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1. INTRODUCTION 

Placenta is a unique temporary feto-maternal endocrine organ that mediates all 
interactions between mother and fetus over the period of gestation. Successful 
outcome of pregnancy requires dynamic regulation of molecular, histological 
and functional changes in placenta to guarantee normal fetal growth and devel-
opment as well as maternal adaptation to pregnancy. Besides its leading role in 
shaping in utero environment, placenta also influences the health of mother and 
child in later life. 

Due to rapid species-specific evolution, placenta is structurally one of the 
most variable organs among mammals. Rapid evolution is also characteristic to 
placenta-specific genes. Human placenta has a unique transcriptional landscape 
that involves active retrotransposon genes, primate-specific families of dupli-
cated genes, novel microRNA clusters, and high incidence of epigenetic regu-
lation through mechanisms such as DNA methylation and genetic imprinting. 
Temporal and spatial regulation of gene expression in placenta is crucial for its 
endocrine function. Importantly, altered placental gene expression is associated 
with pregnancy complications. 

The human chorionic gonadotropin (HCG) is a glycoprotein and a crucial 
pregnancy hormone synthesised by the placental syncytiotrophoblast. HCG 
facilitates the implantation and hemochorial placentation in primates and is 
responsible for maintaining early pregnancy. HCG is composed of an -subunit 
shared with other gonadotropic glycoproteins, and a specific -subunit encoded 
by a set of primate-specific duplicated HCG-coding (CGB) genes with nearly 
99% sequence identity (CGB8, CGB5, CGB, CGB7). Although HCG hormone 
levels are subject to great inter-individual variability, its hormone expression in 
serum is clearly informative of pregnancy complications. Low level of HCG in 
maternal serum during the first trimester of pregnancy is related to miscarriage 
and extrauterine pregnancy, while increased HCG expression may refer to 
molar pregnancy or trisomy 21.  

As in utero development has a great role in the well-being of mother and 
child during pregnancy and later in life, understanding the role of placenta in 
healthy and complicated pregnancy is of great clinical and societal importance. 
However, placenta remains under-investigated in current biomedical research, 
often due to complex and ethically restricted sample collection procedures. The 
global patterns of spatial and temporal gene expression throughout the entire 
pregnancy have been poorly characterised to date. In particular, little is known 
about the gene regulation of human mid-gestational placenta. More work is 
required to understand the early transcriptional and epigenetic mechanisms that 
regulate the HCG genes and ultimately determine the success of pregnancy. In 
addition, the altered placental gene regulation in complicated pregnancies 
requires deeper exploration. Early pregnancy complications, such as miscarriage 
and ectopic pregnancy, are associated with altered implantation, placentation, 
angiogenesis and immune tolerance. Term pregnancy complications (pree-
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clampsia, gestational diabetes mellitus, fetal growth anomalies) are related to 
metabolic dysfunctions. Investigation of these topics will help characterise mo-
lecular mechanisms of human pregnancy, lead to a greater understanding of 
pregnancy complications, and reveal biomarkers that will help predict preg-
nancy outcome. 

In this doctoral thesis, I investigated three aspects of placental gene regu-
lation in healthy and complicated pregnancies. First, I showed that decreased 
level of HCG expression is potentially guided by DNA methylation, leading to 
decreased hormone HCG level and complications in early pregnancy. Second, I 
performed the first dynamic analysis of global gene expression in human pla-
centa of early and mid-gestation pregnancies. Third, I detected aberrant expres-
sion of mid-gestation marker genes in term pregnancy complications. This work 
revealed potential novel biomarkers for early detection of maternal and fetal 
complications, including a promising maternal blood plasma marker Stannio-
calcin-1 (STC1) that may be developed into a non-invasive biomarker to diag-
nose cases of preeclampsia and fetal growth restriction. 
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2. LITERATURE OVERVIEW 

2.1. Placenta – a temporary,  
rapidly evolving organ in mammalian gestation 

Placenta is a unique and temporary organ that binds two genetically distinct 
individuals, the fetus and the mother, and mediates their interactions over ges-
tation. Dynamic regulation of molecular, histological and functional changes in 
placenta guarantees fetal development and the adaptation of maternal metabo-
lism during pregnancy. Placenta is genetically identical to the fetus and it thus 
provides valuable material for studies of developmental biology, human 
genetics and biomedicine.  
 
 

2.1.1. Structure of human placenta 

Human placenta is a chimerical feto-maternal organ composed of the fetal part 
(also known as chorion) and the maternal part (decidua). Placental development 
is initiated at the implantation of the embryo when the outer layer of blastocyst 
cells starts to invade the maternal endometrium (Figure 1). The developing 
fetus originates from embryoblast cells (Figure 1) (Kaufmann and Baergen, 
2006).  

Human placentation begins with implantation when the blastocyst becomes 
completely embedded within the maternal decidualized endometrium (Figure 1) 
(Jauniaux et al., 2006). The trophoblast forms a double-layer membrane com-
posed of syncytiotrophoblast and cytotrophoblast cells (Figure 2B). The outer 
multinuclear syncytiotrophoblast layer is formed in the fusion of numerous 
trophoblastic cells and it remains in direct contact with maternal blood for most 
of the pregnancy (Kliman, 2000). The inner layer of cytotrophoblast represents 
the proliferative stem cells of trophoblast (Kaufmann and Baergen, 2006). 
Rapid proliferation of trophoblast cells leads to branching of chorionic villi and 
further destructive invasion into maternal tissues (Boyd, 1970; Castellucci et al., 
2000). Placental development during the first trimester of pregnancy occurs 
under low oxygen conditions and limited uterine blood flow, as the invading 
trophoblast cells plug the ends of maternal spiral arteries (Burton et al., 2010; 
Rodesch et al., 1992). First trimester growth of human placenta and fetal devel-
opment during normal pregnancy is remarkably similar among individuals. 
However, considerable inter-individual variation occurs in fetal and placental 
growth during the second and third trimesters. This variability is likely caused 
by the fact that maternal blood starts to flow into intervillous space only by the 
12th week of pregnancy (Jauniaux et al., 2006). The growth variation charac-
teristic to later gestation is associated with the differential remodelling of spiral 
arteries in the first trimester. Late pregnancy complications such as pree-
clampsia and fetal growth restriction may be caused by altered placentation; for 
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example, aberrant programming of placental development during early ges-
tation, abnormal remodelling of spiral arteries, and decreased invasion of extra-
villous trophoblast. 
 

 
Figure 1. Schematic representation of blastocyst implantation (modified from Wikipe-
dia). 
 
 
The main functional units of mature human placenta are the fetally derived pla-
cental villi arranged in tree-like structures (Figure 2A, B). The villi are closely 
packed in intervillous space that is highly vascularised and filled with maternal 
blood in order to establish maternal-fetal gas and nutrient exchange (Figure 2A, 
B). Fetal circulation enters the placenta through the umbilical cord arteries, 
whereas nutrients and oxygen are transported to the fetus via umbilical cord 
vein (Blackburn, 2003). The cytotrophoblasts covering the tips of the villi have 
differentiated into extravillous trophoblasts that invade decidua and its vascu-
lature (Benirschke and Kaufmann, 2000) (Figure 2B). This process attaches 
placenta to the uterus and provides the blood supplies for the fetus.  
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Figure 2. Anatomy of human placenta. A. Intervillous space between the chorion and 
the decidua is packed with chorionic villi and filled with maternal blood. B. The 
floating villi (FV) of placenta are covered with a continuous double-layer of trophoblast 
cells. The outer layer of multinuclear syncytiotrophoblast (ST) is in direct contact with 
maternal blood. The inner layer of mononuclear cytotrophoblast (CT) represents the 
progenitor population of trophoblast cells. Anchoring villi (AV) are attached to the 
uterus by invasive extravillous trophoblasts (EVT) (Maltepe et al., 2010). 
 
 

2.1.2. Functions of human placenta 

Placenta performs several critical functions to fulfil the increasing demands of 
the developing fetus while assuring maternal adaption over gestation. The main 
functions of placenta are the following: 
1. Transport and metabolism. Maternal blood in the intervillous space is in 

direct contact with placental villi that facilitate the transport of water, 
nutrients (glucose, amino acids, lipids, minerals, vitamins), oxygen, and 
waste products across the placental membrane (Gude et al., 2004). Different 
molecules transfer either by active placental transporters or passively (Hay, 
1994). Besides mediating nutrients and oxygen between the two organisms, 
placenta also requires these compounds for generation of metabolic products.  

