecular sequence anal-
yses support a position of Tetraoninae and Meleagridinae
deeply within a clade including the other Phasianidae [8-
11]. Recently, Kaiser et al. [12] investigated phylogeneti-
cally informative retropositions in Galliformes and found
significant support for two clades, (I) a monophyletic
Phasianidae including Meleagridinae and Tetraoninae
and (II) a clade comprising Meleagridinae, Tetraoninae,
Phasianus, and Tragopan. The relative positions of Numidi-
dae and Odontophoridae and the topology of the pha-
sianid tree differed from other sequence-based studies
depending on the genes investigated and the analytical
methods used [9-11,13-18].

Discrepancies in phylogenetic reconstructions based on
various paleontological, morphological, behavioral, and
molecular methodologies are often due to the presence of
homoplastic characters [19]. Markers that are less likely to
be confounded by problems of homoplasy include rare
genomic changes (RGC) such as random insertions and
deletions (indels) and retroposed elements [20]. Indels
are frequently used for phylogenetic reconstructions
[19,21-24] and the presence/absence patterns of retro-
posed elements have proven invaluable for reconstructing
virtually ambiguity-free phylogenetic trees [25-29]. Pres-
ence/absence data resemble virtually homoplasy-free
multistate characters with an extremely large possible
number of unique character states. Steel and Penny [30]
suggest that for this kind of data, maximum parsimony
converge to a maximum likelihood estimator. The clear
"presence" of a retroposed element at orthologous posi-
tions in related taxa indicates a derived condition
acquired via a common ancestor, while its "absence" in
more distant taxa represents the plesiomorphic condition

prior to integration. Retroposed elements contain several
features that, on their own, are very unlikely to occur twice
independently at orthologous genomic positions. These
include defined subtypes of retroposed elements, diag-
nostic mutations, and characteristic truncations of the
consensus retroelements. Although presence/absence pat-
terns are virtually homoplasy-free, there does exist, as for
any other marker system, a low probability of lineage sort-
ing [20] and a slight chance of exact excision of retroposed
elements with perfect direct repeats [31]. These caveats
aside, a statistical framework was developed to evaluate
presence/absence data [32], and presence/absence pat-
terns of retroposed elements have now been successfully
used to reconstruct, for example, the placental mamma-
lian tree at the superordinal level [27], the monophyly of
Cetartiodactyla [33] and Pegasoferae [34], the position of
Primates within Supraprimates [29], and internal primate
relationships [35-37].

In the chicken genome, retroposed elements of the
chicken repeat 1 (CR1) family of Long INterspersed Ele-
ments (LINEs), with more than 200,000 copies, constitute
80% of all interspersed repeats and 3.1% of the entire
genome [38,39], while the second largest fraction of retro-
posed elements, the Long Terminal Repeat elements
(LTRs) of endogenous retroviruses, with 12,000 copies,
constitute only 4.7% of all interspersed repeats [38,39]. As
CR1 elements do not show target site duplication (direct
repeats) [40,41], excisions, such as that described by van
de Lagemaat [31], cannot occur, making them the most
suitable retroposed elements in bird genomes for phylo-
genetic purposes [42].

While full-length CR1 elements are 4.5 kb long and con-
tain two open reading frames [41], most CR1 sequences
are truncated copies of their autonomous full-length mas-
ter genes [39,43]. CR1 subtypes are characterized by diag-
nostic mutations that occurred in their specific master
genes. Different full-length copies of master genes
remained transcriptionally active over long, overlapping,
periods of time and distributed corresponding retroele-
ments in specific waves of activity as has been described in
penguins [44]. To efficiently select phylogenetically
informative CR1 elements from the chicken genome, it
would be helpful to know which CR1 elements were
active at which evolutionary time points. As CR1 ele-
ments, like most other retroposed elements, integrate
almost randomly into the genome, they also frequently
insert into other CR1 copies. But, at a given point in time
only the active CR1 subtypes can insert into copies of their
own or other CR1 subtypes (Figure 1). This provides infor-
mation about which 'host' CR1 subtypes were already
integrated at this particular time point. If the reverse case,
in which the 'host' subtype inserted into an active CR1
subtype, cannot be found in the entire genome, one can
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assume that the 'host' subtype was probably already inac-
tive at this particular time point. Thus, an analysis of the
patterns of nested CR1 elements (transpositions in trans-
positions that we call the TinT method, Figure 1) provides
a relative timetable of active CR1 elements. A first step
towards a genome wide characterization of the activity
ranges of CR1 elements is to search for the distribution
patterns of nested retroposons. Churakov et al. [45]
recently applied a novel method based on the single-case
patterns of nested retroposons to characterize the histori-
cal appearance of various armadillo-specific SINE sub-
families. Similarly, Ichiyanagi and Okada used this
method to determine the full lengths of SINEs in zebrafish
[46] and Pace and Feschotte to investigate DNA transpo-
son activity in the human genome [47].

