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Introduction

I am the very model of a modern Major-General,
I’ve information vegetable, animal, and mineral,
[. . .]
I’m very well acquainted, too, with matters mathematical,
I understand equations, both the simple and quadratical
[. . .].

(W. S. Gilbert, from: The Pirates of Penzance)

At least at first sight, quadratic equations seem to be much more difficult
than linear problems. This is what W. S. Gilbert may have had in mind when
writing this verse for this self-assure officer; or so the juxtaposition between
‘simple’ and ‘quadratical’ equations suggests. Roughly speaking, the aim of this
dissertation is to answer the question, how difficult the latter are.

Background. Quadratic forms play an important role in number theory as
well as in several related areas. They already aroused the interest of Fermat,
Euler, Lagrange, and Legendre (see [Wei84], [Dic34b, ch. VI–X, XII, XIII],
[Dic34c, ch. I–XI]). Perhaps one of their main appeals is their seeming simplicity:
Being merely a slight abstraction from quadratic equations, quadratic forms are
easy to write down and ask questions about. More specifically, quadratic forms
are just one step beyond linear ones, and the theory of linear forms (i. e. linear
algebra by any other name) is thouroughly explored and easily understandible
– at least from today’s perspective. Curiously, this picture changes radically
when turning to exponent two. Another reason to study quadratic forms lies in
the fact that binary forms bear the structural information on quadratic number
fields, but in an easier accessible way.

The mathematical literature produced by the mid of the 19th century has
not only contributed singnificantly to the knowledge about quadratic forms, but
also raised new questions. Especially Gauß’ work Disquisitiones Arithmeticae
[Gau89] enjoyed immense popularity among the mathematicians of his and the
following generations: Not only did it mean a leap ahead in the theory, but it
has also shaped much of the area today known as algebraic number theory.

Probably, the flourishing of this reasearch area inspired Hilbert to discuss it
in his famous speech at the International Congress of Mathematicians in Paris
in 1900. The eleventh item on his famous list of mathematical problems for the
20th century calls for a theory of quadratic forms over algebraic number fields.

vii



viii INTRODUCTION

The efforts initiated by Hilbert’s speech have given rise to the arithmetic
theory of quadratic forms, which explores quadratic forms over local and global
fields and their respective rings of integers. Many question could be settled in
this area. The honor of having accomplished Hilbert’s task is usually granted
to H. Hasse for the famous Hasse Principle (see [Has24]).

It is this branch of the theory which will prove the most significant here.
Some central results are discussed in Sect. 1.2.5.

Despite these enormous advances, algorithmic questions have hardly ever
come into focus. This is even more suprising in view of the fact that most of
the theory starts with two classical decision problems:

(A) Given two quadratic forms, are they equivalent?
(B) Given a quadratic form and a scalar, can the scalar be repre-

sented by the form?

More than a century of research has provided us with comprehensive crite-
ria for these questions. However, the algorithmic nature of such results is often
barely a theoretical possibility. This point deserves a closer look. In the lan-
guage of computer science, the arithmetic theory can only prove that questions
(A), (B) are decidable, while making no statement about running times. Are
these problems possibly polynomial-time decidable? In many important special
cases, the answer is ‘yes’, still thanks to arithmetic results, see Sect. 3.1. How-
ever, these results do not extend to all forms. This gap is due to the complexity
of the underlying computational problems:

(A’) Given two equivalent forms, compute an equivalence transform.
(B’) Given a form f and a scalar m, solve the equation f(v) = m (if

possible).

An efficent method which produces an equivalence transform or representa-
tion if it exists, obviously yields a procedure to decide their existence. But here
it seems that the only algorithm considered in the literature to find a transfor-
mation is exhaustive search. This is most obvious when the attempt of Dickson
and Ross to decide equivalence of a particular pair of forms is discussed (see
[Cas78, p. 132], [CS93, p. 403]). The restriction to trivial algorithms also be-
comes explicit in Siegel’s famous bound on equivalence transformations [Sie72],
which reproves the decidability of (A) using analytic techniques. More precisely,
he shows that for each pairs f, g of equivalent forms there is a constant C > 0
effectively computable from f, g such that there is a transformation from f to
g whose coefficients are absolutely bounded by C. Siegel explicitly refers to the
enumeration of all integral matrices up to some bound on the coefficients for
testing equivalence.

In dimension three, Siegel’s implicit bound has been made explicit and has
been improved to polynomial size by Dietmann [Die03]. Still using trivial enu-
meration, this implies that problem (A) is in NP. Moreover, for problem (B),
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Grunewald and Segal [GS04] showed decidability by solving problem (B’) if
possible. Their algorithm is more sophisticated, yet still involves steps of expo-
nential enumeration.

I am aware of exactly one literature reference asking explicitly for a com-
plexity analysis of problems (A), (B), (A’), (B’). At the end of [CS93, ch. 15],
Conway and Sloane formulate both decisional and computational equivalence
and representation problems, along with a couple of additional questions, e. g.
on class numbers. They mention several cases for which these problems are
easy. For indefinite forms over Z, they express their impression that “there
do not seem to be good algorithms”, and discuss the inefficiency of exhaustive
enumeration.

Thus it may be stated that algorithms on quadratic forms have hardly been
studied, and even less so complexity issues.

Out of fairness, we ought to mention the main exceptions to this rule. In
[Gau89], Gauß solves all problems (A),(B),(A’),(B’) for binary integral forms
giving concrete non-trivial algorithms along with a correctness analysis (see
also [Lag80], [BB97], [BV07] for improvements). His approach has been redis-
covered by the founders of computational algebraic number theory, see [PZ89].
In particular, Gauß’ algorithms and modifications thereof are employed for com-
putations in quadratic and relative quadratic number fields, see [Coh93, ch. 5],
[Coh00, sec. 2.6]. Still if forms are concerned these are mostly only binary ones.

Apart from the problems touched upon here, the old question how to solve
the Legendre equation

ax2 + by2 + cz2 = 0 (1)

non-trivially, if possible, has fascinated generations of mathematicians. Af-
ter Legendre had discovered the conditions under which (1) is solvable, La-
grange came up with a concrete solution method, see [Sma98, sec. 4.3.3], [Ser73,
sec. 4.3]. A remarkable algorithm can also be found in [Gau89], recent im-
provents include [CM98], [CR03] [Sim05b], and [Sim05a].

Finally, for definite forms algorithmic and complexity theoretic investiga-
tions abound. Having a strong tradition in this particular field, computational
aspects have gained considerable momentum on the advent of the LLL-algorithm
[LLL82]. Algorithms for definite forms, often formulated in the language of
lattices, constitute a vivid domain of research. This may be due to the re-
quirements of the domains where lattices are applied, as discrete optimization,
cryptanalysis, and lattice cryptography (see below).

Motivation. In this thesis, I will explore the complexity of problems (A), (B),
(A’), (B’). This follows a twofold motivation:

At first, in the age of highly-efficient computing devices, decidability is a very
weak notion. As computing capacities increased, the theory of computing has
become more and more demanding of the efficiency a problem is solvable with:
From decidability, requirements have shifted to polynomial-time decidability,
and are even further shifting towards efficient parallelizability. Thus Hilbert’s
question adapted to the concerns of this day and age could read:

‘Are equivalence and representability polynomial-time decidable over some
ring?’
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or more generally:

‘What is the complexity of deciding equivalence and computing
transformations?’

We may arrive at similar questions if we apply similar reasoning to Hilbert’s
Tenth Problem on solvability of general Diophantine equations.

This leads us to our second approach to these questions: The hardness of
computational problems on indefinite quadratic forms allows to base crypto-
graphic protocols on it, see Chapter 2. This follows the example of definite
forms, or lattices, which have been employed in cryptography, e. g. in [AD97],
[GGH97], [HPS98], [HPS01], [HHGP+03]. The security of these crypto-schemes
is based on the lattice problems SVP and CVP, whose hardness is illustrated by
(partially randomized) NP-completeness results (see [MG02], [Kho05]). More-
over, this is taken as a hint that this type of primitives may still be secure and
applicable in the (still hypothetical) age of quantum computers because quan-
tum computers are considered unlikely to efficiently solve NP-complete problems
(see [BBBV97]).

However, the hardness proofs use lattices of arbitrarily high dimension, which
causes severe efficiency problems. In consequence, lattice cryptography plays a
minor role in practice today. By contrast, for indefinite forms, we can prove
hardness in fixed small dimension (Theorem 7.1.1), and we discover the NP-
hardness of closely related problems (Chapter 9). In cryptography, this would
allow for smaller key sizes, and thus also faster protocols. Adopting the vision for
the future of lattice cryptography, we take this as an indication that quadratic
form cryptography may be both suited for the post-quantum era as well as
feasible for traditional computers.

It should be noted that there are two further families of cryptosystems re-
lated to quadratic forms or equations. At first, multivariate cryptography uti-
lizes polynomial equation systems over finite fields, which are often quadratic.
It was a scheme of Imai and Matsumoto [IM88] which became the igniter of
this now fully developped and vivid branch of cryptography. Solving systems of
quadratic equations over F2 is already NP-hard; this is understood as an indica-
tion that the concrete systems employed also are hard. However, NP-hardness
only holds if the number of equations and variables is unbounded. This still re-
quires relatively large keys, in contrast to our hardness results in small bounded
dimension.

Furthermore, algorithmic problems of number fields have been employed in
cryptography. Important protocols are proposed in [BW90], [BBT94], [BMM00].
This constitutes the branch of cryptography which is certainly closest to algo-
rithmic algebraic number theory. As mentioned above, quadratic forms provide
a data type highly suitable for computation in number fields. This refers mostly
to binary forms, which are not useful in our context (see Sect. 7.2). Moreover,
the underlying problems are often related to factoring, or discrete logarithms,
while problems on higher-dimensional forms seem to be essentially harder.
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Main results. The cryptosystems reviewed in Chapter 2 are proposed for
indefinite anisotropic quadratic forms over Z. This choice is the result of com-
plexity investigations. The schemes themselves are quite flexible and could be
implemented, after minor modifications, for various types of forms over various
rings. The presentation in Chapter 2 emphasizes this flexibility. However, such
variations usually have an impact on the security of the scheme.

Security relies on the hardness of problems (A’) and (B’), which will be called
Trafo and Repr (for formal definitions, see Sect. 1.3). These will be the main
objects of study in this thesis.

The information that complexity theory can supply cryptography with is of
two kinds: Efficient, or comparatively efficient algorithms rule out the instances
in question, while hardness results encourage the use of the respective problem.

In the latter respect, we prove that variants of the problems Trafo and
Repr over Z are NP-complete under randomized reductions (Chapter 9). More
precisely, we ask for transformations and representations whose coefficients lie in
given intervals. The hardness results refer to indefinite ternary quadratic forms
(with several possible further restrictions). For isotropic forms, the results hold
unconditionally, while for anisotropic forms it is subject to a number-theoretic
assumption, which we call the special Cohen-Lenstra Heuristic (sCLH). This
assumption claims class number one for ‘sufficiently many’ real quadratic fields
with prime discriminant. It is inspired by and largely similar to the well-known
Cohen-Lenstra Heuristic [CL84].

The proof of these theorems is based on a result of Adleman and Manders
[MA78] who proved NP-completeness for solvability of the binary (inhomoge-
neous) equations

x2 + by = a, |x| ≤ c

in integers x, y ∈ Z. We use a modification of this theorem with restrictions
on a, b. The hardness of the representation proplem for isotropic forms fol-
lows directly. For anisotropic forms, we have to construct a small family of
binary quadratic forms some of which represents the (unknown) integer y with
high probability. The correctness of our construction is proved using the sCLH.
Finally, the results on transformation problems are derived from those on repre-
sentations. This step requires a bound on the number of orbits of representations
under the automorphism group of the representing form.

A reductionist hardness result, this time for the original problem Trafo, is
presented in Chapter 8. We show that computing transformations for equivalent
indefinite forms over Z of any dimension n ≥ 3 is no easier than extracting a
square root of −1 modulo their determinant. The complexity of this task is
closely related to that of factoring. We again emphasize that we can restrict to
anistropic forms (if n = 3 or 4).

This estimate is useful because it gives an explicit lower complexity bound for
the presumably hard problem Trafo. However, in the light of the NP-hardness
results and for want of a subexponential algorithms for this problem, Trafo
and factorization seem far from being polynomial-time equivalent. Therefore
we include the factorization of the determinants into the input for most of our
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investigations. In particular, the NP-hardness results are still valid for the
problems with the factorization given for free.

Perhaps our most suprising result reduces general Trafo instances over Z
to such of small dimension. More precisely, the transformation problem (with
factorization given) in any fixed dimension can be solved using an oracle for
transformations in dimensions three and four. This holds for forms of odd
squarefree determinant.

This result justifies the use of low-dimensional forms in cryptography. If
the transformation problem is hard in any fixed dimension at all, then it is
necessarily hard in dimensions ≤ 4.

The proof works by splitting off (a lattice on) a ‘hyperbolic plane’ from both
forms in question, and reducing to the orthogonal complement.

Furthermore, we prove a result on the interrelationship between the trans-
formation and representation problems. Here ‘interrelationship’ expresses a re-
laxed version of polynomial-time equivalence. More explicitly, we reduce Repr
to Trafo instances—both times with free factorization—at the cost of restric-
tions on the determinants: The odd, squarefree determinant d of the form f of
dimension n in the Repr instance is lifted to its (n − 1)-th power under this
reduction.

Conversely, Trafo instances are solved using an oracle capable of computing
solutions to both Repr problems and Trafo problems of dimension n−1. Again
the Repr instances refer to forms of determinant dn−1. Most importantly, for
n = 3 the oracle access for lower-dimensional Trafo solutions can be dispensed
with. Therefore we have some kind of mutual reductions of Trafo and Repr
for ternary forms, though not exactly polynomial-time equivalence.

The importance of this result is due to the signature scheme of Sect. 2.3.
Its security requires that, beside Trafo, also the problem Repr is infeasible
(whereas identification as in Sect. 2.2 is based on Trafo only). Equivalence
of Trafo and Repr would release us from the necessity to presuppose two
unrelated cryptographic assumptions. Hence linking their complexity makes
the conjunction of these two hardness assumptions more plausible.

The proof employs Minkowski duality between representations of scalars
by f , and representations of (n − 1)-dimensional forms by the adjoint of f .
Passing from such a representation to a transformation for given instances means
augmenting a (n×(n−1))-matrix by a last column, subject to several linear and
quadratic constraints. Very roughly, the reductions reflect the constructions of
these missing coefficients.

Turning from lower to upper bounds on complexity, our first concern are
binary forms over Z. We learn that transformation problems can be solved in
time polynomial in S, where S is any solution. This excludes the use of binary
forms in protocols as in Chapter 2 because this would allow for key extraction
in time polynomial in the size of the secret key. Together with the result of
Sect. 7.1.3 this prompts us to concentrate on forms of dimensions three and
four. Reference to solution size is necessary since in general, transformations
between binary forms need not even be of polynomial size. The statement
follows by analysis of an algorithm of Gauß.
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An obvious variation of the computational problems consists in changing the
base ring. We prove various upper complexity bounds for other rings than Z.
Over the rational number field Q, the problem Trafo can be closely linked to
factoring integers. For Trafo reduces to factoring the determinants of the forms
involved, and conversely, Trafo is at least as hard as computing a modular
square root of −1. As mentioned above, factoring and computing imaginary
roots seem to be similarly hard and may even be polynomial-time equivalent.
Ignoring this gap and using the result from Chapter 8, we may heuristically
state that the transformation problem over Z is no easier than over Q.

In Sects. 6.2 and 6.3, we explore rings of formal power series and polyno-
mials in one variable, respectively. This setting is more general as we do not
concentrate on a concrete base ring, but compare complexity of Repr over
this ring with that over the ground field. For power series, it turns out that
both decisional an computational problems are polynomial-time equivalent to
the respective problem over the ground field.

In the case of polynomials, we reduce it to the problem of finding simulta-
neous representations over the ground field (which is much more general than
single representations). Still, the solution over power series rings yields ‘ap-
proximative’ solutions to representation problems with polynomial coefficients.
Hence hard instances may only arise if ‘most’ representations modulo powers of
the indeterminate do not lift to polynomials.

We thus learn that the use of power series rings in our applications does not
pay, as it features roughly the same level of security at the cost of larger keys.
The use of polynomial rings at least is not encouraged. Besides, a more precise
classification of complexity over polynomial rings seems to depend heavily on
the ground field.

For finite fields, fields of p-adic numbers, and rings of p-adic integers, both
Trafo and Repr are polynomial time. This follows almost immediately from
classification theorems.

By localization, we can also solve the decisional equivalence and repre-
sentability problems over Z, for a large proportion of instances. For represen-
tations, indefiniteness of the forms is required. If the computational problems
are hard, as we conjecture, this would establish an intriguing discrepancy phe-
nomenon.

For definite forms in fixed dimension it is known that Trafo can be solved in
polynomial time. Isotopic ternary forms allow for subexponential algorithms for
both Trafo and Repr. These facts are collected in Chapter 5. There we also
verify the decreasing effect of singularity and reducibility of forms on complexity.

Part of the results presented here have been published in
[HS07b] and [Har07]. Another paper on this topic [HS07a] is in preparation.

Outline. In Chapter 1, we review the most important concepts from theoret-
ical computer science that we are going to use. Then we introduce the basic
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notions of quadratic forms and cite important known facts about them. Finally
we formulate and explain the computational problems Trafo and Repr, which
we are going to analyze. This chapter contains prerequisites for the whole thesis.
The other chapters are largely independent from each other.

In Chapter 2, we present an identification scheme by Schnorr which proves
knowledge of an equivalence transformation. An enhanced scheme with long
challenges is suitable for digital signature generations, even if at the cost of
provable security. These applications serves as our main motivation to study
the complexity of the underlying problem Trafo.

The impact of localization on complexity is studied in Chapter 3. We prove
polynomial-time solvability of transformation and representation problems over
all Fp, Zp, and Qp. These insights are used to demonstrate polynomial-time
decidability of equivalence and representability over Z. There will be several
references to these statements throughout the thesis, which explains why they
precede its main parts.

Chapter 4 displays auxiliary algorithms. Section 4.1 is a survey on algorith-
mic prime selection. In Sect. 4.2.4 we show how to construct an integral form
satisfying p-adic constraints. These methods will be needed in later chapters,
particularly in Chapters 9 and 10.

In the second part of this thesis the reader may find results on several re-
strictions of Trafo and Repr. At first, we discuss properties of forms and their
impact on complexity (Chapter 5).

Chapter 6 contains those results on base rings other than Z which are not
yet discussed in Chapter 3, i. e. it is concerned with Q, rings of formal power
series, and of polynomials.

Finally, results with respect to the dimension can be found in Chapter 7;
these are the reduction of the transformation problem to dimensions three and
four, and the feasibility of it for binary forms.

The third and last part of this thesis comprises the remaining lower-bound
results. It is opened by Chapter 8 which displays the imaginary root problem
as a lower bound for Trafo. Then we present and prove NP-hardness results in
Chapter 9, and finally in Chapter 10, we establish the ‘near’ equivalence of the
problems Trafo and Repr.

Note that for the sake of convenience, the reader will find an overview of
(non-standard) notation employed right after this introduction. Moreover, def-
initions and conventions explained in the text can be easily looked up by use of
the index at the end of this document.

Literature. Of the extremely comprehensive literature on quadratic forms,
we will primarily need the arithmetic theory. If possible, we have cited [Cas78],
since this textbook is particularly focussed on forms over Q and Z and their
localization. Other accounts of the arithmetic theory include [Bro06], [Jon50],
[Eic52], [O’M63], [CS93, ch. 15], [Kne02], and [Kit93]. As far as local and global
fields are concerned, one can as well refer to [Ser73] and [Lam05].
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Chapter 1

Preliminaries on Quadratic
Forms and Computational
Problems

In this chapter we introduce definitions and theorems important for this whole
thesis. We begin with collecting some concepts from theoretical computer sci-
ence in Sect. 1.1. In Sect. 1.2, we review central aspects of the theory of qua-
dratic forms. Finally, in Sect. 1.3, we discuss how to combine these topics, i. e.
we define algorithmic problems of quadratic forms and begin with their analysis.

1.1 Computational Problems

1.1.1 Model of computation

We do not give many formal definitions in this section, but merely set up conven-
tions. For more a detailed account, the interested reader is referred to [Pap94],
[BDG88], [GJ79].

We generally use the computational model of a Turing machine. As we
are only interested in complexity up to polynomial time, everthing done here
carries over to any model of computation polynomial-time equivalent to Turing
machines, e. g. polynomial-time k-string Turing machines.

For an algorithmic approach, the mathematical objects considered have to
come in a machine-readable format, i. e. an encoding in strings over a fixed
alphabet. In some cases such an encoding is essentially canonic; for instance,
integers can be presented in binary, and integral quadratic forms may be given
by its dimension and the array of its coefficients. Some more debatable cases
are discussed in Sect. 1.3.1.

We will assume that some ‘sensible’ encoding has been chosen for each class
of objects, and it will be kept fix. The length occupied by the encoding of an

3
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object ξ, i. e. the number of symbols (e. g. bits) used for it, will be denoted by

length (ξ) .

Analogously, we use probabilistic Turing machines as our model for random-
ized algorithms, see Sect. 1.1.3 for more details.∗

We will write down algorithms as pseudocode programs, or merely sketch
how to write down such a program in proofs, without explicitly referring to a
Turing machine.

1.1.2 Problems

For the considerations made in this thesis, an intuitive notion of decisional and
computational problems suffices. However, a few remarks will be useful.

It is important for us not to restrict to decisional problems only.

A computational problem consists of a set of inputs, and for each input, a
set of admissible outputs (solutions).

Note that in contrast to the usual decision problems, the output need not
be unique.

We can view decision problems as the special case of computational problems
where all admissible answers are single bits. However, in this case we do require
uniqueness of the answer.

The computational model in which we seek for solutions of a problem is
formally either the Turing machine, or the probabilistic Turing maching. But
for easier understanding we formulate algorithms either in pseudo-programming
code, or we indicate in the proofs how an algorithm should be programmed.

As we are mostly interested in the complexity of computational problems
up to (probabilistic) polynomial-time equivalence, we will often use the term
“efficient” to mean ‘in (possibly probabilistic) polynomial time’.

We introduce problems with parameters. Here it is important to note that
thus define families of computational problems: For each value of the parame-
ters, we obtain a new single problem to analyse.

Note that this definition also includes decision problems.
As for inputs and solutions, we will later restrict the set of potential param-

eters to (the encodings of) suitable mathematical objects.

1.1.1 Example. Let M range over polynomial-time decidable subsets of N.
Denote by Fact(M) the computational problem of factoring numbers from M
into their prime divisors (see Sect. 5.2). Then Fact is a problem with parame-
ters. Obviously, its complexity can differ widely for differentM: IfM is the set

∗Speaking in a nit-picking fashion, there are two more exceptions: Whenever we speak
of reductions, we implicitly make use of oracle machines; and the cryptographic protocols of
Chapter 2 formally require interactive Turing machines.
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of powers of two, for instance, then Fact(M) can be solved efficiently. However,
Fact(N) is not believed to be solvable in polynomial time.

Note that this definition of the factorization problem was for illustrational
purposes only. A more general variant will be analyzed in Sections 9.2 and 6.1;
see also Chapter 8.

Problem union. For computational problems A,B define the problem union
A tB as follows: A tB takes inputs in

({0} × IA) ∪ ({1} × IB)

where IA, IB is the set of inputs of A, B, respectively; and if the input was
(0, i), then the admissible outputs are the admissible outputs of problem IA
with respect to input i, and anagolously for (1, i) and IB.

Heuristically, solving A tB means being able to solve both A and B.

1.1.3 Probabilistic Computation

As for general Turing machines, we will write down pseudo-code and identify
such algorithms with probabilistic Turing machines. A probabilistic algorithm
runs in polynomial-time if with probability ≥ 2

3 , it outputs a correct solution in
polynomial time; its behavior in other cases does not matter in the sense of this
definition. This makes sense since we can always break the computation after
polynomially many steps and output a nonsense string.

We will use the terms “random polynomial time” and “probabilistic polyno-
mial time” synonymously. In slightly colloquial contexts (as the rough discus-
sion of proof ideas) we will use the term “efficient” unspecifically for ‘random
polynomial time’ and ‘deterministic polynomial time’.

1.1.4 Reductions

We write 4 for polynomial-time reductions of general computational problems,
using polynomially many oracle calls. For decisional problems, this corresponds
to a Turing reduction (see [Pap94, sec. 8.4]).

For decisional problems only, we denote by 4K a classical Karp reduction.

By 4na we denote non-adaptive reductions. It is the special case of a Turing
reduction where first all questions have to be asked before the oracle gives its
answers. For decisional problems, this type of reduction is often known as truth
table reduction. We will often write down reductions with successive oracle
queries for clarity, but mention non-adaptivety in statements if our reduction
can be easily transformed into a non-adaptive one.
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The symbol 41 denotes the special case of truth-table reduction where only
one oracle call is permitted. For decision problems A,B, the reduction A 41 B
is equivalent to

A 4 B tK B̄,

where B̄ denotes the complement of B.

The symbol 4r will be used for random reductions, i. e. the executing oracle
machine is probabilistic in the sense of Sect. 1.1.3. We combine it with the
above notation with obvious meanings, i. e. 4r,na, and 4r,1.

Finally, the notation
A ≈∗ B

abbreviates the reductions

A 4∗ B and B 4∗ A,

for ∗ any legal combination of the discussed subscripts K, na, 1, r, none.

1.2 Quadratic Forms

Every mathematician who is not indifferent to number theory
has felt the charm of Fermat’s theorem on the sum of two squares
of natural numbers. A psychologist of the Jungian school would
probably think that such diophantine problems are archetypal to
a high degree.

(Yu. I. Manin in [Man74])

1.2.1 Quadratic Forms

Througout this thesis, let R be a commutative ring with unity in which 2 is
not a zero divisor. A quadratic form f (often simply called form) over R is a
homogeneous polynomial of degree two, i. e. a polynomial of the shape f =∑n

i,j=1 aijxixj where aii ∈ R and aij = aji ∈ 1
2R. The number n of variables is

called the dimension of f , denoted by dim f = n, and f is called an n-ary form.

If x = (x1, . . . , xn)t and A = (aij)ij , then we can also write f = xtAx.
Conversely, via this formula any symmetric (n × n)-matrix A over 1

2R with
diagonal entries in R gives rise to a unique quadratic form. In this situation, A
is called the associated matrix of f .

If f is a form over Z (over Zp for some prime p), then f is called integral
(p-adically integral). If the associated matrix of f has coefficients in R rather
than 1

2R, then f is called classically integral ; this distinction is of course only
relevant if 2 /∈ R∗, thus, for R = Z and R = Z2

†. If R is a unique factorization
†In the literature, the term ‘integral’ is sometimes used in the sense ‘classically integral’.
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domain (UFD), f is classically integral and gcd(aii, 2aij | i 6= j) = 1, then f is
called properly primitive. It is called improperly primitive if it is not properly
primitive, but if it is classically integral and gcd(aii, aij | i 6= j) = 1. Finally, f
is called primitive if it is either properly or improperly primitive.

Most of the time it will be enough to consider properly primitive and im-
properly primitive forms. The reason is that for every classically integral form
f , there is λ ∈ R such that 1

λf is still a form over R (‘integral’) and primitive.
Moreover, if f is defined over R, but not classically integral, the 2f is (classi-
cally integral and) improperly primitive. Hence, up to multiplication with or
division by a scalar each form falls into one of two families. The last distiction
remaining, namely between properly and improperly primitive forms, cannot
be easily removed; however, the phenomena observable within these families of
forms do not differ too much.

We define det f := det A as the determinant of the quadratic form f . If
det f 6= 0 then f is called regular, otherwise singular. From now on, we will
tacitly assume that all occurring forms are regular unless otherwise stated.

To every quadratic form f , there is an associated bilinear form: If A is the
associated matrix of f , then this bilinear form is given by (x, y) 7→ xtAy. We
will denote this by f(x, y).

If ai ∈ R, then the form
∑n

j=1 aix
2
i is abbreviated as

〈a1, . . . , an〉,

and such a form is called diagonal. Moreover, if f , g are forms with associated
matrices A, B, then we define the form f ⊥ g, the orthogonal sum of f and g,
by taking

A⊕B =
(

A 0
0 B

)
as its associated matrix. Obviously, we have

dim(f ⊥ g) = (dim f) + (dim g) and det(f ⊥ g) = (det f) · (det g).

For a symmetric matrix A consider its Laplace adjoint A# consisting of
signed maximal minors of A, which satisfies

AA# = A#A = (det A)I.

Then A# is obviously symmetric as well, and hence the associated matrix of a
quadratic form. This form, if A was the associated matrix of the form f , will
be called the adjoint form and denoted by f#.
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1.2.2 Representations

Let m ∈ Z. Then f is said to represent m if and only if there is u ∈ Rn\{0}
such that f(u) = m. Write f −→R m, and call u a representation of m by f .
In case R is a UFD and gcd(u1, . . . , un) = 1, then this representation is called
primitive. This fact is denoted by f

∗−→R m. If R = Z we drop the subscript
and write f

∗−→ R.

In a general quadratic equation, one can get rid of linear terms, at the cost of
a linear congruence condition on the solution of the homogeneous problem. This
is expressed in the following proposition. It serves to illustrate the usefulness of
studying representations.

For the case n = 2 over Z, Proposition 1.2.1 is proven in [Gau89, art. 216];
a similar generalization (for the case R = Z) can be found in [GS04]. For
convenience, and according to Gauß, we use even linear terms without loss of
generality.

Proposition 1.2.1 Let R be a commutative ring. Let f be an n-ary quadratic
form over R with associated matrix A, let det f =: d be not a zero divisor, and
let w ∈ Rn, h ∈ R.

Then the equation
f(x) + 2wtx + h = 0 (1.1)

is solvable for x ∈ Rn if and only if the system

f(y) = −hd2 + d f#(w) and y ≡ A#w mod d (1.2)

is solvable for y ∈ Rn.

Note that if R is a field, the linear congruences are trivially fulfilled.

Proof : First let x be a solution to 1.1. Then

y := dx + A#w

satisfies y ≡ A#w mod d and

f(y) = ytAy = d2xtAx + 2dxtAA#w + wtA#AA#w

= d2(xtAx + 2xtw) + dwtA#w = −d2h + df#(w).

Conversely, let y satisfy 1.2. First note that the second condition means that
there is x with y = dx + A#w. Thus it holds that

−hd2 + df#(w) = f(y) = f(dx + A#w) = d2
(
f(x) + 2xtw

)
+ d f#(w),

which, as d is not a zero divisor, is equivalent to

f(x) + 2xtw + h = 0,

which was to be shown. �
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1.2.3 Properties of forms

Now we can define further properties of quadratic forms: A quadratic form is
called reducible if it factors into two linear polynomials in R[x]. Reducible forms
are studied in Sect. 5.2.

A form f is called isotropic if it represents zero, otherwise anisotropic.
A vector v 6= 0 such that f(v) = 0 is then called an isotropic vector.

Now let there be a (canonical) embedding R ↪→ R. Typically, we think of
the cases R = Z, Q, R here. Then a form over R is called indefinite if it (its real
image) represents both positive and negative values, and definite otherwise.
Cleary every (regular) isotropic form is necessarily indefinite. Definite forms
correspond to lattices in Euclidean space and are not considered here.

1.2.4 Transformations

Let f be a quadratic form of dimension n with associated matrix A. Let S ∈
GLnR, i. e. S is a (n× n)-matrix over R with |detS| ∈ R∗. Then f S := f(Sx)
is a quadratic form with associated matrix StAS. If there is an S ∈ GLnR
such that g = fS, then f, g are called equivalent over R, or R-equivalent,
denoted by f ∼R g. It is easy to see that this in fact constitutes an equivalence
relation. If we talk about the R-class cls Rf of f , we always mean with respect
to this relation. The equivalent forms f, g are called properly equivalent if the
equivalence transformation S can be chosen with det S = 1. The equivalence
classes with respect to to proper R-equivalence are called proper R-classes.

In all these defintions and notations, we drop the mention of the ring R if
we are working over the rational integers.

Note the associative law

f (S T ) = (f S)T.

We fix for future reference the easy

Lemma 1.2.2 Let f, g be equivalent quadratic forms over a ring R.

(a) det g ∈ (det f) R∗2. In particular, for R = Z, the determinants of equiva-
lent forms always coincide.

(b) If R is an integral domain, f is regular, and f T = g for T ∈ Rn×n, then
T ∈ GLnR.
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Proof : Let A (B) be the associated matrix of f (g, respectively).

(a) There is S ∈ GLnR such that f S = g, hence B = StAS and thus

det g = detB = (det S)2 det A = (det S)2 det f.

(b) From f T = g we conclude that

(detT )2(det f) = det g ∈ (det f) R∗2,

where the last equality is due to part a). As det f is not a zero divisor, it
follows that detT ∈ R∗ and thus T ∈ GLnR.

�

A key technique in classifying forms is the well-known

Lemma 1.2.3 (Completion of the square) Let R be either a field with en-
coding of characteristic 6= 2, or R = Zp for an odd prime p. Then every qua-
dratic form over R is equivalent to a diagonal form.

Moreover, if the dimension n of the forms is fixed, an equivalent diagonal
form and a transformation can be computed in polynomial time.

Proof : See [Cas78, ch. 2, lm. 1.4 and ch. 8, thm. 3.1]. We briefly review
the arguments to estimate the algorithmic complexity.

For R a field, start by finding a vector v ∈ Rn with f(v) 6= 0. If none of
the standard unit vectors satisfies this, choose a pair of standard unit vectors
ei, ej (i 6= j) such that f(ei, ej) 6= 0, since then v := ei + ej satisfies f(v) =
2f(ei, ej) 6= 0. Otherwise, the form f is identically zero, and the statement is
trivial. Hence we have found a non-isotropic vector v, and if R is a field, then
v can be extended to a basis of Rn. Applying the base change matrix to f , we
may assume that f(e1) 6= 0. Let A = (aij)ij be the associated matrix of (this
updated) f .

Now consider the matrix

T :=


1 −a12

a11
. . . −a1n

a11

1
. . . 0

0 1

 .

Then f T = 〈a11〉 ⊥ f0 for some (n− 1)-ary form f0. Now employ induction for
the proof and perform a recursive self-call on f0 for the algorithm.

To estimate the complexity of this procedure, first note that the number
of arithmetic operations being constant as n is so. Note that finding a non-
isotropic vector v (or detecting f as identically zero) requires only a complete
scan and 6= 0-tests through the coefficients of f . To form a basis with v, we can
also choose a subset of the e1, . . . , en.

Hence the most crucial part is controlling the growth of the coefficients.
Let A(k) be the associated matrix of f after k iterations of the algorithm, i. e.
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the first k rows and columns only have non-zero entries on the main diagonal.
Moreover, for k = 1, . . . , n let

dk := det

 a11 . . . a1k

...
...

a1k . . . akk

 .

Note that this refers to the original (i. e. input) form f . By a straightforward
induction one can see that the entries of dkA(k) are determinants of (k + 1) ×
(k+1) submatrices of A(0). This implies that the coefficients of all intermediate
forms in the algorithm are quotients of sums of at most n! products of at most
n of the input coefficients. As R is a field with encoding then the coefficients
are of polynomial size in the input length.

Consider the partial transformation Tk formed in one round of the algorithm.
Its coefficients are, except zeros and ones, quotients of entries of A(k). Therefore,
these are of polynomial size as well, and hence so is their product T , the output
transformation.

If R = Zp, the algorithm follows roughly the same outline; however, instead
of a non-isotropic vector, we need v such that νp(f(v)) is minimal in Zn

p . But
this can be accomplished by a coefficient scan as well, this time with keeping
score of the current minimal νp(aij) and the indices i, j. �

The size estimates on the coefficients in this proof are highly exponential
in the dimension n. For instance, if we diagonalize a classically integral form
over R = Q, the resuling diagonal form will have entries whose enumerator and
denominator are bounded by (n!)‖f‖n (Here ‖f‖ stands for the absolute value
of the absolutely largest coefficient of f). These bounds might not be sharp.
However, the growth effect may incur severe efficiency problems in practice, see
[Sim05b].

