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Introduction 

In our changing modern society grows the significance of financial issues. Entities and 

individuals speculate on the stock exchanges in order to trade financial securities and to gain 

profit. We all know the words of a great politician Benjamin Franklin who once said: “Time 

is money.” The fast developing world of information technologies and computers gives an 

opportunity to do many things in a short period of time. Modern financial markets represent 

electronic networks which give an advantage to perform transactions at increased speed and 

reduced cost. When a company decides to buy or sell the large amount of shares, this may 

lead to the unwanted superfluous loss. In order to minimize the loss, it is needed to develop a 

trading algorithm which can generate buy or sell signals using future stock price forecasts. 

That is the reason why the prediction of stock price is necessary in trade executions. That 

brings me to the aim of the underlying thesis. 

The aim of the current thesis is to research the prediction of future stock prices by using the 

implementation of support vector machines, also to find possible technical solutions and to 

interpret the gained results. In order to consider the problem of forecasting future stock prices 

for a short period of time, the market data of the British multinational telecommunications 

company Vodafone Group Plc and the British-Swedish multinational pharmaceutical and 

biologics company AstraZeneca Plc is being used to fit the models and verify how good their 

predictive power is. The opportunities of packages e1071 and kernlab of programming 

language R are being used in the current thesis. The implementation of the predictions to 

trading algorithms is not being considered due to it is not relevant to the underlying thesis. 

The thesis consists of three chapters. The first chapter is dedicated to support vector 

machines, because this particular method is used in developing prediction algorithms. For 

better understanding of the principle of this method, certain fundamentals are being explained. 

The first chapter introduces what is machine learning, explains finding the regression function 

by using support vector machines and mentions the problems which may arise during finding 

the regression function. The concept of regression estimation is being explained with 

theoretical and graphical examples. 

The second chapter is dedicated to kernels, because that gives an opportunity to use non-linear 

functions as regression functions. In this chapter, the classification of kernels is being 

introduced. In addition, it is explained to the reader why does the usage of kernel functions 

simplify the finding of the regression function. The short overview of technical opportunities 
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of programming language R packages is also being introduced in the second chapter. Finally, 

such statistical method of evaluating and comparing learning algorithms as cross-validation is 

being briefly mentioned in the chapter. 

Unlike from the first two chapters, which give a theoretical overview, the third chapter is the 

practical part of the thesis. It introduces the implementation of support vector machines on the 

short-term price movement prediction in intra-day trading. The algorithm of the price 

prediction is being explained in the third chapter. Given data is also described in this chapter. 

Due to similar data involved, the author also presents the comparison with the master’s thesis 

of Andrei Orlov [1]. 

In addition, at the end of the thesis, the reader can find Appendices which consist of data 

frame, the diagram explaining the relations between functions in a code of algorithm, the 

codes of figures and the CD containing the code of the algorithm. 
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1 Support Vector Machines 

1.1 Machine Learning 

There is no well accepted definition of what is and what is not Machine Learning. But here is 

a definition of what is Machine Learning according to Webster: “Machine Learning is the 

ability of machine or a system to improve its performance based on previous results”. From 

mathematical point of view the definition is not quite correct, but it gives a basic overview 

about the subject.  

There are several different types of learning algorithms, but the main two types that Machine 

Learning can be subdivided into are supervised learning and unsupervised learning. The term 

supervised learning refers to the fact that the algorithm is provided with the data set in which 

the “right answers” are given. Concretely, for each observation a desired output value is 

given. Learning algorithm analyzes this data set and produces a model, which can be used for 

mapping yet unseen data. In unsupervised learning the algorithm is trained on a data with no 

output values. The learning algorithm tries to find hidden structure in unlabeled data [2].   

Further, supervised learning can be divided into classification and regression problem. 

Classification is the problem of identifying to which of a set of categories a new observation 

belongs, on the basis of a data set containing observations whose category is known [3]. In 

regression problem it is tried to predict a continuous variable instead of a category. The 

underlying thesis describes an algorithm of a supervised learning producing a regression 

analysis of a data.  

1.2 Loss Functions 

In order to produce a regression analysis one usually divides a whole data set into two 

subsets: training set, on which the predictive model is applied, and test set, on which the 

found model is being tested. Often the training data is given as follows: 

{ 𝑥1,𝑦1 ,… ,  𝑥𝑚 , 𝑦𝑚 }, where 𝑥𝑖  denotes a vector of features and 𝑦𝑖  denotes an additional 

feature for which the predictions will be made. In regression analysis 𝑥𝑖  is called a vector of 

independent variables and 𝑦𝑖  is called dependent variable. A regression function 𝑓(𝑥) is 

constructed which is technically a prediction function.  
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In order to estimate a regression function 𝑓(𝑥) which is a function of the independent 

variables, one usually tries to minimize the empirical risk: 

 𝑅𝑒𝑚𝑝  𝑓 =
1

𝑚
 𝐿(𝑓 𝑥),𝑦 ,

𝑚

𝑖=1

 (1) 

where 𝐿(𝑓 𝑥 ,𝑦) is so-called loss function [4].  

In order to give the basic intuition, a regression function 𝑓(𝑥) in a class of linear functions is 

being described by 

 𝑓 𝑥 =  𝑤, 𝑥 + 𝑏, (2) 

where 𝑤 is a vector, 𝑏 is a real number and  𝑤, 𝑥  represents a dot product between two 

vectors.  

One possible approach for such class is a linear regression model. In case of this model it is 

tried to fit a linear function to an observed data, using least square method. The aim of this 

method is to minimize the sum of the squares of the errors made by fitting a linear function. 

Thus, to get a proper estimation for a regression function 𝑓 𝑥  in the case of linear regression 

model one needs to minimize the following empirical risk equation: 

 𝑅𝑒𝑚𝑝  𝑓 =
1

𝑚
 (𝑓 𝑥𝑖 − 𝑦𝑖)

2.

𝑚

𝑖=1

 (3) 

However, there is a different approach, which shall be used in the underlying thesis. 

Concretely, Vapnik’s 𝜀-insensitive loss function: 

 𝐿(𝑓 𝑥),𝑦 =  𝑦 − 𝑓 𝑥  𝜀 = 𝑚𝑎𝑥 0,  𝑦 − 𝑓 𝑥  − 𝜀 . (4) 

In other words, the loss is equal to zero if the difference between an observed feature 𝑦 and 

the predictive function 𝑓 𝑥  is less or equal to 𝜀 [5, p. 251]. 

1.3 Quadratic optimization problem 

If 𝜀 is sufficiently large, then in the case of (4) empirical risk (1) can be zero. But this doesn’t 

imply that the regression function 𝑓 𝑥  is a good predictor.  To overcome this problem one 
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may estimate the regression function 𝑓(𝑥) by finding a solution to the following quadratic 

optimization problem: 

 

 

min
𝑤 ,𝑏

1

2
 𝑤 2 

subject to  
𝑓 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀

𝑦𝑖 − 𝑓 𝑥𝑖 ≤ 𝜀.
  

(5) 

Constraints in equation (5) guarantee that the regression function 𝑓 𝑥  has at most an 𝜀 

deviation from the actually obtained data point 𝑦𝑖  for all training data. At the same time the 

minimization of the norm of the vector 𝑤 requires the function 𝑓(𝑥) to be as flat as possible. 

The benefit of this condition will be seen in far more complex problems than fitting the linear 

function to an observed data.  

Having introduced the problem (5) we can describe now the notion of feasibility. There are 

may be many vectors 𝑤 and offsets 𝑏 for which the function 𝑓 satisfies the inequality 

constraints of (5). This set of parameters is called a feasible set. Hence, if the problem has this 

set of solutions then the problem is feasible.  

The constrained problem, mentioned above, can be solved by the method of Lagrange 

multipliers. In further derivations we will use the following three theoretical results. First of 

all, we define  Kuhn-Tucker Saddle Point theorem. 

Theorem 1. Assume an optimization problem of the form 

 
𝑚𝑖𝑛
𝑥

𝑓 𝑥  

subject to 𝑐𝑖 𝑥 ≤ 0 ∀ 𝑖 ∈  𝑛 , 
(6) 

where 𝑓:ℝ𝑚 → ℝ and 𝑐𝑖 :ℝ
𝑚 → ℝ for 𝑖 ∈  𝑛  are arbitrary functions, and a Lagrangian 

 𝐿 𝑥,𝛼 ∶= 𝑓 𝑥 +  𝛼𝑖𝑐𝑖 𝑥 

𝑛

𝑖=1

 (7) 

 

where 𝛼𝑖 ≥ 0. 
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If a pair of variables (𝑥 ,𝛼 ) with 𝑥 ∈ ℝ𝑛  and 𝛼 ≥ 0 for all 𝑖 ∈  𝑛  exists, such that for all 

𝑥 ∈ ℝ𝑚  and 𝛼 ∈ [0,∞)𝑛  we have 

𝐿 𝑥 ,𝛼 ≤ 𝐿(𝑥 ,𝛼 ) ≤ 𝐿(𝑥,𝛼 ), 

then 𝑥  is a solution to (6) [5, p. 166]. 

