

UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

INSTITUTE OF MATHEMATICAL STATISTICS

Vassili Mušnikov

ON THE USAGE OF SUPPORT VECTOR MACHINES FOR THE SHORT-TERM PRICE MOVEMENT
PREDICTION IN INTRA-DAY TRADING

Master’s thesis

Supervisor: Raul Kangro, PhD

 TARTU 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14499106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

Introduction .. 4

1 Support Vector Machines .. 6

1.1 Machine Learning .. 6

1.2 Loss Functions ... 6

1.3 Quadratic optimization problem .. 7

1.4 𝜺-SVM Regression ... 15

1.5 Support Vectors ... 16

2 Kernels .. 18

2.1 Data transformation to higher dimensional space .. 18

2.2 Classification of Kernels .. 21

2.3 𝝂-SVM Regression .. 24

2.4 R Packages ... 25

2.4.1 Kernlab ... 26

2.4.2 e1071 .. 27

2.5 Cross-validation ... 27

3 Prediction of stock price ... 29

3.1 Order types ... 29

3.2 VWAP .. 30

3.3 Regressors .. 30

3.4 Description Of Algorithms .. 31

3.4.1 Primary Algorithm .. 32

3.4.2 Secondary Algorithm .. 32

3.5 Parameter fitting .. 33

Summary ... 37

Kokkuvõte .. 38

Appendix 1 ... 40

3

Appendix 1.1 .. 40

Appendix 1.2 .. 40

Appendix 1.3 .. 41

Appendix 1.4 .. 41

Appendix 1.5 .. 42

Appendix 1.6 .. 42

Appendix 1.7 .. 43

Appendix 2 ... 44

Appendix 3 ... 45

Appendix 4 ... 46

Bibliography ... 47

4

Introduction

In our changing modern society grows the significance of financial issues. Entities and

individuals speculate on the stock exchanges in order to trade financial securities and to gain

profit. We all know the words of a great politician Benjamin Franklin who once said: “Time

is money.” The fast developing world of information technologies and computers gives an

opportunity to do many things in a short period of time. Modern financial markets represent

electronic networks which give an advantage to perform transactions at increased speed and

reduced cost. When a company decides to buy or sell the large amount of shares, this may

lead to the unwanted superfluous loss. In order to minimize the loss, it is needed to develop a

trading algorithm which can generate buy or sell signals using future stock price forecasts.

That is the reason why the prediction of stock price is necessary in trade executions. That

brings me to the aim of the underlying thesis.

The aim of the current thesis is to research the prediction of future stock prices by using the

implementation of support vector machines, also to find possible technical solutions and to

interpret the gained results. In order to consider the problem of forecasting future stock prices

for a short period of time, the market data of the British multinational telecommunications

company Vodafone Group Plc and the British-Swedish multinational pharmaceutical and

biologics company AstraZeneca Plc is being used to fit the models and verify how good their

predictive power is. The opportunities of packages e1071 and kernlab of programming

language R are being used in the current thesis. The implementation of the predictions to

trading algorithms is not being considered due to it is not relevant to the underlying thesis.

The thesis consists of three chapters. The first chapter is dedicated to support vector

machines, because this particular method is used in developing prediction algorithms. For

better understanding of the principle of this method, certain fundamentals are being explained.

The first chapter introduces what is machine learning, explains finding the regression function

by using support vector machines and mentions the problems which may arise during finding

the regression function. The concept of regression estimation is being explained with

theoretical and graphical examples.

The second chapter is dedicated to kernels, because that gives an opportunity to use non-linear

functions as regression functions. In this chapter, the classification of kernels is being

introduced. In addition, it is explained to the reader why does the usage of kernel functions

simplify the finding of the regression function. The short overview of technical opportunities

5

of programming language R packages is also being introduced in the second chapter. Finally,

such statistical method of evaluating and comparing learning algorithms as cross-validation is

being briefly mentioned in the chapter.

Unlike from the first two chapters, which give a theoretical overview, the third chapter is the

practical part of the thesis. It introduces the implementation of support vector machines on the

short-term price movement prediction in intra-day trading. The algorithm of the price

prediction is being explained in the third chapter. Given data is also described in this chapter.

Due to similar data involved, the author also presents the comparison with the master’s thesis

of Andrei Orlov [1].

In addition, at the end of the thesis, the reader can find Appendices which consist of data

frame, the diagram explaining the relations between functions in a code of algorithm, the

codes of figures and the CD containing the code of the algorithm.

6

1 Support Vector Machines

1.1 Machine Learning

There is no well accepted definition of what is and what is not Machine Learning. But here is

a definition of what is Machine Learning according to Webster: “Machine Learning is the

ability of machine or a system to improve its performance based on previous results”. From

mathematical point of view the definition is not quite correct, but it gives a basic overview

about the subject.

There are several different types of learning algorithms, but the main two types that Machine

Learning can be subdivided into are supervised learning and unsupervised learning. The term

supervised learning refers to the fact that the algorithm is provided with the data set in which

the “right answers” are given. Concretely, for each observation a desired output value is

given. Learning algorithm analyzes this data set and produces a model, which can be used for

mapping yet unseen data. In unsupervised learning the algorithm is trained on a data with no

output values. The learning algorithm tries to find hidden structure in unlabeled data [2].

Further, supervised learning can be divided into classification and regression problem.

Classification is the problem of identifying to which of a set of categories a new observation

belongs, on the basis of a data set containing observations whose category is known [3]. In

regression problem it is tried to predict a continuous variable instead of a category. The

underlying thesis describes an algorithm of a supervised learning producing a regression

analysis of a data.

1.2 Loss Functions

In order to produce a regression analysis one usually divides a whole data set into two

subsets: training set, on which the predictive model is applied, and test set, on which the

found model is being tested. Often the training data is given as follows:

{ 𝑥1,𝑦1 ,… , 𝑥𝑚 , 𝑦𝑚 }, where 𝑥𝑖 denotes a vector of features and 𝑦𝑖 denotes an additional

feature for which the predictions will be made. In regression analysis 𝑥𝑖 is called a vector of

independent variables and 𝑦𝑖 is called dependent variable. A regression function 𝑓(𝑥) is

constructed which is technically a prediction function.

7

In order to estimate a regression function 𝑓(𝑥) which is a function of the independent

variables, one usually tries to minimize the empirical risk:

 𝑅𝑒𝑚𝑝 𝑓 =
1

𝑚
 𝐿(𝑓 𝑥),𝑦 ,

𝑚

𝑖=1

 (1)

where 𝐿(𝑓 𝑥 ,𝑦) is so-called loss function [4].

In order to give the basic intuition, a regression function 𝑓(𝑥) in a class of linear functions is

being described by

 𝑓 𝑥 = 𝑤, 𝑥 + 𝑏, (2)

where 𝑤 is a vector, 𝑏 is a real number and 𝑤, 𝑥 represents a dot product between two

vectors.

One possible approach for such class is a linear regression model. In case of this model it is

tried to fit a linear function to an observed data, using least square method. The aim of this

method is to minimize the sum of the squares of the errors made by fitting a linear function.

Thus, to get a proper estimation for a regression function 𝑓 𝑥 in the case of linear regression

model one needs to minimize the following empirical risk equation:

 𝑅𝑒𝑚𝑝 𝑓 =
1

𝑚
 (𝑓 𝑥𝑖 − 𝑦𝑖)

2.

𝑚

𝑖=1

 (3)

However, there is a different approach, which shall be used in the underlying thesis.

Concretely, Vapnik’s 𝜀-insensitive loss function:

 𝐿(𝑓 𝑥),𝑦 = 𝑦 − 𝑓 𝑥 𝜀 = 𝑚𝑎𝑥 0, 𝑦 − 𝑓 𝑥 − 𝜀 . (4)

In other words, the loss is equal to zero if the difference between an observed feature 𝑦 and

the predictive function 𝑓 𝑥 is less or equal to 𝜀 [5, p. 251].

1.3 Quadratic optimization problem

If 𝜀 is sufficiently large, then in the case of (4) empirical risk (1) can be zero. But this doesn’t

imply that the regression function 𝑓 𝑥 is a good predictor. To overcome this problem one

8

may estimate the regression function 𝑓(𝑥) by finding a solution to the following quadratic

optimization problem:

min
𝑤 ,𝑏

1

2
 𝑤 2

subject to
𝑓 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀

𝑦𝑖 − 𝑓 𝑥𝑖 ≤ 𝜀.

(5)

Constraints in equation (5) guarantee that the regression function 𝑓 𝑥 has at most an 𝜀

deviation from the actually obtained data point 𝑦𝑖 for all training data. At the same time the

minimization of the norm of the vector 𝑤 requires the function 𝑓(𝑥) to be as flat as possible.

