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Missing data occurs when values of variables in a dataset are not stored. Estimating these missing values is a significant step during
the data cleansing phase of a big data management approach. The reason of missing data may be due to nonresponse or omitted
entries. If thesemissing data are not handled properly, thismay create inaccurate results during data analysis. Although a traditional
method such as maximum likelihood method extrapolates missing values, this paper proposes a bioinspired method based on the
behavior of birds, specifically the Kestrel bird.This paper describes the behavior and characteristics of the Kestrel bird, a bioinspired
approach, inmodeling an algorithm to estimatemissing values.The proposed algorithm (KSA)was comparedwithWSAMP, Firefly,
and BAT algorithm. The results were evaluated using the mean of absolute error (MAE). A statistical test (Wilcoxon signed-rank
test and Friedman test) was conducted to test the performance of the algorithms. The results of Wilcoxon test indicate that time
does not have a significant effect on the performance, and the quality of estimation between the paired algorithms was significant;
the results of Friedman test ranked KSA as the best evolutionary algorithm.

1. Introduction

Theconcept of big data is defined using several characteristics
including velocity, volume, and value. The characteristics of
velocity are related to how fast incoming data need to be
processed and how quickly the receiver of information needs
the results from the processing system [1]; the characteristics
of volume are related to the amount of data that has to be
processed; and the characteristics of value arewhat the user of
big data management will gain from the data analysis. Other
characteristics of big data include variety and veracity. The
characteristics of variety focus on the different structures that
data may take, such as text and images, while the charac-
teristics of veracity focus on authenticity of the data source
that is being used for decision-making. These characteristics
of big data have resulted in the use of innovative methods
for decision-making. These innovative methods may require
the combination of different technological platforms for
storage, such as Hadoop, NoSQL, and relational databases,

to successfully manage this big data. It is possible to have
datasets on these platforms with missing values at random,
which are a result of mismatched attributes [2] or omitted
entries [3]. Hence, missing data is independent of the type
of platform on which this data is placed. There are three
categories ofmissing data: datamissing completely at random
(MCAR), data missing at random (MAR), and data missing
not at random (MNAR) [4, 5], which has a different method
to handle the missing data.

The missing data category of missing completely at ran-
dom (MCAR) occurs when the missing values are randomly
distributed throughout a matrix such that a missing value in
a row of a matrix is not dependent on any other row entry in
a dataset [4]. In other words, neither the row entry which is
missing nor any other row entry can predict whether a value
is missing. When this happens, the chances of the data being
detected as missing are not dependent on either the missing
or the complete value in the same row entry of a matrix. The
listwise method to handle MCAR is ideally used to remove
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all data that has one or more missing cases; however, by
this removal, a problem is created in that the missing values
produce both biased parameters and incorrect estimates in
analysis. While the pairwise method is also another method
to handle MCAR, this method sought to address the missing
value problem by computing the covariance estimates from
all samples of cases observed on variables. The pairwise
deletion method assumes that all data is completely missing
at random; therefore, variables with missing data are then
deleted during computation. This deletion could cause error
in computation because each element in the covariance
matrix may have a different group of attributes [6, 7].

Missing at random (MAR) category occurs when the
missing value in a row of amatrix depends on another known
row entry in a dataset. In other words, the missing value
can be predicted from a previously known value in a dataset.
Thus, themissing value is dependent on the previously known
value. When this happens, it becomes easy to trace a pattern
on a missing value in a row of a matrix. The traditional
approach to handle MAR is pairwise deletion method as
described previously.

Missing not at random (MNAR) (also known as non-
ignorable nonresponse) category occurs when the missing
value in a row of amatrix depends on the othermissing values
in the row entry. When this happens, the known data cannot
be used to estimate the missing value. Thus, the chances that
the current value is detected as missing are dependent on the
detection of previously missing values.

These traditional approaches to handle missing data such
as listwise deletion or case deletion, pairwise deletion, and
also sample mean substitution (i.e., 𝑘-NN and 𝑘-means
clustering [4, 8]) are, however, not efficient at providing
the best optimal estimates for missing values. For instance,
the sample mean substitution method requires that each
data point clustered around a centroid be computed so as
to find the best estimates. Thus, the number of clusters,
the number of data points, and the dimensions involved to
computemissing valuesmake it inefficient.With the pairwise
deletion, since the method assumes all data is missing at
random, it then uses the average sample size to estimate
its standard error, which results in either underestimation
or overestimation of the standard error in the analysis of
missing values, and this makes it inefficient. In view of this,
other efficient methods such as maximum likelihood [9]
and multiple imputation method (for MAR), expectation-
maximization (EM) algorithm [4, 10] and machine learning
approach (such as autoencoder neural network) and meta-
heuristic algorithms, such as genetic algorithms, [11] have
been proposed to handle missing values at random.

The maximum likelihood method is a method for esti-
mating missing values by selecting a set of parameters or
values that maximizes a likelihood function. The advantage
of the maximum likelihood method is its consistency and
unbiased estimation of the parameter closest to the observed
value [12]. The expectation-maximization algorithm uses
the maximum likelihood method to impute all missing
values in a dataset [4]. This procedure in finding missing
values uses probability to iteratively impute values in its
estimation of an approximate parameter that becomes closer

to the missing value [10]. This iterative process generates
a weighted value that is improved in each iteration until a
termination condition is reached. Additionally, when there
are many variables and multiple missing values, then the
computational time increases at each iteration. On the other
hand, the autoencoder neural network or the autoassociative
multilayer perceptron method consists of an input and
output layer where the number of inputs is equal to the
number of outputs [13]. This network, when used to estimate
approximate missing values, uses activation functions tomap
sparse input space through hidden units to output space. In
other words, this activation function is used as a function to
control the input data from a dataset. During the estimation
process, weighted parameters are used in the hidden unit of
the network. This weight parameter is solved iteratively by
maximizing the probability of the weight parameter in the
hidden unit to produce the best value that is close to the
missing value [5]. The advantage of the autoencoder neural
network is that it gives reliable estimates as missing values;
however, its efficiency depends on the number of hidden
layers chosen, and the higher the number of hidden layers, the
more the computational time required to estimate themissing
value(s).

Genetic algorithms are an evolutionary approach which
is based on the survival of the fittest. This survival depends
on the mechanism of “natural selection” (Darwin, 1868, as
cited in [14]) where element is represented using a binary
string. A genetic algorithm is an adaptive search procedure
[15], as cited by [14], which involves the use of operators
such as crossover, mutation, and selection methods to find
a global optimal result/solution. The search procedure starts
with an initial guess and attempts to improve the guess
through evolution [14] by comparing the fitness of the initial
generation of population with the fitness obtained after appli-
cation of operators to the current population until the final
optimal value is produced. This adaptive search procedure
is an iterative process that allows the elimination of weak
individuals of a population through a continuous update of
the initial generation of population via multiple generations
until the termination condition is reached. The adaptive
search procedure helps to find approximate missing values
[16] by optimizing an objective function/fitness function in
any given search problem.

Particle swarm is a bioinspired method that is based
on the swarm behavior of fish schools and bird flocks in
nature [17].The swarm behavior is expressed in terms of how
particles adapt and make decisions on change of position
within a space based on the position of other neighboring
particles. The advantage of swarm behavior is that as an
individual particle makes a decision, it leads to an emergent
behavior [18]. This emergent behavior is the result of local
interaction among particles in a problem space. Among
the particle swarm algorithms for finding the best possible
solutions in a problem space are the Firefly algorithm [19],
bats [20], and cuckoo birds [21]. The successful characteristic
of fireflies is the short and rhythmic flashes they produce [19].
This flashing light is used as a mechanism to attract mating
partners and attract potential prey, and it serves as a warning
to other fireflies. The signaling system of this flashing light
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mechanism is controlled by simplified basic rules underlining
the behavior of fireflies. Unlike a genetic algorithm which
uses operators such as mutation, crossover, and selection, the
firefly uses attractiveness and brightness to improve certain
individuals in its population. The similarity between the
genetic algorithm and the firefly is that both generate an
initial population and continue to update the initial pop-
ulation using fitness functions. The brighter fireflies attract
those closest around them and the fireflies whose flashes fall
below a given threshold are removed from the population,
while the brightest fireflies form the next generation, and
the generations/iterations continue until a select criterion is
reached or the maximum number of generations is reached.
The behavior of fireflies where a bright firefly attracts a firefly
with a weaker brightness has been applied in missing data
imputation by finding estimates of values closest to known
values and then replacing these missing values with these
estimates.