The function 𝑓 𝑥  in (6) to be minimized over the variable 𝑥 is sometimes called the 

objective function. 

Secondly, we introduce Karush-Kuhn-Tucker conditions for differentiable convex problems, 

which are necessary conditions for a solution to be optimal. 

Theorem 2. A solution to the optimization problem (6) with convex, differentiable 𝑓, 𝑐𝑖  is 

given by 𝑥 , if there exists some 𝛼 ∈ ℝ𝑛  with 𝛼 𝑖  ≥ 0 for all 𝑖 ∈  𝑛  such that the following 

conditions are satisfied: 

 
𝜕𝑥𝐿 𝑥 ,𝛼  = 𝜕𝑥𝑓 𝑥  +  𝛼 𝑖𝜕𝑥𝑐𝑖 𝑥  = 0,

𝑚

𝑖=1

 (8) 

 𝜕𝛼𝑖𝐿 𝑥 ,𝛼  = 𝑐𝑖(𝑥 ) ≤ 0, (9) 

  𝛼 𝑖𝑐𝑖 𝑥  = 0

𝑚

𝑖=1

. (10) 

[5, p. 170] 

Finally, another concept that is useful when dealing with optimization problems is that of 

duality. Define  

𝑔 𝛼 = inf
𝑥
𝐿(𝑥,𝛼). 

Due to the constraint of (6) and positivity of 𝛼𝑖  we have for every feasible 𝑥 the inequalities:  

 𝛼𝑖𝑐𝑖 𝑥 

𝑛

𝑖=1

≤ 0 => 𝐿 𝑥,𝛼 ≤ 𝑓 𝑥 => 𝑔 𝛼 ≤ 𝑓 𝑥 => max
𝛼

𝑔 𝛼 ≤ 𝑓 𝑥 . 

Therefore also the solution 𝑥  of (6) satisfies 

max
𝛼≥0

𝑔 𝛼 ≤ 𝑓 𝑥  . 
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The problem of maximum  

 
max
𝛼

𝑔 𝛼  

subject to 𝛼 ≥ 0 
(11) 

is called a dual problem of (6). 

In general in the case of a dual problem max𝛼 𝑔 𝛼  might not always be equal to 𝑓(𝑥 ) (then 

it is said that there exists so called duality gap). But in case of convex optimization the 

following strong duality property holds: 

Theorem 3. If there exists 𝑥 such that for all 𝑖 ∈  𝑛  𝑐𝑖 𝑥 < 0 (so called Slater’s condition), 

then duality gap is zero: 

 𝑚𝑎𝑥
𝛼≥0

𝑔 𝛼 = 𝑓 𝑥  , (12) 

where 𝑥  is a solution of (6). 

This means that if Slater’s condition is satisfied and functions 𝑓 and 𝑐𝑖  are convex, we can 

solve (6) as follows. First use (8) to eliminate primal variables 𝑥 in the expression 𝐿(𝑥,𝛼), so 

that we obtain the function 𝑔. Then solve the dual problem and use (8) again to find the 

solution 𝑥  of (6). 

Let us apply the general theory to the problem (5). The Lagrange functional of (5) is: 

 
𝐿 =  

1

2
 𝑤 2 − 𝛼𝑖

𝑚

𝑖=1

(𝜀 + 𝑦𝑖 − 𝑓(𝑥𝑖)) − 𝛼𝑖
∗ 𝜀 − 𝑦𝑖 + 𝑓 𝑥𝑖  

𝑚

𝑖=1

 

subject to 𝛼𝑖 ,𝛼𝑖
∗ ≥ 0, 𝑖 = 1,… ,𝑚. 

(13) 

where 𝛼𝑖  and 𝛼𝑖
∗ are new variables (Lagrange multipliers) which have to satisfy positivity 

constraints. 

Substitute (2) into (13) to get the following equation: 

 𝐿 =  
1

2
 𝑤 2 − 𝛼𝑖

𝑚

𝑖=1

(𝜀 + 𝑦𝑖 −  𝑤, 𝑥𝑖 − 𝑏) − 𝛼𝑖
∗ 𝜀 − 𝑦𝑖 +  𝑤, 𝑥𝑖 + 𝑏 

𝑚

𝑖=1

 (14) 
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If the Slater’s condition is satisfied (i.e. if there exists a regression hyperplane that is strictly 

within error bounds at all points 𝑥𝑖), this function has a saddle point with respect to the primal 

and dual variables at the solution [5, p. 254]. Hence, the above mentioned Kuhn-Tucker 

theorem could be used and finding the optimal solution of the problem (5) is equivalent to 

determining the saddle points of the Lagrange functional (14) [6, p. 252]. Thus, the partial 

derivatives of 𝐿 are equated to zero: 

 
𝜕𝐿

𝜕𝑏
=   𝛼𝑖 − 𝛼𝑖

∗ = 0

𝑚

𝑖=1

 (15) 

 
𝜕𝐿

𝜕𝑤
= 𝑤 −  𝛼𝑖

∗ − 𝛼𝑖 𝑥𝑖 = 0

𝑚

𝑖=1

 (16) 

Substituting (15) and (16) into (14) gives us:  

𝐿 =
1

2
   𝛼𝑖

∗ − 𝛼𝑖 𝑥𝑖

𝑚

𝑖=1

,  𝛼𝑗
∗ − 𝛼𝑗  𝑥𝑗

𝑚

𝑗=1

 − 𝛼𝑖  𝜀 + 𝑦𝑖 −    𝛼𝑗
∗ − 𝛼𝑗  𝑥𝑗 , 𝑥𝑖

𝑚

𝑗

 − 𝑏 

𝑚

𝑖=1

− 𝛼𝑖
∗  𝜀 − 𝑦𝑖 +    𝛼𝑗

∗ − 𝛼𝑗  𝑥𝑗 ,𝑥𝑖

𝑚

𝑗=1

 + 𝑏 

𝑚

𝑖=1

=
1

2
  𝛼𝑖

∗ − 𝛼𝑖  𝛼𝑗
∗ − 𝛼𝑗   𝑥𝑖 , 𝑥𝑗  − 𝛼𝑖𝜀

𝑚

𝑖=1

𝑚

𝑖 ,𝑗=1

− 𝛼𝑖
∗𝜀 − 𝛼𝑖𝑦𝑖 +  𝛼𝑖

∗𝑦𝑖
∗

𝑚

𝑖=1

−   𝛼𝑖
∗ − 𝛼𝑖  𝛼𝑗

∗ − 𝛼𝑗   𝑥𝑖 , 𝑥𝑗  +  𝛼𝑖𝑏 − 𝛼𝑖
∗𝑏

𝑚

𝑖=1

𝑚

𝑖=1

𝑚

𝑖 ,𝑗=1

𝑚

𝑖=1

𝑚

𝑖=1

= −
1

2
  𝛼𝑖

∗ − 𝛼𝑖  𝛼𝑗
∗ − 𝛼𝑗   𝑥𝑖 , 𝑥𝑗  

𝑚

𝑖 ,𝑗=1

− 𝜀  𝛼𝑖 + 𝛼𝑖
∗ +  𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

 

Therefore, we can solve (5) by finding 𝛼  of the saddle point by solving the dual problem: 

 
max

𝛼𝑖 ,𝛼𝑖
∗∈ℝ𝑚

−
1

2
  𝛼𝑖

∗ − 𝛼𝑖  𝛼𝑗
∗ − 𝛼𝑗   𝑥𝑖 , 𝑥𝑗  

𝑚

𝑖 ,𝑗=1

− 𝜀  𝛼𝑖 + 𝛼𝑖
∗ +  𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

 

subject to   𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1 . 

(17) 

The obtained above result is very useful since the training data appears in this maximization 

problem only as a dot products. It turns out that this fact enables us to generalize the result to 

many classes of functions 𝑓 that depend on measurements 𝑥 nonlinearly. Such generalizations 

are discussed in the next chapter. 

In figure 1 (Appendix 1.1) is shown a simple dataset which consists of five sample points. 

According to optimization problem (5) the goal is to fit the regression function so that its 
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deviation from each of these data points is less or equal to 𝜀. In this simple example 𝜀 = 0,2 

and the bars, introduced in figure 1, represent 𝜀 deviation from data points. If we restrict the 

class of regression function to the linear case only, it is obvious from figure 1 that there is no 

possibility to find such straight line in order to satisfy all constraints of optimization problem 

(5). 

