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Part I

Zusammenfassung





Zusammenfassung

Eva Schneider

1 Thematische Einordnung

Die Arbeit befasst sich mit den Eigenschaften neuester zeitstetiger Aktienkursmodelle in

Bezug auf optimale Portfolioplanung, Derivatebewertung und -hedging. Hierbei wird auch

insbesondere auf die Auswirkungen einer Modellfehlspezifikation eingegangen.

Das bekannteste Bewertungsmodell für Optionspreise ist sicherlich das Modell von

Black und Scholes (1973). Schon allein die Existenz des impliziten Volatilitätssmiles ver-

deutlicht aber, dass die Modellannahmen zu strikt sind, um das Verhalten von empirisch

beobachteten Aktienkursen und Optionspreisen zu erklären. Um die Erklärungskraft von

Optionspreismodellen zu erhöhen, werden daher zusätzliche Aspekte von Aktienkursen in

die Modellierung aufgenommen. So wurde bereits in Merton (1976) das Sprung-Diffusions-

Modell eingeführt, welches nicht nur stetige Bewegungen, sondern auch diskrete Sprünge

im Aktienkurs zulässt. Eine andere Erweiterung betrifft die Modellierung einer stochasti-

schen Volatilität des Aktienkurses. Zu den bekanntesten Modellen dieser Klasse zählt das

Modell von Heston (1993).

In neueren Modellen werden diese Komponenten kombiniert. So gibt es in dem Modell

von Bakshi, Cao und Chen (1997) neben stochastische Zinsen sowohl stochastische Volati-

lität als auch Sprünge im Aktienkurs. Das Modell von Bates (2000) erlaubt die Modellie-

rung von Sprüngen im Aktienkurs und hat als weitere Besonderheit, dass die stochastische

Volatilität aus zwei Komponenten besteht. Duffie, Pan und Singleton (2000) verallgemei-

nern diese Modellansätze unter der Klasse der affinen Sprung-Diffusions-Modelle, welche

beispielsweise auch Modelle mit Sprüngen in der Volatilität beinhalten.

Neuere empirische Studien wie Eraker, Johannes und Polson (2003) oder Broadie,

Chernov und Johannes (2007) kommen zu dem Ergebnis, dass sowohl stochastische Vola-
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tilität als auch Sprünge im Aktienkurs und in der Volatilität nötig sind, um Optionspreise

und Aktienkurse in ausreichendem Maße zu erklären. Auch Modelle mit mehreren Volati-

litätskomponenten haben viele wünschenswerte Eigenschaften wie Christoffersen, Heston

und Jacobs (2007) zeigen.

Trotz ihres Erfolgs bei der Optionsbewertung gibt es nur wenige Autoren, die sich mit

der Fundierung dieser Modelle im allgemeinen Gleichgewicht beschäftigen. Ältere Studien

wie Bick (1986) im Fall homogener Agenten und Dumas (1989) für den Fall heterogener

Agenten arbeiten zumeist auf Basis einer Black und Scholes (1973)-Dynamik. Nur wenige

neuere Studien wie Dieckmann und Gallmeyer (2005) beziehen auch Sprünge mit ein. Auch

die optimale Portfolioplanung in diesen Modellen wird in der Literatur noch unzureichend

betrachtet. Eine Ausnahme hiervon stellen Liu, Longstaff und Pan (2003) und Liu und

Pan (2003) dar.

Liu und Pan (2003) leiten die optimalen Portfoliopositionen eines Investors mit kon-

stanter relativer Risikoaversion in einem Sprung-Diffusions-Modell mit stochastischer Vola-

tilität her. Im Rahmen ihrer Analyse führen sie eine Methodik ein, die unter Annahme eines

vollständigen Marktes zunächst die optimalen Positionen in den Risikofaktoren herleitet,

welche anschließend in Wertpapierpositionen umgerechnet werden können. Der Vorteil die-

ser Herangehensweise liegt darin, dass die Ergebnisse einfach ökonomisch zu interpretieren

sind und die Risikopositionen flexibel auf die jeweils gehandelten Wertpapiere umgerech-

net werden können. Außerdem ermöglicht der Vergleich ihrer Ergebnisse mit denen auf

einem unvollständigen Markt, den ökonomischen Wert von (marktvervollständigenden)

Derivaten zu berechnen.

Im Gegensatz hierzu arbeiten Liu, Longstaff und Pan (2003) in einem unvollständigen

Kapitalmarkt. Sie untersuchen den Einfluss von Sprüngen im Aktienkurs und in der Vola-

tilität auf die optimale Aktienposition eines Investors. Insbesondere betrachten sie hierbei

auch den Nutzenverlust, den ein Investor erleidet, der Sprünge im Aktienkurs bei seiner

Portfolioplanung ignoriert.

Je komplizierter die Optionsbewertungsmodelle, um so wichtiger wird es aus theore-

tischer und praktischer Sicht auch zu analysieren, welche Konsequenzen eine Fehlspezifi-

kation des angenommenen Modells hat. Dass eine eindeutige Identifizierung des Modells

schwierig sein kann, zeigen beispielsweise Dennis und Mayhew (2004). Sie verdeutlichen

in ihrer Arbeit, dass allein wegen der Existenz von mikrostrukturellen Störungen, wie des

Bid-Ask-Spreads, unter bestimmten Umständen ein Sprung-Diffusions-Modell anhand der
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resultierenden Optionspreise nicht von einem Modell ohne Sprünge unterschieden werden

kann.

Diese Fehlspezifikation kann zwei Ausprägungen haben: Modellrisiko, welches die

Fehlspezifikation der Modellklasse bezeichnet und Parameterrisko, bei dem zwar das

grundsätzliche Modell identifiziert ist, nicht aber die konkrete Parametrisierung. Liu,

Longstaff und Pan (2003) betrachten die Konsequenzen von Modellrisiko im Rahmen der

optimalen Portfolioplanung, andere Autoren analysieren die Konsequenzen, die eine Fehl-

spezifikation auf die Bewertung von Optionen oder deren Hedging hat.

Figlewski (2004) beispielsweise analysiert den Fehler, der bei einer Value-at-Risk-

Schätzung unter Annahme des Black und Scholes (1973)-Modells entsteht, wenn der wah-

re Aktienkursprozess einer Dynamik mit stochastischer Volatilität und Sprüngen folgt.

Schoutens, Simons und Tistaert (2003) zeigen den Einfluss von Modellrisiko auf die Be-

wertung exotischer Derivate, An und Suo (2003) auf ihr Hedging. He, Kennedy, Coleman,

Forsyth, Li und Vetzal (2006) zeigen die Konsequenzen von Parameterrisiko, indem sie für

ein Sprung-Diffusions-Modell mit lokaler Volatilitätsfunktion verschiedene, ähnlich gute

Kalibrierungen aufstellen und jeweils die Performance eines auf ihnen basierten Hedge-

portfolios analysieren.

2 Struktur und Inhalt der Arbeit

Die vorliegende Dissertation besteht aus vier Forschungspapieren:

• Optimal Portfolios When Volatility can Jump von Nicole Branger, Christian Schlag

und Eva Schneider

• Derivatives Trading in a General Equilibrium Model with Stochastic Volatility and

Jumps von Nicole Branger, Christian Schlag und Eva Schneider

• Continuous-time Volatility Component Models: Option Pricing and Asset Allocation

von Eva Schneider

• Hedging in the Presence of Microstructural Noise von David Horn, Eva Schneider und

Grigory Vilkov

In dem Forschungspapier Optimal Portfolios When Volatility can Jump beschäftigen

wir uns mit der optimalen Portfolioplanung in einem zeitstetigen stochastischen Volati-

litätsmodell, welches als Besonderheit im Vergleich zu vorherigen Arbeiten Sprünge in der
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Volatilität zulässt. Diese Sprungkomponente ist in unserem Forschungspapier besonders

flexibel modelliert. So sind grundsätzlich Sprünge stochastischer Höhe ausschließlich im

Aktienkurs, ausschließlich in der Volatilität, aber auch gemeinsame Sprünge beliebiger

Korrelation möglich.

In diesem Modellrahmen leiten wir die optimale Portfolioallokation eines Investors mit

konstanter relativer Risikoaversion auf einem vollständigen Kapitalmarkt her. Hierbei ori-

entieren wir uns an der Methodik von Liu und Pan (2003). Die Besonderheit ihres Ansatzes

liegt darin, dass nicht optimale Positionen in den gehandelten Wertpapieren hergeleitet

werden, sondern dass zunächst optimale Positionen in den einzelnen Risikofaktoren ermit-

telt werden. Durch die Annahme eines vollständigen Kapitalmarkts ist es möglich, diese

Risikopositionen anschließend in Wertpapierpositionen zu übersetzen.

In unserem Modellrahmen mit korrelierten gemeinsamen Sprüngen in Aktienkurs und

Volatilität erhält man bezüglich der optimalen Risikoposition ein interessantes Ergebnis.

Im Gegensatz zu vorherigen Arbeiten besteht die optimale Nachfrage nach Sprungrisi-

ko nicht mehr nur aus einer myopischen Komponente, sondern auch aus einer Hedging-

Komponente. Insbesondere bedeutet dies, dass ein Investor im Optimum selbst dann noch

eine Position im Sprungrisikofaktor einnimmt, wenn die Prämie für diesen Faktor gleich

Null ist. Seine optimale Position würde in einem solchen Fall allein durch die Möglichkeit

des Hedgings der stochastischen Investitionsmöglichkeiten getrieben werden. Eine durch

einen Volatilitätssprung induzierte Veränderung in den Risikoprämien (je Risikoeinheit),

und damit eine Veränderung der Investitionsmöglichkeiten, könnte nämlich durch eine

entsprechende Position im Sprungrisiko kompensiert werden.

Weiterhin erlaubt uns ein Vergleich mit den Ergebnissen von Liu, Longstaff und Pan

(2003), den ökonomischen Wert von Derivaten zu berechnen. Hierzu vergleichen wir den

Nutzen eines Investors, der durch ein Investment in Derivate eine optimale Position in

den Risikofaktoren erreichen kann, mit dem Nutzen eines Investors, der ausschließlich

in die Aktie und das Geldmarktkonto investieren kann. Dieser Nutzengewinn kann je

nach Parameterkonstellation erheblich sein und ist für einen Investor mit 10-jährigem

Anlagehorizont in etwa vergleichbar mit einer zusätzlichen sicheren Rendite von 5% per

annum.

Der letzte Abschnitt des Forschungspapiers beschäftigt sich mit dem Einfluss von

Modell- und Parameterrisiko auf die erwartete Vermögensverteilung zu Ende des Anla-

gehorizonts. Im Rahmen des Modellrisikos analysieren wir, welche Auswirkungen eine



2 Struktur und Inhalt der Arbeit 7

Vernachlässigung bzw. ein fälschliches Hinzunehmen von Sprüngen in der Volatilität hat.

Auch Parameterrisiko betrifft vor allem die Sprungparameter, da diese sich auf seltene

Ereignisse beziehen und somit empirisch schwer zu schätzen sind. In beiden Fällen zeigt

sich, dass vor allem die optimale Position im Sprungrisiko für den Investor eine Gefahr

in sich birgt. Wird diese aufgrund von Modell- oder Parameterrisiko überschätzt, so kann

der Investor bei Auftreten dieses diskreten Ereignisses mit einem Mal sein vollständiges

Vermögen verlieren und somit theoretisch einen unendlich großen Nutzenverlust erleiden.

Während die Analyse im ersten Forschunspapier im partiellen Gleichgewicht durch-

geführt wird, handelt es sich in dem Forschungspapier Derivatives Trading in a General

Equilibrium Model with Stochastic Volatility and Jumps um ein allgemeines Gleichge-

wichtsmodell. Insbesondere wird hier die Dynamik der Preisprozesse gehandelter Wert-

papiere nicht exogen vorgegeben, sondern zunächst selbst innerhalb eines Lucas (1978)-

Tree-Modells bestimmt. Hierzu wird der schon im vorherigen Forschungspapier vorgestellte

Sprung-Diffusions-Prozess mit stochastischer Volatilität und Sprüngen in der Volatilität

als Dynamik für die Dividendenzahlung zugrunde gelegt. Zusätzlich wird angenommen,

dass die Ökonomie aus zwei (Gruppen von) Investoren besteht, die sich nur in der Höhe ih-

rer Risikoaversion unterscheiden. Dies impliziert für den repräsentativen Investor (RI) die

im Folgenden wichtige Eigenschaft, dass er trotz der konstanten relativen Risikoaversion

der Einzelinvestoren eine sinkende relative Risikoaversion besitzt.

Zur Herleitung des kurzfristigen Zinssatzes und der Risikoprämien wird nun ausge-

nutzt, dass der RI wegen der Nichtsättigungseigenschaft immer die gesamte Dividende

konsumieren und daher 100% des Aktienkurses halten wird. Ebenso kann im Aggregat

kein Vermögen im Geldmarktkonto gehalten werden. Die auf dem Kapitalmarkt gezahlten

Prämien entsprechen daher gerade den vom RI geforderten Prämien und der Zinssatz ist

derjenige, bei dem der RI indifferent zwischen Geldanlage und Aufnahme eines Kredits

ist. Nach Aufstellung des stochastischen Diskontierungsfaktors ist es uns im Folgenden

möglich, den Aktienkurs mit Hilfe numerischer Verfahren zu berechnen.

Weiterhin entspricht die optimale Nachfrage des RI nach Risikofaktoren gerade der

Risikoposition des Gesamtvermögens der Ökonomie und damit der Dynamik des Aktien-

kurses. Im Falle einer homogenen Ökonomie ist die myopische Komponente der Risikopo-

sition gerade gleich eins. Bei heterogenen Investoren hängt ihre Größe davon ab, inwiefern

die erwartete zukünftige Risikoaversion des RI von der aktuellen abweicht. Im Gegensatz

zu den Ergebnissen einer partiellen Gleichgewichtsanalyse ist die durch Hedging motivier-
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te Position in den einzelnen Risikofaktoren nicht monoton in der Risikoaversion des RI.

Jede Abweichung der Risikoposition im Aktienkurs von eins stellt einen Unterschied im

Vergleich zur Dividendendynamik dar und wird in der Literatur als ’Excess Volatility’

bezeichnet. Somit kann unser Modell dieses empirische beobachtete Phänomen sehr gut

erklären.

Wiederum über Verwendung der numerischen Lösung von Differentialgleichungen und

Fourierinversion können auch die optimalen Portfoliopositionen der Einzelinvestoren her-

geleitet werden und ein Vergleich zwischen ihnen erlaubt Rückschlüsse auf den Handel

von Risikofaktoren. Es wird deutlich, dass der Wunsch zu handeln in erster Linie durch

Unterschiede in der myopischen Komponente getrieben wird, die Hedging-Komponente

spielt in absoluten Werten nur eine untergeordnete Rolle. Vor allem im Fall des Volati-

litätsrisikofaktors ist die Handelsrichtung zwischen den beiden Investoren abhängig von

den konkreten Zahlenwerten der Risikoaversionskoeffizienten. Es kann nicht im Vorhin-

ein gesagt werden, ob der mehr oder der weniger risikoaverse Investor die Position kauft

oder verkauft. Es zeigt sich, dass sich das Handelsvolumen von Risikofaktoren selbst bei

moderaten Niveaus der Risikoaversion auf bis zu 20% der Marktkapitalisierung belaufen

kann.

Im Gegensatz zu den ersten beiden basiert das Forschungspapier Continuous-time

Volatility Component Models: Option Pricing and Asset Allocation nicht auf Sprung-

Diffusions-Modellen, sondern es werden Modelle mit unterschiedlicher Spezifikation der

stochastischen Volatilitätskomponente betrachtet. Hierbei werden deren Eigenschaften in

Bezug auf Optionsbewertung und optimale Portfolioplanung mit dem Modell von Heston

(1993), welches nur eine Volatilitätskomponente enthält, verglichen. Insbesondere wird auf

das Modell von Bates (2000) und das von Duffie, Pan und Singleton (2000) vorgestellte

Modell mit stochastischen langfristigen Mittelwert (SLRM) eingegangen.

Es zeigt sich, dass das Modell von Bates (2000) einige sehr interessante Eigenschaf-

ten aufweist, die es im Vergleich zum Modell von Heston (1993) und zum SLRM-Modell

deutlich hervorheben. Was die Optionsbewertung angeht, schafft es das Modell von Bates

(2000) auf relativ einfache Art und Weise nicht nur den empirisch beobachteten Smile zu

einem Zeitpunkt zu reproduzieren, sondern es hat auch die besondere Eigenschaft, dass

sich die grundsätzliche Form des Smiles innerhalb einer Parametrisierung im Zeitverlauf

verändern kann. Im Modell von Bates (2000) können durch eine Verschiebung in den

Gewichtsanteilen der beiden Volatilitätskomponenten verschiedene, empirisch beobachte-
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te Phänomene daher konsistent erklärt werden. Trotz konstant bleibender Gesamtvari-

anz generiert das Modell von Bates (2000) unterschiedliche Levels des Smiles, und seine

Krümmung und Steigung können sich ändern.

Auch in Bezug auf die optimale Portfolioplanung verhält sich das Modell von Bates

(2000) nicht wie andere affine Modelle. Die optimale Aufteilung des Vermögens eines In-

vestors mit konstanter relativer Risikoaversion auf Aktie und Geldmarktkonto ist nicht in

geschlossener Form lösbar. Stattdessen muss auf das numerische Lösen einer Differential-

gleichung, hier mittels finiter Differenzen-Methode, zurückgegriffen werden. Weiterhin ist

die optimale Aktienposition im Gegensatz zu anderen affinen Modellen zustandsabhängig.

Es ist also nicht allein der Planungshorizont und der Risikoaversionskoeffizient, der über die

optimale Aufteilung zwischen Aktie und Geldmarktkonto entscheidet, sondern zusätzlich

muss der Zustand der Ökonomie, das heißt die Höhe der Volatilitätskomponenten, bekannt

sein.

Im letzten Abschnitt wird auch in diesem Forschungspapier auf die Auswirkungen von

Modellfehlspezifikation eingegangen. Hierzu wird zunächst eine allgemeine Vorgehensweise

zur Berechnung des Nutzenverlustes mit Hilfe der finiten Differenzen-Methode vorgestellt.

Mittels dieser Methodik, die grundsätzlich auf unterschiedliche Arten von Modellfehlspezi-

fikation angewendet werden kann, wird der Nutzenverlust eines Investors, der die Existenz

von Volatilitätskomponenten ignoriert, berechnet. Es stellt sich heraus, dass der resultie-

rende Nutzenverlust weitaus geringer ist als im Fall der Vernachlässigung von Sprungkom-

ponenten.

In dem Forschungspapier Hedging in the Presence of Microstructural Noise betrachten

wir eine andere Art von Fehlspezifikation, nämlich nicht die Modell- sondern die Parame-

terfehlspezifikation. Insbesondere untersuchen wir im Rahmen des Heston (1993)-Modells,

welche Auswirkungen eine Fehlschätzung der Parameter auf die Hedgingperformance hat.

Grundsätzlich ist es nicht nur die Seltenheit von Ereignissen, die eine korrekte Parame-

terschätzung erschwert, sondern auch die Existenz von mikrostrukturellen Störungen. Wie

Dennis und Mayhew (2004) zeigen, ist beispielsweise die eindeutige Identifizierung ei-

ner Modellklasse anhand von Optionspreisen wegen ihres Bid-Ask-Spreads nicht möglich.

Ebenso sind theoretisch alle Parameterkonstellationen, die Preise innerhalb des Bid-Ask-

Spreads liefern, für ein gegebenes Modell nicht zu unterscheiden. Ein auf diesen verschie-

denen Parametrisierungen basierter Hedge kann aber trotzdem unterschiedlich gut sein.
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Genau dieser Einfluss auf die Hedgingperformance soll in unserem Forschungspapier un-

tersucht werden.

Zunächst zeigen wir auf, welche Parameter des Heston (1993)-Modells besonders

anfällig für dieses Parameterrisiko sind. Dies sind solche Parameter, die anhand von Op-

tionspreisen schwer identifizierbar sind, deren Größe aber einen bedeutenden Einfluss auf

den Aufbau des Hedgeportfolios hat. In einer einfachen Sensitivitätsanalyse scheinen vor

allem die Parameter Rückholgeschwindigkeit κ, Volatilität der Varianz σv, sowie die Kor-

relation zwischen Aktienkurs- und Varianzprozess ρ diese Eigenschaft zu haben.

Um diese ersten Ergebnisse zu bestätigen, führen wir im Folgenden eine Monte-Carlo-

Simulation durch. Hierzu gehen wir von einem konservativen Ansatz aus, indem wir anneh-

men, dass der Investor bei der Kalibrierung alle Parameter des Heston (1993)-Modells, bis

auf zwei, richtig schätzt. Anschließend ermitteln wir die Menge der Parametrisierungen,

die Optionspreise liefern, die innerhalb des Bid-Ask-Spreads nicht von den als wahr ange-

nommenen Preisen unterscheidbar sind. Der Vergleich zwischen Kalibrationsgüte einerseits

und aus Parametrisierung resultierender Hedgingperformance andererseits ergibt Folgen-

des. Zwar lässt sich in der Regel von der Kalibrationsgüte auf die Hedgingperformance

schließen, es gibt aber auch Ausnahmen. Im Fall des Parameters σv kann es sein, dass

sich die Kalibrationsgüte bei einer Fehlschätzung nur geringfügig verschlechtert, während

die resultierende Hedgingperformance rapide abnimmt. Weiterhin gibt es Parameter, die

sich gegenseitig stark beeinflussen. So ist das langfristige Mittel der Varianz θ für kleine

Werte von κ nahezu nicht zu identifizieren, während es für große Werte von κ sehr leicht

zu kalibrieren ist.

Ein weiteres interessantes Ergebnis, welches sich schon in der einleitenden Analyse an-

deutet, ist folgendes. Sind unter den zur Kalibrierung verwendeten Optionen nur wenige

weit aus dem Geld liegende (OTM-Optionen), so verschlechtert sich die Hedgingperfor-

mance massiv. Bei einem mittleren Bid-Ask-Spread von 10% sind viele der Parameter, aber

insbesondere der Parameter ρ, nur noch sehr schwer zu identifizieren. Den Zusammenhang

zwischen Bid-Ask-Spread und aus Parameterfehlspezifikation resultierender Verschlechte-

rung der Hedgingperformance haben wir im Folgenden genauer quantifiziert. So kann man

je nach Parameterkonstellation folgende Beobachtungen anstellen. Bei einem mittleren

Bid-Ask-Spread von 5% muss der Investor mit einer zusätzlichen Standardabweichung des

Hedgefehlers von bis zu 2% rechnen, stehen ihm bei der Kalibrierung außerdem keine

OTM-Optionen zur Verfügung, mit bis zu 11%. Stehen dem Investor nur Optionen kurz-
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er Restlaufzeit zu Verfügung, so ist die Verschlechterung im Vergleich zu dem Fall eines

breiten Laufzeit-Spektrums nur marginal. Zur Parameteridentifizierung ist also ein breites

Strike-Spektrum enorm wichtig, während die Laufzeiten eine untergeordnete Rolle spielen.

Man erhält beispielsweise nach einer Kalibrierung ohne OTM-Optionen bei einem mittle-

ren Bid-Ask-Spread von 5% eine ähnliche Hedgingperformance wie nach einer Kalibrierung

zu einem breiten Strike-Spektrum mit einem Bid-Ask-Spread von 20%.

Im letzten Abschnitt verdeutlichen wir mit Hilfe einer empirischen Studie die Relevanz

unserer Analyse. Es zeigt sich, dass scheinbar geringfügige Unterschiede in der Kalibrierung

deutliche Auswirkungen auf die Hedgingperformance haben können. Insbesondere beim

Hedging von OTM-Optionen treten Unterschiede von bis zu 20 Prozentpunkten in der

Standardabweichung des relativen Hedgefehlers auf, je nachdem, ob die Kalibrierung zum

Bid-, Ask- oder Midpreis erfolgt ist.
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Summary. We consider an asset allocation problem in a continuous-time model with stochastic

volatility and (possibly correlated) jumps in both the asset price and its volatility. First, we derive

the optimal portfolio for an investor with constant relative risk aversion. The demand for jump risk

includes a hedging component, which is not present in models without volatility jumps. We further

show that the introduction of derivative contracts can have a substantial economic value. We also

analyze the distribution of terminal wealth for an investor who uses the wrong model when making

portfolio choices, either by ignoring volatility jumps or by falsely including such jumps although

they are not present in the true model. Finally, we also investigate the impact of estimation risk.

The terminal wealth distribution exhibits fatter tails than under the correct model, and in some

cases there is also significant default risk.

1 Introduction and Motivation

The key risk factors considered in option pricing models, besides the diffusive price risk

of the underlying asset, are stochastic volatility and jumps, both in the asset price and

its volatility. Models that include some or all of these factors were developed by Merton

(1976), Heston (1993), Bates (1996), Bakshi, Cao and Chen (1997), and Duffie, Pan

and Singleton (2000). The importance of jumps in volatility has become apparent in
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recent studies, which try to explain the time series properties of both stock and option

prices, like Eraker, Johannes and Polson (2003), or Broadie, Chernov and Johannes (2007).