To further investigate and reconstruct the phylogenetic
tree of Galliformes, we developed a multidimensional,
computer applicable model for computing the frequen-
cies of TinT genome-wide. Using this model, we describe
the waves of activity or fixation patterns of various CR1
subtypes. We then used this information to directly select
specific subtypes of retroposed elements that were active
on the galliform evolutionary lineage leading to the
chicken (Gallus gallus). These element subtypes were used
to experimentally extract phylogenetic informative orthol-
ogous sequences from representative loci of all galliform
families. As LTR elements also insert into each other, but
were not frequent enough to apply the TinT method, we
investigated their random insertions in the chicken
genome for potential phylogenetic use. Furthermore,
other phylogenetic signals (indels) observed during the
genomic alignments of our presence/absence loci pro-
vided support for additional clades. With this multifac-
eted approach we reconstructed the major aspects of
galliform evolution.

Results and discussion
To obtain a relative temporal order of CR1 element activ-
ity for phylogenetic use, we explored the patterns of
nested retroposed CR1 subtypes (Figure 1) from the
chicken genome. From a genome wide collection of anno-
tated retroposed elements we extracted all 1,978 cases of
nested CR1 elements. The resulting matrix (additional
data file 1) was used to calculate a multidimensional
model (additional data file 1) giving the maximum prob-
ability of activity for each of the 22 CR1 subtypes on a rel-
ative timescale (TinT, see additional data file 1). The
model makes the following assumptions: (i) For each CR1
subtype there was one limited period of activity. (ii) There
was no known target site preference for the CR1 subtypes,
thus each individual copy could have inserted at any ran-
dom position in the genome. This could have been either
an anonymous sequence or another CR1 copy. (iii) The
number of copies of any given CR1 subtype in the genome

Principle behind the TinT methodFigure 1
Principle behind the TinT method. Examples of directed 
insertions of CR1 elements active at different periods. (A) 
Shows three different CR1 subytpes, active at non-overlap-
ping periods and their resultant TinTs (in box below). As 
indicated by blue arrows, the youngest element (C2) inserted 
into both older subtypes (D2 and C4). D2 was active after 
C4 became inactive and inserted into the latter (red arrow). 
(B) Example of CR1 subtypes active at overlapping and non-
overlapping periods. Only elements that were active during 
overlapping periods (C2 and B2) had the opportunity to 
insert each into the other. As the activity period of the B2 
element only partially overlapped that of the C2, fewer inser-
tions occurred in the B2-C2 direction (indicated by the thin-
ner arrow). (C) Example of three CR1 subtypes active at 
overlapping periods. Note that the activity of C4 does not 
overlap that of F0, thus there was no opportunity for C4 to 
insert directly into F0. Again, fewer insertions of older ele-
ments into younger ones are indicated by thinner arrows.
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reflects the duration of its activity. (iv) The temporal fixa-
tion rate of each CR1 subtype can be described by a nor-
mal distribution as is shown by the divergences of its
single copies from their consensus sequences (additional
data file 1). (v) The probabilities of fixation among the
individual CR1 copies during their specific activity peri-
ods were relatively equal (equal promoter activity, equal
affinity of reverse transcriptase to the mRNA, and an equal
availability of reverse transcriptase). Based on these
assumptions we developed a function describing the
behavior of the fixation of each CR1 subtype on a relative
timescale. Using the maximum likelihood approach we
calculated the maxima of probability of fixation for each
CR1 subtype.