 

Figure 1. Sample points 

This simple example, mentioned above, shows that the convex optimization problem (5) can 

be infeasible and it is important to be very careful with determining the value of 𝜀. To make 

the example, explained above, feasible one can set 𝜀 parameter larger.  

For instance, consider 𝜀 = 0.6. It is seen from figure 2, where the red and green lines represent 

two regression functions that satisfy all of the inequality constraints. The blue lines are the 

boundaries of the red line representing a tube with radius 𝜀, so it is geometrically plausible 

that these data points have deviation from the red line less or equal to 0.6 and thus are fit in 

this tube. 

0 1 2 3 4 5

0
1

2
3

4

x

y
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Having changed 𝜀 to a larger value we made the feasible set nonempty. In other words, it is 

possible now to find many lines that will satisfy optimization constraints (5) and the red and 

green lines are just two options of the feasible set. The main difference between them is that 

the red line the flattest one among all possible regression lines satisfying the inequality 

constraints. It is the consequence of minimization of the norm of the vector 𝑤.  

 

Figure 2. Two regression functions fitted to the data in the case of 𝜀 = 0.6 

Such approach finds a solution to the optimization problem (5). Nevertheless, allowing all 

errors to be that large reduces the possibility of getting a good predictive model. Another 

approach is to allow errors to be larger than 𝜀 and to penalize the objective function for such 

terms. 

To find a solution to optimization problem (5) in a context of our first example, shown in 

figure 1, one can introduce slack variables 𝜉𝑖  and 𝜉𝑖
∗ as follows: 

0 1 2 3 4 5

0
1

2
3

4

x

y
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min
𝑤 ,𝑏 .𝜉𝑖 ,𝜉𝑖

∗

1

2
 𝑤 2 +

𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)

𝑚

𝑖=1

 

subject to  

𝑓 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − 𝑓 𝑥𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0.

  

(18) 

Now we don’t try to strictly follow the constrains of (5), so the solution to otherwise 

infeasible problem can be found. Note that this problem is always feasible and the constraints 

satisfy Slater’s condition as for sufficiently large values of 𝜉 the all inequalities are strict. 

Figure 3 shows an optimal solution for our sample data in the case of 𝜀 = 0.2. 

 

Figure 3. Fitted regression function in the case of 𝜀 = 0.2  

Analogously to the procedure which was applied to optimization problem (5), one can use the 

method of Lagrange multipliers and the concept of duality for the problem (18). Hence, 

Lagrange function of optimization problem (18) looks as follows: 

0 1 2 3 4 5

0
1

2
3

4

x

y
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𝐿 =  
1

2
 𝑤 2 +

𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)

𝑚

𝑖=1

− (𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)

𝑚

𝑖=1

− 𝛼𝑖

𝑚

𝑖=1

 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖  

− 𝛼𝑖
∗ 𝜀 + 𝜉𝑖

∗ − 𝑦𝑖 + 𝑓 𝑥𝑖  

𝑚

𝑖=1

, 

where Lagrange multipliers 𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ have to satisfy positivity constraints. 

Now the main difference between finding the saddle points of this Lagrange function and a 

Lagrangian (14) is that we get two extra partial derivatives: 

 
𝜕𝐿

𝜕𝜉𝑖
=
𝐶

𝑚
− 𝛼𝑖 − 𝜂𝑖 = 0 => 𝜂𝑖 =

𝐶

𝑚
− 𝛼𝑖   (19) 

 𝜕𝐿

𝜕𝜉𝑖
∗ =

𝐶

𝑚
− 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0 => 𝜂𝑖

∗ =
𝐶

𝑚
− 𝛼𝑖

∗. 
 

(20) 

As 𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0 then from last derivations in (19) and (20) one obtains 𝛼𝑖 ∈ [0,𝐶 𝑚] , 

𝛼𝑖
∗ ∈ [0,𝐶 𝑚] . 

Nevertheless, the dual problem for minimization problem (18) still remains the same as for 

the dual optimization problem (17), adding just one more constraint: 

 

max
𝛼𝑖 ,𝛼𝑖

∗∈ℝ𝑚
−

1

2
  𝛼𝑖

∗ − 𝛼𝑖  𝛼𝑗
∗ − 𝛼𝑗   𝑥𝑖 , 𝑥𝑗  

𝑚

𝑖 ,𝑗=1

− 𝜀  𝛼𝑖 + 𝛼𝑖
∗ +  𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

 

subject to   𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1  

𝛼𝑖 ,𝛼𝑖
∗ ∈ [0,𝐶 𝑚] . 

(21) 

Similary, as described in the case of dual problem (17) one can benefit from the fact that the 

training data appears in (21) only as dot products. 

1.4 𝜺-SVM Regression 

First of all, partial derivative (16) can be rewritten as  

𝑤 =  (𝛼𝑖
∗ − 𝛼𝑖)𝑥𝑖

𝑚

𝑖=1

. 

By substituting it into (2) one obtains 
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 𝑓 𝑥 =   𝛼𝑖
∗ − 𝛼𝑖  𝑥𝑖 , 𝑥 + 𝑏

𝑚

𝑖=1

. (22) 

So the complete algorithm of 𝜺-SVM regression can be described in terms of dot products 

between the data. Solving (21) yields the values of 𝛼𝑖 ,𝛼𝑖
∗ and 𝑥𝑖 , which can be plugged into 

(22). When evaluating 𝑓(𝑥), we don’t need to compute 𝑤 explicitly. However, we still need 

to compute the value of 𝑏. For doing that we exploit Karush-Kuhn-Tucker (KKT) conditions 

described in Theorem 2, which state that the product between dual variables (𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗) 

and constraints in (18) has to vanish [5, 255 p.]: 

 

 
𝛼𝑖 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖  = 0 

𝛼𝑖
∗  𝜀 + 𝜉𝑖

∗
− 𝑦𝑖 + 𝑓 𝑥𝑖  = 0  

(23) 

 

 
𝜂𝑖𝜉𝑖 = 0 =>  𝐶 𝑚 − 𝛼𝑖 𝜉𝑖 = 0  

𝜂𝑖
∗𝜉𝑖

∗ = 0 =>  𝐶 𝑚 − 𝛼𝑖
∗ 𝜉𝑖

∗ = 0.  
(24) 

If for some 𝑖 in  1,2,… ,𝑛  we have 𝛼𝑖 ∈ (0,𝐶 𝑚)  then the first equality constraint (24) 

yields 𝜉𝑖 = 0. So we can easily find the offset 𝑏 from the second factor of the first equation of 

(23). Concretely, using the definition (2) of 𝑓 in the second factor of the first equation of (23), 

one computes 𝑏  as follows: 

𝑏 = 𝑦𝑖 −  𝑤, 𝑥𝑖 + 𝜀. 

Same procedure applies in case 𝛼𝑖
∗ ∈ (0,𝐶 𝑚)  for some 𝑖 in  1,2,… ,𝑛 . 

Unfortunately, this procedure is valid only if there exists an index 𝑖 for which 𝛼𝑖 ∈ (0,𝐶 𝑚)  

or 𝛼𝑖
∗ ∈ (0,𝐶 𝑚) . In rare case when all 𝛼𝑖 ,𝛼𝑖

∗ are either zero or 𝐶 𝑚  one needs to apply a 

different technique. We do not discuss it in the underlying thesis.  

1.5 Support Vectors 

Now we are at the crucial point, when we can explain the name of support vectors. First of all, 

suppose 𝜉𝑖 > 0, then from (24) one obtains  𝛼𝑖 = 𝐶 𝑚 . Same applies for 𝛼𝑖
∗ when 𝜉𝑖

∗ > 0. 
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This means that data points with corresponding 𝛼𝑖 = 𝐶 𝑚  (or 𝛼𝑖
∗ = 𝐶 𝑚 ) can lie outside the 

𝜀-insensitive tube around 𝑓. 

Assume that 𝛼𝑖 > 0, then 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖 = 0 in order to satisfy the constraint (23). That 

in turn implies 𝑓 𝑥𝑖  − 𝑦𝑖 = 𝜀 when 𝜉𝑖 = 0 and 𝑓 𝑥𝑖  − 𝑦𝑖 > 𝜀 when 𝜉𝑖 > 0. Same derivation 

applies for the second equation in (23). In other words, the Lagrange multipliers (𝛼𝑖 , 𝛼𝑖
∗) may 

be nonzero only for |𝑓 𝑥𝑖 − 𝑦𝑖 | ≥ 𝜀.  