In an asset allocation context, the main papers analyzing the impact of jumps are Liu,

Longstaff and Pan (2003), Liu and Pan (2003) and Dieckmann and Gallmeyer (2005).

Whereas Dieckmann and Gallmeyer (2005) consider the equilibrium allocation of diffusive

and jump risks between heterogeneous agents in an exchange economy, Liu, Longstaff and

Pan (2003) and Liu and Pan (2003) study a pure asset allocation problem.

In this paper, we first investigate the impact of jumps in volatility on the investor’s

optimal portfolio. Second, we assess the utility gain generated by the availability of deri-

vatives. Third, we analyze the distribution of terminal wealth and the induced utility

loss for an investor who uses a mis-specified model, which may be either one that does

not contain volatility jumps although the true model does, or one containing such jumps

although they are not part of the true model. Fourth, we show that parameter risk,

which is another source of potential problems in an asset allocation process, can have

consequences which are similar to those of model mis-specification.

Our analysis ties up some loose ends in the literature. We consider the portfolio

planning problem in a very general setup with stochastic volatility, jumps in the stock price,

and, in particular, jumps in volatility. Thereby, we extend the comparison of diffusion risk

and jump risk in Liu, Longstaff and Pan (2003) to the more realistic case when derivatives

are actually available to the investor. By considering a model that includes jumps in

volatility, we also extend the framework in Liu and Pan (2003) who study the benefits

from trading derivatives in a model without jumps in volatility.

The framework suggested here represents a significant generalization of both of these

papers. We solve the model for the general case of correlated jumps in the stock price

and in volatility. For the numerical analysis, we restrict the model to the simpler case

where jump sizes are deterministic and where both the stock price and its volatility jump

simultaneously. This allows us to focus on the key aspects of our model and it also allows

for an easy comparison with the results of Liu, Longstaff and Pan (2003) and Liu and Pan

(2003).

When we derive the optimal portfolio of a CRRA investor, we assume a complete

market to concentrate on the impact of jumps. In the spirit of Merton (1971) we separate

the overall demand for a risk factor into a myopic and a hedging component. With jumps

in volatility, the optimal demand for jump risk now also contains a hedging component
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not present in the Liu and Pan (2003) economy. The reason is that part of the volatility

hedging can now be achieved by trading jump risk, while otherwise, all the hedging is

done by trading diffusion risk.

Via derivatives the investor can achieve her optimal exposures to the fundamental

risk factors. The introduction of derivatives thus always increases the investor’s utility,

when prices and risk premia are given exogenously. We show that this utility gain is

economically significant.

Model mis-specification and parameter risk are important issues in the context of asset

allocation. Given that the true model is not known, we assume that the investor either

wrongly uses a model without jumps in volatility, or that she falsely includes volatility

jumps in the asset allocation although they are not present in the true data generating

process. With a wrong model, the investor calculates the optimal exposure to the risk

factors incorrectly. Furthermore, she relies on the wrong sensitivities of the derivatives to

compute the associated asset positions. Note that this second mistake can only happen

when derivatives are traded, but not in a setup like in Liu, Longstaff and Pan (2003). In

both situations with model mis-specification, we show that the distribution of terminal

wealth exhibits more mass in both the left and the right tail. In particular, the risk of

bankruptcy increases significantly. Our results imply there is nothing like a simple robust

hedge against mis-specification. When measuring the impact of parameter mis-estimation,

we find it to be comparable to model mis-specification in terms of its consequences for the

investor’s utility losses. For example, adding just one standard error to the estimated jump

size in the stock price makes this parameter so close to zero that the investor basically

builds her decisions on a model without price jumps.

In Section 2 we present the model. Section 3 contains the solution to the portfolio

planning problem and its economic interpretation. Section 4 provides a numerical example

for the impact of volatility jumps. The economic value of derivatives in the context of

our model is discussed in Section 5, and model mis-specification and estimation risk are

analyzed in Section 6. Section 4 concludes.

2 Model Setup

The dynamics of the stock price S and the instantaneous variance V under the true

measure P are given by the following stochastic differential equations:
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dSt = µtStdt+
√
VtStdB

(1)
t + St−



∑

j,k

x(j) dN
(j,k)
t − EP [X]λPVtdt


 (1)

dVt = κP (v̄P − Vt)dt + σV

√
Vt

(
ρdB

(1)
t +

√
1 − ρ2dB

(2)
t

)

+



∑

j,k

y(k) dN
(j,k)
t − EP [Y ]λPVtdt


 . (2)

The stock price and the variance are driven by the independent Brownian motions B(1)

and B(2) and by M ≡ J ·K independent Poisson processes N (j,k), each with (stochastic)

intensity λPVtpjk (j = 1, . . . , J ; k = 1, . . . ,K). The P -probability that a jump of any

type occurs over the next time interval is equal to λPVtdt, and given that a jump has

occurred, the random jump sizes (X,Y ) for the stock price and the variance are modeled

as discrete random variables with realizations (x(j), y(k)) and respective probabilities pjk.

The variance jumps have to be restricted to y(k) ≥ 0 in order to avoid negative variances,

and stock price jumps have to be larger than minus one to avoid negative stock prices.

The mean jump sizes are EP [X] and EP [Y ].

This setup allows us to model jumps in the stock price only, jumps in the variance only,

and simultaneous jumps in both. Table 1 summarizes the structure. Pure price jumps

can be described by pairs (x(j), y(1)) = (x(j), 0) for j ≥ 2. Analogously, pure variance

jumps are represented by pairs (x(1), y(k)) = (0, y(k)) for k ≥ 2. The correlation structure

of price and variance jumps can be generated by an appropriate specification of the joint

probabilities pj,k for j, k ≥ 2. The event (x(1), y(1)) = (0, 0) is assigned zero probability in

the jump size distribution, since it represents the case of no jump at all.

The interest rate r is constant and the market prices of risk are given exogenously.

Following Liu and Pan (2003), we specify the pricing kernel ξ via

dξt = −ξt
(
rdt+ ηB1

√
VtdB

(1)
t + ηB2

√
VtdB

(2)
t

)

+ ξt−




∑

j,k

(
λQqjk
λPpjk

− 1

)
dN

(j,k)
t −

(
λQ

λP
− 1

)
λPVtdt



 .

The market prices of risk ηBiVt represent the compensation per unit of
√
VtdB

(i)
t (i = 1, 2).

The premium for an exposure of +α to a jump of size (x(j), y(k)) (i.e. for an increase of

α · 100% in wealth if such a jump occurs) is α ·
(
pjkλ

P − qjkλ
Q
)
Vt. The expected excess

return on equity µt − r is then given by
(
ηB1 + EP [X]λP − EQ[X]λQ

)
Vt.
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Liu and Pan (2003) have shown that in a complete market the investor can choose

optimal risk factor exposures instead of optimal asset positions. To achieve market com-

pleteness with a finite number of traded assets in our model economy, we have to assume a

discrete jump size distribution with a finite number of realizations. Nevertheless, our setup

is rich enough to analyze differences between the three types of jumps discussed above. To

complete the market, we need M = J ·K derivative instruments. This assumption may

not be realistic for all underlying assets, but we consider it to be justified for the major

stock market indices with a large number of actively traded options.

3 Portfolio Planning Problem

3.1 Optimal Portfolio

Let φt and ψ
(i)
t , i = 1, 2 . . . ,M , represent the fractions of wealth invested in the stock and

in the M derivative assets, respectively. The stochastic differential equation for wealth is

then given by

dWt = Wt−

{(
1 − φt −

M∑

i=1

ψ
(i)
t

)
rdt+ φt

dSt

St−
+

M∑

i=1

ψ
(i)
t

dO
(i)
t

O
(i)
t−

}
,

where O
(i)
t denotes the price of the i-th derivative asset. For the following analysis, it is

more useful to work with exposures to the fundamental risk factors B(1), B(2), and to the

M − 1 different jump events. Following Liu and Pan (2003), we rewrite the dynamics of

wealth in terms of these exposures:

dWt = rWtdt+ θB1
t Wt

(
ηB1Vtdt +

√
VtdB

(1)
t

)
+ θB2

t Wt

(
ηB2Vtdt+

√
VtdB

(2)
t

)

+Wt−



∑

j,k

θN(j,k)

t dN
(j,k)
t −

∑

j,k

qjkθ
N(j,k)

t λQVtdt


 . (3)

On a complete market any exposure (θB1
t , θB2

t , θN(j,k)

t ) can be obtained by suitable positions

in the stock, the money market account, and the contingent claims. θN(j,k)

t stands for the

fraction of wealth invested in the risk factor dN (j,k), and thus gives the relative jump in

wealth when there is a jump of size x(j) in the stock price and of size y(k) in volatility. For

example, θN(j,k)

t < 0 means that the investor’s wealth will decrease by θN(j,k)

t · 100 percent

when a jump of type (j, k) occurs.
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Lemma 0.1 (Optimal exposures to fundamental risk factors). The optimal expo-

sures to the fundamental risk factors are given by

θ∗B1
t =

ηB1

γ
+ ρσVH(τ) (4)

θ∗B2
t =

ηB2

γ
+
√

1 − ρ2σVH(τ) (5)

θ∗N
(j,k)

t =

[(
pjkλ

P

qjkλQ

)1/γ

− 1

]
+

(
pjkλ

P

qjkλQ

)1/γ [
eH(τ)y(k) − 1

]
(6)

where τ = T − t, and h and H solve the system

h′(τ) = κP v̄PH(τ) +
1 − γ

γ
r (7)

H ′(τ) = a+ bH(τ) + cH2(τ) + λQ
∑

j,k

qjk

[(
pjkλ

P

qjkλQ

)1/γ

exp{y(k)H(τ)}
]

(8)

with the boundary conditions h(0) = H(0) = 0 and

a =
1 − γ

2γ2

[
(ηB1)2 + (ηB2)2

]
+

1 − γ

γ
λQ − 1

γ
λP

b = −
(
κP + EP [Y ]λP

)
+

1 − γ

γ
σV

(
ρηB1 +

√
1 − ρ2ηB2

)

c =
1

2
σ2

V .

The indirect utility J(t, w, v) is given by

J(t, w, v) =
w1−γ

1 − γ
exp {γh(τ) + γH(τ)v} . (9)

In Liu and Pan (2003), the volatility jump size Y is identically equal to zero, and

Equation (8) reduces to a Ricatti equation with a closed-form solution. In our model, the

system (7)—(8) has to be solved numerically. Like in Liu and Pan (2003), our function

H has the properties H(τ) ≥ 0 for γ < 1, H(τ) ≤ 0 for γ > 1, and H(τ) = 0 for the

log-investor with γ = 1 (see Appendix A), so that J is increasing in V for γ 6= 1.

3.2 Structure of Optimal Demand

The optimal demand in (4), (5), and (6) has two components first identified by Merton

(1971). The investor wants to earn the risk premia (myopic demand), but also has the

desire to hedge against unfavorable changes in the investment opportunity set, i.e. in our

framework against changes in V (hedging demand).
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In the general case where H(τ) 6= 0, the investor cares about potentially adverse

changes in the investment opportunity set, which generates a hedging demand in volatility.

This demand is met by a position in all risk factors which have an impact on volatility,

no matter whether these factors carry a premium or not. In our model with jumps in

volatility, there will thus be a hedging demand for diffusion risk and also for jump risk.

This latter is not present in the model analyzed by Liu and Pan (2003).

The sign of the hedging demand for volatility risk depends on the relative risk aversion

γ. As discussed in Liu (2001) and Bhamra and Uppal (2006) and shown above in the

discussion of the properties of the functionH, the investor takes a long position in volatility

for γ < 1, a short position for γ > 1, and she does not hedge for γ = 1.

The function H(τ) determines not only the direction, but also the size of the hedging

demand. For γ > 1, an inspection of (8) shows that the hedging demand is increasing in

the horizon and converges to an upper bound.1 For an increasing planning horizon, the

investor cares more and more about changes in the investment opportunity set, so that

her hedging position will converge to a risk-minimizing hedge. Obviously, there is no use

in increasing it beyond this level, since this would again increase risk.

By a similar argument, we can see that the larger the investor’s risk aversion, the lower

her myopic demand. This decreases the exposure to the stochastic investment opportunity

set, and thus will ultimately also decrease the hedging demand, even if the desire to hedge

increases. Indeed, it can be shown that the hedging demand per unit of myopic exposure

converges to some limiting value when risk aversion goes to infinity.

We now analyze the demand for jump risk. Jump events are characterized by the jump

sizes for the stock and the variance. However, one can see from Equation (6), that it is only

the size of variance jumps y(k) that matters for jump demand. The myopic demand for

jumps only depends on the respective risk premium, while the hedging demand is driven

by the impact of the jump event on volatility, and thus depends on y(k) only. For two

jump sizes 0 < y(a) < y(b), the hedging demand is larger in absolute terms for the larger

jump y(b).

1 For very small values of γ < 1 where the investor is nearly risk-neutral, we refer the reader to Kim and

Omberg (1996). Kraft (2003) and Korn and Kraft (2004) also analyze the technical aspects of asset

allocation in continuous time in detail.
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Finally, it is interesting to see how the investor hedges against a volatility jump of size

y(k). If there are several jump events with this same volatility jump size but different stock

jump sizes, she can split her hedging demand between these jump risk events. Consider

e.g. two pairs of jump size realizations (x(a), y(k)) and (x(b), y(k)) where x(b) < x(a) < 0

and assume that the more severe stock price jump earns the larger risk premium, i.e.

1 <
λQqak

λP pak
<
λQqbk
λPpbk

.

As can be seen from Equation (6), the hedging demand is then largest for the moderate

jump event (x(a), y(k)) with the lower risk premium. These are the jump events for which

the myopic demand is smallest. Thus, the investor mainly uses those jump events in which

she has a small myopic position for hedging, but does not increase an already large myopic

position.

4 Numerical Example: Deterministic Jumps

One of the main topics of our paper is the impact of variance jumps on the structure of

the optimal demand functions. As we have seen in Section 3, with jumps in volatility

the jump demand exhibits a hedging component in addition to the speculative part. We

now investigate the impact of variance jumps and their size on optimal exposures to risk

factors and optimal portfolio decisions.

For this numerical example, we focus on the framework used for the examples in

Liu, Longstaff and Pan (2003) with deterministic jump sizes for the asset price and the

variance, i.e. we set X ≡ µX and Y ≡ µY . The pricing of jump risk then only depends on

the difference between λP and λQ, and the market is complete with two non-redundant

derivatives only.2 Assuming the empirically well-supported case µX < 0 and µY > 0, a

jump decreases prices and simultaneously increases volatility, which can be regarded as

an increase in uncertainty after a market crash. The numerical example is based on the

benchmark parametrization in Liu, Longstaff and Pan (2003). Table 2 summarizes these

values as Parametrization I, which will serve as the benchmark for later comparisons across

models.

2 See Liu and Pan (2003) for the necessary restriction on the local sensitivity matrix and the transforma-

tion from risk exposures to asset positions.
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To assess the impact of variance jumps, we compare the optimal portfolio for

Parametrization I to one where µY = 0. The other parameters are adjusted such that

the overall characteristics of the investment opportunity set are as similar as possible

across the two values of µY . In general, the parameters plugged in the model chosen by

the investor must yield correct values for expected stock returns, option prices, and risk

premia (see Appendix B). This parametrization for µY = 0 is shown as Parametrization

II in Table 2.

We assume that the derivatives used by the investor to form her portfolio are the two

3-month call options also used for the calibration. Note that this choice is arbitrary, since

in our complete markets setting any two linearly independent derivative contracts could

be used. So the optimal exposures represent the basic result, whereas the optimal asset

positions are ’derived’.

The left panel of Figure 1 shows the optimal exposures to the fundamental risk fac-

tors for varying time horizons and the two values of µY . For very short horizons the

optimal exposures almost exclusively reflect myopic demand, so all differences between

the parametrizations can be attributed to different risk premia.3 When µY = 0 we are in

the Liu and Pan (2003) case and all the variance risk is attributed to the two diffusion risk

factors, which increases the hedging component of the demand, while for jump risk, there

is only myopic demand, which does not depend on the planning horizon. For positive µY ,

jump risk becomes relevant for the hedging of volatility risk. Consequently, the planning

horizon now has an impact on the optimal exposure to jump risk, while it has less impact

on the optimal diffusion exposure.

For the asset positions, shown in the right panel of Figure 1, the differences between

the two models are much more pronounced. This is true even for τ = 0, despite very similar

optimal exposures. The main reason are differences in the sensitivities of the derivatives

across the two models. The value of µY thus has a significant impact on the optimal

portfolio. For example, for µY = 0 the optimal position in the stock is negative for longer

planning horizons, while it is positive for µY > 0. Finally, we observe that for longer

planning horizons the optimal positions tend towards an ’asymptotic’ value depending on

µY .

3 Note that in our example, the risk premia differ only for
√

V dB(2).
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5 Economic Value of Derivatives

In contrast to the economy discussed in Liu, Longstaff and Pan (2003), the market is

assumed to be complete in our model. A comparison to their setup allows us to assess

the economic value of trading derivatives, thus also extending the analysis of Liu and Pan

(2003) to the case with jumps in volatility. Clearly, this represents a first step, since the

prices of assets already traded are assumed to remain unchanged when derivatives are

introduced. Compared to a situation with an incomplete market, the investor’s utility will

thus increase.

To measure this increase, we use the portfolio improvement RW as proposed by,

among others, Liu and Pan (2003). It is defined as the annualized percentage difference

in certainty equivalent wealth RW = T−1 ln
(
W/Ŵ

)
, where W and Ŵ are the certainty

equivalent wealth levels for the case with and without derivatives, respectively.4 The

certainty equivalent wealth Ŵ can be computed in closed form following Liu, Longstaff

and Pan (2003), while the computation of W can only be done numerically.

The analysis is based on Parametrization I from Table 2. Figure 2 illustrates RW

as a function of the planning horizon τ , the speed of mean reversion κP , the jump risk

premium λQ/λP , and the variance jump size µY . Note that we do not recalibrate the

model, but only vary one parameter at a time.

The dependence of RW on τ can be interpreted as follows. For τ = 0, there is only

myopic demand, and the portfolio improvement of 3% arises from the investor’s ability

to achieve this optimal speculative demand. For increasing τ , there is an additional gain

from a better hedge position, and the improvement stabilizes at roughly 5.5% for horizons

beyond two years.

For κP between 1 and 2, the investor’s optimal demand in an economy with derivatives

is most different from the risk package offered by the stock and the money market account

only, and RW is maximal. When κP increases, shocks in variance have a smaller impact,

and the variance of variance decreases. Consequently, the hedging demand tends to zero,

and the portfolio improvement is only due to the possibility to achieve the optimal myopic

exposure.

4 W and Ŵ are defined implicitly via J(0, W0, V0) = (1 − γ)−1W1−γ and Ĵ(0, W0, V0) = (1 − γ)−1Ŵ1−γ

with J (Ĵ) representing the indirect utility function with (without) derivatives. Since the investor has

constant relative risk aversion, RW does not depend on W0.
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The impact of λQ is shown in the lower left graph. The higher λQ relative to the

(fixed) λP , the larger the compensation for jump risk, and the more valuable it becomes

to have derivatives available to put together an optimal portfolio. Furthermore, a change

in λQ changes the optimal myopic exposure to jump risk and the hedging exposure to all

three risk factors. The portfolio improvement again increases in the difference between

the resulting optimal exposure and the one achievable through the stock only.

Finally, the lower right graph shows the portfolio improvement for a varying variance

jump size µY . The larger µY , the larger the variance of variance, and the larger the

investor’s hedging demand. Trading in derivatives thus becomes more valuable, and the

portfolio improvement increases in µY .

6 Model Mis-Specification and Parameter Sensitivities

6.1 Model Mis-Specification

In the context of volatility jumps, model mis-specification can go two ways. The investor

either uses a model that is ’too small’, e.g. by ignoring volatility jumps, or one that is

’too large’, e.g. by including such jumps although they are not part of the true model.

When different models are used, the analysis in Section 4 has shown that asset positions

and optimal exposures to risk factors usually change noticeably. However, the ultimate

measure for the impact of model mis-specification is the loss in utility the investor has to

suffer when using incorrect dynamics for the stock price or for volatility.

When derivatives are traded, the investor makes two mistakes in case of model mis-

specification. First, she calculates the (seemingly) optimal exposure to the risk factors,

where she uses the improper model. Second, she transforms these exposures into asset

demands, using the sensitivities of the derivatives from the incorrect model. This second

mistake is not made in the setup of Liu, Longstaff and Pan (2003), who only consider

trading in the stock and the money market account, i.e. in linear claims with model-

independent sensitivities.

We first consider the situation where the true model is given by Parametrization I

from Table 2, while the investor ignores volatility jumps, i.e. uses Parametrization II from

Table 2. The left panel of Figure 3 shows the realized exposures as a function of the

planning horizon. A comparison of these graphs with the (seemingly) optimal exposures
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from the left panel of Figure 1 shows that the use of incorrect sensitivities can have a

significant impact. In particular, in the correct model with µY = 0.22578, the optimal

exposure to jump risk is increasing in the planning horizon (in absolute terms), while in

the improper model with µY = 0, the investor considers a constant exposure to be optimal,

and she ends up with an exposure to jump risk that is actually decreasing in the planning

horizon (in absolute terms).

The right panel of Figure 3 shows the results for the opposite case of model mis-

specification. The realized exposures to the risk factors are higher in absolute value

compared to the optimal case, so that the investor holds positions with a higher level

of risk. Whereas the optimal exposure to jump risk in the true model is now constant

for all investment horizons, the realized exposure increases with the investment horizon in

absolute value.

Knowledge of realized exposures under a mis-specified model is the necessary pre-

requisite to determine the utility loss suffered by an investor who bases her decision on

an incorrect specification. Since the sensitivities of the derivatives depend on the current

level of volatility, the difference between optimal and realized risk exposures will in gen-

eral depend on V , too. Thus, the indirect utility for the mis-specified model cannot be

computed in closed-form as in Liu, Longstaff and Pan (2003), but we have to resort to

Monte Carlo simulation.

Furthermore, the lower bound on the jump risk exposure, θN ≥ −1 which is supposed

to prevent default naturally holds for the (seemingly) optimal exposure, but not for the

realized exposure. Thus, default becomes possible in a mis-specified model, and in the

realistic case of γ ≥ 1, the utility of terminal wealth will go to minus infinity. The indirect

utility may thus take on large negative values, and the portfolio improvement as calculated

in Section 5 has no real meaning anymore. We therefore focus on the comparison of the

distributions of terminal wealth for the true and the mis-specified model.

In our simulation exercise we use 500,000 runs with two time steps per day. The assets

available to the investor are the stock, the money market account, and two call options

with a constant maturity of three months and strike prices equal to 90 and 100 percent

of the current stock price. This implies that the investor always trades in a new set of

options. We simulate the dynamics of the investor’s wealth using the realized exposures

to the risk factors.
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The results are shown in Figure 4. The upper (lower) graphs show the cumulative

distribution functions of terminal wealth for an investment horizon of 1 year (5 years). In

the two graphs in the left column the true model contains jumps in volatility, whereas in

the right column, µY = 0 in the true model.

In general the use of a wrong model generates a higher probability of large positive

levels of terminal wealth, but also a higher risk of ending up with a wealth close to zero.

Surprisingly, in the case where the true model does not contain volatility jumps and where

the investor thus uses a model that is too sophisticated, the difference between the two

distributions is even more pronounced. Additionally, we observe a shortfall probability of

roughly 5% for an investment horizon of 5 years. The right panel of Figure 3 can help to

explain this seemingly strange result. It shows that when a model with jumps in volatility

is used, the realized exposures to the risk factors are much higher than optimal. Especially

for jump risk, the realized exposure is much too high, so that if a jump occurs, wealth

may easily become negative.

Our results thus emphasize the importance of identifying the correct model, since

there is no simple hedge against model mis-specification. Neither the use of a (perhaps)

too simple nor the use of a (perhaps) too sophisticated model offers a reliable protection

against significant utility losses.

6.2 Parameter Sensitivities

A second problem besides model mis-specification is parameter risk. In this case, the

investor uses the correct type of model, but with incorrect parameters. Given that the

parameters have to be estimated, this mistake is quite likely to happen due to sampling

error. To assess its impact, we apply the same methodology as above, with the only

difference that now the true and the assumed model are of the same type, but with

different parametrizations.

The true model is given by Parametrization I from Table 2. We then consider a

one standard error deviation from the point estimate for each parameter individually.

The exact numerical values for the point estimates as well as for the upper and lower

bounds are given in Table 3. The standard errors are taken from the empirical studies

of Pan (2002) and Eraker, Johannes and Polson (2003). Since jump events are rare,

estimation risk is certainly an issue for the jump intensity and the jump sizes of stock
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and volatility. Furthermore, we consider a mis-estimation of the speed of mean reversion

κP . Different from the above analysis, we do not recalibrate the model since we want to

focus on a situation where only one parameter is varied. It is clear that the initial prices

for the derivatives in our asset allocation problem will then change. However, this seems

preferable to the case where the model is recalibrated, since then all the parameters would

change simultaneously, which would make it basically impossible to measure the impact

of estimation error in only one parameter.