2. Hormonal regulation. Placenta produces molecules employed both locally 
and distally to coordinate the maternal-fetal dialogue during pregnancy. Pla-
cental syncytiotrophoblast acts as an endocrine organ that produces and 
secretes several proteins, hormones, cytokines into maternal and fetal 
organisms to maintain pregnancy and prepare for parturition and lactation. 
One of the first hormones produced by placenta is the luteotrophic human 
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chorionic gonadotropin (HCG, see below) that stimulates ovaries to synthe-
size the essential steroids in pregnancy (Cole, 2010; 2012a). The human 
growth hormone (GH) and placental lactogen (PL; also known as human 
chorionic somatomammotropin hormone, CSH) regulate maternal and fetal 
metabolism as well as fetal growth and development (Handwerger and 
Freemark, 2000).  

3. Immunological barrier. As placenta is genetically identical to the fetus and 
distinct from the mother, its crucial task is to trigger the maternal immune 
system to suppress a response against the developing fetus (Moffett and 
Loke, 2006).  

4. Protection. Placenta protects the fetus against xenobiotics, infections, and 
maternal diseases. For example, the maternal immunoglobulin G antibodies 
are transported to the fetus to provide passive immunity for the newborn 
(Simister, 2003). Placenta also forms a barrier against transmission of bac-
teria from the mother to the fetus. 

 
 

2.1.3. Specific features of primate placental evolution 

2.1.3.1. Structural evolution of placenta in mammals 

Placenta is one of the most variable of all mammalian organs, as it has evolved 
rapidly in the mammalian lineage after arising about 100–150 million years ago 
(Springer et al., 2003). The structure of placenta as well as the length of ges-
tation, number of offspring and body mass of the newborn varies greatly across 
placental mammals (Wildman, 2011). As the types of placenta are distributed 
within the mammalian family but are not consistent with the known phylogeny 
(Enders and Carter, 2004), the debate over placental evolution among mammals 
is still ongoing. 

The basic classification of placental types considers its invasiveness into the 
uterus, explained by the number of cellular layers separating the maternal blood 
from the fetal blood. The simple non-invasive epitheliochorial placenta consists 
of three maternal layers (endothelium, connective tissue, and endometrial 
endothelium) and three fetal layers (endothelium, chorionic connective tissue, 
and trophoblast) that separate maternal and fetal blood streams. In endo-
theliochorial placenta, deeper invasion of embryo into endometrium has eroded 
endometrial endothelial cells and placental trophoblast cells are in direct contact 
with maternal capillary endothelial cells (Figure 3A, B) (Benirschke et al., 
2006). Such placental types are common for ruminants and carnivores, respec-
tively. Humans, anthropoid primates and rodents have evolved deeper, more 
efficient placental invasion mechanisms and hemochorial placentation systems 
where all three maternal cell layers are degraded and trophoblasts are in direct 
contact with maternal blood (Figure 3C) (Benirschke et al., 2006; King, 1993). 
Such structure allows maximum transport of nutrients to the fetus and is con-
sidered necessary to support the development of large fetal brains in humans 
(Cole, 2009).  
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Figure 3. Schematic representation of the types of placentation in mammals. A. In 
epitheliochorial placenta the fetal trophoblast cells and maternal blood are separated by 
three layers of tissue. B. In endotheliochorial placenta the maternal blood is separated 
from the fetal trophoblast by the maternal capillary endothelium. C. In hemochorial 
placenta the maternal blood cells are in direct contact with the fetal trophoblast cells. 
(a) Maternal connective tissue, (b) maternal blood, (c) maternal endothelium, (d) mater-
nal endometrial endothelium, (e) fetal trophoblast, (f) fetal endothelium, (g) fetal blood, 
(h) fetal chorionic connective tissue. The data were assembled from Benirschke et al., 
2006. 
 
 
Besides invasiveness, the shape of placenta and distribution of contact sites 
between fetal membranes and endometrium has diverged between species. For 
example, ruminate gestation is characterized by diffuse placenta that completely 
surrounds the fetus or cotyledonary placenta with multiple attachment sites in 
uterine wall. Carnivores have zonary shaped placentas that form a band around 
the fetus. The discoidal placenta in humans, anthropoid primates, and rodents 
has a round, flat, disk-like structure (Benirschke et al., 2006).  
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2.1.3.2. Accelerated evolution of placental genes in the primate lineage: 
novel gene families, microRNAs, and retroviral infection 

Besides the anatomical similarities between primate placentas, placental genes 
exhibit rapid evolution in the primate lineage. Several novel gene families 
regulating the developmental, reproductive and immune system functions have 
uniquely expanded in the primate placenta through gene duplication events 
(Rawn and Cross, 2008). Such unique primate placenta-specific loci include 
genes important for embryo implantation and formation of invasive hemo-
chorial placenta. For instance, the chorionic gonadotropin -coding genes 
(CGB) have arisen from the ancestral luteinizing hormone -coding (LHB) gene 
(see below) (Maston and Ruvolo, 2002). In addition, anthropoid primates are 
the only species known to produce the corticotropin-releasing hormone (CRH) 
that regulates the length of gestation and timing of parturition (McLean et al., 
1995; Robinson et al., 1989), as well as placental galectins that mediate mater-
nal-fetal immune response (Than et al., 2009). Furthermore, cadherins and 
killer-cell immunoglobulin-like receptors (KIRs) that regulate maternal-fetal 
interactions and immunological reactions are under selective pressure in the 
primate placenta (Older Aguilar et al., 2010; Summers and Crespi, 2005). 
Several placental growth hormones and lactogens have also evolved in the 
primate linage in sequential gene conversion and duplication events from the 
ancestral pituitary-expressed GH gene (Li et al., 2005; Papper et al., 2009; 
Petronella and Drouin, 2011). Surprisingly, the placental lactogens in rodents 
originate from the prolactin gene instead (Soares et al., 1998), providing 
evidence of a parallel evolution of placenta-specific genes in human and rodent 
lineages (Table 1). Another example is the family of pregnancy-specific 
glycoprotein (PSG) genes where the ancestral gene is thought to be common to 
both primates and rodents, but subsequent gene duplications have arisen 
independently between species (Table 1) (McLellan et al., 2005; Rudert et al., 
1989).  

Thus, accelerated parallel evolution of placental genes appears to be funda-
mental in mammalian placenta. It is still not clear whether the novel genes first 
expanded in the genome and then gained their distinct functions, or the ancestral 
genes had gained multiple functions by themselves before the duplication events 
(Maston and Ruvolo, 2002). However, the placental regulatory molecules that 
determine maternal and fetal metabolism support the maternal-fetal conflict 
hypothesis for placental evolution (Haig, 1993; 2008). Accelerated evolution of 
placental genes in primates may associate with the development of hemochorial 
placenta that allows direct transport of placentally derived large molecules into 
maternal blood stream where they are further transported to the location of 
action (King, 1993). 

Although most of the ancient endogenous retroviral sequences in the mam-
malian genomes are silenced, there are still some sequences that can produce 
functional proteins. A number of human endogenous retroviral genes are known 
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to be expressed in placenta and be conserved in the primate lineage. For exam-
ple, the Syncytin-1 and Syncytin-2 envelope proteins of retroviral origin lead 
the fusion of cytotrophoblast cells to multinucleated syncytiotrophoblast. 
Syncytin genes are highly conserved and found in all anthropoid primates, 
referring to strong evolutionary selection (Blaise et al., 2003). However, rodents 
have independently acquired their own Syncytin genes (Syncytin-A; Syncytin-B) 
from a different endogenous retrovirus family (Dupressoir et al., 2005). 

Finally, several novel microRNA gene families have been subject to rapid 
evolution, contributing to the functional diversity of placenta in the primate 
lineage. Examples include the microRNA clusters on chromosome 19 (C19MC, 
comprised of 54 tandem repeated microRNAs) and on chromosome 14 (the 
C14MC cluster with 34 microRNAs) (Bentwich et al., 2005; Seitz et al., 2004). 
MicroRNAs are small single-stranded RNA molecules (~19–22 bp) that func-
tion as transcriptional and post-transcriptional modulators of gene expression 
(Chen and Rajewsky, 2007). The expression of microRNAs from the clusters 
C19MC and C14MC is under epigenetic regulation and has been largely found 
in placenta but also in brain (Noguer-Dance et al., 2010; Seitz et al., 2004). The 
precise placental roles of these microRNAs are still unknown, although C19MC 
microRNAs are thought to participate in placental-maternal signalling (Donker 
et al., 2012).  
 