The same idea can be for slightly restricted problem over UFDs. Essen-
tially the next lemma expresses that completion of the square is possible in the
quotient field.

Lemma 1.2.4 Let f a quadratic form of dimension n ≥ 2 over the UFD with
encoding R. If

f
∗−→R t 6= 0,

then there are b2, . . . , bn ∈ R and a form f∗ of dimension n − 1 over R such
that

tf = (tx1 + b2x2 + . . . + bnxn)2 + f∗(x2, . . . , xn);

in particular, then tf and 〈1〉 ⊥ f∗ are equivalent over the quotient field of R.
Moreover, det f∗ = tn−2d.

Moreover, f∗ and the bi can be computed in polynomial time.

Proof : As in Lemma 1.2.3 we may assume without loss that f(e1) = t.
Then perform the first step of the proof of Lemma 1.2.3 to annihilate the a1i,
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i > 1 in the associated matrix of f , over the quotient field K of R. If (aij)
denotes the associated matrix of f , this yields

(tf)


1
t −a12

t . . . −a1n

t
1 0

. . .
0 1

 = 〈1〉 ⊥ f∗,

where the associated matrix (bij) of f∗ satisfies

bi−1,j−1 = taij − a1ia1j

for i, j = 2, . . . , n, hence f∗ is integral.
Multiplying with the inverse of the tranformation, we obtain

tf =
(
〈1〉 ⊥ f∗

)
t a12 . . . a1n

1 0
. . .

0 1


= (tx1 + a12x2 + . . . a1nxn)2 + f∗(x2, . . . , xn),

which had to be shown. Obviously, f∗ can be computed in polynomial time,
and the bi are just coefficients of f . �

Finally, we mention a simple yet important special case. Consider unary
quadratic forms over a field K, i. e. forms of dimension one, which are essentially
the same as ring elements. Such a form 〈a〉, with a ∈ K, is regular if and only if
a 6= 0. Let us determine the set of equivalence classes of such forms. The group
of transformations GL1K coincides with the group of units K∗ of K. The set
of equivalence classes of unary forms is then described by the the factor group
K∗/K∗2, the group of square classes. It has exponent 2. Square classes are
useful in the context of general quadratic forms as well: If aK∗2 = bK∗2, i. e. if
a, b belong to the same square class, then by the above argument 〈a〉 ⊥ f ∼K

〈b〉 ⊥ f for any quadratic form f . Moreover, a is then (primitively) represented
by a form f if and only if b is (primitively) represented by f .

1.2.5 Class structure over Important Rings

The following result is fairly useful for the classification of quadratic forms. For
proofs, see [Cas78, thm. 2.4.1 and lm. 8.3.3].

Lemma 1.2.5 (Witt’s Lemma)
Let R be either a field of characteristic 6= 2, or R = Zp for an odd prime p. Let
f be a regular quadratic form and h1, h2 arbitrary quadratic forms. If

f ⊥ h1 ∼R f ⊥ h2,

then
h1 ∼R h2.
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This does not hold for R = Z or R = Z2.

In the following subsections, we apply the general discussion of quadratic
forms to the specific rings which are of interest to us. These are primarily the
local fields Qp for p prime and R, the field of rational numbers Q, the rings of
p-adic integers Zp, and the ring of rational integers Z. For each ring, we give
conditions for the equivalence of quadratic forms. For proofs and more details,
see the following parts of [Cas78]: Chapter 2 for finite fields, Chapt. 4 for the
Qp, Chapt. 6 for Q, Chapt. 8 for the Zp, and Chapts. 9 and 11 for Z.

Recall that Zp and Qp are frequently called local rings resp. fields, as opposed
to the global rings and fields, in our case only Z and Q, respectively. The field
of reals R is also considered local, and by convention Z∞ = Q∞ = R. We will
therefore frequently refer to Zp or Qp where p is called a symbol, which means
p is a prime or p =∞.

Fields of p-adic numbers

Let p be an odd prime. Then the group of square residue classes of Q∗2
p /Q∗

p

is of order 4; it is generated by p and any non-square ρp ∈ Q∗
p\Q∗2

p satisfying
νp(ρp) = 1. This element can be chosen in Z ⊆ Qp coprime to p and satisfying(

ρp

p

)
= −1.

For p = 2, however, the group Q∗2
2 /Q∗

2 is of order 8 with {2, 3, 5} as a generating
set. More precisely, we have the following characterization of square classes:

Lemma 1.2.6 Let p be prime and let a, b ∈ Z∗
p. If p = 2 and a ≡ b mod 8, or

if p is odd and a ≡ b mod p, then aZ∗2
p = bZ∗2

p and aQ∗2
p = bQ∗2

p .
In particular, a quadratic form f represents a over Qp if and only if it

represents b over Qp, and f represents a primitively over Zp if and only if it
represents b primitively over Zp.

Lemma 1.2.6 follows easily from a general version of Hensel’s Lemma, see
[Eis95, thm. 7.3].

Lemma 1.2.7 Let f be a form over Qp with p 6 | det f and dim f ≥ 2. Then f
is isotropic.

Moreover, if f has coefficients in Zp, then f represents every m ∈ Zp coprime
to p primitively.

Next we completely classify quadratic forms over Qp. To this end we intro-
duce two algebraic symbols: The Hilbert norm residue symbol of a pair of p-adic
numbers, and the Hasse-Minkowski invariant of p-adic quadratic forms.

The Hilbert norm residue symbol is a mapping(
·, ·
p

)
: Q∗

p ×Q∗
p −→ {1, −1}. (1.3)
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It is defined by(
a, b

p

)
=
{

1 if ax2
1 + bx2

2 − x2
3 is isotropic over Qp,

−1 otherwise

for a, b ∈ Q∗
p.

It can be shown (see [Cas78, sec. 3.2]) that
(·,·

p

)
has the following properties:

(i) It is symmetric, i. e. (
a, b

p

)
=
(

b, a

p

)
for all a, b ∈ Q∗.

(ii) It is bilinear with respect to multiplication, i. e.(
ab, c

p

)
=
(

a, c

p

)(
b, c

p

)
for all a, b, c ∈ Q∗.

(iii) It is trivial on squares, i. e. (
a, b2

p

)
= 1

for all a, b ∈ Q∗
p.

(iv) Let p be an odd prime and ρp ∈ Q∗
p\Q∗2

p . Then
(·,·

p

)
takes the following

values:(
ρp, ρp

p

)
= 1,

(
p, ρp

p

)
= −1, and

(
p, p

p

)
=
(
−1
p

)
.

(Note that
(−1

p

)
is the Legendre symbol of −1 modulo p.)

(v) Consider p = 2. Then
(·,·

p

)
takes the following values:(

5, 5
2

)
=
(

5, 7
2

)
=
(

2, 7
2

)
=
(

2, 2
2

)
= 1 and

(
7, 7
2

)
=
(

2, 5
2

)
= −1.

(vi) For p =∞, the norm residue symbol evaluates to(
a, b
∞

)
=
{
−1 if a, b < 0,

1 otherwise

for all a, b ∈ R∗.
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Note that these properties allow for efficient algorithmic evaluation of the
symbol.

Now let f be a quadratic form over Qp. Then there are a1, . . . , an ∈ Q∗
p such

that
f ∼Qp

〈a1, . . . , an〉

by Lemma 1.2.3. We define the Hasse-Minkowski invariant of f by and

cp(f) :=
∏
i<j

(
ai, aj

p

)
.

By convention, empty products equal 1, and hence cp(f) = 1 for unary form.
It can be shown that this is well-defined (i. e. independent from the diago-

nalization), and that it does not change when f is replaced by an Qp-equivalent
form (see [Cas78, sec. 4.1]).

We can now state the classification theorem of forms over Qp (see [Ser73,
thm. 7 of ch. 2]):

Theorem 1.2.8 Let p be a prime. Let f, g be quadratic forms over Qp of the
same dimension n and determinant d.

(a)
f ∼Qp

g

if and only if cp(f) = cp(g). In this case, f and g are also properly Qp-
equivalent.

(b) For each n > 1 and d, there are exactly two Qp-classes of forms.

(c) If f is anisotropic, then cp(f) = −1 and n ≤ 4.

As an abbreviation, we will often write p|e∞ to mean “p is a prime dividing
e, or p = ∞”, and similarly we will write p 6 | e∞ to mean “p is a prime not
diving e”.

Note for Theorem 1.2.8 that if f, g are p-adically integral and p 6 | 2d∞, then
trivially cp(f) = cp(g) = 1.

The field of real numbers

By convention, Q∞ = Z∞ = R.

The squares in R∗ are exactly the positive numbers, and hence the square
class group of R is of order 2, generated by the number −1.

We have the following clasification of forms, which is also called ‘Sylvester’s
law of inertia’.
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Proposition 1.2.9 Let f be an n-ary form over R. Then there is a uniquely
determined integer 0 ≤ s ≤ n such that

f ∼R 〈−1, . . . ,−1︸ ︷︷ ︸
s

, 1, . . . , 1〉. (1.4)

s is called the signature of f and denoted by s = sign f .
Two n-ary forms f, g are R-equivalent if and only if their signatures coincide.
A transformation for the equivalence (1.4) can be computed efficiently (to

some desired precision).

Note that there are different definitions of the signature in the literature.

The rational number field

The square class group of Q is infinite. It is generated by the (positive) prime
numbers and the number −1.

Perhaps the most prominent theorem in the theory of quadratic forms is
the Hasse principle. In rough words, it states that the Q-class of a rational
quadratic form is uniquely determined by its properties over the collection of all
local fields Qp, where p ranges over all primes and the symbol ∞ (or for short:
“for all symbols p”).

(These symbols represent the equivalence classes of non-trivial absolute val-
ues of the field Q. They are also called “places” or “spots” of that field, em-
ploying the ‘localization’ metaphor. This concept is required when dealing with
algebraic number fields in general. As we stay with the rationals, it seems
appropriate to treat these places simply as symbols.)

Theorem 1.2.10 (Minkowski) Let d ∈ Q\{0} and n ≥ 2. Let fp be n-ary
forms over Qp for all symbols p such that

det fp ∈ dQ∗2
p .

Then there exists a rational quadratic form f satisfying

f ∼Qp
fp

for all symbols p if and only if cp(fp) = −1 for only finitely many p, and∏
all symbols p

cp(fp) = 1. (1.5)

Recall that by definition, cp(f) = 1 for all unary forms. The infinitude of
symbols p is not an obstacle because for all but finitely many symbols p, the
form fp satisfy cp(fp) = 1, and hence

fp ∼Qp
〈1, . . . , 1, d〉
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for all but finitely many symbols p. Therefore there is only a finite amount of
information about Qp-classes contained in the family (fp | p). We therefore do
not lose generality when working with finitely many local forms In algorithms.

Theorem 1.2.11 (Rational Hasse Principle) Let f, g be rational quadratic
forms. Then the following are equivalent:

1. f ∼Q g,

2. f ∼Qp
g for all symbols p,

3. f ∼Qp g for all symbols p|2d∞ except possibly one.

From Theorems 1.2.11 and 1.2.8, one immediately obtains Meyer’s Theorem
(see [Mey91]):

Theorem 1.2.12 (Meyer) Let f be an integral quadratic form of dimension
n ≥ 5. Then f is isotropic.

Rings of p-adic integers

Over the rings Zp of p-adic integers, there are many more classes of forms with
the same dimension and determinant than over Qp. More precisely, while over
Qp, p 6∈ {2,∞}, there are exactly two classes of forms with determinant d and
dimension n for each d ∈ Qp, n ≥ 2, the number of Zp-classes for fixed d, n is
unbounded, depending on the multiplicity νp(d) of p in d. Fortunately, however,
there exists an easy normal form classifying the classes of forms completely.

Theorem 1.2.13 Let f be a form over Zp, where p is an odd prime. Fix
ρ ∈ Z∗

p\Z∗2
p (for example, ρ ∈ Z with

(
ρ
p

)
= −1).

Then f is properly Zp-equivalent to a form of the shape

f1 ⊥ . . . ⊥ fk,

where
fi = pei〈1, . . . , 1, ri︸ ︷︷ ︸

`i

〉

for i = 1, . . . , k, such that 0 < e1 < . . . ≤ ek, `i > 0, and ri ∈ {1, ρp}.
This normal form is uniquely determined by f and ρ. It can be computed in

polynomial time, given f , p, and ρ.
Morever, a normal form with respect to some ρ ∈ Z∗

p\Z∗2
p can be computed

in polynomial-time given only f as input.
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The last modification is important for keeping algorithms deterministic, since
there is no unconditionally provable method known to produce a nonsquare ρ
without using randomness, see the remark after the proof of Theorem 3.2.1.

As a consequence of this classification, if det f = det g = d is coprime to p,
then f ∼Zp g.

One simple case is useful to remember because it helps finding the normal
form.

Lemma 1.2.14 Let p be an odd prime and ui ∈ Z∗
p. Then

pe〈u1, . . . , un〉 ∼Zp pe〈1, . . . , 1, u1 . . . un〉.

The implied transformation can be computed in polynomial time.

Theorem 1.2.13 and Lemma 1.2.14 are classical results; they can be found
e. g. in [Cas78, thm. 3.1, lm. 3.4 of ch. 8]. The algorithmic statement we added
is immediate from the proofs in the sources cited.

The case p = 2 is a bit more involved.

Theorem 1.2.15 There is a set S of forms over Z2 such that each f is properly
Z2-equivalent to one and only one form f0 ∈ S. This form f0 can be computed
from f in polynomial time. The forms in S can be chosen rationally integral.

In particular, if f is properly primitive, dim f = 2 and det f is odd, then f
is Z2-equivalent to exactly one of the forms

{〈1, d〉, 〈3, 3〉, 〈3, 7〉 | d = 1, 3, 5, 7 }.

Moreover, if f is properly primitive, n := dim f ≥ 3 and det f is odd, then f is
Z2-equivalent to exactly one of the n-ary forms

{〈1, . . . , 1, 1, 1, d〉, 〈1, . . . , 1, 1, 3, 3〉, 〈1, . . . , 1, 1, 3, 7〉,
〈1, . . . , 1, 3, 3, 3〉, 〈1, . . . , 1, 3, 3, 7〉 | d = 1, 3, 5, 7 }

For details see [Wat76], [Jon44]. Perhaps easier a criterion of equivalence is
given by congruence conditions rather than normal forms.

Proposition 1.2.16

(a) Let p an odd prime. If

f ≡ g mod pνp(d)+1,

then f ∼Zp
g.

(b) If
f ≡ g mod 2ν2(d)+3,

then f ∼Z2 g.
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1.2.6 Classes and Genera

Each class of forms is the union of one or two proper classes cls +f . Integral
forms f and g are said to be in the same genus (denoted by gen f) if they are
equivalent over all rings of p-adic integers Zp; here p ranges over all rational
primes and the symbol ∞ (Z∞ = R by convention). Clearly every genus is a
union of classes.

If a statement is said to hold for all p, or all symbols p, then we include the
case p = ∞. It is excluded if p is called prime. All p|e∞ means p ranges over
the prime divisors of e and the symbol ∞.

We say that f and g lie in the same genus if

f ∼Zp g

for all symbols p. We denote this by

f ∼g g.

It is easy to see that

f ∼ g =⇒ f ∼g g =⇒ det f = det g

Lemma 1.2.17 Let f, g be integral forms with the same odd determinant d. Let

f ∼Zp
g

for all p|d∞. Then f ∼g g.

Proof : By hypothesis, f ∼Zp g for all p|d∞. As noted after Theorem 1.2.15
it follows that ⇒∼Zp g for all p except possibly p = 2. Hence ⇒∼Qp g for all
p except possibly p = 2. Then by Theorem 1.2.11, also f ∼Q2 g. Since d is odd,
Theorem 1.2.15 yields that also f ∼Z2 g. �

One of the most important features of genera is that they coincide with the
classes in many interesting cases. The following criterion is taken from [Cas78,
p. 202f.]. We will frequently employ it to prove equivalence of integral quadratic
forms in cases a transformation cannot be written down explicitly.

We call an integer m k-power free if e ∈ Z, ek|m implies e = ±1. A rational
number a

b , a, b ∈ Z coprime, is k-power free if a is k-power free. The next result
can be found in [Cas78, thm. 1.3 and 1.5 of ch. 9].

Theorem 1.2.18 (Eichler) Let f, g be integral quadratic forms of dimension
n ≥ 3 and determinant d which is n(n−1)

2 -power free and satisfies

2n(n−3)/2+b(n+1)/2c 6 | d

if f is classically integral. Then

f ∼ g ⇔ f ∼g g.
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Figure 1.1: Class structure of quadratic forms over Z
A line indicates that the upper set contains the lower. All items in the diagram
refer to a fixed integral form f . We start from the proper class cls +f . Above it,
we find the Z-class (see Sect. 1.2.4). Spinor genus and proper spinor genus do
not occur explicitly in this thesis (see [O’M63, sec. 102] for definitions). The
genus is discussed in Sect. 1.2.6.
In the upper left of the picture we find equivalence classes over rings containing
Z, namely the rings of p-adic integers Zp (for p a prime), the field of real
numbers, the fields of p-adic number Qp, and the field of rational number Q. In
all these cases class and proper class coincide.
The notion order in the right hand upper part was introduced by Minkowski in
[Min11]. Two forms belong to the same order if the greatest common divisors of
certain minors of their associated matrices coincide. The only orders we con-
sider here are that of properly primitive and that of improperly primitive forms,
see Proposition 1.3.2. Finally, forms of one order have the same determinant.



1.3. PROBLEMS OF QUADRATIC FORMS 21

1.2.7 Reduction

Following the case of definite forms, several concepts of reduction have been
proposed. We try to capture the main aspects in the following definition. A
reduction theory is a pair (Ω, ρ) with the following properties:

(i) Ω is a set of quadratic forms such that every equivalence class of quadratic
forms contains at least one, but at most finitely many elements of Ω.

(ii) Membership in Ω decidable in deterministic polynomial time.

(iii) Moreover, ρ is a (deterministic or probabilistic) polynomial-time algorithm
which takes as input a quadratic form f and outputs a pair (f ′, T ) = ρ(f),
where f ′ ∈ Ω, T ∈ GLnR, and f T = f ′; in particular, f and f ′ are
equivalent.

(iv) Restricted to Ω, ρ operates as the identity.

The elements of Ω are called reduced forms. The procedure ρ is called the
reduction algorithm of the reduction theory.

For R = Z, there are several concepts of reduction for indefinte quadratic
forms. Most recently, variants of the LLL algorithm for definite forms (see
[LLL82]) have been proposed by Simon [Sim05b], Ivanyos-Szánto [IAS96], and
Schnorr [Sch07]. The main difficulty in generalizing LLL to indefinite forms is
the fact that the (analogue to the) length of orthogonalized basis vectors of a
lattice are simply values of the quadratic form in question at a rational non-zero
vector. However, for indefinite forms this value may vanish, which thwarts the
usual procedure of the algorithm, and in this event Simon’s algorithm breaks,
as he is primarily interested in solutions to f(x) = 0 rather than reduction,
while Ivanyos and Szánto work with a randomized perturbation of the vector
in question. However, these questions are irrelevant here because we are con-
cerned mainly with anisotropic forms. So we may simply use the efficient, then
coinciding LLL-algorithms of Simon-Ivanyos-Szánto-Schnorr as our concept of
reduction. We denote the reduction operator by ρ(·); by (g, T ) = ρ(f) we mean
that g is LLL-reduced, the algorithm returns form g on input f , and f T = g.

1.3 Problems of Quadratic Forms

We will now define the computational problems dealing with quadratic forms
which will be of interest to us.

1.3.1 Rings

In the subsequent sections, we will define algorithmic problems on quadratic
forms. This only makes sense if their coefficients can be specified in a (Turing-
)machine readable format. In other words, we need an encoding of ring elements.
We will use mainly the rings Z, Q, Zp, and Qp, including Z∞ = Q∞ = R. For
Z and Q, there are natural such encodings: Write the integers to some base b
(e. g. b = 2)and represent rational numbers by pairs of integers (a, b) ∈ Z2 such
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that either (a, b) = (1, 0), or a, b coprime; here a, b indicate enumerator and
denominator of a fraction.

Using these representations, arithmetic operations can be evaluated effi-
ciently, including the div and mod operations over Z. Consequently we can
efficiently perform many standard tasks over these rings: For instance, polyno-
mials can be efficiently evaluated, and over Q, systems of linear equations can
be efficiently tested for solubility, and for solvable linear systems, the general
solution can be efficiently constructed.

Furthermore, for Z, the (extended) Euclidean Algorithm admits the compu-
tation of greatest common divisors, and their representation as linear combina-
tions. This also enables us to solve the analogous linear algebra tasks mentioned
for Q, compute least common multiples, find common denominators of fractions,
check systems of vectors for primitivity and form bases of Zn out of them.

Moreover, we can as well perform all these arithmetic manipulations on the
quotient rings Z/NZ.

Some of our results, especially in Sects. 5.1, 5.2, only rely on the efficiency
of such basic operations. We will call a ring a ring with encoding if there is a
representation of ring elements by (binary) strings such that

(i) addition, subtraction/negation, multiplication, and division—if defined—
are polynomial-time computable; and

(ii) it is polynomial-time decidable whehter a given string represents a ring
element, and whether it represents a unit.

As argued above, this also makes feasable many other basic tasks of arithmetic
and linear algebra.

A field (UFD, integral domain) with encoding is a ring with encoding which is
at the same time a field (UFD, integral domain). General fields with encoding,
as opposed to the concrete fields Q, Qp, Fp with a canoncial encoding, will be
employed in Sects. 6.2 and 6.3. There we will study forms whose coefficients
are power series and polynomials in one variable, respectively, over an arbitrary
field with encoding of characteristic 6= 2.

Sometimes, this minimal arithmetic requirements do not suffice, and we need
a closer similarity to Z above. In particular our results on singular and reducible
forms in Sects. 5.1, 5.2 refer to rings with a generalization of a Euclidean Algo-
rithm.

Recall that a ring R is called a principal ideal domain (PID) if every ideal
of R is principal, i. e. generated by one element. Then a PID R is called a
computational principal ideal domain (cPID) if

(i) it is a ring with encoding, and if

(ii) given elements a, b ∈ R, we can efficiently compute a generator g of the
ideal aR + bR = gR, along with a λ, µ ∈ R such that

λa + µb = g.
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Note that item (ii) generalizes the Extended Euclidean Algorithm in Z. More
precisely, the existence of a polynomial-time computable Euclidean function
is sufficient for (ii), but seems not to be necessary: For instance, the rings
of integers in an algebraic number field of class number 1 are all cPIDs, the
generalized gcd-algorithm being given by [Coh00, sec. 1.3]. In contrast, the vast
majority of these rings are not known to admit a Euclidean function, let alone
an efficiently computable one (see [Lem95]).

It is obvious that as for the integers, this algorithm allows effient solution of
several related tasks, as the computation of least common multiples.

It remains to discuss the important local rings Zp, Qp, and R. At first sight,
they seem inaccessible to computational encoding for Turing machines. This is
because a generic element of Zp (Qp) involves an infinitude of coefficients from
{0, . . . , p− 1}, and the exact representation of a real number requires infinitely
many (binary) digits.

For R the solution to this dilemma is obvious: All compuations are required
only up to a certain precision. For Zp, we mimick this approach: We say that
a p-adic equation is satisfied to precision k if and only if it is satisfied modulo
pk+1.

Thus, talking about Zp we actually do the arithmetic in some Z/pk+1Z. For
algorithmic purposes, we consider a problem over Zp efficiently solved if we can
solve it to arbitrary precision k in time polynomial in both the input length and
k.

This convention naturally extends to Qp: An element
∑∞

i=−n aip
i of Qp is

known to precision k if the coefficients

a−n, a−k+1, . . . , a0, . . . , ak−1, ak

have been computed.
(A similar notion of precision will be required in the context of formal power

series, see Sect. 6.2.)

1.3.2 Encoding of properties

At times, we will want to restrict some of these problems to suitable subsets of
quadratic forms. To keep notation simple and short, we demand the specification
of a set P of properties of forms as a parameter of the problem. As far as
this work goes, we are primarily interested in restrictions on the dimension,
the determinant, the class structure, the definiteness, the regularity, and the
isotropy of the forms. Without agreeing on one concrete encoding of P, we
demand that the integers involved should be given in binary representation,
and that the following bounds on the specification lengths hold:
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property encoding length
dim f = n

dim f ≥ (>,≤, <)n log n +O(1)
M 6 | det f log M +O(1)

(det f,M) = 1 log M +O(1)
det f squarefree O(1)

gen f = cls f O(1)
gen f = cls +f O(1)
f (in)definite O(1)

f regular O(1)
f (an)isotropic O(1)

The length of the description of the set P thus equals the sum of the descrip-
tion lengths of the single properties it contains according to the above tabular
plus O(1).

Sets of properties will be defined when needed on an ad-hoc basis, usually
directly before the statement where they appear.

Whether a given form f satisfies all properties from a given set P is efficiently
decidable for most of the above properties; for squarefreeness of the determinant
and for isotropy in dimensions 3 and 4, the factorization of det f has to be known
as well to decide it, and for the class structure properties, it is not known how
to decide it in general but there are strong sufficient criteria which will, in
particular, always be applicable to the forms we consider here.

By convention, a problem with the parameter P omitted refers to the empty
set of properties, i. e. to all quadratic forms (unless otherwise restricted).

1.3.3 Representation problem

The computational problem most naturally associated with a quadratic form
certainly is the question to solve quadratic equations. By Proposition 1.2.1, we
do not lose generality by resticting ourselves to equations without linear terms.

ReprR(P) Representation problem over R
PARAMETERS: Set P of properties of quadratic forms.
INPUT: a quadratic form f satisfying all properties from P, and

m ∈ Z such that f −→Z m.
OUTPUT: a vector u ∈ Zn such that f(u) = m (where n is the

dimension of f).

Now let R be a cPID. Then we also consider the following variant of the
representation problem:
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∗ReprR(P) Primitive representation problem over cPID R
PARAMETERS: Set P of properties of quadratic forms.
INPUT: a quadratic form f satisfying all properties from P, and

m ∈ Z such that f
∗−→ m.

OUTPUT: a primitive vector u ∈ Zn such that f(u) = m (where n
is the dimension of f).

This definition is motivated by the insight that for every representation
f(x) = m, x 6= 0, there is an underlying primitive representation x = λx0, x0

primitive, and
m = f(x) = f(x0) λ2.

As an algorithmic consequence, one can solve many general representation
instances by using an oracle for coprime representations, even if a coprime rep-
resentation for the original instance does not exist. This is made precise by the
following proposition. Denote (for the next proposition and its proof) by Ω(m)
the number of prime factors of the integers m (counted with multiplicities).

Proposition 1.3.1 Let c > 0 be fixed. Consider Repr-instances (f,m) over Z
where m is presented fully factored and satisfies

Ω(m) ≤ c log log m.

Then there is a polynomial-time oracle algorithm which, given access to a
∗Repr-oracle, computes a representation of m by f .

Moreover, this reduction is non-adaptive, and all oracle inquiries refer to the
form f .

Proof : Sort the factors of m as

m = ±

(
r∏

i=1

pi

)2 s∏
j=1

qj (1.6)

where the qj , j = 1, . . . , s are pairwise distinct (positive) primes. For every
I ⊆ {1, . . . , r}, ask the ∗ReprR-oracle for a representation of

m′ :=

(∏
i∈I

pi

)2 s∏
j=1

qj

by f . If the oracle finds v′ with f(v′) = m′, then

v :=

(∏
i/∈I

pi

)
v′

satisfies f(v) = m.
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The running time of this algorithm is dominated by the number of calls to
the ∗Repr-oracle, which amounts to at most

2r ≤ 2Ω(m) ≤ (log m)c,

with r as in (1.6). Thus the algorithm runs in polynomial time. �

Note that the set of integers m with ω(m) ≤ c log log m has density 1 (for
c ≥ 1) (see [HW60, thm. 431]), so Proposition 1.3.1 covers a large subset of
Repr-instances.

If R = Z, then we simply drop the superscript R.

If we want the forms in the instances to have fixed dimension n, we often
abbreviate this problem variant by ReprR

n or, if additional properties are stip-
ulated, by ReprR

n (P). If we do not restrict the forms other than by dimension
we simply drop the parameter P, i. e. we write ReprR

n in this case.

1.3.4 Transformation problem

We define the computational problem

TrafoR(P) Transformation problem over R
PARAMETERS: Set P of properties of quadratic forms, ring R with

encoding.
INPUT: quadratic forms f, g satifying all properties from P and

f ∼R g.
OUTPUT: S ∈ GLnR such that g = f S (where n is the dimension

of f).

As above we frequently drop the superscript R if R = Z, or use subscript n
to constrain the dimension of forms.

If P(n, d) stands for the properties dim f = n and det f = d for a quadratic
form f , then we abbreviate

Trafo(PR(n, d)) by TrafoR
n (d) and

Repr(PR(n, d)) by ReprR
n (d).

1.3.5 Primitiveness

Note that we do not lose generality by restricting to primitive forms in the
problems Repr and Trafo (and variants to be defined later), as the following
proposition reduces these problems to the primitive case.
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Proposition 1.3.2 Let R be a cPID. Denote by P∗ the property of being prim-
itive for a quadratic form over R. Then

ReprR
n 41 ReprR

n (P∗) and TrafoR
n 41 TrafoR

n (P∗)

Proof :

(a) Given an instance (f =
∑

i≤j aijxixj , m) of Repr, we can efficiently
compute a := gcd(aij | i ≤ j) as R is a cPID. The form f ′ := 1

a f then
is a well-defined and primitive quadratic form over R. Obviously, for a
vector u ∈ Rn it holds that f(u) = m if and only if a divides m in R and
f ′(u) = 1

am.

(b) Let (f, g) be an instance of Trafo. Compute the greatest common divisors
a, b of the respective coefficients as in part a). Then f ∼R g implies that
a and b are associated, i. e. a = bε for some ε ∈ R∗. This unit ε can also
be efficiently computed from a, b by the definition of a cPID. Now for
T ∈ GLn(R) the equation system f T = g is equivalent to

εf ′ T = g′,

where f ′ := 1
af and g′ := 1

b g are well-defined and primitive over R.

�

Hence, there remain only two cases for our study: the properly primivitive
and the improperly primitive forms. These two families do not differ much in
the phenomena to be discovered, but the distinction sometimes makes some
additional technical effort necessary.

1.3.6 Complexity assumption

We believe that the problems Repr(P) and Trafo(P) are hard, i. e. not solvable
only in exponential time, if P consists of the properties indefiniteness, anisot-
ropy, and dim f ∈ {3, 4} for a quadratic form f .

Therefore, we think that public-key cryptosystems can be build on this prob-
lem. Chapter 2 contains a suggestion on this behalf.

The hardness assumption is supported by the results of Chapters 7–10: We
prove that the complexity of these problems is concentrated in dimenions three
and four. We learn that Trafo cannot be much harder than factoring. We show
the randomized NP-hardness of related problems, and then link the complexity
of both problems to one another.

Another reason to conjecture the hardness of Trafo and Repr, it seems that
the only algorithm for those problems considered in the literature is exhaustive
search. This is most obvious when the attempt of Dickson and Ross to decide
equivalence of a particular pair of forms is discussed (see [Cas78, p. 132], [CS93,
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p. 403]). The restriction to trivial algorithms also becomes explicit in Siegel’s
famous bound on equivalence transformations [Sie72], which reproves the decid-
ability of (A) using analytic techniques. More precisely, he shows that for each
pairs f, g of equivalent forms there is a constant C > 0 effectively computable
from f, g such that there is a transformation from f to g whose coefficients
are absolutely bounded by C. Siegel explicitly refers to the enumeration of all
integral matrices up to some bound on the coefficients for testing equivalence.

In dimension three, Siegel’s implicit bound has been made explicit and has
been improved to polynomial size by Dietmann [Die03]. Still using trivial enu-
meration, this implies that problem (A) is in NP. Moreover, for problem (B),
Grunewald and Segal [GS04] showed decidability by solving problem (B’) if
possible. Their algorithm is more sophisticated, yet still involves steps of expo-
nential enumeration.

Apparently, the complexity of Trafo and Repr is hitherto discussed in the
literature only once. At the end of [CS93, ch. 15], Conway and Sloane formulate
both decisional and computational equivalence and representation problems,
along with a couple of additional questions, e. g. on class numbers. They mention
several cases for which these problems are easy. For indefinite forms over Z, they
express their impression that “there do not seem to be good algorithms”, and
discuss the inefficiency of exhaustive enumeration.

All this is an indication that we are at a loss if efficient algorithms are
required for these problems.



Chapter 2

Cryptography

In this chapter we present cryptographic applications of indefinite quadratic
forms. All of them are based on the Trafo problem: The public key is an
instance of Trafo, i. e. two equivalent forms f ∼ g, and a transformation S ∈
GLnZ such that f S = g plays the role of the private key.

In Sect. 2.2, we present an identification scheme whose security is closely
related to the complexity of the underlying problem. However, its practical
usefulness is limited because it requires the sequential repetition of many rounds.
This drawback is overcome in the signature scheme in Sect. 2.3. However, the
security against fraudulent provers cannot be rigorously proven. In both cases,
security against fraudulent verifiers is heuristic. These two schemes have been
proposed in [HS07b] and [HS07a]. Before we turn to the protocols, we discuss
how reduction theory can be used to randomize quadratic forms and unimodular
matrices. In particular, we explain how key generation is performed for all
schemes.

2.1 Randomization and Key Generation

We define a probability distribution on the set of regular integer matrices and
quadratic forms. We will use the following size function for matrices:

‖T‖ := max
i,j
|Tij |.

Moreover, we fix the LLL reduction theory (Ω, ρ) from Sect. 1.2.7.

K is a security parameter. The notation

T ← UK

means that T ∈ Zn×n is selected uniformly at random such that |T |∞ ≤ K.
Denote by

(g, T )← DK(f)

the process that a form g and a matrix T ∈ GLnZ satisfying g = f T are sampled
at random according to the random distribution DK(f). The distribution most
interesting for us is defined by the following procedure:

29
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(g, T )← DK(f):

T ← UK ,
(g, T ′) := ρ(f T ).

So the distribution of g in DK(f) takes as values (some of) the finitely
many reduced forms equivalent to f . It should not be expected that this is
the uniform distribution: For definite forms, it has been observed that LLL-
reduced forms often have much smaller coefficients than theoretically guaranteed
([LO85], [VV07]). This indicates that forms closer to the boundary of the set of
reduced forms (in Rn(n+1)/2) may have lower probability for this distribution;
moreover, this effect might even intensify (see [Sim05b]).

Key generation can be accomplished as follows: A reduced form f−1 may
be fixed as a system parameter. Then using the distribution DK(f−1), we can
generate random reduced forms fi = f−1 Si with i = 0, 1. We can use (f0, f1)
as public and S := S−1

0 S1 as private key.

We denote by P[A] the probability of an event A. The statistical distance
between two (discrete) random variables T0,T1 is defined as

∆(T0,T1) =
1
2

∑
T

∣∣∣P[T0 = T ]− P[T1 = T ]
∣∣∣,

where T ranges over all objects which at least one of the Tj may attain. Note
that ∆(·, ·) takes values in [0, 1].

Two families T
(K)
0 ,T

(K)
1 of random variables (K ∈ N) are called statistically

close for K →∞ if their statistical distance is negligible; i. e. if

∆(T(K)
0 ,T

(K)
1 ) = O

(
1

P (K)

)
for every polynomial P (·) (see [Gol01, sec. 3.2.2; def. 1.3.5] for details)∗.

Heuristically, it may seem convincing that if K is large enough, then the
distribution DK(f) does not depend too heavily on the reduced initial form f
from a fixed equivalence class. Precisely, we state:

Heuristic 2.1.1 Let f−1 be a fixed quadratic form. Let f0, f1, S arise from the
key generation procedure above, i. e. the two pairs (fi, Si) are independent and
distributed according to DK(f−1, and S = S−1

0 S1. Then there is K ′ = K ′(K),
depending polynomially on K, such that for K →∞ the following holds:

If (g0,T0) is randomly distributed according to DK′(f0) and if (g1,T1) is ran-
domly distributed according to DK′(f1) then the distributions of T0 and S−1T1

are statistically close.