Figure 5 compares the distributions of optimal terminal wealth with and without

parameter risk. The larger the differences, the larger the utility loss. A first look at the

graphs shows that estimation risk for κP , µY , and λP has very similar consequences, while

µX seems to play a special role. The reason for this is that the upper bound of the interval

for µX in Table 3 is very close to zero, so that estimation risk almost turns into model

mis-specification by assuming a model without price jumps. The realized jump exposure

will often violate the bound θN ≥ −1, so that one jump leads to immediate default.

Furthermore, it is obvious that estimation risk can be just as significant as the risk of

model mis-specification. For example, the area between the distributions for a variation

of λP between its upper and lower bound is absolutely comparable to the left graph in the

lower panel of Figure 4, which compares the distributions for the case when the investor

incorrectly omits volatility jumps from her model.

7 Conclusion

Jumps in volatility are a phenomenon recently discussed in the literature dealing with

the properties of stock prices or with option pricing. One of the main questions is in

which situations and for which problems the inclusion of this additional risk factor has a

significant economic impact.

We discuss a continuous-time asset allocation problem under very general dynamics

for the stock price and its variance. The jump size distribution can capture both simul-

taneous jumps in the two processes as well as individual jumps in the stock price or the

variance. Nevertheless, we retain market completeness by introducing a sufficient number

of additional traded assets.

The main result of our theoretical analysis is that, compared to the case without

jumps in volatility, the demand for jump risk now also exhibits a hedging component.
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The hedging demand against unfavorable changes in volatility is now split up between the

two diffusions and the jump factor.

Besides this theoretical innovation, we also assess the economic benefits generated by

the availability of derivatives. In our framework derivatives actually complete the market,

so that an investor who has access to derivatives can achieve any desired exposure to the

fundamental risk factors. Our results show that the gains from trading derivatives are

indeed economically significant.

Since complicated option pricing models are sometimes hard to calibrate to market

data we investigate the cases in which an investor either uses a simplified model ignoring

volatility jumps, or a too sophisticated model which wrongly includes volatility jumps.

We find that both ways of model mis-specification have a significant impact on optimal

exposures and portfolios.

Furthermore, the risk that parameters are estimated with error represents a source of

significant utility losses for the investor. These losses can even reach the same magnitude

as those observed for model mis-specification. Taken together our results emphasize the

importance of identifying the correct model and show that the issue of jumps in volatility

should not be ignored.

The analysis in this paper is performed with exogenously specified market prices

of risk. Further research could therefore focus on general equilibrium issues and on a

comparison of the impact of stochastic volatility with that of investor heterogeneity. This

would also allow us to see which investors take long and short positions, and to study the

trading volume in derivatives.
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A Properties of the Function H(τ )

Since H(0) = 0, it follows from the differential equation (8) that

H ′(0) =
1 − γ

2γ2

[
(ηB1)2 + (ηB2)2

]
+

1 − γ

γ
λQ − 1

γ
λP + λQ

∑

j,k

qjk

[(
pjkλ

P

qjkλQ

)1/γ
]
.

The first term on the right hand side obviously shares the sign of 1 − γ. With λP = αλQ

and α > 0 rewrite the remaining terms as

λQf(α) = λQ


1 − γ

γ
− 1

γ
α+

∑

j,k

qjk

[(
pjk

qjk

)1/γ
]
α1/γ


 .

With λQ positive, this expression will be positive if and only if f(α) is positive. The

function f(α) has a local extremum at

α∗ =



∑

j,k

qjk

[(
pjk

qjk

)1/γ
]


−γ/(1−γ)

with

f(α∗) =

(
1

γ
− 1

)
(1 − α∗).

The second derivative with respect to α is positive (negative) for γ < 1 (γ > 1), so that

there is a global minimum (maximum) at α∗. With Jensen’s inequality and
∑

j,k qjk[
pjk

qjk
] =

1, it follows that α∗ ≤ 1 for all values of γ. The associated function values f(α∗) are then

negative in the case γ > 1 and positive for γ < 1, so that f(α) is non-negative for γ < 1

and non-positive for γ > 1.

Assume now γ > 1. Then, H ′(0) < 0, and the function H(τ) moves into negative

territory over the first infinitesimal step in τ direction. Since the derivative ofH is negative

when H is equal to zero, and H is continuous in γ, the function can never cross the zero

line. An analogous argument can be made in the case when γ < 1.

B Calibration

For the calibration, the following parameters were restricted to be identical across models:

the instantaneous expected excess return on the stock (given by (ηB1 +µX(λP −λQ))v̄P ),

the instantaneous variance of stock returns (given by v̄P + µ2
Xλ

P v̄P ), the instantaneous

variance of variance (given by σ2
V v̄

P + µ2
Y λ

P v̄P in the model with volatility jumps and
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by σ2
V v̄

P in the one without), the average time between two jumps (given by (λP v̄P )−1),

and the relative jump size in the stock price (given by µX). To ultimately calibrate the

model we use two European call options with a time to maturity of three months and

strike prices equal to 90% and 100% of the initial stock price and a European call with

one month to maturity and a strike price equal to 90% of the initial stock price.
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Table 1. Jump Size Distribution

Y = y(1) ≡ 0 Y = y(2) . . . Y = y(K)

X = x(1) ≡ 0 p11 = 0 p12 . . . p1K

X = x(2) p21 p22 . . . p2K

...
...

...
. . .

...

X = x(J) pJ1 pJ2 . . . pJK

The table shows the jump size distribution in our model. X is the random jump size in the stock

price, Y is the size of the variance jump, where we assume Y ≥ 0. The event X = 0, Y = 0 is

assigned a zero probability in the joint distribution of X and Y , since it represents the event that

no jump has occurred.

Table 2. Calibrated Parameters

µY κP κQ v̄Q σV ρ ηB1 ηB2

I 0.226 5.300 2.403 0.048 0.225 −0.570 2.45 −2.000

II 0.000 1.450 0.500 0.063 0.380 −0.321 2.45 −1.808

Parametrization I corresponds to the benchmark case of Liu, Longstaff and Pan (2003). Parametrization

II is the case without jumps in volatility which corresponds to the model setup of Liu and Pan (2003). For

both parameterizations, µX = −0.25, λP = 1.84, and λQ = 11.65.

Table 3. Parameter Intervals

κP µY λP µX

Upper Bound 3.40 0.150 1.04 -0.05

Point Estimate 5.30 0.226 1.84 -0.25

Lower Bound 7.20 0.300 2.64 -0.45

The parameter point estimates as well as the upper and lower bounds (computed as the point estimate plus

and minus one standard deviation, respectively) are adapted from the empirical estimates of Pan (2002)

in the case of κP , λP and µX and Eraker, Johannes and Polson (2003) for µY .
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Figure 1. Optimal Risk Exposures and Asset Positions for Varying Investment Horizons

The graphs show the optimal exposures to the fundamental risk factors (left panel) and the optimal asset

positions (right panel) for a varying planning horizon τ and a coefficient of risk aversion γ = 3. The

upper graphs represent the benchmark case (Parametrization I in Table 2). The lower graphs represent

the case µY = 0, i.e. the Liu and Pan (2003) economy (Parametrization II in Table 2). DER1 is a 3-month

European call option with a strike price of K = 90, DER2 is an otherwise identical call option with strike

K = 100. For all investment horizons, the initial value of volatility V0 is set equal to the long-run mean

v̄P , the interest rate r is 5%, and the initial stock price S0 is set to 100.



Figures 35

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

HORIZON

2

4

6

8

10

12

2 4 6 8 10 12 14

KAPPA_P

2

4

6

8

10

12

1 2 3 4 5 6 7 8

LAMBDA_Q/LAMBDA_P

2

4

6

8

10

12

.0 .1 .2 .3 .4 .5 .6 .7 .8

MU_Y

Figure 2. Portfolio Improvement from Including Derivatives [%]

The graphs show the portfolio improvement RW from including derivatives (calculated as in Liu and Pan

(2003)) for varying parameters τ , κP , λQ and µY . All other parameters are set to the benchmark values

(Parametrization I in Table 2). The initial value of volatility V0 is set equal to the long-run mean v̄P .

Except for the upper left graph, the planning horizon τ is 10 years, the interest rate r is 5%. The coefficient

of risk aversion is set to γ = 3.
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Figure 3. Realized Exposures for Varying Investment Horizons

The graphs show the realized exposures to the fundamental risk factors for an investor with varying

planning horizon τ and a coefficient of risk aversion γ = 3. On the left, the true model is the model with

jumps in volatility (Parametrization I in Table 2). On the right, the true model is the model without

jumps in volatility (Parametrization II in Table 2). The upper graphs represent the benchmark case, when

the investor relies on Parametrization I from Table 2. In the lower graphs the investor uses the model with

µY = 0.0, i.e. the Liu and Pan (2003) economy with Parametrization II from Table 2. Traded derivatives

are a European call option with a time to maturity of 3 months and strike price of K = 90 and an otherwise

identical call option with strike K = 100. For all investment horizons, the initial value of volatility V0 is

set equal to the long-run mean v̄P , the interest rate r is 5% and the initial stock price S0 is set to 100.
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Figure 4.

Cumulative Distribution Functions of Terminal Wealth in the Presence of Model Risk

The graphs show the cumulative distribution functions of the levels of terminal wealth. On the left hand

side, the true model is the model with jumps in volatility (Parametrization I from Table 2), but the investor

assumes the model without jumps in volatility (Parametrization II in Table 2). On the right hand side,

the true model is the model from Parametrization II, while the investor assumes Parametrization I. The

coefficient of risk aversion γ is set to 3, initial wealth is set equal to 1. The starting values for the stock

price and the variance are set to S0 = 100 and V0 = v̄P .
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Figure 5.

Cumulative Distribution Functions of Terminal Wealth in the Presence of Parameter Risk

The graphs show the cumulative distribution functions of the levels of terminal wealth. The solid lines

represent the benchmark case. The dotted and the dashed lines represent the case of parameter risk, where

the parameters κP , µX , λP and µY are varied within the empirical confidence intervals from Table 3. The

dotted lines represent the case where the parameters’s values equal the upper bound of the confidence

interval and the dashed lines the case where they equal the lower bound. The coefficient of risk aversion

γ is set to equal 3, initial wealth is set equal to 1. The starting values for the stock price and the variance

are set to S0 = 100 and V0 = v̄P . The planning horizon τ is 5 years.
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Summary. We perform a general equilibrium analysis in a complete markets economy when the

dividend follows a jump-diffusion process with stochastic volatility. Agents have CRRA utility, but

differ with respect to their degree of risk aversion. The key output of our analysis is the structure

of the investors’ optimal portfolios and the volume and direction of trading between them. We

find that trading in derivatives is economically significant, with a value of traded contracts of up

to twenty percent of total market capitalization. In line with intuition, the less risk-averse investor

holds more pure stock price risk than the more risk-averse one. Volatility derivatives, on the other

hand, are special in the sense that the direction of trading depends on the exact values for the levels

of risk aversion of the individual investors, not just on who is more and who is less risk-averse.We

perform a general equilibrium analysis in a complete markets economy when the dividend follows a

jump-diffusion process with stochastic volatility. Agents have CRRA utility, but differ with respect

to their degree of risk aversion. The key output of our analysis is the structure of the investors’

optimal portfolios and the volume and direction of trading between them. Trading in derivatives

is economically significant, with a value of traded contracts of up to twenty percent of total market

capitalization. Volatility derivatives are special in the sense that the direction of trading depends

on the exact values for the levels of risk aversion of the individual investors, not just on who is

more and who is less risk-averse.
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1 Introduction

Heterogeneity, be it with respect to beliefs, risk aversion, or time preference, is the primary

source of the desire to trade in general equilibrium models. When all investors are the

same, there will obviously be no trade, and the optimal asset positions are the same for

all agents in the economy.

The key contribution of our paper is an analysis of the direction and volume of trading

between heterogeneous investors with different degrees of risk aversion in an economy

where the dividend process exhibits stochastic volatility (SV) and jumps. The jumps can

affect both the dividend level and its volatility. Trading between investors is caused by

differences in their optimal exposures to these risk factors. We consider ’pure’ derivatives,

which provide exposure to one risk factor only. Our numerical examples show that the

desire to trade can be rather strong. The value of derivative contracts outstanding reaches

up to 20 percent of total market capitalization for reasonable levels of and differences in

risk aversion, like levels of constant relative risk aversion equal to 2 and 4, respectively.

We perform our analysis in a standard Lucas (1978) tree economy. The dividend

process is given exogenously, and investors derive utility from intermediate consumption.

As stated above, the dividend exhibits SV and jumps. Stochastic volatility of dividends

allows to capture changes in economic uncertainty, which occur e.g. over the business

cycle. Technology shocks or catastrophe events which may change the level of dividends

and/or increase economic uncertainty are introduced into the model through jump events.

We first derive the endogenous risk premia for the different risk factors and the en-

dogenous risk-free interest rate. Second, we analyze the optimal demands of the individual

investors and the resulting volume and direction of trading between them. The focus of

our paper is on the impact of heterogeneity with respect to risk aversion. We thus assume

the ideal setup of a complete market with symmetric information, and without model un-

certainty, learning, or trading restrictions. Furthermore, we rely on standard time-additive

utility functions with constant relative risk aversion.

We are not the first to analyze equilibria in economies with heterogeneous agents.

Dumas (1989) considers an infinite horizon production economy with two groups of in-

vestors which differ in their level of risk aversion, but he makes the restrictive assumption

that one investor type has log utility. Bhamra and Uppal (2005) analyze both complete

and incomplete markets under heterogeneity, where the incompleteness is generated by
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the impossibility to trade in the risk-free bond, whereas Franke and Lüders (2006) focus

on the impact of a decreasing relative risk aversion of the representative investor caused by

investor heterogeneity. Our paper represents a generalization by including SV and jumps

and by lifting the assumption of the first two papers that one of the investors has to be

myopic.

The paper closest to ours is Dieckmann and Gallmeyer (2005). They investigate

optimal risk-sharing in a heterogeneous economy (one investor having log utility) and find

that the less risk-averse agent purchases jump risk insurance from the more risk-averse.

This may seem surprising at first, but it is plausible since the total position in jump risk

(from the stock and the insurance contract together) is still higher for the less risk-averse

agent. The authors obtain closed-form solutions for the market prices of risk, and price

the stock numerically via Monte Carlo simulation. We structurally extend their analysis

by including SV and jumps in volatility and by allowing for general degrees of risk aversion

of the two investors.

The remainder of this paper is structured as follows. In Section 2 we describe the

model setup and discuss the equilibrium in an economy with heterogeneous agents. We

also analyze the implications of heterogeneity for the investors’ optimal risk exposures. In

Section 3 we study the trading volume in derivatives, generated by investor heterogeneity,

and the general size of derivatives markets in our model economy. Section 4 concludes.

2 Model

2.1 Stochastic Setup

We consider a Lucas (1978) tree economy where the dividend represents aggregate endow-

ment, and the stock is a claim to this dividend stream. The dividend follows a jump-

diffusion process with stochastic volatility, and the dynamics of the dividend and its local

variance are given by the following system of stochastic differential equations:

dDt = (µ0 + µ1Vt)Dtdt +
√
VtDtdB

(1)
t +Dt−



∑

j,k

x(j)dN
(j,k)
t − EP [X]λPVtdt


 (1)

dVt = κP
(
v̄P − Vt

)
dt+ σV

√
Vt

(
ρdB

(1)
t +

√
1 − ρ2dB

(2)
t

)

+



∑

j,k

y(k)dN
(j,k)
t − EP [Y ]λPVtdt


 .
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Uncertainty is generated by the independent Brownian motions B
(1)
t and B

(2)
t and by

M ≡ J ·K independent Poisson processes N
(j,k)
t (j = 1, . . . , J ; k = 1, . . . ,K), each with

(stochastic) intensity λPVtpjk. There are thus M different Poisson processes for the M dif-

ferent combinations of the jump sizes for the dividend level and its volatility. Equivalently,

one could model the jump sizes as discrete random variables with possible realizations x(j)

for the dividend and y(k) for its variance. The physical probability that a jump occurs

over the next interval of length dt at all is equal to λPVtdt, and given that a jump has

occurred, the random jump sizes (X,Y ) have realizations (x(j), y(k)) with probabilities

pjk. The variance jumps have to be restricted to values y(k) ≥ 0 in order to avoid negative

values for variance Vt, and analogously dividend jumps have to satisfy x(j) ≥ −1.

This setup is very general, and it enables us to model three different kinds of jumps

in the economy: jumps in the dividend only, jumps in the variance only, and simultaneous

jumps in both processes. Table 1 summarizes the general jump size distribution. Jumps

in the dividend only can be described by pairs (x(j), y(1)) = (x(j), 0) for j ≥ 2. These

jumps have an individual intensity under the P -measure equal to λPVtpj1, so that the

(total) intensity for a pure dividend jump is given by λPVt
∑J

j=2 pj1. Analogously, pure

variance jumps are represented by pairs (x(1), y(k)) = (0, y(k)) for k ≥ 2. Simultaneous

jumps in the dividend and its variance are given by all other pairs (x(j), y(k)) for j, k ≥ 2.

The desired correlation structure of dividend and variance jumps can be generated by

an appropriate specification of the joint probabilities. The event (x(1), y(1)) = (0, 0) is

assigned zero probability, since it obviously represents the case of no jump at all.

For our numerical computations below we will assume simultaneous jumps with con-

stant jump sizes in stock and volatility. We use the parametrization in Table 2 for the

dividend process, which is adapted from the estimates of Liu, Longstaff and Pan (2003)

for the stock price process. We set the additional parameters µ0 and µ1 characterizing

the drift of the dividend in Equation (1) equal to 0.01 and 2.75, respectively, and the

planning horizon T equal to 1 year. Since the focus of our analysis is on trading volume

in derivatives, this rather short horizon is sufficient for the purposes of our analysis. To

study issues like excess volatility or return predictability, on the other hand, it would be

necessary to use longer horizons, maybe even infinity.

The general dynamics of the pricing kernel in our model are given by
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dξt = −ξt
{
rtdt+ η

(B1)
t dB

(1)
t + η

(B2)
t dB

(2)
t

}

+ ξt−




∑

j,k

(
λQ

t qjk
λP pjk

− 1

)
dN

(j,k)
t −

(
λQ

t

λP
− 1

)
λPVt−dt



 , (2)

where η
(B1)
t is the market price of risk for one unit of dB

(1)
t and η

(B2)
t is the market price

of risk for one unit of dB
(2)
t . The compensation for an exposure of α to a jump of size

(x(j), y(k)) is α · (pjkλ
P − qjkλ

Q
t )Vt−, where qjk and λQ are the probability of a jump of

size (x(j), y(k)) and the jump intensity under the risk-neutral measure Q.

We assume a complete market where the stock, the money market account, and a

sufficient number of derivatives are traded. The jump size distribution introduced above

is discrete, so that a finite number of traded assets is enough to complete the market,

while we are nevertheless able to study the impact of stochastic jumps.1 Furthermore, the

discrete jump size distribution in our model can certainly be specified with a fine enough

grid to approximate a continuous distribution in a satisfactory fashion. In the special

case with simultaneous and deterministic jumps of size jD in the dividend and jV in its

volatility only two non-redundant derivatives are needed to complete the market, one to

hedge volatility risk and the other one to hedge jumps of deterministic size.

2.2 Equilibrium

Investors are heterogeneous with respect to risk aversion. Each of the two investors is

assumed to have CRRA utility, u(i)(c) = c1−γ(i)
/(1 − γ(i)) (i = 1, 2), with risk aversion

coefficients γ(1) ≤ γ(2). The investors’ objective is to maximize their respective expected

life-time utility of consumption

EP

[∫ T

0
e−βsu(i)(c(i)s )ds

]
i = 1, 2

over their planning horizon T . EP denotes the expectation under the physical measure,

and β represents the constant subjective time discount rate, which is assumed to be

identical for both investors.

Since the market is complete, there exists a representative investor (RI) with utility

function

1 Given that every day a very large number of different derivative contracts on the major stock market

indices (like the S&P 100) are actively traded on option exchanges around the world, the assumption of

market completeness does not seem too restrictive.
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U(t,Dt) = max
c
(1)
t

{
u(1)(t, c

(1)
t ) + φu(2)(t,Dt − c

(1)
t )
}
. (3)

The constant weight φ depends on the distribution of initial wealth (see Duffie (2001) and

Dieckmann and Gallmeyer (2005)).2 Since both investors have the same subjective time

discount rate, it holds that U(t,Dt) = e−βtU(Dt). In the optimum, the marginal utility

of the RI satisfies

UD(Dt) = u(1)
c (c

(1)
t ) = φu(2)

c (c
(2)
t ). (4)

The second equality also defines the consumption sharing rule (c(1)(Dt), c
(2)(Dt)). Optimal

consumption is thus only a function of the dividend level. It is increasing in Dt, and one

can show by differentiating both sides of Equation (4) twice with respect to Dt that the

consumption c
(1)
t of the less risk-averse investor is convex in Dt, while the consumption

c
(2)
t of the more risk-averse one is concave.

The relative risk aversion γ̂ of the RI is defined as

γ̂(Dt) = −UDD(Dt)Dt

UD(Dt)
.

γ̂(D) depends on the dividend level and is decreasing in Dt, since

∂γ̂(Dt)

∂Dt
= − (γ̂(Dt))

3 c
(1)(Dt) c

(2)(Dt)

D3
t

(
1

γ(1)
− 1

γ(2)

)2

≤ 0, (5)

and the RI becomes less risk-averse for higher dividend levels. Furthermore, γ̂(D) ap-

proaches max{γ(1), γ(2)} and min{γ(1), γ(2)} for Dt → 0 and Dt → ∞, respectively (see

Benninga and Mayshar (2000)).

Since the market is complete, we can apply the martingale approach developed by Cox

and Huang (1989) to solve the portfolio planning problem. The maximization problem of

the RI can be written as

max
{ct,0≤t≤T}

EP

[∫ T

0
e−βtU(ct)dt

]
s.t. W0 = EP

[∫ T

0
ξtctdt

]
.

Together with the equilibrium restriction ct ≡ Dt, this yields the condition

e−βtUD(Dt) = y ξt, (6)

2 A simulation study by Franke and Lüders (2006) shows that the results are qualitatively very similar

for different values of φ. In our numerical examples, we will set φ = 1, so that c(1) = c(2) = 1 when

D = 2, irrespective of the two levels of risk aversion.
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where y is the Lagrange multiplier for the budget restriction of the RI. We then apply

Ito to both sides of this optimality condition and use the general form of the dynamics

of the pricing kernel from Equation (2). Comparing the coefficients in the two stochastic

differential equations gives the market prices of risk and the interest rate.

The market prices of risk and the risk-neutral jump intensity for a jump of type

(x(j), y(k)) are

η
(B1)
t = γ̂(Dt)

√
Vt (7)

η
(B2)
t = 0 (8)

λQ
t qjk =

(
c(i)(Dt−(1 + x(j)))

c(i)(Dt−)

)−γ(i)

λP pjk. (9)

Only those risk factors which locally affect the dividend are priced in equilibrium, implying

that η
(B2)
t has to be equal to zero. The same holds for jumps with x(j) = 0 which have an

effect on volatility, but not on the dividend level. The basic dividend risk factors
√
VtdB

(1)
t

and x(j) dNt (with x(j) 6= 0) are in positive net supply. Therefore, they have to be held by

the RI in equilibrium, and since the RI is risk-averse, the associated premia are positive,

irrespective of the sign and size of the jumps.

The equilibrium interest rate is

rt = β + γ̂(Dt−) (µ0 + µ1Vt−) − 1

2
γ̂(Dt−) [1 + γ̂(Dt−)]Vt−

−
∑

j,k

[(
1 + x(j)

)−γ̂(Dt−)
− 1 + γ̂(Dt−)x(j)

]
λP pjkVt−

− 1

2
(γ̂(Dt−))3

c(1)(Dt−)

Dt−

c(2)(Dt−)

Dt−

(
1

γ(1)
− 1

γ(2)

)2

Vt−

−
∑

j,k



(
c(i)(Dt−(1 + x(j)))

c(i)(Dt−)

)−γ(i)

−
(
1 + x(j)

)−γ̂(Dt−)


λP pjkVt−. (10)

The first four terms give the interest rate in an economy where the RI has a constant

relative risk aversion equal to γ̂. They capture the subjective time discount, the impact of

the dividend growth rate (via intertemporal substitution), and the precautionary savings

term due to diffusion risk and jump risk. The fifth and sixth term are due to the depen-

dence of the relative risk aversion of the RI on the dividend level. His decreasing RRA

induces an additional precautionary savings demand, which lowers the risk-free rate.
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2.3 Stock Price and Aggregate Demand for Risk Factors

The stock price is given by the present value of future dividends, i.e.

St = EP

[∫ T

t

ξs
ξt
Ds ds

∣∣ Ft

]
.

Using Equations (4) and (6) for the marginal utility of the RI to rewrite the pricing kernel,

the stock price can be represented as

St = EP



∫ T

t
e−β(s−t)

(
c(i)(Ds)

c(i)(Dt)

)−γ(i)

Ds ds
∣∣ Ft


 . (11)

In general, there is no closed-form solution for this expression, and we have to resort to

numerical integration. The density of future dividends follows from the respective char-

acteristic function (with numerical solutions also for the associated ordinary differential

equations) and Fourier inversion (again by means of numerical integration). Details are

given in Appendix A.