The results show that the various CR1 subtypes differ not
only in the median time points on the relative timescale
during which they were actively fixed in the genome, but
also in the lengths of these time windows, revealing three
major peaks of concentrated CR1 activity/fixation (Figure
2A, additional data file 1). The oldest peak is dominated
by CR1 subtypes Y4, D, X2, E, C4, Y, F2, D2, and X ele-
ments, the middle peak by CR1 subtypes Y2, C3, G, F2,
X1, D2, H, Y4, E, and C, and the youngest peak by CR1
subtypes H2, F0, B2, F2, D2, and C2.

To verify the relative times of TinT activities we calculated
the average divergencies of all CR1 subtypes from their
consensus sequences. Assuming random accumulation of
mutations, the degree of divergency should then be age-
related. There was a significant correlation between the
relative time scales of the cumulative TinT and the CR1
divergencies (R = -0,6489, P << 0.01) (additional data file
1).

Armed with the relative ages of chicken CR1 subtypes
deduced from the cumulative TinT, we selected a repre-
sentative set of diverse CR1 elements, whose activity peri-
ods spanned the entire time frame of galliform evolution,
to use as experimental probes of phylogenetic branch
points of the other galliform species. Intronic sequences
of the chicken genome (17,300 introns; maximal length
of 1 kb) were screened for embedded CR1 elements and
LTR elements (RepeatMasker) (300 CR1 and 45 LTR ele-
ments). These were inspected by eye in the genome
browser (UCSC) [48] and the most conserved loci (120
cases), representing the broad activity range of CR1 sub-
types as compiled by the TinT method, were chosen to
generate conserved PCR primers for amplification of
orthologous loci in representative galliforms (see Meth-
ods for species sampling). Of these, 19 loci were success-
fully amplified in all important taxa, revealing a total of
25 phylogenetically informative retroposed elements.
CR1 elements present in these amplified loci, along with
those presented by Kaiser et al. [12] show that at least the

CR1 subtypes E, Y2, X2, Y4, F2, D2, H2, C, C2, B2, H, and
G were active during galliform evolution. Moreover, the
results of the cumulative TinT analysis are clearly in line
with the exemplarily shown activities of certain CR1 ele-
ments identified by their presence/absence patterns in var-
ious species (Figure 2B). The elements represented in the
older cumulative TinT peak we found as well to be active
during the first divergences in galliform evolution, while
the elements of the second peak were active during times
of younger divergences. Thus the phylogenetic markers
present an actual calibration of the TinT relative timescale.
In further investigations we focused on screening for
intronic CR1 elements with TinT-selected activity patterns
in a galliform-wide amplification.

As our analysis of chicken sequences did not furnish ele-
ments that retroposed after the divergence of the lineage
leading to turkeys from the one leading to the chicken, to
provide phylogenetic information to solve the potential
sister group relationships on this lineage we scanned the
available turkey genomic trace sequences (about 6 mil-
lion) for insertions of relatively young repeats (CR1-C2
and CR1-B2). Cases with elements absent in chicken
orthologous genomic loci were selected in the genome
browser (UCSC) [48] and we generated conserved PCR
primers for eight loci.

Altogether, we extracted a total of 23 orthologous loci
containing 25 phylogenetically informative insertions of
CR1 and LTR elements. The presence/absence patterns of
these elements support ten clades within Galloanseres
and Galliformes (Figure 3, additional data file 2): (1) One
element (CR1-E) was found in species of Galliformes and
Anseriformes but not in the outgroup zebra finch (Taen-
iopygia guttata; Passeriformes), thus supporting the clade
Galloanseres. (2) Two elements (CR1-Y2 and CR1-X2)
were found at orthologous genomic positions in all galli-
forms except Megapodiidae (megapodes). Although the
pattern of the three possible branching orders – with the
prior hypothesis at the first position – is not significant
([200]; p = 0.111) according to Waddell et al. [32], this is
the first unambiguous retroposon evidence to support the
local tree topology supported by morphological [16] and
mitochondrial sequence data [10,15]. (3) We found eight
independent retropositions (2× CR1-F2, 3× CR1-D2, 2×
CR1-X2, 1× CR1-Y4) shared by Numididae, Odonto-
phoridae, and Phasianidae that were not present in Anser-
iformes, Megapodiidae and Cracidae. Assuming a prior
hypothesis based on morphological [16], nuclear [9], and
mitochondrial sequence data [10,15], these markers,
together with two insertions found by Kaiser et al. [12],
provide statistically significant support ([10 0 0], p <
0.0001) for this branch of galliform evolution. (4) Odon-
tophoridae and Phasianidae share one orthologous CR1-
H2 insertion that is missing in Anseriformes, Megapodii-
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dae, Cracidae, and Numididae. While morphological [16]
and nuclear sequence data [9], as well as the combined
data set of Crowe et al. [11] support a sister group rela-
tionship between these two taxa, mitochondrial analyses
[10,15] support a topology in which Numididae are the
sister taxon of Phasianidae. Our results provide the first,