∗Note that narrower definitions of the term ‘negligible’ occur in the literature as well.
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2.2 An identification scheme

2.2.1 Specification of the Protocol

Let f0, f1 be integral indefinite quadratic forms of dimension n ≥ 3 and let
S ∈ GLnZ satisfy f0 S = f1 (in particular, f0 and f1 are equivalent). Denote
by (P,V) the following protocol between prover P and verifier V:

public key (known to P and V): quadratic forms f0, f1

secret key (known to P only): S ∈ GLnZ such that f0 S = f1

P V
Prover Verifier

(g, T )← DK(f0)
g−→
i←− select i ∈ {0, 1} uniformly at random

R := S−i T
R−→

check whether fi R
?= g

In the next section, we will prove that this scheme is a proof of knowledge, i. e.
it is secure against fraudulent provers. Thereafter, we show that (P,V) is zero-
knowledge under Heuristic 2.1.1, which formalizes security against dishonest
verifier. Combining these two concepts yields a strong notion of security. A zero-
knowledge proof is secure as an identification scheme if and only if extracting a
secret key from the public one is intractible.

In [HS07a] it is proposed that ‖T‖ ≈ 2100‖S‖ and that 100 rounds be per-
formed. In contrast, we have here presented the scheme in more general form.
The question arises whether modifications of it may render the scheme more
efficient while keeping the same level of security, or vice versa. More precisely,
parameters which can be varied include

(i) the base ring of the forms,

(ii) restriction to forms with certain properties, and

(iii) the distribution of (g, T ) in step 1.

The protocol remains a proof of knowledge under all these modifications
(see Sect. 2.2.2). Suppose that the new random distribution also preserves the
zero-knowledge property. Then the modified protocol is secure if and only if
Trafo is still hard over the new base ring for the chosen type of forms. Most of
this thesis, in particular Chapters 5, 6, 7, is devoted to the question for which
choices of rings and form properties Trafo is still hard.

The results of those chapters do not recommend any other ring than Z.
Moreover, by Sect. 7.1.3 we should take n = 3 or n = 4 for efficiency, and by
Sect. 5.4, Sect. 5.3 we should take indefinite anisotropic forms in these dimen-
sions.

However, it seems possible to employ forms over rings OK of integers in
algebraic number fields K. Then forms should obey analogous constraints to
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those over Z, namely they should be at least ternary, for dimensions 3,4 they
should be anisotropic, and they must not be totally definite in case K is totally
real. The complexity of the transformation problem for these sort of forms is
beyond the scope of this thesis. But many theorems formulated here for Z carry
over to OK , because the the arithmetic theory reveals very similar behavior of
forms over Z and OK (see [O’M63]). It is yet to be analyzed whether using,
for instance, forms over the Gaussian integers Z[i], is advantageous over the
rational integers.

2.2.2 Proof of knowledge

We turn to proving that the seqential iteration of this identifiaction scheme is
a proof of knowledge. Intuitively, this means that a fraudulent prover which is
accepted by the verifier with non-negligible probability must already know some
private key fitting to the current public key. For a more thorough discussion of
the following definitions see [Gol01, sec. 4.7].

An identification scheme is called complete if an honest prover with the secret
key at his disposal always makes the verifier accept.

Denote by x the public key and by w a witness, i. e. a potential private key
fitting to x of the scheme. Then the scheme is called proof of knowledge with
knowledge error κ(x) if it is complete, and if there is a probabilistic polynomial-
time algorithm X , the knowledge extractor, with the following property:

Let P̃ be any probabilistic polynomial-time algorithm (a ‘dishonest prover’)
which makes V accept on common input x with probability ε(x). Then there is
c > 0 such that whenever ε(x) > κ(x), X outputs some correct w, on input x

and given rewindable black-box access to P̃, in expected time

O
(

|x|c

ε(x)− κ(x)

)
.

Denote by (P,V)k the simultaneous execution of k independent copies of the
protocol (P,V).

Theorem 2.2.1 (P,V)k is a proof of knowlegde with knowledge error 2−k.

Proof : Obviously, (P,V) and hence (P,V)k is complete. To prove knowl-
edge extractibility, consider first a single iteration of the protocol. The prover
commits g and replies to challenge i ∈ {0, 1}. If V accepts, rewind Ṽ and chal-
lenge it with the complementary bit 1− i, but keep the old commitment g. Let
Ri be P̃’s reply to challenge i. If P̃ is successful again, then

fi Ri = g for i = 1, 2 (2.1)

by specification of the protocol. This implies

f0 (R0R
−1
1 ) = f1. (2.2)
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This means that we can compute a solution to the transformation instance
(f0, f1) as soon as P̃ is successful twice with respect to the same commitment.

Now suppose that P̃ is successful with probability ε > 1
2 in (P,V). Then we

perform the following algorithm X :
Make P̃ commit a form g (first step of the protocol). Then challenge it with

bit b = 0, rewind it, and challenge it with bit b = 1 while keeping to the same
commitment g. If P̃ passes both times, compute a transformation by (2.2).
Otherwise, repeat until P̃ succeeds on both challenges.

The expected number of iterations of X equals 1
π , where π denotes the

probability that P̃ passes on both challenges. We estimate π from below.
Let πi be the probability that P̃ passes on challenge i, i = 0, 1. Then

π ≥ π0 π1 (2.3)

and
π0 + π1 = 2ε. (2.4)

We can thus consider
π = π0(2ε− π0) (2.5)

as a quadratic function of π0. Since 0 ≤ πi ≤ 1 for i = 0, 1, Equation (2.4)
implies that

2ε− 1 ≤ π0 ≤ 1. (2.6)

It is easy to check that π as a function of π0 as in (2.5) is concave and therefore
takes its minimum on the boundary of its range (2.6). For both boundary values
π0 = 1 and π0 = 2ε− 1 we obtain π = 2ε− 1. Hence we have established that

π ≥ 2ε− 1.

We infer that X needs at most

1
2ε− 1

=
1/2

ε− 1
2

iterations in expectation, each of which takes polynomial time.

This shows that (P,V) is a proof of knowledge with knowledge error 1
2 .

Then by [Gol01, prop. 4.7.5], the protocol (P,V)k is a proof of knowledge with
knowledge error 2−k. �

Remark. Note that Theorem 2.2.1 and its proof remain valid if the random
distributions DK , the base ring (here: Z), and the properties of the forms used
are replaced by other choices. This means that all these variations of (P,V)k

are secure against fraudulent provers if the public key is a hard Trafo-instance.
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2.2.3 Zero-knowledge property

An interactive protocol is called stastistical zero-knowledge if for every (possibly
dishonest) verifier (i. e. probabilistic polynomial-time algorithm) Ṽ, there is a
probabilistic polynomial-time algorithmM, the simulator, which produces ran-
dom strings whose distribution is statistically close to that of the interaction
between P and Ṽ. The simulator has no access to the secret key, but with
rewindable black-box access to Ṽ (for details, see [Gol01]).

Theorem 2.2.2 Under heuristics 2.1.1, (P,V) and (P,V)k are statistical zero-
knowledge protocols.

Proof : For (P,V), we specify a simulator S as follows:

repeat
select random j ∈ {0, 1};
(g, T )← DK(fj)
send g to Ṽ and wait for challenge i;

until i = j
R := T ;
output (g, j, R)

Obviously, the triples output by S are accepting interactions for (P,V).
Moreover, the algorithm runs in expected polynomial-time because indepen-

dently from the distribution according to which Ṽ samples the challenge i, the
probability that i = j is at least 1

2 independently in each iteration. Therefore, S
requires at most two iterations of the repeat loop in expectation, which clearly
implies expected polynomial running time.

Next, we have to show that under Heuristic 2.1.1, the distribution of S’s
output is statistically close to that of an interaction between an honest prover
P and Ṽ. First, by construction of S, the distribution of j is exactly that of
the challenge i from the interaction of P and Ṽ. Now conditionally on j = 0,
the matrix R is distributed according to DK(f0), as is R sent by the prover in
the execution of the protocol. On the other hand, if j = 1, then the simulator
outputs R according to DK(f1), whereas P chooses R according to S−1DK(f0).
It is here where our heuristics 2.1.1 tells us that these two distributions are
statistically close. Finally, as the triples (g, j, R) are accepting interactions, g
is uniquely determined by j, R since g = fj R. Therefore, the two distributions
in question are statistically close. �

In constrast to the proof-of-knowlegde condition, the zero-knowledge prop-
erty of the protocol depends heavily on the family of distributions DK .

The main disadvantage of (P,V) is, of course, its restriction to one-bit chal-
lenges. To guarantee a certain level of security, one would have to run many
copies of it in parallel; to have the zero-knowledge property, we would even
need the single applications of (P,V) to be run sequentially, which would make
communication too costly.
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2.3 Identification with Long Challenges and Sig-
natures

2.3.1 Specification of the protocol

The major drawback of the scheme of Sect. 2.2 is its restriction to one-bit
challenges. Therfore security requires many sequential iterations (see Theorem
2.2.1), which is too inefficient for practical purposes.

A potential solution of this issue is given here. We present an identification
scheme which admits arbitrarily long challenges (depending on key size and
parameters). Therefore it is also suitable for the generation of digital signatures,
see Sect. 2.3.2.

These advantages come at the price of provable security. In particular, per-
haps it fails to be a proof of knowledge. This makes it harder to find out its
actual level of security. It may nevertheless be secure in practice, and we will
give heuristic arguments to support that claim.

The protocol relies on the hardness of both Trafo and Repr.

We denote the following protocol by (P,V)′. It was introduced in [HS07b],
a refinement of it being proposed in [HS07a].

public key (known to P and V): quadratic forms f0, f1

secret key (known to P only): S ∈ GLnZ such that f0 S = f1

P V
Prover Verifier

(g, T )← DK(f0)
g−→
T ′←− (h, T ′)← DK(g)

e′1 := TT ′e1, e′4 := S−1TT ′e4
e′1,e′4−→ check whether f0

?∼ g,
f0(e′1)

?= h(e1), and f1(e′4)
?= h(e4)

2.3.2 Application to digital signatures

We have now described an identification scheme where the number of possible
challenges is an increasing function of the security parameter K. For this sit-
uation there is a well-established technique to turn this identification protocol
into a digital signature scheme [BR93]: Namely, replace the verifier by a public
hash function. Then the challenge in the scheme is a function of the message
to be signed. Of couse, this means that the hash function H has to take values
in GL4Z. In the Bellare-Rogaway construction, H has to be collision resistant,
i. e. it is hard to find messages m,m′ such that H(m) = H(m′); this condition
can be slightly relaxed for this scheme (see [HS07a]). Moreover, H has to be
a one-way function, as otherwise a fraudulent prover can choose a challenge,
compute its preimage m, and compute a valid signature for m.
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Conversely, consider the random oracle model (ROM), i. e. assume that
values of the hash function are retrieved from a public oracle which on new
queries computes a random output, but replies with the same answer to re-
peated queries. Then it has been shown in [BR93] that the signature scheme
obtained by replacing the verifier by a hash function in a zero-knowledge proof,
is a non-interactive zero-knowledge proof in the random oracle model. The same
argument extends to statistical zero-knowledge.

The ROM was introduced into cryptography in [FS87]. It seems to be an
appropriate model to analyse security of protocol which uses a collision-free one-
way hash function, which is independent from the cryptographic primitive of the
protocol; The ROM is motivated by the impression that no useful structure can
be realized in the values of a well-designed hash-function, so that an attacker
would not have worse chances of success if H was replaced by a random oracle. It
should be noted that the ROM was massively critized lately: Most prominently,
[CGH98], examples of security flaws have been given for any concrete hash
function, in cryptographic schemes secure in the ROM. However, as is argued in
[KM07], these constructions contradict reasonable cryptographic practice, and
could even motivate to trust in the ROM more than before.

2.3.3 Security against Fraudulent Provers

There is the following heuristic argument for security against a fraudulent P̃: In
the last step, P̃ knows a transformation R = TT ′ satisfying f0 R = h. She has
to solve the equation f1(e′4) = h(e4) for e′4 ∈ Z4. Heuristically, there seem to
be essentially only two ways to solve such a problem: Either using an algorithm
which solves the representation problem for f1 (the R is ignored), or finding a
transformation S satisfying f0 S = f1, and computing e′4 := S−1Re4 as in the
protocol.

In the latter case, this would imply that P̃ has knowledge of some transfor-
mation from f0 to f1, which is our desired result. In the former case, P̃ would
still have to solve a presumably hard problem, namely Repr.

However, the scheme is not known to be a proof of knowledge, in the sense
that passing as prover reduces to solving the Trafo-instance (f0, f1). One ob-
stacle to such a proof is the following: We can construct a successful fraudulent
prover if we have an algorithm which solves the representation problem for f0,
f1. Namely, in this case it suffices to solve the verification equations for e′1, e

′
4

in the last step. Therefore, (P,V)′ can only be a proof of knowledge if solving
representations for f0, f1 reduces to solving for a transformation from f0 to f1.

It seems reasonable to expect that computing representations is not signif-
icantly easier than computing transformations, even if there might not be a
complexity reduction in general. In later chapters, we find cases in which we
can reduce from a representation to a transformation problem; however, these
reductions do not refer to the same (equivalence class of ) forms (see the proofs
of Theorems 9.1.8, 9.1.9 and Chapter 10 for complexity connections between
Trafo and Repr).
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2.3.4 Security against Fraudulent Verifiers

As with the proof-of-knowledge property, there is a major obstacle to the zero-
knowledge property of (P,V)′. Namely a simulator S would have to produce
quintuples (g, T ′, T, e′1, e

′
4) where (among other relations) f1(e′4) = f0(TT ′e4)

holds. As argued in Sect. 2.3.3, this implies that heuristically, S should be able
to either compute a transformation from f0 to f1, or to solve representation
problems for f1. Both tasks are presumably hard.

However, consider what we can learn about S if listening to the interaction
of an honest prover P with a possibly fraudulent verifier Ṽ. We cannot gain
any useful information if the distribution of e′4 does not reveal anything about
S. This hypothesis is a heuristic similar to 2.1.1. Moreover, any information
obtained cannot be combined over several identifications as the matrices T are
statistically independent.
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Chapter 3

Localization and Decisional
Complexity

In this chapter, we consider the transformation and representation problems
over the local rings Zp. At first, in Sect. 3.1, we analyze the decisional variants
of Trafo and Repr. It turns out that deciding equivalence and representability
is feasible over the Zp, and in consequence of local-global priciples as Theorem
1.2.18, these results extend to Z for a large set of instances.

Then we turn back to the computational problems. We show that these are
also tractable over finite fields and over the p-adic integers in Sections 3.2 and
3.3, respectively.

3.1 Decision Problems

In computational complexity, the decisional and computational versions of prob-
lems frequently turn out to be polynomial-time equivalent; in particular, this
holds for several NP-complete problems as SAT (cf. [GJ79, §§2.1, 5.1]).

Presumably, this is not the case with our problems of quadratic forms. The
arithmetic theory has produced easy-to-check sufficient criteria for representabil-
ity and equivalence. This leads to Theorems 3.1.3 and 3.1.5. By contrast, Repr
and ∗Repr seem to be computationally intractible, see Sect. 1.3.6.

Over Z, we let the decision problems include the factorization of the deter-
minant into the input. This follows the general concept motivated in Chapter
8. The letter F in the problem symbol reflects this modification.

DReprR Decisional representation problem over R
INPUT: a quadratic form f over R and m ∈ R. DECIDE: whether

f represents m over R.

39
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DFRepr(P) Decisional representation problem with factor-
ization

PARAMETERS: Set P of properties of quadratic forms.
INPUT: a quadratic form f over Z satisfying all properties from P,

m ∈ R, factorization of det f .
DECIDE: whether f represents m over Z.

To prove that DReprZp is in P, we first have to explore the image of binary
forms more closely.

Lemma 3.1.1
Let p be an odd prime and

(
ρ
p

)
= −1.

(a) If p ≡ 1 mod 4, then 〈1, 1〉 ∗−→Zp a for all a ∈ Zp, and 〈1, ρ〉 ∗−→Zp a ∈ Zp

if and only if p 6 | a.

(b) If p ≡ 3 mod 4, then 〈1, ρ〉 ∗−→Zp a for all a ∈ Zp, and 〈1, 1〉 ∗−→Zp a ∈ Zp

if and only if p 6 | a.

Proof : Consider the form f := 〈1, r〉, where r ∈ {1, ρ}, and let a ∈ Zp. We
analyze the representation problem inductively mod pn, for n ∈ N.

At first, for n = 1, the equation x2 + ry2 = a is always solvable modulo
p because of a simple counting argument (see [Cas78, lemma 2.2.2]). If x ≡
y ≡ 0 in this reprensentation, then it can obviously not be lifted to a primitive
representation over Zp. Otherwise, however, it guarantees the existence of a
primitive representation over Zp by Hensel’s lemma.

Thus f represents primitively at least all p-adic integers not divisible by p. If
p|a, then, by the above argument, there is a primitive representation of a mod p
if and only if f is isotropic over Fp. As f is binary, this occurs if and only if
−det f = −r is a square in Fp by [Cas78, lm. 2.4 of ch. 4]. In the case r = 1
this means that

(−1
p

)
= 1 or, equivalently, p ≡ 1 mod 4. In the case r = ρ it

implies
(−1

p

)
= −1 and thus p ≡ 3 mod 4. �

Recall that the omission of the property set P stands for no restriction on
the forms at all.

Theorem 3.1.2
Let p be a prime, or p =∞. Then

DReprZp

is solvable in polynomial time.

Remark. By a slight variation of the argument below we will as well be able



3.1. DECISION PROBLEMS 41

to decide primitive representability over Zp.

Proof : Let (f,m) be an instance of DReprZp . Write n := dim f . Over
Z∞ = R, the form f represents m if and only if m > 0 and sign f < n, or m < 0
and sign f > 0, or m = 0 and 0 < sign f < n.

So let p be a prime and d := det f . If m = 0 then (f,m) is a ‘yes’-instance
if and only if f is isotropic over Qp. By [Cas78, lmm. 2.4–2.7 of ch. 4], this is
the case if and only if

(i) n = 2 and −d ∈ Q∗2
p ; or

(ii) n = 3 and cp(f) =
(−1,−d

p

)
; or

(iii) n = 4, d ∈ Q∗2
p , and cp(f) = −

(−1,−1
p

)
; or

(iv) n ≥ 5.

Hence we may restrict to m 6= 0.

Let p be odd. Let m = pkm0, m0 ∈ Z∗
p. To decide whether f −→Zp m,

execute the following algorithm:

i := 0;
while i ≤ k do

1.) ensure by Theorem 1.2.13 that f is in normal form
2.) split f as f = pif0 ⊥ pi+1f1 such that det f0 ∈ Z∗

p

3.) if f0 −→Zp
pk−im0 then output ‘yes’; fi

4.) f := pi+2f0 ⊥ pi+1f1;
i := i + 1;

od
output ‘no’.

Note that step 1 only serves to prepare step 2. In step 2 it is understood
that f0, f1 have to be p-adically integral.

We now detail how to perform step 3. Let m′ := pk−im0. If f0 is an empty
form (i. e. of dimension 0) then obviously f0 does not represent m′. If f0 = 〈r〉
is unary, then it represents m′ if and only if

(
m0
p

)
=
(

r
p

)
and k − i is even. If f0

is at least ternary, then by Theorem 1.2.13

f0 ∼Zp
x1x2 − (det f0)x2

3 +
n∑

i=4

x2
i

and hence represents m′.
It remains to deal with dim f0 = 2. Let d0 := det f0. Then Lemma 3.1.1

implies that f0 represents m′ if and only if

(i) p ≡ 1 mod 4 and
(
d0
p

)
= 1; or
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(ii) p ≡ 1 mod 4,
(
d0
p

)
= −1, and k − i is even; or

(iii) p ≡ 3 mod 4,
(
d0
p

)
= 1, and k − i is even; or

(iv) p ≡ 4 mod 4 and
(
d0
p

)
= −1.

These conditions can all be checked in polynomial time.
We now prove correctness of the algorithm. Denote by (F,m) the original

(static) problem instance and by f the form modified during runtime (note that
the values of n0, i,m

′ are also temporary). Use the following auxiliary

Claim: Every time in step 1, the current form f represents m over Zp if and
only if the original F does.

Proof of claim: We employ induction on the number of iterations. Consider
one execution of the modification step 4. If we have arrived there then the algo-
rithm did not halt at step 3 of the same iteration, i. e. there is no representation
v ∈ Zn0

p of m′ by f0. We claim that then also no v̄ ∈ Zn
p exists satisfying

f(v̄) = m and gcd
Zp

(v̄1, . . . , v̄n0) = 1. (3.1)

In fact, if (3.1) holds, then

pif0(v) ≡ f(v̄) = m mod pi+1

and therefore
f0(v) ≡ m′ mod p,

where v = (v̄1, . . . , v̄n0)
t. If p 6 |m′ (i. e. i = k), then by Hensel’s Lemma (or the

above analysis of f0) there is a representation of m′ by f0, and we should have
halted in step 3, a contradiction.

So p|m′. In particular, f0(v) ≡ 0 mod p. If f0 is isotropic over Zp, then it
represents m′, with the same contradiction again. Therefore

v ≡ (0, . . . , 0)t mod p.

If there is still a representation of m by f , then the first n0 coefficients of v are
divisible by p. Hence m is also represented by

pi+2 f0 ⊥ pi+1f1,

which is the modified f . This completes the induction step, and the claim is
proven. ♦

Now we can prove that a representation exists if and only if the algorithm
returns ‘yes’. If the algorithm answers ‘yes’, then we have stopped in step 3,
and there is v ∈ Zn0

p satisfying f0(v) = m′. But then f(v̄) = m, where v̄ arises
from v by adding zeros to the end. Hence (f,m) is a ‘yes’-instance of DReprZp .

We now turn the converse implication. Let F represent m over Zp and
assume that the algorithm outputs ‘no’, i. e. the while-loop is left only on
i = k + 1. We have already verified that if the algorithm does not halt during
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the i-th iteration, then f as of the (i + 1)-th iteration still represents m. In
particular, f represents m at the end of the last while-iteration.

It is easy to see that pi|f every time step 1 is executed. This implies that
pk+1|f after the while-loop. Therefore, if f(v) = m,

0 ≡ f(v) = m 6≡ 0 mod pk+1,

a contradiction. We have thus shown that if F represents m, then at some point
the algorithm stops to return ‘yes’.

Obviously, the algorithm runs in polynomial time. This concludes the proof
for p odd.

To prove the theorem for p = 2, we follow the same strategy as for p odd.
The algorithm needs only a slight modification: In step 2, f0 has to be the
2-adically classically integral form of maximal dimension satisfying

f = 2if0 ⊥ 2i+1f1

for some 2-adically classically integral f1. Then the proof of correctness carries
over. We only have to characterize the images of the possible f0 in step 3.

As f is in normal form, f0 is either an orthogonal sum of the diagonal forms
listed in Theorem 1.2.15, or a form of the shape

h ⊥ . . . ⊥ h or h ⊥ . . . ⊥ h ⊥ h′,

where h, h′ are binary forms with associated matrices(
0 1
1 0

)
,

(
2 1
1 2

)
,

respectively (see [Jon44]).
Note that if f contains a summand h, then it represents all 2-adic integers.

Hence it suffices to determine the image of the properly primitive forms from
Theorem 1.2.15. This can be done for n0 ≤ 6 by enumerating all primitive
vectors

v ∈ (Z2/8Z2)
n0 ;

then f0 represents m if and only if

f(v) ≡ 2−2im mod 8

for some i ≤ bk
2 c and some such v. For n ≥ 7, the normal form of f0 represents

the form 〈1, 1, 1, 1〉 by Theorem 1.2.15, and this form represents all of Z2 (e. g.
by Lagrange’s Four Square Theorem, see [Cas78, p. 144]). �

In many intersting cases, the arithmetic theory admits carrying over this
result to Z.

Theorem 3.1.3
Let P denote following properties of an integral quadratic form f : It is indefinite,
and either
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(i) dim f ≥ 4, or

(ii) dim f = 3, d := det f is n(n−1)
2 -power free, and if f is classically integral,

then
2n(n−3)/2+b(n+1)/2c 6 | d.

Then DFRepr(P) is solvable in polynomial time.

In constrast, we will see in Theorem 9.1.6 that for definite forms, the same
problem is NP-complete under randomized reductions.

Proof : Let (f,m) be an instance of DFRepr(P). The key technique con-
sists in verifying that f represents m over all Zp. This is clearly necessary for
m being represented by f over Z. In case (i), it is also sufficient by [Kit93,
thm. 6.6.1]. In case (ii) m is represented by some form f ′ ∈ gen f by [Cas78,
thm. 1.3 of ch. 9]. Then the hypotheses on d and Theorem 1.2.18 imply that
f and f ′ are equivalent, and hence the condition is also sufficient. It therefore
remains to specify how to check local representability.

Note that it suffices to consider Zp for the primes p|2d: Over Z∞ = R, m is
represented since f is indefinite. Moreover, if p 6 | 2d then f is Zp-equivalent to

f ′ = x1x2 − dx2
3 +

n∑
i=4

x2
i

by Theorem 1.2.13. In particular, f ′(v) = m for v = (m, 1, 0, . . . , 0)t. Hence f
represents m over Zp.

For the p|2d, apply Theorem 3.1.2. �

Analogous statements hold for the decisional transformation problem. We
keep to our convention on giving the factorization over Z for free.

DTrafoR Decisional transformation problem over R
INPUT: quadratic forms f, g over R.
DECIDE: whether f ∼R g.

DFTrafo(P) Decisional transformation problem with factor-
ization

PARAMETERS: Set P of properties of quadratic forms.
INPUT: quadratic forms f, g over Z satifying all properties from P,

factorization of (det f)(det g).
DECIDE: whether f ∼ g.
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Theorem 3.1.4
Let p be any symbol (i. e. a prime or ∞). Then

DTrafoZp

is solvable in polynomial time.

Proof : For p = ∞, forms f and g are R-equivalent if and only if their
signatures coincide (Proposition 1.2.9). For p a prime, compute the normal
forms of f , g. By Theorems 1.2.13, 1.2.15, f and g are Zp-equivalent if and only
if their normal forms coincide. This can be checked in polynomial time. �

Similarly, we have the following global result.

Theorem 3.1.5
Let P denote following properties of an integral quadratic form f : It is indefinite,
dim f ≥ 3, and d := det f is n(n−1)

2 -power free; and if f is classically integral,
then

2n(n−3)/2+b(n+1)/2c 6 | d.

Then DFTrafo(P) is solvable in polynomial time.

Proof : Let (f, g) be an instance of DFTrafo(P). Without loss assume
that det f = det g =: d, as otherwise f 6∼ g. Then the hypotheses on det f
and Theorem 1.2.18 imply that f, g lie in a one-class genus. Hence (f, g) is a
‘yes’-instance if and only if f ∼g g; By Theorem 3.1.4, we can check whether
f ∼Zp g for all p|2d∞ in polynomial time. If this holds, f ∼g g by the remark
after Theorem 1.2.13. �

An analogous result holds over the rationals: Over Qp, classifying the image
of forms is even easier than over Zp; this is because there are at most two
equivalence classes of forms to be considered per dimension and determinant,
and because every Qp-form is isotropic by Meyer’s theorem and hence represents
all p-adic numbers (it is universal, see [Cas78, sec. 2.4]). The Strong Hasse
Principle implies (see [Cas78, thm. 1.1, cor. 2 of ch. 6]) that m is represented
by f over Q if and only if it is represented by f over all Qp, and again it suffices
to consider all p|2(det f)∞ in case f is integral.

3.2 Forms over Finite Fields

In this section, we consider the transformation and representation problems over
finite prime fields. The classification theorems of quadratic forms in Sect. 1.2.5
show that the class structure of quadratic forms over the fields Fp is relatively
simple. We prove that the computational complexity of Repr, Trafo is also
quite low, as they can be solved in random polynomial time.
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Theorem 3.2.1 Let p be an odd prime and let F be the finite field with p ele-
ments. Then TrafoF is solvable in random polynomial time.

Proof : Let F-equivalent forms f, g over F be given. Use Lemma 1.2.3 to
transform either of them into diagonal shape, say

f T1 = 〈a1, . . . , an〉 and g T2 = 〈b1, . . . , bn〉

with Ti ∈ SLnF. Then determine which of the ai, bi are squares in F. This
can be done in polynomial time by computing Jacobi symbols. Build a permu-
tation matrix Πi for either form such that f T1Π1 = 〈s1, . . . , sk, qk+1, . . . , qn〉
and g T2Π2 = 〈s′1, . . . , s′`, q′`+1, . . . , q

′
n〉 such that all qi, q′i are squares and all si,

s′i are non-squares. Without loss we may assume that k ≥ `. Let s := s1 (if
k 6= 0). Then s−1

i s, (s′i)
−1s are square for all i. By [CP01, sec. 2.3.2], we can

compute square roots

t2i = s−1
i s for i = 1, . . . , k,

(t′i)
2 = (s′i)

−1s for i = 1, . . . , `,

r2
i = qi for i = k + 1, . . . , n, and

(r′i)
2 = q′i for i = ` + 1, . . . , n.

in random polynomial time for all i for which the respective right hand side is
defined. Then

f ′ : = f T1Π1S1 = 〈s, . . . , s︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

〉, and

g′ : = g T2Π2S2 = 〈s, . . . , s︸ ︷︷ ︸
` times

, 1, . . . , 1︸ ︷︷ ︸
n−` times

〉,

where

S1 =



t1 0
. . .

tk
rk+1

. . .
0 rn


and

S2 =



t′1 0
. . .

t′`
r′`+1

. . .
0 r′n


.

As f ′ and g′ are F-equivalent, their determinant may only differ by a square in
F. Hence k− ` is even. Therefore it suffices for the completion of the algorithm
to construct a transformation of the form 〈s, s〉 into the form 〈1, 1〉.
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Note that there are x, y ∈ F satisfying sx2 + sy2 = 1 by [Cas78, ch. 2,
lm. 2.2]. Such a solution can be found efficiently using [AEM87]. Then find
x′, y′ such that

det
(

x x′

y y′

)
= s−1

(e. g. by choosing x′ uniform at random and solving for y′, until success). Then
the form

h := 〈s, s〉
(

x x′

y y′

)
has the right first coefficient and the right determinant. Therefore, another
application of Lemma 1.2.3 transforms it into the form 〈1, 1〉. This completes
the description of the algorithm. As argued in the single steps, it runs in random
polynomial time. �

It is easy to modify this procedure to obtain a proper transformation (of
determinant +1).

The reference [AEM87] used in this proof already shows that we can also
efficiently find representations over prime fields. The algorithm of Adleman,
Estes, and McCurley [AEM87] particularly makes sure that even probabilism,
and the number-theoretic assumption as the Extended Riemann Hypothesis,
can be avoided (cf. [PS87])∗.

Theorem 3.2.2 Let p be an odd prime and let F be the finite field with p ele-
ments. If n ≥ 2, then ReprF

n is solvable in (deterministic) polynomial time.

Proof : See [AEM87]. �

It may seem peculiar that we had to exclude the case n = 1. For unary forms,
the representation problem is equivalent to computing square roots in F. This
can be done efficiently in practice. However, it is not known to be possible in
deterministic polynomial-time unless the Extended Riemann Hypothesis holds
(see [CP01, sec. 2.3.2]).

3.3 Forms over Local Rings

Lemma 3.3.1 Let p be a prime, m ∈ Zp, and n, k ∈ N. Let f be a binary
quadratic form over Zp such that det f ∈ Z∗

p.
If f represents m primitively over Zp, then one can construct, to precision

k, a primitive representation v ∈ Zn
p satisfying f(v) = m, in polynomial time.

∗Perhaps this result is even older. I am however not aware of a corresponding publication.
The main objection of the authors of [AEM87] is to solve modular equations without having
to factor the modulus.
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Note that if f represents m and p2 6 |m, then f automatically represents m
primitively.

Proof : First assume that p 6 |m. By Lemma 1.2.3 we may assume that f
has been transformed into diagonal form, i. e.

f = 〈r1, r2〉.

We also have ri ∈ Z∗
p, i = 1, 2 since p 6 |m and f has Zp-coefficients.

The requirement of precision k means that the have to find a vector v̄ ∈
(Z/pk+1Z)2 satisfying

f(v) ≡ m mod pk+1, (3.2)

such that v̄ can be lifted to a global solution v ∈ Z2
p, i. e.

⇒ (v) = m and v ≡ v̄ mod pk+1.

A vector v̄ satisfying (3.2) can be computed in (deterministic) polynomial-time
by [AEM87].

We claim that any such solution can be lifted to a solution over Zp. First
note that p 6 |m implies

p 6 | riv̄
2
i (3.3)

for at least one i ∈ {1, 2}. Then

∂f(x)
∂xi

∣∣∣
x=v̄

= 2riv̄i

and thus

νp

(
∂f(x)
∂xi

∣∣∣
x=v̄

)
= 0

because of (3.3), and since p is odd. The solution can now be lifted by Hensel’s
Lemma [Eis95, thm. 7.3], since the solution v̄ is correct modulo(

∂f(x)
∂xi

∣∣∣
x=v̄

)2

p.

This proves the lemma for p 6 |m.

Next consider p|m. Then f is (regular) isotropic modulo p. In particular, it
is Fp-equivalent to the form 2x1x2. By Theorem 3.2.1, we can compute T̄ ∈ Z2

p

such that
f T̄ ≡ 2x1x2 mod p and det T̄ 6≡ 0 mod p. (3.4)

Let

T̄ =
(

s̄ t̄
ū q

)
.

Then (3.4) implies that p 6 | s̄ and p 6 | t̄, or p 6 | ū and p 6 | q. So after multiplying
T̄ with the transposition matrix

(
0 1
1 0

)
we may assume that p 6 | t̄.

We claim that f is Zp-equivalent to the form 2x1x2; more prescisely, that T̄
can be lifted to an equivalence transformation between these two. Let

T =
(

s t
u q

)
and T t

(
r1

r2

)
T =

(
a b
b c

)
.
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Then the relation f T = 2x1x2 is equivalent to the three equations

r1s
2 + r2u

2 = 0,

r1st + r2uq −1 = 0,

r1t
2 + r2q

2 = 0

in the three indeterminates s, t, u. The Jacobi determinant of this equation
system amounts to

det

 2r1s r1t 0
0 r1s 2r1t

2r2u r2q 0

 = −4r2
1r2t(detT ).

This value does not vanish modulo p if we sustitute s, t, u for s̄, t̄, ū. Hence
the multidimensional variant of Hensel’s Lemma (see [Eis95, p. 209]) states
that there is a matrix T ≡ T̄ mod p such that f T = 2x1x2. Moreover, the
coefficients of T can inductively be computed to arbitrary precision.

Now that we know the transformation T to sufficient precision, we only need
to find a representation of m by the form 2x1x2. But such is obviously given by
x1 = 1, x2 = 1

2m. This concludes the proof for p|m. �

For the discussion of [AEM87] see also Sect. 6.1.

Lemma 3.3.2 Let p be a prime, m ∈ Zp, and n, k ∈ N. Let f be a quadratic
form over Zp such that

det f ∈ Z∗
p and dim f ≥ 3.

Then f represents m primitively over Zp, and a primitive representation can be
efficiently computed (to precision k).

Proof : After application of Lemma 1.2.3, we have

f = 〈r1, . . . , rn〉.

If p 6 |m, then m can be represented by 〈r1, r2〉 according to Lemma 3.1.1. Hence
we may choose x3 = . . . = xn = 0, whereas x1, x2 can be efficiently computed
by use of Lemma 3.3.1.