In equilibrium, the wealth of the RI is equal to the stock price. Therefore, the expo-

sures of the stock price to the risk factors are equal to the optimal demand θ
(B1)
t , θ

(B2)
t ,

and θ
(N,jk)
t of the RI for these risk factors, i.e.

dSt +Dtdt = St

{
rtdt+ θ

(B1)
t

(√
VtdB

(1)
t + ηB1

t

√
Vtdt

)
+ θ

(B2)
t

√
VtdB

(2)
t

}

+ St−
∑

j,k

θ
(N,jk)
t

(
dN j,k

t − λQ
t qjkVtdt

)
(12)

where θ(B1) and θ(B2) are the demand for
√
VtdB

(1)
t and

√
VtdB

(2)
t , respectively. θ

(N,jk)
t is

the demand for a jump of type (x(j), y(k)).

The stock price is a function of time t, the current dividend and the current local

volatility. Applying Ito gives the exposures of the stock with respect to the risk factors:

θ
(B1)
t =

∂St

∂Dt

Dt

St
+
∂St

∂Vt

1

St
σV ρ

θ
(B2)
t = 0 +

∂St

∂Vt

1

St
σV

√
1 − ρ2

θ
(N,jk)
t =

S(t,Dt−(1 + x(j)), Vt−) − S(t,Dt−, Vt−)

S(t,Dt−, Vt−)

+
S(t,Dt−(1 + x(j)), Vt− + y(k)) − S(t,Dt−(1 + x(j)), Vt−)

S(t,Dt−, Vt−)
.

In the spirit of Merton (1971), the first term in each of these expressions can be regarded

as the myopic demand, generated by the RI’s desire to earn the risk premia, while the
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second term represents the hedging demand, meant to protect the RI against unfavorable

changes in the investment opportunity set.

The myopic demand for the second diffusion risk factor
√
VtdB

(2)
t is of course zero

because of the zero market price of risk. The same holds true for jumps that happen in

volatility only. For dividend diffusion risk, the myopic demand is given by

∂St

∂Dt

Dt

St
= 1 +

{
γ̂(Dt) −EP

[∫ T

t

ξs
ξt

Ds

St
γ̂(Ds) ds

∣∣ Ft

]}
(13)

(see Appendix B for the proof). The right hand side is equal to the sum of the dividend

risk exposure and a term that captures the deviation of the current γ̂ from the expected

future values, where the expectation is taken both across time and dividend levels. In a

homogeneous economy γ̂ would be constant, and the myopic demand would simply be equal

to one. With heterogeneous investors, however, the change in risk aversion contributes

a second term to the myopic demand. When the drift of dividends is sufficiently high,

γ̂(D) will on average decrease over time, and the myopic demand will be larger than the

dividend exposure. Similar results hold for the myopic demand to stock price jumps.

Any deviation of the stock risk exposure from the dividend risk exposure causes the

stock price variance to deviate from the dividend variance. If the variance of the stock

price is larger, we speak of excess volatility. Following the analysis above, parts of excess

volatility may be explained by excess myopic demand. Furthermore, it might also be

attributed to hedging demand.

In our model, the investment opportunity set is stochastic due to stochastic volatility.

When volatility is high, the investor profits from a higher dividend drift (note that we

assume µ1 > 0), while the increase in the risk of dividends reduces his utility. As we

will show in the numerical example later on, the aggregate hedging demand for all three

risk factors depends on the individual levels of risk-aversion and on the current dividend.

In a homogeneous economy where all investors have the same level of risk aversion and

are less risk-averse than the log investor, the increasing dividend drift turns out to be

most important, and the investor takes advantage of this by a long position in volatility

risk. When the risk aversion increases, the hedging motive becomes more important and

induces the investor to take a short position in volatility. For even higher values of risk

aversion, finally, the investor who has to hold one unit of the stock is most concerned

about increases in risk and hedges by taking a long position in volatility. The effect on

the hedging demand will be discussed in more detail at the end of the next section.
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2.4 Individual Demands for Risk Factors

Trading is induced by different optimal demands of the individual investors. Thus, we

first analyze the individual investors’ wealth and their demand for risk factors. Investor

i’s wealth follows as:

W
(i)
t = c(i)(Dt)E

P



∫ T

t
e−β(s−t)

(
c(i)(Ds)

c(i)(Dt)

)1−γ(i)

ds
∣∣ Ft


 .

Like the stock price, this expression can be computed using Fourier inversion (see Appendix

A). The optimal exposure of the investor with respect to the risk factors is equal to the

exposure of W
(i)
t to these risk factors, which follows from calculating partial derivatives

and differences, respectively:

θ
(B1,i)
t =

∂W
(i)
t

∂Dt

Dt

W
(i)
t

+
∂W

(i)
t

∂Vt

1

W
(i)
t

σV ρ

θ
(B2,i)
t = 0 +

∂W
(i)
t

∂Vt

1

W
(i)
t

σV

√
1 − ρ2

θ
(N,jk,i)
t =

W (i)(t,Dt−(1 + x(j)), Vt−) −W (i)(t,Dt−, Vt−)

W (i)(t,Dt−, Vt−)

+
W (i)(t,Dt−(1 + x(j)), Vt− + y(k)) −W (i)(t,Dt−(1 + x(j)), Vt−)

W (i)(t,Dt−, Vt−)
.

Details on the numerical computation of the partial derivatives are given in Appendix C.

In analogy to the aggregate case, the myopic demand for the second diffusion risk

factor and for pure volatility jumps is zero. The myopic demand for the first diffusive risk

factor again depends on the dividend elasticity of wealth (see Appendix C for computa-

tional details):

∂W
(i)
t

∂Dt

Dt

W
(i)
t

= 1 +

{
γ̂(Dt) − EP

[∫ T

t

ξs
ξt

c(i)(Ds)

W
(i)
t

γ̂(Ds)ds
∣∣ Ft

]}

+ EP

[∫ T

t

ξs
ξt

c(i)(Ds)

W
(i)
t

(
γ̂(Ds)

γ(i)
− 1

)
ds
∣∣ Ft

]
. (14)

As for the aggregate myopic demand in Equation (13), the first term on the right-hand side

of Equation (14) is equal to one and thus equal to the dividend risk exposure. The second

term is due to changes in the aggregate risk aversion over time. Like the RI, individual

investors take these changes into account. The wealth-weighted sum of this term over

the two investors equals the last term in Equation (13), i.e. the aggregate excess myopic

demand. As discussed above, this component of the demand is positive for the RI, and
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it is greater for the less risk-averse investor than for the more risk-averse one. Finally,

the last term arises due to different risk aversions of the investors. It is positive for the

less risk-averse investor, for whom a market price of risk γ̂(D)
√
V represents a rather

attractive investment opportunity, and negative for her more risk-averse counterpart. The

wealth-weighted sum of this component of the demand over the investors is zero.

In our model trading is generated by differences between currently given and optimal

exposures to the different risk factors. Figures 3, 2, and 1 show the components of optimal

demand for the two diffusions and the jump factor as a function of the dividend level for

the (γ(1), γ(2))-combinations (2.0, 4.0), (0.8, 2.0), and (0.5, 0.8), respectively. These com-

binations of risk aversion levels were chosen to see whether heterogeneity has different

implications depending on the absolute levels of risk aversion relative to the usual bench-

mark of log utility. For the numerical example, we restrict the analysis to the special

case with simultaneous and deterministic jumps of size jD in the dividend and jV in its

volatility.

The three graphs on the left show the hedging demand for the risk factors
√
VtdB

(1)
t ,

√
VtdB

(2)
t and dNt, while the graphs on the right represent the myopic component of

demand (which is always equal to zero for
√
VtdB

(2)
t and therefore not shown). The three

curves in each picture represent the two individual investors’ and the RI’s demand. As

can be seen from the scales of the graphs, the absolute value of the hedging component is

always significantly smaller than the myopic demand for B(1) and N . The primary reason

to hold these risk factors in the optimal portfolio is thus to earn the risk premium. Of

course, B(2) is held exclusively for hedging purposes.

Myopic demand

As discussed above and stated in Equation (13), the aggregate myopic demand differs from

the dividend risk exposure. However, our numerical example shows that this deviation is

numerically quite small. The myopic demand for
√
VtdB

(1)
t is very close to 1, and that

for N is more or less equal to jD = −0.25, the values for the dividend exposures. An

important reason for this lack of excess volatility is the relatively short horizon of T = 1

that we consider in our examples.

While investor heterogeneity thus has a minor impact on the aggregate myopic de-

mand, the individual myopic demand levels differ significantly. The myopic demand θ(B1,1)
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of the less risk-averse investor is higher than that of the more risk-averse agent. On aver-

age across the three scenarios, it amounts to roughly 150% of the dividend exposure for

low levels of D0. In general, the myopic demands are qualitatively unaffected by whether

agents are more or less risk-averse than the log investor. Apart from the absolute levels,

the curves on the right-hand panels of Figures 3, 2, and 1 look very much the same. Fur-

thermore, note that the individual myopic demand of the investor approaches one when

she starts to dominate the market, that is for a very low dividend level in case of the more

risk-averse investor and for a high dividend level in case of the less risk-averse investor.

For jump risk, we observe qualitatively the same result, but with opposite signs, since

the aggregate exposure jD to jump risk is negative. The less risk-averse investor 1 has an

exposure which is roughly 40% greater in absolute terms than that of the RI, with her

θ(N,1) being between −0.3 and −0.4.

The myopic demands of both investors decrease in absolute value for an increasing

dividend level. This can be attributed to the decrease in the risk aversion of the RI, which

implies decreasing risk premia, as shown, e.g., in Equation (7). The wealth-weighted

average demand however, which is just the demand of the RI, is nearly constant.

Hedging Demand

The picture changes significantly when we look at the hedging component of demand. In

general, both location and shape of the curves for the hedging demands now vary with

the levels of risk aversion γ(1) and γ(2).

In our model, the investment opportunity set is stochastic due to the stochastic local

variance V . Since V is driven by the two diffusion risk factors and the jump risk factor

N , there will be a hedging demand for all three risk factors. Qualitatively, a negative

demand for stock price diffusion risk and a positive demand for the other two risk factors

can be interpreted as a long position in V (given that ρ is negative and jV positive) and

vice versa.

We start the discussion with the case (γ(1), γ(2)) = (0.5, 0.8) in Figure 3. Since both

investors are less risk-averse than the log investor, we expect them to speculate on favorable

changes of the investment opportunity set. An increase in volatility has two effects: the

investor profits from a higher dividend drift (note that we assume µ1 > 0), but suffers

a utility loss due the higher risk in dividends. As can be seen from the graphs, the first
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effect dominates, and the investors take a long position in volatility. In line with intuition,

the hedging demand of the less risk-averse investor, who differs more from the myopic log-

investor, is more extreme. For both individual investors, the hedging demand is decreasing

in the dividend level in absolute terms, reflecting that the myopic demand which creates

the primary exposure to a stochastic investment opportunity set, is decreasing in absolute

terms, too. The aggregate hedging demand, however, is increasing in the dividend level

in absolute terms, even if the aggregate myopic demand is nearly constant. This can be

attributed to the fact that the hedging demand converges to the (low) hedging demand of

the more risk-averse investor for low dividend levels and to the (high) hedging demand of

the less risk-averse investor for high dividend levels.

Figure 2 shows the case where one investor is less risk-averse than the log investor,

while the other one is more risk-averse. Again, the less risk-averse investor speculates on

changes in the investment opportunity set (in this case on a higher future dividend drift)

by taking a long position in volatility risk. The more risk-averse investor, on the other

hand, hedges against a lower future dividend drift by taking a short position in volatility.

For both investors, the hedging demand is decreasing in absolute terms in the dividend

level, following the behavior of the myopic demand. The aggregate hedging demand of

the RI is the average of the individual hedging demands. As can be seen from the graphs,

it even changes its sign, from a short position in volatility for low dividend levels (which

is the demand of the more risk-averse investor) to a long position for high dividend levels

(the demand of the less risk-averse investor).

Finally, we consider the case where both investors have a risk aversion above 1. The

resulting demands are shown in Figure 1. The less risk-averse investor now has a γ(1) = 2,

and he hedges against a low future dividend drift by taking a short position in volatility.

The behavior of the more risk-averse investor with γ(2) = 4 is more involved. For high

dividend levels, this investor also hedges by taking a short position in volatility. For low

dividend levels, however, his hedging demand for the two diffusion risk factors changes

sign, and he has a long position in the diffusion part of volatility. In these scenarios, his

concern about a high dividend volatility is amplified by the concavity of his consumption

in aggregate dividends, which induces partly a long position in V . The aggregate hedging

demand in the diffusion risk factors is close to zero for low dividend levels and increases

significantly in absolute terms for an increase in the dividend level, and thus again does

not follow the behavior of the aggregate myopic demand which is rather constant.
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So, overall, the exact numerical values for the two levels of risk aversion are important

for the sign and the quantity of individual and aggregate hedging demand in our model.

This shows that the generalization of the model to the case of (almost) arbitrary values for

γ(1) and γ(2) is economically significant. The effects on the myopic component of demand,

however, are not so pronounced, since the motive to earn the risk premium seems to be

largely unaffected by γ, as long as investors are risk-averse.

3 Trading Volume in Derivatives

As shown in the previous section, the two investors differ in their optimal exposures, so

that they will trade with each other. It is clear that basically any desired trading volume

can be generated by making the two investors different enough. In our analysis, however,

with values for γ, the coefficient of risk aversion, between 0.5 and 4, this should not be an

issue.

We assume that the available assets are the stock, the money market account, and

three pure derivatives, which have a unit exposure to one of the risk factors
√
VtdB

(1)
t ,

√
VtdB

(2)
t , and dNt, respectively. To give a specific example, the pure derivative on the

diffusion
√
VtdB

(1)
t is an asset X with price dynamics dXt = (rt + η

(B1)
t

√
Vt)Xtdt +

√
V tXtdB

(1)
t . This choice of traded claims is of course arbitrary, but any standard deriva-

tive, like a call or a put option, can in principle be synthesized from these basic contingent

claims, since the market is complete.

The trading volume in derivatives depends on the sequence of actions in the portfolio

allocation process. We assume that the investors first put all their wealth in the stock,

which is the only asset in positive net supply, before they can trade in the pure deriva-

tives, which are zero net supply assets. Consider the dividend diffusion risk first. The

aggregate exposure of the stock to this factor is θ
(B1)
t , so that from the investment in the

stock, investor i has an absolute exposure of θ
(B1)
t W

(i)
t . On the other hand, her desired

absolute exposure is θ
(B1,i)
t W

(i)
t , so to obtain this position, she has to invest the amount(

θ
(B1,i)
t − θ

(B1)
t

)
W

(i)
t into the associated pure derivative. Analogously, the dollar trading

volume for the claim written on
√
VtdB

(2)
t is

(
θ
(B2,i)
t − θ

(B2)
t

)
W

(i)
t , and for the jump risk

factor it is equal to
(
θ
(N,i)
t − θ

(N)
t

)
W

(i)
t . To be able to compare the trading volumes for

different levels of the initial dividend D0, we normalize the nominal trading volume by the

stock price, i.e. by total market capitalization.
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In the following, we focus on the position of the less risk-averse investor with risk

aversion γ(1). This is, of course, sufficient since for zero net supply assets the other

investor will have a position of exactly the same size, but opposite sign. Note that for very

low and very high dividends the trading volumes will go to zero, since the heterogeneous

economy then becomes homogeneous, without the need to trade.

The upper graph in Figure 4 shows the normalized trading volume for the first diffu-

sion factor, B(1). As discussed in the previous section, the absolute levels of the myopic

demand components are much higher than those for the hedging part, so it is mainly the

differences in this myopic demand which generate the desire to trade. And as one would

expect, the less risk-averse investor buys this claim from the more risk-averse one, since

the derivative provides positive exposure to B(1)-risk. The numbers for trading volumes

are quite impressive. In the scenarios (γ(1), γ(2)) = (2.0, 4.0) or (γ(1), γ(2)) = (0.8, 2.0)

the value of contracts traded can be up to 20 percent of market capitalization for low

dividends, and even for the case (γ(1), γ(2)) = (0.5, 0.8) it is still around 10 percent. In

line with intuition, the size of the trading volume follows the size of the difference between

the myopic demands of the two investors, which is also smallest for (γ(1), γ(2)) = (0.5, 0.8).

Furthermore, note that trading volume is maximized for D0 between 1 and 2, which is the

range where the two investors are of similar importance in the economy and where the

difference in the slope of the demand functions is largest.

As shown above the fractions of wealth invested in the other two risk factors are much

lower, so we may expect trading volumes to be lower as well. Nevertheless, especially for

low dividend levels, there is a significant desire to trade B(2)-risk and jump risk. The

relative value of the B(2)-contracts traded is up to 1.8 percent of total market capitaliza-

tion, which is remarkable, given that it is generated exclusively by differences in hedging

demand between investors. In contrast to the B(1)-contract the direction of trading for

B(2)-derivatives now depends on the specific values for γ(1) and γ(2).

For (γ(1), γ(2)) = (0.8, 2.0), the less risk-averse investor wants to take a long (specula-

tive) position in B(2), while the more risk-averse investor wants a short position in order

to hedge. In line with intuition, it is then the less risk-averse investor who buys additional

units of this risk factors, thus providing insurance to the more risk-averse one. If both

investors are less risk-averse than the log investor, they both want to take a long (specu-

lative) position in B(2). The demand of the less risk-averse investor is the larger one, so

that again, he takes a long position in this risk factor. The picture changes when both
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investors have a risk aversion above one. In this case, it is the less risk-averse investor

who meets his hedging demand for a short position in B(2) by selling additional units

of the pure derivative to the more risk-averse investor. While this direction of providing

insurance seems to go the wrong way round, it can be explained by the larger myopic

demand of the less risk-averse investor, which increases his hedging demand beyond that

of the more risk-averse investor. Furthermore, note that the hedging demand is largest

in this case and not in the case where one investor is more and one is less risk-averse

than the log investor. So while the direction of trade for B(1)-derivatives which is mainly

driven by myopic demand is straightforward, things are not so clear for contracts written

on diffusive volatility risk which are mainly traded due to hedging motives.

Similar to B(1), but in contrast to B(2), there is only one direction of trading for

derivatives written on the jump factor. In all three cases characterized by different com-

binations of γ(1) and γ(2), the position of the less-risk averse agent in the pure derivative

is short, i.e. she sells this contract to her more risk-averse counterpart and thus ends up

with the larger (negative) exposure. Similar to the case of the B(1)-derivative, the econ-

omy with two agents being less risk-averse than the log investor exhibits a smaller trading

volume than those where at least one of the investors has a coefficient of risk-aversion

greater than 1.

4 Conclusion

In this paper we have performed a general equilibrium analysis for a Lucas (1978) tree

economy with SV, jumps in dividends, and jumps in the volatility of dividends. Investor

heterogeneity creates significant trading volume in derivatives, since the individual optimal

exposures differ according to the respective level of risk aversion.

One of the main implications of our analysis is that there is an important difference

between claims written on dividend diffusion risk or jump risk on the one side and contracts

written on volatility diffusion risk on the other. While for the first two types of contingent

claims it is always the less risk-averse agent who takes on additional risk in the trading

process, this is not true for volatility derivatives. Here the direction of trading depends

on the exact numerical values of the two coefficients of risk aversion. Contingent claims

written on the level of dividends or stock prices are straightforward hedging instruments

in the sense of protecting investors against wealth losses when the values of assets decline.
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The motives to hold volatility derivatives are more complex and involve considerations

about future investment opportunities.
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A Characteristic Functions, Stock Price and Individual Wealth

The stock price is

St = EP



∫ T

t
e−β(s−t)

(
c(i)(Ds)

c(i)(Dt)

)−γ(i)

Ds ds
∣∣ Ft


 .

For general risk aversions, there is no closed form solution for this equation, but we have

to use numerical integration. Similar to Dumas, Kurshev and Uppal (2005), to determine

the density of the future dividend, we use the technique of Fourier inversion also applied

when it comes to option pricing. The characteristic function of lnDs is defined as

ΦlnDs
(x; t,Dt, Vt) = EP

[
eix ln Ds

∣∣ Ft

]
.

Since Φln Ds
(x; t,Dt, Vt) is a P-martingale, we know that

∂Φ

∂t
+
∂Φ

∂V

(
κP (v̄P − V ) − EP [Y ]λPV )

)
+

∂Φ

∂ lnD

(
µ0 + µ1V −EP [X]λPV − 1

2
V

)

+
1

2

∂2Φ

∂V 2
σ2

V V +
1

2

∂2Φ

∂(lnD)2
V +

∂2Φ

∂V ∂(lnD)
ρσV V + EP [∆Φ]λPV = 0(15)

where ∆Φ = Φ(x; t,Dt(1 + X), Vt + Y ) − Φ(x; t,Dt, Vt). The standard guess for the

characteristic function is

Φln Ds
(x; t,Dt, Vt) = eA

cf (s−t,x)+Bcf (s−t,x)Vt+ix ln Dt .

Plugging this guess into (15) and rearranging gives

V
{
ix
(
µ1 − EP [X]λP − 0.5

)
− λP − 0.5x2 +Bcf (−κP − EP [Y ]λP + ρσV ix)

+ 0.5(Bcf )2σ2
V + EP

[
(1 +X)ixeB

cf Y
]
λP −Bcf

τ

}

+
{
BcfκP v̄P + ixµ0 −Acf

τ

}
= 0

with Acf
τ and Bcf

τ as derivatives w.r.t. s− t. Since the equality has to hold for all V ∈ R+,

we get two odes for Acf and Bcf

Acf
τ = ixµ0 + κP v̄PBcf

Bcf
τ =

(
−0.5x2 + ix

(
µ1 − EP [X]λP − 0.5

)
− λP

)
+ (−κP − EP [Y ]λP + ρσV ix)B

cf

+ 0.5σ2
V (Bcf )2 +EP

[
(1 +X)ixeB

cf Y
]
λP ,

and the initial conditions are Acf (0, x) = 0 and Bcf(0, x) = 0. These ode’s can be solved

for numerically, for example using Runge-Kutta. Given the characteristic function, the

density for lnDs then follows from the inversion formula
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1

2π

∫ ∞

−∞
Φln Ds

(x; t,Dt, Vt)e
−ix lnDsdx.

The stock price can then be calculated as

St =

∫ T

t

∫ ∞

−∞
e−β(s−t)

(
c(i)(Ds)

c(i)(Dt)

)−γ(i)

Ds

· 1

2π

∫ ∞

−∞
ΦlnDs

(x; t,Dt, Vt)e
−ix ln Dsdx d lnDs ds. (16)

Similarly, the wealth of investor i can be calculated as

W
(i)
t =

∫ T

t

∫ ∞

−∞
e−β(s−t)

(
c(i)(Ds)

c(i)(Dt)

)−γ(i)

c(i)(Ds)

· 1

2π

∫ ∞

−∞
ΦlnDs

(x; t,Dt, Vt)e
−ix ln Dsdx d lnDs ds.

B Partial Derivative of Stock Price

The stock price is

St = EP

[∫ T

t

u
(1)
c (s, c(1)(Ds))

u
(1)
c (t, c(1)(Dt))

Dsds
∣∣ Ft

]
.

Rewrite as

u(1)
c (t, c(1)(Dt))St = EP

[∫ T

t
u(1)

c (s, c(1)(Ds)) Ds ds
∣∣ Ft

]

and take partial derivatives with respect to Dt

u(1)
cc (t, c(1)(Dt))

∂c(1)(Dt)

∂Dt
St + u(1)

c (t, c(1)(Dt))
∂St

∂Dt

= EP

[∫ T

t

{
u(1)

cc (s, c(1)(Ds))
∂c(1)(Ds)

∂Ds
Ds + u(1)

c (s, c(1)(Ds))

}
∂Ds

∂Dt
ds
∣∣ Ft

]
.

For the right-hand side, we use that

Ds = Dt
Ds

Dt
,

∂Ds

∂Dt
=
Ds

Dt

since the ratio Ds

Dt
does not depend on Dt. Dividing by u

(1)
c (t, c(1)(Dt)) gives

u
(1)
cc (t, c(1)(Dt))

u
(1)
c (t, c(1)(Dt))

∂c(1)(Dt)

∂Dt
St +

∂St

∂Dt

= EP

[∫ T

t

u
(1)
c (s, c(1)(Ds))

u
(1)
c (t, c(1)(Dt))

{
u

(1)
cc (s, c(1)(Ds))

u
(1)
c (s, c(1)(Ds))

∂c(1)(Ds)

∂Ds
Ds + 1

}
Ds

Dt
ds
∣∣ Ft

]
.
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We now take a look at the term

u
(1)
cc (s, c(1)(Ds))

u
(1)
c (s, c(1)(Ds))

∂c(1)(Ds)

∂Ds
=
u

(1)
cc (s, c(1)(Ds))c

(1)(Ds)

u
(1)
c (s, c(1)(Ds))

∂c(1)(Ds)

∂Ds

1

c(1)(Ds)

= −γ(1)(c(1)(Ds))
c(1)(Ds)

Ds
· γ̂(Ds)

γ(1)(c(1)(Ds))

1

c(1)(Ds)

= −γ̂(Ds)
1

Ds
.