The benefit of this condition will be seen in far more complex problems than fitting the linear

function to an observed data.

Having introduced the problem (5) we can describe now the notion of feasibility. There are

may be many vectors 𝑤 and offsets 𝑏 for which the function 𝑓 satisfies the inequality

constraints of (5). This set of parameters is called a feasible set. Hence, if the problem has this

set of solutions then the problem is feasible.

The constrained problem, mentioned above, can be solved by the method of Lagrange

multipliers. In further derivations we will use the following three theoretical results. First of

all, we define Kuhn-Tucker Saddle Point theorem.

Theorem 1. Assume an optimization problem of the form

𝑚𝑖𝑛
𝑥

𝑓 𝑥

subject to 𝑐𝑖 𝑥 ≤ 0 ∀ 𝑖 ∈ 𝑛 ,
(6)

where 𝑓:ℝ𝑚 → ℝ and 𝑐𝑖 :ℝ
𝑚 → ℝ for 𝑖 ∈ 𝑛 are arbitrary functions, and a Lagrangian

 𝐿 𝑥,𝛼 ∶= 𝑓 𝑥 + 𝛼𝑖𝑐𝑖 𝑥

𝑛

𝑖=1

 (7)

where 𝛼𝑖 ≥ 0.

9

If a pair of variables (𝑥 ,𝛼) with 𝑥 ∈ ℝ𝑛 and 𝛼 ≥ 0 for all 𝑖 ∈ 𝑛 exists, such that for all

𝑥 ∈ ℝ𝑚 and 𝛼 ∈ [0,∞)𝑛 we have

𝐿 𝑥 ,𝛼 ≤ 𝐿(𝑥 ,𝛼) ≤ 𝐿(𝑥,𝛼),

then 𝑥 is a solution to (6) [5, p. 166].

The function 𝑓 𝑥 in (6) to be minimized over the variable 𝑥 is sometimes called the

objective function.

Secondly, we introduce Karush-Kuhn-Tucker conditions for differentiable convex problems,

which are necessary conditions for a solution to be optimal.

Theorem 2. A solution to the optimization problem (6) with convex, differentiable 𝑓, 𝑐𝑖 is

given by 𝑥 , if there exists some 𝛼 ∈ ℝ𝑛 with 𝛼 𝑖 ≥ 0 for all 𝑖 ∈ 𝑛 such that the following

conditions are satisfied:

𝜕𝑥𝐿 𝑥 ,𝛼 = 𝜕𝑥𝑓 𝑥 + 𝛼 𝑖𝜕𝑥𝑐𝑖 𝑥 = 0,

𝑚

𝑖=1

 (8)

 𝜕𝛼𝑖𝐿 𝑥 ,𝛼 = 𝑐𝑖(𝑥) ≤ 0, (9)

 𝛼 𝑖𝑐𝑖 𝑥 = 0

𝑚

𝑖=1

. (10)

[5, p. 170]

Finally, another concept that is useful when dealing with optimization problems is that of

duality. Define

𝑔 𝛼 = inf
𝑥
𝐿(𝑥,𝛼).

Due to the constraint of (6) and positivity of 𝛼𝑖 we have for every feasible 𝑥 the inequalities:

 𝛼𝑖𝑐𝑖 𝑥

𝑛

𝑖=1

≤ 0 => 𝐿 𝑥,𝛼 ≤ 𝑓 𝑥 => 𝑔 𝛼 ≤ 𝑓 𝑥 => max
𝛼

𝑔 𝛼 ≤ 𝑓 𝑥 .

Therefore also the solution 𝑥 of (6) satisfies

max
𝛼≥0

𝑔 𝛼 ≤ 𝑓 𝑥 .

10

The problem of maximum

max
𝛼

𝑔 𝛼

subject to 𝛼 ≥ 0
(11)

is called a dual problem of (6).

In general in the case of a dual problem max𝛼 𝑔 𝛼 might not always be equal to 𝑓(𝑥) (then

it is said that there exists so called duality gap). But in case of convex optimization the

following strong duality property holds:

Theorem 3. If there exists 𝑥 such that for all 𝑖 ∈ 𝑛 𝑐𝑖 𝑥 < 0 (so called Slater’s condition),

then duality gap is zero:

 𝑚𝑎𝑥
𝛼≥0

𝑔 𝛼 = 𝑓 𝑥 , (12)

where 𝑥 is a solution of (6).

This means that if Slater’s condition is satisfied and functions 𝑓 and 𝑐𝑖 are convex, we can

solve (6) as follows. First use (8) to eliminate primal variables 𝑥 in the expression 𝐿(𝑥,𝛼), so

that we obtain the function 𝑔. Then solve the dual problem and use (8) again to find the

solution 𝑥 of (6).

Let us apply the general theory to the problem (5). The Lagrange functional of (5) is:

𝐿 =

1

2
 𝑤 2 − 𝛼𝑖

𝑚

𝑖=1

(𝜀 + 𝑦𝑖 − 𝑓(𝑥𝑖)) − 𝛼𝑖
∗ 𝜀 − 𝑦𝑖 + 𝑓 𝑥𝑖

𝑚

𝑖=1

subject to 𝛼𝑖 ,𝛼𝑖
∗ ≥ 0, 𝑖 = 1,… ,𝑚.

(13)

where 𝛼𝑖 and 𝛼𝑖
∗ are new variables (Lagrange multipliers) which have to satisfy positivity

constraints.

Substitute (2) into (13) to get the following equation:

 𝐿 =
1

2
 𝑤 2 − 𝛼𝑖

𝑚

𝑖=1

(𝜀 + 𝑦𝑖 − 𝑤, 𝑥𝑖 − 𝑏) − 𝛼𝑖
∗ 𝜀 − 𝑦𝑖 + 𝑤, 𝑥𝑖 + 𝑏

𝑚

𝑖=1

 (14)

11

If the Slater’s condition is satisfied (i.e. if there exists a regression hyperplane that is strictly

within error bounds at all points 𝑥𝑖), this function has a saddle point with respect to the primal

and dual variables at the solution [5, p. 254]. Hence, the above mentioned Kuhn-Tucker

theorem could be used and finding the optimal solution of the problem (5) is equivalent to

determining the saddle points of the Lagrange functional (14) [6, p. 252]. Thus, the partial

derivatives of 𝐿 are equated to zero:

𝜕𝐿

𝜕𝑏
= 𝛼𝑖 − 𝛼𝑖

∗ = 0

𝑚

𝑖=1

 (15)

𝜕𝐿

𝜕𝑤
= 𝑤 − 𝛼𝑖

∗ − 𝛼𝑖 𝑥𝑖 = 0

𝑚

𝑖=1

 (16)

Substituting (15) and (16) into (14) gives us:

𝐿 =
1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝑥𝑖

𝑚

𝑖=1

, 𝛼𝑗
∗ − 𝛼𝑗 𝑥𝑗

𝑚

𝑗=1

 − 𝛼𝑖 𝜀 + 𝑦𝑖 − 𝛼𝑗
∗ − 𝛼𝑗 𝑥𝑗 , 𝑥𝑖

𝑚

𝑗

 − 𝑏

𝑚

𝑖=1

− 𝛼𝑖
∗ 𝜀 − 𝑦𝑖 + 𝛼𝑗

∗ − 𝛼𝑗 𝑥𝑗 ,𝑥𝑖

𝑚

𝑗=1

 + 𝑏

𝑚

𝑖=1

=
1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝛼𝑗
∗ − 𝛼𝑗 𝑥𝑖 , 𝑥𝑗 − 𝛼𝑖𝜀

𝑚

𝑖=1

𝑚

𝑖 ,𝑗=1

− 𝛼𝑖
∗𝜀 − 𝛼𝑖𝑦𝑖 + 𝛼𝑖

∗𝑦𝑖
∗

𝑚

𝑖=1

− 𝛼𝑖
∗ − 𝛼𝑖 𝛼𝑗

∗ − 𝛼𝑗 𝑥𝑖 , 𝑥𝑗 + 𝛼𝑖𝑏 − 𝛼𝑖
∗𝑏

𝑚

𝑖=1

𝑚

𝑖=1

𝑚

𝑖 ,𝑗=1

𝑚

𝑖=1

𝑚

𝑖=1

= −
1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝛼𝑗
∗ − 𝛼𝑗 𝑥𝑖 , 𝑥𝑗

𝑚

𝑖 ,𝑗=1

− 𝜀 𝛼𝑖 + 𝛼𝑖
∗ + 𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

Therefore, we can solve (5) by finding 𝛼 of the saddle point by solving the dual problem:

max

𝛼𝑖 ,𝛼𝑖
∗∈ℝ𝑚

−
1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝛼𝑗
∗ − 𝛼𝑗 𝑥𝑖 , 𝑥𝑗

𝑚

𝑖 ,𝑗=1

− 𝜀 𝛼𝑖 + 𝛼𝑖
∗ + 𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

subject to 𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1 .