On the other hand, when  𝑓 𝑥𝑖 − 𝑦𝑖  < 𝜀 this means that the Lagrange multipliers must be 

zero for the Karush-Kuhn-Tucker conditions to be satisfied, since slack variables 𝜉𝑖 , 𝜉𝑖
∗ are 

positively defined. All in all, this means that only the points outside 𝜀-insensitive tube around 

𝑓 and the points lying just right at the boundaries of this tube contribute to the function (22). 

Furthermore, these data points that come with nonvanishing Lagrange multipliers are called 

Support Vectors. It is geometrically plausible that the points inside the tube do not contribute 

to the solution: we could remove any of them, and still obtain the same solution, therefore 

they cannot carry any information about it [5, 256 p.].  
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2 Kernels 

2.1 Data transformation to higher dimensional space 

In the previous chapters the concept of regression estimation using support vectors was 

explained with theoretical and graphical examples. Though, if we want to fit a regression 

function that depends nonlinearly on the data values, then nonlinear transformation of data 𝑥𝑖  

to some higher dimension is useful. The key idea is to transform the sample points of data to a 

higher dimensional space and then apply a linear regression. 

Suppose we have one dimensional feature 𝑥𝑖  and we want to apply a transformation to ℝ2 as 

follows: 

𝑥𝑖 →  𝑥𝑖 , 𝑥𝑖
2 . 

Further, using the definition of (2), one obtains:  

𝑓 𝑥𝑖 = 𝑤1𝑥𝑖 + 𝑤2𝑥𝑖
2 + 𝑏. 

 

Figure 4. Quadratic function fitted to the data points 
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Thus we can easily use same ideas to fit a quadratic function of the data 𝑥 instead of a linear 

function. The result of implementing of this idea in the case of our sample dataset can be seen 

in figure 4. 

If the set of sample points is transformed into a dot product space by a transformation Φ, then 

the optimization problem (5) has the following form: 

 

min
𝑤 ,𝑏

1

2
 𝑤 2 

subject to  
𝑓 𝜙(𝑥𝑖 ) − 𝑦𝑖 ≤ 𝜀

𝑦𝑖 − 𝑓 𝜙(𝑥𝑖) ≤ 𝜀.
  

(25) 

which has the dual problem: 

 
max

𝛼𝑖 ,𝛼𝑖
∗∈ℝ𝑚

−
1

2
  𝛼𝑖

∗ − 𝛼𝑖  𝛼𝑗
∗ − 𝛼𝑗   𝜙 𝑥𝑖 ,𝜙(𝑥𝑗 ) 

𝑚

𝑖 ,𝑗=1

− 𝜀  𝛼𝑖 + 𝛼𝑖
∗ +  𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

 

subject to   𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1  

(26) 

Usually it is not required for the regression function to fit the sample points completely, even 

when the sample points have been transformed into the dot product space, because it often 

leads to overfitting the data - in the case of the training data estimated regression function will 

frequently behave well, though in case of the test set it produces results which are untrue.  

If the set of transformed sample points does not conform with the constraints of the problem 

(25) or the constraints do not have to be filled then a cost term is added to this minimization 

problem as was done in the previous chapters. 

Let the cost term be 
𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)𝑚
𝑖=1 , where the slack variables satisfy 𝜉𝑖 , 𝜉𝑖

∗ ≥ 0. Then the 

minimization problem looks as follows: 

 

min
𝑤 ,𝑏 .𝜉𝑖 ,𝜉𝑖

∗

1

2
 𝑤 2 +

𝐶

𝑚
 (𝜉𝑖 + 𝜉𝑖

∗)

𝑚

𝑖=1

 

subject to  

𝑓 𝜙(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − 𝑓 𝜙(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0,

  

(27) 

where C is fixed positive constant. 
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Writing the given problem as a Lagrange functional and going through the same calculation 

steps as in chapter (“Quadratic Optimization Problem”), the following dual problem is 

obtained: 

 

max
𝛼𝑖 ,𝛼𝑖

∗∈ℝ𝑚
−

1

2
  𝛼𝑖

∗ − 𝛼𝑖  𝛼𝑗
∗ − 𝛼𝑗   𝜙(𝑥𝑖),𝜙(𝑥𝑗 ) 

𝑚

𝑖 ,𝑗=1

− 𝜀  𝛼𝑖 + 𝛼𝑖
∗ +  𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

 

subject to   𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1  

𝛼𝑖 ,𝛼𝑖
∗ ∈ [0,𝐶 𝑚] . 

(28) 

The regression function 𝑓(𝑥) has the form: 

 𝑓 𝑥 =   𝛼𝑖
∗ − 𝛼𝑖  𝜙 𝑥𝑖 ,𝜙 𝑥  + 𝑏

𝑚

𝑖=1

. (29) 

In order to adapt the theory described above to the set of nonlinear problems one needs to use 

the kernel function 

𝐾 𝑥,𝑦 ≔  Φ 𝑥 ,Φ(𝑦) . 

As the training data appears in dual optimization problem (28) and regression function (29) 

only as dot products there is no need to explicitly map all training inputs to some higher 

dimensional feature space. It is required to know the kernel, but not the space that gives us the 

value of the previously mentioned scalar product. For example, the transformation 

𝑥𝑖 →  𝑥𝑖 , 𝑥𝑖
2  

leads to the kernel 

𝐾 𝑥,𝑦 = 𝑥𝑦 + (𝑥𝑦)2. 

Note that we have to know only the kernel corresponding to the transformation used, knowing 

other details of the transformation is not necessary for applying the theory. By using the 

kernel the regression function takes the form: 

 𝑓 𝑥 =   𝛼𝑖
∗ − 𝛼𝑖 𝐾 𝑥𝑖 , 𝑥 + 𝑏

𝑚

𝑖=1

. (30) 
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2.2 Classification of Kernels 

There is a number of suitable kernel functions. We shall give a short overview of the best 

known ones. 

1. The linear kernel is the simplest kernel function. It is given by the inner product with 

an optional constant c added. 

𝐾 𝑥, 𝑦 ≔  𝑥,𝑦 + 𝑐. 

2. The Gaussian kernel  

𝐾 𝑥,𝑦 ≔ 𝑒
− 𝑥−𝑦 2

2𝜎2 = 𝑒−𝛾 𝑥−𝑦 
2
. 

is a good example of radial basis function kernel. The term “radial basis function” means that 

the kernel depends on 𝑥 and 𝑦 only through the euclidean distance between 𝑥 and 𝑦. In figure 

4 is shown the Gaussian kernel with 𝛾 = 0.7 applied to example explained in the chapter 

“Quadratic optimization problem”.  

 

Figure 5. Radial Basis Function with gamma = 0.7, epsilon = 0.3 
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It is seen in figure 5 that the first four data points regarded from the left are the support 

vectors. The fifth data point is not a support vector and does not make any contribution to the 

regression function depicted as a blue line in the examined figure. The reason for such 

classification of these sample points follows from the inequality  𝑓 𝑥𝑖 − 𝑦𝑖 < 𝜀 described in 

the chapter “Support Vectors”. 

The parameter 𝛾 (or 𝜎) determines the width of the Gaussian kernel. One must be careful not 

to under- or overestimate the value of 𝛾 (or 𝜎). If underestimated (in case of 𝜎 - 

overestimated), the exponential will behave almost linearly and the higher-dimensional 

projection will start to lose its non-linear power. If 𝛾 is set to be smaller than in previous 

figure, the regression function flattens and looks more like a linear function. It is useful to 

mention that the support vectors in figure 6 are the first, the third and the fourth sample points 

regarded from the left. 

 

Figure 6. Radial Basis Function with gamma = 0.05, epsilon = 0.4 

0 1 2 3 4 5

0
1

2
3

4

x

y



23 

 

On the other hand, if 𝛾 is overestimated (for 𝜎 - underestimated), the function will lack 

regularity and the regression function will be highly sensitive to noise in training data. This is 

the consequence of the low value of 𝜎 which implies the fact that the width of the Gaussian 

curves is small as well. The regression function for that case is shown in figure 7. Similarly as 

before it is clear which sample points are the support vectors; the support vectors are all 

sample points except the second one regarded from the left. 

 

 

Figure 7. Radial Basis Function with gamma = 60, epsilon = 0.2 

3. The polynomial kernels are widely used in cases where the training data is normalized. 

The slope 𝛼, the constant term c and the polynomial degree are adjustable: 

𝐾 𝑥,𝑦 ≔ (𝛼 𝑥,𝑦 + 𝑐)𝑑𝑒𝑔𝑟𝑒𝑒 . 
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4. The hyperbolic tangent kernel is also known as the sigmoid kernel and looks as 

follows: 

𝐾 𝑥,𝑦 ≔ tanh 𝛼 𝑥, 𝑦 + 𝑐 , 

where are two adjustable parameters, the slope 𝛼 and the intercept constant 𝑐. 