Plugging this in gives

−γ̂(Dt)
St

Dt
+
∂St

∂Dt
= EP

[∫ T

t

u
(1)
c (s, c(1)(Ds))

u
(1)
c (t, c(1)(Dt))

{1 − γ̂(Ds)}
Ds

Dt
ds
∣∣ Ft

]

= EP

[∫ T

t

ξs
ξt

{1 − γ̂(Ds)}
Ds

Dt
ds
∣∣ Ft

]

=
St

Dt
−EP

[∫ T

t

ξs
ξt

Ds

Dt
γ̂(Ds) ds

∣∣ Ft

]
.

Sorting terms and multiplying with Dt/St gives

∂St

∂Dt

Dt

St
= 1 + γ̂(Dt) − EP

[∫ T

t

ξs
ξt

Ds

St
γ̂(Ds) ds

∣∣ Ft

]
.

C Partial Derivative of Individual Wealth

The wealth of investor i is

W
(i)
t = EP

[∫ T

t

u
(i)
c (s, c(i)(Ds))

u
(i)
c (t, c(i)(Dt))

c(i)(Ds)ds
∣∣ Ft

]
.

Rewrite as

u(i)
c (t, c(i)(Dt))W

(i)
t = EP

[∫ T

t
u(i)

c (s, c(i)(Ds)) c
(i)(Ds) ds

∣∣ Ft

]

and take partial derivatives with respect to Dt

u(i)
cc (t, c(i)(Dt))

∂c(i)(Dt)

∂Dt
W

(i)
t + u(i)

c (t, c(i)(Dt))
∂W

(i)
t

∂Dt

= EP

[∫ T

t

{
u(i)

cc (s, c(i)(Ds))
∂c(i)(Ds)

∂Ds
c(i)(Ds) + u(i)

c (s, c(i)(Ds))
∂c(i)(Ds)

∂Ds

}
∂Ds

∂Dt
ds
∣∣ Ft

]
.

For the right-hand side, we use that

Ds = Dt
Ds

Dt
,

∂Ds

∂Dt
=
Ds

Dt

since the ratio Ds

Dt
does not depend on Dt. Dividing by u

(i)
c (t, c(i)(Dt)) gives
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u
(i)
cc (t, c(i)(Dt))

u
(i)
c (t, c(i)(Dt))

∂c(i)(Dt)

∂Dt
W

(i)
t +

∂W
(i)
t

∂Dt

= EP

[∫ T

t

u
(i)
c (s, c(i)(Ds))

u
(i)
c (t, c(i)(Dt))

{
u

(i)
cc (s, c(i)(Ds))

u
(i)
c (s, c(i)(Ds))

∂c(i)(Ds)

∂Ds
c(i)(Ds) +

∂c(i)(Ds)

∂Ds

}
Ds

Dt
ds
∣∣ Ft

]
.

We now take a look at the term

u
(i)
cc (s, c(i)(Ds))

u
(i)
c (s, c(i)(Ds))

∂c(i)(Ds)

∂Ds
=
u

(i)
cc (s, c(i)(Ds))c

(i)(Ds)

u
(i)
c (s, c(i)(Ds))

∂c(i)(Ds)

∂Ds

1

c(i)(Ds)

= −γ(i) c
(i)(Ds)

Ds
· γ̂(Ds)

γ(i)

1

c(i)(Ds)

= −γ̂(Ds)
1

Ds
.

Furthermore, we know that

∂c(i)(Ds)

∂Ds
=
c(i)(Ds)

Ds
· γ̂(Ds)

γ(i)
.

Plugging this in gives

−γ̂(Dt)
W

(i)
t

Dt
+
∂W

(i)
t

∂Dt

= EP

[∫ T

t

u
(i)
c (s, c(i)(Ds))

u
(i)
c (t, c(i)(Dt))

{
c(i)(Ds)

Ds
· γ̂(Ds)

γ(i)
− γ̂(Ds)

c(i)(Ds)

Ds

}
Ds

Dt
ds
∣∣ Ft

]

= EP

[∫ T

t

ξs
ξt

{
γ̂(Ds)

γ(i)
− γ̂(Ds)

}
c(i)(Ds)

Dt
ds
∣∣ Ft

]
.

Finally, sorting terms and multiplying with Dt/W
(i)
t yields

∂W
(i)
t

∂Dt
· Dt

W
(i)
t

= EP

[∫ T

t

ξs
ξt

· c
(i)(Ds)

W
(i)
t

· γ̂(Ds)

γ(i)
ds
∣∣ Ft

]

+ γ̂(Dt) − EP

[∫ T

t

ξs
ξt

· c
(i)(Ds)

W
(i)
t

γ̂(Ds) ds
∣∣ Ft

]
.
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Y = y(1) ≡ 0 Y = y(2) . . . Y = y(K)

X = x(1) ≡ 0 p11 = 0 p12 . . . p1K

X = x(2) p21 p22 . . . p2K

...
...

...
. . .

...

X = x(J) pJ1 pJ2 . . . pJK

Table 1. Jump Size Distribution

The table shows the structure of the jump size distribution in our model. X is the random jump size

in the dividend, Y is the size of a variance jump, where we assume Y ≥ 0. The event X = 0, Y = 0

is assigned a zero probability in the joint distribution of X and Y , since it represents the event

that no jump has occurred.

µ0 µ1 jD λP κP v̄P σV ρ jV

0.010 2.750 −0.250 1.840 5.300 0.020 0.225 −0.570 0.226

Table 2. Parameter Values for Numerical Computations

The table summarizes the parametrization used for the numerical computations. The parameter

values are adapted from Liu, Longstaff and Pan (2003). The time discount rate β is set to equal

0.05. V0 is set to equal its long-run mean v̄P . The planning horizon is 1 year.
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Figure 1. Demand for Risk Factors (γ(1) = 2.0, γ(2) = 4.0)

The graphs show the optimal demand for the risk factors of the RI and the two investors. The

parameters are taken from Table 2.
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Figure 2. Demand for Risk Factors (γ(1) = 0.8, γ(2) = 2.0)

The graphs show the optimal demand for the risk factors of the RI and the two investors. The

parameters are taken from Table 2.
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Figure 3. Demand for Risk Factors (γ(1) = 0.5, γ(2) = 0.8)

The graphs show the optimal demand for the risk factors of the RI and the two investors. The

parameters are taken from Table 2.
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Figure 4. Trading Volume in Derivatives

The graphs show the trading volume in the pure derivatives, relative to total market capitalization,

as a function of the dividend level from the less risk-averse agent’s perspective. The three curves

represent the different combinations of the two levels of risk aversion, γ(1) and γ(2). The upper

graph shows the relative trading volume in the claim with a unit exposure to
√
VtdB

(1)
t , the

middle and lower graph show the analogous volume for the claims on
√
VtdB

(2)
t and on dNt. The

parameters are taken from Table 2.
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Summary. This paper analyzes continuous-time volatility component models and their appli-

cation in option pricing and asset allocation. A focus of the paper is to assess the economic

consequences of model mis-specification with regard to volatility components.

A multi-factor stochastic volatility model allows the slope, the level and the curvature of

the volatility smile to change even when the local variance remains constant. Concerning as-

set allocation the optimal portfolio composition becomes state-dependent. We provide a general

methodology to compute the utility loss resulting from model mis-specification, and show that

the utility loss from ignoring volatility components is less important than the one from model

mis-specification concerning jumps.

1 Introduction

1.1 Motivation

In many empirical studies, models with multiple volatility components are shown to pro-

vide a better fit to the observed stock price data than one-factor models. Nevertheless, very

few papers analyze the implications of these model specifications for option pricing and

asset allocation. The paper aims at filling this gap by comparing the multi-factor model of

Bates (2000) (excluding jumps) and the stochastic long-run mean model (SLRM) of Duffie,

Pan and Singleton (2000) to the standard stochastic volatility model of Heston (1993).

We also analyze the impact of model mis-specification concerning volatility components

in the portfolio planning problem.
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First, after deriving closed-form solutions for the option price, we look in detail at the

properties of the smile and especially at the time-variation of the smile. Then we compare

the optimal portfolio position and the indirect utility in an incomplete market across the

three models.

1.2 Literature

This paper is mostly related to the literature analyzing the impact of volatility compo-

nents. There are only very few papers considering the modeling of volatility components

in continuous-time. The most prominent paper is certainly the paper of Bates (2000)

who introduces a two-factor stochastic volatility model including jumps in the stock price.

Via Fourier inversion, he derives a closed-form option pricing formula, and then mainly

focusses on the empirical estimation of the model. The same holds for Chernov, Gallant,

Ghysels and Tauchen (2003) who compare the empirical performance of different volatility

specifications, but do not consider their impact on the smile dynamics or asset allocation.

A recent paper by Christoffersen, Heston and Jacobs (2007) analyzes the model of Bates

(2000) (excluding jumps) in more detail and shows that the model explains several empiri-

cal facts. In particular, the authors show that it can generate the observed smile dynamics

and that it implies independence of the slope of the smile from the level of volatility.

Other authors introducing volatility component models are Duffie, Pan and Singleton

(2000) and Chacko and Viceira (2003). Both papers emphasize the convenient empirical

properties, but none of them analyzes in detail the implications on option prices or asset

allocation. Duffie, Pan and Singleton (2000) present a stochastic volatility model where the

long-run mean of the stochastic volatility follows itself a CIR process. Chacko and Viceira

(2003) estimate a stochastic volatility model via ’Spectral GMM’, and state that the

differences in estimation results they find with changing data frequency can be explained

by the existence of multiple volatility components. Since their model specification does

not fall into the affine class and lacks therefore many desirable properties, we decided not

to include their model in our analysis.

There is a wide range of papers dealing with volatility component models in discrete

time. Two of the most recent ones are Adrian and Rosenberg (2005) and Christoffersen,

Jacobs and Wang (2005). Both emphasize the empirical performance of these models in

explaining stock market data, while none of them discusses their implications on smile

dynamics or asset allocation.
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1.3 Contribution

Although the empirical performance of models with volatility components is widely con-

firmed in the literature, their properties in terms of option pricing and in particular asset

allocation are rarely discussed.

Our analysis shows that in case of the SLRM model, the smile has properties as in

the Heston (1993) model, but, contrary to this, the level of smile may change even if local

volatility does not change (but the long-run mean). The Bates (2000) model can be con-

sidered as a one-factor model with stochastic speed of mean-reversion, stochastic volatility

of variance and stochastic stock-volatility correlation. This implies the empirically well

supported property that the slope, the level and the curvature of the smile change even if

local volatility remains constant.

The main contribution of the paper is in the dimension of asset allocation. As for

option prices, the SLRM model does not provide a significant modification compared to

the results obtained with a one-factor Heston (1993) model. In contrast, the Bates (2000)

model is a significant extension of the Heston (1993) model concerning portfolio planning.

In addition to the stochastic correlation, the model specification implies an expected excess

return on the stock which is not constant per unit of variance. As a result, the model

does not have a closed-form solution for the indirect utility and the optimal stock position,

although it falls in the class of affine models as defined in Duffie, Pan and Singleton (2000).

In this paper we solve for the optimal stock position numerically via the method of finite

differences.

In the last step, we consider the impact of model mis-specification on the indirect

utility of an investor. To do so, we present a general approach how to compute the

indirect utility in case of model mis-specification via the method of finite differences. This

methodology can be applied in complete and incomplete markets and allows to avoid a

time-consuming Monte Carlo simulation. The utility losses from model mis-specification

concerning volatility components are moderate, especially compared to the results from

the literature in case of jump mis-specification.
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2 Models with Volatility Components

2.1 Model Setup

This paper analyses and compares two multi-component stochastic volatility models pro-

posed in the literature to the standard one-component Heston (1993) model. Since one

purpose of this paper is to encourage the use of these multiple volatility component mod-

els, we focus on the most popular ones: the stochastic long-run mean (SLRM) model of

Duffie, Pan and Singleton (2000) and the two factor model of Bates (2000)1. These models

have the advantage to fall in the affine class of Duffie, Pan and Singleton (2000), so that

there are closed-form solutions for many pricing problems.

In the following, we present and discuss briefly the three models considered in this

paper: the two models with volatility components and for comparison the one-factor

Heston (1993) model.

One-factor stochastic volatility (Heston (1993))

Besides the dynamics of the stock price, the Heston (1993) model specifies the P-dynamics

of the (stochastic) local variance V :

dSt

St
= µtdt +

√
VtdWt

dVt = κ(θ − Vt)dt+ σ
√
VtdW

V
t

with Corr(dW V
t , dWt) = ρ. V thus follows a CIR process with speed of mean-reversion

κ, long-run mean θ and volatility σ. For option pricing, the processes have to be specified

under the Q-measure. We assume that the premium W is such that η
√
Vt is earned per

unit of
√
VtdWt. Analogously, the risk premium for W V is ξ

√
Vt per unit of

√
VtdW

V
t .

Stochastic long-run mean (SLRM, Duffie, Pan and Singleton (2000))

The dynamics of the stock price and of the local variance are very similar to the Heston

model, but the model specifies an additional process such that the long-run mean of

variance follows its own CIR process:

1 We consider the Bates (2000) model excluding jumps to focus on the impact of the volatility components.

Properties of this model are also discussed in Christoffersen, Heston and Jacobs (2007).
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dSt

St
= µtdt+

√
VtdWt

dVt = κ(V̄t − Vt)dt+ σV

√
VtdW

V
t

dV̄t = κV̄ (θV̄ − V̄t)dt+ σV̄

√
V̄tdW

V̄
t

with, as the only non-zero correlation, Corr(dW V
t , dWt) = ρV . The change of measure to

obtain the Q-dynamics is again realized via the specification of the local risk compensation.

ηV

√
Vt is earned per unit of

√
VtdWt, ξV

√
Vt per unit of

√
VtdW

V
t and ξV̄

√
V̄t per unit

of
√
V̄tdW

V̄
t . This model has been introduced in Duffie, Pan and Singleton (2000) and is

known to fall into the class of affine models.

Multi-factor stochastic volatility (Bates (2000) without jump components)

This model assumes that the stock price dynamics is driven by two independent stochastic

volatility components:

dSt

St
= µtdt+

√
V1tdW1t +

√
V2tdW2t

dV1t = κ1(θ1 − V1t)dt+ σ1

√
V1tdW

V
1t

dV2t = κ2(θ2 − V2t)dt+ σ2

√
V2tdW

V
2t .

The Wiener processes of the variance dynamics, however, may be correlated with the stock

price via Corr(dW V
1t , dW1t) = ρ1 and Corr(dW V

2t , dW2t) = ρ2. We assume that ηi

√
Vit

is the compensation per unit of
√
VitdWit (i = 1, 2) and ξi

√
Vit per unit of

√
VitdW

V
it

(i = 1, 2).

To understand the properties of this model, it is useful to regard the model as a

one-factor model with variance dynamics

dVt = d(V1t + V2t) = [κ1θ1 − κ1V1t + κ2θ2 − κ2V2t]dt+ σ1

√
V1tdW

V
1t + σ2

√
V2tdW

V
2t .

The (weighted) sum of two independent normal Wiener processes dW V
1t and dW V

2t is itself

normally distributed and the process is therefore equal in distribution to

dVt = d(V1t + V2t) = κV [θV − Vt]dt+ σV

√
VtdBt

with
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θV = θ1 + θ2

κV =
κ1(θ1 − V1t) + κ2(θ2 − V2t)

(θ1 − V1t) + (θ2 − V2t)

σV =

√
σ2

1V1t + σ2
2V2t

V1t + V2t

Corr

(
dSt

St
, dVt

)
=
V1tσ1ρ1 + V2tσ2ρ2

σV Vt
=

V1t√
V1t+V2t

σ1ρ1 + V2t√
V1t+V2t

σ2ρ2
√
σ2

1V1t + σ2
2V2t

.

This representation allows a direct comparison with the Heston model. The long-run

mean of variance θV corresponds to the sum of the two individual long-run means of

the variance processes. The speed of mean-reversion κV is a weighted average of the

individual mean-reversion speeds where the weights are the deviations of the individual

variances from their respective long-run means θi−Vit (i = 1, 2).2 The variance of variance

σ2
V is also a weighted average of the individual variances. Here, the weights are the local

levels of the variance components. Speed of mean-reversion, variance of variance and

also stock-volatility correlation are thus stochastic and time-varying. For the special case

σ1 = σ2 = σV , the correlation is a weighted average of individual correlations where the

weights are the local levels of the variances.

2.2 Comparison of Model Properties

In the following, we compare several properties of the models which will be important for

the later analysis. First, consider the local variance of stock return implied by the three

models. In case of the Bates model, the local variance of the stock return is the sum of

two components, V ar(dSt/St) = (V1t + V2t) dt, in the other two models it consists of one

component, V ar(dSt/St) = Vt dt, only. Since local variance is one of the main drivers of

option prices, we facilitate the comparison of the models by setting Vt = V1t + V2t for the

later analysis.

From the literature on option pricing we know that the stock-volatility correlation

plays a special role. It accounts for the so called ’leverage effect’, the fact that when the

stock price decreases, volatility tends to increase at the same time. As discussed before,

the Heston and the SLRM model have the standard feature of constant stock-volatility

2 Contrary to the individual variance components the speed of mean-reversion may be negative and thus

the total variance temporarily diverges from its long-run mean.
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correlation. In the Bates model on the other hand the stock-volatility correlation may

change over time within the same parametrization due to changing V1 and V2 and this

time variation of correlation induces a model-consistent time-variation of the smile.

The SLRM model has a constant stock-volatility correlation but unlike the Bates

(2000) model it has a stochastic long-run mean. However, in contrast to stock-volatility

correlation and local variance, the impact of the long-run mean of variance may be of

second-order importance for option pricing and asset allocation.

In asset allocation, the most important driver of the portfolio composition are the

expected excess returns earned on the different assets. In all of the above models, the

expected excess return on the stock is linked to the local level of variance. In the Heston

and the SLRM model µt − r = ηVt, in the Bates model µt − r = η1V1t + η2V2t. The

expected excess return per unit of stock-variance, however, is constant in the Heston and

the SLRM model, but stochastic in the case of Bates:

µt − r

Vt
=
η1V1t + η2V2t

V1t + V2t
.

In general, η1 6= η2, so that the expected excess return per unit of variance depends on the

local levels of the variance components. We will see that, as a consequence, the optimal

portfolio allocation will not only be time- but also state-dependent.

3 Option Pricing

3.1 Option Valuation

All three models fall in the affine class, so we can apply the approach described in Bakshi

and Madan (2000) and Duffie, Pan and Singleton (2000) to price standard call and put

options on the stock.3 The price of a call option with strike K and maturity T is given by

Ct = StΠ1 −Ke−r(T−t)Π2 (1)

with

3 The multi-component model proposed in Chacko and Viceira (2003), e.g., is non-affine, and the price of

a call option can thus only be computed by the method of finite differences or Monte Carlo simulation.
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Π1 =
1

2
+

1

π

∞∫

0

ℜ
[
ϕ(u− i, T − t, St, . . .)e

−iu ln K

iuSt

]
du

Π2 =
1

2
+

1

π

∞∫

0

ℜ
[
ϕ(u, T − t, St, . . .)e

−iu lnK

iue−r(T−t)

]
du

where ℜ[x] denotes the real part of x and ϕ(u, T − t, St, . . .) is the Fourier transform of

the state price density given by

ϕ(u, T − t, St, . . .) = EQ
[
e−r(T−t)eiu ln ST

]
.

Besides the integration variable u, the Fourier transform depends on the time to maturity

of the option, the current stock price and the current values of the state variables of the

model. The Fourier transform differs across the models and in some cases closed-form

solutions exist. Details are given in Appendix A.

3.2 Smile Dynamics

At a single point in time, most empirical properties of the option smile can be explained

by models with one-factor stochastic volatility and jumps. On the other hand, one also

observes that the shape of the smile changes over time, a fact that usually cannot be easily

explained in standard option pricing models. In these models, a change of the smile shape

can only be generated by changing the parameters of the pricing model which is obviously

inconsistent with the model assumption of constant parameters.

These smile changes which are also discussed in Christoffersen, Heston and Jacobs

(2007), have different characteristics. The smile may change from upward to downward

sloping, and vice versa, its level is time-varying and in the course of time, the curvature of

the smile may be more or less pronounced. Importantly, this is often observed although

local variance has not changed.

Figure 1 shows that the SLRM model can explain some of these smile dynamics. In

this figure, option smiles for options with 6 and 12 months to maturity are plotted for

different levels of the local long-run mean V̄t of variance. It is important to note that,

contrary to the variance level itself, this change in the long-run mean of variance is not

directly observable in the market. An increase or decrease in the local long-run mean of

variance may occur while local variance does not change. For all maturities, a change

of the local long-run mean induces an approximately parallel shift of the smile which is
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the stronger the longer the time to maturity. The level of smile thus changes even if

local volatility remains constant. Altogether, however, the ability of the SLRM model to

explain the observed smile dynamics is rather limited.

The Bates model can explain much better the empirically observed smile dynamics.

Figure 2 plots option smiles for different levels of local variances V1t and V2t, holding total

variance constant for options with 6 and 12 months to maturity. For the two variance

dynamics, all but one of the parameters are set equal to focus on the smile dynamics

induced by stochastic stock-variance correlation (left graphs), stochastic volatility of vari-

ance (middle graphs) and stochastic speed of variance mean-reversion (right graphs). In

the left graphs, we can see that, in particular for long maturity options, the smile changes

from primarily downward sloping to upward sloping the more weight is locally contributed

by the variance with negative correlation. The middle graphs show that, in particular for

short maturity options, the smile becomes the steeper the more weight is locally con-

tributed by the variance with lower volatility. And the level of the smile is the lower, the

more weight is locally contributed by the variance with lower speed of mean-reversion (left

graphs). The Bates model thus explains nicely the empirical observation that the shape

of the smile changes over time, independently of the volatility level.

4 Portfolio Planning

In this section we consider asset allocation in models with volatility components. We

assume that our investor derives utility from terminal wealth. First, we compute the

optimal portfolio strategies in an incomplete market where only stock and money market

account are traded.4 In the second step we assess the impact of model mis-specification

concerning volatility components, i.e. we compute the utility loss suffered by an investor

assuming the one-factor Heston (1993) model when a volatility component model is the

true data generating process. Thereby, we present a general method to compute the utility

loss under model mis-specification, either with a closed-form solution or via numerical

methods.

The investor is assumed to have CRRA utility with a coefficient of risk aversion γ

and an investment horizon of T . His objective is thus

4 The results for a complete market can be found in Appendix B. A comparison to the results for an

incomplete market allows to assess the value of trading derivatives as e.g. in Liu and Pan (2003).
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max
φ

E[U(YT )] = E

[
Y 1−γ

T

1 − γ

]

subject to the budget constraint

dYt

Yt
= φt

dSt

St
+ (1 − φt)rdt

with φ as percentage investment in the stock and initial wealth Y0 given.

In the following we present and discuss the optimal stock positions in the different

models. The optimal positions in the complete market are presented in Appendix B.

Heston

In this one-factor stochastic volatility model the optimal stock position can be derived as

a special case from the results in Liu, Longstaff and Pan (2003). A percentage investment

of size φ in the stock leads to the following dynamics of wealth

dYt = rYtdt + φtYt(ηVtdt +
√
VtdWt).

The approach via the HJB-equation yields the optimal stock position as

φt =
η

γ
+ ρσH(τ) (2)

with τ = T − t. The function H and the indirect utility J can be solved in closed-form

(see Appendix C). As usual, the optimal stock position consists of a myopic part (first

summand) and a hedging component (second summand). It is important to note that this

optimal stock position is only time-dependent (through H(τ)), but not state-dependent.

This is due to the fact that the market price of volatility risk is assumed to be proportional

to the local level of volatility such that the risk premium earned per unit of stock-variance

is constant and equal to η.

SLRM

In this model, an investment in the stock leads to a local exposure to stock price risk, but

not to an exposure to volatility or long-run mean volatility risk. The dynamics of wealth

are therefore structurally identical to the one in the one-factor stochastic volatility case:

dYt = rYtdt+ φtYt(ηV Vtdt+
√
VtdWt)
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with φ as the fraction invested in the stock. Again, the optimal stock position can be

derived via the HJB equation and leads to

φt =
ηV

γ
+ ρσVH(τ)

with τ = T − t. The indirect utility J and the function H can be solved in closed-form

(see Appendix C). The stock is exposed to one risk factor only, and this factor is assumed

to be uncorrelated to stochastic long-run mean risk, but correlated to stochastic volatility

risk (correlation ρ). Therefore the optimal stock position contains a hedging demand for

stochastic volatility risk but not for stochastic long-run mean risk. Note that the optimal

position looks very similar to the one in the Heston (1993) model, differences come from

the different parameters and the slightly different PDE to be satisfied by the function

H(τ).