(17)

The obtained above result is very useful since the training data appears in this maximization

problem only as a dot products. It turns out that this fact enables us to generalize the result to

many classes of functions 𝑓 that depend on measurements 𝑥 nonlinearly. Such generalizations

are discussed in the next chapter.

In figure 1 (Appendix 1.1) is shown a simple dataset which consists of five sample points.

According to optimization problem (5) the goal is to fit the regression function so that its

12

deviation from each of these data points is less or equal to 𝜀. In this simple example 𝜀 = 0,2

and the bars, introduced in figure 1, represent 𝜀 deviation from data points. If we restrict the

class of regression function to the linear case only, it is obvious from figure 1 that there is no

possibility to find such straight line in order to satisfy all constraints of optimization problem

(5).

Figure 1. Sample points

This simple example, mentioned above, shows that the convex optimization problem (5) can

be infeasible and it is important to be very careful with determining the value of 𝜀. To make

the example, explained above, feasible one can set 𝜀 parameter larger.

For instance, consider 𝜀 = 0.6. It is seen from figure 2, where the red and green lines represent

two regression functions that satisfy all of the inequality constraints. The blue lines are the

boundaries of the red line representing a tube with radius 𝜀, so it is geometrically plausible

that these data points have deviation from the red line less or equal to 0.6 and thus are fit in

this tube.

0 1 2 3 4 5

0
1

2
3

4

x

y

13

Having changed 𝜀 to a larger value we made the feasible set nonempty. In other words, it is

possible now to find many lines that will satisfy optimization constraints (5) and the red and

green lines are just two options of the feasible set. The main difference between them is that

the red line the flattest one among all possible regression lines satisfying the inequality

constraints. It is the consequence of minimization of the norm of the vector 𝑤.

Figure 2. Two regression functions fitted to the data in the case of 𝜀 = 0.6

Such approach finds a solution to the optimization problem (5). Nevertheless, allowing all

errors to be that large reduces the possibility of getting a good predictive model. Another

approach is to allow errors to be larger than 𝜀 and to penalize the objective function for such

terms.

To find a solution to optimization problem (5) in a context of our first example, shown in

figure 1, one can introduce slack variables 𝜉𝑖 and 𝜉𝑖
∗ as follows:

0 1 2 3 4 5

0
1

2
3

4

x

y

14

min
𝑤 ,𝑏 .𝜉𝑖 ,𝜉𝑖

∗

1

2
 𝑤 2 +

𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)

𝑚

𝑖=1

subject to

𝑓 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − 𝑓 𝑥𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0.

(18)

Now we don’t try to strictly follow the constrains of (5), so the solution to otherwise

infeasible problem can be found. Note that this problem is always feasible and the constraints

satisfy Slater’s condition as for sufficiently large values of 𝜉 the all inequalities are strict.

Figure 3 shows an optimal solution for our sample data in the case of 𝜀 = 0.2.

Figure 3. Fitted regression function in the case of 𝜀 = 0.2

Analogously to the procedure which was applied to optimization problem (5), one can use the

method of Lagrange multipliers and the concept of duality for the problem (18). Hence,

Lagrange function of optimization problem (18) looks as follows:

0 1 2 3 4 5

0
1

2
3

4

x

y

15

𝐿 =
1

2
 𝑤 2 +

𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)

𝑚

𝑖=1

− (𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)

𝑚

𝑖=1

− 𝛼𝑖

𝑚

𝑖=1

 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖

− 𝛼𝑖
∗ 𝜀 + 𝜉𝑖

∗ − 𝑦𝑖 + 𝑓 𝑥𝑖

𝑚

𝑖=1

,

where Lagrange multipliers 𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ have to satisfy positivity constraints.

Now the main difference between finding the saddle points of this Lagrange function and a

Lagrangian (14) is that we get two extra partial derivatives:

𝜕𝐿

𝜕𝜉𝑖
=
𝐶

𝑚
− 𝛼𝑖 − 𝜂𝑖 = 0 => 𝜂𝑖 =

𝐶

𝑚
− 𝛼𝑖 (19)

 𝜕𝐿

𝜕𝜉𝑖
∗ =

𝐶

𝑚
− 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0 => 𝜂𝑖

∗ =
𝐶

𝑚
− 𝛼𝑖

∗.

(20)

As 𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0 then from last derivations in (19) and (20) one obtains 𝛼𝑖 ∈ [0,𝐶 𝑚] ,

𝛼𝑖
∗ ∈ [0,𝐶 𝑚] .

Nevertheless, the dual problem for minimization problem (18) still remains the same as for

the dual optimization problem (17), adding just one more constraint:

max
𝛼𝑖 ,𝛼𝑖

∗∈ℝ𝑚
−

1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝛼𝑗
∗ − 𝛼𝑗 𝑥𝑖 , 𝑥𝑗

𝑚

𝑖 ,𝑗=1

− 𝜀 𝛼𝑖 + 𝛼𝑖
∗ + 𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

subject to 𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1

𝛼𝑖 ,𝛼𝑖
∗ ∈ [0,𝐶 𝑚] .

(21)

Similary, as described in the case of dual problem (17) one can benefit from the fact that the

training data appears in (21) only as dot products.

1.4 𝜺-SVM Regression

First of all, partial derivative (16) can be rewritten as

𝑤 = (𝛼𝑖
∗ − 𝛼𝑖)𝑥𝑖

𝑚

𝑖=1

.

By substituting it into (2) one obtains

16

 𝑓 𝑥 = 𝛼𝑖
∗ − 𝛼𝑖 𝑥𝑖 , 𝑥 + 𝑏

𝑚

𝑖=1

. (22)

So the complete algorithm of 𝜺-SVM regression can be described in terms of dot products

between the data. Solving (21) yields the values of 𝛼𝑖 ,𝛼𝑖
∗ and 𝑥𝑖 , which can be plugged into

(22). When evaluating 𝑓(𝑥), we don’t need to compute 𝑤 explicitly. However, we still need

to compute the value of 𝑏. For doing that we exploit Karush-Kuhn-Tucker (KKT) conditions

described in Theorem 2, which state that the product between dual variables (𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗)

and constraints in (18) has to vanish [5, 255 p.]:

𝛼𝑖 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖 = 0

𝛼𝑖
∗ 𝜀 + 𝜉𝑖

∗
− 𝑦𝑖 + 𝑓 𝑥𝑖 = 0

(23)

𝜂𝑖𝜉𝑖 = 0 => 𝐶 𝑚 − 𝛼𝑖 𝜉𝑖 = 0

𝜂𝑖
∗𝜉𝑖

∗ = 0 => 𝐶 𝑚 − 𝛼𝑖
∗ 𝜉𝑖

∗ = 0.
(24)

If for some 𝑖 in 1,2,… ,𝑛 we have 𝛼𝑖 ∈ (0,𝐶 𝑚) then the first equality constraint (24)

yields 𝜉𝑖 = 0. So we can easily find the offset 𝑏 from the second factor of the first equation of

(23). Concretely, using the definition (2) of 𝑓 in the second factor of the first equation of (23),

one computes 𝑏 as follows:

𝑏 = 𝑦𝑖 − 𝑤, 𝑥𝑖 + 𝜀.

Same procedure applies in case 𝛼𝑖
∗ ∈ (0,𝐶 𝑚) for some 𝑖 in 1,2,… ,𝑛 .

Unfortunately, this procedure is valid only if there exists an index 𝑖 for which 𝛼𝑖 ∈ (0,𝐶 𝑚)

or 𝛼𝑖
∗ ∈ (0,𝐶 𝑚) . In rare case when all 𝛼𝑖 ,𝛼𝑖

∗ are either zero or 𝐶 𝑚 one needs to apply a

different technique. We do not discuss it in the underlying thesis.

1.5 Support Vectors

Now we are at the crucial point, when we can explain the name of support vectors. First of all,

suppose 𝜉𝑖 > 0, then from (24) one obtains 𝛼𝑖 = 𝐶 𝑚 . Same applies for 𝛼𝑖
∗ when 𝜉𝑖

∗ > 0.

17

This means that data points with corresponding 𝛼𝑖 = 𝐶 𝑚 (or 𝛼𝑖
∗ = 𝐶 𝑚) can lie outside the

𝜀-insensitive tube around 𝑓.

Assume that 𝛼𝑖 > 0, then 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖 = 0 in order to satisfy the constraint (23). That

in turn implies 𝑓 𝑥𝑖 − 𝑦𝑖 = 𝜀 when 𝜉𝑖 = 0 and 𝑓 𝑥𝑖 − 𝑦𝑖 > 𝜀 when 𝜉𝑖 > 0. Same derivation

applies for the second equation in (23). In other words, the Lagrange multipliers (𝛼𝑖 , 𝛼𝑖
∗) may

be nonzero only for |𝑓 𝑥𝑖 − 𝑦𝑖 | ≥ 𝜀.