If, however, p 6 |m, then let x3 = 1 and x4 = . . . = xn = 0. Then p 6 | r3 and
therefore p 6 |m−r3. Consequently, there is a representation of m−r3 by 〈r1, r2〉,
which can be computed in polynomial time by Lemma 3.3.1. This representation
(x1, x2) combines with x3, . . . , xn chosen so far to a representation of m by f ,
as desired. All computations are to precision k. �

Theorem 3.3.3 Let p be a prime or p =∞.
Then

ReprZp and ∗ReprZp

are solvable in polynomial time.
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Proof : Proceed according to the following algorithm. All computations are
performed to the required precision.

i := 0;
e := (0, . . . , 0)t ∈ Nn

0 ; ### exponents of p in the solution vector
compute T ∈ GLnZp such that f T = 〈r1, . . . , rn〉 is in diagonal form
while i ≤ k do

select the indices j1 ≤ . . . ≤ jk satisfying νp(rju
) = i;

f0 := 〈p−irj1 , . . . , p
−irjk

〉;
if f0 −→Zp pk−im0 then

use Lemmata 3.1.1, 3.3.2 to compute w s.t. f0(w) = pk−im0;
define v ∈ Zn

p by

vj :=
{

peju wju
if j = ju,

0 else;
break ;

fi
for u = 1, . . . , k do

redefine f : replace the ju-th diagonal coefficient, rju
, by p2rju

;
adjust exponent vector eju

:= eju
+ 1;

od
i := i + 1;

od
output v.

This algorithm is similar in outline to the algorithm from the proof of The-
orem 3.1.2. In particular, that proof also shows that the algorithm here will
terminate with v defined if there is a representation of m by f . Moreover, we
have detailed there how to evaluate the if-query.

Let
f = f0 ⊥ pf1 ⊥ . . . p`f`

with det fi ∈ Z∗
p. The rationale for the above procedure is as follows: If m has

a representation by f with some variable belonging to f0 coprime to p, then it
is represented by f0 only; this follows from reduction modulo p and Lemmata
3.1.1, 3.3.2. If, however, all values of variables of f0 need to be divisible by p to
represent m, then we may replace f0 by p2f0 and its variables xj by pxj . This
is what happens in the modification step after the while-loop. The correctness
of the algorithm then follows inductively. �

Theorem 3.3.4 Let p be a prime or p =∞.
Then TrafoZp is solvable in polynomial time.

Proof : Let an instance (f, g) of the transformation problem be given. By
Theorems 1.2.13, 1.2.15, and Proposition 1.2.9, both f and g can be efficiently
transformed into normal form, i. e. we can compute S, T ∈ GLnZp such that

f ′ := f S and g′ := g T
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are in normal form. Since normal forms are unique (see the results just cited),
we must have f ′ = g′. Thus T−1S is a transformation from f to g. �

As for the decisional problems in Sect. 3.1, similar results hold over the fields
of p-adic numbers Qp. This is implicitly contained in the proof of Theorem 6.1.1.
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Chapter 4

Algorithms for Primes,
Classes, and Genera

In this chapter we present some auxiliary algorithms needed in the later chap-
ters, particularly in Chaps. 9 and 10.

In Sect. 4.1, we give an overview over methods to select primes with cer-
tain properties. This constitutes an elementary but important algorithmic task
for many algorithms in number theory. The polynomial-time primality test
[AKS04] has simplified this significantly. In this thesis, prime selection is used
in Sect. 4.2.4 and in Chapter 9. Much of the results presented here may be con-
sidered folklore; however, an overview over selection techniques in the light of
recent primality tests seems to be missing in the literature. Hence this summary
may be as well of independent interest.

In Sect. 4.2.4, we show that the classical result on the existence of genera with
locally prescribed behavior can be made algorithmically efficient: We present
an algorithm which constructs a form f over Z which is p-adically integrally
equivalent to a finite set of given fp over Zp. The given forms fp have to be
‘compatible’ in the sense that such a global form f exists. This will be applied
in the algorithms in Chaps. 9 and 10.

4.1 Algorithmic Prime Selection

In this section, we give an overview over prime selection algorithms. First we
consider the problem of finding the least prime, or any prime, exceeding a given
integer; then we restrict to a coprime arithmetic progression. It turns out that
both types of tasks can be accomplished in random polynomial time. For the
unrestricted case, derandomization is possible under the Riemann hypothesis,
whereas in the case of an arithmetic progression, we cannot give an analogous
derandomization.

Prime selection has been a topic of profound investigation, in particular
in connection with cryptographic key generation (e. g. see [Mih94]). Before
polynomial-time primality tests have been known (see [AKS04]), the stumbling

53
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block was to guarantee that the output numbers were primes. “Probable prime
generators” became popular, which only claimed to output primes with a certain
high probability. The “provable prime generators” had to produce a primality
certificate for each prime.

The primality test [AKS04] has simplified this task extremely. The conse-
quences for prime selection collected below can certainly be considered well-
known. But as there seems to be no comprehensive study of them in the liter-
ature, we decided to give an overview here.

We consider this question here because we will apply it in the next sextion
as well as in later chapters (see Sect. 9.2). Prime selection, however, is a very
fundamental task both in cryptography and in algorithmic number theory, and
therefore it seemed to be worthwhile to ponder this topic a bit more closely.

Proposition 4.1.1 (a) For every ε > 0, there is a probabilistic polynomial-
time algorithm which given an integer N , outputs some prime p > N such
that

p = O(N ln1+ε N).

The implied constant only depends on ε.

(b) Assume the Riemann Hypothesis to be true. Then there is deterministic
polynomial-time algorithm which given an integer N , outputs the smallest
prime p > N . It then holds that for every ε > 0 that

p = N +O((ln N)2(ln ln lnN)ε).

The implied constant only depends on ε.

Remark: To the best of my knowledge, there is, up to now, no deterministic
and method known to produce a prime larger than a given number which can
be proven unconditionally to be polynomial time.

Proof : Recall that by [AKS04], a given integer can be proven or disproven
to be prime in deterministic polynomial time. We shall use this primality test
as a subroutine in the following algorithms.

(a) Whithout loss we may assume that lnN ≥ 2. Then perform the following
random selection algorithm:

success := false;
while not success do

select uniformly at random p ∈ [N + 1, N ln1+ε N ] ∩ Z
if p is prime then success := true;

od
output p.
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The probability of success in one iteration of this algorithm amounts to

r =
# primes in [N + 1, N ln1+ε N ]

N (ln1+ε N − 1)
. (4.1)

Let π(x) denote the number of primes less or equal to x. Then (4.1)
implies

r ≥ π(N ln1+ε N)−N

N (ln1+ε N − 1)
.

If we assume without loss that ε < 1, the Prime Number Theorem then
tells us that

r ≥

N ln1+ε N

lnN + (1 + ε) ln lnN
−N +O

(
N ln1+ε N

(lnN + (1 + ε) ln lnN)2

)
N ln1+ε N

=
1

lnN + (1 + ε) ln lnN
− 1

ln1+ε N
+O

(
1

(lnN + (1 + ε) ln lnN)1+ε

)

=
1

lnN
+O

(
1

ln1+ε N

)
.

(4.2)
The last equality is due to the fact that

1
lnN

− 1
lnN + (1 + ε) ln lnN

= O
(

1
ln1+ε N

)
,

which follows from
1

lnN
− 1

lnN + (1 + ε) ln lnN
= (1 + ε)

ln lnN

(lnN) (lnN + (1 + ε)(ln lnN))

= O
(

ln lnN

ln2 N

)
.

Now turning to the general case of several iterations, we face a random
experiment with respect to the geometric distribution, whose success prob-
ability is bounded from below by (4.2). Therefore, the probability that it
takes more than t lnN iterations to obtain a prime does not exceed(

1
lnN

+O
(

1
ln1+ε

))t ln N

=
1

(lnN)t ln N
+O

(
2t ln N

(lnN)t ln N+ε

)
= exp

(
− (t lnN)(ln ln N)

)
+O

(
exp

(
t lnN − t(1 + ε)(lnN)(ln lnN)

))
.

(4.3)

Here the first equality is due to the fact that for every constant C > 0 and
every 1 ≤ k ≤ dt lnNe, it holds that

Ck

(lnN)t ln N+kε
= O

(
C

(lnN)t ln N+ε

)
, (4.4)
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and rounding t lnN to the next integer and applying the binomial theorem,
we thus obtain

dt ln Ne∑
i=1

(
dt lnNe

i

)
= 2dt ln Ne − 1

terms dominated by the right hand side of (4.4), apart from the main
term.

But it easily seen that there are constants C1, C2 such that the rightmost
side of (4.3) is stricly smaller than 1

2 if

t ≥ C1 − C2 ε.

Summing up, we find that after linearly many iterations, the algorithm
returns a prime with probability larger than 1

2 .

(b) Perform the following exhaustive search algorithm:

success := false;
p := N ;
while not success do

p := p + 1;
if p is prime then success := true;

od
output p.

By a result of Selberg [MSC96, §VII.13 a)], for any ε > 0 this procedure
terminates successfully after at most (ln N)2(ln ln lnN)ε iterations con-
ditionally on the Riemann Hypothesis, except for possibly finitely many
exceptions; hence certainly it succeeds after

O
(
(lnN)2(ln ln lnN)ε

)
iterations, and the returned prime p satisfies

p = N +O
(
(lnN)2(ln ln lnN)ε

)
.

Remark. The choice of the factor (ln ln lnN)ε was somewhat arbitrary as
Selberg’s theorem holds for arbitrary functions tending to infinity as N → ∞
instead.
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Corollary 4.1.2 (a) For every ε > 0, there is a probabilistic algorithm which
given integers N and n (n fix), outputs some primes p1, . . . , pn satisfying

N < p1 < . . . < pn = O(N ln1+ε N)

in expected running time polynomial in n and log N .

(b) Assume the Riemann Hypothesis to be true. Then there is deterministic
polynomial-time algorithm which given integers N and n, outputs primes
p1, . . . , pn such that p1 is the smallest prime exceeding N , and pi is the
smallest prime exceeding pi−1, for all i = 2, . . . , n.

It then holds that for every ε > 0 that

pn = N +O(n (lnN)2 (ln ln lnN)ε).

In either case, the implied constant only depends on ε.

Proof :

(a) Apply the algorithm of Proposition 4.1.1 a), but halt only when n distinct
primes have been found.

Suppose that k < n primes have already been found. Then the probability
bound (4.2) that another prime is found in one more iteration changes by
a summand

− k

N ln1+ε−N
≥ − n

N ln1+ε−N
.

As n is fixed, theO-term of (4.2) absorbs this summand, and the procedure
succeeds in polynomial time.

(b) Apply Proposition 4.1.1 b) itereratively n times.

�

Proposition 4.1.3 For every ε > 0, there is a probabilistic polynomial-time
algorithm which given C ∈ N and coprime positive integers q, a, outputs some
prime p ≡ a mod q such that

p = O(q ln1+ε q).

Remark. Even if the Riemann hypothesis is true, an exhaustive search
algorithm as in the proof of Proposition 4.1.1 will not succeed in polynomial
time because it is known that the least prime in an arithmetic progression is at
least linear in the modulus in the worst case, i. e. there are exponentially many
numbers to test. More precisely, [Erd49], [Pom80] give superlinear estimates in
ϕ(q), and [Pra61], presents a superlinear estimate in q, each for a large family of
examples (see also [Wag79] for a heuristic argument why such examples occur so
frequently). Theoretically, however, there might be an alternative deterministic
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approach which succeeds in polynomial time.

Proof : Use the following algorithm (which is anagolous to the one from the
proof of Proposition 4.1.1 a):

success := false;
while not success do

select uniformly at random p ∈ [N + 1, N ln1+ε N ] ∩ (qZ + a)
if p is prime then success := true;

od
output p.

If r is the probability of success in one iteration and if π(x; q, a) denotes the
number of primes p ≤ x with p ≡ a mod q, then

r =
# {p ∈ [N + 1, N ln1+ε N ] | p prime, p ≡ a mod q}

N(ln1+ε N − 1)

≥ π(N ln1+ε N ; q, a)−N

N(ln1+ε N − 1
.

(4.5)

The Bombieri-Vinogradov Theorem (see [MSC96, §VIII.6]), now states that

π(N ln1+ε N ; q, a) =
N ln1+ε N

ϕ(q) ln(N ln1+ε N)
+O

(
N ln1+ε N

ϕ(q) ln2(N ln1+ε N)

)
once q ≤

√
N

lnB N
, for some fixed B > 0; here ϕ(q) denotes Euler’s totient function.

Using (4.5) and ϕ(q) < q, it now follows that

r ≥ 1
q lnN

+O
(

1
q ln1+ε N

)
by the same computations as in the proof of Proposition 4.1.1 a). As then there
are constants C1, C2 such that we perform t lnN independent iterations, where
t ≥ C1 − C2 ε, then we obtain, as above, a chance of at least 1

2 that we the
algorithm succeeds within this time. �

Moreover, for primes as well as for squarefree numbers, it is known that the
least a in the arithmetic progression with the desired properties may be expo-
nentially large in the length of the modulus (see [MSC96, §§VI.23, VIII.5], the
search for upper bounds is known as ‘Linnick’s question’). Therefore, the näıve
exhaustive search approach of enumerating the integers in the progression in as-
cending order, testing for primes (or squarefrees, if possible), and halting when
a number of the desired type has been found, is doomed to run exponentially
long. Moreover, to my knowledge there is no essentially different deterministic
approach known to attack this problem. Hence, it is not obvious at all whether,
and if so, prime selection from an arithmetic progression can be efficiently de-
randomized.

Obviously, an iterative version of this proposition could be established anal-
ogously to Corollary 4.1.2.
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4.2 Construction of Genera

In Sect. 1.2.5, we asked the following question: Given forms fp over Qp (for some
set of symbols p ∈ P ), under which conditions does there exist a rational form
f such that f ∼Qp

fp? We learned in Theorem 1.2.10 that there is essentially
only one condition, namely, that the product of the Hasse-Minkowski invariants
be 1, see (1.5). Now we turn to an analogous question: Let the fp be p-adically
integral. Then we ask when a form f over Z exists such that f ∼Zp

fp; in
other words, we ask whether the given fp define a genus over Z (see Sect. 1.2.6).
Interestingly, the condition is no stronger than in the rational case (Theorem
1.2.10).

Theorem 4.2.1 (Existence of Genera.) Let d ∈ Z\{0}. Let fp be forms
over Zp such that

det fp ∈ dZ∗2
p ,

for all p|2d∞, and ∏
p|2d∞

cp(fp) = 1.

Then there exists an integral form f of determinant d such that

f ∼Zp
fp

for all p.

We are now going to make this theorem algorithmic: Namely, we will proof
that given forms fp as in Theorem 4.2.1, one can efficiently construct the global
form f . The classical proof is constructive, and most of its steps can be turned
into an algorithm directly. This is done in the subsequent subsections. The final
result is recorded in Theorem 4.2.7.

4.2.1 Local representations

We first need a method to make p-adical representations p-adically integral at
‘uninvolved’ primes p.

Proposition 4.2.2 Let n ≥ 3, k ∈ N0, m, d ∈ Z, and let p 6 | d be a prime.
Then Algorithm 1 constructs β ∈ N0 and a primitive representation w of p2βm
over Zp by the form

f := 〈1, . . . , 1︸ ︷︷ ︸
n−1

, d〉

to precision k in polynomial time.

Proof : We first explain the rough outline of Algorithm 1. We always refer
to the form f := 〈1, . . . , 1, d〉 over Qp or Zp. In the first step, we construct an
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Algorithm 1:

input: n, k ∈ N0, m, d, p ∈ Z with n ≥ 3, p prime, and p 6 | d.
output: β ∈ N0 and w ∈ Zn such that

∑n−1
i=1 w2

i + dw2
n ≡ p2βm mod pk+1.

Abbreviate f := 〈1, . . . , 1, d〉.

1. Find an isotropic vector u:
use Lemma 3.3.1 to find u1, u2 to precision k s. t. u2

1 + u2
2 = −d

and gcdZp
(u1, u2),

u := (u1, u2, 0, . . . , 0, 1)t.
2. Find a vector not orthogonal to u:

i := 1,
while f(u, ei) = 0 mod p do i := i + 1 od

3. Find an isotropic vector not orthogonal to u:

Put v :=
f(ei)

2f(u, ei)
u− ei,

4. Find a representation x of m over Qp:
Put w := u +

m

2f(u, v)
v.

5. Determine β:
Put β := −νp(w).

6. Modify the representation:
Let w := pβw.
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isotropic vector u ∈ Zn
p for f . In step 2, we find another vector e ∈ Zn

p such
that f(u, e) 6= 0. This vector is used in step 3 to construct v ∈ Qn

p satisfying
f(v) = 0 and f(u, v) 6= 0. Then we have represented a ‘hyperbolic plane’ by f
over Qp, i. e. a binary form with associated matrix(

0 1
1 0

)
,

see below. This subform allows us to find a representataion of m over Qp in
step 4. In the last step, this representation and m are modified so that the
representation will be p-adically integral and primitive.

Now we show that the algorithm is correct. Observe that steps 1 through 3
construct a hyperbolic plane primitively represented by the form

f := 〈1, . . . , 1, d〉.

By Lemma 3.3.1, step 1 can be accomplished because the form 〈1, 1〉 repre-
sents all p 6 | d over Zp (see [Cas78, ch. 2, lm. 2.2]). Obviously, then u is isotropic
for f .

Step 2 will succeed unless all standard unit vectors are orthogonal to u. By
linearity, this implies that f(u, ·) is identically zero. As f is regular (over Qp),
this can only happen for u = 0 [Cas78, ch. 2, lm. 1.2], which is excluded by step
1.

Then step 3 yields an isotropic vector because

f(v) =
f(ei)2

4 f(u, ei)2
f(u) + f(ei) − 2 f(u, ei)

f(ei)
2 f(u, ei)

= 0 + f(ei)− f(ei) = 0,

as f(u) = 0. Moreover, v is f -non-orthogonal to u, since

f(u, v) =
f(ei)

2 f(u, ei)
f(u) − f(u, ei) = −f(u, ei)

by step 2 and since u is isotropic.
The vector x constructed in step 4 satisfies f(x) = m because

f(x) = f(u) +
m2

4f(u, v)2
f(v) + 2

m

2f(u, v)
f(u, v) = m

as f(u) = f(v) = 0.
For steps 5 and 6, it is obvious that the updated x′ = pβx is in Zn

p and
primitive by the choice of β. Finally, f(x′) = f(pβx) = p2βm.

It remains to bound the running time of the Algorithm 1. Step 1 terminates
in polynomial-time by Lemma 3.3.1. The while-loop in step 2 is repeated at
most n times. The remaining steps employ O(1) evaluations of the quadratic
form f and its associated bilinear form to precision k, which amounts to O(n2)
arithmetic operations modulo pk+1, and O(1) extra arithmetic operations mod-
ulo pk+1. �
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4.2.2 Composition of square classes

Our next subgoal is to find an integer t primitively represented by given lo-
cal forms fp which are ‘compatible’ in the sense that they define a genus (see
Theorem 4.2.1).

Lemma 4.2.3 Let P be a finite set, containing primes and possibly the symbol
∞. Let tp ∈ Z be given for all p ∈ P .

Then Algorithm 2 constructs a prime p0 and an integer t such that

(i) p0 is the only prime with p0|t and p0 /∈ P ; for this prime, p0|t and p2
0 6 | t,

(ii) tZ∗2
p = tpZ∗2

p for all p ∈ P

in random polynomial time.

Denote by
CRT

(
(a1,m1), . . . , (ak,mk)

)
a call to an efficient routine realizing the Chinese Remainder Theorem. It re-
turns an integer a such that

a ≡ ai mod mi ∀ i,

or fail if the system is unsolvable. Note that this task can be performed in
polynomial time.

Proof : For each p ∈ P\{∞}, let tp = εpp
sp . Algorithm 2 computes the

values sp, εp and takes care that for the output value t, it holds that

νp(t) = sp and
t

psp
Z∗2

p = εpZ∗2
p . (4.6)

The number t is computed in the final step by

t = ±p0

∏
p∈P
p6=∞

psp ,

which already implies statement (i). Then (4.6) is accomplished by the choice
of the prime p0:

By construction,

t

psp
≡ εp mod p for p 6= 2, and

t

2s2
≡ ε2 mod 8.

Then (4.6) follows from Lemma 1.2.6. Analogously, we have sign (t) = sign (t∞)
and therefore tR+ = t∞R+ if ∞ ∈ P (recall that Z∗2

∞ = R∗2 = R+). Statement
(ii) follows.

By Proposition 4.1.3, prime selection can be accomplished in random poly-
nomial time. All other steps of the algorithm are trivially polynomial time. �
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Algorithm 2:

input: finite set P of primes and possibly ∞, tp ∈ Z for all p ∈ P .
output: prime p0, t ∈ Z satisfying (i), (ii) of Lemma 4.2.3.

if ∞ /∈ P then t∞ := 1;
t∞ := sign (t∞);

fi
if 2 ∈ P then

s2 := ν2(t2),
ε2 := t2/2s2 mod 8,

fi
for p ∈ P \ {2} do

sp := νp(tp),
εp := tp/psp mod p,

od
for p ∈ P \ {2} do

Mp := t∞
∏

q∈P\{∞,p}

qsq mod p,

M̄p := M−1
p mod p

od
if 2 ∈ P then

M2 := t∞
∏

q∈P\{∞,2}

qsq mod 8,

M0 := CRT
(
(ε2M̄2, 8), (εpM̄p, p) | p ∈ P \ {∞}

)
,

else
M0 := CRT

(
(εpM̄p, p) | p ∈ P \ {∞}

)
,

fi
Q :=

∏
p∈P\{∞} p,

if 2 ∈ P then Q := 8 ·Q fi

use Proposition 4.1.3 to select a prime p0 ≡M0 mod Q;

t := p0t∞
∏

p∈P
p6=∞

psp ;

output p0, t;
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Algorithm 3:

input: integer d 6= 0, forms fp (p|2d∞), satisfying (4.7), (4.8).
output: integer t satisfying (4.9).

if n = 1 then output t := d; fi
for all p|2d∞ do

1.) find tp ∈ Z with p 6 | tp and fp
∗−→Zp

tp
od

2.) t := Algorithm 2
(
tp

∣∣∣p|2d∞
)
,

3.) if n = 2 then
(β, w) := Algorithm 1 (2, 0, t, d, p0),
t := p2βt,

fi
output t with its prime factorization.

Lemma 4.2.4 Let d ∈ Z\{0} and primitive n-ary quadratic forms fp (over Zp)
be given for p|2d∞ such that

(det fp)Z∗2
p = dZ∗2

p (4.7)

for all p|2d∞, and ∏
p|2d∞

cp(fp) = 1. (4.8)

Then Algorithm 3 constructs t ∈ Z and the prime factorization of t in random
polynomial time such that

fp
∗−→Zp

t ∀ p|2d∞, and

〈1, . . . , 1, d〉 ∗−→Zp t ∀ p 6 |2d∞.
(4.9)

Proof : We first have to explain how to execute Step 1: Scan the diagonal
entries of the associated matrix of f (i. e. f(ei), i = 1, . . . , n) for a value t′p
not divisible by p, and if the coefficients are not rational integers, take some
tp ∈ Z with tp ≡ t′p mod p. If none of the diagonal coefficients is coprime to
p, transform f to diagonal shape using Lemma 1.2.3. Then some entry of the
diagonal is coprime to p because fp is primitive.

Moreover, note that the prime factorization of t can be easily attained be-
cause by Lemma 4.2.3, all but one prime factor of t being found among the
input primes.

Now we have to verify that the output t satisfies the claim. If n = 1 this is
trivial, so suppose that t is computed in Step 2. Then t belongs to the same
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square class in Zp as tp by Lemma 4.2.3 (ii), and so

fp
∗−→Zp

t (4.10)

holds for all p|2d∞ after step 2. If step 3 is executed, i. e. if n = 2, then then
t is only modified by a square coprime to 2d, since p0 6 | 2d. Hence (4.10) still
holds at the end of the algorithm.

Now let p 6 | 2d∞. If additionally n ≥ 3, then gcd(t, d) = 1 because we have
chose t ≡ tp 6≡ 0 mod p for all p|2d. Hence

〈1, . . . , 1, d〉 ∗−→Zp t (4.11)

is also satisfied for all p 6 | 2d∞ due to Lemma 1.2.7.
Hence it remains to cover the case in which n = 2 and p 6 | 2d∞. Then fp

represents t primitively over Zp if and only if

fp ∼Zp
tx2 + bxy + cy2 (4.12)

for some b, c ∈ Zp, as every primitive vector can be extended to a regular matrix.
If p 6 | t, then d

t ∈ Zp, and (4.12) holds with b = 0, c = d
t because there is only

one class of binary quadratic forms of determinant d over Zp (see [Cas78, ch. 9,
thm. 3.1]).

Now we are left with the case where p|t, but p 6 | 2d∞, and n = 2. By Lemma
4.2.3, we then have p = p0. Moreover, in step 3 of Algorithm 3 the integer t
is modified in such a way that t is primitively represented by f , according to
Proposition 4.2.2.

Finally, the algorithm terminates in polynomial-time because the subrou-
tines called do. �

Remark. For n ≥ 3, it would suffice in Algorithm 3 to combine the tp via
the Chinese Remainder Theorem and ignore all p 6 | 2d∞. The t would still be
primitively represented locally everywhere. However, it might then be harder
to obtain the prime factorization of t.

4.2.3 Approximation

We prove a result (Corollary 4.2.6) which enables us to find a form f ‘close’ to
each of a given set of fp. Here ‘close’ refers to the topology of Zp; i. e. it means
congruent to a high power of p (for p prime). This will help us in Theorem
4.2.7 to guarantee the Zp-equivalence of forms obtained from modifying fp, f ,
respectively.

Because of its topological interpretation, this method is also called ‘approx-
imation’. Very roughly, the key lemma 4.2.5 allows for Chinese remaindering
with constraints.

Recall that a vector u = (ui)i ∈ Rn, where R is Z or some Zp, is called
primitive if and only if gcdR(ui | i = 1, . . . , n) = 1.
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As before, we denote by

CRT
(
(a1,m1), . . . , (ak,mk)

)
a call to an efficient routine realizing the Chinese Remainder Theorem. The
output integer a satisfies

a ≡ ai mod mi ∀ i

if this system is solvable.

Lemma 4.2.5

(a) Let mp = (mip)i ∈ Zn
p be primitive vectors (i = 1, . . . , n) for p from a finite

set of primes P . Moreover, let kp ∈ N0 for each p ∈ P . Then Algorithm
4 constructs an integral primitive vector m = (mi)i ∈ Zn satisfying

mi ≡ mip mod pkp ∀ p ∈ P (4.13)

in polynomial time.

(b) Let Cp ∈ SLnZp and let kp ∈ N0 be given, for p from a finite set of primes
P . Then Algorithm 5 constructs C ∈ SLnZ satisfying

Cij ≡ (Cp)ij mod pkp ∀ p ∈ P (4.14)

in polynomial time.

Remark. The only non-obvious part in these statements are primitiveness of
m in part a), and the property det C = 1 in part b). Without these additions
the statement would just be a special case of the Chinese Remainder Theorem.

Proof : First consider correctness of algorithms 4 (a). For each i, the in-
teger mi arises from the mip by Chinese remaindering, hence (4.13) follows
immediately.

It remains to prove primitiveness of m. So let p be a prime dividing γ :=
gcd(mi | i = 1, . . . , n). Then p /∈ P as the mp are primitive (and (4.13) holds).
Moreover, p divides m1, and hence µ. It follows by construction that

m2 ≡ 1 mod pνp(γ),

a contradiction to p|γ. Hence m is primitive.
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Algorithm 4:

input: finite set P of primes, (kp)p ∈ NP
0 , and (mp|p ∈ P ) ∈

∏
p∈P Zn

p

output: m ∈ Zn satisfying (4.13)

m1 := CRT
(
(m1p, p

kp) | p ∈ P
)

find maximal µ ∈ Z with µ|m1 and p 6 |µ ∀ p ∈ P
m2 := CRT

(
(m1p, p

kp), (1, µ) | p ∈ P
)

for i = 3, . . . , n do
mi := CRT

(
(mip, p

kp) | p ∈ P
)

od
output m := (m1, . . . ,mn)t.

Algorithm 5:

input: finite set P of primes, (kp)p ∈ NP
0 , and matrices C(p) ∈ SLnZp for p ∈ P

output: C ∈ SLnZ satisfying (4.14)
Notation: c

(p)
i , ci for the colums of C(p), C respectively

C := In ### identity matrix
for j = 1, . . . , n do

for p ∈ P do
find `

(p)
j ∈ Zp such that c

(p)
j =

∑n
i=1 `

(p)
i ci (to precision kp)

od
for i = 1, . . . , j − 1 do

`i := CRT
(
(`(p)

j , pkp+1) | p ∈ P
)

od
if j < n then

for i = j, . . . , n do
`i := Algorithm 4 (`(p)

i | p ∈ P )
od

else `n := `
(p1)
n ### first p in P

fi
cj :=

∑n
i=1 `ici

od
output C.
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Starting from the identity matrix, Algorithm 5 modifies one column in one
iteration of the for-loop. After the k-th iteration,

C11

C21

...

...
Cn1

 ,


C22

...

...
Cn2

 , . . . ,

 Ckk

...
Cnk

 ,

are primitive vectors. Each column ckp is represented as an integral linear
combination of the columns of the current matrix. Then coefficients of the ci

with i ≥ k form primivite vectors for each p, and thus can be combined by
Lemma 4.2.5 a). In particular, for k the last coefficient `np is necessarily 1 or
−1 and independent from p. The remaining coefficients are approximated by
Chinese Remaindering. A detailed correctness proof can be found in [Cas78,
thm. 2.1 of ch. 9].

The running time is certainly polynomial as it only involves Chinese remain-
dering and solving n-dimensional linear equation systems (see the computation
of the `

(p)
j in Algorithm 5), apart from few extra arithmetic operations. Perhaps

it should be mentioned that to to obtain polynomial time in the compution of µ
in Algorithm 4, it suffices to perform a trial division v := v/p as long as possible,
starting from v := m1. (This can of course be sped up by a binary search on
the exponent.) �

Corollary 4.2.6 Let P be a finite set of primes. Let f be an n-ary integral
quadratic form. For each p ∈ P , let kp ∈ N0, an n-ary quadratic form fp over
Zp, and Tp ∈ SLnZp be given such that

fTp = fp.

Then in polynomial time we can construct a form f ′ and a matrix T ∈ SLnZ
such that

f ′ = f T

and
f ′ = fp mod pkp ∀ p ∈ P.

Proof : Apply Algorithm 5 to the Tp. �

4.2.4 Main algorithm

Now we can conclude with the constructive version of Theorem 4.2.1 on the
existence of genera.
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Theorem 4.2.7 Let d ∈ Z\{0}. Let forms fp over Zp be given for p|2d∞, such
that

det fp ∈ dZ∗2
p , (4.15)

such that ∏
p|2d∞

cp(fp) = 1. (4.16)

Then Algorithm 6 constructs a form f over Z, along with matrices Tp ∈ SLnZp

such that
f Tp = fp,

in random polynomial time. The Tp are computed to a given precision k. In
particular, it holds that

f ∼Zp
fp

for all p|2d∞.

Proof : We first outline the main ideas of the algorithm. The algorithm is
recursive, decreasing the dimension of the forms at every recursive self-call.

For n = 1, we have fp = 〈dp〉 such that d/dp is a square in Zp (and p 6 | d/dp

for p 6= ∞), so they are all Zp-equivalent to the global form 〈d〉. Step 1 of Al-
gorithm 6 exactly outputs this solution in this case. Note that the computation

of the 1×1-matrices (
√

dp

d ) can be accomplished in random polynomial-time by
[CP01, sec. 2.3.2].

Otherwise, if n > 1, we construct the first coefficient t of the desired form
f in step 1. We can choose any integer primitively represented by all the fp.
This is done by application of Lemma 4.2.4. For each p, we compute a local
representation of t by fp via Lemma 3.3.1 and transform fp such that fp has t
as first coefficient as well.

Then in step 3, we reduce to lower dimension by completing the square
for each fp. Algorithm 6 is called recursively on the (n − 1)-ary complement
forms after the completion, yielding a form f∗ over Z. Finally, from f∗ and t
we compute the solution f . This requires composing the coefficients bip of the
square completions via Chinese remaindering. The exponents at the primes p
for this CRT application have been defined in step 2.

Finally, the transformations between the fp and the global form f can be
computed using normal forms. This is done in step 4.

Let us turn to correctness. If n = 1, then the algorithm already terminates in
step 1. We have just argued that the algorithm works correct in this case. Hence
we may inductively assume that it runs correctly and efficiently in dimension
n − 1. In particular, the recursive self-call in step 3 yields a global form f∗

which is Zp-equivalent to f∗p , for each p|2d∞, if the f∗p satisfy the ‘compatibility’
conditions(4.15), (4.16). This is verified in [Cas78, ch. 9, proof of lm. 5.1].

We have to verify that f constructed in step 3 is integral. As the nominator
is a divisor of t, it suffices to show that f is p-adically integral for every p|t.
Indeed,

f∗p ≡ f∗, bip ≡ bi mod pkp
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Algorithm 6:

input: d ∈ Z\{0}, k ∈ N, quadratic forms (fp | p|2d∞) of dimension n satis-
fying (4.15) and (4.16).

output: integral quadratic form f , matrices (Tp | p|2d∞)
to precision k such that Tp ∈ SLnZp and f Tp = fp.

Notation: For p 6 | 2d∞, let fp := 〈1, . . . , 1, d〉.

1. Find suitable first coefficient:
compute t ∈ Z\{0} such that fp

∗−→Zp t for all symbols p via Lemma 4.2.4;
if n = 1 then

for p|2d∞ do

compute τp :=
√

dp

d in Zp to precision k;
od

output
(
d,
(
(τp) | p|2d∞

))
;

fi ;
Q := { prime divisors of t}
for p ∈ Q do

use Lemma 3.3.1 to compute a primitive representation up ∈ Zn
p

of t by fp;
od
for p|2d∞ do

find representation fp(up) = t;
od
P :=

{
p
∣∣ p|2d

}
∪Q;

for p ∈ P ∪ {∞} do
construct a matrix Up ∈ SLnZp with up as first column
fp := fp Up;

od

2. Determine the precision needed:
for p ∈ P\{2} do kp := νp(t) + νp(d) + 1 od
k2 := ν2(d) + 3;

3. Reduce to dimension n− 1:
for p ∈ P do

use Lemma 1.2.4 to obtain bip, f∗p over Zp

such that t fp = (tx1 + b2px2 + . . . + bnpxn)2 + f∗p (x2, . . . , xn)
od
compute f∗∞ with f ∼R 〈t〉 ⊥ f∗∞;(
f∗, (T ∗

p | p ∈ P ∪ {∞})
)

:= Algorithm 6(f∗p | p ∈ P ∪ {∞})
### recursive call to self
apply Corollary 4.2.6 to

(
f∗, (kp, f∗p , T ∗

p | p ∈ P )
)

to obtain
(
f∗′, ((T ∗

p )′ | p ∈ P )
)

satisfying f∗′ (T ∗
p )′ = f∗p and f∗′ ≡ f∗p mod pkp (all p ∈ P );

for i = 2, . . . , n do
bi := CRT

(
(bip, p

kp) | p ∈ P
)

od
f := t−1

(
(tx1 + b2x2 + . . . bnxn)2 + f∗(x2, . . . , xn)

)
4. Compute transformations:
for p ∈ P ∪ {∞} do

compute Tp ∈ SLnZp such that f Tp = fp, for all p ∈ P (to precision k)
od
output (f, (Tp | p ∈ P ∪ {∞}))
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(for all i = 2, . . . , n), which implies

(tx1 + b2x2 + . . . + bnxn)2 + f∗(x2, . . . , xn) ≡
≡ (tx1 + b2x2p + . . . + bnpxn)2 + f∗(x2, . . . , xn) = tfp mod pkp .

Hence f is p-adically integral since kp ≥ νp(t).

Let us now verify that f is Zp-equivalent to all the given fp. By construction,
it holds on completion of step 3 that

tf = (tx1 + b2x2 + . . . + bnxn)2 +f∗(x2, . . . , xn)

≡ (tx1 + b2px2 + . . . + bnpxn)2 +f∗p (x2, . . . , xn) = tfp mod pkp .

By definition of the kp it follows that

f ≡ fp mod pνp(d)+1 for p odd, and

f ≡ f2 mod 2ν2(d)+1.
(4.17)

Then by cite[ch. 8, lm. 5.1]cas, f ≡Zzp
fp for all p|2d. Furthermore, for Z∞ = R

it holds that

tf = (tx1 + b2x2 + . . . + bnxn)2 +f∗(x2, . . . , xn)
∼R 〈1〉 ⊥ tf∗∞,

whence
f ∼R 〈t〉 ⊥ f∗∞ ∼R f∞.