Table 1. Examples of parallel evolution of placenta-specific genes in human and rodent 
lineages (Rawn and Cross, 2008) 

Gene family Species 
Number of genes 

All Placenta-specific 

Prolactin Human 1 0 

Mouse 23 22 

Rat 24 23 

Pregnancy-specific beta-1 
glycoprotein 

Human 11 11 

Mouse 17 17 

Rat 8 8 

Growth hormone Human 5 4 

Mouse 1 0 

Rat 1 0 

Chorionic gonadotropin  Human 6 6 

Mouse 0 0 

Rat 0 0 
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2.1.4. Primate-specific placental hormone  
chorionic gonadotropin 

2.1.4.1. Properties and role of HCG (see also Ref. I) 

The placenta-specific hormone chorionic gonadotropin has only been found in 
humans, some primates and equine (Maston and Ruvolo, 2002; Sherman et al., 
1992). HCG is a key molecule that determines the success of early pregnancy 
(Srisuparp et al., 2001). This glycoprotein hormone is composed of a common 
-subunit shared with all gonadotropins (CG – chorionic gonadotropin, LH – 
luteinizing hormone, FSH – follicle stimulating hormone, TSH – thyroid 
stimulating hormone) as well as a unique -subunit that confers biological 
function and is encoded by a set of duplicated CGB genes (Pierce and Parsons, 
1981). HCG production starts already in the pre-implantation embryo. The hor-
mone is transported to the maternal bloodstream during implantation where it 
reaches its peak at the 9–11th week of gestation (Stenman et al., 2006). The 
circulation half-life of HCG is about 36 hours. Detection of HCG in urine or 
serum is widely used to diagnose early pregnancy (Cole, 2012c). Importantly, 
the final HCG level is determined by the expression of its -subunit whereas the 
-subunit is always expressed in excess (Miller-Lindholm et al., 1997).  

The major function of HCG in human pregnancy is to drive hemochorial 
placentation (Cole, 2012a). HCG prevents the regression of corpus luteum in 
the ovary. It stimulates continued production of progesterone during early ges-
tation until the mass of formed syncytiotrophoblast is sufficient to produce the 
progesterone independently (Hay, 1988). HCG also facilitates angiogenesis and 
vasculogenesis in the uterine vasculature at implantation and placentation (Licht 
et al., 2001; Zygmunt et al., 2003), and stimulates the differentiation of cytotro-
phoblasts into syncytiotrophoblasts (Shi et al., 1993). In addition, HCG drives 
the immunological adaption during pregnancy and protects the fetus against 
maternal immune rejection (Akoum et al., 2005; Wan et al., 2007). During the 
second and third trimester, HCG prevents myometrial contractions and main-
tains the endometrial lining of the uterus (Edelstam et al., 2007; Eta et al., 
1994). In addition, HCG plays a role in male fetal sexual differentiation, stimu-
lating fetal testosterone synthesis in the testicular Leydig cells (O'Shaughnessy 
et al., 2006). The hormone also promotes the growth and differentiation of fetal 
organs during pregnancy (Goldsmith et al., 1983; Rao and Lei, 2007). 

Although HCG concentrations during pregnancy show high inter-individual 
variation in maternal serum (Cole, 2012b) (Figure 6 in Ref. I), abnormal hor-
mone expression associates with pregnancy complications (Buyalos et al., 1992; 
Stenman et al., 2006). Moreover, non-pregnancy related expression of HCG has 
been used as marker for trophoblastic and non-trophoblastic malignancies 
(Cole, 2010; Cole et al., 1983; Stenman et al., 2004). In pregnancy compli-
cations, the first trimester level of HCG is elevated in cases of fetal chromo-
somal anomalies such as trisomy 21 (Bogart et al., 1987) whereas the HCG 
level is decreased in cases of trisomy 18 (Jauniaux et al., 2000). High levels of 
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HCG may also indicate a molar pregnancy or the risk for preeclampsia (Gurbuz 
et al., 2004). Low serum HCG and abnormal expression pattern of the hormone 
during the first trimester of pregnancy may refer to maternal susceptibility to 
spontaneous abortion, ectopic pregnancy (EP) or failure of assisted reproduction 
procedure (Chi et al., 2010; Letterie and Hibbert, 2000; Poikkeus et al., 2002; 
Tong et al., 2006). 
 

2.1.4.2. Evolution of HCG beta subunit coding genes among primates 

Understanding the evolution and function of HCG-coding genes has great 
importance in the context of placental biology and evolution, but also in the 
context of human evolution. Interestingly, the CGB gene family has specifically 
evolved in the anthropoid lineage, and the number of functional CGB genes is 
the highest in the human genome compared to other primates.  

The primate-specific CGB genes arose approximately 55–35 million years 
ago, following the duplication of the ancestral LHB gene and before the diver-
gence of New World and Old World monkeys (Bailey et al., 1991; Maston and 
Ruvolo, 2002) (Figure 4A). The CGB genes appear to be co-evolved with the 
hemochorial placenta (King, 1993). The first CGB gene appeared in the lineage 
of New World Monkeys, whereas in the Old World Monkeys, great apes, and 
the human lineage, additional gene duplication events have led to the further 
expansion of the CGB gene family (Hallast and Laan, 2009; Maston and 
Ruvolo, 2002) (Figure 4A). Comparison of the entire LHB/CGB gene cluster 
between human and chimpanzee revealed parallel independent duplication 
events in the two species, resulting in a discordant number of CGB genes in 
humans (n=6) and chimpanzees (n=5) (Figure 4A) (Hallast et al., 2008). Most 
recently, the novel protein non-coding CGB1 and CGB2 genes were duplicated 
in the lineages of humans and African great apes; these are strongly conserved 
between human and chimpanzee (Hallast et al., 2007) (Figure 4A). The two 
genes were formed by the insertion of a DNA element containing snaR-G gene 
into their 5’ ends, drastically modifying the encoded proteins. A recent study 
suggested that the CGB genes have an important role in the primate male repro-
ductive system (Parrott et al., 2011). 

Chorionic gonadotropin is also found in equines but its evolution differs 
greatly from the primates. No duplication event of the LHB gene is apparent in 
the equine genome. Both, equine LH and CG are encoded by the same common 
-subunit and the equine LHB gene (Sherman et al., 1992). The difference in 
function is achieved through different glycosylation, with the equine CG hor-
mone being more glycosylated (Sherman et al., 1992). Among other mammals, 
CGB genes are not present in mice, rats, cows, pigs and sheep (Brown et al., 
1993; Ezashi et al., 1990; Jameson et al., 1984; Kumar and Matzuk, 1995; 
Virgin et al., 1985).  

The human LHB/CGB gene cluster is located in a 50 kb region on chromo-
some 19q13.32 and consists of a tandem of one homologous LHB and six CGB 
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genes (Hallast et al., 2005; Policastro et al., 1986) (Figure 4C). The HCG-
coding genes (CGB, CGB5, CGB7 and CGB8) have 97–99% of DNA sequence 
identity, whereas their identity with the functionally divergent LHB gene is 92–
93% (Bo and Boime, 1992; Hallast et al., 2005) (Figure 4B). Non-protein 
coding pseudogenes CGB1 and CGB2 are 85% similar to the HCG-coding 
genes (Figure 3B). In addition to high DNA sequence similarity, the LHB/CGB 
genomic region is also characterized by extremely high GC nucleotide content 
(55% compared to 40% of genome average), abundance of CpG islands and 
high repeat content (Hallast et al., 2005) (Figure 4D, E).  
 

 

Figure 4. Evolution and genomic organization of the human LHB/CGB gene clus-
ter. A. Several duplication events of the ancestral LHB gene have led to the rise of CGB 
genes in the primate lineage (adapted from Maston and Ruvolo, 2002) B. Six human 
CGB genes share up to 99% of sequence identity and C. are located in chromosome 
19q13.32 in the common gene cluster with LHB gene, covering a genomic region of 
about 50 kilobases. D. The genomic region of LHB/CGB cluster is defined by high CG 
content (55%) and E. high number of repeats (data from USCS genome browser). 
MYA, million years ago. 
 
 

2.2. Gene expression in human placenta 

The normal function of placenta depends on the proper growth and development 
of its structural components, requiring finely tuned transcriptional regulation of 
placental genes during gestation. Unique features characterize placental gene 
expression. First, although the placental genome is identical to the genome of 

6
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the fetus, the regulation of gene expression differs greatly between the two. 
Second, placental transcription is dynamic in nature and it changes over gesta-
tion in a time-dependent manner. Third, placental gene expression regulates 
fetal development, maternal metabolism as well as placental development and 
function during pregnancy. Last but not least, gene expression in placenta also 
programs its own death at the end of third trimester. Several earlier studies have 
investigated placental gene expression and linked its alterations to placental 
pathologies of development, maternal metabolism and the immune system. Yet, 
complete characterisation of placental gene regulation over the course of normal 
pregnancy is an important prerequisite for understanding placenta-related preg-
nancy complications. 
 