On the other hand, when 𝑓 𝑥𝑖 − 𝑦𝑖 < 𝜀 this means that the Lagrange multipliers must be

zero for the Karush-Kuhn-Tucker conditions to be satisfied, since slack variables 𝜉𝑖 , 𝜉𝑖
∗ are

positively defined. All in all, this means that only the points outside 𝜀-insensitive tube around

𝑓 and the points lying just right at the boundaries of this tube contribute to the function (22).

Furthermore, these data points that come with nonvanishing Lagrange multipliers are called

Support Vectors. It is geometrically plausible that the points inside the tube do not contribute

to the solution: we could remove any of them, and still obtain the same solution, therefore

they cannot carry any information about it [5, 256 p.].

18

2 Kernels

2.1 Data transformation to higher dimensional space

In the previous chapters the concept of regression estimation using support vectors was

explained with theoretical and graphical examples. Though, if we want to fit a regression

function that depends nonlinearly on the data values, then nonlinear transformation of data 𝑥𝑖

to some higher dimension is useful. The key idea is to transform the sample points of data to a

higher dimensional space and then apply a linear regression.

Suppose we have one dimensional feature 𝑥𝑖 and we want to apply a transformation to ℝ2 as

follows:

𝑥𝑖 → 𝑥𝑖 , 𝑥𝑖
2 .

Further, using the definition of (2), one obtains:

𝑓 𝑥𝑖 = 𝑤1𝑥𝑖 + 𝑤2𝑥𝑖
2 + 𝑏.

Figure 4. Quadratic function fitted to the data points

0 1 2 3 4 5

0
1

2
3

4

x

y

19

Thus we can easily use same ideas to fit a quadratic function of the data 𝑥 instead of a linear

function. The result of implementing of this idea in the case of our sample dataset can be seen

in figure 4.

If the set of sample points is transformed into a dot product space by a transformation Φ, then

the optimization problem (5) has the following form:

min
𝑤 ,𝑏

1

2
 𝑤 2

subject to
𝑓 𝜙(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀

𝑦𝑖 − 𝑓 𝜙(𝑥𝑖) ≤ 𝜀.

(25)

which has the dual problem:

max

𝛼𝑖 ,𝛼𝑖
∗∈ℝ𝑚

−
1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝛼𝑗
∗ − 𝛼𝑗 𝜙 𝑥𝑖 ,𝜙(𝑥𝑗)

𝑚

𝑖 ,𝑗=1

− 𝜀 𝛼𝑖 + 𝛼𝑖
∗ + 𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

subject to 𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1

(26)

Usually it is not required for the regression function to fit the sample points completely, even

when the sample points have been transformed into the dot product space, because it often

leads to overfitting the data - in the case of the training data estimated regression function will

frequently behave well, though in case of the test set it produces results which are untrue.

If the set of transformed sample points does not conform with the constraints of the problem

(25) or the constraints do not have to be filled then a cost term is added to this minimization

problem as was done in the previous chapters.

Let the cost term be
𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)𝑚
𝑖=1 , where the slack variables satisfy 𝜉𝑖 , 𝜉𝑖

∗ ≥ 0. Then the

minimization problem looks as follows:

min
𝑤 ,𝑏 .𝜉𝑖 ,𝜉𝑖

∗

1

2
 𝑤 2 +

𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)

𝑚

𝑖=1

subject to

𝑓 𝜙(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − 𝑓 𝜙(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0,

(27)

where C is fixed positive constant.

20

Writing the given problem as a Lagrange functional and going through the same calculation

steps as in chapter (“Quadratic Optimization Problem”), the following dual problem is

obtained:

max
𝛼𝑖 ,𝛼𝑖

∗∈ℝ𝑚
−

1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝛼𝑗
∗ − 𝛼𝑗 𝜙(𝑥𝑖),𝜙(𝑥𝑗)

𝑚

𝑖 ,𝑗=1

− 𝜀 𝛼𝑖 + 𝛼𝑖
∗ + 𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

subject to 𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1

𝛼𝑖 ,𝛼𝑖
∗ ∈ [0,𝐶 𝑚] .

(28)

The regression function 𝑓(𝑥) has the form:

 𝑓 𝑥 = 𝛼𝑖
∗ − 𝛼𝑖 𝜙 𝑥𝑖 ,𝜙 𝑥 + 𝑏

𝑚

𝑖=1

. (29)

In order to adapt the theory described above to the set of nonlinear problems one needs to use

the kernel function

𝐾 𝑥,𝑦 ≔ Φ 𝑥 ,Φ(𝑦) .

As the training data appears in dual optimization problem (28) and regression function (29)

only as dot products there is no need to explicitly map all training inputs to some higher

dimensional feature space. It is required to know the kernel, but not the space that gives us the

value of the previously mentioned scalar product. For example, the transformation

𝑥𝑖 → 𝑥𝑖 , 𝑥𝑖
2

leads to the kernel

𝐾 𝑥,𝑦 = 𝑥𝑦 + (𝑥𝑦)2.

Note that we have to know only the kernel corresponding to the transformation used, knowing

other details of the transformation is not necessary for applying the theory. By using the

kernel the regression function takes the form:

 𝑓 𝑥 = 𝛼𝑖
∗ − 𝛼𝑖 𝐾 𝑥𝑖 , 𝑥 + 𝑏

𝑚

𝑖=1

. (30)

21

2.2 Classification of Kernels

There is a number of suitable kernel functions. We shall give a short overview of the best

known ones.

1. The linear kernel is the simplest kernel function. It is given by the inner product with

an optional constant c added.

𝐾 𝑥, 𝑦 ≔ 𝑥,𝑦 + 𝑐.

2. The Gaussian kernel

𝐾 𝑥,𝑦 ≔ 𝑒
− 𝑥−𝑦 2

2𝜎2 = 𝑒−𝛾 𝑥−𝑦
2
.

is a good example of radial basis function kernel. The term “radial basis function” means that

the kernel depends on 𝑥 and 𝑦 only through the euclidean distance between 𝑥 and 𝑦. In figure

4 is shown the Gaussian kernel with 𝛾 = 0.7 applied to example explained in the chapter

“Quadratic optimization problem”.

Figure 5. Radial Basis Function with gamma = 0.7, epsilon = 0.3

0 1 2 3 4 5

0
1

2
3

4

x

y

22

It is seen in figure 5 that the first four data points regarded from the left are the support

vectors. The fifth data point is not a support vector and does not make any contribution to the

regression function depicted as a blue line in the examined figure. The reason for such

classification of these sample points follows from the inequality 𝑓 𝑥𝑖 − 𝑦𝑖 < 𝜀 described in

the chapter “Support Vectors”.

The parameter 𝛾 (or 𝜎) determines the width of the Gaussian kernel. One must be careful not

to under- or overestimate the value of 𝛾 (or 𝜎). If underestimated (in case of 𝜎 -

overestimated), the exponential will behave almost linearly and the higher-dimensional

projection will start to lose its non-linear power. If 𝛾 is set to be smaller than in previous

figure, the regression function flattens and looks more like a linear function. It is useful to

mention that the support vectors in figure 6 are the first, the third and the fourth sample points

regarded from the left.

Figure 6. Radial Basis Function with gamma = 0.05, epsilon = 0.4

0 1 2 3 4 5

0
1

2
3

4

x

y

23

On the other hand, if 𝛾 is overestimated (for 𝜎 - underestimated), the function will lack

regularity and the regression function will be highly sensitive to noise in training data. This is

the consequence of the low value of 𝜎 which implies the fact that the width of the Gaussian

curves is small as well. The regression function for that case is shown in figure 7. Similarly as

before it is clear which sample points are the support vectors; the support vectors are all

sample points except the second one regarded from the left.

Figure 7. Radial Basis Function with gamma = 60, epsilon = 0.2

3. The polynomial kernels are widely used in cases where the training data is normalized.

The slope 𝛼, the constant term c and the polynomial degree are adjustable:

𝐾 𝑥,𝑦 ≔ (𝛼 𝑥,𝑦 + 𝑐)𝑑𝑒𝑔𝑟𝑒𝑒 .

0 1 2 3 4 5

0
1

2
3

4

x

y

24

4. The hyperbolic tangent kernel is also known as the sigmoid kernel and looks as

follows:

𝐾 𝑥,𝑦 ≔ tanh 𝛼 𝑥, 𝑦 + 𝑐 ,

where are two adjustable parameters, the slope 𝛼 and the intercept constant 𝑐.