Bates

In this two-factor model, an investment in the stock leads to an exposure to the two

independent risk factors dW1t and dW2t and the wealth follows the dynamics

dYt = rYtdt+ φtYt((η1V1t + η2V2t)dt +
√
V1tdW1t +

√
V2tdW2t)

with φ as the fraction invested in the stock. Each of the two factors is correlated (through

correlations ρ1 and ρ2) to the stochastic investment opportunity set. The optimal stock

position therefore contains two hedging components:

φt =
1

γ

[
η1

V1t

V1t + V2t
+ η2

V2t

V1t + V2t

]
+ ρ1σ1

V1t

V1t + V2t

g1
g

+ ρ2σ2
V2t

V1t + V2t

g2
g
.

with gi (i = 1, 2) denoting the derivative of g w.r.t. variance component i. The function

g follows from the indirect utility of the investor defined as

J(t, Yt, V1t, V2t) =
Y 1−γ

t

1 − γ
g(T − t, V1t, V2t) (3)

Although the Bates model is included in the affine model class, we cannot give a more

specific expression for the function g, but only note that it will be a function of the

investor’s planning horizon T − t and the state variables V1 and V2. Interestingly and

in contrast to the two models above, the indirect utility J , the function g, and thus also

the optimal portfolio φ cannot be solved in closed form. Although this model is affine

and there exist closed-form solutions for the option prices, the optimal asset allocation in
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the case of an incomplete market has to be solved numerically (Details on this numerical

computation are presented in the following section and in Appendix C).

Another interesting point is that the optimal stock position is now state-dependent.

First, the myopic demand is stochastic since the risk compensation per unit of stock-

variance changes stochastically depending on the exact decomposition of total variance

into the two variance components. Second, the state-dependence of the hedging demand

is generated by the stochastic stock-volatility correlation. Hence, each component indi-

vidually would make the optimal stock position state-dependent.

4.1 Numerical Example

Before presenting the results of the optimal portfolio composition, we first discuss some

details on the numerical computation.

Computational Details

For all models, we solve the arising PDEs numerically. In the cases where closed-form

solutions exist, the numerical values are indistinguishable in case of a sufficient number of

discretization steps (usually about 10,000 Euler steps).

In case of the Bates model in an incomplete market, no closed-form solution for

the asset allocation exists. Therefore, we solve for the function g and its derivatives by

applying the method of finite differences to the HJB equation. When using the standard

guess (3) for the indirect utility, g follows the PDE

−g′ = −(1 − γ)

[
r + φt(η1V1t + η2V2t) +

1

2
γ(1 − γ)φ2

t (V1t + V2t)

]
g

− [κ1(θ1 − V1t) + (1 − γ)σ1ρ1φtV1t] g1 −
1

2
σ2

1V1tg11

− [κ2(θ2 − V2t) + (1 − γ)σ2ρ2φtV2t] g2 −
1

2
σ2

2V2tg22

with boundary condition g(0, V1t, V2t) = 1 and gi and gii (i = 1, 2) denoting the first

and second derivatives with respect to variance component i, respectively. The approach

is similar to the one proposed in Brennan, Schwartz and Lagnado (1997). Nevertheless,

some changes in the boundary conditions and the advances in computational speed allow

to improve the accuracy of the results.

To solve the PDE in the three dimensions T − t, V1 and V2, we apply an ADI finite

difference approximation on a grid with 4000 points in time direction and 200 points in
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either variance direction. The emerging system of equations is solved via exact LU de-

composition. The partial derivatives inside the grid are discretized using central difference

approximations. The variance components range from 0 to 0.1 with a resulting step size of

0.0005. Due to the state dependence of φ, one has to iterate on this variable using values

of the partial derivatives from the previous time step as proposed in Brennan, Schwartz

and Lagnado (1997). For sufficiently small time steps, however, φ changes only to a very

small extent from one step to the other and the iteration becomes therefore dispensable.

We further impose the boundary conditions gii = 0 for V min
it and V max

it (i = 1, 2). To

check the accuracy of the procedure, we applied the numerical procedure in case of the

SLRM model where a closed-form solution of the optimal position exists. The deviation of

the numerically computed indirect utility from its closed-form counterpart was less than

1%. The procedure was therefore considered to yield sufficiently precise results.

Asset Allocation Results

In the following we discuss the resulting optimal portfolio composition in the different

models. Under the assumption of an incomplete market, the investor invests the fraction

of wealth φ in the stock and the remainder in the money market account.

First, we discuss the optimal position in the Bates model. Figure 3 shows that, in

contrast to the other models, the investor’s optimal stock position is state-dependent.

The graphs plot the optimal stock position as a function of local variance V1t when total

variance Vt = V1t + V2t is restricted to be equal to 0.04. In this example, all but one

parameter are the same for the two variance processes. In the benchmark case (solid

line) they are thus perfectly symmetric and the investment is state-independent. In the

left graph, we assume the market prices of risk η of the two variance components to be

different, but the long-run expected excess return (θ1η1 + θ2η2) is held constant at 10%.

In this case, ρ1 = ρ2 = 0, so there is no hedging demand and in the benchmark case where

η = η1 = η2 = 2.5 we have an optimal position in the stock of φ = η/γ = 2.5/3 = 0.833 for

all V1t. Here, state-dependence can only come from the myopic demand. For η1 > η2, the

(locally) expected excess return on the stock, and thus also the investment in the stock,

is the larger the larger V1t is relative to V2t. The reverse holds for η1 < η2. For the special

case V1t = V2t = 0.02, φ = 0.02
0.04

η1+η2

γ = 0.833, which corresponds to the benchmark case.

In the right graph, the market prices of risk of the two processes are equal, but the

correlations are assumed to be different. Since η1 = η2 = 2.5, the myopic part of the stock



78 Eva Schneider

demand is constant and equal to 2.5/3.0=0.833 and thus all state-dependence comes from

the hedging demand. The state-dependence generated by the hedging demand only is

much smaller than the one generated by myopic demand (note the scaling of the graphs).

We assume an investor with γ > 1, so gi/g will be negative (for a discussion see e.g.

Branger, Schlag and Schneider (2007)). For ρ1 > ρ2, the hedging demand decreases in V1t

increasing (relative to V2t), the reverse holds for ρ1 < ρ2. For V1t = V2t = 0.02, the stock

position is larger than in the benchmark case. This is due to the fact that gi is convex

in ρi and thus, for the same absolute correlation, but different sign, the two do not offset

each other but there is still a positive hedging demand. A similar result can be obtained

for the case of differences in variance of variance σ1 6= σ2.

In a next step, we compare the optimal stock position across the different models.

To make the models comparable, we use again the results from our calibration exercise in

Table 1. Note that besides the Q-parameters, we need assumptions on the risk premia to

derive the optimal asset allocation. Therefore, we set the long-run expected excess return

on the stock equal to 10% which results in η = 2.17 for the one-factor Heston model,

η1 = η2 = 2.17 in the Bates model (assuming the same risk compensation for each factor)

and ηV = 2.5 in the SLRM model.

The optimal stock position as a function of the investment horizon is shown in the

left graph of Figure 4. For the given calibration, the investment in the stock is larger

for the SLRM model than for the other two models for all investment horizons. This

is due to the larger myopic demand induced by the higher risk compensation per unit

of risk ηV = 2.5. Due to the hedging demand, the optimal stock position is the higher

the longer the investment horizon. This impact of the hedging demand is largest for the

Bates model and can be explained as follows. The higher the local variances, the larger

the expected excess return on the stock. Shocks in the variance are, however, highly

negatively correlated to shocks in the stock price and the investor can hedge a decrease

in the expected excess return caused by a decrease in local variance with a long position

in the stock. As a result, the investor hedges by shifting wealth from states with high

variance to states with low variance, i.e. from states with good investment opportunities

to states with bad investment opportunities. In the other two models, a position in the

stock gives exposure to one other state variable only. The covariance, although negative,

is lower in absolute value than for the Bates model and hedging is thus more difficult.
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In the right graph of Figure 4, the special feature of the Bates model becomes appar-

ent. For the Heston model and the SLRM model the stock position is state-independent

and only depends on the investment horizon. In contrast, the stock position in the Bates

model decreases in the relative importance of V1 for our parametrization. This state-

dependence comes from hedging demand only, since by assuming the same market prices

of risk for both volatility components the myopic part does not change. The lower the

local variance component V1, the more weight is shifted to the component V2 with the

higher covariance σ2ρ2 with the stock. Therefore the hedging demand and consequently

the optimal position in the stock increases.

Compared to other model specifications, the Bates model thus implies some interesting

properties concerning the optimal stock position in an incomplete market. The question

we want to answer in the next section is whether the resulting differences in the optimal

asset allocation are economically important, and in particular, how large is the utility loss

suffered by an investor in case of model mis-specification.

4.2 Impact of Model Mis-Specification

Another point of interest in asset allocation is to assess the impact of model mis-

specification on the utility of the investor. For example, consider the following setup:

The true model is a model with two volatility components. However, the investor ignores

volatility components and assumes a one-factor Heston model to be the true data gener-

ating process. It is then interesting to compute the utility loss suffered by this investor

when the true model is either the SLRM model or the Bates model.

Similarly, many other types of model mis-specification are conceivable and we aim

to provide a general methodology to compute the utility in those cases. For the sake of

simplicity, we assume that the market is incomplete and thus, that the portfolio of the

investor consists only of a position in the stock and the money market account. However,

the methodology is just as well applicable in complete markets.

Computation of the utility loss

We measure the utility loss via the difference in certainty equivalent wealth:

RY =
1

T
(ln(Y) − ln(Ŷ)) (4)
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where Y and Ŷ solve J0 = Y1−γ/(1−γ) and Ĵ0 = Ŷ1−γ/(1−γ), with J0 and Ĵ0 as indirect

utility under the correct and under the mis-specified model, respectively.

In general, the indirect utility obtained with strategy φ is defined as today’s expected

utility of terminal wealth

Jφ
0 = E

[
U(Y φ

T )
]
.

In case the investor uses the optimal strategy φ∗, it follows

J0 = max
φ

E
[
U(Y φ

T )
]
.

On the other hand, when he uses a suboptimal strategy φ̂, the investor obtains the indirect

utility

Ĵ0 = E
[
U(Y φ̂

T )
]
≤ J0.

It is important to note that under both the optimal and the suboptimal strategy, the

indirect utility is defined as the conditional P-expectation of the utility of terminal wealth

and as such is a P-martingale. From this results the condition that the indirect utility has

no drift under P, and together with the boundary condition Jφ
T = Y 1−γ

T /(1 − γ) we can

derive (at least numerically) the indirect utility in both cases. For the optimal strategy,

this condition yields the well-known HJB equation. In case of the suboptimal strategy,

the PDE is structurally the same as the HJB equation but replacing J and φ with Ĵ and

φ̂.

Under certain conditions, this PDE can be solved in closed-form. The main condition

is that the share invested in the risky asset has to be state-dependent. So either we need a

constant investment opportunity set for the true model or all asset positions taken under

the assumed model need to be state-independent. An example in the literature where a

closed-form solution for the mis-specified case can be derived is Liu, Longstaff and Pan

(2003). This is the case despite the fact that they have a stochastic investment opportunity

set, because they allow for investments in linear claims (stock and money market account)

only. In contrast, Branger, Schlag and Schneider (2007) work in a complete markets and

derive optimal exposures to the different risk factors in the optimal and in the mis-specified

case. However, the realized exposures depend on the sensitivities of the traded claims

which themselves are in general state-dependent. This is exactly what makes a closed-

form solution of the PDE in their case impossible. As one of the main contributions of the

paper we show that Ĵ and φ̂ can be found numerically via the method of finite differences.
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With regard to our two models, the computation of the suboptimal indirect utility

in the SLRM model results in the numerical solution of ODEs. In the Bates model,

at every node of the finite difference grid, we plug in the (state- and time-dependent)

position of the investor under model mis-specification and solve backwards to obtain the

numerical value of the indirect utility. Principally, the case of the complete market, i.e.

where we solve for exposures to risk factors instead of asset positions, can be solved

by the same procedure. At every node, we have have to proceed in two steps: first,

we compute the seemingly optimal exposure under model mis-specification. Second, we

transfer these seemingly optimal exposures into realized exposures by using the (state- and

time-dependent) sensitivities of the traded assets. Finally, these state-dependent realized

exposures are plugged in the discretized PDE which we can solve backwards to obtain the

corresponding indirect utility.

The method of finite differences thus allows us to compute the indirect utility of

suboptimal strategies without having to rely on closed-form solutions. One has to note

however, that when the true (but not the assumed) model is driven by a jump process,

default (and therefore a utility loss of 100%) becomes possible. In this case, it is therefore

more reasonable to consider other statistics like e.g. the distribution of terminal wealth

(see Branger, Schlag and Schneider (2007)).

Numerical Example

In this section, we apply the described procedure to our models. The investor ignores the

fact that the model has two volatility components and instead assumes the Heston model

with the parametrization from Table 1 to be true. He computes the (seemingly) optimal

stock position φ̂ via Equation (2). This position is only time- but not state-dependent.

To compute the indirect utility Ĵt obtained under model mis-specification, we plug the

investor’s stock position φ̂ into the HJB equation of the true data generating process (again

with the parametrization of Table 1).

In case of the SLRM model as the true model, the indirect utility can be solved in

closed-form. It has the general form

Ĵt(Vt, V̄t) =
Y 1−γ

t

1 − γ
exp{γĥ(T − t) + γĤ(T − t)Vt + γ ̂̄H(T − t)V̄t}. (5)

The ODEs to be satisfied by the functions ĥ(T − t), Ĥ(T − t) and ̂̄H(T − t) are derived

as described before:
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(Ĥ)′ =
1 − γ

γ
ηV φ̂− 1

2
(1 − γ)φ̂2 + ((1 − γ)ρV σV φ̂− κV )Ĥ +

1

2
γσ2

V Ĥ
2

( ̂̄H)′ = κV Ĥ − κV̄
̂̄H +

1

2
γσ2

V̄
̂̄H

2

ĥ′ =
1 − γ

γ
r + κV̄ θV̄

̂̄H

subject to the boundary conditions Ĥ(0) = ̂̄H(0) = ĥ(0) = 0.

The resulting utility loss from assuming a Heston model is shown in the upper-left

graph of Figure 5. Although there are pronounced differences between the optimal and

the seemingly optimal position (see left graph of Figure 4), the utility loss from model

mis-specification is rather small (RY less than 15 basis points p.a.).

For comparison, we repeat the same exercise when the investor assumes a model

without stochastic volatility, in this case a Black and Scholes (1973) dynamics. With a

stock risk premium of 2.5 and a risk aversion of γ = 3.0 the investor perceives a constant

stock position of 2.5/3=0.833 to be optimal. In the upper-right graph of Figure 5 one

can see that the utility loss in this case is even smaller than in case of Heston (1993)

model. This can be explained by the smaller difference in the stock position between the

BS and the SLRM case than between the Heston and the SLRM case (compare the BS

stock position φ̂ = 0.833 with the values in Figure 4).

When the Bates model is true, the indirect utility has to be computed numerically via

the method of finite differences. As in the optimal case, we compute the indirect utility

under model mis-specification by solving numerically for ĝ in

Ĵt =
Y 1−γ

1 − γ
ĝ(T − t, V1t, V2t).

To do this, we use the same discretization scheme as in the optimal case, but we plug in

the seemingly optimal φ̂ from Equation (2) at every node.

By assuming the Heston model, this stock position is not state-dependent as in the

optimum, but only time-dependent. Although Figure 4 shows that there are only small

differences between the optimal and the seemingly optimal exposure (at least for the

values of the state variables considered in this graph), the investor suffers an economically

significant utility loss of 20 to 30 basis points per year (see lower-left graph of Figure 5).

This loss decreases in V1 (and increases in V2). To get the intuition, note that in this

graph the total local variance is held constant at 0.04, so the larger V1 relative to V2, the

smaller the utility loss. This result is confirmed by the right graph of Figure 4. The larger
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V1 relative to V2, the smaller the difference between the optimal Bates and the seemingly

optimal Heston portfolio.

Again we consider the case of an assumed Black and Scholes (1973) model for com-

parison. As shown in the upper-right graph of Figure 5, with less than 6 basis points

the utility loss is smaller than with the Heston (1993) mis-specification. Thus, for many

states, an underestimation of the optimal stock position (as with assumed Heston model)

seems to be worse than the opposite mistake as with the assumed Black and Scholes model.

This is in sharp contrast to results from the literature for the case of mis-specification of

jumps, where an overestimation of the optimal stock position may lead to a default of the

investor and thus to a significant loss in utility. The utility loss is the larger, the larger V1

relative to V2. This is confirmed by comparing the BS-position in stock (constantly 0.833)

with the optimal position in the Bates model: The larger the relative importance of V1,

the larger the deviation of the BS stock position compared to the optimal stock position

in the Bates model.

A comparison with the results of Branger, Schlag and Schneider (2007) shows that,

in line with intuition, the utility loss in case of volatility component mis-specification is in

general smaller than in case of model mis-specification concerning jumps. As for option

pricing, the Heston model is much closer to the SLRM model and no significant utility

losses are obtained. In contrast, a mis-specification concerning multiple variance factors

as in the Bates model induces larger losses in utility.

5 Conclusion

In this paper we have analyzed different aspects of volatility component models and com-

pared them to the results obtained in usual one-factor models. Hereby, we focused on the

economic (and technical) differences concerning option pricing and asset allocation and

the impact of model mis-specification.

For option prices and the resulting smile dynamics, the inclusion of volatility com-

ponents in the form of a stochastic long-run mean does not provide an important added

value compared to a single-factor model. Except for the fact that the volatility smile may

change its level although local volatility remains constant, the SLRM model primarily

impacts options with very long maturity. In contrast, the inclusion of multiple volatility

factors as in the Bates (2000) model significantly enhances the empirical fit of the smile
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dynamics. In particular, we observe a stochastic correlation, a stochastic speed of mean-

reversion and a stochastic volatility of variance and the model can thus explain twisting,

steepening and parallel shifts of the smile within the same parametrization.

For asset allocation, again the SLRM does not provide a significant modification

compared to the results obtained with the Heston model. In contrast, the Bates model

represents a significant extension. In addition to the stochastic correlation, the model

specification implies a stochastic expected excess return of the stock per unit of variance

which makes the optimal stock position not only time-, but also state-dependent. From a

technical point of view, it is interesting to note that although the model falls into the class

of affine models as defined in Duffie, Pan and Singleton (2000) it does not have a closed-

form solution for the indirect utility and/or the optimal stock position. Concerning model

mis-specification, i.e. assuming an investor ignoring volatility components, the utility

losses are negligible when the true model is the SLRM model, but economically important

when the true data generating process follows a Bates model. Nevertheless, compared to

the results of the literature concerning the utility losses in case of jump mis-specification,

the utility losses are rather moderate.

Technically, this paper shows how the finite difference method can generally be applied

to compute utility losses from model mis-specification in other models, no matter if the

market is assumed to be complete or incomplete.
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A Fourier Transforms of State Price Density

Heston

A closed-form solution for the Fourier transform of the state price density is derived in

Heston (1993). In our notation it is given given by

ϕ(u, T − t, St, Vt) = exp{A(T − t, u) +B(T − t, u)Vt + iu lnSt}

where the functions A(T − t, u) and B(T − t, u) solve the following system of differential

equations

A′(·, u) = iur + κθB(·, u)

B′(·, u) = −0.5iu− 0.5u2 + (ρσiu− κ− σξ)B(·, u) + 0.5σ2B2(·, u)

with boundary conditions A(0, u) = 0 and B(0, u) = 0. As described in Heston (1993),

the system of differential equations can be solved in closed-form.

SLRM

The Fourier transform of the state price density in the SLRM model can be derived as

ϕ(u, T − t, St, Vt, V̄t) = exp{A(T − t, u) +B(T − t, u)Vt + C(T − t, u)V̄t + iu lnSt}

where the functions A(T − t, u), B(T − t, u) and C(T − t, u) solve the following system of

differential equations

A′(·, u) = iur + κV̄ θV̄ C(·, u)

B′(·, u) = −0.5iu− 0.5u2 + (ρV σV iu− κV − σV ξV )B(·, u) + 0.5σ2
V B

2(·, u)

C ′(·, u) = κVB(·, u) − (κV̄ + σV̄ ξV̄ )C(·, u) + 0.5σ2
V̄ C

2(·, u)

with boundary conditions A(0, u) = 0, B(0, u) = 0 and C(0, u) = 0. The system of

differential equation is solved numerically.
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Bates

The Fourier transform of the state price density in the Bates model results as a special

case from the closed-form solution in Bates (2000). It is given as

ϕ(u, T − t, St, Vt, V̄t) = exp{A(T − t, u) +B(T − t, u)V1t + C(T − t, u)V2t + iu lnSt}

where the function A(T − t, u), B(T − t, u) and C(T − t, u) solve the following system of

differential equations

A′(·, u) = iur + κ1θ1B(·, u) + κ2θ2C(·, u)

B′(·, u) = −0.5iu− 0.5u2 + (ρ1σ1iu− κ1 − σ1ξ1)B(·, u) + 0.5σ2
1B

2(·, u)

C ′(·, u) = −0.5iu− 0.5u2 + (ρ2σ2iu− κ2 − σ2ξ2)C(·, u) + 0.5σ2
2C

2(·, u)

with boundary conditions A(0, u) = 0, B(0, u) = 0 and C(0, u) = 0. The system of

differential equations can be solved in closed form. Details are given in Bates (2000).

B Indirect Utility J in the Complete Market

In this section, we assume the existence of a complete market, i.e. we assume that the

stock, the money market account and a sufficient number of derivatives are traded. The

solution follows the approach introduced in Liu and Pan (2003). In this complete market,

all risk factors can be traded separately. In a first step, the optimal exposures to the differ-

ent risk factors are derived, before in a second step one transfers these optimal exposures

into fractions of wealth to be invested in the traded assets using the sensitivities of these

assets.

As in the incomplete market, the investor is assumed to have CRRA utility with a

coefficient of risk aversion γ and has the objective

max
Θ

E[U(YT )] = E

[
Y 1−γ

T

1 − γ

]

whereΘ contains the exposures to all the risk factors of the assumed dynamics and depends

therefore on the model setup.



88 Eva Schneider

Heston

In the one-factor Heston model, one derivative needs to be traded to complete the market.

The optimal exposure then can be calculated as a special case of the Liu and Pan (2003)

results. With θ and θV as fractions of wealth invested in the risk factors
√
VtdWt and

√
VtdW

V
t , we obtain the following wealth dynamics:

dYt = rYtdt

+ Ytθt

(
ηVtdt+

√
VtdWt

)

+ Ytθ
V
t

(
ξVtdt+

√
VtdW

V
t

)
.

With the guess

J(t, Yt, Vt) =
Y 1−γ

t

1 − γ
exp{γh(T − t) + γH(T − t)Vt}

for the indirect utility, the optimal portfolio can be derived from the HJB equation:

θt =
η

γ
+ ρσH(τ)

θV
t =

ξ

γ
+
√

1 − ρ2σH(τ)

with τ = T − t and where the indirect utility J and the function H(τ) can be solved in

closed form. The result is quite standard. There are two risk factors to invest in and the

stochastic investment opportunity set induces a hedging demand which depends on the

investment horizon of investor through H(τ).

Plugging the optimal exposures back in the HJB equation leads to two ODEs for h

and H with boundary conditions H(0) = 0 and h(0) = 0

(H)′ =
1 − γ

2γ2
(η2 + ξ2) + (

1 − γ

γ
σ(ηρ + ξ

√
1 − ρ2σ) − κ)H +

1

2
σ2H2

h′ =
1 − γ

γ
r + κθH

which can be solved in closed-form. Details are given in Liu and Pan (2003).

SLRM

In the SLRM model, two derivatives need to be traded to complete the market, one risky

asset for each risk factor. The wealth dynamics then follows as
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dYt = rYtdt

+ Ytθt

(
ηV Vtdt+

√
VtdWt

)

+ Ytθ
V
t

(
ξV Vtdt +

√
VtdW

V
t

)

+ Ytθ
V̄
t

(
ξV̄ V̄tdt +

√
V̄tdW

V̄
t

)

with θ, θV and θV̄ as fractions of wealth invested in
√
VtdWt,

√
VtdW

V
t and

√
V̄tdW

V̄
t ,

respectively. As before, the guess

J(t, Yt, Vt, V̄t) =
Y 1−γ

t

1 − γ
exp{γh(T − t) + γH(T − t)Vt + γH̄(T − t)V̄t}

for the indirect utility allows the derivation of the optimal risk exposures

θt =
ηV

γ
+ ρV σVH(τ)

θV
t =

ξV
γ

+
√

1 − ρ2
V σVH(τ)

θV̄
t =

ξV̄
γ

+ σV̄ H̄(τ)

with τ = T − t and where again, J and H can be computed in closed-form by solving

(H)′ =
1 − γ

2γ2
(η2

V + ξ2V ) + (
1 − γ

γ
(ηV ρV σV + ξV

√
1 − ρ2

V σV ) − κV )H +
1

2
σ2

VH
2

(H̄)′ =
1 − γ

2γ2
ξ2V̄ + κVH + (

1 − γ

γ
ξV̄ σV̄ − κV̄ )H̄ +

1

2
σ2

V̄ H̄
2

h′ =
1 − γ

γ
r + κV̄ θV̄ H̄

with boundary conditions H(0) = 0, H̄(0) = 0 and h(0) = 0. The system of differential

equations is solved numerically. There are three risk factors to invest in and the stochastic

investment opportunity set induces a hedging demand in all of them. Since the correla-

tion between the Wiener processes in Vt and V̄t is assumed to be zero, ’cross-hedging’ is

not possible and each optimal exposure has only one hedging component. The optimal

positions are time- but not state-dependent.