2.3 𝝂-SVM Regression 

The parameter 𝜀 of the 𝜀-insensitive loss is useful if the desired accuracy of the approximation 

can be specified beforehand. In some cases, however, we just want the estimate to be as 

accurate as possible, without having to commit ourselves to a specific level of accuracy a 

priori. We now describe a modification of the 𝜀-SVR algorithm, called 𝜈-SVR, which 

automatically computes 𝜀 [5, p. 260]. 

The main difference of 𝜈-SVR from 𝜀-SVR is that we add a new term 𝜈 mentioned to 

penalize the error term 𝜀. 

So the minimization problem of 𝜈-SVR looks as follows: 

 

min
𝑤 ,𝑏 .𝜀 ,𝜉𝑖 ,𝜉𝑖

∗

1

2
 𝑤 2 + 𝐶(𝜈𝜀 +

1

𝑚
  𝜉𝑖 + 𝜉𝑖

∗ 

𝑚

𝑖=1

) 

subject to  

𝑓 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − 𝑓 𝑥𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝜀 ≥ 0.

  

(31) 

Similarly to chapter “Quadratic optimization problem” the Lagrange function is obtained: 

𝐿 𝑤, 𝑏,𝛼𝑖 ,𝛼𝑖
∗,𝛽, 𝜉𝑖 , 𝜉𝑖

∗, 𝜀, 𝜂𝑖 , 𝜂𝑖
∗ =

1

2
 𝑤 2 + 𝐶𝜈𝜀 +

𝐶

𝑚
  𝜉𝑖 + 𝜉𝑖

∗ − 𝛽𝜀

𝑚

𝑖=1

− (𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)

𝑚

𝑖=1

− 𝛼𝑖

𝑚

𝑖=1

 𝜀 + 𝜉𝑖 + 𝑦𝑖 − 𝑓 𝑥𝑖  − 𝛼𝑖
∗ 𝜀 + 𝜉𝑖

∗ − 𝑦𝑖 + 𝑓 𝑥𝑖  

𝑚

𝑖=1

, 

where 𝛼𝑖 ,𝛼𝑖
∗,𝛽, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0 are Lagrange multipliers. 

Further, setting the derivatives with respect to the primal variables equal to zero yields the 

five equations: 
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  𝛼𝑖 − 𝛼𝑖
∗ = 0

𝑚

𝑖=1

 

𝑤 =   𝛼𝑖
∗ − 𝛼𝑖 𝑥𝑖

𝑚

𝑖=1

 

𝐶

𝑚
− 𝛼𝑖 − 𝜂𝑖 = 0 

𝐶

𝑚
− 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0 

𝐶𝜈 −  𝛼𝑖 − 𝛼𝑖
∗ − 𝛽 = 0

𝑚

𝑖=1

. 

Substituting the above five conditions into Lagrange functional leads to the dual optimization 

problem. We will state it in the kernelized form: 

 

max
𝛼𝑖 ,𝛼𝑖

∗∈ℝ𝑚
−

1

2
  𝛼𝑖

∗ − 𝛼𝑖  𝛼𝑗
∗ − 𝛼𝑗  𝐾(𝑥𝑖 , 𝑥𝑗 )

𝑚

𝑖 ,𝑗=1

+  𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚

𝑖=1

 

subject to   𝛼𝑖 − 𝛼𝑖
∗ = 0𝑚

𝑖=1  

𝛼𝑖 ,𝛼𝑖
∗ ∈ [0,𝐶 𝑚]  

  𝛼𝑖 − 𝛼𝑖
∗ ≤ 𝐶𝜈

𝑚

𝑖=1

. 

 

(32) 

The regression estimate then takes the form: 

𝑓 𝑥 =   𝛼𝑖
∗ − 𝛼𝑖 𝐾 𝑥𝑖 , 𝑥 + 𝑏

𝑚

𝑖=1

. 

2.4 R Packages 

In the underlying thesis shall be used a free software programming language R. There are 

many implementations of Support Vector Machines in R. Among them it is possible to find 

packages e1071, kernlab, klaR and svmpath. In this work is used package kernlab for making 

the examples with figures and package e1071 for the price prediction as it performs better in 

terms of training time than the other packages. For comparison of these four SVM 

implementations see [7].  
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2.4.1 Kernlab 

The ksvm() function, kernlab’s implementation of SVMs, is mostly written in R but uses 

libraries bsvm and libsvm which provide a very efficient C++ version of the Sequential 

Minimization Optimization (SMO). For regression, ksvm() includes the 𝜀-SVM regression 

algorithm along with the 𝜈-SVM regression formulation [7]. 

The choice of kernels in kernlab package is rich. Among others the most popular kernel 

functions which can be used by setting the kernel parameter to the following value: 

 The linear kernel (set the parameter kernel to kernel = “vanilladot”) 

𝐾 𝑥,𝑦 =  𝑥,𝑦  

 The polynomial kernel (kernel = “polydot”) 

𝐾 𝑥,𝑦 = (𝑠𝑐𝑎𝑙𝑒 𝑥,𝑦 + 𝑜𝑓𝑓𝑠𝑒𝑡)𝑑𝑒𝑔𝑟𝑒𝑒  

 The Gaussian RBF kernel (kernel = “rbfdot”) 

𝐾 𝑥,𝑦 = 𝑒−𝜎 𝑥−𝑦 
2
 

 The hyperbolic tangent kernel (kernel = “tanhdot”) 

𝐾 𝑥,𝑦 = tanh(𝑠𝑐𝑎𝑙𝑒 𝑥,𝑦 + 𝑜𝑓𝑓𝑠𝑒𝑡) 

In addition, in the case of a Gaussian RBF kernel function parameter kpar can be set to the 

string “automatic”, which tries to find an optimal 𝜎 itself. The typical command to fit the 

model could look as follows:  

svm.model = ksvm(x, y, scaled = F, type = ”eps-svr”, kernel = “rbfdot”, kpar = 

”automatic”), where 

 x – a matrix or vector containing the training data; 

 y – a numeric response vector; 

 scaled – a logical vector indicating the variables to be scaled; 

 type – SV regression type; 

 kernel – the kernel function used in training and predicting; 

 kpar – a list of the parameters to be used with the kernel function. 

It is useful to mention that package kernlab allows defining custom kernels (so called user-

defined kernels). 
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2.4.2 e1071 

svm() function of the package e1071 uses the library libsvm. The function svm() allows to use 

the 𝜀-SVM regression and 𝜈-SVM regression as well as kernlab’s ksvm() function. It has less 

types of kernels available, but still there are the most known ones: 

 The linear kernel (set the parameter kernel to kernel = “linear”) 

𝐾 𝑥,𝑦 =  𝑥,𝑦  

 The polynomial kernel (kernel = “polynomial”) 

𝐾 𝑥, 𝑦 = (𝛾 𝑥,𝑦 + 𝑐𝑜𝑒𝑓0)𝑑𝑒𝑔𝑟𝑒𝑒  

 The Gaussian RBF kernel (kernel = “radial”) 

𝐾 𝑥,𝑦 = 𝑒−𝛾 𝑥−𝑦 
2
 

 The hyperbolic tangent kernel (kernel = “sigmoid”) 

𝐾 𝑥,𝑦 = tanh(𝛾 𝑥, 𝑦 + 𝑐𝑜𝑒𝑓0) 

In order to fit the SVM model one can execute the following command: 

svm.model = svm(y ~ . , data = variables, scale = F, type = ”eps-regression”, kernel = 

“radial”), where 

 y ~ . – formula describing the model; 

 data – data frame containing the variables required for fitting the models; 

 scale –  a logical vector indicating the variables to be scaled; 

 type – SV regression type; 

 kernel – the kernel function used in training and predicting. 

2.5 Cross-validation 

Cross-validation is a statistical method of evaluating and comparing learning algorithms by 

dividing data into two segments: one used to learn or train a model and the other used to 

validate the model. In typical cross-validation, the training and validation sets must cross-over 

in successive rounds such that each data point has a chance of being validated against [8]. 

There are many types of different implementations of cross-validation. In this work is used R 

repeated K-fold (R x K) cross-validation. That is, the original sample is randomly partitioned 

into k equal size subsamples. Of the k subsamples, a single subsample is retained as the 

validation data for testing the model, and the remaining k-1 subsamples are used as training 
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data. The cross-validation process is then repeated k times, with each of the k subsamples used 

exactly once as the validation data [9]. Finally, the procedure described above repeated R 

times. As the result, we get R*k estimations that can be averaged to produce a single 

estimation. 