2.3 𝝂-SVM Regression

The parameter 𝜀 of the 𝜀-insensitive loss is useful if the desired accuracy of the approximation

can be specified beforehand. In some cases, however, we just want the estimate to be as

accurate as possible, without having to commit ourselves to a specific level of accuracy a

priori. We now describe a modification of the 𝜀-SVR algorithm, called 𝜈-SVR, which

automatically computes 𝜀 [5, p. 260].

The main difference of 𝜈-SVR from 𝜀-SVR is that we add a new term 𝜈 mentioned to

penalize the error term 𝜀.

So the minimization problem of 𝜈-SVR looks as follows:

min
𝑤 ,𝑏 .𝜀 ,𝜉𝑖 ,𝜉𝑖

∗

1

2
 𝑤 2 + 𝐶(𝜈𝜀 +

1

𝑚
 𝜉𝑖 + 𝜉𝑖

∗

𝑚

𝑖=1

)

subject to

𝑓 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − 𝑓 𝑥𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝜀 ≥ 0.

(31)

Similarly to chapter “Quadratic optimization problem” the Lagrange function is obtained:

𝐿 𝑤, 𝑏,𝛼𝑖 ,𝛼𝑖
∗,𝛽, 𝜉𝑖 , 𝜉𝑖

∗, 𝜀, 𝜂𝑖 , 𝜂𝑖
∗ =

1

2
 𝑤 2 + 𝐶𝜈𝜀 +

𝐶

𝑚
 𝜉𝑖 + 𝜉𝑖

∗ − 𝛽𝜀

𝑚

𝑖=1

− (𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)

𝑚

𝑖=1

− 𝛼𝑖

𝑚

𝑖=1

 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖 − 𝛼𝑖
∗ 𝜀 + 𝜉𝑖

∗ − 𝑦𝑖 + 𝑓 𝑥𝑖

𝑚

𝑖=1

,

where 𝛼𝑖 ,𝛼𝑖
∗,𝛽, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0 are Lagrange multipliers.

Further, setting the derivatives with respect to the primal variables equal to zero yields the

five equations:

25

 𝛼𝑖 − 𝛼𝑖
∗ = 0

𝑚

𝑖=1

𝑤 = 𝛼𝑖
∗ − 𝛼𝑖 𝑥𝑖

𝑚

𝑖=1

𝐶

𝑚
− 𝛼𝑖 − 𝜂𝑖 = 0

𝐶

𝑚
− 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0

𝐶𝜈 − 𝛼𝑖 − 𝛼𝑖
∗ − 𝛽 = 0

𝑚

𝑖=1

.

Substituting the above five conditions into Lagrange functional leads to the dual optimization

problem. We will state it in the kernelized form:

max
𝛼𝑖 ,𝛼𝑖

∗∈ℝ𝑚
−

1

2
 𝛼𝑖

∗ − 𝛼𝑖 𝛼𝑗
∗ − 𝛼𝑗 𝐾(𝑥𝑖 , 𝑥𝑗)

𝑚

𝑖 ,𝑗=1

+ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚

𝑖=1

subject to 𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1

𝛼𝑖 ,𝛼𝑖
∗ ∈ [0,𝐶 𝑚]

 𝛼𝑖 − 𝛼𝑖
∗ ≤ 𝐶𝜈

𝑚

𝑖=1

.

(32)

The regression estimate then takes the form:

𝑓 𝑥 = 𝛼𝑖
∗ − 𝛼𝑖 𝐾 𝑥𝑖 , 𝑥 + 𝑏

𝑚

𝑖=1

.

2.4 R Packages

In the underlying thesis shall be used a free software programming language R. There are

many implementations of Support Vector Machines in R. Among them it is possible to find

packages e1071, kernlab, klaR and svmpath. In this work is used package kernlab for making

the examples with figures and package e1071 for the price prediction as it performs better in

terms of training time than the other packages. For comparison of these four SVM

implementations see [7].

26

2.4.1 Kernlab

The ksvm() function, kernlab’s implementation of SVMs, is mostly written in R but uses

libraries bsvm and libsvm which provide a very efficient C++ version of the Sequential

Minimization Optimization (SMO). For regression, ksvm() includes the 𝜀-SVM regression

algorithm along with the 𝜈-SVM regression formulation [7].

The choice of kernels in kernlab package is rich. Among others the most popular kernel

functions which can be used by setting the kernel parameter to the following value:

 The linear kernel (set the parameter kernel to kernel = “vanilladot”)

𝐾 𝑥,𝑦 = 𝑥,𝑦

 The polynomial kernel (kernel = “polydot”)

𝐾 𝑥,𝑦 = (𝑠𝑐𝑎𝑙𝑒 𝑥,𝑦 + 𝑜𝑓𝑓𝑠𝑒𝑡)𝑑𝑒𝑔𝑟𝑒𝑒

 The Gaussian RBF kernel (kernel = “rbfdot”)

𝐾 𝑥,𝑦 = 𝑒−𝜎 𝑥−𝑦
2

 The hyperbolic tangent kernel (kernel = “tanhdot”)

𝐾 𝑥,𝑦 = tanh(𝑠𝑐𝑎𝑙𝑒 𝑥,𝑦 + 𝑜𝑓𝑓𝑠𝑒𝑡)

In addition, in the case of a Gaussian RBF kernel function parameter kpar can be set to the

string “automatic”, which tries to find an optimal 𝜎 itself. The typical command to fit the

model could look as follows:

svm.model = ksvm(x, y, scaled = F, type = ”eps-svr”, kernel = “rbfdot”, kpar =

”automatic”), where

 x – a matrix or vector containing the training data;

 y – a numeric response vector;

 scaled – a logical vector indicating the variables to be scaled;

 type – SV regression type;

 kernel – the kernel function used in training and predicting;

 kpar – a list of the parameters to be used with the kernel function.

It is useful to mention that package kernlab allows defining custom kernels (so called user-

defined kernels).

27

2.4.2 e1071

svm() function of the package e1071 uses the library libsvm. The function svm() allows to use

the 𝜀-SVM regression and 𝜈-SVM regression as well as kernlab’s ksvm() function. It has less

types of kernels available, but still there are the most known ones:

 The linear kernel (set the parameter kernel to kernel = “linear”)

𝐾 𝑥,𝑦 = 𝑥,𝑦

 The polynomial kernel (kernel = “polynomial”)

𝐾 𝑥, 𝑦 = (𝛾 𝑥,𝑦 + 𝑐𝑜𝑒𝑓0)𝑑𝑒𝑔𝑟𝑒𝑒

 The Gaussian RBF kernel (kernel = “radial”)

𝐾 𝑥,𝑦 = 𝑒−𝛾 𝑥−𝑦
2

 The hyperbolic tangent kernel (kernel = “sigmoid”)

𝐾 𝑥,𝑦 = tanh(𝛾 𝑥, 𝑦 + 𝑐𝑜𝑒𝑓0)

In order to fit the SVM model one can execute the following command:

svm.model = svm(y ~ . , data = variables, scale = F, type = ”eps-regression”, kernel =

“radial”), where

 y ~ . – formula describing the model;

 data – data frame containing the variables required for fitting the models;

 scale – a logical vector indicating the variables to be scaled;

 type – SV regression type;

 kernel – the kernel function used in training and predicting.

2.5 Cross-validation

Cross-validation is a statistical method of evaluating and comparing learning algorithms by

dividing data into two segments: one used to learn or train a model and the other used to

validate the model. In typical cross-validation, the training and validation sets must cross-over

in successive rounds such that each data point has a chance of being validated against [8].

There are many types of different implementations of cross-validation. In this work is used R

repeated K-fold (R x K) cross-validation. That is, the original sample is randomly partitioned

into k equal size subsamples. Of the k subsamples, a single subsample is retained as the

validation data for testing the model, and the remaining k-1 subsamples are used as training

28

data. The cross-validation process is then repeated k times, with each of the k subsamples used

exactly once as the validation data [9]. Finally, the procedure described above repeated R

times. As the result, we get R*k estimations that can be averaged to produce a single

estimation.

In the underlying thesis is used an implementation of cross-validation from package cvTools.

We use cvTuning() function from this package to evaluate the best parameters of SVM

regression model via repeated K-fold cross-validation.

The list of desired parameters can be submitted to the main function if we define the

following variable:

Tuning = list(gamma = c(0.05, 0.01), cost = c(1, 2, 4, 8)),

where gamma, cost are chosen parameters to be fit to the model.

Further, we include this variable into the function cvTuning() along with other arguments,

such as:

 object – a function for fitting a model (i.e. svm() function);

 formula – formula describing the model;

 data – a data frame containing the variables required for fitting the models;

 tuning – a list of arguments giving the tuning parameter values to be evaluated (i.e

Tuning variable);

 cost – a cost function measuring prediction loss;

 K – an integer giving the number of groups into which the data should be split;

 R – an integer giving the number of replications for repeated K-fold cross-validation.