 

2.2.1. Gene expression of primate-specific  
placental duplicate genes 

2.2.1.1. HCG-coding genes 

The expression of HCG-coding genes in primates is mainly restricted to pla-
centa (Jameson et al., 1986). Among the six duplicate genes, the HCG-coding 
genes CGB8, CGB5 and CGB have the highest placental expression, while the 
pseudogenes CGB1 and CGB2 are expressed at much lower level (Miller-
Lindholm et al., 1997; Rull and Laan, 2005). The majority of HCG tran-
scription in the hypoxic first trimester placenta is driven by villous cyto-
trophoblast cells, whereas the syncytiotrophoblast becomes the major source of 
transcription after the maternal blood has entered the placental intervillous 
space (Cocquebert et al., 2012). Although sufficient transcription of HCG-
genes is crucial for the final hormone HCG level in gestation, the transcription 
of single HCG-coding genes varies greatly between individuals and popu-
lations (Bo and Boime, 1992; Miller-Lindholm et al., 1997; Rull and Laan, 
2005). However, the maintenance of normal pregnancy is determined by the 
total expression of HCG-coding genes rather than the expression of individual 
HCG genes. Of note, increased total HCG expression also serves as a 
molecular biomarker for malignant tumours (Stenman et al., 2004).  
 

2.2.1.2. GH/CSH-coding genes 

The locus coding for the human Growth Hormone/Chorionic Somatomam-
motropin (GH/CSH) on chromosome 17q22–24 consists of highly similar 
pituitary-expressed postnatal gene (GH1) and four placentally expressed dupli-
cate genes with sequence identity of 92–98% (GH2, CSH1, CSH2, and CSHL1) 
(George et al., 1981; Sedman et al., 2008). GH2 encodes the human placental 
growth hormone (PGH), while the CSH1 and CSH2 genes encode the placental 
lactogen (PL). Both hormones regulate fetal growth and development, and are 
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required for the adaptation of the maternal metabolism to pregnancy (Alsat et 
al., 1998; Freemark, 2006). The placental gene CSHL1 is not known to be 
protein coding. Despite structural similarity, the four placental GH/CSH genes 
show considerable heterogeneity and variability, especially in transcriptional 
regulation and alternative splicing, resulting different protein isoforms 
(MacLeod et al., 1992; Sedman et al., 2008). 

Aberrant mRNA expression of placental GH/CSH genes is associated with 
several pregnancy complications, manifested in altered maternal metabolism 
and fetal growth. For example, decreased placental expression of GH/CSH 
genes has been found in cases of restricted fetal growth whereas increased pla-
cental expression of the same genes is associated with elevated fetal birth 
weight (Männik et al., 2010). Additionally, decreased and increased mRNA 
expression of GH/CSH genes was found in cases of preeclampsia and gesta-
tional diabetes mellitus, respectively (Mannik et al., 2012). 
 
 

2.2.2. Placental transcriptome analysis in normal and 
complicated pregnancy 

2.2.2.1. Gestational dynamics of placental gene expression  
in normal pregnancy 

Placental gene expression is continuously adapted during pregnancy to facilitate 
the requirements of the developing fetus and changes in maternal metabolism. 
During early pregnancy, normal trophoblast development determines successful 
implantation and formation of the maternal-fetal interface. Mid-gestation pla-
centa supports proportional fetal growth, organ development, and fine-scale 
differentiation, as well as continuous adaption of maternal metabolism. During 
the third trimester of pregnancy, placenta provides increasing amounts of nutri-
ents for the growing fetus. However, despite the great importance of placenta in 
mediating the rapid physiological changes in pregnancy, data on the temporal 
dynamics of human placental gene expression are limited. 

Placental gene expression in normal pregnancies across different gestational 
ages has been addressed in three studies. Winn et al. compared transcription 
between term and mid-gestation placentas (Winn et al., 2007) whereas Sitras et 
al. focused on changes between first and third trimester placental samples 
(Sitras et al., 2012). Mikheev et al. compared the transcriptional profiles of first 
and second trimester samples with term pregnancy samples (Mikheev et al., 
2008). All three studies observed profound changes in global gene expression at 
the end of pregnancy. The authors observed alterations in nearly 25% of pla-
cental transcriptome and coordinated regulation of pathways to acquire rapid 
changes in placental function. Regulators of cell cycle, differentiation and 
motility, angiogenesis, macromolecule biosynthesis, and metabolism were the 
major gene groups up-regulated in early pregnancy, while genes involved in 
apoptosis, inflammatory process, signal transduction, and stress response were 
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highly expressed at term (Mikheev et al., 2008; Sitras et al., 2012; Winn et al., 
2007). However, none of the studies described gene expression in first and 
second trimester placentas of normal human pregnancy. 

Besides the temporal gene expression studies above, two genome-wide tran-
scriptional comparisons of placentas from C-sections and labours have revealed 
insights into the labour process and its effects on placental gene expression 
(Cindrova-Davies et al., 2007; Lee et al., 2010). Genes involved in stress 
response, immune response, cell death, coagulation, and blood vessel develop-
ment showed the largest transcriptional differences between placental samples 
from labour and non-labour C-sections. These functional categories are con-
sidered to be closely associated with the inflammatory response that charac-
terizes labour. In addition, the transcriptional changes in early pregnancy, such 
as differentiation from villous to extravillous trophoblast, have been examined 
using whole genome microarrays (Apps et al., 2011). The authors found that 
proper differentiation is critical for trophoblast invasion and relates to re-
modelling of decidual spiral arteries. Failure to transform arteries leads to poor 
trophoblast invasion, resulting in inadequate placental perfusion that in turn 
induces the development of pregnancy complications such as preeclampsia, 
fetal growth restriction or recurrent miscarriage.  

Studies addressing the temporal changes in gene expression during normal 
pregnancy are especially important, as these will provide insight into the healthy 
gene regulation in the developing placenta. The results of such reports will 
serve as a reference to compare gene expression aberrations in placentas from 
complicated pregnancies.  
 

2.2.2.2. Altered placental gene expression in pregnancy complications 

As the healthy placenta carries a central role in the successful outcome of preg-
nancy, studies into altered placental gene expression in pregnancy compli-
cations have gained increasing interest. Whole-genome transcription studies of 
pregnancy complications aim to identify molecular networks and transcriptional 
mechanisms underlying placental pathologies, and discover novel non-invasive 
biomarkers and potential drug targets. So far, placental microarray studies have 
addressed gene expressional changes in either early or late pregnancy compli-
cations (examples are shown in Table 2).  

Early pregnancy complications such as miscarriage, ectopic and molar preg-
nancy are most commonly characterised by aberrant expression of genes regu-
lating implantation, maternal-fetal immunological functions, apoptosis and 
angiogenesis (Kim et al., 2006; Kokawa et al., 1998; Nakashima et al., 2012). 
Miscarriage is the most common early pregnancy complication, characterised 
by severely impaired development of placental-decidual interface with reduced 
maternal blood flow and oxidative stress (Jauniaux et al., 2006). Although 
considerable effort has been taken to map the genes involved in pathogenesis of 
miscarriage, no high-confidence predictive biomarkers have been found in 
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gene-focused association studies (Rull et al., 2012). However, recent whole-
genome differential gene expression analysis of recurrent miscarriage (RM) 
placentas revealed increased placental mRNA expression of the gene encoding 
TNF-related apoptosis-inducing ligand (TRAIL) (Rull et al., 2013). In addition, 
significantly higher maternal serum concentration of soluble TRAIL in cases of 
RM, unpredicted miscarriage, and tubal pregnancy refers to TRAIL’s potential 
of being a predictive biomarker for early pregnancy complications (Rull et al., 
2013). 

Impaired trophoblast invasion and vascularisation in early pregnancy are 
also associated with term complications such as preeclampsia (PE) and fetal 
growth restriction (FGR), referring to their common etiological and molecular 
background (Nishizawa et al., 2011). Trophoblast invasion is sufficient for early 
placentation but too shallow to complete the transformation of the arterial utero-
placental circulation, leading to hypoxic intrauterine environment later in preg-
nancy (Jauniaux et al., 2006). Founds et al. compared first trimester chorionic 
villous samples of women who developed PE at the end of gestation to samples 
of uncomplicated pregnancies, and found several differentially expressed genes 
associated with inflammation, immune regulation and cell motility (Founds et 
al., 2009). Another study suggested that PE and FGR complications involve 
similar gene regulatory pathways, as most of the genes up-regulated in PE pla-
centas at term are also up-regulated in FGR placentas (Table 2) (Nishizawa et 
al., 2011). However, early detection methods of these pregnancy complications 
remain limited.  