In the underlying thesis is used an implementation of cross-validation from package cvTools. 

We use cvTuning() function from this package to evaluate the best parameters of SVM 

regression model via repeated K-fold cross-validation. 

The list of desired parameters can be submitted to the main function if we define the 

following variable: 

Tuning = list(gamma = c(0.05, 0.01), cost = c(1, 2, 4, 8)), 

where gamma, cost are chosen parameters to be fit to the model.  

Further, we include this variable into the function cvTuning() along with other arguments, 

such as: 

 object – a function for fitting a model (i.e. svm() function); 

 formula – formula describing the model; 

 data – a data frame containing the variables required for fitting the models; 

 tuning – a list of arguments giving the tuning parameter values to be evaluated (i.e 

Tuning variable); 

 cost – a cost function measuring prediction loss;  

 K – an integer giving the number of groups into which the data should be split; 

 R – an integer giving the number of replications for repeated K-fold cross-validation. 

To apply repeated K-fold cross-validation using the package cvTools one can use: 

svm.tuning = cvTuning(svm, formula = y ~ ., data = variables, tuning = Tuning, cost = 

rmspe, K = 10, R = 10). 
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3 Prediction of stock price 

In order to illustrate the theoretical part introduced in previous chapters, the high-frequency 

stock data of the British multinational telecommunications company Vodafone Group Plc and 

the British-Swedish multinational pharmaceutical and biologics company AstraZeneca Plc is 

being used in the following analysis. In this thesis we consider the problem of predicting 

future stock prices for a short time period by using the market data available at the beginning 

of the prediction interval. If the price movements can to certain extent be predicted, then such 

predictions can be used in various trading algorithms. The implementations of the predictions 

in trading algorithms are not being considered as it is not relevant to the underlying thesis.  

3.1 Order types 

An order in a market is an instruction from customers to brokers to buy or sell securities on 

the exchange [10]. There are different types of orders. In this particular case we distinct 

market orders and limit orders. Market orders are orders to buy or sell securities at the best 

available price. Limit orders are orders to buy or sell securities at a particular price [11, p. 61]. 

The whole high-frequency data can be referred as limit order book which holds information 

about unexecuted limit orders and constantly updates it in case a new limit order is added or 

cancelled. Market orders are not represented in limit order book itself. However, they can be 

tracked by trade executions. 

Nowadays the limit order books are completely electronic. Thus, computers register all the 

updates automatically. In case the investor wants to get the most recent updates of the limit 

order book, one has to pay for the data frame file. High-frequency data features are following: 

 date – date of trading day; 

 sym – a financial security identification code; 

 localtime – local time of the updates; 

 bid1, bid2 etc – best buying prices available at a particular moment; 

 ask1, ask2 etc – best selling prices available at a particular moment; 

 bsize1, bsize2 etc – available amount of shares for bid1, bid2 etc respectively; 

 asize1, asize2 etc – available amount of shares for ask1, ask2 etc respectively; 

 ordersb1, ordersb2 etc – number of orders for bid1, bid2 etc respectively; 
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 ordersa1, ordersa2 etc – number of orders for ask1, ask2 etc respectively; 

 is_a_trade – shows whether trade execution took place or not; 

 price – the price, or quote, of the last trade execution; 

 size – size, or volume, of sold or bought securities during the last trade execution; 

 tradetime – the time for the last trade execution. 

Example of the high-frequency data frame is in Appendix 2. 

3.2 VWAP 

Having such various high-frequency data, it is necessary to designate what value we want to 

predict. In current thesis is used a volume-weighted average price (VWAP). The reason for 

such choise is an opportunity to compare the results with master's thesis of Andrei Orlov [1] 

where he used VWAP as a high-frequency price. VWAP stands for the average quote per 

share of all trades of the certain period of time. It can be represented by the following 

formula: 

𝑉𝑊𝐴𝑃𝑖 =
 𝑃𝑖𝑡𝑉𝑖𝑡𝑡

 𝑉𝑖𝑡𝑡
,      𝑡 ∈ 𝑇 

where 𝑉𝑖𝑡  is the volume of trade 𝑖 executed at time interval 𝑡, 𝑃𝑖𝑡  is the price of trade 𝑖 at time 

interval 𝑡, 𝑇 is a trading day. 

The actual predictions are made not for VWAPs but for the increments between them: 

𝑖𝑛𝑐 = 𝑉𝑊𝐴𝑃𝑖+1 − 𝑉𝑊𝐴𝑃𝑖 . 

3.3 Regressors 

As it was mentioned in chapter Loss functions, in regression analysis one can subdivide 

variables into two classes: independent and dependent variable. Independent variable, that is 

called regressor, has some influence to dependent variable, and this connection helps to make 

predictions. In our case the dependent variable is an increment between two VWAPs. The 

main task is to find the set of regressors that helps us to forecast the dependent variable as 

well as possible. For our SVM model the following variables were extracted: 
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 market order intensity – average number of market orders executed in a unit of time, 

calculated for ask and bid side of limit order book; 

 buy and sell pressure – a sum of exponentially weighted volumes of limit orders on 

the bid and ask sides respectively; 

 limit order intensity – average number of limit orders added to bid1 and ask1 queue in 

a unit of time; 

 cancellation intensity – average number of cancelled limit orders in bid1 and ask1 in a 

unit of time; 

 difference between period last trade price and period VWAP value. 

One needs to be careful with adding new regressors to already available. A new independent 

variable may improve the fitted model if it has a low correlation with other regressors. 

Otherwise it makes the model more complex and inefficient in terms of training time.  

In order to compare different methods of estimation in the case of a specific data set, some 

type of average prediction error is calculated for predictions. There are several types 

available, but in this work is considered root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 =  
1

𝑛
 (𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

, 

where 𝑦𝑖  is actual observed value and 𝑓(𝑥𝑖) is a value predicted by a regression model. 

The obtained indicator gives an idea of how well the observed data can be predicted for 

certain methods. However, the calculated indicator must be treated with caution, especially if 

the parameters of the method have been found using the same data as for calculating the 

indicators (it is possible to find coherent parameters for the data, but they might result in 

unreasonable predictions in the case of new data, so called overfitting effect) [12, p. 22]. 

3.4 Description Of Algorithms 

In this subsection we will describe how to use the primary algorithm for regression analysis of 

stock price. Further, we briefly introduce the secondary algorithm in order to compare the 

main algorithm.  



32 

 

3.4.1 Primary Algorithm 

The prediction algorithm is an example of the SVM theory implementation in R. In order to 

use this algorithm it is necessary to install packages e1071 and cvTools, described in the 

chapters “R packages” and “Cross-validation”. Before executing the algorithm it is possible to 

change the values of tuning parameters 𝛾 and 𝐶 that would be used in fitting 𝜀-SVR model 

with the sigmoid kernel to a data.  

For forecasting the stock prices one needs to provide the following four arguments to the 

function PricePrediction(): 

 Pre_Calc_Days – the number of days for calculating just regressors; 

 Limit_Days – the number of days to store the regressors; 

 Calc_Days – the number of days to make forecasts; 

 PERIOD_LENGTH – the length of a single trading period. 

Once the arguments are passed to the function it calculates the regressors, described earlier in 

this work, at the end of every trading period except the last one. The same actions are 

performed for finding VWAP values except that the algorithm drops VWAP value of the first 

period of a day. Then the system finds the increments between VWAPs. This procedure is 

repeated as many times as defined in Pre_Calc_Days and the data is stored in the memory. 

This is the end of the first stage.  

Further, in the second stage of the algorithm at the beginning of every day cross-validation is 

applied in order to find the best parameters for the model fitting. Once cross-validation is 

done the algorithm fits 𝜀-SVR model to a data which is valid till the end of the day. Similarly 

to the first stage, regressors, VWAPs and their increments are found throughout the periods of 

a day. In addition, forecasts of increments are made and predicted VWAPs calculated. 

Note that if the number of days exceeds the value of Limit_Days the algorithm deletes 

outdated regressors from the memory. The connections between various functions of 

algorithm code are shown in Appendix 3. 

3.4.2 Secondary Algorithm 

The prediction algorithm was selected from the master’s thesis of A. Orlov (2012) [1]. The 

idea of this algorithm is rather similar except that a different econometric model is fitted to 
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the data. In his work Orlov used linear regression analysis and tried to improve the results by 

applying autoregressive model to residuals of linear regression model. Unlike the primary 

algorithm the secondary one tries to make predictions to arithmetic rate of returns (ROR) of 

VWAPs that could be defined in terms of 𝑉𝑊𝐴𝑃𝑠 as follows: 

𝑉𝑊𝐴𝑃𝑖 =
𝑉𝑊𝐴𝑃𝑖+1 − 𝑉𝑊𝐴𝑃𝑖

𝑉𝑊𝐴𝑃𝑖
. 