Wolf Search Algorithm (WSA) is a bioinspired heuristic
optimization algorithm which is based on wolf preying
behavior [22]. The behavior of a wolf includes its ability to
hunt independently by remembering its own trait (meaning
wolves have memory); ability to only merge with its peer
when the peer is in a better position (meaning there is
trust among wolves to never prey on each other); ability
to escape randomly upon appearance of a hunter [22]; and
the use of scent marks as a way of demarcating its territory
and communicating with other wolves [23]. This behavior
expressed by wolves enables them to randomly adapt to
their environment when hunting. If a wolf finds a new
better position, the incentive is stronger to assume this new
position provided that the position is already inhabited by
a companion wolf. The wolf search algorithm is an iterative
search process that starts with the setting of the initial
parameter, random initialization of population, evaluation
and updating a current population using a fitness test, and
continuing on with creating new generations/iterations until
some stopping criterion is met. Unlike the genetic algorithm
that uses operators such as mutation, crossover, and selection
methods or particle swarm algorithm, such as firefly, that
uses attractiveness and brightness of prey, the wolf uses
attractiveness of prey within its visual range. Furthermore,
each wolf instinctively flocks together in a pack, which is
collective, and organizes individual searches of an individual
wolf. Therefore, the swarming behavior of WSA is delegated
to each individual wolf and this could form multiple leaders
swarming from multiple directions towards the best solution
rather than a single flock searching for an optimum in one
direction at a time [22].This swarm behavior of wolves could
be used to estimate the approximate value close to known
values in a missing value at a random situation.

A variation of WSA is the Wolf Search Algorithm with
Step Minus Previous (WSAMP).ThisWSAMP allows wolves
to remember a previous best position and avoid the old
positions which do not produce the best solution.

BAT algorithm [24] is a bioinspired method based on
the behavior of microbats in their natural environment. The
unique behavior that characterizes bats is their echolocation
mechanism. This mechanism helps bats orient and find prey

within their environment. The search strategy of bats is con-
trolled by the pulse rate and loudness of their echolocation
mechanism. The change in the pulse rate helps to improve
on the previous position, while the loudness alerts each other
bat on the best position that has been found [25]. The bat
behavior has been applied in several optimization problems
to find the best optimal solution. The BAT algorithm search
process starts with random initialization of the population,
evaluation of the new population using a fitness function,
and finding the best population. Unlike the wolf algorithm
that uses attractiveness of prey to govern its search, the BAT
algorithm uses the pulse rate and loudness to control the
search for the optimal solution.

Bioinspired search strategies are controlled by random-
ization, efficient local search, and global best solution [24].
The contribution of this paper is that the random encircling
behavior of certain birds that is required in achieving an
optimal solution for missing values is first proposed as a new
computational method and then examined in comparison
with other metaheuristic algorithms such as Wolf Search
Algorithm with a step Minus Previous (WSAMP), Firefly
algorithm, and BAT algorithm. The advantage of random
encircling is that it maximizes the search space, thus creating
a wider range from a hovering position for the best possible
solution. We also evaluated the quality of the proposed
computational method, the random encircling of birds such
as Kestrel, using a fitness function.

The remainder of this article is organized as follows. In
Section 2, we describe the behavior of Kestrel birds. Section 3
discusses the proposed computational model. The model
consists ofmathematical formulations on theKestrel’s charac-
teristics. Section 4 discusses the experimental results as well
as comparisons of the proposed algorithm with the existing
approach. Section 5 presents statistical analysis of experimen-
tal results. Section 6 contains conclusions and future work.

2. Description of the Behavior of Kestrel Birds

The bioinspired algorithm is based on the behavior of Kestrel
birds when hunting for prey.The Kestrel is a kind of bird that
hunts by hovering (i.e., flight-hunt) or from a perch. These
birds are strongly territorial and hunt individually [26, 27].
Reference [27] indicated that, during a hunt, Kestrels are
imitative rather than cooperative. This suggests that Kestrels
prefer not to communicate with each other but rather they
imitate the behavior of other Kestrels with better hunting
techniques and improve their hunting technique even though
the hunting technique can change based on the type of prey,
prevailing weather conditions, and energy requirements (for
gliding or diving) [28].

During hunting, Kestrels use their eyesight to watch
small and agile prey within their circling radius or coverage
area referred to as the visual circling radius. The minute air
disturbance from flying prey and the trail of urine and faeces
from ground prey give an indication of the availability of prey.
Once available prey is detected using these indications, the
Kestrel positions itself to hunt. Kestrels are able to hover in
changing airstream, maintain a fixed forward looking posi-
tion with their eyes on the prey, and use random bobbing of
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the head to find the least distance between their position and
the position of the prey. Also, the Kestrels possess excellent
ultraviolet sensitive eyesight characteristics to visually locate
trails because these trails of urine and faeces reflect ultraviolet
light. Consequently, trails of prey such as voles become visible
to Kestrels [29].

In hovering, Kestrels perform a wider search (global
exploration) across territories within their visual circling
radius,maintain amotionless positionwith a forward looking
eye fixed on the prey, detect minute air disturbances from
flying prey (particularly flying insects) to best position
themselves to hunt the prey, and mostly move with precision
through changing airstream.

Kestrels are able to flap their wings and adjust their long
tails to stay in a place that is referred to as a still position
in changing airstream. While in perch, mostly from high
fixed structures, the Kestrel changes its perch every few
minutes, performs a thorough search (a local exploitation
using its individual hunt behavior) of its local territory with
less energy requirements than a hovering hunt, and uses its
ultraviolet sensitive capabilities to detect mammals such as
voles closer to a perched area. This behavior suggests that,
in perch, Kestrels conserve some of their energy and direct
their ultraviolet sensitive capabilities to detect slowly moving
prey on the ground. Moreover, an individual Kestrel with
better perch and hovering skills in wider search area stands
a better chance to move faster on its prey or disperse sooner
from its enemy than individual Kestrels that develop hunting
skills in local territories [27]. Therefore, it is significant to
combine both types of hunting skills for a successful hunt.
The characteristics of Kestrels are summarized as follows:

(1) Soaring: this gives a larger search space (global explo-
ration) within the visual coverage area.

(a) They maintain a still (motionless) position with
eyesight fixed on the prey.

(b) They encircle the prey beneath with keen eye-
sight.

(2) Perching: each Kestrel does a thorough search (local
exploitation) within its visual coverage area.

(a) They perform frequent bobbing of the head.
(b) They get attracted to the prey using the detected

visible trail and then glide to capture this prey.

The following assumptions are made on the characteristics:

(i) The still position gives a near-perfect circle, and thus
frequent changes in a circle direction depend on the
position of the prey in shifting the center of its circling
direction.

(ii) Frequent bobbing of the head gives a degree of
magnified or binocular vision that helps inmeasuring
the distance to the prey, which then enables the
Kestrel to move with a speed to strike.

(iii) Attractiveness is proportional to light reflection; thus,
the higher or the longer the distance from the Kestrel

to the trail, the less the trail brightness. This distance
rule applies to both hovering height anddistance away
from perch.

(iv) New trails are more attractive than an old trail. Thus,
trail decay or trail evaporation depends on the half-
life of the trail.

3. The Proposed Computational Model

The proposed computational model for Kestrel’s missing
value estimation is based on the description of Kestrels’
behavior and characteristics. The following mathematical
expressions depict the characteristics of the Kestrel.