(The last equivalence is due to the choice of f∗∞ in step 3.) Thus we have shown
that the output form f does lie in the desired genus.

Now consider the running time of this algorithm. The factorization in step 1
can be retrieved from the output of Algorithm 3, see Lemma 4.2.4, hence needs
only constant extra effort. Moreover, the representations up of t, for p|2d∞, can
be efficiently computed: We only have to modify the representation of tp chosen
in Algorithm 3 by

√
t/tp in Zp. Hence we only have compute (approximate)

this square root, which (for p 6= ∞) is accomplished by arithmetic in Fp and
Hensel’s lemma.

The transformations Tp in step 4 can be computed (to precision k) in two
alternative ways: First, thanks to Theorem 3.1.4 we can construct transforma-
tions over Zp by use of normal forms. Otherwise, departing from (4.17), we can
as well compute a transformation modulo p and apply Hensel’s lemma as many
times as necessary, see the proof of [Cas78, ch. 8, lm. 5.1]. In either way, the
computation takes only polynomial time.

Moreover, in every recursive call of the algorithm the dimension decreases
by one. After these remarks it is obvious that it Algorithm 6 runs in polynomial
time. �
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Part II
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Chapter 5

Cases of Low Complexity

In this chapter, we analyze various properties of quadratic forms and their
impact on the complexity of the representation and transformation problems.
In each case we will find that the properties in question either direclty reduce
complexity, or at least admit for polynomial-time reduction to smaller problems.

These findings serve as a confirmation that hard problems should be searched
for among indefinite anisotropic forms, which are exactly those not occurring
in this chapter; see Sect. 1.3.6. Therefore, the cryptographic applications of
Chapter 2 have been proposed to use indefinite anisotropic forms.

Together with Chapters 6 and 7, this chapter forms the part of this thesis
where we classify complexity of Repr and Trafo according to different ‘sorts’
of forms: In Chapter 6, this is done with respect to the base ring, and in
7 with respect to the dimension of forms. This and the mentioned chapters
complement each other as forms with the properties studied here occur in every
dimension, with the obvious exception of isotropic ternaries. Moreover, singular
and reducible forms occur in every dimension over every base ring.

At first, in Sect. 5.1, we prove that the representation and transforma-
tion problems for singular forms reduce to lower-dimensional problems. Subse-
quently, in Sect. 5.2, the problems for reducible forms are reduced to factoriza-
tion in the respective ring. These two sections are the only part of this theses
where these two properties are not excluded, and they form the reason for this
restriction. In Sect. 5.3, we explore complexity for definite forms, and finally in
Sect. 5.4 for isotropic (ternary) forms.

The definitions of the properties studied here can be found in Sect. 1.2.

5.1 Singular Forms

Recall that a form f is called singular if det f = 0. It is well-known (see
[Gau89, art. 215] for forms over Z, [Cas78, ch. 2, sec. 6], [O’M63, §42C] for
forms over a field) that singular forms actually arise as a lower-dimensional
form complemented by some linearly independent axes with value zero under

75
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the form (this is made precise in the first part of the proof of Proposition 5.1.1).
This has the following algorithmic consequence. Recall the notion cPID from
Sect. 1.3.1.

Proposition 5.1.1 Let R be a cPID. Denote by S the property of being singular
for quadratic form, n ∈ N0. Then for n ≥ 1,

(a) Reprn(S) 4 Reprn−1,

(b) Trafon(S) 4
⊔n−1

i=1 Trafoi.

In both cases, one oracle call suffices.

Proof : We first have to construct efficiently the mentioned split of a singular
form into a lower-dimensional form and zero. This can be done as follows: Let
f be a singular quadratic form of dimension n over R with associated matrix A.
Construct a vector v ∈ Rn\{0} with A v = 0 using linear algebra in the quotient
field of R; this is possible because det A = 0. Divide v by its content (the gcd of
its coefficients) to obtain a primitive vector v′; i. e. we can efficiently construct
a basis of Rn with v′ as last vector. Denote the matrix of such a change of bases
by T .

We have Av = 0, therefore Av′ = 0 and thence utAv′ = 0 for all u ∈ Rn.
Thus the form f ′ = f T has an associated matrix of the shape

A′ =
(

A0 0
0t 0

)
with A0 ∈ R(n−1)×(n−1). Obviously, A0 is symmetric, so it defines a quadratic
form f0 over R. This is the desired decomposition. We can now turn to the two
statements of the proposition.

(a) Fix the above notation and let m ∈ R such that f
∗−→R m. If m = 0,

then return v′, and we are done. Otherwise, consider an arbitrary u ∈ Rn

and compute

f ′(u) = ut

(
A0 0
0t 0

)
u = u′t A0 u′,

where u′ = (u1, . . . , un−1)t. Hence, to solve the representation problem,
we proceed as follows:

input: n, f, m as above.

Compute the form f0 as above;
ask Reprn−1-oracle for a primitive u′ ∈ Rn−1 with f0(u′) = m;
output T−1

(
u′

0

)
.

Obviously, this establishes a polynomial-time oracle algorithm with ex-
actly one oracle call. Its correctness is seen from the above discussion.
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(b) Without loss of generality we may assume that neither f nor g is identically
zero. Let be an instance (f, g) of the transformation problem, we can
efficiently find T,U ∈ GLnR such that

f T has associated matrix

 A0 0
0︸︷︷︸
k

0︸︷︷︸
n−k

 ,

g U has associated matrix

 B0 0
0︸︷︷︸
k′

0︸︷︷︸
n−k′

 ,

(5.1)

where k, k′ < n, and A0, B0 are quadratic with det A0,det B0 6= 0; we call
the quadratic forms they are associated to f0, g0. Note that obviously, if
f , g are equivalent, k and k′ must coincide.

input: equivalent singular n-ary forms f , g

compute T,U, f0, g0 as above
S0 := oracle output on (f0, g0)

output T−1

 S0 0
0︸︷︷︸
k

In−k

 U

It is evident that this oracle algorithm runs in polynomial-time and uses
only one oracle call, the procedure for the first two steps being discussed
above. Moreover, it is clear that the output matrix is contained in GLnR
if the oracle gives a valid answer, that is, if the oracle is presented a
legitimate instance of TrafoR

k , for some k < n.

It remains to prove correctness. Let S ∈ GLnR satisfy f S = g, then
S′ := T−1SU satisfies f ′ S′ = g′, and thus(

B0 0
0t 0

)
= S′

t
(

A0 0
0t 0

)
S′ =

(
St

0A0S0 St
0A0u

utA0S0 utA0u

)
, (5.2)

where

S′ =
(

S0 u
vt c

)
(5.3)

with S0 ∈ Rk×k, u, v ∈ Rk×(n−k), and c ∈ Rk×k. Hence (5.2) holds if
and only if St

0A0S0 = B0 and A0u = 0. But since detA0 6= 0, the only
solution to the latter matrix equation is u = 0 ∈ Rk×(n−k). By (5.3), it
follows that

(det c) (det S0) = det S′ ∈ R∗,

hence S0 ∈ GLkR.
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Therefore, f0 and g0 are R-equivalent, and therefore the oracle call con-
tains a valid TrafoR

k -instance. Moreover, if f0 S0 = g0, then the matrix

S′ :=
(

S0 0
0t In−k

)
satisfies f ′ S′ = g′. Therefore, the output matrix solves the original trans-
formation problem.

�

5.2 Reducible Forms

Recall from Sect. 1.2.3 that a quadratic form over R is reducible if it factors
into two linear polynomials in R[x]. Similar to singular forms, reducible forms
constitute a somewhat degenerate case of quadratic forms. We will prove that
reducibility results in diminished complexity of the computational problems:
We show that the transformation problem can be solved in polynomial time,
whereas to solve the representation problem efficiently, we have to know the
factorization of the m ∈ R to be represented into irreducible elements of R. For
the most important case R = Z, factorization is not known, and unlikely, to be
feasible. Nevertheless this should be viewed as a case of low complexity because

(a) though no efficient algorithm is known for it, factorization can be ac-
complished in subexponential time for rings as Z, while we are mainly
interested in problems of exponential complexity (see Chapter 9)

(b) for other rings, factorization is trivial (e. g. fields), or solvable in (proba-
bilistic) polynomial-time using existing algorithms (e. g. Fq[x], see [Coh93,
sec. 3.4]; these algorithms either use probabilism or are conditional to the
Extended Riemann Hypothesis),

(c) it is only the element to be represented which has to be factored, the form
in question does not add significantly to the complexity of the problem. If
we were to use this in a cryptographic primitive, we would have to ensure
that m can be chosen hard to factor.

Lemma 5.2.1 Let R be a cPID. If f is a reducible quadratic form over R, then
linear forms `1, `2 such that

f = `1 `2 (5.4)

can be constructed in polynomial time; in particular, the sizes of their coefficients
are polynomial in the inputs.

Moreover, this decomposition is unique up to conversion of the indices and
scalars; more precisely, if

`1(x)`2(x) = `′1(x)`′2(x) (5.5)

with linear forms `i, `
′
i over R, then there are a, b ∈ R\{0} and a permutation

π ∈ {id, (12)} = S2 such that

a `1(x) = b `′1π(x) and b `2(x) = a `′2π(x).
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Proof : Let (cij)n
i,j=1 be the associated matrix of the reducible quadratic

form f . Then f decomposes as in (5.4) into linear forms

`1(x) =
n∑

i=1

pixi and `2(x) =
n∑

i=1

qixi

if and only if
cij = aibj for all i, j = 1, . . . , n. (5.6)

Denote by K the quotient field of R. Then (5.6) is solvable for pi, qj with p1 6= 0
over K if and only if it is solvable with p1 = 1. But p1 = 1 already enforces
qj = c1j for all j = 1, . . . , n, and this yields pi = ci1

q1
for all i = 2, . . . , n, so that

the linear forms are already determined. If, however, (5.6) is solvable for pi, qj

over K only with p1 = 0, then the equation system has become smaller, and the
same consideration applies to p2. Note that it can be efficiently tested whether
a candidate for a solution in fact solves (5.6), and that there are at most 2n
cases to be considered here.

Hence we can efficiently construct a decomposition (5.5) over K. Further-
more, as R is a cPID, we can efficiently compute the least common denominator
p of the pi, and the least common denominator q of the qi, for i = 1, . . . , n in
both cases. This leads to the equation

pq f = (p`1) (q`2),

where the brackets on the left hand side are linear forms with coefficients in R.
By construction, p`1 is not divisible by p in R[x], and since R is a UFD, we
necessarily have that

p | (q`2)

in R[x]. Analogously, p must divide p`1 in R[x], hence

p

q
`1,

q

p
`2 ∈ R[x]

and thus we have a decomposition

f =
(

p

q
`1

) (
q

p
`2

)
over R.

To prove uniqueness, again consider (5.5) as an equation in K[x], which is
a unique factorization domain. Hence up to reversion of the indices, the linear
factors differ only by an element of K, i. e. there is k ∈ K∗ and a permutation
π such that

`1(x) = k `′1(x) and `2(x) = k−1 `′2(x),

which in turn implies the statement. �

Next we define the factorization problem for arbitrary UFDs. Recall that
p ∈ R is irreducible if p = ab with a, b ∈ R implies a ∈ R∗ or b ∈ R∗.
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FactR Factorization problem over R
PARAMETER: UFD R with encoding.
INPUT: m ∈ R.
OUTPUT: If m 6= 0 and m /∈ R∗, output r ∈ N, irreducible elements

pi ∈ R, and ei ∈ N, such that m =
∏r

i=1 pei
i .

In particular, the existence of a polynomial-time algorithm for FactR implies
that every m has a factorization where the sum of the encoding lengths of the
pi and ei is polynomial in length (m); in particular, we must have

ω(m) = O(length (m)c) (5.7)

for some c > 0 (for R = Z, this condition holds with k = 1). By our conven-
tion on oracles (see Sect. 1.1.4), any statement referring to a FactR-oracle is
vacuously true if R fails to satisfy (5.7).

Moreover, recall that elements θ, η of a commutative ring R are called asso-
ciated if there is a unit ε ∈ R∗ such that θ = εη. Obviously, this establishes an
equivalence relation.

We can now formulate our result.

Proposition 5.2.2 Let R be a cPID. Denote by R the property of being re-
ducible for a quadratic form. Then:

(a) TrafoR(R) is solvable in polynomial time.

(b) If R allows a polynomial-time algorithm which given a positive integer C
and a ring element θ ∈ R, enumerates all elements η ∈ R associated to θ
with length (η) ≤ C, then

ReprR(R) 41 FactR.

Before turning to the proof let us discuss the additional condition of part
(b), which stipulates efficient enumeration of associates. In particular, this
requires the number of units is polynomially bounded. Obviously, cPIDs with
only finitely many units fulfill this property, as the rational integers Z, the nine
rings of integers of imaginary quadratic fields (see Sect. 1.3.1), or the polynomial
ring in one variable over a finite field. Moreover, the criterion applies to rings
whose group of units possesses a finite set of generators from which the elements
gi, i = 1, . . . , r of infinite order satisfy the condition

length

(∏
i

gei
i

)
≥
∑

i

eilength (gi) .

This criterion may be especially useful for the rings of integers of algebraic
number fields.

It should also be noted that efficient enumeration of associates implies that
there are only polynomially many for each θ ∈ R. But I am not aware of any
ring in natural encoding where this condition is violated.

Proof :
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(a) Let f, g two equivalent reducible forms. By Lemma 5.2.1, we can efficiently
factorize

f = `1 `2 and g = `′1 `′2.

Let T ∈ GLnR satisfy f T = g, which here means that

(`1 T ) (`2 T ) = `′1 `′2,

where (`i T )(x) := `i(Tx). The `i T are linear forms over R again; hence
Lemma 5.2.1 implies that there are a, b ∈ R\{0} such that, without loss
of generality,

a `1 T = b`′1 and b `2 T = a`′2. (5.8)

But for each a, b, this is just a system of 2n linear equations in n2 un-
knowns. By hypothesis, it is solvable, and it can be efficiently solved over
the quotient field K of R with a, b as symbolic parameters. Finally, it
can be checked by computing least common denominators over R how the
arising solutions can be lifted to R.

(b) For multiindices d = (d1, . . . , dr), e = (e1, . . . , er) ∈ Nr
0 let us denote by

d ≤ e componentwise majorization of d by e, di ≤ ei for all i.

By Lemma 5.2.1, there is a polynomial P such that the lenghts of the
coefficients of the factors `1, `2 of f are bounded by P (length (f)). Con-
sequently, if u ∈ Rn satisfies u ≤ K, then the sizes of `1, `2 are bounded
by Q(length (f) + K) for some polynomial Q.

To hande the representation problem, perform the following algorithm:

input: reducible quadratic form f over R and m ∈ R.

decompose f = `1 `2 over R as in Lemma 5.2.1;
factorize m =

∏r
i=1 pei

i with ei ∈ N, pi pairwise non-associated primes in R;
success := false; J := 1;
while not success do

K :=
⌈
J (length (f) + length (m))J

⌉
;

for α ∈ Nr
0, α ≤ e do

put η :=
∏r

i=1 qαi
i ;

for θ ∈ R associated to η s. t. length (θ) ≤ Q(length (f) + K) do
if `1(u) = θ is not solvable for u in Rn then next; fi ;
compute u(0), u(1), . . . , u(n−1) ∈ Rn s.t. u = u(0) +

∑n−1
i=1 λiu

(i),
with λi ∈ R, is the general solution of `1(u) = θ;

if m
δ = `2(u(0)) +

∑n−1
i=1 λi`2(u(i)) unsolvable for λi ∈ R then

next;
else

fix a solution λi;
success := true;

fi ;
if success then fi ;

od ;
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if success then fi ;
od ;

if success then fi ;
od ;
output u := u(0) +

∑n−1
i=1 λiu

(i).

Obviously this is a polynomial-time oracle algorithm with exactly one
Fact-oracle call. To prove its correctness, note that in one iteration of the
while loop, δ ranges exactly through all divisors of m of encoding length
at most Q(length (f) + K) (for the current value of K). If

m = f(u) = `1(u) `2(u),

then obviously δ := `1(u) divides m in R, and

`1(x) = δ and `2(x) =
m

δ
. (5.9)

Moreover, as was discussed before the algorithm, if there is a solution u
to the representation problem with length (u) ≤ K, then the encoding
length of δ from (5.9) is bounded by Q(length (f) + K) and thus occurs
in the enumeration.

Finally note that via the while loop, K attains any polynomial bound,
and if there is a polynomial sized solution u, then the algorithm computes
one after a constant number of while loop iterations.

�

5.3 Definite Forms

In this section, we report on the fact that for definite forms in fixed dimension,
the transformation problem can be solved in polynomial time. The representa-
tion problem, by contrast, stays hard, which can be seen from Theorem 9.1.6 and
its discussion. The efficient solution of the transformation problem, however,
already rules out the cryptographic applications from Chapter 2 for definite
forms.

The complexity of both the algorithm presented here as well as more recent
improvements depends heavily (i. e. more than simply exponentially) on n. It
is a vivid line of research to further reduce the running time (whithin exponen-
tial bounds) in order to gradually increase the maximal dimension where such
algorithms are still applicable in practice. But as we are primarily interested in
very low fixed dimensions, mostly n ∈ {3, 4}, the exact dependence on n does
not make a difference for our applications; in addition to be polynomial-time
in theory, the algorithms cited here run quite fast in practice still for higher
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dimensions than 3,4 so that definite forms have to be ruled out for the schemes
discussed in Chapter 2.

The first and essentially complete treatment of the problem to compute a
transformation between given definite forms is given in [PP85] by Plesken and
Pohst. A discussion of this algorithm is also given in [PS85], where a major
improvement, the fingerprint, is introduced. These publications are mainly
concerned with the construction of nontrivial automorphisms of lattices, but
essentially the same algorithms also work for transformations between different
equivalent lattices within the same time bounds.

These algorithms use as a subroutine the construction of a vector represent-
ing the minimum of the form (a shortest vector), of which the first procedure
was given by Kannan [Kan87]; see [SH07] for current progressions in this field.

Together, these results show:

Theorem 5.3.1 (Plesken/Pohst/Souvignier) Let n ∈ N be fixed and de-
note by D definiteness of a quadratic form. Then Trafon(D) is solvable in
polynomial time.

5.4 Isotropic Ternary Forms

Recall that a quadratic form is called isotropic if it represents zero. The Legen-
dre equation

ax2 + by2 + cz2 = 0, (x, y, z) 6= 0

i. e. the problem of finding an isotropic vector for a ternary diagonal form, and
the question for a criterion for the isotropy of the form 〈a, b, c〉 have played an
important role in the history of the theory of quadratic forms.

As the results cited in this section show, the problems on isotropic three-
dimensional forms are closely related to integer factorization with respect to
complexity. This seems to be in striking contrast to anisotropic ternary and
quaternary forms; cf. Sect. 7.1.3 and Chapter 9.

It should be noted that basic techniques of this section extend to higher-
dimensional isotropic forms; however, they do not lead to complexity-theoretic
implications analogous to Theorem 5.4.3 beyond dimension three.

By convention, if a rational number u is written as u =
∏

i pei
i with pi distinct

primes and ei ∈ Z, we will call this decomposition the factorization of u.
In [Sim05a], Simon presents an algorithm which efficiently computes an iso-

tropic vector of an isotropic rational quadratic form once the factorization of its
determinant is given. For future reference, we write down a slight variant of his
result adapted to our needs.

Theorem 5.4.1 (Simon) There is a polynomial-time algorithm which given
as input a rational isotropic quadratic form f of arbitrary dimension along with
the factorization of det f , constructs an integral isotropic vector for f .
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Proof : Let k ∈ N be such that k f is an integral quadratic form. If k is
chosen minimal, then obviously the knowledge of the factorization of det f also
yields the factorization of det(kf). Moreover, a vector is isotropic for f if and
only if it is isotropic for k f .

Hence, we may apply Algorithm 7 from [Sim05a] which constructs an iso-
tropic vector as desired. �

Denote (temporarily) by Iso the problem of constructing an isotropic vec-
tor of an input form. The problem of constructing an isotropic vector of an
input form is denoted Iso (see Sect. 1.3.3), where as usual, the missing ring
subscript is interpreted as referring to R = Z. Thus Simon’s algorithm bounds
the complexity of Iso from above by the complexity of factoring a rational num-
ber, or, which is equivalent, integer factorization. We now turn to the opposite
argument, namely, a lower complexity bound for Iso, given by the problem of
extracting modular square roots. But as there seems to be no essentially better
way to extract square roots than to factor the module, and two essentially dif-
ferent square roots yield a non-trivial factor of the module, the upper and lower
bounds we give on Iso can be considered close.

Sqrt Square root problem
INPUT: N ∈ N such that −1 ∈ (Z/NZ)∗2.
OUTPUT: s ∈ Z such that s2 ≡ −1 mod N .

Note that the condition on N can be rephrased as follows: Every odd prime
factor p of N satisfies p ≡ 1 mod 4, and 4 6 |N .

Theorem 5.4.2 (Schnorr) There is a reduction Iso <1 Sqrt.
More precisely, if −1 ∈ (Z/NZ)∗2, then the following problems are

polynomial-time equivalent:

1. compute a (nontrivial) isotropic vector of 〈1, 1,−N〉,

2. find a square root of −1 modulo N ,

3. represent N by the definite binary form 〈1, 1〉, i. e. as a sum of two squares.

Proof : See [Sch04a]. �

In the same paper it is shown, that

Theorem 5.4.3 (Schnorr)

(a) Let f be an isotropic ternary form representing m ∈ Z. If an isotropic
vector is given, then a representation f(v) = m can be computed in poly-
nomial time.
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(b) Let f, g be equivalent isotropic ternary forms. If an isotropic vector is
given for each of the two forms, then a transformation f S = g can be
computed in polynomial time.

Thus, in effect, both representation and transformation problems are at most
as hard as constructing an isotropic vector. Thus, the complexity of both prob-
lems is close to that of factoring.
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Chapter 6

The Impact of the Base
Ring on Complexity

In this chapter, we will study the transformation and representation problems
over several rings different from the integers. We have already started whith
these investigations in Sections 3.2 and 3.3, concerning finite prime fields and
the rings of p-adic integers respectively.

We show that over the rational numbers, the complexity of the transfor-
mation problem is closely related to factoring (as detailed in Sect. 6.1), and
therefore it can be solved in subexponential time.

Subsequently, we consider the representation problem over rings of formal
power series and polynomials. We analyse the question how closely the com-
plexity of our problems is related to the complexity over the base field. In
particular, for power series the problems are

6.1 Forms over the Rational Numbers

In this section, we will show that the transformation problem over the rationals is
essentially equivalent to factoring the determinants of the forms involved. More
precisely, we show that TrafoQ is not harder than factoring, but at the same
time not easier that extracting square roots of −1 modulo some divisor of the
determinant. This problem can be considered ‘almost equivalent’ to factoring
because two essentially different square roots yield a non-trivial factor of the
modulus, and because there seems to be no essentially better way to extract
square roots than to factor the modulus.

Recall the definition of Fact, the factorization problem, from Sect. 5.2.

Let p, q ≡ 1 mod 4 be distinct primes, and let N := pq. Let us call such N
counter-Blum integers (in analogy to the Blum integers N ′ = p′q′ with p′, q′ ≡
3 mod 4). Recall that then the equation

x2 ≡ −1 mod N (6.1)

87



88 CHAPTER 6. THE IMPACT OF THE BASE RING ON COMPLEXITY

is solvable for every counter-Blum integer N . The integer factorization problem
is not likely to become significantly easier if restricted to such numbers; compare
it to the well-known hardness hypothesis for Blum integers [BBS86].

We will consider the problem of computing a solution x of (6.1). Note that
we have considered a slightly more general problem in Sect. 5.4.

Imag Imaginary root problem
INPUT: N ∈ N such that N = pq, with p, q primes ≡ 1 mod 4.
OUTPUT: s ∈ Z such that s2 ≡ −1 mod N .

Theorem 6.1.1

(a) For n, s ∈ N, denote by I the properties f classically integral, binary,
indefinite, and anisotropic for a quadratic form f . Then

Imag �1 TrafoQ(I).

(b)
TrafoQ 41 FactZ.

For an instance (f, g) of TrafoQ, it suffices to call the oracle to factor
(det f)(det g).

Proof :

(a) Let N be an instance of Imag, i. e. N = pq, with prime factors p, q ≡
1 mod 4. Define

f := 〈1,−N〉, g := 〈−1, N〉.

Obviously, these are indefinite, and they are anisotropic since N is not a
perfect square, see [Cas78, ch. 4, lm. 2.4]. We claim that f and g are
Q-equivalent. Obviously, f and g are equivalent over the reals, as both
are R-equivalent to the form 〈1,−1〉. Moreover, we can compute Hasse-
Minkowski invariants as follows. Recall the rules for the norm residue
symbols from Sect. 1.2.5. Let N = pq. Then

cp(f) =
(

1, −N

p

)
= 1,

and

cp(g) =
(
−1, N

p

)
=
(
−1, p

p

) (
−1, q

p

)
︸ ︷︷ ︸

=1

=
(
−1
p

)
= 1.

An analogous computation works for q instead of p. Hence it follows from
the Hasse Principle 1.2.11 that f ∼Q g.

Ask the oracle for S = (sij) ∈ GL2Q satisfying f S = g, i. e.

St

(
1
−N

)
S =

(
−1

N

)
,
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whence
s2
11 − s2

21N = −1

Compute k ∈ N minimal such that σ11 := ks11, σ21 := ks21 are integers
(via the Euclidean Algorithm). Write k = N `k0 with N 6 | k0. Then the
equation

σ2
11 − σ2

21N = −k2
0 N2` (6.2)

holds in Z. We claim that we can assume ` = 0 without loss: Indeed,
otherwise (6.2) implies σ11 = σ′11N for some σ′11 ∈ Z. Hence

(σ′11)
2N − σ2

21 = −k2
0N

2`−1.

But now it follows that σ21 = σ′21N with σ′21 ∈ Z. Thus

(σ′11)
2 − (σ′21)

2N = −k2
0 N2(`−1),

analogously to (6.2). Inductively we arrive at ` = 0.

Now (6.2) with ` = 0 implies

σ2
11 ≡ −k2

0 mod N. (6.3)

If γ := gcd(k0, N) 6= 1, then γ is p or q, and the factorization of N allows
to compute square roots of −1 modulo p and q, and combine them by
means of the Chinese Remainder Theorem.

Otherwise, gcd(k0, N) = 1, and we can compute k̄ ∈ Z such that k̄ k0 ≡
1 mod N . Then (6.3) implies that (σ11k̄)2 ≡ −1 mod N.

(b) Let (f, g) be an instance of TrafoQ, and let n := dim f . Then ϕ := f ⊥
(−g) is isotropic.

Retrieve the factorization of det ϕ = (−1)n(det f)(det g) from the oracle.
Then an algorithm by Simon ([Sim05a], see also [Sim05b]) constructs an
isotropic vector (0, 0)t 6= (v1, v2)t ∈ Q2n for ϕ in deterministic polynomial
time. If f(v1) = 0 then also g(v2) = 0. At least one of the vi 6= 0, hence
both f and g are isotropic as f ∼ g. If v1 6= 0 6= v2, then these are isotropic
vectors for f, g; if without loss v2 = 0, then the factorization of det g can
be employed again to construct a primitive isotropic vector v′2 for g. Now
if v1, v2 are isotropic vectors for f, g, it is easy and well-known that one
can find matrices Hi ∈ GLnQ with f H1 = h0 ⊥ f1 and g H2 = h0 ⊥ g1

for some (n− 2)-ary forms f1, g1, where h0 is the “hyperbolic plane” with
associated matrix

(
0 1
1 0

)
, see [Cas78, ch. 2, lm. 2.1 and its cor. 1]. By Witt’s

lemma (Lemma 1.2.5), f1 ∼Q g1 holds. We recursively call the procedure
outlined here, yielding eventually a transformation f1S = g1. Then return

T := H1

 1
1

S

H−1
2

since then f T = g.
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If, however, a := f(v1) 6= 0, then also g(v2) = a. Find two bases of Qn with
v1, respectively v2, as first vector. Thus we obtain matrices Ui ∈ GLnQ
with

f U1 = 〈a〉 ⊥ f2 and g U2 = 〈a〉 ⊥ g2

for (n− 1)-ary forms f2,g2, and if the recursion produces f2S = g2,
then output T := U1

(
1 0
0 S

)
U−1

2 .

Finally, this recursion will be called at most n times so that we have
established a polynomial-time algorithm.

�

We will reuse the technique from part a) in Chapter 8.

6.2 Rings of Formal Power Series

6.2.1 Introduction and summary of results

We have seen in Sections 3.2 and 6.1 that the transformation and representation
problems are relatively easy over the fields F and Q. It is natural to ask whether
these problems are any harder over the polynomial rings F[x] or Q[x], or, more
generally, over the polynomial ring of an arbitrary field K. We will come back
to this question in Sect. 6.3; for now we show that over rings of formal power
series, representations are no harder to compute than over the ground field.

Given a commutative ring R, the ring of formal power series over R, denoted
R[[x]], is the set of all

∞∑
i=0

aix
i,

where ai ∈ R, and x /∈ R is a variable. We will not write out quadratic forms
explicitly in this section, so there should be not confusion with the variables of
the quadratic form.

The algebraic operations are defined in the following natural way:( ∞∑
i=0

aix
i

)
+

( ∞∑
i=0

bix
i

)
=

∞∑
i=0

(ai + bi)xi

and ( ∞∑
i=0

aix
i

) ( ∞∑
i=0

bix
i

)
=

∞∑
i=0

i∑
j=0

ajbi−jx
i.

Turning to algorithmic questions, power series are not directly suitable for
finite encoding because a single series involves an infinitude of coefficients. But
similar to real, or p-adic, numbers, we can approximate ring elements up to
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a certain desired precision. By convention, determining an element
∑

i aix
i ∈

R[[x]] to precision D ∈ N0 means to find its coefficients a0, . . . , aD.
More generally, we can consider the question whether there is is an approxi-

mative solution to a problem up to precision D; this is equivalent to computing
in the ring

R[[x]]/(xD+1) ∼= R[x]/(xD+1).

So if we talk about algorithms and computational problems over power series
rings, we always assume that the input includes the specification of the desired
precision D (e. g. by the unary string 1D). An algorithm may then read a
polynomial number of coefficients of the input power series, where polynomial
means polynomial in D.

On the other hand, we assume that we can do exact arithmetic in the ground
field. Therefore, the term ‘precision’ will have a unique meaning.

We first state our result on the ring of formal power series. Recall the defi-
nition of the computational problems from Sect. 1.3 and that of their decisional
analogues from Sect. 3.1.

Theorem 6.2.1 Let K be a field of characteristic 6= 2.

(a) Let D ∈ N0 be given. Then the decisional representation problems over
K, and over K[[x]] to precision D are Karp-equivalent. Likewise, the
computational representation problems are polynomial-time equivalent for
one oracle call each. In other words:

DReprK[x]/(xD+1)
n ≈K DReprK

n

and
ReprK[x]/(xD+1)

n ≈1 ReprK
n .

(b) If K is infinite, then

DReprK[[x]]
n ≈K DReprK

n and ReprK[[x]]
n ≈1 ReprK

n .

6.2.2 Upper bounds

We start by proving the following arithmetic rules for matrices over rings of
power series.

Lemma 6.2.2 Let R be a ring with encoding. Let X ∈ R[[x]]l1×l2 , Y ∈
R[[x]]l2×l3 , Z ∈ R[[x]]l1×l3 and let

X =
∞∑

i=0

Xix
i, Y =

∞∑
i=0

Yix
i, Z =

∞∑
i=0

Zix
i

with Xi ∈ Rl1×l2 , Yi ∈ Rl2×l3 , and Zi ∈ Rl1×l3 for i ∈ N0.
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(a) Let X Y = Z. Then

Zq =
q∑

ν=0

XνYq−ν .

In particular, Z0 = X0 Y0.

(b) Let Xt =
∑∞

i=0 X ′
ix

i. Then X ′
i = Xt

i for all i ∈ N0.

(c) Let XtY X = Z. Then

Zq =
∑

λ,µ,ν∈N0
λ+µ+ν=q

Xt
λYµXν .

Proof :

(a) Induction over q.

(b) Trivial.

(c) Follows from a) and b).

�

Note that it follows immediately from part b) that for associated matrices
A =

∑∞
p=0 Apx

p, Ap ∈ Rn×n of quadratic forms all Ap are symmetric.

Proposition 6.2.3
Let K be a field with encoding, not of characteristic 2. Let n ∈ N. Then

(a) DReprK
n 4K DReprK[[x]]

n ;

(b) ReprK
n 41 ReprK[[x]]

n ;

(c) DTrafoK
n 4K DTrafoK[[x]]

n ;

(d) TrafoK
n 41 TrafoK[[x]]

n .

Proof :

a) and b) Let f be an n-ary form over R and let M ∈ R. Obviously, if f −→R M ,
then also f −→R[[x]] M because R ⊆ R[[x]]. Conversely, let u ∈ R[[x]]n

with u =
∑∞

p=0 upx
p, up ∈ Rn, satisfy f(u) = M . If A is the associated

matrix of f , then, by Lemma 6.2.2, we have ut
0Au0 = M and therefore

already f(u0) = M .

Thus we have shown that f −→R M if and only if f −→R[[x]] M . There-
fore, to decide whether M is represented by f over R for part a), it suffices
to pass the instance over to the DReprR[x]

n -oracle, which can be done in
time O(1).

In the same vein, on query (f,M), the ReprR[[x]]
n -oracle will respond

with u =
∑D

p=0 upx
p (for some desired precision D ≥ 0), up ∈ Rn, with

f(u) = M . By the above argument, it follows that f(u0) = M .
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c) and d) Let f, g be n-ary forms over R. Obviously, if f ∼R g, then also f ∼R[[x]] g.
Conversely, let T ∈ GLnR[[x]] with T =

∑∞
p=0 Tpx

p, Tp ∈ Rn×n, satisfy
f T = g. So if A,B are the associated matrices of f, g respectively, then,
by Lemma 6.2.2, we have T t

0AT0 = B and therefore already f T0 = g.

Thus we have shown that f ∼R g holds if and only if f ∼R[[x]] g. Therefore,
to decide equivalence over R for part c), it suffices to pass the instance
over to the DTrafoR[[x]]

n -oracle, which can be done in time O(1).

Pass (f, g) to the TrafoR[[x]]
n -oracle. It will output T =

∑D
p=0 Tpx

p for
some D, Tp ∈ Rn×n, with f T = g. By the above argument, it holds that
f T0 = g. Finally note that T0 can be extracted from T in time linear in
the encoding length of T .

�

Remark. It can be read off from the proof that analogous assertions hold for
general representations of k-ary forms by n-ary forms, see [Min11]. Of these,
we have covered the cases k = 1, i. e. representations in our (narrower) sense,
and k = n, i. e. transformations.

6.2.3 Lower bounds for representations

We now turn to the more involved converse reductions.

Lemma 6.2.4 Let K be a field with encoding, not of characteristic 2. Let f be
an n-dimensional quadratic form over K[[x]], let M ∈ K[[x]], q ∈ N, q < |K|
and let u ∈ K[[x]]n satisfy

f(u) ≡M mod xq.

Then there is ũ ∈ K[x]n such that

f(ũ) ≡M mod xq+1 and u ≡ ũ mod xq.

The coefficient vectos at xq of all possible vectors ũ form an affine space over
K. A parametrization of this affine space can be computed in polynomial-time
(with respect to to the encodings of M , u, and f).

In particular, one such vector ũ can be computed in polynomial time.

Proof : Denote by

A =
∞∑

p=0

Apx
p

the associated matrix of the form f , Ap ∈ Kn×n symmetric. Similarly, let

M =
∞∑

p=0

Mpx
p and u =

∞∑
p=0

upx
p
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with Mp ∈ K and up ∈ Kn for p ∈ N0. Then by Lemma 6.2.2, we have∑
λ,µ,ν∈N0
λ+µ+ν=q

ut
λAµuν = Mp

for all p = 0, . . . , D.
We may assume that M0 6= 0. Namely, the statement holds for M if and

only if it holds for M replaced by the polynomial

M ′ :=
q∑

i=0

Mix
i.