The algorithm provides day splitting into intervals as well. This allows using different models 

for different intervals. Though, it did not give any significant advantage or disadvantage to 

price prediction process. So the comparison of the primary algorithm is done to the secondary 

algorithm, which does not use the splitting.  

3.5 Parameter fitting 

Using cross-validation technique for tuning the parameters of SVM model is quite expensive 

in terms of training time to fit all possible combinations of parameters. We perform some tests 

to decide which kernel to use and to choose a pair of values for C and 𝛾 parameters, which 

will later be used in cross-validations when we choose a model for each new training day. 

In order to find the best parameters we fit 𝜀-SVR model to data of AstraZeneca stock. The 

day is divided into 15 minute intervals, the first 9 days are selected for finding regressors, 5 

days are picked to predict the prices and all new regressors obtained after the first 9 days are 

used in the further calculations. As regressors are collected, at the beginning of each day we 

fit 𝜀-SVR model to the data. First of all, we will search for the best parameters of the 

polynomial kernel with degree = 3, modifying the values of 𝐶 and 𝛾. The parameter 𝜀 value is 

always 0.1. For accuracy measures we use the percentage of correctly computed stock price 

movement directions and root mean square error. In Table 1 are presented the results of 7 

experiments. 

Experiment 1 2 3 4 5 6 7 

C 1 1 1 2 0.1 1.5 0.5 

𝜸 0.1 0.05 0.01 0.05 0.05 0.05 0.05 

Accuracy 64.24% 63.03% 52.12% 62.42% 57.58% 62.42% 62.42% 

RMSE 3.676 3.511 3.542 3.541 3.45 3.577 3.475 

Table 1. Test results of the polynomial kernel in the case of AstraZeneca stock 
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In order to conclude whether the polynomial function fits for predicting the stock price one 

must compare it with test results of another kernel. So the same procedure is made for the 

Gaussian kernel. 

Experiment 1 2 3 4 5 6 7 

C 1 1 1 1 2 2 1.5 

𝜸 0.1 0.05 0.01 0.005 0.01 0.005 0.005 

Accuracy 67.88% 64.85% 69.09% 69.7% 70.3% 69.09% 69.09% 

RMSE 2.814 2.796 2.707 2.736 2.725 2.707 2.715 

Table 2. Test results of the Gaussian kernel in the case of AstraZeneca stock 

As it is seen from Table 1 and 2 the SVM algorithm that uses the Gaussian kernel predicts the 

stock price movement direction better than polynomial. If we measure the results in terms of 

root mean square error, the difference will be rather bigger in favor of the Gaussian kernel. 

Also it is seen from Table 2 that the range of values between 0.01 and 0.005 can be a good 

choice for the parameter 𝛾. Before making the final decision in favor of the Gaussian kernel 

we introduce the test results for the sigmoid kernel. 

Experiment 1 2 3 4 5 6 7 

C 1 1 1 1 1 2 2.5 

𝜸 0.1 0.05 0.01 0.005 0.008 0.01 0.01 

Accuracy 49.09% 60% 70.91% 69.09% 69.7% 72.12% 70.91% 

RMSE 23.693 7.704 2.73 2.816 2.752 2.704 2.692 

Table 3. Test results of the sigmoid kernel in the case of AstraZeneca stock 

The test results of sigmoid kernel are rapidly improving as parameters C and 𝛾 are changed. 

Such improved results can compete with the test results of Gaussian kernel. As the result, the 

best values of sigmoid kernel have some advantage before the values of Gaussian kernel. 

Therefore, in further calculations of AstraZeneca stock a sigmoid kernel is chosen. 

Now let us make the same procedure in the case of the data of Vodafone stock. As before we 

use 15 minute intervals, 9 days for finding the primary regressors, 5 days for predicting the 

prices and all new regressors obtained after the first 9 days are used in the further calculations. 

The accuracy results of the polynomial in the case of Vodafone stock is seen in Table 4. 



35 

 

Experiment 1 2 3 4 5 6 7 

C 1 1 1 2 0.1 1.5 0.5 

𝜸 0.1 0.05 0.01 0.05 0.05 0.05 0.05 

Accuracy 66.06% 66.67% 50.3% 64.85% 60% 66.67% 64.24% 

RMSE 0.183 0.172 0.183 0.173 0.176 0.173 0.172 

Table 4. Test results of the polynomial kernel in the case of Vodafone stock 

If we fit 𝜀-SVR model with a Gaussian model to the same data of Vodafone stock, then the 

results of the prediction accuracy look as follows. 

Experiment 1 2 3 4 5 6 7 

C 1 1 1 1 2 2 3 

𝜸 0.1 0.05 0.01 0.005 0.01 0.005 0.005 

Accuracy 66.67% 69.09% 70.91% 68.48% 70.3% 70.91% 70.91% 

RMSE 0.161 0.158 0.151 0.152 0.151 0.15 0.15 

Table 5. Test results of the Gaussian kernel in the case of Vodafone stock 

In Table 6 are presented the testing results for the sigmoid kernel. 

Experiment 1 2 3 4 5 6 7 

C 1 1 1 1 2 3 4 

𝜸 0.1 0.05 0.01 0.005 0.01 0.01 0.01 

Accuracy 52.12% 57.58% 66.67% 67.88% 67.27% 68.48% 67.88% 

RMSE 1.186 0.397 0.151 0.154 0.151 0.151 0.153 

Table 6. Test results of the sigmoid kernel in the case of Vodafone stock 

In the case of Vodafone stock the testing results reveal that the Gaussian kernel and the 

sigmoid kernel are the better choice than the polynomial kernel. In terms of root mean square 

error the best testing results are rather similar. The Gaussian kernel has a small advantage in 

terms of the percentage of correctly computed stock price movement directions. Hence, we 

shall use the Gaussian kernel in order to compute the predictions of the price of Vodafone 

stock. 

Once the kernel functions are chosen for two stocks it is possible to test the primary algorithm 

versus the secondary algorithm. Now we will consider AstraZeneca stock and 3 different time 
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intervals. Both algorithms use 9 days for collecting regressors and the predictions are made 

for 84 days. In the case of the primary algorithm only 15 days are used to store regressors 

values and sigmoid kernel is chosen with 𝜀 = 0.1. In addition, after computing initial 

regressors on the basis of the first 9 days the primary algorithm uses 4 times repeated 5-fold 

cross-validation technique for tuning parameters. The parameter 𝛾 is chosen between values 

0.01 and 0.008. The value of C can be whether 1 or 2. As soon as cross-validation tool picked 

the best combination of 𝛾 and C  𝜀-SVR model is applied  to the data of AstraZeneca stock. 

The comparison of the primary and the secondary algorithms is seen from Table 7. 

Stock AstraZeneca 

Period length 5 min 10 min 15 min 

The secondary 

algorithm 

72.2% 72.49% 72.76% 

2.1 2.816 3.314 

The primary 

algorithm 

72.05% 72.04% 72.58% 

2.142 2.869 3.311 

Table 7. Comparison between the primary and the secondary algorithms 

In the case of Vodafone stock the same procedure is applied as described above except that 

for the SVM model fitting the Gaussian kernel is used. The parameter 𝛾 is picked between 

values 0.01 and 0.005. The value of C is still 1 or 2. The accuracy results of the primary and 

the secondary algorithms in the case of Vodafone stock are presented below. 

 Stock Vodafone 

Period length 5 min 10 min 15 min 

The secondary 

algorithm 

67.11% 69.02% 69.19% 

0.118 0.152 0.178 

The primary 

algorithm 

67.47% 69.45% 70.24% 

0.119 0.153 0.175 

Table 8. Comparison between the primary and the secondary algorithms 
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Summary 

The aim of the underlying thesis was to implement support vector machines (SVM) on the 

short-term price movement prediction in intra-day trading. In order to research that topic the 

predictive algorithm was developed. The data of two multinational companies were used in 

the testing of the predictive algorithm. 

Finding a model that is able to predict a stock price is a very serious challenge. The predictive 

algorithm, developed in the underlying thesis, uses SVM, a recently popular method of 

machine learning. We have demonstrated that with support vector machines it is possible to 

get as good results as with other approach with quite small modeling effort. One drawback of 

SVM approach is the slowness of the cross-validation process. One of the interesting open 

questions remaining is the optimal choice of how often and how to perform extensive cross-

validations so that the computation speed is high and the accuracy does not suffer. 