(i) Encircling. Encircling is when the Kestrel randomly shifts
(or changes) the center of circling direction to recognize the
current position of the prey. As the prey changes its current
position, Kestrels randomly use the encircling behavior to
encircle the prey. This movement of the prey determines the
best possible position assumed by the Kestrel. The encircling→𝐷 [30] is expressed as

→𝐷 = →𝐶 ∗ →𝑥𝑝 (𝑡) − →𝐴 ∗ →𝑥 (𝑡) . (1)

Thus, →𝐶 = 2 ∗ →𝑟1, (2)

where →𝐶 is the coefficient vector, →𝐷 is the encircling value
obtained to indicate best position,→𝑥𝑝(𝑡) is the position vector
of the prey, →𝐴 is coefficient vector, and →𝑥(𝑡) indicates the
position vector of a Kestrel, and 𝑟1 and 𝑟2 are random
numbers generated between 0 and 1.

(ii) Current Position. The current best position of the Kestrel
is expressed as

→𝑥 (𝑡 + 1) = →𝑥𝑝 (𝑡) − →𝐴 ∗ →𝐷. (3)

Thus, →𝐴 = 2 ∗ →𝑧 ∗ →𝑟2 − →𝑧 , (4)

where →𝐴 is the coefficient vector, →𝐷 is the encircling value
obtained, →𝑥𝑝(𝑡) is the position vector of the prey, and →𝑥(𝑡+1)
represents the current best position of Kestrels. →𝑧 linearly
decreases from 2 (upper bound value) to 0 (lower bound
value) and it is used to control the randomness in iteration.→𝑧 is expressed as follows:

→𝑧 = →𝑧 hi − (→𝑧 hi − →𝑧 low) itr
Max itr

, (5)

where itr is the current iteration and Max itr represents the
maximum number of iterations to terminate the search. 𝑧hi
represents the higher bound value while 𝑧low represents the
lower bound value. Other Kestrels that are involved in the
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search update their position according to the best position
of the leading Kestrel. Also, the change in position of a
Kestrel in airstream depends on the frequency of bobbing,
attractiveness, and trail evaporation. This is expressed as
follows.

(a) Frequency of Bobbing. The frequency of bobbing 𝑓 is used
for sight distance measurement in the search space. This is
expressed as

𝑓𝑘𝑡+1 = 𝑓min + (𝑓max − 𝑓min) ∗ 𝛼, (6)

where 𝛼 ∈ [0, 1] is a random number generated from
lower and upper end points to control the frequency of
bobbing within a visual range. 𝑓max represents the maximum
frequency and 𝑓min is the minimum frequency both between
1 and 0, respectively.

(b) Attractiveness. Attractiveness 𝛽 indicates the light
reflected from a trail, which is defined by

𝛽 (𝑟) = 𝛽𝑜𝑒−𝛾𝑟2 , (7)

where 𝛽𝑜 represents the attractiveness, 𝛾 represents variation
of light intensity in the range [0, 1], and 𝑟 represents the
sight distance 𝑠(𝑥𝑖, 𝑥𝑐)measurement which is expressed using
Minkowski distance formulation as follows:

𝑠 (𝑥𝑖, 𝑥𝑐) = ( 𝑛∑
𝑘=1

𝑥𝑖,𝑘 − 𝑥𝑐,𝑘𝜆)
1/𝜆 . (8)

Thus,

𝑉 ≤ 𝑠 (𝑥𝑖, 𝑥𝑐) , (9)

where 𝑥𝑖 is the current sightmeasurement, 𝑥𝑐 are all potential
neighboring sight measurements near 𝑥𝑖, 𝑛 is the total
number of neighboring sights, 𝜆 is the order (1 or 2), and𝑉 is
the visual range.

(c) Trail Evaporation. A definition of a trail is the formation
and maintenance of a line [31]. In metaheuristic algorithms,
ants use trails both to trace the path to a food source and
to prevent themselves from getting stuck in a single food
source.Thus, ants, using these trails, can search many food
sources in a search space [14]. As ants continue to search,
trails are drawn and substances are deposited in the trail.
These substances help ants to communicate with each other
about the location of food sources. Therefore, other ants
continuously follow this path and also deposit substances for
the trail to remain fresh. Similar to ants, Kestrels use trails
in search of food sources. However, these trails are rather
deposited by prey, which provides an indication to Kestrels
on the availability of food sources. The assumption is that
the substances deposited by these types of prey are similar
to substances deposited on ants’ trails. Additionally, when
the source of food depletes, Kestrels no longer follow this
path. Consequently, the trail substance begins to diminish
with time at an exponential rate causing trails to become
old. This diminishment denotes the unstable nature of the

trail substances which can be theoretically stated as follows:
if there are 𝑁 unstable elements with an exponential decay
rate 𝛾, then an equation can be formulated to describe how𝑁
substance decreases in time 𝑡 [32]. This equation is expressed
as follows:

𝑑𝑁𝑑𝑡 = −𝛾𝑁. (10)

In other words, since the substances are unstable, this
introduces randomness in the decay process. Thus, the decay
rate (𝛾) with time (𝑡) is reexpressed as

𝛾𝑡 = 𝛾𝑜𝑒−𝜆𝑡, (11)

where 𝛾𝑜 is a random initial value of substance that is
decreased at each iteration and where 𝑡 is the number of
iterations or time steps. 𝑡 ∈ [0,Max itr], where Max itr is the
maximum number of iterations.The decay rate 𝛾𝑡 at time 𝑡 to
indicate a new trail or old trail is expressed as

if 𝛾𝑡 → {{{
𝛾𝑡 > 1, trail is new

0, otherwise. (12)

Again, the decay constant 𝜆 is expressed by

𝜆 = 𝜙max − 𝜙min𝑡1/2 , (13)

where 𝜆 is the decay constant, 𝜙max is the maximum number
of substances in the trail, 𝜙min is the minimum number of
substances in the trail, and 𝑡1/2 is the half-life period of a trail
which shows that the trail is old and unattractive.

Finally, the Kestrel updates its position using the follow-
ing equation:

𝑥𝑘𝑖+1 = 𝑥𝑘𝑖 + 𝛽𝑜𝑒−𝛾𝑟2 (𝑥𝑗 − 𝑥𝑘𝑖 ) + 𝑓𝑘𝑖 , (14)

where 𝑥𝑘𝑖+1 is the current best position of the Kestrel which
represents the candidate solution and 𝑥𝑘𝑖 is the previous
position of the Kestrel.𝛽𝑜𝑒−𝛾𝑟2 represents the attractiveness as
expressed in (7). 𝑥𝑗 represents a Kestrel with a better position
while 𝑓𝑘𝑖 is the frequency of bobbing as expressed in (6).

(iii) Fitness Function. The fitness function is used to evaluate
how well the algorithm performs in terms of the quality
of estimation. This performance is measured in terms of
minimizing the deviation of data points from the estimated
value without considering the direction (negative or positive)
of the fitness value. Thus, the performance measurement
method used the mean of absolute error (MAE) as fitness
function evaluation because it allows the model to fine-tune
absolute values and improve on the performance of values
into much finer positive values without consideration of
negative values. The MAE is expressed in

MAE = 1𝑛
𝑛∑
𝑖=1

𝑜𝑖 − 𝑥𝑖 , (15)
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(i) Set parameters
(ii) Initialize population of 𝑛 Kestrels using equation (3) and evaluate fitness of population using equation (18)
(iii) Start iteration (loop until termination criteria is met)

Compute Half-life of trail using equation (11)
Compute frequency of bobbing using equation (6)
Evaluate position for each Kestrel as in equation using equation (14)

If 𝑓(𝑥𝑖) < 𝑓(𝑥𝑗) then
Move Kestrel 𝑖 towards 𝑗

End if
Update position 𝑓(𝑥𝑖) for all 𝑖 = 1 to 𝑛 as in equation (20)
Find the current best value

(iv) End loop

Algorithm 1: The proposed algorithm for KSA.

where 𝑜𝑖 is the observed data point at the 𝑖th position in the
sampled dataset, 𝑥𝑖 is the estimated value at the 𝑖th position
in the dataset, and 𝑛 is the number of data points in the
sampled dataset. There are other evaluation methods such
as root mean square error (RMSE) and mean square error
(MSE).