So without loss M is a polynomial of degree at most q and not identically zero.
Hence substituting q+1 arbitrary pairwise distinct values from K into M yields
at most one t ∈ K for which M(t) 6= 0. But replacing A, M , and u by A(x− t),
M(x− t), and u(x− t) leaves us with the case M0 6= 0 above. This is possible
since q < |K|.

Now by hypothesis f(u) ≡ M mod xq with q ≥ 1, which by Lemma 6.2.2
and equating coefficients yields

ut
0A0u0 = M0 6= 0.

This implies that A0u0 6= 0, and hence that the bilinear form x 7→ xtA0u0 on
Kn is nondegenerate.

Let

U :=
1
2

Mq −
∑

λ+µ+ν=q
λ, ν<q

ut
λAµuν

 . (6.4)

By the last paragraph, there is v ∈ Kn such that

U = vtA0u0. (6.5)

Obviously, the set of all such v forms an affine space which can be computed by
standard efficient linear algebra.

For such a vector v, define ũ ∈ (K[x])n by

ũp :=

 0 if p > q,
v if p = q,
up else.

(6.6)

Then by construction u is a polynomial (rather than a series),

u ≡ ũ mod xq,

and therefore
f(ũ) ≡ f(u) ≡M mod xq. (6.7)
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Hence it only remains to compute the q-th coefficient of ũtAũ. By Lemma 6.2.2,
this coefficient equals∑

λ+µ+ν=q

ũλAµũν = vtA0u0 + (vtA0u0)t +
∑

λ+µ+ν=q
λ, ν<q

ut
λAµuν

= 2U +
∑

λ+µ+ν=q
λ, ν<q

ut
λAµuν

= Mq,

the second equality being due to (6.5) and the last one to (6.4). Therefore

f(ũ) ≡M mod xq+1,

as was to be shown.

The same argument also shows that the set of q-th components of all possible
ũ satisfying the claim arise from the different solutions v of (6.5). As was argued
there, this is is an affine space over K. �

Proposition 6.2.5 Let K be a field not of characteristic 2.

(a) Given D ∈ N0, a quadratic form f over K[[x]], and M ∈ K[[x]]\{0}, and
access to a DReprK

n -oracle, it can be decided in polynomial time whether
M can be represented up to precision D, and such an approximative rep-
resentation can be computed in polynomial time; in other words:

DReprK[x]/(xD+1)
n 4K DReprK

n and ReprK[x]/(xD+1)
n 41 ReprK

n .

(b) If K is infinite, then

DReprK[[x]]
n 4K DReprK

n and ReprK[[x]]
n 41 ReprK

n .

Proof :

(a) First consider the computational problem. If D < |K|, ask the oracle for
the solution of the scalar problem modulo x. Then we can inductively
apply Lemma 6.2.4 for D times to obtain a solution modulo xD+1. If,
however, D ≥ |K|, then an exhaustive search on K[x]/(xD+1) takes only
polynomial time.

For the decision problem, it follows directly from the last paragraph that if
D < |K|, then the problem modulo xD+1 is solvable if and only if the scalar
problem modulo x is (see Proposition 6.2.3). In case D ≥ |K|, perform an
exhaustive search, and observe whether a solution can be found.
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(b) If K is infinite, then a solution to the scalar problem modulo x can be
lifted inductively by Lemma 6.2.4 to arbitrarily high degrees; hence a
representation over K[[x]] exists if and only if one exists for the scalar
problem (again see Proposition 6.2.3). Moreover, up to a given precision
D such a solution can be found by iterative application of Lemma 6.2.4.

�

Together with Proposition 6.2.3, this proves Theorem 6.2.1.

6.3 Polynomial Rings

In this section, we analyze the complexity of the representation problem when
replacing the coefficient ring with its ring of polynomials (in some finite number
of variables). It turns out that as a lower bound, we can only give the problem
of solving simultaneous quadratic equations.

Simultaneous representation problem over R, SReprR
n

INPUT: r ∈ N, quadratic forms (fi | i = 1, . . . , r) of dimension n,
and mi ∈ Rr such that there is u ∈ Rn\{0} satisfying fi(u) = mi.

OUTPUT: Vector u ∈ Rn such that fi(u) = mi for all i.

Analogously, we define the decision problem DSReprR
n .

It should be noted that DSRepr is undecidable over Z [Mat93, sec. 1.2], and
thus also SRepr may be much harder than Repr for many rings R. However,
this is not the case in general: For K an algebraically closed field, for instance,
SReprK

n can be solved using techniques from algebraic geometry (cf. Bézout’s
Theorem [Sha74, §IV.2.1]).

Theorem 6.3.1 Let K be a field with encoding, not of characteristic 2. Let
n ∈ N. Then

(a) DSReprK
n < DReprK[x]

n <K DReprK
n ,

(b) SReprK
n < ReprK[x]

n <1 ReprK
n .

The remainder of this section is devoted to the proof of Theorem 6.3.1. As
for power series, we can directly infer:

Proposition 6.3.2
Let K be a field with encoding, not of characteristic 2. Let n ∈ N. Then

(a) DReprK
n 4K DReprK[x]

n ;

(b) ReprK
n 41 ReprK[x]

n , and one oracle call suffices;
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(c) DTrafoK
n 4K DTrafoK[x]

n ;

(d) TrafoK
n 41 TrafoK[x]

n , where one oracle call suffices.

Proof : Analogous to Proposition 6.2.3. �

As R[x] is a subring of R[[x]], Lemma 6.2.2 can still be applied to matrices
with polynomial coefficients. We can simply consider these polynomials as power
series whose coefficients all vanish but finitely many.

Lemma 6.3.3 Let K be a field with encoding, not of characteristic 2. Let f
be an n-dimensional quadratic form over K[x], let M ∈ K[x], q, k ∈ N and let
u ∈ K[x]n satisfy

f(u) ≡M mod xq.

Then there is ũ ∈ K[x]n such that

f(ũ) ≡M mod xq+k (6.8)

and
u ≡ ũ mod xq. (6.9)

The set

{ ũq

...
ũq+k−1

 ∈ Kk
∣∣∣ ũ :=

q−1∑
i=0

uix
i +

r+k−1∑
i=q

ũix
i

satisfies (6.8), (6.9)
}

=: M (6.10)

forms an affine space over K. A parametrization of this affine space can be
computed in polynomial time.

In particular, one such vector ũ can be computed in polynomial time.

Proof : The first statement follows from Lemma 6.2.4 by an easy induction
on k. We only have to show that M of (6.10) is an affine space over K.

From Lemma 6.2.4, we know that when lifting the exponent of x by one, we
obtain an affine space as set of q-th components, i. e. the set of solutions of a
(possibly inhomogeneous) system of linear equations.

Now employ induction on k again. Suppose we already know that

{ ũq

...
ũq+k−2

 ∈ Kk−1
∣∣∣ ũ :=

q−1∑
i=0

uix
i +

r+k−2∑
i=q

ũix
i satisfies

f(ũ) ≡M mod xq+k−1 and (6.9)
}

=: M′ (6.11)
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is an affine space over K, and that we know a parametrization

M′ = w + C Kk−1,

where w ∈ Kk−1 and C ∈ K(k−1)×(k−1), not necessarily regular. Proceed
according to the proof of Lemma 6.2.4. The newly added component in (6.10)
depends affine linearly jointly on all the the ũq, . . . , ũq+k−2, v = ũq+k−1. As
the composition of affine functions is affine, the set M from the statement is
affine-linear as well. �

For the application of Lemma 6.3.3 to polynomials, we do not only have to
lift to a correct solution modulo higher powers of the variable, but also to ensure
that this lifting process will terminate after some finite number of steps.

For a vector v ∈ K[x]n, define its degree by deg v := maxn
i=0 deg(vi). Anal-

ogously, we define the degree of a matrix over K[x]. By the degree deg f of
a form f we mean the degree of its associated matrix; this should lead to no
confusion since we only consider quadratic forms.

Lemma 6.3.4 Let K be a field with encoding, not of characteristic 2. Let f be
an n-dimensional quadratic form over K[x], let M ∈ K[x], deg M ≤ q, k ∈ N
and let u ∈ K[x]n satisfy

f(u) ≡M mod xq.

Moreover, let ũ ∈ K[x]n with deg ũ ≤ q − 1 satisfy u ≡ ũ mod xq.

Then the equation
f(ũ) = M

over K[x] is equivalent to a system of linear equations and (deg f) + q − 1 qua-
dratic equations over K. These quadratic equations correspond to representation
problems for the forms f0, . . . , fdeg f via Proposition 1.2.1.

Proof : By the aid of Lemma 6.2.2, consider the (infinitely many) equations
which arise by equating coefficients in f(ũ) = M at like powers of x. By
hypothesis, we have Mi = 0 and ũi = 0 for all i ≥ q; hence it can be easily
verified that the equations are automatically satisfied from degree (deg f)+2q−1
onwards. The remaining equations are, of course, at most quadratic; more
precisely, they are quadratic up to degree (deg f) + q and linear afterwards.
The homogeneous part of the quadratic ones are exactly the scalar forms fi,
i = 1, . . . ,deg f , where

f =
deg f∑
i=0

fix
i.

By Proposition 1.2.1, these conditions correspond to a system of linear equations
and representation problems with respect to the fi. Since we are working over
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a field, the linear modular equations can be omitted. �

This concludes the proof of the the lower bound in Theorem 6.3.1: To solve
ReprK[[x]], we ask the oracle for the solution of the scalar problem (a single
representation problem over K), and lift this solution via Lemma 6.3.4, which
requires another oracle call.

Together with Proposition 6.3.2, this proves Theorem 6.3.1.
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Chapter 7

Complexity for Varying
Dimension

In this chapter, we turn back to quadratic forms over Z, and analyze how
complexity of the transformation problem changes with varying dimension. It
will turn out that if Trafo is hard, then it is still hard if restricted to ternary
and quaternary forms. This is particularly promising because this allows for
small keys in cryptography, and because there are many anisotropic classes in
these dimensions which do not allow for an attack as in Sect. 5.4.

7.1 Dimension Shift to Ternary and Quaternary
Forms

7.1.1 Introduction and result

In this section, we prove that in fixed dimension n ≥ 3, computing transforma-
tions is no harder than in small dimension, i. e. three or four. This shows that
if computing transformations is hard for any bounded dimension n ≥ 3 at all,
then it is necessarily hard in dimensions 3, 4.

Instead of Trafo, we will consider the problem FTrafo. They differ only
by an additional input in FTrafo: For an instance (f, g), the factorization of
det f is given for free. This modification will be motivated in Chapter 8. We
will, however, suppress this extra information in writing down instances. This
should not lead to any confusion.

Theorem 7.1.1 Let n ≥ 5, and let d ∈ Z be odd and squarefree. Then

FTrafon(d) �1 FTrafon−2(d).

Remark. Note that the converse of Theorem 7.1.1 is not obvious: Suppose
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we replace the forms f , g by adding some form, say h, orthogonally to each of
them; i. e. compute f ′ = f ⊥ h and g′ = g ⊥ h. Assume further that an oracle
supplies us with a matrix S′ such that f ′ S′ = g′. Then S′ does not necessarily
split into a direct sum of a transformation from f to g and an automorphism of
h, so it is not clear how to obtain information on a matrix S satisfying f S = g.

Corollary 7.1.2 Let n ≥ 5, and let d ∈ Z be odd and squarefree. Then

FTrafon(d) � FTrafo3(d) if n is odd, and
FTrafon(d) � FTrafo4(d) if n is even.

�

For the proof we will need a decomposition algorithm which will be explained
in the next section.

7.1.2 Direct sum decomposition of isotropic forms

It is an elementary and well-known fact that a regular isotropic form f over a
field characteristic 6= 2 is equivalent to a form of the shape H ⊥ f0, where f0

is a regular ((dim f) − 2)-dimensional form, and H is the so-called hyperbolic
plane, i. e. the form with associated matrix(

0 1
1 0

)
. (7.1)

Theorem 7.1.3, whose proof can be found in [Sch04b], shows that a similar
decomposition exists over Z; moreover, it can be computed efficiently in the
case of at least ternary forms of squarefree determinant.

Theorem 7.1.3 (Schnorr) There is a polynomial-time algorithm which, given
an isotropic regular quadratic form f with d := det f squarefree and n :=
dim f ≥ 3, along with an isotropic vector v ∈ Zn\{0}, constructs U ∈ GLn(Z)
such that the form f U has an associated matrix of the shape

0 1 0 . . . 0
1 0 0 . . . 0
0 0
...

... A0

0 0

 , (7.2)

where A0 is a symmetric (n× n)-matrix.
In particular, such a decomposition exists for f .
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Remark. It is not usual to call the integral form H with associated ma-
trix (7.1) a hyperbolic plane; this term is resticted to forms over fields. This
distinction is motivated by the fact that over a field of characteristic 6= 2, the
hyperbolic plane is, up to equivalence, the only isotropic binary form of non-
zero determinant. This does not hold for H over Z as there are infinitely many

such Z-classes (e. g. for all a ∈ N, the form with associated matrix
(

0 a
a 0

)
).

However, binary isotropic forms over Z can be called “lattices on the (rational)
hyperbolic plane”.

7.1.3 Conclusion of the proof

We can now finish the proof of Theorem 7.1.1.

Proof of Theorem 7.1.1: Let (f, g) be an instance of
FTrafon(d). If they are definite the problem can be solved by use of Theo-
rem 5.3.1 (note that n is fixed). So suppose they are indefinite. By Meyer’s
Theorem 1.2.12, the form f is isotropic since n ≥ 5.

By Simon’s algorithm ([Sim05a, Algorithm 7]), we can use our knowledge of
the factorization of d = det f = det g to construct an isotropic vector for each
form. As d is squarefree, we can apply Theorem 7.1.3 to efficiently compute
S1, S2 ∈ GLn(Z) with

f S1 = h ⊥ f0 and g S2 = h ⊥ g0

where h is the form with associated matrix (7.1). Now by Witt’s lemma for
p-adic integers Lemma 1.2.5, f0 ∼Zp g0 for all symbols p 6= 2. Since d is odd, it
follows by Proposition 1.2.17 that f0 ∼g g0. Now we deduce that f ∼ g from
Theorem 1.2.18 because dim f0 ≥ 3 and d has no multiple prime divisors.

Obviously, if the oracle outputs T ∈ GLnZ with f0 T = g0, then a solution
S of the original problem is readily computed via S := S1(I2 ⊕ T )S−1

2 , where
I2 ∈ GL2Z is the identity matrix. �

7.2 Binary Forms

In [Gau89, art. 171–182], Gauß gave an algorithm for the transformation prob-
lem on indefinite binary quadratic forms. This algorithm has been extensively
studied (see [Sha72], [Lag80], [Len82], [BB97]). It does not necessarily termi-
nate in polynomial time; however, the running time is polynomial in the size of
a minimal solution.

In a crytographic setting as in Chapter 2, a solution to the Trafo-instance
(f, g) is used as the secret key. An upper bound B on the length of the keys
is a public parameter. Hence Gauß’ algorithm extracts the secret key from the
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public key (f, g) in time polynomial in B. This rules out the use of binary forms
in the schemes of Chapter 2.

It should be noted that there is an alternative way of representing equiva-
lence transformations, explored by Buchmann, Thiel, and Williams in [BTW95].
They show that given equivalent binary forms f, g, a matrix S ∈ GL2Z satis-
fying f S = g can be represented as power products of small matrices, so that
the length of this representation is polynomial in the sizes of f and g. If we
ask for such a concise description of a transformation then the above argument
does not apply any more. However, this would ask for a major adaptation of
the crypto-schemes.

Theorem 7.2.1 There exists an algorithm which, given equivalent binary in-
tegral quadratic forms f , g computes an equivalence transformation in time
polynomial in

length (f) , length (g) , and min{length (S) |S ∈ GL2Z, f S = g}.

Proof : At first, for indefinite binary forms, small representations can be
constructed in polynomial time. This is because Gauß [Gau89, art. 183–204]
has given a definition of reducedness for indefinite binary forms. Moreover, he
presented an algorithm which given any indefinite binary form f , computes an
equivalent reduced form f ′ and a matrix T ∈ GL2Z such that f T = f ′. There
are only finitely many reduced forms in each class. Moreover, given any reduced
form f0 say, an algorithm closely related to the reduction procedure enumerates
the ‘cycle’ of all reduced forms

f0, f1, . . . , fe−1, fe = f0, fe+1 = f1, . . .

together with matrices

R0 = I,R1 . . . , Re−1, Re, Re+1 . . .

such that f0 Ri = fi mod e, for all i. This cycle consists exactly of the re-
duced forms in the class of f0. There is also a converse enumeration, producing
the forms in order f0, fe−1, fe−2, and so on. Reduction has been shown to be
polynomial-time (in [BB97], see also [Lag80]); in particular, there is always a
transformation into a reduced form of size polynomial relative to the size of the
original form. Moreover, each step fi 7→ fi+1 of the cycle enumeration process
requires only time polynomial in the size of fi. Enumeration of reduced forms
starting from f = ax2 + bxy + cy2 of determinant −D < 0, is known to corre-
spond to the standard continued fraction expansion of

√
D−b
2a , see [Coh93, sec.

5.2 and 5.6]: If pk

qk
is the k-th convergent in this expansion, then

Rk =
(

pk−1 pk

qk−1 qk

)
in the above notation. It is known that denominators of the convergents grow
exponentially, more precisely

qk ≥ 2(k−1)/2 (7.3)
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see [Per54]. Hence, the size of the Rk grows exponentially in k.
Now let f , g be two equivalent indefinite binary forms linked by an (un-

known) transformation S. The reduction algorithm yields another two equiv-
alent forms f ′, g′. By the above argument, there is a matrix S′ satisfying
f ′ S′ = g′ with the size of S′ polynomial in that of S. Then by (7.3), this occurs
if and only if f ′ and g′ are only logarithmically many steps apart in the cycle,
relative to their size. Hence S′, and therefore S, can be computed by executing
linearly many enumeration steps in the size of S.

As this argument holds for all S, it certainly also holds for that of minimal
encoding length. �
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Part III

Hardness and
Interrelationship
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Chapter 8

Comparison with
Factorization

8.1 Introduction and Result

This part of this thesis (Chapters 8–10) is devoted to results which support our
assumption that Trafo, Repr are computationally infeasible (see Sect. 1.3.6).
In this short chapter, we show that finding transformations is not easier than
computing

√
−1 modulo a composite number of unknown factorization. As

argued in Sect. 6.1, this suggests that Trafo is at least as hard as factoring.
This is an important result because it establishes a concrete lower bound for

the complexity of Trafo (and by Theorem 10.1.1, thus also of Repr). However,
this result does not determine the exact complexity of these problems: By
contrast, we conjectured that solving Trafo requires exponential time, whereas
factoring can be accomplished in subexponential time (see the discussion on
p. 127). Moreover, factorization is closely related to TrafoQ by Theorem 6.1.1.
Computing transformations over the integers seems a much more complicate
task, as may be illustrated by the much more complex structure of equivalence
classes (see Sect. 1.2.5).

Recall from there that Imag stands for the problem of computing
√
−1

modulo a counter-Blum number.

Theorem 8.1.1

(a) For n, s ∈ N, denote by In,s the properties

f classically integral, dim f = n, sign f = s, and

gen f = cls +f

for a quadratic form f .

Then for every n ≥ 3 and 1 ≤ s ≤ n− 1, it holds that

Imag �1 Trafo(In,s).

109
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(b) For n, s ∈ N, denote by An,s the set of all properties from In,s, with
anisotropy added.

Then for s ∈ {1, 2} and s′ ∈ {1, 2, 3} it holds that

Imag �1 Trafo(A3,s), Imag �1,r Trafo(A4,s′).

Remark.

(a) The theorem refers to indefinite forms only: This is guaranteed by the
condition that 1 ≤ s, s′ ≤ dim f − 1.

(b) All indefinite anistropic forms of dimension ≥ 3 occurr in part b) of the
theorem, as there are no indefinite anisotropic forms of dimension ≥ 5 by
Meyer’s Theorem 1.2.12.

To prove our result, we employ a reduction similar to that of Sect. 6.1. A
major point of the proof will be the verification that the forms constructed
will be integrally equivalent. To this end, we will need a more sophisticated
criterion of equivalence, related to Theorem 1.2.18. This criterion is discussed
in Sect. 8.2.

8.2 Spinor Norm and an Equivalence Criterion

In the proof of Theorem 8.1.1, we have to reduce to an instance (f, g) of Trafo.
To show integral equivalence of these forms f, g, we need another notion, the
spinor norm.

The elements of

OR(f) := {T ∈ GLdim fR | f T = f}

are called R-automorphims of f (where R a ring containing the coefficients of
f). Moreover, the group of proper automorphisms of f over R is defined as

O+
R(f) := {T ∈ SLdim fR | f T = f}.

Let f be an n-ary form and let K be a field containing the coefficients of
f . Recall that f(·, ·) denotes the bilinear form associated to f , see Sect. 1.2.1.
Let v ∈ Kn satisfy f(v) 6= 0. Then we can define an element τv ∈ OK(f), the
symmetry with respect to v, by

τv(u) = u− 2f(u, v)
f(v)

v

for all v ∈ Kn.
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The spinor norm is a homomorphism

θ : OK(f) −→ K∗/
K∗2

τv 7−→ f(v)

For details, in particular for well-definedness, see [O’M63, sec. 55]. We will
employ the spinor norm over the p-adic fields Qp.

With the help of this homomorphism, we can state a general sufficient cri-
terion for the uniqueness of proper equivalence classes in a genus, whose proof
can be found in [O’M63, 102:9 and 102:10].

Criterion 8.2.1 Let f be a quadratic form over Z of dimension n ≥ 3 which
is indefinite. If

θ(O+
Zp

(f)) ⊇ (Zp)∗

for all p|2 det f , then
gen f = cls +f.

The crucial point is that there are sufficient criteria which are easier to
check. The following results can be found (in much wider generality) in [O’M63,
sec. 102,104].

Fact 8.2.2 Let p be a prime and f be an integral n-ary quadratic form. If

(a) p is odd, p 6 | det f and n ≥ 2, or

(b) p is odd, p3 6 | det f and n ≥ 3, or

(c) p = 2, p2 6 | det f and n ≥ 3,

then it holds that
θ(O+

Zp
(f)) ⊇ (Zp)∗.

Lemma 8.2.3 Let f be a quadratic form over the commutative ring R and
λ ∈ R not a zero divisor in R. Then

OR(f) = OR(λf) and O+
R(f) = O+

R(λf).

Proof : Indeed, for T ∈ GLR(f), it holds that (λf)T = λ(fT ), so fT = f if
and only if (λf)T = λf . �
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8.3 Conclusion of the Proof

Proof of Theorem 8.1.1: Let N be an instance of Imag. Let n ≥ 3 and
1 ≤ s ≤ n− 1 be given. Choose a1, . . . , an−2 ∈ Z, each of them coprime to 2N ,
with exactly s− 1 of them negative. Define

f := 〈 1, −N, a1N
2, a2N

2, . . . , an−2N〉
g := 〈 −1, N, a1N

2, a2N
2, . . . , an−2N〉.

(8.1)

Obviously, these are forms of dimension n and signature s.

We claim that f ∼g g. As det f = det g is odd, it suffices if

f ∼Zp g for p|a1 . . . an−2N∞

by Lemma 1.2.17. Therefore it suffices to prove that

f ′ := 〈1,−N〉 ∼Zp
g′ := 〈−1, N〉. (8.2)

Moreover, as det f ′ = det g′ = N , it even suffices to verify (8.2) for all p|N∞.

Obviously f ′ ∼R g′ holds. So let p|N be a prime. Then p is odd and −1 is
a square modulo p since N is counter-Blum (see Sect. 6.1). This implies that

〈−1, N〉 ∼Zp
〈1,−N〉.

This proves that f ∼g g. We will apply Criterion 8.2.1 to f, g. Let p|N .
Then 〈N, a1N〉 is an orthogonal component of f since n ≥ 3. Hence

θ(O+
Zp

(f)) ⊇ θ(O+
Zp
〈N, a1N〉)

= θ(O+
Zp
〈1, a1〉) by 8.2.3,

⊇ (Zq)∗ by 8.2.2.

Therefore, Criterion 8.2.1 yields gen f = cls +f . We already know that f ∼g g,
whence f ∼ g.

Now ask the oracle for S = (sij) ∈ GLnZ satisfying f S = g. Then

St


1
−N

a1N
. . .

an−2N

S =


−1

N
a1N

. . .
an−2N

 ,

so that

s2
11 − s2

21N +
n−2∑
i=1

s2
2+i,1aiN

2 = −1

follows by evaluation the first matrix entry. In particular,

s2
11 ≡ −1 mod N,
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and s11 is a solution of the original Imag-instance. This completes the proof of
part a).

To verify part b), we follow the above reduction with a more specific choice of
the ai. First consider the ternary case. Choose an arbitrary integer a′1 coprime
to N , and let

a1 ≡ −(a′1)
2 mod N.

The sign of a1 has to be determined as above, depending on s. Then we claim
that f in (8.1) is anisotropic.

Let N = pq with p, q prime. We compute the Hasse-Minkowski invariant of
f with respect to p:

cp(f) =
(

p,−a1p

p

)
=
(

p, p

p

)(
p,−a1

p

)
=
(
−1
p

)(
−a1

p

)
= 1 · 1 = 1. (8.3)

Here we have used that −1 is a square modulo p by hypothesis, and that
−a1 ≡ (a′1)

2 mod N is a square modulo p by construction. Moreover, we can
compute (

−1,−det f

p

)
=
(
−1,−a1p

2

p

)
=
(
−1,−a1

p

)
= 1

as p 6 | a1. Together with (8.3) we have cp(f) =
(−1,− det f

p

)
, which implies that

f is anisotropic by [Cas78, lm. 3.5 of ch. 4].

Finally consider the quaternary case. Find a prime r satisfying(
N
r

)
= −1. (8.4)

As N is not a perfect square in Z, we can find such a prime in random polyno-
mial time; this follows from quadratic reciprocity and Proposition 4.1.3. Subse-
quently, choose a′1, a

′
2 ∈ Z coprime to N such that

a′1a
′
2 ≡ −N mod r, (8.5)

and such that exactly s′ − 1 of these two are negative (e. g. choose a′1 = ±1
and a′2 = ±(r − λN), where λ ∈ Z is such that r < λN). Then set a1 := ra′1,
a2 := ra′2.

We claim that f from (8.1) is anisotropic. Note that

det f = −a1a2N
3 = (−N)(a′1a

′
2)r

2N2 ∈ Q∗2
r (8.6)

because of (8.5). Moreover, we have

f ∼Zr
〈1,−N, r,−Nr〉

by Lemma 1.2.14, and therefore

cr(f) =
(
−N, r

r

)(
−N,−Nr

r

)(
r,−Nr

r

)
=(

r, r
r

)(
r,−N

r

)
=
(
−1
r

)(
−N
r

)
= 1
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by (8.4). Together with (8.6), this shows that f is anisotropic, using [Cas78,
lm. 2.6 of ch. 4]. �

8.4 Problem Modification

By Theorem 6.1.1 and Theorem 5.4.3, the complexity of the transformation
problems both over Q on the one hand and over Z for isotropic ternary forms
on the other, are both closely related to the factoring the determinants. For
anisotropic forms over Z, however, the problems seem to be much harder: We
conjecture that the complexity of the transformation and representation prob-
lems over Z is exponential, see Sect. 1.3.6. In contrast, factorization can be
accomplished in subexponential time (see, for instance, [CP01, sec. 6.3]).

This suggests that the complexity of factoring does not really add to the
hardness of Repr and Trafo; in other words: The knowledge of the prime
factors of the determinant does not make these problems significantly easier.
Consequently, we will henceforth consider the problems

FTrafo(P), FRepr(P), ∗FRepr(P)

which are defined analogously to Trafo(P), Repr(P), and ∗Repr(P) with the
sole modification that the factorization of d is included in the input (see Sections
1.3.3 and 1.3.4).

Note that these problems have already shown up in Theorems 3.1.3, 3.1.5,
and 7.1.1.

For convenience, we will suppress the factorization in the notation of problem
instances. This should not cause any confusion as we always specify the exact
problem in question.



Chapter 9

NP-Hardness Results

9.1 Introduction and Summary of Results

In this chapter, we prove randomized NP-hardness of decisional variants of
the problems Trafo and Repr. More precisely, these problems ask whether
solutions (i. e. transformations or representations) exist in a cuboid included in
the problem instance. We will see that hardness can already be achieved in
fixed dimension. Moreover, we prove that the decisional representation problem
for definite forms is NP-complete in dimensions n ≥ 5.

For the case of anisotropic forms, we will use a number-theoretic assumption,
the special Cohen-Lenstra Heuristics (sCLH), which is discussed in Sect. 9.3.

We begin by introducing the decision problems we are going to examine.

IRepr Interval representation problem
PARAMETERS: Set P of properties of quadratic forms.
INPUT: n ∈ N, n-ary quadratic form f satifying all properties from
P, integer m, vectors v, w ∈ (Z∪{±∞})n, factorization of det f .

OUTPUT: x ∈ Zn, vi ≤ xi ≤ wi for all i such that f(x) = m.

DIRepr Decisional interval representation problem
PARAMETERS: Set P of properties of quadratic forms.
INPUT: n ∈ N, n-ary quadratic form f satifying all properties from
P, integer m, vectors v, w ∈ (Z∪{±∞})n, factorization of det f .

DECIDE: Whether there is x ∈ Zn such that vi ≤ xi ≤ wi for all i
and f(x) = m.

Note that the factorization of the determinant is always included in the
input, as is justified in Chapter 8.

To motivate why we consider these constraint problems, note that for the
problems without interval restrictions the decisional variant seems to be sig-
nificantly easier than the computational version, since DFRepr is efficiently
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solvable for important special cases, namely for forms belonging to one-class
genera, see Theorem 3.1.3.

The next proposition sets up the equivalence between IRepr and DIRepr.
This suggests that we may as well study IRepr if we are interested in the
complexity of the computational problems. When proving NP-hardness, it is
often easier (and more natural) to deal with a decisional problem as opposed to
a computational problem. Again, the unrestricted problems Repr and IRepr
are very unlikely to be equivalent.

Proposition 9.1.1
Let P be a set of properties. Then IRepr(P) and DIRepr(P) are polyno-

mial-time equivalent.

Proof : Obviously DIRepr(P) 4 IRepr(P).

To reduce IRepr(P) to DIRepr(P), use the following divide-and-conquer
algorithm:

input: instance (n, f, v, w,m) of IRepr(P)
output: vector x ∈ Zn: f(x) = m, v ≤ x ≤ w
for i = 1, . . . , n do

while wi − vi > 1 do
if DIRepr-oracle accepts on input (n, f, (v1, . . . , vi−1, d 12 (vi + wi)e,

vi+1, . . . , vn), w, m then
vi := d 12 (vi + wi)e

else wi := b 12 (vi + wi)c
fi

od
xi := wi

od
output x = (x1, . . . , xn).

Obviously, this algorithm constructs a solution, if one exists, in time O(n ·
log(‖w − v‖∞)), which is polynomial. Moreover, as the same quadratic form f
as in the input occurs in all the oracle calls, the properties P still hold. �

We now give the list of our hardness theorems. The proofs will be given in
the subsequent sections.

Theorem 9.1.2 Let M ∈ N odd,n ∈ N, n ≥ 3 be fixed. Let P consist of the
properties

dim f = n, f indefinite isotropic, gen f = cls +f,

f improperly primitive, and (det f,M) = 1

for a quadratic form f . Then DIRepr(P) is NP-hard under randomized reduc-
tions with one-sided error; precisely:

NP ⊆ RPDIRepr(P).
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The proof of Theorem 9.1.2 is relatively easy, in comparison with Theorems
9.1.2 and 9.1.8. Without the conditions (det f,M) = 1 and gen f = cls +f it
would follow directly from [MA78] (see the proof of Theorem 9.1.2 in Sect. 9.7,
Proposition 9.2.1, and the discussion thereafter). More precisely, this would
even prove NP-hardness, without randomization.

To obtain an analogous result valid for primitive and anisotropic forms, we
have to use a number-theoretic assumption which we call the special Cohen-
Lenstra Heuristics (sCLH). It will be defined and thouroughly discussed in
Sect. 9.3.

Recall that the complexity class RP (random polynomial time) consists of all
decicion problems for which there is a probabilistic worst-case polynomial-time
algorithm which accepts any ‘yes’-instances with probability ≥ 1

2 , and rejects
every ‘no’-instance. Note that the success probability can be enlarged to ≥ 1−ε,
for ε > 0, by iterating such a test d| log ε|e times independently, and accepting
if one of the executions accepts (see [Pap94] for details).

Theorem 9.1.3 Let M ∈ N be fixed. Let P ′M consist of the properties

dim f = 3, f indefinite anisotropic, gen f = cls +f,

f properly primitive, and (det f,M) = 1

for a quadratic form f . If the sCLH holds true, then DIRepr(P ′M ) is NP-hard
under randomized reductions with one-sided error; more precisely:

NP ⊆ RPDIRepr(P′M ).

The sCLH is employed to guarantee that we can, with high probability,
represent every integer by some element of a small set of anisotropic quadratic
forms to be constructed in the proof. This is much easier to ensure for isotropic
forms.

Let us take a closer look at the properties constituting P of Theorem 9.1.2
and P ′M of Theorem 9.1.3. At first, we have seen in Sect. 7.2 that for indefi-
nite binary forms, small representations can be constructed in polynomial time.
Therefore, dimension 3 is in this sense minimal for a hardness result. Beside
that, it is crucial that we actually have NP-hard problems in fixed dimension at
all, in contrast to well-known lattice problems (see the beginning of this section).
This also explains why we restrict ourselves to indefinite forms.

The fact that we can include the one-class condition as a hypothesis of this
theorems makes it clear that hardness of the problems on forms does by no means
depend on the number of classes in the genera of the input forms. Moreover,
one-class genera abound, so we also back our statement that hardness is not an
exceptional phenomenon.
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A remarkable share of the effort necessary to prove these Theorems 9.1.3
and 9.1.9 is owed to including this property in the statements. It would follow
directly from classical results [Cas78, p. 202f.] if we could restrict to forms with
squarefree determinant in the reduction. However, our proof does not carry over
to forms with squarefree determinant. See the discussion after Proposition 9.2.1
for details.

Finally, coprimeness of the determinant to a given number M allows, for
instance, the restriction to determiants without small prime factors, and, most
importantly, to odd determinant. In the arithmetic theory, a major difficulty
in the classification of forms lies in the investigation of their behavior locally at
the prime 2 (see [O’M63, §§ 63, 93], [Cas78, sec. 8.4], [Wat76], [Jon44]). Our
theorems 9.1.3, 9.1.2 imply that the computational complexity of our problems
is independent from the perfidies of dyadic arithmetic.

Under our reductions, ‘yes’-instances are mapped to representations of inte-
gers coprime to the form determinant. This implies that Theorems 9.1.2, 9.1.3
still hold if we restrict DIRepr to coprime representations (as in Sect. 1.3.3).

Corollary 9.1.4
Suppose that the sCLH holds true. If DIRepr(P ′M ) is solvable in probabilistic
polynomial time, then so is every NP-problem.

Proof : This is the standard interpretation of NP-hardness. �

The conclusion of Corollary 9.1.4, although potentially weaker than P=NP,
seems unrealistic, which is a good hint to the intractibility of DIRepr. For
the sake of completeness, we mention one of the most important cirteria un-
der which deterministic and probabilistic reducibility coincide, and under which
tractibility of DIRepr(P ′M ) and validity of the sCLH would indeed imply that
P=NP. Recall that E denotes the set of decision problems solvable in determin-
istic linear-exponential time, i. e. in time

O
(
2c `
)

in the input length `, for some c > 0 (see [Pap94, ch. 20]). By the Time
Hierarchy Theorem [Pap94, p. 145], there are problems in this set which require
homogeneous circuits families of exponential size. Each of them may or may
not have a subexponential inhomogeneous circuit family.