Recent genome-wide transcriptome analyses of placental gene expression in 
term pregnancy complications have associated several genes to complicated 
pregnancies (Table 2). Interestingly, differential expression of some genes is 
common to several complications, suggesting that these may be interpreted as 
general biomarkers of malfunctioning placenta. For example, significantly 
increased expression of genes such as FLT1 (Fms-related tyrosine kinase 1), 
LEP (leptin), PAPPA2 (Pappalysin-2) is found in placentas corresponding to 
preeclampsia, gestational diabetes mellitus (GDM), and intrauterine growth 
restriction (IUGR) (Table 2).  
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2.2.3. Epigenetic control of placental gene expression 

According to the definition, epigenetics refers to heritable changes in gene 
expression that are not manifested in the DNA sequence (Jones and Takai, 
2001). As DNA is largely fixed in all cells of an organism throughout its life, 
epigenetic mechanisms carry an important role in regulating gene expression to 
produce different organs and cell types (Byun et al., 2009). Moreover, epi-
genetic patterns can be passed from generation to generation, change over time, 
and are sensitive to environmental exposures (Aguilera et al., 2010; Christensen 
et al., 2009). Epigenetic regulation in placenta and other tissues controls 
transcription at three levels: DNA (DNA methylation), protein (histone modi-
fications) and RNA (long non-coding RNAs) (Nelissen et al., 2011). DNA 
methylation represses transcription by adding methyl groups to the 5th position 
of a cytosine next to guanine at genomic regions of high cytosine and guanine 
content (CpG islands) (Bird, 1986). Histone modifications either repress (e.g. 
methylation of lysine and arginine residues of histones) or activate (e.g. acety-
lation of lysine residues) transcription through modifications of chromatin 
structure and changes in DNA accessibility (Rice and Allis, 2001; Strahl and 
Allis, 2000). Finally, long non-coding RNAs (lncRNAs) participate in epige-
netic regulation through parent-of-origin and tissue specific silencing of gene 
expression (Amaral et al., 2010; Mohammad et al., 2012). Genomic imprinting 
affects gene dosage through repression of the imprinted allele (Ferguson-Smith 
and Surani, 2001) and the expression of imprinted genes is parent-of-origin 
specific and monoallelic (Reik and Walter, 2001). 

Epigenetic regulation of gene expression is especially important in modu-
lating placental gene activity and chromosome structure. Notably, more than 
70% of epigenetically regulated genes are expressed in placenta (Diplas et al., 
2009; Nelissen et al., 2011). Furthermore, the epigenetic mechanism of im-
printing is thought to have co-evolved with the chorioallantoic placenta in the 
mammalian lineage, to provide more complex regulation of placental genes 
over gestation (Haig, 1996). The hypothesis of parental genome conflict de-
scribes the origin of genomic imprinting and postulates that the paternal genome 
tries to maximise fetal resource acquisition from the mother while the maternal 
genome aims to balance its resources to the offspring (Haig, 1996; Moore and 
Haig, 1991). These observations and hypotheses underline the importance of 
epigenetic regulation in placenta. 

However, the epigenetic marks are not constantly maintained throughout an 
individual’s life. The primordial germ cells and the pre-implantation embryo 
undergo genome-wide epigenetic programming during development. First, the 
methylation of primordial germ cells is completely erased during migration 
towards the forming genital ridges, followed by global gender-specific de novo 
establishment of methylation (Ewen and Koopman, 2010; Hajkova et al., 2002). 
After fertilisation, a second wave of genome-wide de-methylation and subse-
quent de novo re-methylation takes place in the pre-implantation embryo 
(Mayer et al., 2000b; Reik et al., 2001). By the blastocyst stage, both maternal 
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and paternal chromosomes have undergone progressive demethylation (Li, 
2002; Rougier et al., 1998). Only the differential methylation of imprinted 
genes remains unaffected (Morgan et al., 2005). DNA methylation patterns in 
the developing embryo are re-established after implantation (Li, 2002). Such 
epigenetic programming of germ cells and embryos may be required to acquire 
the essential characteristics of immorality and totipotency in development 
(Sasaki and Matsui, 2008; Surani et al., 2007). In addition, imprinted genes are 
not randomly distributed across the genome but tend to occur in clusters and are 
often controlled by a shared imprinting control region (Wagschal and Feil, 
2006; Wood and Oakey, 2006). Two general features of the DNA sequence 
environment of imprinted genes are known: first, the regions are unusually rich 
in CpG islands, and second, direct repeats are common to CpG islands (Reik 
and Walter, 2001).  
 

2.2.3.1. Targeted studies of epigenetically regulated genes  
in normal and complicated human placenta 

So far, approximately 80 imprinted human genes and 130 mouse genes have 
been described (Jirtle, 2012; Morison et al., 2001). However, the overlap of 
imprinted genes between the two species is small (~50%) and imprinting is not 
always conserved. The lack of conservation in imprinting may relate to the dif-
ferences of placentation and pregnancy between humans and mice (Carter, 
2007; Enders, 2009).  

The majority of imprinted genes are expressed in placenta but also in the fe-
tus, postnatal brain and endocrine tissues (Bressan et al., 2009; Coan et al., 
2005; Davies et al., 2005). The main functions of imprinted genes involve the 
regulation of prenatal growth of embryo and/or placenta, and the regulation of 
metabolic pathways and higher brain functions (Constancia et al., 2004; 
Morison et al., 2005; Reik and Walter, 2001; Tycko, 2006). Both the accurate 
establishment of genomic imprints as well as their correct maintenance are 
essential for normal fetal and placental development, demonstrated in diseases 
caused by aberrant imprinting or animal knockout experiments (Table 3) 
(Malassine et al., 2003; Toppings et al., 2008). Loss of imprinting (LOI) is the 
gain of function from the silenced parental allele that affects gene dosage. 
Besides imprinting, gene silencing through gain of methylation of a non-
imprinted allele affects gene dosage, potentially resulting in a disease condition 
(Novakovic and Saffery, 2012). Diseases associated with imprinting include 
various cancers, disorders of growth and metabolism, and disorders in neuronal 
development, cognition, and behaviour, including certain major psychiatric 
disorders (Wilkins and Ubeda, 2011).    
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2.2.3.2. Large-scale profiling of methylation in human placenta 

The human placental DNA methylation profile is unique to the tissue and dif-
fers considerably from other somatic tissues (Christensen et al., 2009; Rakyan 
et al., 2008). The overall methylation in placenta is significantly lower com-
pared to other tissues (2.5–3.5% versus 3.5–5%) and changes through the 
course of pregnancy (Fuke et al., 2004; Gama-Sosa et al., 1983). Novakovic et 
al. identified large-scale differences in DNA methylation levels between first, 
second, and third trimester placentas, with an increase in average methylation 
degree towards term pregnancy (Novakovic et al., 2011). Notably, imprinted 
alleles tend to have higher expression in first trimester placenta (Lambertini et 
al., 2008; Pozharny et al., 2010). Increased methylation of placental DNA 
appears to coincide with higher inter-individual variation of methylation 
(Novakovic et al., 2011). Interestingly, hypomethylation of placental DNA has 
been detected in repetitive DNA elements (human endogenous retroviruses) and 
in the inactivated X chromosome, although these sequence regions are silenced 
in other tissues (Cotton et al., 2009; Reiss et al., 2007). Also, human placenta 
shows inter-individual variation in DNA methylation (epipolymorphisms) 
(Yuen et al., 2009). More variable placental imprinting in early pregnancy may 
be explained by plasticity of early gene regulation, while the inter-individual 
variation in term placenta may be a response to environmental and stochastic 
exposures. 

Besides studies of genome-wide DNA methylation in normal human pla-
centa, the methylation patterns of diseased placenta are also gaining more atten-
tion. For instance, the hypomethylation of a collection of 34 CpG sites was 
recently described in placental samples of early-onset preeclampsia (Yuen et al., 
2010). Distinctive patterns of DNA methylation were also found in placentas of 
IUGR (intrauterine growth restriction) and SGA pregnancies (small for ges-
tational age) (Banister et al., 2011). Thus, DNA methylation in human placenta 
functions as a marker for the intrauterine environment, and can play a critical 
functional role in fetal development. Moreover, recent genome-scale methy-
lation studies have taken advantage of the fact that about 3–6% of total free 
DNA in maternal plasma originates from placenta, and used the maternal blood 
to study placenta-specific methylation patterns to find biomarkers of pregnancy 
complications. For instance, mapping placenta-specific methylation of chromo-
somes 13, 18, 21, X and Y can be used as non-invasive diagnostic method for 
detecting trisomies of these chromosomes (Chim et al., 2008; Papageorgiou et 
al., 2009; Papageorgiou et al., 2011; Tsui et al., 2010).  
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3. AIMS OF THE STUDY 

The general aim of the current thesis was to (a) compare transcriptional and 
epigenetic regulation of placental gene expression in normal and complicated 
pregnancies and (b) to identify genes with altered transcription and function in 
cases of pregnancy complications. I used both candidate gene-based and 
hypothesis-free approaches. 
 