The root mean square error (RMSE) measures the mean
square error in the original data point and estimated value.
The RMSE is expressed as the square root of the variance (i.e.,
standard deviation) in

RMSE = √ 1𝑛
𝑛∑
𝑖=1

(𝑜𝑖 − 𝑥𝑖)2, (16)

where 𝑜𝑖 is the observed data point at the 𝑖th position in the
sampled dataset, 𝑥𝑖 is the estimated value at the 𝑖th position
in the sampled dataset, and 𝑛 is the number of data points in
the sampled dataset.

The mean square error (MSE) measures the square of the
deviation between the estimated values and the actual data
point for the variable being considered; the smaller the MSE
value, the better the accuracy of estimation, and vice versa.
The MSE is expressed in

MSE = 1𝑛
𝑛∑
𝑖=1

(𝑜𝑖 − 𝑥𝑖)2 , (17)

where 𝑜𝑖 is the observed data point at the 𝑖th position in the
sampled dataset, 𝑥𝑖 is the estimated value at the 𝑖th position
in the sampled dataset, and 𝑛 is the number of data points in
the sampled dataset.

The difference between the RMSE and the MSE is that
MSE minimizes the error between the observed data and
estimated value, but RMSE further minimizes the variance,
while the mean of absolute error (MAE) measures the
magnitude of errors without considering the direction of the
fitness value.

In our comparison, we expressed the fitness function
using the mean of absolute error as follows:

fitness (𝑥) = 1𝑛
𝑛∑
𝑖=1

𝑜𝑖 − 𝑥𝑖 , (18)

where 𝑜𝑖 is the observed data point at the 𝑖th position in the
sampled dataset, 𝑥𝑖 is the estimated value at the 𝑖th position
in the dataset, and 𝑛 is the number of data points.

(iv) Velocity.The velocity of a Kestrel moving from its current
best position in a changing airstream is

V𝑘𝑡+1 = V𝑘𝑡 + 𝑥𝑘𝑡 , (19)

where V𝑘𝑡+1 is the current best velocity, V
𝑘
𝑡 represents the initial

velocity, and𝑥𝑘𝑡 represents the best position of theKestrel.The
change in velocity is controlled by the inertia weight𝜔 (which
is also referred to as the convergent parameter). This inertia
weight has a linearly decreasing value. The final velocity is
thus expressed to include this inertia weight as expressed in

V𝑘𝑡+1 = 𝜔V𝑘𝑡 + 𝑥𝑘𝑡 , (20)

where𝜔 is the convergence parameter, V𝑘𝑡 is the initial velocity,𝑥𝑘𝑡 is the best position of the Kestrel, and V𝑘𝑡+1 is the current
best velocity of the Kestrel. A Kestrel search through the
search space in order to find an optimal solution requires
the continuous update of the velocity, random encircling, and
position towards the best estimate.

The proposed algorithm to implement KSA is expressed
in Algorithm 1.

The Kestrel formulation also adopts the aspect of swarm
behavior in terms of individual searching, moving to a better
position, and fitness evaluation. However, what makes the
Kestrel distinctive is the individual hunt through its random
encircling of prey and its imitation of the best individual
Kestrel. Since Kestrels hunt individually and imitate the
best features of successful individual Kestrels, it is suggested
that Kestrels are able to remember the best solution from a
particular search space and continue to improve upon the
initial solution until the final best is reached.

In comparison of the unique characteristics of the Kestrel
algorithm with the Firefly, the wolf, and the BAT algorithms,
the following can be stated: the Firefly algorithm is based
on attractiveness, collective behavior, and brightness; the
wolf algorithm is also based on attractiveness, collective
behavior, and escape; the BAT algorithm is based on pulse
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Figure 1: KSA fitness.

rate and loudness; and the Kestrel algorithm is based on
attractiveness, brightness of the trail which is dependent on
the half-life period, and encircling. This encircling behavior
allows Kestrels to be adaptable in searching multiple missing
values within a particular search space. The basis for the
comparison is to assess the interesting behavior of the newly
developed algorithm (i.e., KSA) and show how different this
newly developed algorithm is from previous algorithms.

4. Experimental Results

The proposed algorithm was implemented in MATLAB
2012A and the quality of estimation was evaluated with the
MAE method.

The initial parameters for KSA were set as 𝛽𝑜 = 1 and
visual range = 1. As expressed in (5), the following parameters
were set for the lower and higher bound as 𝑧min = 0.2 and𝑧max = 0.9, respectively. Representative data was used to test
our algorithm and a maximum of 500 iterations/generations
were done to have a greater chance to further refine the best
value in each run. A sample set of data (46×9matrix problem
dimension/scale) with multiple missing values in the row
matrixwas used in order to provide a thorough test ofmissing
values in each row of a matrix. Figure 1 shows the test results.

Figure 1 depicts the single graph on the fitness value of
KSA after 500 iterations. The curve ascends and descends
steeply during the start of iteration and then gradually
converges at the optimal solution at the end of the iterations.
The nature of the curve at the initial iteration suggests
that KSA quickly maximizes the search space and gradually
minimizes until its convergence to a global optimum value of
0.007421.

Figure 2 depicts the comparison of fitness value of KSA
as expressed in (18). During the comparison process, 500
iterations/generations were performed. The basis of this
comparison is to demonstrate how the proposed algorithm
performs in larger generations and thus allow the adequate
refinement of the best fitness value.

Comparative results of �tness function
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Figure 2: Comparison of KSA with WSAMP algorithm.

Table 1: Comparative results on KSA and WSAMP.

Algorithm Fitness using MAE
KSA 7.9912e − 05
WSAMP 5.6978𝑒 − 07

The Wolf Search Algorithm with a step Minus Previous
(WSAMP) [22] was used as a comparative algorithm because
it allows wolves to have a memory of the previous best
position that has been visited; hence, the old positions are
avoided when a new position is being generated during
the search, where Minus Previous means wolves can only
remember up to a previous visited step. In WSAMP, the
randomness (𝜎) parameter was set to 0.2 while escape from
the local minimum was also set to 0.25. Figure 2 shows
the comparison of fitness evaluation of KSA and WSAMP
algorithm both using MAE as a fitness function.

Figure 2 shows the curve on comparison of the fitness
evaluation of KSA with WSAMP in 500 iterations/genera-
tions. The fitness curve gradually slopes down and maintains
constant fitness, indicating quick convergence at the start of
iteration. Table 1 indicates the fitness values of the curve on
both KSA and WSAMP.

Table 1 shows the comparative results on KSA with
WSAMP.The resultant fitness values showedWSAMPhaving
a minimum fitness value of 5.6978𝑒 − 07 as compared with
KSA which has a fitness value of 7.9912𝑒 − 05. In several
iterations that were performed, WSAMP maintained the
minimum fitness values as compared to KSA. The results
showed that WSAMP outperformed KSA in terms of the
minimum error because WSAMP was able to remember the
best position previously visited.

In BAT algorithm, both the loudness and the pulse rate
were set to 0.5 without fine-tuning these parameters. Also,
the arbitrary frequency range was set to a minimum of 0.2
and a maximum of 0.9. This frequency range determines the
frequency scaling of a bat. The BAT algorithm was compared
with KSA and the comparative curve of the fitness value is
illustrated in Figure 3.
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Figure 3: Comparison of KSA with BAT algorithm.

Table 2: Comparative results on KSA and BAT algorithm.