unambiguous retroposon evidence supporting the mor-
phological and nuclear data. (5) We found five independ-
ent retroposon insertions (2× CR1-B2, 1× CR1-C2, 1×
CR1-C and one GGLTR4a) in all Phasianidae species
examined that were absent in all other galliform families.
The monophyly of Phasianidae was also significantly sup-

Comparison of TinT relative times of activity and the main divergences of the galliform treeFigure 2
Comparison of TinT relative times of activity and the main divergences of the galliform tree. (A) Cumulative TinT of CR1 ele-
ments on a relative timescale during gamebird evolution. The graph shows the cumulative maximum probabilities of activities 
for nested CR1 retropositions that were fixed in the ancestral lineage of the chicken genome. (B) A simplified galliform tree 
showing the main divergences from the lineage leading to the chicken (in red). The CR1 subtypes depicted above the various 
branch points were identified by presence/absence analysis in species on the corresponding internal branches in this study and 
by Kaiser et al. [12]. The elements within the shadowed areas connecting (A) and (B) that were apparently active on specific 
branches of the galliform tree were dominating in corresponding peaks of the cumulative TinT graph.
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ported by four additional independent CR1 insertions dis-
covered recently by Kaiser et al. [12]. Thus the monophyly
of Phasianidae (including Tetraoninae and Meleagridi-
nae) is significantly supported by nine independent retro-
position insertions ([9 0 0]; p < 0,0001). (6) One CR1-B2
and one CR1-C element were found in all investigated
phasianids except Rollulus rouloul. Thus, together with the
one additional insertion detected by Kaiser et al. [12],
there is now significant support ([3 0 0]; p = 0.037) for a
hitherto unexpected clade. (7) All investigated phasianids
except Rollulus and Gallus were found to share a CR1-C ret-
roposition. An additional independent CR1 insertion sup-
porting the same topology ([2 0 0]; p = 0.11) was found
by Kaiser et al. [12]. (8) We found two insertions of CR1-
B2 elements in all investigated phasianids except the Rol-
lulus, Gallus, and Pavo species. These findings lend addi-
tional support to the seven independent insertions found
by Kaiser et al. [12] in similar species. The pattern of [9 0
0] is highly significant (p < 0.0001). (9) Two LTR
(GGERVL18LTR) insertions were present in orthologous
positions in Gallus gallus and Gallus lafayetii that were
absent in all other analyzed birds. (10) One CR1-D2
insertion was found in Crax alector and Crax fasciolata,
which was absent in all other investigated galliforms.

Within the loci containing the retroposed elements, we
also found support for additional clades by the presence
of 95 random intronic indels (see Figure 3). One indel
was found only in the Meleagridinae and Tetraoninae spe-
cies, a grouping that was also recently indicated by one
CR1-insertion [12]. For example, twelve indels were exclu-
sive to Tetrao and Tympanuchus, grouping these two spe-
cies of the subfamily Tetraoninae together, three
independent indels were specific for intronic sequences of
Perdix and Chrysolophus, seven were unique to the two
Chrysolophus species, seven were unique to a clade com-
prising Pavo and Afropavo, in agreement with Kimball et al.
[49] and four were unique to Pavo muticus and Pavo crista-
tus. Twenty-one independent indels group together the
two odontophorid genera Callipepla and Colinus, and
eighteen unite Crax alector and Crax fasciolata. Together
with all the retropositions presented in points 4, 5, 6, 7
and 8 above (Fig. 3), these data clearly support a sister
group relationship between Afropavo and Pavo, rejecting
an earlier morphology-based hypothesis of a clade com-
prising Afropavo and Numididae [50]. Although low com-
plexity RGCs have a higher probability of being
homoplastic [23] than do the insertion patterns of retro-
posons, we did not find any indels contradicting the
topology of the tree supported by retroposed elements.