To apply repeated K-fold cross-validation using the package cvTools one can use:

svm.tuning = cvTuning(svm, formula = y ~ ., data = variables, tuning = Tuning, cost =

rmspe, K = 10, R = 10).

29

3 Prediction of stock price

In order to illustrate the theoretical part introduced in previous chapters, the high-frequency

stock data of the British multinational telecommunications company Vodafone Group Plc and

the British-Swedish multinational pharmaceutical and biologics company AstraZeneca Plc is

being used in the following analysis. In this thesis we consider the problem of predicting

future stock prices for a short time period by using the market data available at the beginning

of the prediction interval. If the price movements can to certain extent be predicted, then such

predictions can be used in various trading algorithms. The implementations of the predictions

in trading algorithms are not being considered as it is not relevant to the underlying thesis.

3.1 Order types

An order in a market is an instruction from customers to brokers to buy or sell securities on

the exchange [10]. There are different types of orders. In this particular case we distinct

market orders and limit orders. Market orders are orders to buy or sell securities at the best

available price. Limit orders are orders to buy or sell securities at a particular price [11, p. 61].

The whole high-frequency data can be referred as limit order book which holds information

about unexecuted limit orders and constantly updates it in case a new limit order is added or

cancelled. Market orders are not represented in limit order book itself. However, they can be

tracked by trade executions.

Nowadays the limit order books are completely electronic. Thus, computers register all the

updates automatically. In case the investor wants to get the most recent updates of the limit

order book, one has to pay for the data frame file. High-frequency data features are following:

 date – date of trading day;

 sym – a financial security identification code;

 localtime – local time of the updates;

 bid1, bid2 etc – best buying prices available at a particular moment;

 ask1, ask2 etc – best selling prices available at a particular moment;

 bsize1, bsize2 etc – available amount of shares for bid1, bid2 etc respectively;

 asize1, asize2 etc – available amount of shares for ask1, ask2 etc respectively;

 ordersb1, ordersb2 etc – number of orders for bid1, bid2 etc respectively;

30

 ordersa1, ordersa2 etc – number of orders for ask1, ask2 etc respectively;

 is_a_trade – shows whether trade execution took place or not;

 price – the price, or quote, of the last trade execution;

 size – size, or volume, of sold or bought securities during the last trade execution;

 tradetime – the time for the last trade execution.

Example of the high-frequency data frame is in Appendix 2.

3.2 VWAP

Having such various high-frequency data, it is necessary to designate what value we want to

predict. In current thesis is used a volume-weighted average price (VWAP). The reason for

such choise is an opportunity to compare the results with master's thesis of Andrei Orlov [1]

where he used VWAP as a high-frequency price. VWAP stands for the average quote per

share of all trades of the certain period of time. It can be represented by the following

formula:

𝑉𝑊𝐴𝑃𝑖 =
 𝑃𝑖𝑡𝑉𝑖𝑡𝑡

 𝑉𝑖𝑡𝑡
, 𝑡 ∈ 𝑇

where 𝑉𝑖𝑡 is the volume of trade 𝑖 executed at time interval 𝑡, 𝑃𝑖𝑡 is the price of trade 𝑖 at time

interval 𝑡, 𝑇 is a trading day.

The actual predictions are made not for VWAPs but for the increments between them:

𝑖𝑛𝑐 = 𝑉𝑊𝐴𝑃𝑖+1 − 𝑉𝑊𝐴𝑃𝑖 .

3.3 Regressors

As it was mentioned in chapter Loss functions, in regression analysis one can subdivide

variables into two classes: independent and dependent variable. Independent variable, that is

called regressor, has some influence to dependent variable, and this connection helps to make

predictions. In our case the dependent variable is an increment between two VWAPs. The

main task is to find the set of regressors that helps us to forecast the dependent variable as

well as possible. For our SVM model the following variables were extracted:

31

 market order intensity – average number of market orders executed in a unit of time,

calculated for ask and bid side of limit order book;

 buy and sell pressure – a sum of exponentially weighted volumes of limit orders on

the bid and ask sides respectively;

 limit order intensity – average number of limit orders added to bid1 and ask1 queue in

a unit of time;

 cancellation intensity – average number of cancelled limit orders in bid1 and ask1 in a

unit of time;

 difference between period last trade price and period VWAP value.

One needs to be careful with adding new regressors to already available. A new independent

variable may improve the fitted model if it has a low correlation with other regressors.

Otherwise it makes the model more complex and inefficient in terms of training time.

In order to compare different methods of estimation in the case of a specific data set, some

type of average prediction error is calculated for predictions. There are several types

available, but in this work is considered root mean square error (RMSE):

𝑅𝑀𝑆𝐸 =
1

𝑛
 (𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

,

where 𝑦𝑖 is actual observed value and 𝑓(𝑥𝑖) is a value predicted by a regression model.

The obtained indicator gives an idea of how well the observed data can be predicted for

certain methods. However, the calculated indicator must be treated with caution, especially if

the parameters of the method have been found using the same data as for calculating the

indicators (it is possible to find coherent parameters for the data, but they might result in

unreasonable predictions in the case of new data, so called overfitting effect) [12, p. 22].

3.4 Description Of Algorithms

In this subsection we will describe how to use the primary algorithm for regression analysis of

stock price. Further, we briefly introduce the secondary algorithm in order to compare the

main algorithm.

32

3.4.1 Primary Algorithm

The prediction algorithm is an example of the SVM theory implementation in R. In order to

use this algorithm it is necessary to install packages e1071 and cvTools, described in the

chapters “R packages” and “Cross-validation”. Before executing the algorithm it is possible to

change the values of tuning parameters 𝛾 and 𝐶 that would be used in fitting 𝜀-SVR model

with the sigmoid kernel to a data.

For forecasting the stock prices one needs to provide the following four arguments to the

function PricePrediction():

 Pre_Calc_Days – the number of days for calculating just regressors;

 Limit_Days – the number of days to store the regressors;

 Calc_Days – the number of days to make forecasts;

 PERIOD_LENGTH – the length of a single trading period.

Once the arguments are passed to the function it calculates the regressors, described earlier in

this work, at the end of every trading period except the last one. The same actions are

performed for finding VWAP values except that the algorithm drops VWAP value of the first

period of a day. Then the system finds the increments between VWAPs. This procedure is

repeated as many times as defined in Pre_Calc_Days and the data is stored in the memory.

This is the end of the first stage.

Further, in the second stage of the algorithm at the beginning of every day cross-validation is

applied in order to find the best parameters for the model fitting. Once cross-validation is

done the algorithm fits 𝜀-SVR model to a data which is valid till the end of the day. Similarly

to the first stage, regressors, VWAPs and their increments are found throughout the periods of

a day. In addition, forecasts of increments are made and predicted VWAPs calculated.

Note that if the number of days exceeds the value of Limit_Days the algorithm deletes

outdated regressors from the memory. The connections between various functions of

algorithm code are shown in Appendix 3.

3.4.2 Secondary Algorithm

The prediction algorithm was selected from the master’s thesis of A. Orlov (2012) [1]. The

idea of this algorithm is rather similar except that a different econometric model is fitted to

33

the data. In his work Orlov used linear regression analysis and tried to improve the results by

applying autoregressive model to residuals of linear regression model. Unlike the primary

algorithm the secondary one tries to make predictions to arithmetic rate of returns (ROR) of

VWAPs that could be defined in terms of 𝑉𝑊𝐴𝑃𝑠 as follows:

𝑉𝑊𝐴𝑃𝑖 =
𝑉𝑊𝐴𝑃𝑖+1 − 𝑉𝑊𝐴𝑃𝑖

𝑉𝑊𝐴𝑃𝑖
.

The algorithm provides day splitting into intervals as well. This allows using different models

for different intervals. Though, it did not give any significant advantage or disadvantage to

price prediction process. So the comparison of the primary algorithm is done to the secondary

algorithm, which does not use the splitting.

3.5 Parameter fitting

Using cross-validation technique for tuning the parameters of SVM model is quite expensive

in terms of training time to fit all possible combinations of parameters. We perform some tests

to decide which kernel to use and to choose a pair of values for C and 𝛾 parameters, which

will later be used in cross-validations when we choose a model for each new training day.

In order to find the best parameters we fit 𝜀-SVR model to data of AstraZeneca stock. The

day is divided into 15 minute intervals, the first 9 days are selected for finding regressors, 5

days are picked to predict the prices and all new regressors obtained after the first 9 days are

used in the further calculations. As regressors are collected, at the beginning of each day we

fit 𝜀-SVR model to the data. First of all, we will search for the best parameters of the

polynomial kernel with degree = 3, modifying the values of 𝐶 and 𝛾. The parameter 𝜀 value is

always 0.1. For accuracy measures we use the percentage of correctly computed stock price

movement directions and root mean square error. In Table 1 are presented the results of 7

experiments.