Algorithm Fitness using MAE
KSA 0.0029716
BAT 3.0326

Figure 3 shows the curve on comparison of the fit-
ness evaluation of KSA with BAT algorithm in 500 itera-
tions/generations. The fitness curve for KSA peaks at the
initial iteration and gradually slopes down and maintains a
constant fitness value, thus indicating convergence. Table 2
indicates the fitness values of KSA and BAT algorithm.

Table 2 shows the comparative results on KSA with BAT
algorithm. The resultant fitness values show KSA having a
fitness value of 0.0029716 while the BAT algorithm has a
fitness value of 3.0326. The BAT algorithm, however, showed
a horizontal line from the initial iteration to the end of the
iterations. This suggests that the BAT algorithm was not able
to converge to a global minimum. Thus, the BAT algorithm
is used for estimating missing values at random results in a
high error of estimation. Thus, KSA outperformed the BAT
algorithm in finding the optimal value.

In the Firefly algorithm, the randomness (𝜎) and absorp-
tion coefficient (𝛾) were set to 0.2 and 1.0, respectively. This
setting allowed a small interval between the randomnumbers
being generated. However, randomness reduction was set to
0.97 (similar to an annealing schedule).

Figure 4 shows the comparison of KSA with the Firefly
algorithm.The curve indicates that KSA converges to a global
minimum after the end of the iterations, while the curve on
the Firefly algorithm shows several local minimum curves
during the start of iteration, and then the curve smooths
until the final iteration, suggesting that the curve moves
from a local minimum and then gradually lessens to a global
minimum. Table 3 indicates the fitness values of both KSA
and Firefly algorithm.

Table 3 shows the comparative results on KSA with the
Firefly algorithm. The fitness value of KSA converges to a
value of 0.0054204 while the Firefly algorithm converges to
a fitness value of 1.0000.This suggests that KSA produces the
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Figure 4: Comparison of KSA with Firefly algorithm.

WSAMP
BAT

0

0.5

1

1.5

2

2.5

3

3.5

Fi
tn

es
s

50 100 150 200 250 300 350 400 450 5000
Iterations

Figure 5: A figure showing the comparison between the BAT
algorithm and the WSAMP.

Table 3: Comparative results on KSA and Firefly algorithm.

Algorithm Fitness using MAE
KSA 0.0054204
Firefly 1.0000

minimum error when estimatingmissing values as compared
with the Firefly algorithm.

The comparative curve of the fitness value is illustrated in
Figure 5.

Figure 5 shows the curve between BAT algorithm and
WSAMP; while the curve on BAT algorithm is constant, the
curve onWSAMP gradually slopes until convergence. Table 4
shows the values of both BAT algorithm andWSAMP.

Table 3 shows the comparative results on BAT algorithm
with the WSAMP algorithm. The fitness value of WSAMP
converges to a value of 1.4864e − 7 while the BAT algorithm
was constant at 3.1703. This suggests that WSAMP produces
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Figure 6: A figure showing the curve between the BAT algorithm
and Firefly.

Table 4: Comparative results on BAT and WSAMP algorithm.

Algorithm Fitness using MAE
BAT 3.1703
WSAMP 1.4864e − 7

Table 5: Comparative results on BAT and Firefly algorithm.

Algorithm Fitness using MAE
BAT 3.1703
Firefly 1.000

the minimum error in estimating values that are missing as
compared with BAT algorithm.

Figure 6 shows the curve between BAT algorithm and
Firefly algorithm. The curve on the Firefly algorithm shows
several local minimum curves from the start of iteration
to approximately the 150th iteration; thereafter, the curve
maintained a constant horizontal line until the final iteration,
suggesting a global minimum; the curve on BAT algorithm
has a constant horizontal line from the start of iteration to
the end of iteration. Table 5 shows the result of comparison
between BAT algorithm and Firefly algorithm.

The fitness value of the Firefly algorithm converges to
1.000 while the BAT algorithm was constant at 3.1703. This
suggests that the Firefly algorithm produces the minimum
error when estimating missing values. Thus, the Firefly
algorithm outperforms BAT algorithm in terms of minimum
error.

Figures 7 and 8 show the curve between WSAMP algo-
rithm and Firefly algorithm, respectively, so as to show a clear
figure on the nature of the curve.

Although both algorithms converged to a minimum, the
fitness value of WSAMP converges to a value of 8.0889𝑒 − 07,

Table 6: Comparative results of WSAMP and Firefly algorithm.

Algorithm Fitness using MAE
WSAMP 8.0889𝑒 − 07
Firefly 1.000
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Figure 7: WSAMP algorithm.
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Figure 8: Firefly algorithm.

while the curve on the Firefly algorithm shows several local
minimum curves and gradually lessens to a global minimum.

Table 6 shows the comparative results on WSAMP with
the Firefly algorithm. While the fitness value of the Firefly
algorithm converges to 1.000, the WSAMP algorithm con-
verges at 8.0889𝑒 − 07. This suggests that WSAMP algo-
rithm produces the minimum error. Therefore, the WSAMP
algorithmoutperforms the Firefly algorithmwhen estimating
missing values. Table 7 shows a summary of the results on
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Table 7: Summary of MAE results obtained on a 46 × 9 sample matrix problem dimension.

Algorithm Problem dimension MAE1 MAE2 MAE2
KSA 46 × 9 7.9912e − 05 0.0029716 0.0054204
WSAMP 46 × 9 5.6978e − 07 1.4864e − 7 8.0889e − 07
BAT 46 × 9 3.0326 3.1703 3.1703
Firefly 46 × 9 1.0000 1.0000 1.0000

Table 8: MAE results from comparative algorithms on different
problem scales.

Problem dimension KSA BAT Firefly WSAMP
MAE MAE MAE MAE40 × 9 7.09𝐸 − 05 3.0326 0.90723 8.16𝐸 − 0730 × 9 0.012553 3.0843 1 2.51𝐸 − 0720 × 9 0.04752 3.0655 0.15362 9.22𝐸 − 0625 × 9 0.023865 3.3836 1 1.34𝐸 − 0710 × 9 0.39469 3.536 0.6943 1.73𝐸 − 05

mean absolute errors obtained from each paired algorithm in
the 46 × 9 sample matrix problem dimension.

Table 7 shows a summary of the results where each
column represents the MAE obtained from each iteration in
the 46 × 9 matrix. The results indicate that BAT algorithm
performed poorly as compared to WSAMP and Firefly
algorithm.

Different problem scale/dimension of the dataset was
applied to each algorithm and the corresponding fitness
value (i.e., MAE) was computed. The dimensions that were
selected help to observe the behavior of each algorithm on
different problem scales. Table 8 shows the results on MAE
values obtained from the comparative algorithms on different
problem dimensions.

Table 8 indicates that KSA obtained optimal results as
compared with BAT algorithm and Firefly algorithm in
different problem scales. The results suggest that KSA is the
best for random encircling and this algorithm is one of the
best/optimal in estimating multiple missing values in any big
data analysis environment.

5. Statistical Analysis of Experimental Results

The basis for the statistical analysis of experimental results
on the comparative algorithms is to find the significance of
results obtained from each algorithm. In order to achieve this
comparison in an accurate manner, the study used a profile
on all the test functions used in each of the algorithms and
the MAE results (i.e., the quality of estimation) in Table 8.
The nonparametric statistical procedure was used to analyze
the significance of the comparison. This nonparametric
statistical procedure was used as it does not make underlying
assumption on parameters such as mean and variance of the
algorithm being assessed. In contrast, parametric statistical
procedures make assumptions on parameters that are being
assessed. In this section, the profiling of test functions and the
nonparametric statistical procedure adopted for the analysis
were discussed. This section is structured into two: statistical

analysis on profiling of test functions and statistical analysis
on MAE results (quality of estimation).