Bates

To complete the market, three traded derivatives are needed to invest individually in each

of the four risk factors. The wealth dynamics are then



90 Eva Schneider

dYt = rYtdt

+
2∑

i=1

Ytθ
i
t

(
ηiVitdt +

√
VitdW

i
t

)

+
2∑

i=1

Ytθ
iV
t

(
ξiVitdt+

√
VitdW

V i
t

)

with θi and θV i as fractions invested in
√
VitdW

i
t and

√
VitdW

V i
t , i = 1, 2, respectively.

The optimal portfolio follows with

J(t, Yt, V1t, V2t) =
Y 1−γ

t

1 − γ
exp

{
γh(T − t) + γH1(T − t)V1t + γH2(T − t)V2t

}

as guess for the indirect utility:

θi
t =

ηi

γ
+ ρiσiH

i(τ)

θiV
t =

ξi
γ

+
√

1 − ρ2
iσiVH

i(τ)

where i = 1, 2 and τ = T − t. Here h, H1 and H2 solve the following ODEs

H i′ =
1 − γ

2γ2
(η2

i + ξ2i ) +

[
1 − γ

γ
σi(ηiρi + ξi

√
1 − ρ2

i ) − κi

]
H i +

1

2
σ2

i (H
i)2, i = 1, 2

h′ =
1 − γ

γ
r + κ1θ1H

1 + κ2θ2H
2

with boundary conditions h(0) = 0, H1(0) = 0 and H2(0) = 0. The system of differential

equations can be solved in closed-form (compare to the results in Liu and Pan (2003)).

Contrary to the case of an incomplete market, the optimal portfolio position can thus be

derived in closed-form and is only time- but not state-dependent.

C Indirect Utility J in the Incomplete Market

Heston

The indirect utility J is given by

J(t, Yt, Vt) =
Y 1−γ

t

1 − γ
exp{γh(T − t) + γH(T − t)Vt}

where H solves

H ′ =
1 − γ

2γ2
η2 +

(
1 − γ

γ
σρη − κ

)
H +

1

2
((1 − γ)ρ2 + γ)σ2H2

h′ =
1 − γ

γ
r + κθH

with the boundary conditions H(0) = 0 and h(0) = 0. The system of differential equations

is solved numerically.
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SLRM

The indirect utility J is given by

J(t, Yt, Vt, V̄t) =
Y 1−γ

t

1 − γ
exp{γh(T − t) + γH(T − t)Vt + γH̄(T − t)V̄t}

where H solves

H ′ =
1 − γ

2γ2
η2

V +

(
1 − γ

γ
σV ρV ηV − κV

)
H +

1

2
((1 − γ)ρ2

V + γ)σ2
VH

2

H̄ ′ = κVH − κV̄ H̄ +
1

2
γσ2

V̄ H̄
2

h′ =
1 − γ

γ
r + κV̄ θ̄H̄

with the boundary conditions H(0) = 0, H̄(0) = 0 and h(0) = 0. The system of differential

equations is solved numerically.

Bates

The indirect utility J is given by

J(t, Yt, V1t, V2t) =
Y 1−γ

t

1 − γ
g(T − t, V1t, V2t)

where g solves

−g′ = −(1 − γ)

[
r + φt(η1V1t + η2V2t) +

1

2
γ(1 − γ)φ2

t (V1t + V2t)

]
g

− [κ1(θ1 − V1t) + (1 − γ)σ1ρ1φtV1t] g1 −
1

2
σ2

1V1tg11

− [κ2(θ2 − V2t) + (1 − γ)σ2ρ2φtV2t] g2 −
1

2
σ2

2V2tg22

and

φt =
1

γ

[
η1

V1t

V1t + V2t
+ η2

V2t

V1t + V2t

]
+
ρ1σ1

γ

V1t

V1t + V2t

g1
g

+
ρ2σ2

γ

V2t

V1t + V2t

g2
g

with the boundary condition g(0, V1T , V2T ) = 1. The differential equation cannot be solved

in closed form. It is therefore solved by the method of finite differences.
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V1 κ1 θ1 σ1 ρ1 V2 κ2 θ2 σ2 ρ2

Heston 0.040 3.650 0.046 0.263 -0.675

SLRM 0.040 4.500 0.300 -0.600 0.040 0.500 0.040 0.100

Bates 0.025 3.068 0.038 0.105 -0.900 0.015 1.839 0.008 0.403 -0.744

Table 1. Calibrated Q-Parameters

The table summarizes the results of the calibration. In case of the stochastic long-run mean model

(SLRM) V1 and the corresponding parameters refer to the local variance, V2 and the corresponding

parameters to the local long-run mean. The market prices of risk were chosen such that the long-

run expected excess return on the stock equals 10%, i.e. η = 2.17 in the model of Heston (1993),

η1 = η2 = 2.17 in the model of Bates (2000), ηV = 2.5 and ξV = −2.0 in the SLRM model.
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Figure 1. Smile Dynamics in the SLRM-Model

The figure shows the dynamics of the IV smile induced by a shift in the local long-run mean of

variance V̄t in the SLRM-Model. In the left graph, the maturity of the options is 6 months, in

the right graph 12 months. The solid lines represent the case where the local long-run mean of

variance V̄ is equal to the local variance, the dashed lines the case where it is 50% lower than the

local variance and the dotted lines where it is 50% higher. The parametrization is from Table 1.

The interest rate is 5%, the current stock price is 100.
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Figure 2. Smile Dynamics in the Model of Bates (2000)

The figure shows the possible dynamics of the IV smile induced by different variance compositions

in the Bates (2000) model. In the upper graphs, the maturity of the options is 6 months, in the lower

graphs 12 months. The solid lines represent the case where each of the local variance components

accounts for 50%, the dashed lines the case where the variance component V1 accounts for 25% of

total variance and the dotted lines where V1 accounts for 75% of total variance. In the benchmark

case, Vt = V1t +V2t = 0.04, ρ1 = ρ2 = 0.0, κ1 = κ2 = 1.5, θ1 = θ2 = 0.02, σ1 = σ2 = 0.75, r = 0.05

and S0 = 100 and one of the parameters ρ, σ and κ is varied for the two variances.
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Figure 3. Optimal Stock Position in the Model of Bates (2000)

The figure shows the optimal stock position φ in the Bates (2000) model as a function of local

variance V1t. The solid lines represent the benchmark case where the parameters of the dynamics

of the two variance processes are perfectly symmetric. Here, ρ1 = ρ2 = 0.0, κ1 = κ2 = 1.5,

θ1 = θ2 = 0.02, σ1 = σ2 = 0.75, η1 = η2 = 2.5, r = 0.05 and S0 = 100. In the left graph, the

dashed line represents the case where the parameter η1 = 5.0 (η2 = 0.0) and the dotted line the

case where η1 = 0.0 (η2 = 5.0). In the right graph, the dashed line represents the case where the

parameter ρ1 = −0.5 (ρ2 = 0.5) and the dotted line the case where ρ1 = 0.5 (ρ2 = −0.5). The

investment horizon is 5 years, the investor has a risk aversion of γ = 3.
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Figure 4. Comparison of Stock Positions

The figure shows the optimal stock position φ in the different models as a function of the investment

horizon (left graph) and as a function of local variance V1 (right graph). The solid lines are the

optimal positions in the model of Heston (1993), the dashed lines in the model of Bates (2000) and

the dotted lines in the SLRM model. The parameters are taken from Table 1. In the left graph,

local variance levels are set to their long-run mean. In the right graph, the investment horizon is

5 years, the investor has a risk aversion of γ = 3.
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Heston (1993)
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Figure 5. Utility Loss from Model Mis-Specification

The figure shows the utility loss (measured by the quantity RY defined in Equation (4)) as a

function of the state variables. In the upper graphs, the true model is the SLRM model, in the

lower graphs, the true model is the Bates model. In the left graph, the investor assumes the Heston

model to be true, in the right, he assumes the model of Black and Scholes (1973). In the upper

graphs, V̄ is set to its long-run mean 0.04. In the lower graphs, V1 is varied, but the sum of V1 +V2,

is restricted to equal 0.04. The parametrization is taken from Table 1. The interest rate is 5%, the

current stock price is 100. The investor’s planning horizon is 5 years, his risk aversion is γ = 3.
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Hedging in the Presence of Microstructural Noise

David Horn, Eva Schneider, Grigory Vilkov

Summary. In order to use an option pricing model for dynamic hedging an investor will have to

calibrate it to a cross-section of option prices. Microstructural noise in option prices results in a

set of indistinguishable parametrizations which may give rise to different hedging errors. In our

simulation study for the Heston (1993) model, we identify the parameters most important for hedg-

ing and show which set of strikes and time to maturity is relevant for the identification of certain

parameters. In our empirical study we show that different but indistinguishable parametrizations

w.r.t. prices may induce large differences in hedging performance.

1 Introduction

An investor setting up a dynamic hedging strategy will first have to identify a stochastic

process for the underlying. Having chosen the appropriate model, the investor will have to

calibrate this model to a cross-section of empirical option prices. With the calibrated model

the investor can then proceed to calculate the weights of the replicating portfolio. The

identification and calibration of the model are of great importance, since a wrong model

will result in wrong hedging weights and larger and more volatile hedging errors. When

using empirical data to identify and calibrate the model at least two problems arise. First,

there is only limited data available. Usually only for very liquid index options we have a

broad range of option prices available. For other types of underlyings, the limited number

of available option prices at a particular point in time can make the identification and

calibration very difficult. Second, the prices we observe on option markets are noisy. When

we speak of noise in option prices we mean that we believe in one true (frictionless) option

price but this price cannot be observed due to the bid- and ask-spread. Several reasons

for noisy option prices have been suggested: bid-ask spread in the underlying, different



100 David Horn, Eva Schneider, Grigory Vilkov

interest rates for borrowing and lending, non-synchronous observations or rounding to the

nearest tick size (see Hentschel (2003)).

The existence of a bid-ask spread complicates the identification and calibration of a

model in the following ways. Identification becomes more difficult since two structurally

different models that yield option prices, which differ by less than the bid-ask spread,

cannot be distinguished anymore (see Dennis and Mayhew (2004)). The same problem

applies to the calibration. Even if we knew the true model, two different parametrizations

could not be distinguished from another if they produce option prices differing by less

than the bid-ask spread. Not only can two parametrizations result in different option

prices, but they can also result in different hedging weights in a hedge portfolio. They

will thus also yield different hedge errors. In the present paper we want to focus on this

second issue. Hence, this paper tries to answer the following research questions: What

are the most sensitive parameters for calibration and hedging? Which parameters are the

most important to identify a model correctly? Which subset of prices (with respect to

strike price and time to maturity) is especially relevant for the identification of certain

parameters? Can we rely on cross-sectional information or do we have to use time series

information? And finally: Can we verify the theoretical results for the previous questions

empirically?

In order to answer these questions we will perform both a simulation analysis in the

stochastic volatility framework of Heston (1993) and an empirical study. In the simula-

tion we will generate European option prices in the Heston (1993) model under a fixed

parametrization which represents the true model. Then we will identify the parameter

range leading to an indistinguishable cross-sectional fit for an investor who calibrates the

Heston model to the generated dataset. This means that we ignore model risk and solely

focus on parameter risk. In the empirical part of this paper we will calibrate the model

of Heston (1993) to option prices of several single stocks and the S&P 100 and identify

the indistinguishable parametrizations for the observed bid-ask spread. We find that a

parametrization with a good cross-sectional fit does not necessarily have to have good

hedging properties and that there are economically important differences in the hedging

performance of these indistinguishable parametrizations.

We contribute to the existing literature in the following ways: First, we identify the

parameters which prices and greeks are most sensitive to. Second, we show which informa-

tion (number of strikes, number of maturities) is important for the correct identification of
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certain parameters. Third, we show which parameters are the most important to identify

correctly for the purpose of hedging. Fourth, we measure parameter risk using empirical

option prices.

2 Literature Review

Besides the papers looking at the sensitivities of option prices to model parameters, there

are only few which consider the impact of parameter risk. These papers mainly focus on

volatility mis-estimation. Hentschel (2004) provides a thorough analysis of the error in

implied volatility estimation induced by measurement errors in the input variables and by

truncation, i.e. when low option prices are missing in the calibration. He works in the

model of Black and Scholes (1973) and shows that the resulting error is the larger the more

the options are OTM or ITM and that due to the truncation error, the confidence interval

may not even contain the correct volatility. Figlewski (2004) estimates the volatility by

using a simple average of squared returns or via an exponentially-weighted moving average.

He then performs a simulation analysis of estimation errors for the computation of the

value at risk. For the data generating process, he assumes the dynamics given in Black

and Scholes (1973), Heston (1993), Bakshi, Cao and Chen (1997) and Eraker, Johannes

and Polson (2003). The standard estimation technique of the value at risk is shown to

lead to significant errors in the estimation of tail probabilities.

In contrast to these papers, we estimate parameters in the true model and do not take

volatility as a simple estimate from time series but calibrate the model to option prices.

As our base model, we use the empirically well supported stochastic volatility model of

Heston (1993).

Another strand of literature related to our work is concerned with model mis-

specification. Here, the mis-specification does not relate to the model parameters but

to the whole model class. Dennis and Mayhew (2004) study the impact of noise in op-

tion prices on parameter or model estimation and try to answer the question if, given the

noise in option prices, one can distinguish between different models. Schoutens, Simons

and Tistaert (2003) calibrate several models to a cross section of European options and

compare the resulting prices of exotic options. An and Suo (2003) test several models by

looking at the hedging errors of strategies for exotic derivatives.
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The closest paper to ours is the paper by He, Kennedy, Coleman, Forsyth, Li and

Vetzal (2006). The authors assume a jump-diffusion model with a local volatility function

as the true data-generating process. When calibrating the model, jump parameters are

harder to estimate than the local volatility function since a large surface of parameters

yields sufficiently small estimation errors. However, the hedging performance is not largely

affected by the estimation problems. Both dynamic variance-minimizing hedges and semi-

static hedges perform well for the set of instrument options. In our paper, we focus on

mis-estimation of stochastic volatility parameters (not jump parameters) and in addition

to a simulation study, we perform an empirical analysis.

3 Motivation

3.1 Parameter Risk in the Heston Model

As stated in the introduction, we want to focus on parameter risk. We therefore assume

that the structural type of the model is known. Also, to keep the analysis as simple as

possible, we will examine a stochastic volatility model and exclude additional sources of

risk, such as multiple volatility components or jumps in the stock price or in volatility.

We choose stochastic volatility since this seems to be the most important improvement

over the model of Black and Scholes (1973). In particular we will use the model of Heston

(1993). This model assumes the following risk-neutral dynamics for the underlying stock

S and its local variance V :

dSt = rStdt+
√
VtStdW

S
t

dVt = κ(θ − Vt)dt + σv

√
VtdW

V
t

where r is the riskless rate of return, κ is the speed of mean reversion, θ is the long run

mean of local variance V , σv is the ’volatility of variance’ parameter and the correlation

between the two Wiener processes is described by the parameter ρ dt = E[dW SdW V ].

The Heston model is essentially an incomplete market model. A closed form solution

for option prices can be derived via Fourier inversion (see Heston (1993)). For hedging

purposes all claims can be replicated with a stock, the money market account and one

instrument option.

At date t, the interest rate r and the stock price S can be observed. The speed of

mean-reversion κ, the long-run mean of variance θ, and the volatility of variance σv all
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have to be estimated from a cross section of option prices. The local level of variance V

plays a special role since it is theoretically assumed to be a state variable but for practical

purposes is usually estimated from empirical option prices like a model parameter.

The starting point for our analysis is the fact that several parameter combinations

can provide a similar fit to a given cross section of option prices. Microstructural noise

in option prices can then make two parametrizations virtually indistinguishable. If the

focus of the investor is the pricing of plain vanilla options, each of these indistinguishable

parametrizations might be acceptable. However, when the pricing of exotic options or

hedging is considered, different parametrizations might lead to significantly different out-

comes. That is, even if the investor knows the true model he will not only incur a hedging

error due to discrete trading, but also an additional hedging error due to the fact that he

picks a parametrization which is not the true one. This of course raises the question of

what the true parametrization is in the presence of a bid-ask spread in option prices. For

the rest of the paper we will assume that the true parametrization is the one which would

persist if there were no bid-ask-spread, i.e. the parametrization in a world without noise

in option prices.

To get a feel for the importance of parameter risk for hedging consider a dynamic

delta-vega hedge. For the case of continuous trading and noiseless option prices it is

possible to devise a strategy with zero hedging error. The investor trying to hedge a short

position in a call then has to solve the following problem: Find the quantities ws, wm, wi

of the stock S, the money market account M , and the instrument option CI subject to

the constraints

CT = ws · S + wm · 1 + wiC
I

CT
S = ws · 1 + wm · 0 + wiC

I
S

CT
V = ws · 0 + wm · 0 + wiC

I
V ,

where subscripts denote partial derivatives. The first condition makes the replicating

portfolio self-financing, the second one delta-neutral and the third one vega-neutral. Note

that the weights of this hedging strategy will depend on the derivatives of the instrument

and the target option with respect to S and V , which are model and parameter dependent.

The correct estimation of the sensitivities will thus be crucial for the performance of the

hedging strategy.
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3.2 Parameter Sensitivity of Option Prices and Greeks

The purpose of this section is to give a first intuition about the relative importance of

different parameters for pricing and hedging. In particular we will ask two questions:

First, which parameters have the largest impact on option prices? Since the calibration

of option pricing models is usually done by fitting observed prices, a parameter with little

influence on the option price can easily be misestimated. Second, which parameters have

the largest impact on the greeks of the option price? The performance of a dynamic hedge

depends heavily on the use of the correct sensitivities.

To answer these two questions we plot the price, delta and vega in the Heston model as

a function of moneyness for different parameter levels. Differences in the reaction of prices

and greeks to the change of a parameter can then be used to draw some first conclusions

regarding the effect of misestimation on hedging performance. Since we expect the effects

to be strongest for long-term options we analyze an option with a maturity of 0.9 years.

We start with the analysis of the effect of the parameter changes on prices and on

the volatility smile. The sensitivities of the option price to its parameters are depicted

in Figure 1. We see that a variation of κ and σv has little effect, while the impact of ρ

is a little stronger. Note that there is an inverse effect for ITM and OTM options. The

parameters with the strongest influence on the option price are θ and V0. Except for the

case of ρ the sensitivities are highest for ATM options. The plots of the sensitivities of the

smile give essentially the same findings. However, it becomes clearer that κ and σv seem

to have influence only on ATM options. Again the plots show that θ and V0 have a strong

effect for all moneyness levels and that the influence of ρ is weakest for ATM options and

becomes stronger the deeper the options are ITM or OTM.

This is in line with intuition, since local variance and long-term mean of variance are

the most important drivers of option prices, while the other parameters exhibit only a

second-order impact. Due to its asymmetric payoff structure, an OTM option increases

in value for more positive stock-variance correlation where simultaneous increases or de-

creases of the stock price and its local variance are more likely to occur. On the other

hand, its price decreases the more negative the correlation. Overall we can say that mis-

estimation is most likely for the parameters κ and σv. Mis-estimation is less likely if ATM

options are used. An exception here is the estimation of ρ for which we would advise to
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use OTM or ITM options for calibration. Since ITM options often lack liquidity, OTM

options seem to be most appropriate for the calibration.

Figure 3 shows the sensitivity of the Heston delta with respect to the various param-

eters. Again we find only little influence of κ and σv. Except for ρ the sensitivities are

highest for OTM and ITM options, and the effect is reversed when moving from ITM to

OTM options. For ρ, the influence is strongest for ATM options and becomes weaker the

deeper the option is ITM or OTM.

The sensitivity of vega is depicted in Figure 4. Here we see that ρ and σv have little,

θ and V0 moderate influence on the Heston vega. In contrast to delta we see that κ has a

very strong effect on vega. In total we find that delta reacts most strongly to changes in

θ, ρ and V0, while vega reacts most strongly to changes in κ, θ and V0.

To sum up the results of this preliminary analysis, we find that when parameters are

estimated through a calibration to observed prices, a mis-estimation of κ is likely. This

can result in strong differences in vega. In contrast, although a mis-estimation of σv is

likely, this will not affect delta or vega severely. For ρ, a mis-estimation is likely when

calibrating the model only to ATM options. This simple analysis already shows that if

several parametrizations provide a satisfactory fit in the presence of microstructural noise,

these different parametrizations can lead to very different deltas and vegas, which will in

turn affect the composition of our hedging portfolio. The question arises to what extent

this carries over to hedging performance.

In the following sections we will analyze the effect of microstructural noise on the

hedging performance in more detail.

4 Design of the Study

In this section the general design of our simulation analysis is explained. An investor

setting up a dynamic delta-vega hedge for a short position in a target call will first estimate

the parameters of his model from a cross section of option prices. The objective of his

calibration routine will be to find a parametrization Ψ which fits observed option prices

best. In the Heston model the investor will have to estimate the parameters vector Ψ =

(κ, θ, σv, ρ, Vt). Several approaches to the calibration of a model are possible. For example,

one could employ the minimization of the relative or absolute squared pricing error or the
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minimization of the squared implied volatility difference. In this paper we will assume

that the investor minimizes the sum of squared absolute pricing errors as in Bakshi, Cao

and Chen (1997). This means his minimization problem is of the form

min
Ψ

N∑

i=1

(
CMarket

i − CModel
i (Ψ)

)2
,

where i = 1, . . . N is the index for the options used in the calibration. Furthermore, we will

assume that option prices are noisy. One implication of this assumption is that a perfect

identification of the parametrization is no longer possible. In fact all parametrizations

having a pricing error smaller than the bid-ask spread may be true. To find parametriza-

tions which cannot be distinguished in the presence of noisy option prices we implement

the following procedure.

For our simulation study, we first assume one benchmark parametrization (Θ) to be

the true parametrization, i.e. the parametrization which would persist in a world without

noisy option prices. Based on this parametrization, we then compute a set of observable

’market’ option prices.1 Then, we compute the surface of pricing errors for all conceivable

parametrizations. We restrict our analysis to the misestimation of two parameters at a

time while all other parameters are correctly identified. This procedure has the advantage

that it is a conservative approach in that all but two parameters are correctly estimated.

We denote by Θ̃(x,y) the parametrization where all but two parameters (x, y) are equal to

the parameters in Θ. So for each possible parameter combination (x, y) we compute the

sum of squared pricing errors between the true options prices Ci(Θ) and prices Ci(Θ̃(x,y))

(i = 1, ...N) calculated in the Heston model using the parametrization Θ̃(x,y). By plotting

the results we obtain a three-dimensional surface, where one parameter is varied along

the x-axis, the other one along the y-axis, and the objective function is plotted in z-

direction. An often used measure for the total calibration error is the root mean squared

error (RMSE). We denote the RMSE by Ξ(x,y):

1 The benchmark parametrization is taken from Bakshi, Cao and Chen (1997), Table III, ’All Options’,

SV-Model. The interest rate is set to 5%, the stock price is 100. The initial variance equals its long-run

mean. For the benchmark case ’all options’, we consider a cross section of N = 28 option prices with

maturities of 1 month, 3 months, 6 months and 12 months and moneyness levels in steps of 0.05 from

0.85 to 1.15. For ’ATM options’ we use N = 28 options with some maturity, but moneyness levels in

steps of 0.01 from 0.97 to 1.03, for ’short-term options’ N = 26 options with maturities of 1 month and

2 months and moneyness levels in steps of 0.02 from 0.88 to 1.12.
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Ξ(x,y) =

√√√√ 1

N

N∑

i=1

(
Ci(Θ) − Ci(Θ̃(x,y))

)2
.

An investor calibrating a model will have not be able to distinguish between certain

parametrization if a bid-ask spread (BA) is present. In our study the set of indistin-

guishable parametrizations M(x,y) is defined as follows.

M(x,y) =

{
Θ̃(x,y)

∣∣∣∣∣ Ξ(x,y) ≤
BA

2

}
.

We thus assume that all parametrizations which result in an RMSE smaller than the upper

bound BA/2 are not distinguishable from each other given the observed option prices. In

the graphs shown in the appendix all parametrizations in the set M(x,y) lie inside the

marked bounds. The identification of these sets of indistinguishable parametrizations now

allows us to assess the impact on hedging performance caused by the misestimation of

parameters.

After calibrating the model to empirical data, the investor sets up a hedge portfolio.

Our aim is to identify the difference in performance between the optimal hedge (based on

the true parametrization Θ) and the hedges based on all parametrizations within the set

M(x,y) for each parameter combination (x, y). The hedging error based on parametrization

Θ̃(x,y) is defined as the deviation of the hedge portfolio from the value of the target option

after the next time step of length ∆t:

ǫ(Θ̃(x,y)) = CT
t+∆t − ws(Θ̃(x,y))St+∆t −wm(Θ̃(x,y))e

r∆t −wi(Θ̃(x,y))C
I
t+∆t,

where CT
t+∆t and CI

t+∆t are the realized market prices of the target and the instruments

option, respectively, at time t+∆t. For our simulation under the P-measure, we assume

that all risk premia are zero and thus the P-measure equals the Q-measure. This makes

the average hedging error of all strategies equal to zero and allows to focus solely on the

distribution.

The hedging performance under parametrization Θ̃(x,y) is measured by the standard

deviation of hedging errors over all observations j = 1, ...M .