Based on the described state-of-art, the study had the following aims: 
 
1. To conduct in-depth analysis of the expression of placenta-specific chorionic 

gonadotropin (HCG) beta subunit coding CGB genes: 
• Comparison of CGB gene expression in normal pregnancies and preg-

nancy complications (recurrent miscarriage, ectopic and molar preg-
nancy)  

• Investigation of epigenetic mis-regulation of the most actively tran-
scribed HCG genes (CGB8 and CGB5) in the pathogenesis of recurrent 
miscarriage 

 
2. To perform the first transcriptome profiling of human placental gene expres-

sion in progression from early to mid-pregnancy (gestational weeks 5 to 18) 
• Identification of genes specifically upregulated in mid-gestation placenta; 
• Investigation the novel hypothesis that normal course of late pregnancy 

may be affected when genes characteristic to mid-gestation placenta 
remain highly expressed until term 

• Verification of protein expression of top-ranking candidate genes in preg-
nancy complications, and evaluation of their applicability as novel bio-
markers. 
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4. RESULTS 

4.1. Part I – targeted investigation of the transcription 
of the placenta-specific human chorionic 
gonadotropin beta genes (Ref. I, II, III) 

4.1.1. Placental transcription of HCG-coding genes  
in normal and complicated pregnancies 

Since the final production of human chorionic gonadotropin (HCG) is deter-
mined by the transcription of the four HCG-coding genes, their detailed 
mRNA transcription profile during normal and disturbed pregnancies was 
addressed. This study was carried out under the leadership of Dr. Kristiina Rull 
(Tartu University Hospital, Women’s Clinic, Tartu, Estonia). Trophoblast sam-
ples were collected from the first, second and third trimesters of uncomplicated 
pregnancies as well as first trimester pregnancies with complications (recurrent 
miscarriage, ectopic and molar pregnancy; details in Table 4) and analysed 
jointly for HCG expression. 
 
Table 4. Samples used in RT-qPCR expression analysis of HCG-coding genes. 

Study group No. of 
individuals 

Gestational age 
(weeks) 

1st trimester, normal 10 4–12 

2nd trimester, normal* 8 17–21 

3rd trimester, normal 12 38–42 

1st trimester, ectopic pregnancy 8 6–14 

1st trimester, recurrent miscarriage** 11 6–17 

1st trimester, molar pregnancy*** 2 9–10 

*Therapeutic abortion during 2nd trimester due to medical risks of pregnancy; no fetal anomalies 
were detected.  
**Patients had had 2 spontaneous abortions before the case.  
***Molar pregnancy is characterised by a reduced or even lack of embryonic development and 
excessive trophoblast proliferation.  

 
 

To identify the total expression of HCG-coding genes, sensitive RT-qPCR 
quantification approach was used for selected target genes and housekeeping 
genes (GAPTH, glyceraldehyde phosphate dehydrogenase; HPRT1, hypoxan-
thine phosphoribosyltransferase 1). Due to high sequence similarity of HCG 
coding genes, transcription levels were assessed using a shared primer set that 
amplified all HCG-coding genes (Materials and Methods in Ref. II).  
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We found that the expression of HCG-coding genes shows significant 
variation over the course of human pregnancy. Total HCG transcription is 
highest in the first trimester compared to the second (P=0.01) and third trimes-
ter of gestation (P=0.11). Importantly, first trimester complications associated 
to significant changes in HCG transcription. In particular, placentas from 
ectopic pregnancies (EP) showed higher levels of HCG transcription (P=0.06) 
and placentas from recurrent miscarriages (RM) had lower levels of HCG 
(P=0.03). However, the latter group of complications is characterised by con-
siderable rate of inter-individual variability (Figure 5). Our findings support the 
outcome from previous studies that used semi-quantitative expression analyses 
of HCG-coding genes in normal and complicated pregnancies (Miller-
Lindholm et al., 1997; Rull and Laan, 2005). We also reported similar findings 
between placental expression profile of these genes and protein levels of HCG 
in blood serum during normal and complicated pregnancies (Berkowitz et al., 
1989; Hay, 1988; Letterie and Hibbert, 2000).  
 
Main conclusions and implications of this study: 

1. Besides showing considerable inter-individual variation of HCG hormone 
levels, the study demonstrated inter-individual differences in total transcrip-
tion levels of CGB genes between pregnancies of same gestational age or 
clinical group.  

2. Uncomplicated pregnancies are characterized by the highest total expression 
of CGB genes in the first trimester, followed by a sharp decrease in expres-
sion in the second trimester and modest increase in term placenta. 

3. Significantly lower expression of total HCG-coding mRNA in recurrent 
miscarriage explains the decreased HCG hormone levels in RM and poten-
tially refers to aberrant transcription of CGB genes. High expression of 
HCG-coding genes but low hormone level in EP complications may result 
from defects in hormone assembly. 
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Figure 5. Relative expression level of total CGB transcripts in placenta during the first, 
second and third trimester of normal pregnancy, in cases of recurrent miscarriage (RM), 
ectopic pregnancy (EP) and molar pregnancy (Ref. II). 
 
 

4.1.2. Epigenetic regulation of HCG-coding genes 

Significantly lower expression level of HCG-genes in RM placentas may refer 
to transcriptional or post-transcriptional alterations that induce silencing of the 
HCG-genes. Post-transcriptional silencing mechanisms destroy the synthe-
sized mRNA (e.g. RNA interference) or block its translation (Hammond et al., 
2001). Transcriptional silencing involves transcriptional repressor proteins and 
epigenetic mechanisms such as DNA methylation and chromatin modifications 
(Attwood et al., 2002).  

In the second study (Ref. III) I tested the hypothesis that the placental 
expression of HCG-coding genes is imprinted, and the decrease in total HCG 
level in RM cases refers to aberrant DNA methylation. The hypothesis origi-
nated from the observation that the genomic region of HCG-coding genes has 
several features common to other placental imprinted genes (Bressan et al., 
2009). First, the LHB/CGB region has a high GC nucleotide content (55%), 
high repeat content, and abundance of CpG islands (Hallast et al., 2005) that are 
likely targets of DNA methylation. Second, imprinted genes often cluster in 
common genomic regions (Verona et al., 2003) and the HCG region co-occurs 
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with the imprinted gene PEG3 (paternally expressed gene 3, 19q13.4) (Hiby et 
al., 2001).  

I chose to investigate the expression of CGB5 and CGB8 genes, as they con-
tribute up to 82% of total CGB transcription pool (Miller-Lindholm et al., 1997; 
Rull and Laan, 2005). Transcriptional changes of these genes therefore cause 
the greatest changes in HCG hormone level.  
 

4.1.2.1. Successful pregnancy requires biparental expression  
of CGB5 and CGB8 

My first objective was to determine the parental origin of placental transcription 
of CGB5 and CGB8 alleles with family-based (mother/father/placenta) geno-
typing of single nucleotide polymorphisms (SNPs). Both placental and parental 
blood samples from first and third trimester uncomplicated pregnancies and 
from cases of first trimester RM complications were collected (Dr. Kristiina 
Rull, Tartu University Hospital Women’s Clinic). A total of 23 mother-off-
spring duos and nine mother-father-offspring trios were analysed (Figure 6A).  

Three SNP positions located in either CGB5 (rs710899; ss105107003; 
rs12610392) or CGB8 (rs34212754; rs13345685; rs35930240) gene 5’UTR 
regions were genotyped using long-range and gene-specific PCR and rese-
quencing methods (Figure 1B and Figure 2A in Ref. III). The placental sam-
ples were considered genetically informative if they were heterozygous for at 
least one SNP out of three, such that at least one parent carried a homozygous 
genotype for the same SNP (Figure 1D in Ref. III). Using this approach, I 
identified 14 informative placental samples for CGB8 and nine informative 
placentas for the CGB5 gene (Figure 6A; Table 1 and Table 2 in Ref. III). 

Next, the parental origin of mRNA sequences of informative CGB8 and 
CGB5 cases was detected using cloning and re-sequencing methods (Figure 
6B). Most analysed placentas (87%, 20 out of 23) showed biparental expression 
of CGB5 and CGB8 genes in normal first and third trimester samples as well as 
in RM cases (Table 1 and Table 2 in Ref. III). Interestingly, I found monoalle-
lic maternal expression of CGB5 in three placentas, including two RM cases 
and one elective termination of first trimester pregnancy (Table 1 in Ref. III). 
Due to the small sample size and limited number of informative cases, the 
association between RM and monoallelic CGB5 expression is not statistically 
significant (Fisher’s exact test P=0.23, 9 informative samples).  