(i) Statistical Analysis on Profiling of Test Functions. Profiling
is a technique used to measure time spent on aspects of a
program such as a function [33]. This technique helps to
optimize functions and improve on the performance of the
algorithms. During profiling, the following are considered:
function name, the number of times a function was called
upon (i.e., calls), the total time spent on each function
including subfunctions (total time), and the total time spent
on a function excluding the time spent on subfunctions
(i.e., self time). It is possible for functions that are less time
intensive to call other functions that are time intensive.
The profiling technique is important as it determines which
functions are responsible for calling other functions.

The study applied profiling as a technique to extract
functions and to group the functions into two categories,
namely,major functions and basic functions.While themajor
functions are functions that were written to implement the
behavior of the algorithms, the basic functions are the in-built
functions that work alongside the major function. Table 9
indicates how the functions are grouped during profiling on
each comparative algorithm.

Table 9 shows the different test functions in each com-
parative algorithm. The WSAMP has 2 major functions
categorized into the main function (represented by f1) and
a subfunction (represented by f2). All main functions are
represented in each algorithm by f1.The Firefly algorithm has
6 major functions (one main function f1 and 5 subfunctions).
The BAT algorithm consists of 3 major functions (one main
function f1 and 2 subfunctions), while KSA consists of 4
major functions (one main function f1 and 3 subfunctions).

In order to have a true reflection on the nature of in-
built functions that were extracted, all in-built functions were
considered for analysis. It is observed that when some in-
built functions were called, the total time is zero seconds,
thus making those in-built function calls inconsequential in
terms of execution time. However, these inconsequential in-
built functions were taken into consideration so as not to lose
track of any function calls made.

A statistical procedure was applied to analyze the sig-
nificance of profile results obtained in Table 9. The study
conducted a nonparametric statistical test to assess which
of the algorithms has better performance in terms of the
behavior of test function call time.The basis for the statistical
analysis is find out the significance of the profiled results from
each algorithm. Reference [34] indicated that nonparametric
or distribution-free statistical procedures help to perform
pairwise comparison on related algorithms even in the case
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Table 9: Major function names of the comparative algorithms.

Function name Calls Total time (s) Self time (seconds (s))
WSAMP algorithm

f2 WSAMPnew>fnc fitness mae 172517 1.298 1.298
f1 WSAMPnew>main 1 14.426 12.993

Mean 86259
Firefly algorithm

f2 fireflyApproachnew>fnc fitness MAE 4522 0.018 0.018
f3 fireflyApproachnew>ffa move 500 0.415 0.404
f4 fireflyApproachnew>findrange 500 0.011 0.011
f5 fireflyApproachnew>newalpha 500 0.002 0.002
f1 fireflyApproachnew>main 1 47.811 29.291
f6 fireflyApproachnew>init fireflyalg 1 0.001 0.001

Mean 1004
KSA algorithm

f2 KSAapproachnew>fnc fitness MAE 23046 0.094 0.094
f3 KSAapproachnew>fnchalflife 500 0.002 0.002
f4 KSAapproachnew>fncbobbing 500 0.011 0.011
f1 KSAapproachnew>main 1 1.329 1.036

Mean 6011.8
BAT algorithm

f2 BATApproachnew>fnc fitness MAE 23046 0.101 0.101
f3 BATApproachnew>simplebounds 23000 0.317 0.317
f1 BATApproachnew>main 1 1.353 0.718

Mean 15349

where the sample size of a dataset is small such as where
sample size 𝑛 < 30. When there are multiple comparisons of
algorithms, theWilcoxon signed-rank test helps to rank algo-
rithms and test how significantly the algorithms outperform
each other [34]. In this article, the mean of the time to call
test functions of each algorithm was used in order to suggest
that two algorithms are equivalent. In order to indicate the
probability of error in the median of the two algorithms,
the p value was used [35]. The advantage of Wilcoxon test
is that there is no need to make an assumption about the
population of functions being used since the Wilcoxon test
can guarantee about 95% (i.e., 0.05 level of significance) of
efficiency if the population is normally distributed, meaning
that if there are 500 observations on test function calls,
then the Wilcoxon signed-rank test is efficient to about 499
observations on test function calls. Reference [36] indicated
that theWilcoxon signed-rank test is analogous to the related
sample 𝑡-test; however, the 𝑡-test is unsuitable for this type of
analysis, whileWilcoxon is suitable. Samples are related if one
sample matches the other sample, while the rank is a number
assigned to an individual sample according to its order in a
list of algorithms. Thus, the Wilcoxon statistical technique
helps to assign ranks to algorithms in order to identify the
best ranked evolutionary algorithms behavior [37] and to
determine the significance of each algorithm. The following
steps are applied in computing theWilcoxon signed-rank test.

Step 1. Compute the difference 𝐷 of paired samples in each
algorithm. Any pairs with a difference of 0 are discarded.

Step 2. Find the absolute𝐷.
Step 3. Compute the rank of signs (𝑅+ difference and 𝑅−
difference) from the lowest to the highest.

The sum of ranks is expressed by

∑𝑅+ + 𝑅− = 𝑛 (𝑛 + 1)2 , (21)

where 𝑛 is the sample size.

Step 4. Compute the test statistic 𝑇.Thus, 𝑇 = min{𝑅+, |𝑅−|}.
Thus, the test statistic 𝑇 is the smallest value.

Step 5. Find the critical values based on the sample size𝑛. If 𝑇 is less than or equal to the critical value at a level
of significance (i.e., 𝛼 = 0.05), then a decision is made
that algorithms are significantly different [34]. In order to
accomplish this, theWilcoxon signed-rank table is consulted,
using the critical value (𝛼 = 0.05) and sample size 𝑛 as
parameters, to obtain the valuewithin the table. If this value is
less than the calculated value of the algorithmic comparison,
this means that the algorithmic difference is significant.

In order to apply the Wilcoxon signed-rank test, an
analysis was performed on the time to call a function name
(both in-built functions and major functions) as follows.

(a) Time Analysis of the In-Built Function Calls. The per-
formance of the comparative algorithms was based on test
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Table 10: Wilcoxon rank on profile extracts on in-built function calls of algorithms.

Algorithms Sum of calls Total number of
in-built functions Sum of self time Sum of total time 𝐷 𝑅+/𝑅− Rank Sum of signed ranks

(1) WSAMP 123 31 0.132 0.401 0.269 1 1 1(2) Firefly 99780 229 49.228 160.73 111.503 1 4 4(3) KSA 1043 34 0.184 0.471 0.287 1 2 2(4) BAT 105 69 0.215 0.953 0.738 1 3 3

Table 11: Mean and standard deviation on in-built functions.

Sum 𝑁 Mean Std. deviation Minimum Maximum
Self time 4 12.4398 24.52552 .13 49.23
Total time 4 40.6387 80.06121 .40 160.73

function call time differences between the self time and
total time of in-built functions in each algorithm. Based on
the steps in computing Wilcoxon signed-rank test, the time
for the test function call per each algorithm is shown in
Table 10.

From Table 10, 𝐷 represents the difference between the
sum of total time and the sum of self time. It is observed
that the sum of the signed positive ranks 𝑅+ is 10 while
the sum of negative ranks is 0. Since the sample size 𝑛 (4)
is less than 30 and the Wilcoxon signed-rank table shows
that there is no critical region on the subfunction at 𝛼 =0.05, the Wilcoxon signed-rank table suggests that in-built
functions are equivalent. In terms of ranking of algorithms,
the WSAMP was ranked first while KSA was ranked second.

Since 𝑛 is small, it is tedious to find a critical value for
small values of 𝑛. Table 11 shows the mean and standard
deviation on the sum of self time and sum of total time on
the subfunction.

Table 11 shows sample size (𝑁) and the mean on sum
of self time as 12.4398 and sum of total time as 40.6387
with their corresponding standard deviation. Since the results
show a standard deviation of 80.06121 on total time, it
suggests a high deviation of total time on the in-built
function calls as compared with low standard deviation of
24.52552 on self time in-built function calls. Thus, there is
a high total time spent on in-built function calls in the
algorithms as compared with self time on in-built function
calls, meaning that the algorithms spent an intensive amount
of time in calling an average of 40.6387 in-built functions
and an average time of 12.4398 in excluding other in-built
function calls. Table 12 illustrates the Wilcoxon signed-rank
test between total time and self time of in-built function calls
computed using the Statistical Package for the Social Sciences
(SPSS). Table 12 contains the sample size (𝑁), mean rank, and
sum of ranks.