We provide the first retroposon evidence that Odonto-
phoridae are the sister taxon of Phasianidae, which is also
supported by at least one morphological feature, the pres-
ence of a well-developed intermetacarpal process on the

carpometacarpus (see however, Stegmann (1978) con-
cerning the possibility of a secondary loss of this process
in Numididae [51]). Our study further provides clear evi-
dence against a recently hypothesized sister group rela-
tionship between Perdix and Meleagridinae (Crowe et al.
2006; note that the morphological data set used in this
analysis contains several incorrect character scorings
[52]).

To the best of our knowledge, it has not yet been pointed
out that the sister group relationship between New World
turkeys and Palaearctic grouse, which is also supported by
analyses of sequence data [11,14], indicates a New World
origin of grouse. Because the clade (Meleagridinae +
Tetraoninae) is nested within taxa with predominantly
Asian distributions, the stem species of this clade proba-
bly reached the New World from Asia.

A striking observation from the TinT data is that the max-
imal frequencies of individual CR1 subtype fixation rates
fall in close temporal proximity to one another and tend
to be concentrated in distinct temporal waves, as is visible
from the cumulative curve (Figure 2). Interestingly, two of
these peaks of CR1 fixation rates coincide with the two
most highly supported branches, indicating long internal
branches and/or high retroposition fixation rates. At least
five parameters might affect the fixation rate of retro-
posons in a population in a given branch of the phyloge-
netic tree: (I) the promoter activity of the master gene, (II)
the overall availability of enzymatic retroposition
machinery and (III) its affinity to the master RNA, (IV) the
population size, and (V) the branch length. In small pop-
ulations the fixation of a single retroposition event is
much more likely than in large populations [53]. As the
cumulative curve (Figure 2) reflects the timeframes of
maximum fixation rates of several independent CR1 sub-
types, it is unlikely that individual peaks are the result of
promoter activity. The peaks might reflect times of over
expression of the total retroposition machinery or might
be due to severe population bottlenecks in the ancestral
chicken lineage.

Accession numbers
The GenBank accession numbers for the sequences dis-
cussed in this paper are [EU054465–EU054818].

Conclusion
In summary, we present a method to calculate the relative
times of maximum fixation frequencies for retroposons.
We applied the TinT method to obtain a temporal order
of the activity of different CR1 subtypes. The results of the
TinT method enabled us to preselect potential phyloge-
netically informative presence/absence loci to test
hypotheses for specific internal branches of a phyloge-
netic tree. With this preselection strategy, we found the
Page 6 of 11
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU054465
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU054818


BMC Evolutionary Biology 2007, 7:190 http://www.biomedcentral.com/1471-2148/7/190

Page 7 of 11
(page number not for citation purposes)