σ(Θ̃(x,y)) =

√√√√ 1

M − 1

M∑

j=1

ǫ2(Θ̃(x,y)).

The larger this value the worse the hedging performance. The hedging errors for the true

parametrization are taken as a benchmark. Due to discrete trading the hedging errors for
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this strategy will not be equal to zero and the standard deviation of the hedging error

follows as σ(Θ). We correct the standard deviation of hedging errors under parameter risk

by this unavoidable standard deviation due to discretization and measure the performance

loss due to parameter risk as:

Υ(x,y) =
σ(Θ̃(x,y)) − σ(Θ)

CT
0

.

We perform a one-day delta-vega hedge. We hedge an OTM target call with a moneyness

(strike/St) of 1.1 and a maturity of 0.2 years. The hedge portfolio consists of the stock,

the money-market account and an instrument option. The instrument option is an ATM

call with a maturity of 0.2 years. We perform 10,000 simulation runs with 10 steps per

day. After performing the simulations we again draw a three-dimensional surface, where

one parameter is varied along the x-axis, the other one along the y-axis and the percent-

age hedging error is plotted in z-direction. We thus have two plots for each parameter

combination: one for the objective function and one for the hedging errors. In order to

highlight the effect of microstructural noise on the hedging performance in each plot we

mark the subarea of objective function values and hedging errors for the set of indistin-

guishable parametrizations M(x,y). The hedging errors within the marked subarea result

from parametrizations indistinguishable from a noisy cross-section of option prices. All

hedging errors in this set are hedging errors which have to be added to the discretization

error and stem from the parameter risk induced by the bid-ask-spread in the option price.

5 Simulation Results

5.1 Pricing and Hedging Performance

In this section we will present and interpret the results of our simulation study. Figures 5 to

8 in the appendix show for each combination of two parameters (x, y) of the Heston model

the area of indistinguishable parametrizations M(x,y) when the model is calibrated to noisy

option prices (marked area in left surface plots). We also show graphs illustrating how

different the resulting hedging performance for each set of parametrizations can be. That

is we show the area of possible performance losses for indistinguishable parametrizations

(marked area in right surface plots). We perform this analysis for a calibration to all

options (’all’), for a calibration only to ATM options (’atm’) and for a calibration only
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to short maturity options (’short’).2 The latter two analyses are done to show how a

’thin’ market aggravates the results found for the case of a deeper market where a wide

spectrum of moneyness levels and maturities is available. The underlying problem here

is that on the one hand parameter identification is easier when the whole range of strikes

and maturities is used and that a mis-estimation of parameters is more likely when only

short maturity or only ATM options are used. On the other hand, the use of highly liquid

short maturity or ATM options may be preferable due to a lower bid-ask spread and the

resulting better identification of the true model with more precise option prices.

The numerical results are based on a bid-ask spread of 10% which lies well within the

empirical spread observation. For options on the S&P100 individual stocks the average

bid-ask spreads between 1996 and 2003 sorted by delta buckets are depicted in Table 1.

They are lowest with about 3% for deep ITM options and largest with up to 42% for deep

OTM options. For ATM options the average bid-ask spread is around 7%.

We start our interpretation of the graphs with the parameter combination (σV ,κ)

in Figure 5. For the case ’all’ (upper row) we find that for a given bid-ask spread the

identification of κ is more difficult than the identification of σV . The marked area in

the graph shows that κ can vary roughly between 0 and 5, while σV can only deviate

by a relatively small amount from its true value. For the ’atm’ (lower row) case we

immediately see that identification of the true parameter combination becomes extremely

difficult. Almost all parameter combinations of σV and κ are possible.

For the parameter combination (σV ,θ) in Figure 6 we see that both parameters

are quite easy to identify in the ’all’ (upper row) case. The area of indistinguishable

parametrizations also increases in the ’atm’ (lower row) case although not as drastically

as in the previous case. An interesting result is that in the ’atm’ case the form and curva-

ture of the surface of the objective function is very different from the surface of the hedging

performance. In particular the smallest values of the objective function are on a straight

line along the true value of θ while the smallest values of the performance loss function are

on a straight line along the true value of σV . Also note that the performance loss function

is strongly increasing in σV from the point of the minimum of Υ(σV ,θ) onwards. This means

that in the calibration procedure a mis-estimation of σV is likely to be compensated by a

correct identification of θ, but this could result in large performance losses.

2 Since for all parameter combinations the results for the cases ’all’ and ’short’ are almost the same, we

henceforth only report the results for the case ’all’.
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The parameter combination (V0,σV ) is probably the one easiest to identify (see Figure

7). The area of indistinguishable parameters is extremely small. Again the identification

becomes worse when only ATM options (lower row) are used. It seems that V0 is more

important for prices and hence slightly easier to identify. In the plots for the combination

(θ,κ) in Figure 8 we see that for small values of κ the identification of θ becomes very

difficult. The higher κ, the easier the identification of θ.

Since similar results hold for the other parameter combinations, the graphs are not

shown. Note, however, that in accordance with the results in Section 3 it is always very

important to use OTM options to identify ρ.

In summary, we find that in general pricing performance is a good proxy for hedging

performance. A notable exception here is the parameter combination (σV ,θ) where the

surface of the objective function is very different from the surface of the hedging perfor-

mance in the ’atm’ case. Furthermore, V0 is the most important parameter for pricing

and hedging as expected. A correct identification should be easy, but a mis-estimation

will have serious consequences for the hedging performance. We find that σV and ρ are

of particular importance: For σV an increase in hedging error is steeper than the increase

in the objective function. This means that a mis-estimation of this parameter has a large

impact on hedging errors. For ρ we find that a calibration is very difficult if only ATM

options are used. This could result in very high performance losses. Consequently in order

to identify ρ, it is of first order importance to use OTM options. We also find a cross effect

between θ and κ. For very low values of κ the identification of θ is very difficult and the

closer θ is to its true value, the more difficult identification of κ becomes. Finally, most

effects are more pronounced when calibration is done using ATM options only. That is,

the performance loss can become a lot higher when using only ATM options. Although

ATM options may have lower bid-ask spreads and prices are therefore more precise, we

find that the less liquid OTM options contain important information (concerning the tails

of the distribution) necessary to identify ρ.

5.2 Hedging and Microstructural Noise

After having identified the qualitative effects in our simulation study, we next want to show

the quantitative effects. In particular we want to answer the following questions: How

large is the maximum possible size of the performance loss for different sizes of the bid-ask

spread? Although ATM options have a lower bid-ask spread and the price information
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is therefore more precise, does a calibration to these options, only, result in significantly

worse hedging performance? In order to answer these questions we plot the maximum

performance loss maxΥ(x,y) as a function of the mean bid-ask spread over options used for

calibration for three different cases: all options, atm options and short-maturity options.

These graphs give a feel for the quantitative impact of parameter risk on hedging in a

worst case scenario. This means we show how large the performance loss can possibly get

when the investor cannot distinguish between different parametrizations due to a given

bid-ask spread.

The results are depicted in Figure 9. First of all note that since we restrict the

parameter range to reasonable values3, Υ seems to converge to an upper bound in some

graphs. However without the restriction on the parameter set, it could increase even

further. For example in the case (κ,ρ) the upper bound on Υ in the case ’atm’ is obtained

for κ = 10 and ρ = 0. Without the restricted parameter range, both parameters could

possibly be estimated larger and then Υ would be larger. Also note that the stepwise

behavior of the functions is a result of the parameter grid we chose for the calibration.

When comparing the graphs for the different calibrations, we make the following

observations: First, for an average bid-ask spread of 5% the investor may suffer from

a performance loss of more than 2% (case σV ,ρ) when the investor calibrates to ’all’

options and up to 11% (case σV ,ρ) when the investor calibrates to ’atm’ options. For an

average bid-ask spread of 30%, the maximum performance loss lies in a range between

7% (case θ,ρ) and 16% (case σV ,V0) when the investor calibrates to ’all’ options. In the

case of ’atm’ options the maximum performance loss becomes even higher and is within

a range of 11% (case κ,ρ) and 30% (cases ρ,V0 and σV ,ρ). So we see that the lowest

performance loss is obtained when calibration is done using ’all’ options, while the largest

performance loss results for ’atm’ options and the performance loss for ’short’-maturity

options is in between. The hedging performance for ’short’-maturity options is, however,

only marginally worse than the hedging performance for the calibration to ’all options’.

This means that for dynamic hedging it is of huge importance to use a wide range of

moneyness levels while the range of maturities seems to be less relevant. The use of

OTM options for calibration allows the investor to accept a higher bid-ask spread and

still achieve a similar hedging performance. As can be seen in the graphs, in most cases

3 The parameters were restricted to be in the following intervals: κ ∈ [0, 10], σV ∈ [0, 1], θ ∈ [0, 0.1],

ρ ∈ [−1, 0] and V0 ∈ [0, 0.1].
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a calibration to ATM options with a bid-ask spread of 5% results in a similar hedging

performance as a calibration to ’all’ options or ’short’-maturity options with a bid-ask

spread of more than 20%.

Regarding the relative importance of the particular parameters of the Heston model

we find the following numeric results: performance losses resulting from a calibration

to ’all’ options are largest when σV is one of the parameters subject to mis-estimation.

i.e. identification is difficult and mis-estimation may lead to large performance losses,

because σV has only a small impact on prices, but has a large impact on hedging errors.

A similar result holds for the parameter ρ for which already our introductory analysis has

indicated that OTM options are extremely important for the calibration. As can be seen

in the graphs, when ρ is one of the parameters subject to mis-estimation, the maximum

performance loss increases sharply when only ’atm’ options are used for calibration.

6 Empirical Illustration

6.1 Design of the Study

To support the economic relevance of our simulation results, we assess the impact of

parameter risk on hedging errors empirically.

Theoretically, indistinguishable parametrizations are those for which the calibrated

option prices lie within the bid-ask spread. Finding empirically the worst case scenario,

i.e. the parametrization which yields the worst hedging performance among all indistin-

guishable parametrizations is computationally infeasible. To keep our analysis as simple as

possible we therefore take a conservative approach and perform three different calibrations:

to the bid-, ask- and mid-prices. Additionally, we again calibrate our prices to the Heston

model which seems to provide a sufficient complexity to reflect our empirical data, while

being analytically tractable at the same time. Of course, there may be other risk factors

like jumps in the true stock dynamics, especially for the index options. However, this is

not the focus of our analysis, we do not want to state that the Heston model is the true

model to describe the data. Rather, we intend to show that assuming one model there may

be several equally well parametrizations which still yield different hedging performances.

At each trading day in our data set, we perform the following steps. First, we calibrate

the Heston model to the empirically observed (bid, ask and mid) option prices. These are
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all call options traded on that day on the specific underlying available in the Option

Metrics database. Second, we build the hedge portfolio. We set up the Heston delta-vega

and, for comparison, also the Heston delta hedge for each of the three parametrizations.

This is done for all call options traded on that and the following day. Third, to assess

the differences in hedging performance, we compute the hedging errors after one day. For

both the construction and the evaluation of the hedge portfolio, we use mid-prices and

thus do not focus on either short- or long-positions.

The hedging performance is then judged according to the standard deviation of hedg-

ing errors, differences between the parametrizations are statistically tested with an F -Test

and the non-parametric test of Ansari-Bradley (AB).

6.2 Data Description

We use Option Metrics to select all call options on the S&P100 index and two individual

stocks (Cisco, and AT&T) in the time frame from 2000 to 2004.

First, we take all calls with times to maturity from 14 to 180 days. We eliminate

option price observations for dates with zero open interest, with zero bid prices or with

missing implied volatility or delta. We also take out deep ITM and far OTM options (with

moneyness smaller then 0.8 and larger than 1.2), as the lack of liquidity in those options

may distort the results.

After applying these filters we are left with the number of observations as shown in

Table 2. From these numbers we can see that we have on average 15 option prices observed

on each date for individual securities and 64 options for S&P100.

In the following we treat each underlying separately. On each date we select the

option to be used as the instrument for hedging. To do so we first select the options with

remaining time to maturity closest to the average time to maturity for all options observed

on a given date. From this group of options we then select the one closest to the ATM

level.

6.3 Results

Table 3 summarizes the results. In addition to the results from the Heston model, we

include the hedging errors obtained from a Black-Scholes delta hedge based on implied

volatility.
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In the table the standard deviation of the hedging errors (relative to the initial value

of the option) is depicted as a measure of hedging performance. The point of interest

for our analysis is when the hedging performance is significantly different if the hedge

is based on different parametrizations. To confirm the visible differences, we perform a

statistical test for the difference in variance of hedging errors based on the ask- and the

bid-calibration. Under the assumption of normally distributed hedging errors, a two-sided

F -Test is performed for the null of equal variances. The non-parametric AB test tests

the null that hedging errors of bid- and ask-calibration come from the same distribution

against the alternative that they come from distributions with same median but different

variances. To increase the power of the AB-test, we first normalize our data by subtracting

the medians. The results are sorted by the moneyness of the target option.

The general results are as expected. The standard deviations of the hedging errors

in case of the delta-vega hedge are much smaller than in case of the simple delta hedge.

They are largest for OTM options and smallest for ITM options. Surprisingly, but in

line with practitioners’ experience is the very good performance of the Black-Scholes delta

hedge. Often it outperforms the delta-vega hedge, although this hedge uses an additional

instrument. For both statistical tests, the variances of Black-Scholes delta hedging error

are significantly different from Heston delta hedging errors. This does not necessarily

mean that the Heston hedge is generally worse, but reveals a mistake often arising in

the measurement of hedging performance. There is a mismatch between the objective of

our hedge and the performance measure. Whereas in our objective we want to set delta

and vega of our portfolio equal to zero, the performance measure prefers hedges with

low standard deviations. The Black-Scholes hedge portfolio as built in our example often

seems to be closer to the minimum-variance hedge than the Heston delta-vega hedge.

Looking at the results for Cisco in Panel A, the standard deviation of relative hedging

errors is larger for the Black-Scholes hedge than for the Heston hedge, in particular for

the delta-vega hedge. When the Heston model is used, a delta-vega hedge decreases the

standard deviation of about 0.02 over all options compared to the simple Heston delta

hedge. For different moneyness levels, the hedging performance is best for ITM options

and worst for OTM options. In case of OTM options, a simple Black-Scholes hedge has

a lower standard deviation than the Heston delta-vega hedge. The differences in hedging

performance of the calibrations may be of important size: It is more than 0.1 for all

options and more than 0.2 for OTM options. The differences in results of the bid- and
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ask-calibrations are statistically significant in case of the F-Test (to the 5% level), but not

significant in case of the AB-Test. The differences are largest for OTM options where the

hedging performance for different calibrations differs in more than 20% of option value.

In case of the S&P100 index in Panel B, the standard deviations are much larger than

for the other securities, especially for OTM options. As before, the standard deviation

of relative hedging errors is largest for OTM options and smallest for ITM options. On

average over all options, the performance of the Black-Scholes delta hedge is better than

the performance of the Heston hedge. This is mainly due to the bad performance of the

Heston hedge for OTM options. Between the parametrizations, differences of about 0.01

for ATM up to 0.05 for OTM options are observed. They are in most cases statistically

significant. Especially for OTM options, the differences in the standard deviation between

the parametrizations arise to 5 percentage points.

The results for AT&T are depicted in Panel C of Table 3. For the Heston model, the

delta-vega hedge is much better than the simple delta hedge and the standard deviation

of hedging errors decreases of about 0.03 on average over all options. As before, the

performance of the hedge is best for ITM and worst for OTM options. The differences

between the parametrizations may arise up to 0.01 for ATM and OTM options. They are

in many cases statistically significant.

In summary, the differences in hedging performance of the parametrizations are eco-

nomically and statistically significant. Especially for OTM options, the already large

standard deviation of the hedging errors of about 24% of the option value may nearly

double to about 45%. For ITM and ATM options the standard deviation differs in less

than 0.01 which is small in absolute value but relative to the total standard deviation of

on average 0.05 still significant.

Compared to the controlled simulation analysis, this empirical study is influenced by

many external factors. Most importantly, since our study is based on the Heston model,

it is certainly subject to model risk - the fact that our assumed stochastic volatility model

is not the true data-generating process. The more surprising is the fact that even in this

simple study parameter risk is shown to significantly impact the hedging performance.
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7 Conclusion

The presence of microstructural noise in option prices makes the calibration of an option

pricing model difficult. Even if the investor is sure about the structural type of the model,

he will not be able to identify the true parametrization. As we have shown for the case of

the Heston model, this is in particular true for the parameters of second-order importance

like κ or σv. Another parameter difficult to estimate is ρ for which it is extremely important

to have OTM option prices at hand. For calibration, a wide range of moneyness levels is

therefore much more important than a wide range of maturities.

In a second step, however, finding the correct parametrization is not an objective in

itself. The investor always has to take into account for what purpose he needs a calibration.

In this paper we have focussed on the impact of different parametrizations on the hedging

performance. We have also shown that σv and ρ are not only difficult to identify, but also

that a mis-estimation of these parameters may have severe consequences for the hedging

performance. Further, the link of the size of the average bid-ask spread to the average

hedging performance allowed us to put the need of OTM option prices for calibration in

numbers: To have only ATM options with a bid-ask-spread of 5% available is as good as

having options with a wide range of moneyness levels with a bid-ask-spread of 20%!. The

most important parameters to identify correctly for hedging purposes are again σv and ρ.

Already our simple empirical study could confirm the theoretical results of the simu-

lation analysis. In terms of standard deviation of hedging errors, the differences between

the parametrization arose to 20% relative to the target option value for OTM options.

The results of our paper illustrate the difficulties arising from microstructural noise and

highlight the importance of parameter risk for hedging. Further research in this field seems

necessary.
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∆BS interval Bid-Ask Spread

[-1.0,-0.8) 0.03

[-0.8,-0.6) 0.05

[-0.6,-0.4) 0.07

[-0.4,-0.2) 0.14

[-0.2, 0.0] 0.42

Table 1. Bid-Ask Spreads on S&P100 Individual Stock Put Options

The table shows the average percentage spreads of put options on S&P100 individual stocks from

1996 to 2003 as a function of the ∆BS interval. ∆BS is the Black-Scholes delta based on implied

volatility.

Underlying Number of Number of Number of Avg. Number of

Observations Options Days Observations per Day

Cisco 13,850 434 1,248 11

AT&T 10,128 337 1,244 8

S&P100 80,301 2,141 1,248 64

Table 2. Data Description
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Panel A: Cisco

Moneyness Range

Calibration 0.8 to 0.95 0.95 to 1.05 1.05 to 1.2 All Options

Delta (rel.) Bid 0.0963 0.2728 0.5701 0.1570

Mid 0.0952 0.2684 0.5629 0.1557

Ask 0.0945 0.2679 0.5530 0.1499

Delta-Vega (rel.) Bid 0.0503 0.0844 0.2509 0.1638

Mid 0.0506 0.0827 0.2419 0.1583

Ask 0.0521 0.0905 0.4543 0.2874

BS-Hedge (rel.) 0.0915 0.2369 0.3853 0.2694

F-Test (p-value) Delta 19.82% 36.80% 3.91% 0.17%

Delta-Vega 1.21% 0.05% 0.00% 0.00%

AB-Test (p-value) Delta 3.19% 0.67% 16.48% 0.41%

Delta-Vega 51.16% 34.95% 74.17% 88.38%

Panel B: S&P100

Moneyness Range

Calibration 0.8 to 0.95 0.95 to 1.05 1.05 to 1.2 All Options

Delta (rel.) Bid 0.0295 0.1343 0.6946 0.4523

Mid 0.0294 0.1257 0.5975 0.3903

Ask 0.0294 0.1306 0.6420 0.4188

Delta-Vega (rel.) Bid 0.0188 0.0721 0.5133 0.3317

Mid 0.0195 0.0683 0.4630 0.2995

Ask 0.0190 0.0713 0.5013 0.3240

BS-Hedge (rel.) 0.0370 0.0897 0.3011 0.2010

F-Test (p-value) Delta 66.09% 0.00% 0.00% 0.00%

Delta-Vega 0.00% 0.00% 0.00% 0.00%

AB-Test (p-value) Delta 82.91% 0.00% 0.00% 0.00%

Delta-Vega 18.29% 0.13% 14.88% 6.82%

Panel C: AT&T

Moneyness Range

Calibration 0.8 to 0.95 0.95 to 1.05 1.05 to 1.2 All Options

Delta (rel.) Bid 0.0349 0.0968 0.2411 0.1570

Mid 0.0349 0.0926 0.2330 0.1517

Ask 0.0355 0.0924 0.2234 0.1461

Delta-Vega (rel.) Bid 0.0283 0.0681 0.1997 0.1287

Mid 0.0286 0.0688 0.1913 0.1238

Ask 0.0292 0.0667 0.1882 0.1218

BS-Hedge (rel.) 0.0398 0.0870 0.1959 0.1300

F-Test (p-value) Delta 32.76% 5.55% 0.00% 0.00%

Delta-Vega 7.50% 40.14% 0.08% 0.00%

AB-Test (p-value) Delta 85.64% 11.86% 3.10% 8.25%

Delta-Vega 94.32% 45.90% 89.91% 60.71%

Table 3. Standard Deviations of Hedging Errors
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Figure 1. Sensitivity of Call Price

The graphs show the sensitivities of a call price in the Heston (1993) model as a function of

moneyness. In each graph one parameter is varied within a certain range while all others are held

constant. The base case and the parameter ranges were chosen as follows: κ = 2.0 [0.1; 10.0],

θ = 0.06 [0.01; 0.2], σv = 0.5 [0.01; 0.9], ρ = 0.0 [−1.0; 1.0], V0 = 0.06 [0.01; 0.2]. The current stock

price equals 100 and the interest rate is 0.0%.
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Figure 2. Sensitivity of IV-Smile

The graphs show the sensitivities of the IV-Smile in the Heston (1993) model. In each graph one

parameter is varied within a certain range while all others are held constant. The base case and

the parameter ranges were chosen as follows: κ = 2.0 [0.1; 10.0], θ = 0.06 [0.01; 0.2], σv = 0.5

[0.01; 0.9], ρ = 0.0 [−1.0; 1.0], V0 = 0.06 [0.01; 0.2]. The current stock price equals 100 and the

interest rate is 0.0%.
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Figure 3. Sensitivity of Option Delta

The graphs show the sensitivities of the option delta in the Heston (1993) model. In each graph

one parameter is varied within a certain range while all others are held constant. The base case

and the parameter ranges were chosen as follows: κ = 2.0 [0.1; 10.0], θ = 0.06 [0.01; 0.2], σv = 0.5

[0.01; 0.9], ρ = 0.0 [−1.0; 1.0], V0 = 0.06 [0.01; 0.2]. The current stock price equals 100 and the

interest rate is 0.0%.
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Figure 4. Sensitivity of Option Vega

The graphs show the sensitivities of the option vega in the Heston (1993) model. In each graph

one parameter is varied within a certain range while all others are held constant. The base case

and the parameter ranges were chosen as follows: κ = 2.0 [0.1; 10.0], θ = 0.06 [0.01; 0.2], σv = 0.5

[0.01; 0.9], ρ = 0.0 [−1.0; 1.0], V0 = 0.06 [0.01; 0.2]. The current stock price equals 100 and the

interest rate is 0.0%.
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Figure 5. Objective Function and Standard Deviation of Hedging Errors for σv and κ

The graphs plot the objective function of calibration Ξ(x,y) (left) and the standard deviation of

hedging errors (as percentage of the option price) Υ(x,y) (right) as a function of the parameters σv

and κ. In the upper graphs the calibration is done for ’all’ options, in the lower graphs for ’atm’

options only.
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Figure 6. Objective Function and Standard Deviation of Hedging Errors for σv and θ

The graphs plot the objective function of calibration Ξ(x,y) (left) and the standard deviation of

hedging errors (as percentage of the option price) Υ(x,y) (right) as a function of the parameters σv

and θ. In the upper graphs the calibration is done for ’all’ options, in the lower graphs for ’atm’

options only.
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Figure 7. Objective Function and Standard Deviation of Hedging Errors for V0 and σv

The graphs plot the objective function of calibration Ξ(x,y) (left) and the standard deviation of

hedging errors (as percentage of the option price) Υ(x,y) (right) as a function of the parameters σv

and V0. In the upper graphs the calibration is done for ’all’ options, in the lower graphs for ’atm’

options only.
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Figure 8. Objective Function and Standard Deviation of Hedging Errors for θ and κ

The graphs plot the objective function of calibration Ξ(x,y) (left) and the standard deviation of

hedging errors (as percentage of the option price) Υ(x,y) (right) as a function of the parameters σv

and θ. In the upper graphs the calibration is done for ’all’ options, in the lower graphs for ’atm’

options only.
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Figure 9. Bid-Ask Spread vs. Standard Deviation of Hedging Error

The graphs show the maximum of Υ(x,y), i.e. the standard deviation of the hedging error, as a

function of the mean bid-ask spread over all options used for calibration for different parameter

combinations (x, y). The solid lines represent the case where the model is calibrated to ’all’ options,

the dotted lines where it is calibrated to ’short’ maturity options and the dashed lines where it is

calibrated to ’atm’ options only.
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veröffentlichten oder nicht veröffentlichten Schriften entnommen sind sowie alle Angaben,

die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht.”

Frankfurt am Main, 26. Oktober 2007