Table 12 showsWilcoxon signed ranks on the comparison
of sum of total time and sum of self time. There were 4
samples between total time and self time.The basis is to find
whether the differences between total time and self time are
significantly different from zero and whether the differences
that were observed in themean rank (0.00 versus 2.50) can be
located in the population of in-built function calls. In order

Table 12: Wilcoxon signed ranks on in-built functions.

𝑁 Mean rank Sum of
ranks

Sum of total time− sum of self time

Negative ranks 0a .00 .00
Positive ranks 4b 2.50 10.00

Ties 0c
Total 4

aSum of total time< sum of self time. bSum of total time> sum of self time.
cSum of total time = sum of self time.

Table 13: Test statisticsb on in-built functions.

Sum of total time − sum of self time𝑍 −1.826a
Asymptotic sig. (2-tailed) .068
aBased on negative ranks. bWilcoxon signed-rank test.

to locate the value between themean ranks (0.00 versus 2.50),
the test of significance of time on performance on in-built
functions is computed as in Table 13.

Table 13 shows the test statistic that was obtained. The
asymptotic sig. (2-tailed) in the table represents the 𝑝 value
for the test, while the Wilcoxon signed-rank test was com-
puted using the 𝑧 statistic. Thus, the Wilcoxon signed-rank
test was used on 4 samples to find out whether there is a
significant change of total time with self time showing 𝑧 =−1.826 and 𝑝 = 0.068. Since 𝑝 > 𝛼 (0.05) within the mean
rank (0.00 versus 2.50), the value of 0.068 indicates that,
statistically, time did not result in a significant change in
performance of in-built function calls.

(b) Time Analysis on the Major Function Calls. In this study,
we also conducted a statistical analysis to determine whether
time might be significant in enhancing the performance
of major function calls of each algorithm. Table 14 shows
the summary of the Wilcoxon signed-rank test on major
functions between self time and total time of each algorithm.

Table 14 shows the difference 𝐷 between the sum of
total time and the sum of self time of each algorithm. It is
observed that the sum of signed positive ranks 𝑅+ is 4 while
the sum of negative ranks is 0. Since the sample size 𝑛 (4)
is less than 30 and from the Wilcoxon signed-rank table, it
shows that there is no critical region, on the significance level
of 𝛼 = 0.05, on the Wilcoxon signed-rank table, to suggest
that the major functions are significantly different in terms
of total time and self time of calling the major functions. All
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Table 14: Wilcoxon rank on profile extracts on major functions total time and self time of algorithms.

Sum of calls Total number of major functions Sum of self time Sum of total time 𝐷 𝑅+/𝑅− Rank Signed rank(1) WSAMP 172518 2 14.291 15.724 1.433 1 1 1(2) Firefly 6024 6 29.727 48.258 18.531 1 1 1(3) KSA 24047 4 1.143 1.436 0.293 1 1 1(4) BAT 46047 3 1.136 1.771 0.635 1 1 1

Table 15: Mean and standard deviation on major functions.

𝑁 Mean Std.
deviation Minimum Maximum

Sum of self time 4 11.5742 13.59744 1.14 29.73
Sum of total time 4 16.7973 22.00520 1.44 48.26

Table 16: Wilcoxon signed ranks on major functions.

𝑁 Mean
rank

Sum of
ranks

Sum of total time− sum of self time

Negative ranks 0a .00 .00
Positive ranks 4b 2.50 10.00

Ties 0c
Total 4

aSum of total time< sum of self time. bSum of total time> sum of self time.
cSum of total time = sum of self time.

Table 17: Test statisticsb on major functions.

Sum of total time − sum of self time𝑍 −1.826a
Asymptotic sig. (2-tailed) .068
aBased on negative ranks. bWilcoxon signed-rank test.

the major functions of each algorithm were ranked equally.
TheWilcoxon signed-rank test was conducted to test whether
therewas a significant difference. Firstly, Table 15 indicates the
mean and standard deviation on both the sum of self time
and the sum of total time on the major functions.

Table 15 shows sample size (𝑁) and the mean on sum
of self time as 11.5742 and sum of total time as 16.7973 with
their corresponding standard deviation. The results indicate
a standard deviation for total time as 22.00520 and self time
as 13.59744. Thus, there is a high variation in total time as
compared with low variation in self time of major function
calls. Table 16 illustrates the Wilcoxon signed-rank test
between total time and self time of major function calls.

Table 16 shows Wilcoxon signed ranks on the com-
parison of sum of total time and sum of self time. There
were 4 samples between total time and self time. The basis
of this comparison is to find out whether the differences
between total time and self time are significantly different
and whether the differences that were observed in the mean
rank (0.00 versus 2.50) can be located in the population of
major function calls. In order to locate the value between the
mean ranks (0.00 versus 2.50), the test of significance of time
on performance is computed in Table 17.

Table 18: Results on accuracy from comparative algorithms using
MAE.

Problem dimension KSA BAT Firefly WSAMP
MAE MAE MAE MAE46 × 9 7.99𝐸 − 05 3.0326 1.000 5.70𝐸 − 0740 × 9 7.09𝐸 − 05 3.0326 0.90723 8.16𝐸 − 0730 × 9 0.012553 3.0843 1.000 2.51𝐸 − 0720 × 9 0.04752 3.0655 0.15362 9.22𝐸 − 0625 × 9 0.023865 3.3836 1.000 1.34𝐸 − 0710 × 9 0.39469 3.536 0.6943 1.73𝐸 − 05

Table 17 shows the test statistic that was obtained. The
asymptotic sig. (2-tailed) in the table represents the 𝑝 value
for the test, while the Wilcoxon signed-rank test was com-
puted using 𝑧 statistic.TheWilcoxon signed-rank test is used
to find whether there is a significant change in total time and
self time at 𝑧 = −1.826 and 𝑝 = 0.068. The results indicate
that, statistically, time did not result in a significant change in
performance of major function calls.

(ii) Statistical Analysis on Output Results on Quality of
Estimation. Wilcoxon signed-rank test was conducted on all
the dimensions of results on quality of estimation in Table 18.

Table 18 consists of all problem dimensions of each algo-
rithm and the respective MAE. Although the null hypotheses
were formulated based on 46 × 9 dimension, the study tested
the hypotheses on all problem dimensions of the MAE value.
Earlier, the analysis on performance of each paired algorithm
was made as follows:

(1) WSAMP outperformed KSA in terms of the mini-
mum error (MAE).

(2) KSA outperformed BAT algorithm in finding the
optimal value.

(3) KSA produces the minimum error when estimating
missing values as compared with the Firefly algo-
rithm.

(4) WSAMP produces the minimum error when esti-
mating missing values as compared with the BAT
algorithm.

(5) The Firefly algorithm outperforms BAT algorithm in
terms of the minimum error.

(6) TheWSAMP algorithm outperforms the Firefly algo-
rithm based on their MAE.

In order to test the significance of quality of estimation, the
Wilcoxon test statistic was computed using SPSS and the 𝑝
value is shown in Table 19.
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Table 19: Wilcoxon signed-rank test statistic on accuracy.

Comparative algorithm Asymp. sig. (2-tailed) 𝑝 value
KSA versus WSAMP 0.028
KSA versus Firefly 0.028
KSA versus BAT 0.028
Firefly versus BAT 0.028
WSAMP versus Firefly 0.028
WSAMP versus BAT 0.028

Table 19 shows the 𝑝 value that was obtained from each
comparing algorithm. Since the 𝑝 values must be less than
or equal to the level of significance of 0.05 in order to be
significant, the results in Table 19 show that the quality of
estimation was significant between the paired algorithms. In
this case, the WSAMP significantly outperformed KSA in
terms of the MAE.