Retroposed elements as landmarks of galliform evolutionFigure 3
Retroposed elements as landmarks of galliform evolution. Gray balls represent single retroposition events revealed by our 
search for CR1 and LTR elements in chicken and turkey sequence databases. Filled gray circles denote markers published by 
Kaiser et al. [12]. Supported splitting points are labeled with Arabic numerals. Triangles denote branches supported by indel 
markers (amount given by numbers above) present in the same loci as the retroposed elements. The taxa shown represent 
only those from which we sampled CR1 elements and LTRs. Significantly supported splitting points are indicated with * p < 
0.05, **p < 0.0001.
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first retroposition evidence supporting successive sister
taxon relationships between Megapodiidae, Cracidae,
Numididae, and the remainder of galliform birds. Highly
significant support is presented for the first time for the
monophyly of the phasianoid clade comprising Numidi-
dae, Odontophoridae and Phasianidae (Figure 3, point
3). One marker suggests that Numididae are the sister
taxon of a clade comprising Odontophoridae and Pha-
sianidae. Five independent retroposon insertions pre-
sented in this study, along with four previous ones, offer
overwhelming support for the monophyly of all investi-
gated phasianid species (Figure 3, point 5). We present the
first significant support for a sister group relationship
between Rollulus and all other investigated phasianids
(Figure 3, point 6), and additional retroposon evidence
for the monophyly of a clade containing Pavo, Afropavo,
Coturnix, Chrysolophus, Perdix, Tragopan, Tympanuchus,
Tetrao and Meleagris (Figure 3, point 7) and for a clade
comprising Chrysolophus, Perdix, Tragopan, Tympanuchus,
Tetrao, and Meleagris (Figure 3, point 8). Complementary
information from random indels indicate the existence of
a clade including Tympanuchus, Tetrao, and Meleagris
another clade comprising Tympanuchus and Tetrao, one
comprising Chrysolophus and Perdix to the exclusion of
Tragopan, Tympanuchus, Tetrao, Meleagris, and the other
investigated galliform taxa, and finally a clade comprising
Pavo and Afropavo to the exclusion of all other investigated
taxa.

The mathematical TinT model, applied to birds, is cur-
rently in the process of being tested in several mammalian
groups. We believe that it will prove to be a significant
tool for all genomic projects characterizing the activity
periods of retroposed elements.

Methods
TinT method
We downloaded all 207,284 annotated genomic chicken
CR1 sequences along with their 250 nt flanking regions
from the University of California Santa Cruz (UCSC)
Server [54,55]. We analyzed this dataset searching for
internally retroposed element insertions using the local
version of RepeatMasker [56]. From the RepeatMasker
results we used a novel C-language script to extract all
nested CR1 elements with their flanking CR1 host
sequences. We considered a CR1 retroposed element to be
nested if the upstream and downstream 25 nt flanking
sequences were clearly assignable to CR1 host elements.
We eliminated uninformative cases in which the host and
nested CR1 elements were from the same subtype.

The number and subtype identity of all extracted host and
nested CR1 elements were compiled in a 22-dimensional
matrix (additional data file 1), which was used to calcu-
late the relative integration period and transposition activ-

ity maxima for each nested CR1 subtype. This
mathematical model (additional data file 1) considers the
simplest scenario, that each CR1 subtype had only one
period of activity and no specific target site preferences.
For visualization we calculated cumulative TinT values
(Figure 2).

Average level of nucleotide divergency
An independent measure to examine the relative temporal
order of transposon activity was obtained by comparing
the average levels of nucleotide divergency from their con-
sensus sequences in the various CR1 subtypes, assuming
that the highest divergency appears in the oldest subtypes
that became inactive first. The lowest divergency is
expected for subtypes that are still active. However, the
method is dependent on accurate consensus sequences
[47]. As RepeatMasker calculates the nucleotide diver-
gency of each retroposed element from its consensus
sequence, we used these values to calculate the average
subtype divergency level (additional data file 1). We then
used linear regression analysis to correlate the divergency
values to the relative temporal position of CR1 subtypes
obtained by the TinT method.

Computational strategies
We used four computational strategies to find phylogenet-
ically informative loci featuring presence/absence patterns
of retroposed elements and random indels.

Strategy I
An ideal starting point to investigate galliform phyloge-
netic relationships is the chicken, the domesticated form
of the Red Junglefowl (Gallus gallus), because the genome
of this model organism has been fully sequenced. Thus,
retroposon insertions can be bioinformatically located
and the orthologous loci can be experimentally investi-
gated in other galliform species. Chicken intronic
sequences (23,236 introns) were downloaded from the
Santa Cruz Server [55,57]. After excluding duplicated
sequences and, to facilitate PCR amplification, introns
larger than 1 kb (17,300 introns), we screened for the
presence of retroposed elements (RepeatMasker). The
resulting loci (containing about 300 CR1 elements and 45
LTRs) were analyzed for the presence of conserved flanks
(Santa Cruz Server) [58,59] and 120 loci containing ele-
ments that retroposed during different parts of the relative
timescale (TinT) were chosen to generate PCR primers.