Experiment 1 2 3 4 5 6 7

C 1 1 1 2 0.1 1.5 0.5

𝜸 0.1 0.05 0.01 0.05 0.05 0.05 0.05

Accuracy 64.24% 63.03% 52.12% 62.42% 57.58% 62.42% 62.42%

RMSE 3.676 3.511 3.542 3.541 3.45 3.577 3.475

Table 1. Test results of the polynomial kernel in the case of AstraZeneca stock

34

In order to conclude whether the polynomial function fits for predicting the stock price one

must compare it with test results of another kernel. So the same procedure is made for the

Gaussian kernel.

Experiment 1 2 3 4 5 6 7

C 1 1 1 1 2 2 1.5

𝜸 0.1 0.05 0.01 0.005 0.01 0.005 0.005

Accuracy 67.88% 64.85% 69.09% 69.7% 70.3% 69.09% 69.09%

RMSE 2.814 2.796 2.707 2.736 2.725 2.707 2.715

Table 2. Test results of the Gaussian kernel in the case of AstraZeneca stock

As it is seen from Table 1 and 2 the SVM algorithm that uses the Gaussian kernel predicts the

stock price movement direction better than polynomial. If we measure the results in terms of

root mean square error, the difference will be rather bigger in favor of the Gaussian kernel.

Also it is seen from Table 2 that the range of values between 0.01 and 0.005 can be a good

choice for the parameter 𝛾. Before making the final decision in favor of the Gaussian kernel

we introduce the test results for the sigmoid kernel.

Experiment 1 2 3 4 5 6 7

C 1 1 1 1 1 2 2.5

𝜸 0.1 0.05 0.01 0.005 0.008 0.01 0.01

Accuracy 49.09% 60% 70.91% 69.09% 69.7% 72.12% 70.91%

RMSE 23.693 7.704 2.73 2.816 2.752 2.704 2.692

Table 3. Test results of the sigmoid kernel in the case of AstraZeneca stock

The test results of sigmoid kernel are rapidly improving as parameters C and 𝛾 are changed.

Such improved results can compete with the test results of Gaussian kernel. As the result, the

best values of sigmoid kernel have some advantage before the values of Gaussian kernel.

Therefore, in further calculations of AstraZeneca stock a sigmoid kernel is chosen.

Now let us make the same procedure in the case of the data of Vodafone stock. As before we

use 15 minute intervals, 9 days for finding the primary regressors, 5 days for predicting the

prices and all new regressors obtained after the first 9 days are used in the further calculations.

The accuracy results of the polynomial in the case of Vodafone stock is seen in Table 4.

35

Experiment 1 2 3 4 5 6 7

C 1 1 1 2 0.1 1.5 0.5

𝜸 0.1 0.05 0.01 0.05 0.05 0.05 0.05

Accuracy 66.06% 66.67% 50.3% 64.85% 60% 66.67% 64.24%

RMSE 0.183 0.172 0.183 0.173 0.176 0.173 0.172

Table 4. Test results of the polynomial kernel in the case of Vodafone stock

If we fit 𝜀-SVR model with a Gaussian model to the same data of Vodafone stock, then the

results of the prediction accuracy look as follows.

Experiment 1 2 3 4 5 6 7

C 1 1 1 1 2 2 3

𝜸 0.1 0.05 0.01 0.005 0.01 0.005 0.005

Accuracy 66.67% 69.09% 70.91% 68.48% 70.3% 70.91% 70.91%

RMSE 0.161 0.158 0.151 0.152 0.151 0.15 0.15

Table 5. Test results of the Gaussian kernel in the case of Vodafone stock

In Table 6 are presented the testing results for the sigmoid kernel.

Experiment 1 2 3 4 5 6 7

C 1 1 1 1 2 3 4

𝜸 0.1 0.05 0.01 0.005 0.01 0.01 0.01

Accuracy 52.12% 57.58% 66.67% 67.88% 67.27% 68.48% 67.88%

RMSE 1.186 0.397 0.151 0.154 0.151 0.151 0.153

Table 6. Test results of the sigmoid kernel in the case of Vodafone stock

In the case of Vodafone stock the testing results reveal that the Gaussian kernel and the

sigmoid kernel are the better choice than the polynomial kernel. In terms of root mean square

error the best testing results are rather similar. The Gaussian kernel has a small advantage in

terms of the percentage of correctly computed stock price movement directions. Hence, we

shall use the Gaussian kernel in order to compute the predictions of the price of Vodafone

stock.

Once the kernel functions are chosen for two stocks it is possible to test the primary algorithm

versus the secondary algorithm. Now we will consider AstraZeneca stock and 3 different time

36

intervals. Both algorithms use 9 days for collecting regressors and the predictions are made

for 84 days. In the case of the primary algorithm only 15 days are used to store regressors

values and sigmoid kernel is chosen with 𝜀 = 0.1. In addition, after computing initial

regressors on the basis of the first 9 days the primary algorithm uses 4 times repeated 5-fold

cross-validation technique for tuning parameters. The parameter 𝛾 is chosen between values

0.01 and 0.008. The value of C can be whether 1 or 2. As soon as cross-validation tool picked

the best combination of 𝛾 and C 𝜀-SVR model is applied to the data of AstraZeneca stock.

The comparison of the primary and the secondary algorithms is seen from Table 7.

Stock AstraZeneca

Period length 5 min 10 min 15 min

The secondary

algorithm

72.2% 72.49% 72.76%

2.1 2.816 3.314

The primary

algorithm

72.05% 72.04% 72.58%

2.142 2.869 3.311

Table 7. Comparison between the primary and the secondary algorithms

In the case of Vodafone stock the same procedure is applied as described above except that

for the SVM model fitting the Gaussian kernel is used. The parameter 𝛾 is picked between

values 0.01 and 0.005. The value of C is still 1 or 2. The accuracy results of the primary and

the secondary algorithms in the case of Vodafone stock are presented below.

 Stock Vodafone

Period length 5 min 10 min 15 min

The secondary

algorithm

67.11% 69.02% 69.19%

0.118 0.152 0.178

The primary

algorithm

67.47% 69.45% 70.24%

0.119 0.153 0.175

Table 8. Comparison between the primary and the secondary algorithms

37

Summary

The aim of the underlying thesis was to implement support vector machines (SVM) on the

short-term price movement prediction in intra-day trading. In order to research that topic the

predictive algorithm was developed. The data of two multinational companies were used in

the testing of the predictive algorithm.

Finding a model that is able to predict a stock price is a very serious challenge. The predictive

algorithm, developed in the underlying thesis, uses SVM, a recently popular method of

machine learning. We have demonstrated that with support vector machines it is possible to

get as good results as with other approach with quite small modeling effort. One drawback of

SVM approach is the slowness of the cross-validation process. One of the interesting open

questions remaining is the optimal choice of how often and how to perform extensive cross-

validations so that the computation speed is high and the accuracy does not suffer.

In addition to the development of the predictive algorithm, it was also given an insight into

the theory of support vector regression. The concept of regression estimation was explained

with theoretical and graphical examples. The possibility to use non-linear regression functions

through the kernel functions in a framework of SVM was introduced as well. The further

improvements of the predictive algorithm may involve the minimization of the training time

and the research of dependencies of errors. Additionally the next step could be the

implementation of the predictions to trading algorithms.

38

Tugivektormasinate kasutatavuse uurimine lühiajaliste hinnaliikumiste

prognoosimiseks päevasisese kauplemise tingimustes.

Vassili Mušnikov

 Kokkuvõte

Kaasaegses finantsmaailmas on väga populaarsed automaatkauplemise algoritmid.

Automaatse kauplemise tingimustes on sageli oluline osata prognoosida hinnaliikumise

suundi ja ulatust suhteliselt lühikese aja, näiteks 10 minuti jooksul. On mitmeid statistilisi

meetodeid selle ülesanne lahendamiseks, kuid käesoleva magistritöö raames on kasutatud üks

kaasaegne meetod – tugivektormasinad. Töö eesmärgiks on uurida meetodi toimimist meid

huvitava andmestiku põhjal, milleks on Vodafone-i ja AstraZeneca andmed.

Töö koosneb kolmest osast. Esimene peatükk on pühendatud tugivektor masinatele. Selleks,

et paremini aru saada selle meetodi töö põhimõtetest, seletatakse töös teatud aluseid. Esimeses

peatükis räägitakse sellest, mis on tehisõpe, selgitatakse, kuidas leida regressiooni funktsiooni

tugivektor masinate abil ja mainitakse probleeme, mis võivad tekkida regressiooni funktsiooni

leidmisel. Regressiooni funktsiooni kontseptsioonid on selgitatud nii teoreetiliste kui

graafiliste näidete abil.