Corollary 9.1.5 If there is a decision problem in E which has no subexponen-
tional oracle ciruit family with access to a SAT-oracle, then DIRepr(P ′) is
NP-hard.

Proof : This follows directly from the derandomization results in [IW97]. �

In a bit more colloquial terms, Corollary 9.1.5 can be rephrased as follows:
DIRepr(P ′) is NP-hard unless non-uniformity admits remarkable savings in
complexity for every problem in E.
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Let us note yet another interpretation of this problem: Theorem 9.1.3 refers
to forms from one-class genera of dimension 3. We know that for such forms f ,
it can be decided in polynomial-time whether f

∗−→ m once the factorization
of det f is given, see Theorem 3.1.2 and the remark thereafter. This allows us
to reformulate Theorems 9.1.2 and 9.1.3 in the following way: Let a ternary
indefinite form f and an integer m be given. Then deciding whether all repre-
sentations x ∈ Z3, f(x) = m lie outside the cuboid given by v, w ∈ (Z∪{±∞})3
is co-NP hard under randomized reductions, and hence also presumably hard.
This still holds if we restrict to instances (f,m) for which a representation of m
by f exists.

Moreover, almost as a by-result of the proof, we obtain the following result
for the decisional representation problem on definite forms: The next theorem
states, in rough terms, that deciding whether a given lattice has a point on a
origin-centered sphere of given radius, is hard. Note that for this result we do
not require interval constraints to the problems, unlike for all other theorems in
this section.

Theorem 9.1.6 Let M,n ∈ N, n ≥ 5 be fixed. Let D describe the following
properties of a quadratic form f :

f positive definite, dim f = n, and (M,det f) = 1.

Then DRepr(D) is NP-complete.

Remember from Sect. 5.3 that for definite forms in constant dimension,
transformations can efficiently be computed. Hence Theorem 9.1.6 highlights
a major difference between representations and transformations in the case of
definite forms. As we shall see now, this difference does not occur for a large
class of indefinite forms.

Even more than in representations, we are interested in the hardness of
transformation problems. Modifying Trafo in the same spirit as Repr above,
we obtain hardness results similar to Theorems 9.1.2 and 9.1.3.

ITrafo Interval transformation problem
PARAMETERS: Set P of properties of quadratic forms.
INPUT: n ∈ N, n-ary quadratic forms f, g satifying all properties

from P, matrices A,B ∈ (Z ∪ {±∞})n×n, factorization of det f .
OUTPUT: T ∈ GLn(Z), Aij ≤ Tij ≤ Bij for all i, j such that

f T = g.

DITrafo Decisional interval transformation problem
PARAMETERS: Set P of properties of quadratic forms.
INPUT: n ∈ N, n-ary quadratic forms f, g satifying all properties

from P, matrices A,B ∈ (Z ∪ {±∞})n×n, factorization of det f .
DECIDE: Whether there exists T ∈ GLn(Z), Aij ≤ Tij ≤ Bij for

all i, j such that f T = g.
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Again, these problems turn out to be equivalent.

Proposition 9.1.7
Let P be a set of properties. Then ITrafo(P) and DITrafo(P) are poly-

nomial-time equivalent.

Proof : Analogous to the proof of Proposition 9.1.1. �

Theorem 9.1.8 Let an odd M ∈ N be fixed. Let PM consist of the properties

dim f = n, f indefinite isotropic, gen f = cls +f,

f improperly primitive, and (det f,M) = 1

for a quadratic form f . Then DITrafo(PM ) is NP-hard under randomized
reductions with one-sided error; precisely:

NP ⊆ RPDITrafo(PM ).

Finally, we obtain a result on transformations of anisotropic indefinite ternary
forms.

Theorem 9.1.9 Let M ∈ N be fixed. Let P ′M consist of the properties

dim f = 3, f indefinite anisotropic, gen f = cls +f,

f properly primitive, and (det f,M) = 1

for a quadratic form f . If the sCLH holds true, then DITrafo(P ′M ) is NP-
hard under randomized reductions with one-sided error; precisely:

NP ⊆ RPDITrafo(P′M ).

This last theorem encourages us to use forms with properties P ′2 in our
applications, see Chapter 2.

For all Theorems 9.1.2–9.1.5, 9.1.8, and 9.1.9, the interval restriction can
be chosen to be origin-symmetric, and to restrict only one component; this will
turn out directly from the proof in Sect. 9.7. But as the proof of Proposition
9.1.1 does not carry over directly to this special case we have chosen to define
the problems IRepr and DIRepr in greater generality.

The remainder of this chapter is organized as follows: The reductions estab-
lishing the core of the proofs will be explicated in Sect. 9.2. Section 9.3 contains
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statement and discussion of the special Cohen-Lenstra heuristics, the number
theoretic assumption we are going to use. In Sect. 9.4 we digress slightly to
study the set of numbers represented by certain binary forms, and in Sect. 9.5,
it is confirmed that the one-class-genus property holds for the forms constructed
in the proofs of Theorems 9.1.2, 9.1.3, and 9.1.8. To derive hardness of the
transformation problems from the theorems on DIRepr, we have to count and
classify orbits of representations under the automorphism group of a form. This
is the content of Sect. 9.6. The final proofs are summarized in Sect. 9.7.

9.2 From SAT to Squares

As an intermediate step between the classical NP-hard problems and quadratic
forms, we use the following problem on binary Diophantine equations.

MS Modular square problem
PARAMETER: M ∈ N.
INPUT: Integers a, b, c ∈ Z with c > 0, a odd, (a, b) = 1 = (ab,M),

and there is an odd prime p such that if u2|b, then u is a power
of p.

DECIDE: Whether there is x ∈ Z, |x| ≤ c such that x2 ≡ a mod b.

We also use the subproblem without the condition that a, b be coprime:

MS′ Narrow Modular Square Problem
PARAMETER: M ∈ N.
INPUT: Integers a, b, c ∈ Z with c > 0, a odd, squarefree, such that

(ab,M) = 1 and there is an odd prime p such that if u2|b, then
u is a power of p.

DECIDE: Whether there is x ∈ Z, |x| ≤ c such that x2 ≡ a mod b.

Recall from Sect. 1.1.4 that 4 denotes a deterministic Karp reduction, and
4r a probabilistic Karp reduction with one-sided error.

Proposition 9.2.1 Let M ∈ N be arbitrary. Then

(a) If the Riemann Hypthesis is true, then 3SAT 41 MS(M).

(b) 3SAT 4r,1 MS′(M) 41 MS(M).

Proposition 9.2.1 is similar to a result by Adleman and Manders [MA78], and
we follow in essence the outline of their proof. They proved NP-hardness (un-
conditionally and without randomness) of the analogue of MS(1) without the
constraints imposed on a, b. In fact, their proof does not imply our proposition:
They work with integers a, b (as in MS) such that b is divisible by unboundedly
many unboundedly high powers of odd primes, as well as unboundedly high
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powers of 2. We will make essential use of the restrictions on a, b. Most impor-
tantly, we will construct quadratic forms whose determinant is divisible by b,
and the properties of b help ensuring the the one-class condition in Theorems
9.1.3, 9.1.2, 9.1.9, and 9.1.8.

Proof of Proposition 9.2.1: Let Φ be a Boolean formula in 3-CNF. Without
loss of generality Φ contains each possible clause at most once, and no clause of
Φ contains any variable both complemented and uncomplemented. Let ` be the
number of variables in Φ. Choose an enumeration σ1, . . . , σm of all clauses in
the variables x1, . . . , x` with exactly three literals containing no variable both
complemented and uncomplemented, such that both the bijection i 7→ σi and its
inverse are polynomial-time (e. g. a suitable lexicographic enumeration). Denote
by σ ∈ Φ the assertion that clause σ occurs in Φ, and by xj ∈ σ (x̄j ∈ σ)
that the j-th variable occurs uncomplemented (complemented) in clause σ. Let
n = 2m + `.

For a fixed assignment to the boolean variables xi, we define

ri =
{

1 if xi =true,
0 if xi =false, i = 1, . . . , `.

Moreover, for a clause σ, define

W (σ, r) =
∑

i:xi∈σ

ri +
∑

i:x̄i∈σ

(1− ri). (9.1)

For k = 1, . . . ,m, let furthermore

Rk :=
{

yk −W (σk, r) + 1 if σk∈ Φ,
yk −W (σk, r) if σk /∈ Φ,

(9.2)

where yk are new variables, for k = 1, . . . ,m. Since Φ is in 3-CNF, we have
W (σk, r) = 0 if assignment r does not render clause σ true, and 1 ≤W (σk, r) ≤
3 otherwise.

Hence the equation system

Rk = 0, k = 1, . . . ,m (9.3)

has a solution
r ∈ {0, 1}`, y ∈ {0, 1, 2, 3}m (9.4)

if and only if Φ is satisfiable.

Now choose a prime p ≥ 5 not dividing the M from the statement of the
theorem. As −3 ≤ Rk ≤ 4 for all choices (9.4) of the variables, (9.3) is equivalent
to

m∑
k=1

Rkpk = 0. (9.5)

We may estimate ∣∣∣∣∣
m∑

k=1

Rkpk

∣∣∣∣∣ ≤ 4
m∑

k=1

pk < pm+1 − 2
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as p ≥ 5; hence (9.5) is equivalent to

m∑
k=1

Rkpk ≡ 0 mod pm+1,

or, equivalently, as p is odd, with

m∑
k=1

(2 Rk)pk ≡ 0 mod pm+1. (9.6)

Now replace the yk, k = 1, . . . ,m and the ri, i = 1, . . . , `, from (9.2) by new
variables αi, i = 1, . . . , n, each ranging independently over {1,−1}, by the
formula

yk =
1
2
(
(1− α2k−1) + 2((1− α2k)

)
,

ri =
1
2
(1− α2m+i),

(9.7)

which obviously induces a bijection between the sets over which the two se-
quences of variables range.

After this change of variables the left hand side of (9.6) is still integral, and
thus the congruence notation makes sense. Using (9.7) and collecting terms,
(9.6) can be rephrased as

n∑
j=1

cjαj ≡ τ ′ mod pm+1 (9.8)

for some cj , τ
′ ∈ Z; explicitly, we have

−τ ′ =
m∑

k=1

(5 −
∑

i:xi∈σk

1 + 1σk∈Φ)pk,

c2k−1 = −pk,

c2k = −4pk,

c2m+i =
m∑

k=1

(1xi∈σk
− 1x̄i∈σk

)pk,

(9.9)

where k = 1, . . . ,m, i = 1, . . . , `, and

1Ψ =
{

1 if Ψ is true,
0 if Ψ is false.

Without affecting solvability or the number of solutions, we may as well
introduce an extra variable α0, define c0 := 1 and τ := τ ′ + 1, and write

n∑
j=0

cjαj ≡ τ mod pm+1. (9.10)

Thus we have learnt that Φ was satisfiable if and only if (9.10) is solvable for
α ∈ {−1, 1}n+1.
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For later use, we verify that p 6 |τ : Indeed, τ ′ is divisible by p by (9.9); and
thus

τ = τ ′ + 1 ≡ 1 mod p. (9.11)

Now define p0 to be some prime exceeding 4 ·pm+1(n+1), and let pj be some
prime exceeding pj−1, for j = 1, . . . , n, such that all of them are of polynomial
size in pm; they can be found using Proposition 4.1.1 and Corollary 4.1.2. For
part (a), we employ the Riemann Hypothesis, and randomness for part (b).

Choose θj , for j = 1, . . . , n, as the smallest positive integer satisfying

θj


≡ cj mod pm+1,
≡ 0 mod

∏
i 6=j pi,

6≡ 0 mod pj .
; (9.12)

which can easily produced with the aid of the Chinese Remainder Theorem.
Now we can reformulate (9.10) as follows: Φ is satisfiable if and only if there is
α ∈ {1,−1}n+1 such that

n∑
j=0

θjαj ≡ τ mod pm+1. (9.13)

Finally, set K :=
∏n

j=0 pj and c :=
∑n

j=0 θj . Now we claim:

Claim: For x ∈ Z, the conditions |x| ≤ c and c2 ≡ x2 mod K hold if and
only if

x =
n∑

j=0

θjαj (9.14)

for some α ∈ {1,−1}n+1.

Proof of claim: By choice of the θj , every x of the shape (9.14) satisfies
c2 ≡ x2 mod K. Conversely, if c2 ≡ x2 mod K, or equivalently, 0 ≡ c2 − x2 =
(c−x)(c+x) mod K, then for every j = 0, . . . , n, it holds that pj |c−x or pj |c+x.
In fact, this disjunction is exclusive: Assume that pj |c−x and pj |c+x for some
j. Then pj |2c, and thus pj |c as pj is an odd prime. But c ≡ θj 6≡ 0 mod pj by
construction, which establishes the desired contradiction.

Thus for every j = 0, . . . , n, the prime pj divides either c+x or c−x. Hence

αj :=
{

1 if p|c− x,
−1 if p|c + x.

is well-defined. Now set x′ :=
∑n

j=0 αjθj . Then x ≡ x′ mod pj for all j, whence

x ≡ x′ mod K. (9.15)

Moreover, as |x′| ≤
∑n

j=0 θj = c and as |x| ≤ c by hypothesis, we may conclude
that

|x− x′| ≤ 2c. (9.16)



9.2. FROM SAT TO SQUARES 125

Now pj was chosen so that

2 · pm+1

pj
≤ 1

2(n + 1)
. (9.17)

By construction of the θj ,

θj
n∏

i=0
i6=j

pi

= min
{
θ ∈ N | θ 6≡ 0 mod pj , θ ≡ cj mod pm+1

}
< 2 · pm+1,

and therefore

θj < 2 · pm+1
n∏

i=0
i6=j

pi =
2 · pm+1K

pj
≤ K

2(n + 1)

by (9.17). Summing over all j, this yields

c <
K

2
, (9.18)

and with (9.16), this tells us that |x − x′| < K. But together with (9.15) this
implies that x and x′ coincide. (end of proof of claim) ♦

Combining (9.14) and (9.13), we obtain that the 3SAT formula Φ has D ∈ N0

satisfying truth assignments if and only if there are D numbers x ∈ Z, |x| ≤ c
such that

c2 − x2 ≡ 0 mod K,

x ≡ τ mod pm+1.
(9.19)

Now we take a closer look at the second condition of (9.19). Consider the
equation

(τ − ξ) (τ + ξ) = τ2 − ξ2 ≡ 0 mod pm+1. (9.20)

If ξ ∈ Z solves it, then pk1 |τ − ξ and pk2 |τ + ξ for some k1, k2 ∈ N0 such that
k1 + k2 ≥ m + 1. Suppose at first that k1 ≤ k2. Then

pk1 |(τ − ξ) + (τ + ξ) = 2τ ≡ 2 mod p (9.21)

by (9.11). Thus (9.21) implies k1 = 0 and therefore k2 ≥ m + 1, which means
that τ ≡ −ξ mod pm+1. Taking into account the analogous case k2 ≤ k1, we
conclude that (9.20) is equivalent to

ξ ≡ τ mod pm+2 or ξ ≡ −τ mod pm+2. (9.22)

Now if ξ ≡ −τ mod pm+1, |ξ| ≤ c, and c2 − ξ2 ≡ 0 mod K, then clearly
x := −ξ obeys (9.19). All these considerations can be subsumed under the
statement that formula Φ is satisfiable if and only if there is an integer x with
|x| ≤ c such that

c2 − x2 ≡ 0 mod K,

τ2 − x2 ≡ 0 mod pm+1.
(9.23)
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By the Chinese Remainder Theorem, the equations (9.23) are jointly equivalent
to

pm+1(c2 − x2) + K(τ2 − x2) ≡ 0 mod pm+1K

which in turn is equivalent to

(pm+1 + K) x2 ≡ Kτ2 + pm+1c2 mod pm+1K.

But as K is prime to p by the construction of the pj , and pm+1 + K is prime to
K, we finally reach the equation

x2 ≡ a mod b (9.24)

where
a ≡ (pm+1 + K)−1(Kτ2 + pm+1c2) mod pm+1K (9.25)

and b = pm+1K. Then (9.24) is solvable for x ∈ Z with |x| ≤ c if and only if Φ
is satisfiable. Now by construction, K is odd and squarefree, and a is odd and
coprime to b, so (a, b, c) is an instance of MS, and we have proven part (a) of
the proposition.

Let us now justify part (b). By Proposition 4.1.3, we can select a prime p
from the arithmetic progression (9.25) in random polynomial time. Of course,
then a is squarefree. The second reduction is trivial. �

Remark: In the final step of the proof of part b) we have selected a prime in
an arithmetic progression. It would have sufficed to select any squarefree number
rather than a prime. One might hope that this could be done more efficiently
as sqarefree numbers are much more frequent than primes: By a theorem of
Landau (see [MSC96, §VI.37 1a)]), the fraction of squarefree numbers a ≤ x
satisfying (9.25) is bounded from below by

6
π2 pm+1K

x +O(x).

Hence choosing x ≥ C (pm+2K)2 for some appropriate C > 0 and selecting a
random number a ≤ x from the arithmetic progression (9.25) yields a squarefree
integer with probability not below 6

π2 . Unfortunately, we are not aware of any
efficient way to test whether a given integer is squarefree, the obvious strategy
to accomplish this task resorting to its factorization. Therefore, it is not obvious
whether the use of primes can be discarded.

We may ask whether and how Proposition 9.2.1 can be further generalized.
This interests us because the determinants of forms for which we can prove
Theorems 9.1.3, 9.1.2, 9.1.8, and 9.1.8 depend on b. In the actual version, the
number of distinct prime factors of b still grows arbitrarily large, as does the
maximal multiplicity of a single prime factor. These two properties of b seem
to play completely different roles in the hardness proofs:

On the one hand, if we impose a fixed upper bound B on the number of
distinct prime factors of b, the problems analogous to MS and MS’ are un-
likely to stay NP-hard. We can decide the existence of small square roots by
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computing all of them; this requires only the factorization of b, which can be
achieved in subexponential time∗. Square roots modulo b are then computed
by combining square roots modulo prime powers dividing b. The number of dif-
ferent roots we have to consider is bounded by 2B . Now if B is constant B (or
B = O(log log(b))), then the analogue of MS can be solved in subexponential
time.

This means that the starting point of our reductions potentially becomes
easier. However, DITrafo and DIRepr for forms with at most B distict prime
divisors of the determinant do not seem to be necessarily easier in general than
the cases we consider. Therefore, it is an interesting question whether these
problems still are NP-hard; but if so, an alternative proof outline is required.

On the other hand, we do not know how restricting the maximal multiplicity
of single primes should affect the hardness of the MS problem. If we were able
to prove Proposition 9.2.1 for squarefree b, say, the reductions would carry over,
and we would have generalized the theorems.

9.3 The Special Cohen-Lenstra Heuristics

In [CL84], Cohen and Lenstra suggested a very general heuristic framework for
the prediction of the average behavior of the class group of a number field K.
The CLH strives to explain striking observations on class groups, as for instance
the abundance of class number one and the rareness of non-cyclic class groups
for real-quadratic fields, and intends to give a convincing link between these
seemingly independent phenomena. Though still unproven, it has enjoyed a
vivid reception, and is thought of as a realistic way of extrapolating the long-
run behavior of class numbers and groups. In particular, for real quadratic fields
numerical results suggest that large class numbers, even class numbers with odd
part larger than one are really rare.

We are going to exploit this empirical feature of class numbers. Namely,
in the proof of Theorem 9.1.3 we have to ensure that every integer can be
represented by one of few binary indefinite forms constructed in the reduction.
This is easy to verify locally over the Zp; to infer the same for representations
over Z, however, we need the condition that these forms belong to one-class
genera. If the negative determinant of these forms is prime, it suffices if the
number field Q[

√
−d] has class number one.

To argue like that, we need a variant of the CLH, which we will call special
Cohen-Lenstra Heuristic (sCLH), as specified in 9.3.1. This assumption is re-
stricted to real-quadratic fields only (as opposed to general number fields in the

∗Factoring can be achieved in random subexponential time by the algorithms of Dixon
[Dix81] (see also [Pom87], [Val91]), or the class-group relation method of H. Lenstra and
Pomerance [LP92]. The running time of these algorithms has the shape

O
(
exp

(
(c + o(1))

√
log N log log N

))
for some c > 0, where N is the number we want to factor. Heuristically, the Elliptic Curve
Method [Len87] and the Quadratic Sieve [Pom82] achieve similar running times and the Num-
ber Field Sieve [LL83], [LLMP90] even performs better, but up to now no useful bounds on
their running times have been proven rigorously.
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CLH) and makes a statement only for class number one (as opposed to many
general properties of number fields); however, it also contains a claim about
the rate of convergence to long-run behavior so that it is not a consequence of
the original CLH. Note that according to [CL84], the unexplained abundance
of class number one was one of the key oberservations which led Cohen and
Lenstra to enunciate their heurisitic.

We cannot draw upon proven statements as the conjecture is still wide open;
even our variant would imply that there are infinitely many real quadratic fields
with class number 1, which is still unknown for number fields in general.

The remainder of this section is organized as follows: First we explain the
general philosophy the original CLH is based upon. Then we review some known
facts and empirical observations on class groups of real quadratic fields. We
argue how these observations are explained by the CLH, and after that we
discuss our own modifications. Finally, we formulate our new assumption as
9.3.1.

The method. The CLH is based on the thought experiment that, roughly
speaking, all properties of class groups which are not determined a priori (e. g. by
the factorization of the discriminant of the field), develop according to a certain
random model, they obtain a corresponding very comprehensive conjecture on
the distribution of such properties on large sets of discriminants.

More precisely, consider any (‘reasonable’) complex-valued functions f on the
set of isomorphic classes of finite abelian groups (to Cohen and Lenstra, being
non-negative suffices to be reasonable for a function). This function formalizes
observable ‘properties’ of the class groups; typical examples of such functions
being the group order, different sorts of ranks, the number of elements with a
given order, or the 1–0 indicator function of being cyclic, of having a certain
isomophic class, or of having a certain order. Then

lim
x→∞

∑
disc K≤x

f(C(K))∑
disc K≤x

1

can be considered as an average of f on the groups C(K). Here K ranges over
the set of number fields with a fixed Galois group and signature. C(K) denotes
the prime-to-n part of the class group of K where n equals the degree of the
Galois closure of K. The n-part of the class group is partially determined a
priori. For the case of our interest, namely real quadratic fields, we will explain
this fact in detail in the subsequent paragraphs.

Class numbers of real quadratic forms. Recall that the class number of
a number field is defined as the order of its ideal class group (see [Neu92, sec.
I.6]). To find all real quadratic fields Q[

√
d], it suffices to let d run through all

squarefree positive integers 6= 1.
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The set F(d) of proper classes of primitive integral binary quadratic forms
of determinant −d (with d odd and squarefree, for simplicity) also forms a
group under under composition. The class group of the number field Q[

√
d] is

isomorphic to a factor group F(d)/I, where |I| ≤ 2 (see [Coh93, sec. 5.2]).
By Gauß’ Principal Genus Theorem [Gau89, art. 247, 261, 286f.], the 2-rank

of F(d) equals 2ω(d), where ω(d) is the number of distint prime divisors of d;
hence |F(d)| is divisible by 2ω(d). This power of two constitutes the ‘deterministic
part’ of the class number: It is determined by the prime factorization of d.

Beyond that part determined by genus theory, class numbers seem to behave
‘randomly’. The CLH accounts for the empirical findings with the conjecture
that

lim
x→∞

∑
D≤x

h26 (D)=1

1

∑
D≤x

1
= c0, (9.26)

see [CM87]. Here D ranges over all positive integers satisfying either D ≡
1 mod 4 with D squarefree, or D ≡ 8 or 12 mod 16 with D

4 squarefree. By
h(D) we denote the class number of Q[

√
D], and h26 (D) is its odd part, i. e.

h26 (D) is odd and h(D) = h26 (D) · 2t for some t (note that Q[
√

d] = Q[
√

4d]).
Finally

c0 =
1

2 (
∏∞

i=2 ζ(i) )
∏∞

i=1(1− 2−i)
≈ 0.75446,

where ζ(·) is the Riemann ζ-function.

The total exclusion of the prime 2 in this conjecture seems to be over-
cautious: If Cl(d) denotes the class group of Q[

√
d], then only the index |Cl(d) :

Cl2(d)| is determined by Gauß theorem, but not the even part of |Cl2(d)|. It was
conjectured in [Ger84], [Ger87] and, in contrast to the large remaining part of
the heuristics, it was proven in [FK06, thm. 3] that the 2-part of |Cl2(d)| behaves
as random as conjectured for the odd part of the class number; in particular it
was shown that

lim
x→∞

∑
D≤x

2 6| |Cl(D)2|

1

∑
D≤x

1
= c1 with c1 =

∞∏
j=2

(1− 2−j) ≈ 0.57758. (9.27)

The special Cohen-Lenstra Heuristic. Now our variant of the CLH as-
sumes that the probability of h(D) = 1 converges not too slowly to positive
values, as in equations (9.26) and (9.27). Moreover, we implicitly assume that
the convergencies (9.26) and (9.27) are compatible in the sense that the odd
and the ”random” even parts of the class number are simultaneously trivial
with positive probability. Finally, we restrict the determinants to primes in
certain arithmetic progressions.

At the same time, we relax our assumption by not insisting that the rate of
trivial class numbers among the h(Q[

√
p]) be exactly c0c1 (with ci from (9.26),

(9.27)); instead, we settle for any positive constant. Precisely, we state:
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Special Cohen Lenstra Heuristics 9.3.1 There are c, e > 0 and a polyno-
mial F such that the following holds:

Let B > 0 and primes p1, . . . , pk be given, where k ≤ e log B. Then

#{q ≤ F (B) | q prime,
(

q
pi

)
= −1 ∀ i; |Cl(D(q))2| = 1} ≥ c

F (B)
B log F (B)

.

Here D(q) = q if q ≡ 1 mod 4 and D(q) = 4q otherwise.

It should be noted that our restriction to primes, and further to primes in
specific residue classes, which is well supported by tables as [TW86], already
pops up in the original publication (see [CL84, §9, II. C12]) and is explicitly
encouraged in [CM94, sec. 3].

9.4 The Image of Binary Forms

We will now characterize the image of certain binary forms over Zp and Z. Over
fields, an elementary results states that every isotropic form is universal, i. e.
it represents all field elements. In this section we try to imitate this result for
more general rings.

These results will be used in Sect. 9.7 to guarantee that a small list of
quadratic forms represents an unknown fixed integer with high probability.

Lemma 9.4.1
Let p be a prime satisfying

cls 〈1,−p〉 = gen 〈1,−p〉.

Let m ∈ Z be odd and satisfy(
m

p

)
= 1 and

(
p
q

)
= −1 ∀ q prime, q|m.

(In particular, p 6 |m.) Then:

(a) Whether the form 〈1,−p〉 represents m primitively depends only on the
residue classes of p and m mod 8.

(b) If p ≡ 1 mod 4, then 〈1,−p〉 represents m primitively.

Proof : Let f := x2 − py2. We proceed by verifying the statement locally
for all Zr and then deducing it over Z.

First consider f over Z/8Z evaluated at primitive vectors, which here means
tuples (x, y)t with at least one of x, y odd.

Obviously, the values it takes on primitive vectors depends only on p mod 8;
moreover, if p ≡ 1 mod 4, then all odd classes modulo 8 are hit, as can be
computed directly.
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Now by the Local Square Theorem [O’M63, thm. 63.1] (or a strong ver-
sion of Hensel’s lemma as in [Eis95, p. 183ff.]), a ∈ Z2\8Z2 has a primitive
representation over Z2 if and only if it has one modulo 8.

Now consider the prime p. Obviously, f represents 1 primitively mod p;
thus, by Hensel’s lemma, every square mod p is primitively represented, and
conversely, if p 6 |m is represented, then

(
m
p

)
= 1.

Next consider a prime q|m. By Lemma 3.1.1,

〈1,−p〉 ∗−→Zq
m ⇔

(
−1
q

)
= 1 = −

(
−p
q

)
or(

−1
q

)
= −1 = −

(
−p
q

)
⇔
(

p
q

)
= −1.

We have used that
(
−1
r

)
= 1 ⇔ p ≡ 1 mod 4.

Furthermore, for an arbitrary prime r 6 | 2pm, we always have 〈1,−p〉 ∗−→Zr

m by Lemma 3.1.1.

Finally, as f is indefinite every integer is represented by f over R. Combining
this information by means of the Chinese Remainder Theorem, we obtain that

〈1,−p〉 ∗−→Zr
m for all symbols r ⇔ 〈1,−p〉 ∗−→Z2 m,

(
m

p

)
= 1, and

(
q|m prime →

(
p
q

)
= −1

)
.

(9.28)

By [Cas78, thm. 9.1.3], the left hand side of (9.28) holds if and only if m
is represented by a form in the genus of f . But by hypothesis, there is only
one equivalence classes of binary quadratic forms over Z in the genus of 〈1,−p〉.
Therefore, it represents all integers obeying the criterion of (9.28), which was
to be proven. �

9.5 The One-Class Condition

The aim of this section is to assert that the forms f constructed in the reductions
of Sect. 9.7 in fact satisfy gen f = cls +f . To show this, recall the one-class
criteria of Sect. 8.2. Again we denote the group of R-automorphisms of f by
OR(f). We again employ the spinor norm

θ : OK(f) −→ K∗/
K∗2
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for K = Qp.

Proposition 9.5.1 Let b be odd, p an odd prime, and p 6 | b. Then the forms

f := 2x2 + by2 − pbz2 and g := x2 − byz

satisfy
gen f = cls +f, gen g = cls +g.

Proof : For the primes p and 2 the criteria of 8.2.2 obviously apply.
Now for q|b, we have to verify that

θ(O+
Zq

(f)) ⊇ (Zq)∗.

But since 〈b,−pb〉 is an orthogonal component of f , we have

θ(O+
Zq

(f)) ⊇ θ(O+
Zq
〈b,−pb〉)

= θ(O+
Zq
〈1,−p〉) by 8.2.3,

⊇ (Zq)∗ by 8.2.2.

Hence we have verified the statement for the form f . For g, the proof is com-
pletely analogous. �

9.6 Orbits of Representations

Let S ∈ SL3Z be an (proper) automorphism of the quadratic form f , i. e.
f S = f and det S = 1, and let f(v) = m. Then obviously f(Sv) = m. This
means that the group of proper automorphisms of f acts on the set X(m) of
representation of a number m by f . Hence X(m) decomposes into orbits

X(m) =
⊎
i∈I

Xi

with the properties

v, w ∈ Xi ⇒ ∃S ∈ SL3Z such that f S = f, Sv = w

and

i 6= j, v ∈ Xi, w ∈ Xj ⇒ 6 ∃S ∈ SL3Z such that f S = f, Sv = w.

To reduce the interval representation problem to the interval transformation
problem in the proofs of Theorems 9.1.8 and 9.1.9 in Sect. 9.7, we have to
classify these orbits of representations of ternary forms. This is accomplished
in Proposition 9.6.2.

The first step consists in determining the possible genera of an orthogonal
complement to e1 in f .



9.6. ORBITS OF REPRESENTATIONS 133

Lemma 9.6.1 Let m ∈ N be odd and squarefree, and let b ∈ N be coprime to
2m. Let f be a ternary quadratic form over Z and

T =

 1 α β
1

1

 ∈ SL3Q. (9.29)

(a) Let
(mf) T = 〈m2〉 ⊥ g. (9.30)

Then the form g is integral. Moreover, if

f ∼ 〈1, b,−qb〉

with q 6 | 2bm a prime, then the genus of g is uniquely determined by b, q,
and m.

(b) Let
(2mf) T = 〈4m2〉 ⊥ g. (9.31)

Then the form g is integral. Moreover, If f is equivalent to the form with
associated matrix  2

b
b


then g falls into one of at most 4 genera. These are determined by m and
b.

In both cases, the list of genera for g can be efficiently generated as soon as
the factorization of mb is given.

Proof :

(a) Let 
m′ c1 c2

c1

Q
c2

 (9.32)

be the associated matrix of f . Then (9.29) and (9.30) imply that m = m′,
α = − c1

m , and β = − c2
m . Consequently, f T has associated matrix

m 0 0
0

Q− 1
mcct

0


where c = (c1, c2)t. Hence g is integral. Moreover, as detT = 1, it holds
that det g = m3 det f

m2 = −mqb2.

We now determine the class of g over all rings Zp. Over Z∞ = R, we have

〈m〉 ⊥ 1
m

g ∼R f ∼R 〈1, 1,−1〉
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since m, q > 0. Therefore g ∼R 〈1,−1〉 by Witt’s lemma 1.2.5.

Next let p be an odd prime, p 6 |m. Then T ∈ SL3Zp is p-adically integral,
and we obtain

〈1, b,−qb〉 ∼Zp
〈m〉 ⊥ 1

m
g. (9.33)

We distinguish three subcases: If p 6 | qb, then p 6 | det g and we necessarily
have g ∼Zp 〈1,det g〉.
Second, let p|b, say νp(b) = k ≥ 1. We know that m is a square modulo b
and hence p since 〈1, b,−qb〉 primitively represents m. For such p, (9.33)
implies

〈1, pk,−qpk〉 ∼Zp
〈1〉 ⊥ 1

m
g,

(where we have applied Lemma 1.2.14 to simplify f). Then by Witt’s
Lemma for Zp 1.2.5, it follows that g ∼Zp

〈pk,−qpk〉.
Thirdly, if p = q, we claim that

g ∼Zq m · 〈mb,−bq〉.

If
(

m
q

)
= 1 or if

(
m
q

)
= −1 =

(
b
q

)
, this again follows by applying

Witt’s lemma to (9.33). In case
(

m
q

)
= −1,

(
b
q

)
= 1, observe that

〈1, b〉 ∼Zq
〈m,m〉

by Lemma 1.2.14, and then argue with Witt’s Lemma.

We continue with the case p|m. We know that det g = −mqb2; hence g is
Zp-equivalent to one of

〈1,−qm〉 or 〈ρ,−ρqm〉 (9.34)

by Theorem 1.2.13 (where ρ ∈ Z,
(
ρ
p

)
= −1). Equation (9.30) implies that

m f ∼Qp
〈m2〉 ⊥ g,

hence by Theorem 1.2.8,

cp(mf) = cp( 〈m2〉 ⊥ g ). (9.35)

To evaluate the right hand side, compute

cp〈1, b,−qb〉 =
(

b, −qb

p

)
= 1.

Moreover, it follow directly from the definition of cp and the properties of(·,·
p

)
(Sect. 1.2.5) that generally

cp(mf) =
(

m,m

p

)dim f

· cp(f) ·
(

m,det f

p

)dim f−1

, (9.36)
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hence in our case we obtain

cp(mf) =
(

m,m

p

)
=
(
−1
p

)
.

Compute the left hand side of (9.35) by substituting g by each of the
possibilities (9.34). If g ∼Zp

〈1,−qm〉, then

cp( 〈m2〉 ⊥ g ) =
(

m2,−mq

p

)
= 1.

Otherwise if g ∼Zq
〈ρ,−ρqm〉, then

cp( 〈m2〉 ⊥ g ) =
(

ρ,m

p

)
= −1.

Hence we have verified that depending on
(−1

p

)
, the form g is Zp-equivalent

to exactly one of the forms (9.34).

Finally, consider the prime p = 2. Note that the determinant det g =
−qmb2 is odd. Hence by Theorem 1.2.15, g is Z2-equivalent to one of

〈1,−qm〉, 〈3, 3〉, or 〈3, 7〉, (9.37)

where the second and third options are only applicable if qm ≡ −1 mod 8,
or qm ≡ 3 mod 8, respectively.

Furthermore, from (9.30) we conclude that

m f ∼Q2 〈m2〉 ⊥ g ∼Z2 〈1〉 ⊥ g. (9.38)

Hence

c2(mf) =
(

m,m
2

)
· c2(f) = (−1)(m−1)/2 ·

(
b,−qb

2

)
.

The latter can be easily computed by use of the arithmetic rules of
(·,·

p

)
.

Now the forms (9.37) differ pairwise in either determinant or Hasse-Min-
kowski invariant c2. Therefore, the Z2-class of g is uniquely determined
by det g and (9.38).