Strategy II
Because the turkey genome is currently being sequenced
as well, preliminary genomic data can be used to locate
retroposed elements and to experimentally investigate
potential sister groups of turkey. We downloaded all avail-
able trace sequences (6 million) from the turkey (Melea-
gris gallopavo) genome [60] and searched for retroposed
Page 8 of 11
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element insertions (RepeatMasker). As in strategy I, the
resulting 784 loci were then analyzed for the presence of
conserved flanks (Santa Cruz Server; [58]) and 8 loci con-
taining copies of the relatively young CR1-B2 and CR1-C2
were chosen to generate PCR primers to investigate poten-
tial turkey sister groups.

Strategy III LTRs
The introns selected under strategy I that contained LTR
insertions (45 loci) were analyzed for the presence of con-
served flanks (Santa Cruz Server; [58]) and 7 loci contain-
ing LTR elements were chosen to generate PCR primers.

Strategy IV Random Indels
Although no concerted effort was made to conduct a sys-
tematic search for phylogenetically informative random
indels, all alignments of our retroposon presence/absence
markers were checked for this potential additional source
of information. This was possible, because most galliform
introns are highly conserved and thus more easily aligna-
ble, compared to many mammalian introns for example
[27,28]. Here we restricted ourselves to shared indels
larger than three nucleotides to ensure a certain level of
complexity in the sequences, so that they would not be
confused with coincidental random mutations.

Taxon sampling
We analyzed DNA samples and/or sequences from the fol-
lowing bird species. Anseriformes: Cairina moschata, Anas
crecca; Galliformes: Alectura lathami, Crax fasciolata, Crax
alector, Numida meleagris, Colinus virginianus, Callipepla
squamata, Rollulus rouloul, Gallus lafayetii, Gallus gallus,
Afropavo congensis, Pavo cristatus, Pavo muticus, Coturnix
japonica, Perdix perdix, Chrysolophus pictus, Chrysolophus
amherstiae, Tragopan caboti, Tetrao tetrix, Tympanuchus
cupido, Meleagris gallopavo, and the outgroup, Taeniopygia
guttata.

PCR amplification and sequencing
We designed PCR primers for sequences located in DNA
regions highly conserved between chicken and human, to
guarantee even higher conservation among the various
galliform species (additional data file 2). PCR reactions
were performed using Phusion DNA Polymerase (New
England BioLabs, Beverly, MA). The first high throughput
PCR was carried out in a 96-well plate format, amplifying
the selected genomic loci from representatives of the
investigated families and subfamilies: Cairina moschata,
Alectura lathami, Crax fasciolata, Numida meleagris, Callipe-
pla squamata, Rollulus rouloul, Gallus gallus, Pavo cristatus,
Tetrao tetrix, and Meleagris gallopavo. PCR was performed
for 30 s at 98°C followed by 35 cycles of 10 s at 98°C, 30
s at the respective primer-specific annealing temperature,
and 30 s at 72°C. Following gel-electrophoreses, those
loci in which fragment size shifts indicated the presence

and/or absence of the embedded transposed elements
were amplified in the expanded species sampling. All
investigated PCR fragments were sequenced directly or
purified on agarose gels, ligated into the pDrive Cloning
Vector (Qiagen, Hilden), and electroporated into TOP10
cells (Invitrogen, Groningen). Sequencing was performed
using the Ampli Taq FS Big Dye Terminator Kit (PE Biosys-
tems, Foster City) and standard M13 forward and reverse
primers.

Statistical analyses
In our analyses of retroposition presence/absence data, we
applied the statistical test developed by Waddell et al. [32]
to determine the level of statistical support for particular
branching points of the galliform phylogenetic tree. This
methodology assumes the existence of a prior hypothesis
based on other data, and calculates the relative probability
that one of the three possible branching patterns is correct
based on the number of independent retropositional
markers supporting the various hypotheses. p < 0.05 was
considered to be significant (usually achieved with a min-
imum of three independent retropositional insertions).

The results of the TinT method were compared to those of
the relative timescale obtained by the average level of CR1
nucleotide divergency using the standard linear regression
model.
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gency analyses.
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table of the PCR primers used to amplify informative loci.
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