Teine peatükk on pühendatud tuumafunktsioonidele, kuna need võimaldavad kasutada

mittelineaarseid funktsioone kui regressiooni funktsioone. Ühtlasi selgitakse lugejale, mille

poolest tuumafunktsioonide kasutus lihtsustab regressiooni funktsiooni leidmise. Lisaks

tutvustatakse lühidalt teises peatükis programmeerimiskeele R lisamoodulite tehnilisi

võimalusi. Lõpuks, mainitakse lühidalt sellise statistilise meetodi algoritmide võrdlemiseks

nagu rist-validatsioon.

Erinevalt kahest esimesest peatükist, mis annavad teoreetilise ülevaate, kannab kolmas

peatükk praktilise iseloomu. Peatükk tutvustab, kuidas tugivektor masinaid rakendatakse

lühiajaliste hinnaliikumiste prognoosimiseks päevasisese kauplemise tingimustes. Selles

peatükis selgitatakse hindade ennustamise algoritmi ning kirjeldatakse samuti kasutatavid

andmeid. Seoses mõningate sarnasustega, toob autor välja ka oma töö võrdluse Andrei Orlovi

magistritööga. Lisaks lugeja leiab töö lõpus lisad, mis koosnevad andmestikust, joonisest, mis

selgitab koodi funktsioonide vahelisi suhteid, jooniste koode ja CD, mis sisaldab algoritmi

koodi.

39

Töö autor arendas hindade ennustamise algoritmi, mis põhineb tugivektor masinatel. Ühtlasi

demonstreeris töö autor, et tugivektor masinate abil on võimalik saada sama häid tulemusi

nagu ka teiste lähenemiste puhul. Üheks tugivektor masinate meetodi puuduseks on selle

aeglus rist-validatsiooni protsessis. Jääb avatuks küsimus, kui tihti ja kuidas tuleb teostada

rist-validatsioone, et arvutused oleksid kiired ja täpsus ei kannataks. Ennustava algoritmi

edaspidine arendamine võib olla seotud arvutuste aja minimiseerimisega ja vigade sõltuvuse

uurimisega. Lisaks järgmine samm võib olla ennustuste rakendamine kauplemise

algoritmides.

40

Appendix 1

Appendix 1.1

sample data points

x <- seq(0.5, 4.5, by = 1)

y <- c(1,2,1.5,3,2.5)

plot the data

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red")

eps = 0.2

epsilon deviation from data points

for(i in 1:length(x)){

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90)

}

Appendix 1.2

library(kernlab)

x <- seq(0.5, 4.5, by = 1)

y <- c(1,2,1.5,3,2.5)

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red")

eps = 0.6

for(i in 1:length(x)){

 arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90)

}

fit the epsilon support vector regression

eps.svr <- ksvm(x,y, scaled = FALSE, type = "eps-svr", kernel = "vanilladot", C = 10,

epsilon=eps)

make predictions

esvr.pred <- predict(eps.svr,x)

solid line for espilon-svr predictions

fit <- lm(esvr.pred~x)

abline(fit,col="red",lwd =2)

boudaries of fitted regression model

abline(fit$coefficients[1] - eps, fit$coefficients[2], col="blue")

abline(fit$coefficients[1] + eps, fit$coefficients[2], col="blue")

another possible regression function

abline(0.7,0.5,col="green", lwd = 2)

41

Appendix 1.3

library(kernlab)

x <- seq(0.5, 4.5, by = 1)

y <- c(1,2,1.5,3,2.5)

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red")

eps = 0.2

fit the epsilon support vector regression

eps.svr <- ksvm(x,y, scaled = FALSE, type = "eps-svr", kernel="vanilladot", C = 10,

epsilon=eps)

esvr.pred <- predict(eps.svr,x)

solid line for espilon-svr predictions

fit<- lm(esvr.pred~x)

abline(fit,col="red",lwd =2)

boundaries of fitted regression function

abline(fit$coefficients[1] - eps, fit$coefficients[2], col="blue")

abline(fit$coefficients[1] + eps, fit$coefficients[2], col="blue")

Appendix 1.4

library(kernlab)

x <- seq(0.5, 4.5, by = 1)

y <- c(1,2,1.5,3,2.5)

eps = 0.2

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red")

for(i in 1:length(x)){

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90)

}

user-defined kernel

k <- function(x,y) {x*y + (x*y)**2}

class(k) <- "kernel"

fit the epsilon support vector regression

eps.svr <- ksvm(x,y, scaled = FALSE, kernel=k, C=10,epsilon = eps)

make predictions

x1<- seq(0,5,0.01)

esvr.pred <- predict(eps.svr,x1)

plot the regression function

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2)

42

Appendix 1.5

library(kernlab)

x <- seq(0.5, 4.5, by = 1)

y <- c(1,2,1.5,3,2.5)

eps = 0.3

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red")

for(i in 1:length(x)){

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90)

}

fit the epsilon support vector regression

eps.svr <- ksvm(x,y, scaled = FALSE, kernel="rbfdot", kpar=list(sigma=0.7), C=1,epsilon =

eps)

make predictions

x1<- seq(0,5,0.01)

esvr.pred <- predict(eps.svr,x1)

plot the regression function

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2)

Appendix 1.6

library(kernlab)

x <- seq(0.5, 4.5, by = 1)

y <- c(1,2,1.5,3,2.5)

eps = 0.4

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red")

for(i in 1:length(x)){

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90)

}

eps.svr <- ksvm(x,y, scaled = FALSE, kernel="rbfdot", kpar=list(sigma=0.05), C=1,epsilon =

eps)

make predictions

x1<- seq(0,5,0.01)

esvr.pred <- predict(eps.svr,x1)

plot the regression function

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2)

43

Appendix 1.7

library(kernlab)

x <- seq(0.5, 4.5, by = 1)

y <- c(1,2,1.5,3,2.5)

eps = 0.2

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red")

for(i in 1:length(x)){

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90)

}

eps.svr <- ksvm(x,y, scaled = FALSE, kernel="rbfdot", kpar=list(sigma=60), C=1,epsilon =

eps)

make predictions

x1<- seq(0,5,0.01)

esvr.pred <- predict(eps.svr,x1)

plot the regression function

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2)

Appendix 2

45

Appendix 3

Appendix 4

Bibliography

[1] Orlov, A. (2012). Development of trading algorithms for taking or clearing a large

single company stock position in a one day frame based on the historical tick data. Master’s

thesis. University of Tartu, Faculty of mathematics and computer science, Institute of

mathematical statistics

[2] Unsupervised learning. [WWW]

 http://en.wikipedia.org/wiki/Unsupervised_learning (15.05.2013)

[3] Statistical classification. [WWW]

http://en.wikipedia.org/wiki/Statistical_classification (15.05.2013)

[4] Empirical risk minimization. [WWW]

 http://en.wikipedia.org/wiki/Empirical_risk_minimization (15.05.2013)

[5] Schölkopf, B., Smola, A. (2002). Learning with Kernels, The MIT Press

[6] Kaasik, Ü., Kivistik, L. (1982). Operatsioonianalüüs. Valgus

[7] Support Vector Machines in R. [WWW]

http://www.jstatsoft.org/v15/i09/paper (17.05.2013)

[8] Cross-Validation. [WWW]

http://www.cse.iitb.ac.in/~tarung/smt/papers_ppt/ency-cross-validation.pdf (17.05.2013)

[9] Cross-validation(statistics). [WWW]

http://en.wikipedia.org/wiki/Cross-validation_(statistics) (17.05.2013)

[10] Order(exchange). [WWW]

 http://en.wikipedia.org/wiki/Order_(exchange) (18.05.2013)

[11] Aldridge, I. (2010). High-Frequency Trading: A Practical Guide to Algorithmic

Strategies and Trading Systems, John Wiley & Sons, Inc.

http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Empirical_risk_minimization
http://www.jstatsoft.org/v15/i09/paper
http://www.cse.iitb.ac.in/~tarung/smt/papers_ppt/ency-cross-validation.pdf
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Order_(exchange)

48

[12] Kangro, R. (2012). Aegridade analüüs. Loengumaterjalid, Tartu Ülikool

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks

Mina Vassili Mušnikov (15.05.1987)

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

„On the usage of support vector machines for the short-time price movement prediction in

intra-day trading”

mille juhendaja on Raul Kangro.

1.1. reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil, sealhulgas

digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja

lõppemiseni;

1.2. üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu, sealhulgas

digitaalarhiivi DSpace´i kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest tulenevaid õigusi.

Tartus, 20.05.2013