The one healthy sample with monoallelic expression (ETP26) originates 
from an exceptionally early elective termination of pregnancy (week 4) classi-
fied as a normal placenta. However one can speculate on the possible compli-
cations that could have occurred at the later stages of this pregnancy. When 
excluding this sample as an outlier, we gain increased significance of RM asso-
ciation (P=0.11, 8 samples).  

10
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In conclusion, this result rejected the hypothesis that CGB genes are nor-
mally imprinted in human placenta, since biallelic expression was detected in 
most of the genetically informative cases for the parental origin of alleles.  
 

 
Figure 6. Overview of analysed samples and methods used for detecting parental of 
origin of placentally expressed CGB5 and CGB8 alleles. A. Among analysed samples, 
nine placentas were confirmed as informative for the CGB5 gene and 14 were infor-
mative for the CGB8 gene. B. Most informative placentas showed biparental expression 
for both CGB5 and CGB8 gene, except for two RM cases and one uncomplicated 1st 
trimester placenta where only maternally expressed CGB5 alleles were detected. 
Recurrent miscarriage; patients had experienced 2 spontaneous abortions before the 
case. 
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4.1.2.2. Uniparentally expressed CGB5 promoter  
is hemimethylated in placenta 

Though the production of HCG-subunit of HCG is guaranteed by biparental 
expression of CGB5 and CGB8 for the most of normal pregnancies, I found that 
the expression of paternally inherited allele of CGB5 was inhibited in some 
placentas. Parent-of-origin specific silencing of one gene allele that is normally 
expressed biallelically may refer to allele-specific promoter methylation 
(Bartolomei and Ferguson-Smith, 2011).  

To gain insight into the methylation of 13 CpG sites in the promoter of 
CGB5, I used the methylation-sensitive amplification (MS-PCR) of sodium 
bisulfite treated genomic DNA, followed by clonal sequencing (details in Ref. 
III, Subjects and methods, Figure 4A). Three groups of samples were studied: 
(i) placentas of uniparentally expressed CGB5 (n=3), (ii) normal term placentas 
of biparentally expressed CGB5 (n=2) and (iii) parental peripheral blood (n=7).  

I found that all parental DNA samples of both complicated and uncompli-
cated pregnancies showed nearly complete methylation of CGB5 promoter, 
while the promoters were unmethylated in placentas of uncomplicated preg-
nancies. In contrast, three placental samples with only maternal CGB5 expres-
sion revealed both methylated and unmethylated promoter variants (Figure 3 
and Figure 4B in Ref. III). This novel methylation allelic polymorphism 
(MAP) in CGB5 promoter correlates with the identified expression patterns of 
CGB5. Monoallelic maternal expression was accompanied with DNA hemi-
methylation in CGB5 promoter whereas biallelic expression was observed in all 
unmethylated cases. Unfortunately the parental origin of the methylated and 
unmethylated alleles was not detectable due to absence of marker SNPs in the 
analysed region after bisulfite treatment.  

Methylation of transcription factor binding sites is a potential mechanism of 
parent-specific transcriptional silencing of CGB5 expression. One of the ana-
lysed CpG sites is located 198 bp upstream of the CGB5 transcription start site, 
within a functional Sp1 transcription factor binding site (Johnson and Jameson, 
1999). The site was hemimethylated in all three cases with uniparentally 
expressed CGB5 (Figure 4B in Ref. III). This observation suggests that 
methylation of CpG site disrupts transcription factor binding and alters the tran-
scription of downstream CGB5 mRNA.  

In addition to the above, Turner syndrome (45 X monosomy) was diagnosed 
in one of the three RM cases with MAP and monoallelic CGB5 expression 
(Supplemental Figure 1 in Ref. III). 
Main conclusions and implications of this study: 
1. Biparental expression of the CGB5 and CGB8 genes is required for normal 

outcome of pregnancy.  
2. Monoallelic maternal expression and promoter hemimethylation of CGB5 

gene is associated with recurrent miscarriage.  
3. CGB5 may be a novel epipolymorphic gene with occasional gain of paternal 

imprinting (GOI).  
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4.2. Part II – genome-wide study: mid-gestation 
placental gene expression and link to pregnancy 

complications (Ref. IV) 

Despite the great importance of placenta in mediating the rapid physiological 
changes in pregnancy, data on the temporal dynamics of human placental gene 
expression are limited. In this part of the thesis I studied genome-wide placental 
gene expression during three trimesters of uncomplicated gestation. The goal of 
this study was to detect mid-gestation specific genes, and explore the expression 
of mid-gestation specific genes and proteins in normal pregnancies and preg-
nancy complications. 
 
 

4.2.1. Genome-wide transcriptome profiling  
of early and mid-gestation placentas 

To describe the transcriptional changes in placenta during the first and second 
trimester of human pregnancy, ten placental samples from gestational weeks 5–
18 were analysed on GeneChip (Affymetrix) expression arrays (Figure 7A). 
Subsequent gestational age-dependent quantitative microarray analysis detected 
154 differentially expressed genes (ANOVA; FDR corrected P<0.1), including 
105 genes with gradually increasing and 49 genes with decreasing transcript 
levels (Figure 1 and Table S2 in Ref. IV). This analysis revealed genes with 
dynamic changes in gene expression during three months of early pregnancy. 
Alternatively, microarray data was subjected to differential expression analysis 
between placental samples grouped as ‘early’ (n=6) or ‘mid-gestation’ (n=4). 
The second analysis identified 205 genes with significantly higher expression 
and 24 genes with significantly lower expression in mid-pregnancy (t-test; FDR 
corrected P<0.1) (Figure S3 and Table S4 in Ref. IV). The majority of gradu-
ally up-regulated genes identified in the first analysis (n=63, 60%) were also 
found in the second analysis, suggesting that both statistical strategies identified 
biologically relevant genes.  

The most significantly up-regulated genes during first and second trimester 
of gestation according to the quantitative analysis of microarray data are listed 
in Table 5 (supplemental information in Figure 2 and Table S2 in Ref. IV). 
Many of my findings are related to fetal development. For example FST  
(follistatin), BMP5 (bone morphogenetic protein 5), STC1 (stanniocalcin 1) and 
CDH11 (cadherin 11) participate in bone and skeleton development (Cheng et 
al., 1998; Gajos-Michniewicz et al., 2010; Yeung et al., 2012; Zoricic et al., 
2003). NRCAM (neuronal cell adhesion molecule) and GATM (glycine 
amidinotransferase) genes are involved in the development of the nervous sys-
tem (Braissant et al., 2005; Grumet, 1991). PLAGL1 (Pleiomorphic adenoma 
gene-like 1) regulates cardiac and pancreas morphogenesis (Du et al., 2011; 
Yuasa et al., 2010) (Table 5; Table S9 in Ref. IV).  
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Figure 7. Overview of analysed samples and methods used for identification of mid-
gestational specific genes in placenta (A, B) and detecting the gene and protein 
expression of mid-pregnancy markers in pregnancy complications (C, D, E). PE, pree-
clampsia; GDM, gestational diabetes mellitus; SGA, small for gestational age; LGA, 
large for gestational age. 
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4.2.2. Functional enrichment analysis  
of differentially expressed genes 

The functional enrichment analysis of significantly differentially expressed 
genes using g:Profiler software (Reimand et al., 2011) revealed more than 200 
statistically over-represented Gene Ontology (GO) categories and pathways for 
genes with increased placental expression towards mid-pregnancy (Table S6 in 
Ref. IV). The transcriptional patterns in the evolving placenta are characterized 
by biological processes such as anatomical structure development, growth, cell 
communication and adhesion, cell surface receptor signalling and cellular re-
sponse to stimulus (hypergeometric test, FDR P<10–3). In addition, processes 
related to pregnancy development and maintenance such as blood vessel de-
velopment, VEGF receptor signalling, and gonadotropin secretion were 
observed (FDR P<10–3). Considerably fewer enriched GO biological processes 
were detected for genes with decreasing expression. The most significant down-
regulated process was transcription from RNA polymerase III promoter (FDR 
P=1.7x10–4). These functional enrichments provide support to the identified 
placental genes.  
 
 

4.2.3. RT-qPCR assays identify multiple classes of mid-
gestation specific genes 

A total of 24 genes were prioritized from the microarray analysis for further 
experimental confirmation by quantitative RT-qPCR analysis, using an exten-
ded set of first (n=23), second (n=8) and third trimester (n=12) placentas 
(details provided in Materials and Methods in Ref IV) (Figure 7B; Figure 2 
and Table S2 in Ref IV). Third trimester samples of uncomplicated pregnancies 
were included to determine the expressional dynamics of mid-gestation genes 
throughout pregnancy. The names and functions of prioritized genes are shown 
in Table S3 in Ref. IV.  