In addition to the development of the predictive algorithm, it was also given an insight into 

the theory of support vector regression. The concept of regression estimation was explained 

with theoretical and graphical examples. The possibility to use non-linear regression functions 

through the kernel functions in a framework of SVM was introduced as well. The further 

improvements of the predictive algorithm may involve the minimization of the training time 

and the research of dependencies of errors. Additionally the next step could be the 

implementation of the predictions to trading algorithms. 
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Tugivektormasinate kasutatavuse uurimine lühiajaliste hinnaliikumiste 

prognoosimiseks päevasisese kauplemise tingimustes. 

Vassili Mušnikov 

    Kokkuvõte 

Kaasaegses finantsmaailmas on väga populaarsed automaatkauplemise algoritmid. 

Automaatse kauplemise tingimustes on sageli oluline osata prognoosida hinnaliikumise 

suundi ja ulatust suhteliselt lühikese aja, näiteks 10 minuti jooksul. On mitmeid statistilisi 

meetodeid selle ülesanne lahendamiseks, kuid käesoleva magistritöö raames on kasutatud üks 

kaasaegne meetod – tugivektormasinad. Töö eesmärgiks on uurida meetodi toimimist meid 

huvitava andmestiku põhjal, milleks on Vodafone-i ja AstraZeneca andmed.  

Töö koosneb kolmest osast. Esimene peatükk on pühendatud tugivektor masinatele. Selleks, 

et paremini aru saada selle meetodi töö põhimõtetest, seletatakse töös teatud aluseid. Esimeses 

peatükis räägitakse sellest, mis on tehisõpe, selgitatakse, kuidas leida regressiooni funktsiooni 

tugivektor masinate abil ja mainitakse probleeme, mis võivad tekkida regressiooni funktsiooni 

leidmisel. Regressiooni funktsiooni kontseptsioonid on selgitatud nii teoreetiliste kui 

graafiliste näidete abil.  

Teine peatükk on pühendatud tuumafunktsioonidele, kuna need võimaldavad kasutada 

mittelineaarseid funktsioone kui regressiooni funktsioone. Ühtlasi selgitakse lugejale, mille 

poolest tuumafunktsioonide kasutus lihtsustab regressiooni funktsiooni leidmise. Lisaks 

tutvustatakse lühidalt teises peatükis programmeerimiskeele R lisamoodulite tehnilisi 

võimalusi. Lõpuks, mainitakse lühidalt sellise statistilise meetodi algoritmide võrdlemiseks 

nagu rist-validatsioon. 

Erinevalt kahest esimesest peatükist, mis annavad teoreetilise ülevaate, kannab kolmas 

peatükk praktilise iseloomu. Peatükk tutvustab, kuidas tugivektor masinaid rakendatakse 

lühiajaliste hinnaliikumiste prognoosimiseks päevasisese kauplemise tingimustes. Selles 

peatükis selgitatakse hindade ennustamise algoritmi ning kirjeldatakse samuti kasutatavid 

andmeid. Seoses mõningate sarnasustega, toob autor välja ka oma töö võrdluse Andrei Orlovi 

magistritööga. Lisaks lugeja leiab töö lõpus lisad, mis koosnevad andmestikust, joonisest, mis 

selgitab koodi funktsioonide vahelisi suhteid, jooniste koode ja CD, mis sisaldab algoritmi 

koodi. 
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Töö autor arendas hindade ennustamise algoritmi, mis põhineb tugivektor masinatel. Ühtlasi 

demonstreeris töö autor, et tugivektor masinate abil on võimalik saada sama häid tulemusi 

nagu ka teiste lähenemiste puhul. Üheks tugivektor masinate meetodi puuduseks on selle 

aeglus rist-validatsiooni protsessis. Jääb avatuks küsimus, kui tihti ja kuidas tuleb teostada 

rist-validatsioone, et arvutused oleksid kiired ja täpsus ei kannataks. Ennustava algoritmi 

edaspidine arendamine võib olla seotud arvutuste aja minimiseerimisega ja vigade sõltuvuse 

uurimisega. Lisaks järgmine samm võib olla ennustuste rakendamine kauplemise 

algoritmides.  
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Appendix 1 

Appendix 1.1 

# sample data points 

x <- seq(0.5, 4.5, by = 1) 

y <- c(1,2,1.5,3,2.5) 

# plot the data 

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red") 

eps = 0.2 

# epsilon deviation from data points 

for(i in 1:length(x)){ 

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90) 

} 

 

Appendix 1.2 

library(kernlab) 

 

x <- seq(0.5, 4.5, by = 1) 

y <- c(1,2,1.5,3,2.5) 

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red") 

eps = 0.6 

for(i in 1:length(x)){ 

      arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90) 

} 

# fit the epsilon support vector regression 

eps.svr <- ksvm(x,y, scaled = FALSE, type = "eps-svr", kernel = "vanilladot", C = 10, 

epsilon=eps) 

# make predictions 

esvr.pred <- predict(eps.svr,x) 

# solid line for espilon-svr predictions 

fit <- lm(esvr.pred~x) 

abline(fit,col="red",lwd =2) 

# boudaries of fitted regression model 

abline(fit$coefficients[1] - eps, fit$coefficients[2], col="blue") 

abline(fit$coefficients[1] + eps, fit$coefficients[2], col="blue") 

# another possible regression function 

abline(0.7,0.5,col="green", lwd = 2) 
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Appendix 1.3 

library(kernlab) 

 

x <- seq(0.5, 4.5, by = 1) 

y <- c(1,2,1.5,3,2.5) 

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red") 

eps = 0.2 

# fit the epsilon support vector regression 

eps.svr <- ksvm(x,y, scaled = FALSE, type = "eps-svr", kernel="vanilladot", C = 10, 

epsilon=eps) 

esvr.pred <- predict(eps.svr,x) 

# solid line for espilon-svr predictions 

fit<- lm(esvr.pred~x) 

abline(fit,col="red",lwd =2) 

# boundaries of fitted regression function 

abline(fit$coefficients[1] - eps, fit$coefficients[2], col="blue") 

abline(fit$coefficients[1] + eps, fit$coefficients[2], col="blue") 

 

Appendix 1.4 

library(kernlab) 

 

x <- seq(0.5, 4.5, by = 1) 

y <- c(1,2,1.5,3,2.5)  

eps = 0.2 

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red") 

for(i in 1:length(x)){ 

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90) 

}  

# user-defined kernel 

k <- function(x,y) {x*y + (x*y)**2} 

class(k) <- "kernel" 

# fit the epsilon support vector regression 

eps.svr <- ksvm(x,y, scaled = FALSE, kernel=k, C=10,epsilon = eps) 

# make predictions 

x1<- seq(0,5,0.01) 

esvr.pred <- predict(eps.svr,x1) 

# plot the regression function  

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2) 
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Appendix 1.5 

library(kernlab) 

 

x <- seq(0.5, 4.5, by = 1) 

y <- c(1,2,1.5,3,2.5) 

eps = 0.3 

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red") 

for(i in 1:length(x)){ 

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90) 

} 

# fit the epsilon support vector regression 

eps.svr <- ksvm(x,y, scaled = FALSE, kernel="rbfdot", kpar=list(sigma=0.7), C=1,epsilon = 

eps) 

# make predictions 

x1<- seq(0,5,0.01) 

esvr.pred <- predict(eps.svr,x1) 

# plot the regression function  

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2) 

 

Appendix 1.6 

library(kernlab) 

 

x <- seq(0.5, 4.5, by = 1) 

y <- c(1,2,1.5,3,2.5) 

eps = 0.4 

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red") 

for(i in 1:length(x)){ 

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90) 

}  

eps.svr <- ksvm(x,y, scaled = FALSE, kernel="rbfdot", kpar=list(sigma=0.05), C=1,epsilon = 

eps) 

# make predictions 

x1<- seq(0,5,0.01) 

esvr.pred <- predict(eps.svr,x1) 

# plot the regression function  

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2) 
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Appendix 1.7 

library(kernlab) 

 

x <- seq(0.5, 4.5, by = 1) 

y <- c(1,2,1.5,3,2.5) 

 

eps = 0.2 

plot(x,y,ylim=c(0,4),xlim=c(0,5),pch=21,bg="red") 

for(i in 1:length(x)){ 

arrows(x[i],y[i]-eps,x[i],y[i]+eps,length=0,code=3,angle=90) 

}  

eps.svr <- ksvm(x,y, scaled = FALSE, kernel="rbfdot", kpar=list(sigma=60), C=1,epsilon = 

eps) 

#  make predictions 

x1<- seq(0,5,0.01) 

esvr.pred <- predict(eps.svr,x1) 

# plot the regression function  

lines(x1, esvr.pred, type ="l", col = "blue", lwd =2) 

 

 



 

 

Appendix 2 

 



45 

 

Appendix 3 
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