Multiple Comparison of Output Results on Accuracy. Refer-
ence [38] indicated that theWilcoxon signed-rank test is best
used for pairwise comparisons between two algorithms. In a
multiple comparison situation where two ormore algorithms
are compared, it is possible for errors to accumulate such
that the performance of algorithms is significant. Reference
[34] indicated that performing multiple comparison enables
correcting the Family-Wise Error Rate (FWER) which occurs
after multiple algorithms are combined. In order to perform
comparison, [34] used the results of accuracy obtained by
algorithms to perform statistical analysis on algorithms. The
statistical significance of combining a pair of algorithms is
computed by

𝑝 = 𝑃 (Reject 𝐻𝑜 | 𝐻𝑜 true) ,
𝑝 = 1 − 𝑃 (Accept 𝐻𝑜 | 𝐻𝑜 true) ,𝑝 = 1
− 𝑃 (Accept 𝐴𝑘 = 𝐴 𝑖, 𝑖 = 1, . . . , 𝑘 − 1 | 𝐻𝑜 true) ,

𝑝 = 1 − 𝑘−1∏
𝑖=1

𝑃 (Accept 𝐴𝑘 = 𝐴 𝑖 | 𝐻𝑜 true) ,
𝑝 = 1 − 𝑘−1∏

𝑖=1

[1 − 𝑃 (Reject 𝐴𝑘 = 𝐴 𝑖 | 𝐻𝑜 true)] ,
𝑝 = 1 − 𝑘−1∏

𝑖=1

(1 − 𝑝𝐻𝑖) .

(22)

Using expression (22), 𝑝 values of each algorithm are
computed to find the final 𝑝 value. If the 𝑝 value is less than
the critical value (e.g., 𝛼 = 0.05), then it forms the basis for
rejection of a hypothesis. However, a final decision cannot be
made to fully reject or fail to reject (accept) a hypothesis based
on an analysis result without performing a test on the possible
error that could be accumulatedwhen comparing algorithms.

The Friedman test can be conducted to compare two or
more evolutionary algorithms and find errors that have been

accumulated when two or more algorithms are compared
[39, 40]. The Friedman test is a two-way analysis of the
variations in the ranking of algorithms. The Friedman test
is a nonparametric procedure that aims to compare the
median of a distribution in order to find whether significant
differences between the behaviors of two or more algorithms
have occurred. The null hypothesis of Friedman test applies
the equality of medians [41], while the alternative hypothesis
negates the null hypothesis.The Friedman test procedure can
be summarized into the following steps.

Step 1. Rank the algorithms for dataset separately.

Step 2. The best performing algorithm with the least MAE
gets the rank of 1, the second best rank 2, and so forth.

Step 3. If there is a tie between ranks, assign the average rank.
Let 𝑟𝑗𝑖 represent the rank of the 𝑗th of 𝑘 algorithm on the 𝑖th
of𝑁 dataset.

Step 4. Friedman test compares the average ranks of the
algorithm as follows:

𝑅𝑗 = 1𝑁∑
𝑖

𝑟𝑗𝑖 . (23)

The null hypothesis computes the equivalence and the ranks𝑅𝑗, which is equal to the Friedman statistic [39] computed as

𝑋2𝐹 = 12𝑛𝑘 (𝑘 + 1) [[∑𝑗 𝑅
2
𝑗
]] − 3𝑛 (𝑘 + 1) , (24)

where𝑅𝑗 is the rank and𝑋2𝐹 is distributedwith 𝑘−1 degrees of
freedom, such that 𝑛 and 𝑘 should have a large sample size (𝑛)
(as a rule of a thumb, 𝑛 > 10 and 𝑘 > 5) [41] since large sample
sizes are significant in computing the degree of freedom on
the rank of algorithms. 𝑘 is the number of groups that are
being compared.

Step 5. The calculated value of 𝑋2𝐹 must be larger than or
equal to the appropriate critical table value of 𝑋2 or larger
than or equal to the value of𝑋2𝐹 in the small samples table.

Reference [41] indicated that, to perform multiple com-
parison, two measures are used; firstly, check whether the
results obtained from the algorithm have inequality and rank
using the Friedman test. The Friedman test states that, under
a null hypothesis, all the algorithms are equivalent, so a
rejection of a hypothesis indicates existence of significant
differences in performance of all the algorithms studied [41].

In our approach to identify the best algorithm (deemed
to be the algorithm with the lowest ranking value) that can
be used as a control algorithm, the results in Table 18 were
applied and the Friedman test was conducted to identify the
best algorithm. In order to rank the algorithms, themean and
standard deviationwere computed (in Table 20) on the results
on accuracy of performance shown in Table 18.

The results in Table 20 indicate that KSA has the least
standard deviation among the comparative algorithms. Since
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Table 20: Descriptive statistics.

𝑁 Mean Std. deviation Minimum Maximum
KSA 6 .0000 .00001 .00 .00
WSAMP 6 .7925 .33471 .15 1.00
BAT 6 .0798 .15528 .00 .39
Firefly 6 3.1891 .21606 3.03 3.54

Table 21: Ranks of algorithms.

Mean rank
BAT 2.00
Firefly 4.00
WSAMP 3.00
KSA 1.00

Table 22: Friedmantest statisticsa.

𝑁 6
Chi-square𝑋2 18.000
df 3
Asymp. sig. (𝑝 value) 0.000
aFriedman test.

the standard deviation measures the amount of variation in
a set of data [42], thus, the larger the standard deviation,
the greater the variation in the data, whereas the smaller the
standard deviation, the smaller the amount of variation in
the data. Since KSA has a minimum standard deviation of
0.00001, thus there is a small variation in KSA. Based on the
results in Table 20, the Friedman test ranked the algorithms
in Table 21.

The rank in Table 21 indicates that KSA is the best
algorithm among the comparative algorithms. Friedman’s test
statistic with a sample size𝑁 was computed in Table 22.

Table 22 shows the results on Friedman test, where 𝑋2
obtained is 18.000, with 3 degrees of freedom and a signifi-
cance (asymp. sig.) level of 0.0000. Since the significance level
is 𝛼 (0.05), thus, the computed value on 𝑋2 must be larger
than or equal to the critical value for significance of 0.05.
Since df is 3 at 0.05 level of significance, the value that was
read from the critical value of chi-square𝑋2 distribution table
[43] is 7.82, thus 18 > 7.82 at 𝛼 (0.05). There is a significant
difference in the results on the quality of estimation of
missing values among the algorithms, meaning that the
algorithms are not the same.

6. Conclusion and Future Work

This paper presented a new bioinspired algorithm, the
Kestrel-Based SearchAlgorithm (KSA), and compared it with
other metaheuristic algorithms such as the Firefly, WSAMP,
and BAT algorithms. The results of the comparison showed
that the KSA demonstrated potential uniqueness in its search
for the best value in comparison with other metaheuristic
methods such as wolf, BAT, and Firefly algorithms. The
statistical test conducted on the test function calls time based

on Wilcoxon signed-rank test indicated that total time did
not result in a significant change in the performance of
major function calls. Similarly, total time did not result in
a significant change in the performance of in-built function
calls. Since the Wilcoxon test helps to assign ranks to
algorithms in order to identify the best ranked evolutionary
algorithms, the major functions and in-built functions were
ranked. The results indicate that the KSA was ranked second
while WSAMP was ranked first in terms of in-built function
call. However, all algorithms were ranked equally in terms of
major function call. Further tests conducted on the results
of accuracy in multiple comparison applied Friedman test to
detect the Family-Wise Error Rate. The results on Friedman
test ranked KSA algorithm as the best algorithm that is used
as a control algorithm formultiple comparison of algorithms.
In the future, we intend to apply this algorithm in solving
real-world problems and for other big data purposes such
as association rule mining and intend to apply it to further
enhance its performance of estimation of missing values.
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