To sum up, we have established that for every symbol p, the Zp-class of g
is uniquely determined. This is equivalent to saying that the genus of g is
unique, which had to be shown.

(b) Proceed analogously to the proof of a). In this case we can compute that
m′ = 2m, α = c1

2m , β = c2
2m if (9.32) is the associated matrix of f . Integrity

of g follows exactly as above. Moreover, it holds that det g = −4mb2.

To determine the genus of g, it is useful to note that

f ∼R 〈2, 2b,− b

2
〉
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for R = Q and R = Zp, p 6= 2, by application of Lemma 1.2.3. Now we
can apply similar arguments as above. We obtain:

For p =∞, we have g ∼R 〈1,−1〉.
If p 6 |mb is odd, then g ∼Zp

〈1,−m〉.
If p|b, say νp(b) = k ≥ 1, then g ∼Zp

〈pk,−pk〉.
If p|m, then we find two candidates for the Zp-class of g:

g1 := 〈1,−2m〉 and g2 := 〈ρ,−2ρm〉

with ρ ∈ Z,
(
ρ
p

)
= −1. Then cp( 〈4m2〉 ⊥ g1 ) = 1 and cp( 〈4m2〉 ⊥ g2 ) =

−1. On the other hand, by (9.36) it holds that

cp(m f) =
(

m,m

p

)
cp(f) =

(
−1
p

)
.

Hence g is p-adically integrally equivalent to exactly one of g1, g2, depend-
ing on

(−1
p

)
.

Finally, we have to take into account the possible Z2-classes of g. Note
that the Hasse-Minkowski invariant c2(g) is uniquely determined by m
and f since

c2(2mf) = c2(〈4m2〉 ⊥ g) = c2(g) ·
(

4m2,det g
2

)
︸ ︷︷ ︸

=1

= c2(g).

Moreover, we have det g = −4mb2 ≡ 4 mod 8. By [Jon44, lm. 1], either g
decomposes as

g ∼Z2 〈r, 4t〉 (9.39)

with r, t odd, or g = 2 g0 for a binary form g0 of odd determinant.

In the former case, [Jon44, lm. 6] allows us to chose r ∈ {1, 3} in (9.39).
Then t is uniquely determined by r as

rt =
1
4

det g ≡ −m mod 8.

Therefore, g falls into one of at most two Z2-classes if (9.39) holds.

So turn to the latter case, i. e. g = 2 g0 with det g0 = −m. If g0 is properly
primitive, then Theorem 1.2.15 gives candidates for its class. Note that

c2(g) = c2(2g0) =
(

2, 2
2

)
︸ ︷︷ ︸

=1

(
2,det g0

2

)
c2(g0) =

=
{

c2(g0) if m ≡ 1, 7 mod 8,
−c2(g0) else.

As the binary forms listed in Theorem 1.2.15 differ pairwise by determi-
nant or c2, the Z2-equivalence class of g0 is uniquely determined by det g
and c2(g).
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Otherwise, i. e. if g0 is improperly primitive, then it is Z2-equivalent to
form with associated matrix either(

0 1
1 0

)
or

(
2 1
1 2

)
again by [Jon44, lm. 1]. As these have inequivalent determinants modulo
8, we have to consider at most one additional class for g per cogruence
class m mod 8 and value of c2(g).

Summing up, this makes a total of 4 Z2-classes g may be contained in.

Note that each of the possible genera of g, we have (implicitly) specified a
form Zp-equivalent to g for every p|2(det g)∞. Therefore, a form from such a
genus can be efficiently constructed using Theorem 4.2.7. �

As usual, denote by ω(m) the number of distinct prime factors of m.

Proposition 9.6.2 Let m ∈ N be odd and squarefree, and let b ∈ N be coprime
to 2m.

(a) If
f ∼ 〈1, b,−qb〉

with q 6 | 2bm a prime, then the set of representations of m by f decomposes
into at most 2ω(m) orbits under the action of the proper automorphisms
of f .

(b) If f is equivalent to a form with associated matrix 2
b

b

 ,

then the set of representations of 2m by f decomposes into at most 4·2ω(m)

orbits under the action of the proper automorphisms of f .

In both cases, we can produce a list of forms fj, j = 1, . . . , N with length N ≤
2ω(m) (or N ≤ 4 ·2ω(m) for part b)) such that for every primitive representation
v of m (or 2m, respectively) by f , there exists 1 ≤ j ≤ N and B ∈ SL3Z with
first column v such that

f B = fj .

If the factorization of mb is given, this list can be computed by a probabilistic
algorithm in time 2ω(m) times a polynomial in the input length.
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Proof :

(a) If v ∈ Z3 is a primitive representation of m by f , then f is equivalent
to a form f ′ satisfying f(e1) = m. By Lemma 9.6.1, we can associate to
f ′ a binary form g whose genus is uniquely determined by v. Let G be
the associated matrix of an arbitrary form in that genus. Define C as the
quotient set of

{c ∈ Z2 | cct ≡ −G mod m}

modulo the equivalence relation

c ≈ c′ ⇔ c′ = m u + Sc (9.40)

for some u ∈ Z2 and some automorphism S of g. Then by [Zhu97, lm. 2.1],
there is a bijection between the orbits of primitive representations v of m
by f and C.

Let us compute the cardinality of C. By the Chinese Remainder Theorem
and the squarefreeness of m,

|C| =
∏
p|m

|C mod p|.

So let p|m be a prime and consider the set C mod p. In the proof of
Lemma 9.6.1 we have shown that

g ∼Zp 〈r,−rqm〉,

where r ∈ Z satisfies (
r

p

)
=
(
−1
p

)
. (9.41)

We may thus choose

G ≡
(

r 0
0 0

)
mod p.

Then the elements of C mod p are represented by vectors c ∈ Z2 solving
the congruences

c2
1 ≡ −r mod p,

c1c2 ≡ 0 mod p,

c2
2 ≡ 0 mod p.

(9.42)

Note that by (9.41), the first congruence is always solvable, and hence
the whole system is so. If c is a solution, then necessarily c1 ∈ (Z/pZ)∗.
Therefore c2 ≡ 0 mod p. We have shown that solutions of the congruences
(9.42) correspond to the square roots of −r modulo p. Therefore

|C mod p| ≤ 2.

Consequently,
|C| ≤ 2ω(m).
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(b) As in part a), we consider the forms g which arise from primitive repre-
sentations of 2m by f in the assignment of Lemma 9.6.1. For such a form
g with associated matrix G, let Lf,m,g be the set of representations of 2m
by f which lead to a form in the genus of g under the asignment of Lemma
9.6.1. Then again by [Zhu97, lm. 2.1], the set of orbits of Cg under the
automorphisms of f is in bijection with

{c ∈ Z2 | cct ≡ −G mod m}

modulo the equivalence relation (9.40).

We can estimate the cardinality of Cg by computing |C mod p| for primes
p|2m. If p is odd, we have

|Cg mod p| ≤ 2

analogously to part a). Modulo 2, a system of congruences

c2
1 ≡ G11 mod 2,

c1c2 ≡ G12 mod 2,

c2
2 ≡ G22 mod 2.

has at most one solution modulo 2, namely c1 ≡ G11, c2 ≡ G22 mod 2.
Hence |C mod 2| ≤ 1.

Altogehter, we have at most∑
g

|Cg| ≤
∑

g

∏
p|2m

|Cg mod p| ≤ 4 · 2ω(m),

where g runs through a set of representatives of the genera in question.

It remains to describe the algorithm to enumerate forms corresponding to
the orbits of representations. Let m′ = m for part a) and m′ = 2m for part b).
Then proceed as follows:

1.) Enumerate representatives for all possible genera for g in Lemma 9.6.1.
2.) For each such g, compute the general solution c ∈ (Z/m′Z)2 of the congru-
ence system cct ≡ −G mod m′.
3.) For each g and each vector c corresponding to g, output the form with
associated matrix (

m′ ct

c 1
m′ (G + cct)

)
.

Note that the output matrices are integral by construction of c. The output
forms cover all orbits of representations by [Zhu97]. Moreover, it is obvious
that the algorithm needs only polynomial-time per output form (step 1 takes
random polynomial-time by Lemma 9.6.1, step 2 uses the factorization of m′).
The number of output forms is bounded by 2ω(m), respectively 4 · 2ω(m), as
shown above. �
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9.7 Conclusion of the Proofs

Proof of Theorem 9.1.2: Let M ∈ N and Φ an instance of 3SAT. By Proposition
9.2.1, this is probabilistically transformed into an instance (a, b, c) of MS′(M).
In particular, (b, M) = 1, and it is NP-complete to decide whether there are
x, y ∈ Z, 0 ≤ x ≤ c with

x2 + by = a. (9.43)

Clearly the binary form xy represents all integers primitively. Hence (9.43)
is solvable for x, y ∈ Z, 0 ≤ x ≤ c, if and only if the form

x2 + byz (9.44)

represents a primitively. Obviously, (9.44) is indefinite. Moreover, by Proposi-
tion 9.5.1, the form (9.44) belongs to a one-proper-class genus. �

Proof of Theorem 9.1.3: Let Φ′ be an instance of 3SAT, i. e. a boolean
formula in 3-CNF. Denote by ϕ := |Φ′| the binary length of Φ.

Then by Proposition 9.2.1, Φ is randomly reduced to an instance of MS′(M).
For the resulting problem instance proceed as follows:

input: MS′(M)-instance (a, b, c).
reply := false;
repeat polynomially many times

select random k ∈ [0, b];
a′ := a + kb;
repeat polynomially many times

select random prime p ≡ 1 mod 4 such that p > max
(⌈

c+|2a′+b|
|b|

⌉
, |b|
)
,

and
(−2b

p

)
= −1;

ask oracle if there is (x, y, z)t ∈ Z3 satisfying
2x2 + by2 − bpz2 = 2a′ + b and −c ≤ x ≤ c

reply := reply ∨ (oracle reply)
output reply.

Here k is chosen according to the uniform distribution in [0, b], and p is chosen
by means of Proposition 4.1.1 b) with starting point N uniformly distributed
in some suitable interval of the integers.

This establishes a polynomial-time oracle algorithm (for prime selection, see
Proposition 4.1.3). Let us examine its correctness for solving MS′(M). At first,
note that if it returns true then there are |x| ≤ c, z1, z2 ∈ Z such that

2 x2 + bz2
1 − bpz2

2 = 2a′ + b,
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hence, putting y := z2
1 − pz2

2 , we have, in particular, that there are x, y such
that 2x2 + by = 2a′ + b and thus

x2 ≡ a′ ≡ a mod b

since 2 is invertible modulo the odd integer b. Thus, the MS′(M) instance has
a solution (x, y) and so is a ‘yes’-instance.

Conversely, if the algorithm returns false, but nevertheless (a, b, c) is a
‘yes’-instance, then there is |x| ≤ c such that

x2 ≡ a mod b;

and thus there is y ∈ Z, necessarily odd, such that 2x2 + by = 2a′ + b, but y
is not represented by any of the binary quadratic forms 〈1,−p〉. For each of
these forms, one of two things may have happened: Either y is represented by
the genus of 〈1,−p〉, but this genus consists of several classes; or y is not even
represented by the genus of 〈1,−p〉.

First, the sCLH 9.3.1 gives us an upper bound on the probability that the
first case occurs if the second does not. The second case, however, implies that

∀ (x, y) ∈ Z2, |x| ≤ c, x2 + by = a, ∃ q|y prime:
(

q

p

)
6= −1

by Lemma 9.4.1 b). As the q are odd, the symbol
(

q
p

)
takes the values 1,−1

according to the uniform distribution and independently for different q as p
is randomly chosen; hence if (x, y) is any solution of the MS’ instance, the
probability that the second case applies is bounded by

1− 2−ω(y)

(where ω(y) counts the number of distinct prime factors of y). We now have to
show that if we start with a ‘yes’-instance of MS′(M), then with high probabil-
ity, in some iteration we obtain an instance of (a′, b, c) which has solution (x, y)
with y decomposing into only logarithmically many prime factors in the input
length.

Observe that for all solutions (x, y), |y| is bounded from above by⌈
2|x2 − a′|+ b

b

⌉
≤ 2 max(c2, a + k b)

b
+ 2 < 2(b + 1). (9.45)

Assume that (a, b, c) is a ‘yes’-instance with some solution (x0, y0). Then, for
k = 0, . . . , b, the problem instance (a′ = a + kb, b, c) necessarily has a solution,
namely (x0, y0 + k). The range over which y varies thus is an interval

[y0, y0 + b] ∩ Z, where y0 < 2b. (9.46)
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As follows directly from a result of Erdős and Nicolas [EN81, §5, prop. 3]†

it holds that for B > 0,

#{Y ≤ B |ω(Y ) > 2 ln ln B} <

6
π5/2

B

(lnB)2 ln(2)−1
√

ln lnB

(
1 +O

(
1

ln lnB

))
. (9.47)

Combining (9.46) with (9.47), we conclude that the innermost repeat loop
produces at most

O
(

b

(ln b)2 ln(2)−1
√

ln ln b

)
different a′ for which there exists no solution (x, y) with y having less than
2 ln ln y prime factors. This implies that after log b iterations, we have seen at
least one instance with a solution of few prime divisors with exponentially large
probability.

Now that we have established the occurrence of at least one solution in which
y0 has few prime divisors with high probability, we may conclude that for every
choice of p, the probability of failure according to case two is in each iteration
independently bounded from above by

1− 2−ω(y0) ≤ 1− 2−2 ln ln y0 ≤ 1− 1

ln2
⌈

c2+|a|
|b|

⌉ ,

which after special treatment of finitely many instances is bounded away from
1. Together with the sCLH in the first case, we have an bounded the error prob-
ability away from 1, and hence this is a one-sided error probabilistic reduction.

It remains to be shown that the forms constructed here satisfy all the prop-
erties entailed on them.

Obviously, all forms constructed here are indefinite, of dimension 3, and of
determinant prime to M .

Next consider anisotropy: By [Cas78, sec. 4.2] and the Hasse principle, a
ternary quadratic form f over Z is isotropic if and only if cqf = 1 for all
symbols q. But we have chosen

(−2b
p

)
= −1, hence

cp〈2, b,−pb〉 =
(

2,−p

p

)(
b, −pb

p

)
=
(

2
p

)(
b, b

p

)
︸ ︷︷ ︸
=(−1

p )

(
b, p

p

)
=
(
−2b

p

)
= −1,

hence our forms are anisotropic.

Finally, we have to establish the one-proper-class property for all forms con-
structed above. But this follows directly from Proposition 9.5.1. �

Proof of Theorem 9.1.6: Let Φ be an instance of 3SAT, i. e. a boolean
formula in 3-CNF. Follow the reduction from the proof of Proposition 9.2.1 until

†Note that the reference [MSC96, §V.21 b)] to this result contains a small but severe
misprint.
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equation (9.23). By the Chinese Remainder Theorem, this equation system is
solvable for x ∈ Z, |x| ≤ c, if and only if the equation

(K + 1)3pm+2(c2 − x2)−K(τ2 − x2)−Kpm+2y = 0 (9.48)

is solvable for x, y ∈ Z, |x| ≤ c. We claim that for every pair x, y ∈ Z satisfying
(9.48), the condition |x| ≤ c is equivalent to y ≥ 0.

From (9.9) we obtain

|τ | =

∣∣∣∣∣1−
m∑

k=1

(5−
∑

xi∈σk

1)pk −
∑

σk∈Φ

pk

∣∣∣∣∣ ≤ 6
m∑

k=1

pk − 1 < pm+1. (9.49)

Moreover, we have θj ≥
∏

i 6=j pi by (9.12); hence

c =
n∑

j=0

θj ≥
n∑

j=0

∏
i 6=j

pi =
n∑

j=0

K

pj
≥ (n + 1)K

pn
> pm+1, (9.50)

where the last estimate is due to the choice of pn.
Now (9.49) and (9.50) together yield |τ | < c. But then, again by the choice

of p0, it holds that
(K + 1)3

K
pm+2 > 2.

These two equations impy that

c2 − τ2

(K+1)3

K pm+2 − 1
∈]0, 1[.

But this establishes the claim by direct manipulations of (9.48).

By rearrangement, (9.48) can be written as

ax2 + by = c (9.51)

with a, b, c > 0. By the argument of the last paragraph, we have obtained
that the decision problem whether (9.51) is solvable for x ∈ Z, y ∈ N0 is NP-
complete. But by Lagrange’s Four Square Theorem, this is equivalent to whether
a is represented by the quadratic form

〈a, b, . . . , b〉

of dimension n ≥ 5. As a, b > 0, this form is positive. �

Proof of Theorems 9.1.9 and 9.1.8: We prove the reduction

MS′(M) 4r,na DITrafo(P) (9.52)

for
P = PM , P ′M (9.53)
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from Theorems 9.1.9, 9.1.8, respectively. Let (a, b, c) be an instance of MS′(M).
Then a, b are coprime. Hence by Proposition 4.1.3, we can find in random
polynomial time a prime number q ≡ a mod b. Obviously (a, b, c) is a ‘yes’-
instance of MS′(M) if and only if (q, b, c) is one.

Now follow the proofs of Theorems 9.1.2, 9.1.3 with MS′(M)-instance (q, b, c)
instead of (a, b, c) (using sCLH for Theorem 9.1.3). We obtain a DIRepr(P)-
instance (f, q, c), for the respective P in (9.53), with q prime. Such an instance
(f, q, c) asks whether

∃ v ∈ Zn primitive, |v1| ≤ c, f(v) = q

where f is a quadratic form satisfying gen f = cls +f .

Use Proposition 9.6.2 to produce a list of forms fj , j = 1 . . . N , such that
every primitive representation v of q by f can be extended to a transformation
(v|B) ∈ SL3Z from f to some fj . By that proposition, we can choose N = 8 for
9.1.8 and N = 2 for Theorem 9.1.9, and these lists can be provided in random
polynomial time. Then hand this list over to the DITrafo-oracle.

If there is a primitive representation f(v) = q such that |v1| ≤ c, then at
least for one j there exists a transformation T ∈ SL3Z such that f T = fj and
|T11| ≤ c, hence at least one of the (f, fj , c) is a ‘yes’-instance of DITrafo.
Conversely, if there is no primitive representation f(v) = q such that |v1| ≤ c,
then each (f, fj , c) is a ‘no’-instance of DITrafo.

Obviously, this establishes a randomized non-adaptive reduction. As in the
DITrafo-instance we have used the form f which already occurred in the DI-
Repr-instances, (9.52) holds for both properties sets P from the statements of
Theorems 9.1.9 and 9.1.8, respectively. �



Chapter 10

Relationship between
Transformation and
Representation Problems

10.1 Result and Proof Outline

In this chapter we prove a result that closely links the complexity of FTrafo and
∗FRepr. As defined in Chapter 8, ∗FRepr asks forrepresentations of integers
coprime to the determinant of the respective form. For both problems, the
factorization of determinants is included in the input.

Recall that for the security the identification scheme
of Sect. 2.3, we require that both transformation and representation problems
be intractable. It would be desirable to have a proof of computational equiva-
lence of these two problems because this would reduce the number and clarify
the content of our hardness assumptions. Theorem 10.1.1 comes close to this
desire: In particular, for ternary forms we prove reductions in both directions
if we allow the determinants of the forms to be squared.

Recall our definition of the problem union A tB from Sect. 1.1.2.

Theorem 10.1.1 Let n ≥ 3 and let d ∈ Z be odd and squarefree.

(a) ∗FReprn(d) �r,1 FTrafon(dn−1).

(b) FTrafon(d) �r
∗FReprn(dn−1) tTrafon−1.

For dimension three the statement takes a particularly simple shape.

Corollary 10.1.2 Let d be odd and squarefree. Then

FTrafo3(d) �r,1
∗FRepr3(d

2) and ∗FRepr3(d) �r,na Trafo3(d2).

145
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Algorithm 7:

input: instance (f,m) of ∗FReprn(d).
output: x ∈ Zn with f(x) = m

1. find binary quadratic form g with det g = mdn−2 such that f# ∗−→ g
2. construct ternary form ḡ with ϕḡ = g and f# ∼ ḡ
3. ask oracle for S ∈ GLn(Z) such that f# S = ḡ
4. output x := (S∗,1..(n−1))#.

Proof of part a), overview: First we introduce some definitions. Let ϕ be
a quadratic form of dimension n − 1 with associated matrix Aϕ. We say f
represents ϕ if there is Σ ∈ Rn×(n−1) such that ΣtAΣ = Aϕ. We also denote
this by f Σ = ϕ. The representation is called primitive if Σ is a primitive matrix,
i. e. if the greatest common divisor of its maximal minors (the determinants of
its (n− 1)× (n− 1) submatrices) equals one. Denote this by f

∗−→ ϕ.

Recall that if S is a square matrix then its adjoint is denoted by S#, and
analogously for forms. If S is a n × (n − 1)-matrix then let S# ∈ Zn be the
vector defined by

(S#)i+1 = (−1)i det S̃i,

where S̃i is obtained from S by deleting its i-th row. In [Min11], Minkowski
revealed the following duality.

Proposition 10.1.3 (Minkowski) Let f be a quadratic form of dimension d
over Z and m ∈ Z\{0}.

(a) If S ∈ Zn×(n−1) is primitive and det(f# S) = mdn−2, then f(S#) = m.

(b) If x ∈ Zn is primitive and f(x) = m, then there is a primitive S ∈
Zn×(n−1) such that S# = x and det(f# S) = mdn−2.

We fix the following notation: For every quadratic form h, we write Ah for
its associated matrix; moreover, if h is a n-ary, we subdivide Ah according to

Ah =
(

Aϕh
bh

bt
h ch

)
; (10.1)

here ϕh is a (n− 1)-ary form (with associated matrix Aϕh
).

To prove part (a) of the theorem, proceed according to Algorithm 7. In the
last step, S∗,1..(n−1) is obtained from S by deleting the last column.

By Proposition 10.1.3 quoted above it is obvious that this algorithm is correct
and polynomial-time if and only if steps 1 and 2 succeed in polynomial time.
We will deal with these steps in Sections 10.2 and 10.3, respectively.
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10.2 Construction of a Represented Form

To perform step 1, we first characterize which (n−1)-ary forms g of determinant
mdn−2 are represented by f . To this end, we determine the class of f# and
determine which genera g belongs to. Subsequently, we apply the algorithms of
Sect. 4.2.4 to construct an integral form g which is primitively represented by
f#.

Throughout this section, we keep the notation from the proof overview in
Sect. 10.1: Namely, f is a n-dimensional quadratic form with d = det f odd and
squarefree, and m ∈ Z is primitively represented by f .

Lemma 10.2.1 Let p|d be an odd prime. Then

f# ∼Zp 〈rp, p, , . . . , p, spp〉 (10.2)

where rp, sp ∈ Z satisfy p 6 | rp, sp and(
rpsp(d/p)n−1

p

)
= 1. (10.3)

Proof : By Theorem 1.2.13, the form f# is Zp-equivalent to a diagonal form
〈a1, . . . , an〉. Let ai = peiri with ri ∈ Z∗

p. Then since

f## = dn−2f, (10.4)

it holds that for each 1 ≤ i ≤ n,

pn−2|
n∏

j=1
j 6=i

aj .

It follows that ei ≤ 1 for i = 1, . . . , n, and hence that ei = 1 for all but one i.
Then (10.2) follows directly from Theorem 1.2.13. Now Equation (10.4) implies
(10.3). �

Note that rp can easily be computed from the conditions f
∗−→ rp and p 6 | rp.

Furthermore, sp can be determined from the equation
(rpsp(d/p)n−1

p

)
= 1. Thus

we can identify the class of f# according to Lemma 1.2.17 by finding rp and sp

for each p|d, and finally inspecting sign f#. Next we look for a suitable g such
that

f# ∗−→Zp
g and det g = mdn−2. (10.5)

Here we have extended previous notation: The formula F
∗−→R G should mean

that F represents G primitively over the ring R.

Lemma 10.2.2 Let p|d be an odd prime. Then an (n−1)-ary form gp satisfying
(10.5) can be constructed in polynomial time.
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Proof : Let rp, sp as in Lemma 10.2.1. By the preceeding remark they can
be determined efficiently. Let d = d0p. Without loss of generality we may
assume that rp, sp ∈ Z and that rpsp ≡ dn−1

0 mod p. Now if
(mspd0

p

)
= 1, then

it is obivious from Lemma 10.2.1 that f# primitively represents

gp := 〈mrpspd0, p, . . . , p〉.

If else
(mspd0

p

)
= −1 =

(
s
p

)
then f# primitively represents

gp := 〈rp, p, . . . , p,mspd0p〉

over Zp. Finally if
(
md0

p

)
= −1 and

(
s
p

)
= 1, then there are α, β ∈ Z with

α2 + β2s ≡ md0 mod p. Sending en−2 to αen−2 + βen−1 we obtain that f#

primitively represents

gp := 〈rp, p, . . . , p,md0p, spp〉.

�

Let us determine gp for the remaining symbols p. For p =∞ we can clearly
choose

g∞ := 〈−1, . . . ,−1, 1, . . . , 1〉 (10.6)

of signature sign f# or sign f# − 1 depending on the condition

(−1)s = sign (mdn−2).

Moreover, for all p 6 | d odd we can identically choose

gp := 〈1, . . . , 1, d〉. (10.7)

For p = 2 some additional care is needed. Compute

c :=
∏

p|d∞

cp(gp)

Then g2 can be selected such that

c2(g2) = c and det g2 ≡ d mod 8.

We may choose

g2 =


〈1, . . . , 1︸ ︷︷ ︸

n−1

, d〉 if c =1, and

〈1, . . . , 1︸ ︷︷ ︸
n−3

⊥ g′ if c =−1,
(10.8)

where g′ is taken from the table

g′ =


〈1, 3, 3〉 if d ≡1 mod 8,
〈3, 3, 3〉 if d ≡3 mod 8,
〈1, 3, 7〉 if d ≡5 mod 8, and
〈3, 3, 7〉 if d ≡7 mod 8,
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cf. Theorem 1.2.15.

Note that the computations performed to determine the gp concern only
ω(d)+O(1) = O(log d) different p. Thus all the local forms gp can be constructed
together in polynomial time.

Lemma 10.2.3 There exists an (n − 1)-ary integral form g of determinant
mdn−2 such that

g ∼Zp
gp

for all symbols p, where the gp are chosen according to Lemma 10.2.2 and equa-
tions (10.6), (10.7), and (10.8).

Such a form g can be constructed in probabilistic polynomial time.

Proof : By Theorem 4.2.1, it suffices that det gp ∈ mdn−2Z∗2
p , that cp(gp) =

1 for all p 6 | 2mdn−2∞, and that∏
p

cp(gp) = 1.

The product ranges through all symbols p. The first of the two conditions is
obviously satisfied. The last one holds by construction of g2. By Theorem 4.2.7,
if follows that g can be computed efficiently. �

10.3 Construction of an Equivalent Form

We now turn to the question of how to construct the form ḡ in step 2 of Algo-
rithm 7. We are given the left upper (n− 1)× (n− 1) corner of its associtated
matrix as well as its equivalence class, which is that of f#.

Lemma 10.3.1 Let F, g be integral quadratic forms with n = dim F = (dim g)+
1 ≥ 3 and e = det F odd and n-power free such that F

∗−→Zp
g for all p|e∞.

Let ḡ be an integral n-ary quadratic form of determinant e with ḡ
∗−→ g. Then

F
∗−→ g.

Proof : Let p|e∞. Then p 6= 2, and it follows from F
∗−→Zp g and [Cas78,

sec. 9.3] that

F ∼Zp
g ⊥

〈
e

det g

〉
;

in particular, e
det g ∈ Zp. Since det ḡ = e, we also have ḡ ∼Zp

g ⊥
〈

e
det g

〉
for

all p|e∞. Therefore F ∼Zp
ḡ for these p. By Lemma 1.2.17, then F ∼g ḡ. By

Theorem 1.2.18 and because e is odd and n-power free, and n ≥ 3, it holds that
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F ∼ ḡ. By hypothesis, ḡ
∗−→ g, and therefore also F

∗−→ g. �

It is clear that f# satisfies the hypotheses of this lemma on F . Moreover, if
step 2 is sucessful (as we will demonstrate now), we will have an integral form
ḡ of determinant e satisfying ḡ

∗−→ g in an obvious way, and this proves that
f# ∗−→ g over Z.

Now turn to step 2 of the algorithm. We have to find a form ḡ of determinant
dn−1 and of the shape

Aḡ =

(
Ag b

bt c

)
. (10.9)

Equivalently, we can state that we have to find the corresponding b ∈ Zn−1,
c ∈ Z.

Lemma 10.3.2 If ḡ is an n-ary form of determinant dn−1 satisfying (10.9),
then c is uniquely determined by g, b, and d, and is efficiently computable from
these.

Given g, b, and d, an integer c exists such that (10.9) defines a quadratic
form of determinant dn−1 if and only if

g#(b1, . . . , bn−1) = dn−1 mod (mdn−2). (10.10)

Proof : Expand the determinant as

dn−1 = det(ḡ) = c(det g) + g#(b1, . . . , bn−1).

�

We can now finalize the proof of Theorem 10.1.1, part a).

Proof of Theorem 10.1.1 a): Follow Algorithm 7. Step 1 is accomplished
in probabilistic polynomial-time by Lemma 10.2.3. To execute step 2, it suffices
by Lemma 10.3.2 to find values b1, . . . , bn−1 which satisfy (10.10).

Solubility of (10.10) follows from [Cas78, thm. 9.1.3] and Proposition 10.1.3
or direct calculation; note that det g# is a power of the modulus the factorization
of which is known to us. As to algorithmic resolution, we can solve the modular
quadratic equation (10.10) by use of [AEM87].

By the discussion after Algorithm 7, this completes the proof of part a). �
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10.4 Reduction to Representations

Now let us turn to proving b) of Theorem 10.1.1. This means that we have
to show how to solve a given instance of FTrafo(d) using an oracle answering
∗FReprn(dn−1) and Trafon−1 queries.

For any form h define

Ω(h) = {u ∈ Z | h ∗−→ u, (u, deth) = 1}.

Let an instance (f, g) of FTrafon(d) be given, with n, d as in Theorem
10.1.1. By [Cas78, sec. 8.3, 9.1] for h satisfying the hypotheses of Theorem
1.2.18, Ω(h) is the union of several arithmetic progressions mod 8

∏
p|d p; and

this obviously applies to g#. Let L1, L2 : N → N be arbitrary polynomially
bounded functions with Li(x) ≥ 2 for all x which grow at least linearly. Recall
the notational convention on ϕh, bh, ch from (10.1).

Perform Algorithm 8. Its rough outline is as follows: In step 1, we find a
representation of a random value m of the form g#. By Minkowski Duality
10.1.3, this corresponds to the representation of an (n − 1)-dimensional form
ϕ = ϕg by g. The same computation is performed for f#. If we are lucky, then
ϕf and ϕg will be equivalent, and a representation of ϕg by g can be extended
to a transformation from f to g. For this step, we require a transformation from
ϕg to ϕf which we obtain from the oracle.

Note that each single step of Algorithm 8 is in fact efficiently executable.
In particular, we have det ϕ = mdn−2 in step 2 by Proposition 10.1.3. The
representation asked for after label 2 exists because f ∼ g and thus f# ∼ g#.
The boolean value in the if -query just before step 3 is evaluated using Theorem
3.1.3. The asterisk in the matrix equation above indicates that the equation for
the (n, n) entry is not considered, ensuring that the system is in fact linear.

Lemma 10.4.1 The goto statement is executed at most once at each iteration
of the repeat loop, and if so then during the first pass through the for loop.

Proof : From Lemma 10.2.1 and f# ∗−→ ϕ it follows that

ϕ ∼Zp
〈rp, p, . . . , p, vpp〉.

Here rp is uniquely determined by f up to a factor from Z∗2
p . Once rp has

been chosen, we may take vp = det ϕ
rppn−2 . By Proposition 1.2.17 and Theorem

1.2.18, exactly two classes occur for ϕ, and they have different signatures. By
signm 6= σ it is enforced that the signature is changed if f B 6∼ ϕ. �
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Algorithm 8:

input: Instance (f, g) of FTrafon(d).
output: transformation T with f T = g.
σ := 1;
repeat

1.select random m ∈ Ω(g#) ∩ σ [−L1(|d|), 0] (w.r.t. uniform distribution);
ask oracle for a representation w of m by g#;
compute primitive C ∈ Zn×(n−1) such that C# = w;
find r ∈ Zn such that R := (C | r) ∈ GLnZ; g := gR, ϕ := ϕg, σ := sign (mdn−2);

2.for i = 1, . . . , L2(log |d|) do
ask oracle for a representation u of m by f#

compute primitive B ∈ Zn×(n−1) such that B# = u
if f B 6∼ ϕ then goto 1. fi
3. ask oracle for S ∈ GLn−1Z such that f B S = ϕ;

B := B S;
try to solve the system of linear equations

det(B | a) = ±1,(
Bt

at

)
Af (B | a) =

(
Aϕ bg

bt
g ∗

)
. . . for a ∈ Zn;
if a solution a has been found then output

(
B | a

)
R−1 fi

od
end repeat
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Lemma 10.4.2 Let ϕ be as at label 3 in Algorithm 8. Then there are at most
2ω(m) orbits of representations of ϕ by f under the automorphism group {Q ∈
GLnZ | f Q = f}.

Proof : By [AS87], these orbits are at most as numerous as square roots of
−dn−1ϕ# in (Z/mZ)[x1, . . . , xn−1], of which there are 2ω(m). �

Since every representation from at least one of these orbits can be extended
to form a transformation, each iteration of the for loop has a probability of
solving the problem of at least 2−ω(m). So if ω(m) ≤ 3

2 (log log m) say, then the
algorithm terminates successfully during the current iteration of the repeat loop
with significant, i. e. reciprocally polynomial probability. Finally, (1− o(1))x of
all integers 1 ≤ m ≤ x satisfy this bound [HW60, thm.431]. Now in step 1, the
algorithm scans several arithmetic progressions, hence a positive fraction of the
integers up (or down) to ±L1(|d|). Therefore it hits such m with probability
at least `−1 where ` = P (L1(|d|)) for some positive polynomial P . Hence
each single iteration of the repeat loop brings the algorithm to a successful
termination with probability π ≥ 1

` . Since random bits used in step 1 are
selected independently we obtain a geometric distribution:

Prob[success after ` iterations] = π
∑̀
i=0

(1− π)i

= 1− (1− π)`+1 ≥ 1− (1− `−1)`+1 ≥ 1− e−1. (10.11)

where e is Euler’s constant. Hence running the repeat loop d`e times and
returning fail in case of failure establishes the desired reduction.

This concludes the proof of Theorem 10.1.1. �

We can now as well prove the corollary for dimension three.

Proof of Corollary 10.1.2: The second statement of Corollary 10.1.2 is a
direct application of Theorem 10.1.1 for n = 3, so let us turn to the first one.

Let (f, g) be an instance of FTrafo3(d). Then Theorem 10.1.1 transforms it
into an instance (f ′,m) of ∗FRepr3(d2) and an instance (g, h) of FTrafo2. By
[Die03], there is a solution T ∈ GL3Z to the original transformation problem of
polynomial size. By the proof of Theorem 10.1.1 b), every such transformation
arises from a construction as in Algorithm 8; in particular, with the notation
from there, BS consist of the first two columns of RT , where S is the binary
equivalence transform. This implies that S depends linearly on B, R, and T ,
and thus is of polynomial size. Hence the oracle query for S can be replaced by
an application of Theorem 7.2.1, which finds S in polynomial time. Since we
cannot be sure that such an S can be found for the particular m chosen in the
first step of Algorithm 8, we have to modify Algorithm 8 as follows: Interrupt
the attempt to compute S after a polynomial time bound, reselect m, repeat the
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calculations up to the computation of S, increase the time bound polynomially,
and retry. This proves the reduction without the Trafo2-oracle. �
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(Kučera, Luděk and Kučera, Antońın, eds.), Lecture Notes in Com-
puter Science, Springer, 2007, pp. 333–345.

[HW60] Hardy, G. H. and Wright, E. M., An introduction to the theory of
numbers, fourth ed., Oxford: At the Clarendon Press, 1960.
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