The validation experiment largely confirmed findings of the microarray 
analysis. As a result, several mid-gestation specific placental genes were con-
firmed. I found 16 genes (FST, MEG3, PLAGL1, ITGBL1, BMP5, STC1, 
GPR183, LYPD6, CDH11, SLC16A10, NRCAM, GATM, CCNG2, NEDD9, 
NR3C1, ZFP36L1) that showed significant increase in expression throughout 
the first and second trimester of pregnancy (ANOVA and t-test, FDR P0.005; 
Table 5; Figure 3, Figure 4, Table 2 and Table S7 in Ref. IV). The analysis 
revealed three types of expression patterns. First, ten genes showed low expres-
sion at first trimester, a clear expressional peak at mid-gestation followed by up 
to 4.2-fold decrease in transcript levels at term (BMP5, CCNG2, CDH11, FST, 
GATM, GPR183, ITGBL1, PLAGL1, SLC16A10, STC1; all FDR P0.05, t-test; 
Figure 4A and Table S7 in Ref. IV). Second, four genes (LYPD6, MEG3, 
NRCAM, ZFP36L1) were significantly upregulated in second trimester samples 
and remained highly transcribed until term (Figure 4B in Ref. IV). Third, two 
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genes (NEDD9, NR3C1) were increasingly upregulated throughout gestation 
(Figure 4C in Ref. IV). These gene groups are likely to represent different 
regulatory programs and developmental functions. 
 
 

4.2.4. Altered expression of mid-gestational genes  
in late pregnancy complications 

Normal course of late pregnancy may be affected when the genes characteristic 
to mid-gestation placental transcriptome remain highly expressed until term. 
The next aim of this study was to test the hypothesis that aberrant third trimester 
gene expression of mid-gestation placental genes contributes to fetal growth, or 
the development of maternal pregnancy complications at term.  

Placental samples from normal third trimester pregnancies (n=12) were 
compared to samples from complicated pregnancies of maternal gestational 
diabetes (GDM, n=12), preeclampsia (PE, n=12), or disturbed fetal growth 
(SGA, small for gestational age, n=12; LGA, large for gestational age, n=12) 
(Figure 7C). Study groups are described in detail in Table 1A of Ref. IV.  

Seven of the 16 quantified (RT-qPCR) mid-gestation genes were transcribed 
significantly higher in placental samples of pregnancy complications compared 
to the control group (Table 6; Table 3 in Ref IV). In addition to two-group 
statistical tests, we used analysis of covariance (ANCOVA) tests to account for 
confounding factors such as gestational age and mother’s age that potentially 
influence gene expression. Three genes STC1, LYPD6 and CCNG2 were found 
to have the strongest association with pregnancy complications. STC1 showed 
increased placental expression in all studied patient groups, while higher 
expression of LYPD6 and CCNG2 associated to PE and GD complications. 
LYPD6 also associated to smaller newborns (SGA). Details of these results are 
shown in Table 6 of the thesis as well as Table 3 in Ref IV. 
 
Table 6. Mid-gestational marker genes with increased mRNA expression levels in pla-
centas of term pregnancy complications compared to normal third trimester placentas.  

 
Maternal 

preeclampsia 

Maternal 
gestational 

diabetes mellitus 

Baby small for 
gestational age 

Baby large for 
gestational age 

Gene ID t-test ANCOVA t-test ANCOVA t-test ANCOVA t-test ANCOVA 

STC1 10–3 NS 0.021 NS 10–3 10–3 10–2 NS 

LYPD6 10–2 NS 10–4 0.026 0.014 10–2 10–2 NS 

CCNG2 10–3 10–2 10–3 10–3 NS NS 0.027 NS 

GATM 0.025 NS 0.024 0.041 0.022 0.043 0.019 NS 

GPR183 NS NS NS NS 0.025 NS 0.029 NS 

MEG3 NS NS 0.012 NS NS NS NS NS 

CDH11 NS NS 0.026 NS NS NS NS NS 

12
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Four further genes did not pass the statistical thresholds for group comparisons 
(t-test, FDR P0.05). However, a weak correlation of increased expression and 
pregnancy complications was observed (Table 6). For example, higher 
transcription of GATM was detected in all complication groups compared to 
normal term placentas, GPR183 showed increased expression in cases of 
affected fetal growth, and expression of MEG3 and CDH11 were increased in 
placentas complicated of GD (Table 6; Table 3 in Ref IV).  

Seven mid-gestation marker genes with at least one statistically significant 
association to pregnancy complications were found. Numbers indicate P-values. 
Bold letters highlight significant results after FDR correction. Analysis of 
covariance (ANCOVA) was used for seven genes with significant values from 
t-test. ANCOVA tests were adjusted by gestational age, placenta weight, infant 
gender and type of delivery. GD tests were additionally adjusted by infant 
weight and maternal age; PE tests with infant weight. ANCOVA FDR con-
sidered 7 genes.  
 
 

4.2.5. Verification of protein expression 

The three genes (STC1, CCNG2, LYPD6) with the strongest statistical signifi-
cance of differential expression in complicated term placentas were selected for 
the analysis of protein expression, either in maternal plasma by ELISA (STC1), 
or in placental tissue samples by immunohistochemistry (IHC) (CCNG2, 
LYPD6).  
 

4.2.5.1. STC1 maternal plasma protein level is elevated  
in pregnancy complications 

The STC1 gene, characterized by sharp upregulation of placental gene expres-
sion in mid-gestation, encodes as a soluble glycoprotein hormone Stanniocalcin 
1 (STC1) (Jellinek et al., 2000). In this study, STC1 concentrations were 
measured in blood plasma collected on the day of delivery from women of nor-
mal term pregnancies (n=40) as well as patients from pregnancies complicated 
with PE (n=16), GD (n=30) or affected fetal growth (SGA, n=18; LGA, n=16) 
(Figure 7D; Table 1B in Ref. IV). I aimed to test whether the increased expres-
sion of STC1 in pregnancy complications correlates with higher maternal circu-
lating STC1 levels.  

Significantly elevated plasma STC1 levels were detected in SGA, PE and 
GD groups of pregnancy complications (median concentrations >650 pg/ml) 
compared to healthy controls (median concentration 418 pg/ml) (ANCOVA, 
P<0.05, Figure 5A in Ref IV). Moreover, when grouping PE cases according to 
newborn birth weight, increase of maternal plasma concentrations of STC1 was 
more pronounced in the PE-SGA group (median 731 pg/ml; ANCOVA, 
P=0.00048; Figure 5B in Ref IV).  
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4.2.5.2. Expression and localisation of LYPD6 and CCNG2 proteins in 
placental tissue of normal term and complicated pregnancies 

The expression of cytoplasmic proteins LYPD6 (Zhang et al., 2010) and 
CCNG2 (Bennin et al., 2002) was measured concurrently using placental 
paraffin sections sampled from five control, five PE and five GDM pregnancies 
at term (details in Materials and Methods, Table S1 and Text S3 in Ref. IV).  

Both LYPD6 and CCNG2 showed enhanced immunostaining in placental 
samples of PE and GDM complications compared to controls. This result 
confirms our previous observations and correlates with RT-qPCR results of 
increased transcription of LYPD6 and CCNG2 in PE and GDM placentas 
(Figure 8; Figure S5, Figure S6, Table 3 in Ref. IV). Specifically, LYPD6 
staining was detected in villous syncytiotrophoblast of all studied samples, as 
well as in villous Hoffbauer cells, fibroblasts and endothelial cells of villous 
vessels (Figure 8; Figure S5 in Ref. IV). Similarly, I found the CCNG2 protein 
to be specific to villous stromal Hoffbauer cells and fibroblasts, while only 
weak staining was seen in syncytiotrophoblast and endothelial cells of vessel 
walls (Figure 8; Figure S6 in Ref. IV).  
  
Main conclusions and implications of this study: 

1. This is the first study to report quantitative profiling of placental transcrip-
tome dynamics over the first and second trimester of pregnancy (weeks 5 to 
18). 

2. Ten genes with peaking expression in mid-gestation placenta were validated 
with RT-qPCR in the comparison of early and term pregnancies. 

3. The study demonstrated the importance of fine-scale tuning of dynamic tran-
scriptional regulation during gestation: several mid-gestation genes showed 
aberrant expression in PE, GDM and SGA placentas at term compared to 
controls. 

4. The circulating STC1 protein has a direct potential as a prognostic, non-
invasive maternal serum biomarker for determining patients with complex 
pathologies in which preeclampsia is accompanied with restricted fetal 
growth.  

5. As an additional novel finding, I found that most of the identified genes with 
peaking expression in mid-gestation placenta have also been implicated in 
adult complex diseases (Table S9 in Ref. IV). This observation supports the 
recent discussion regarding the role of placenta in developmental program-
ming (McKay, 2011) and in utero origin of adult disease (Barker et al., 
2002).  
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Figure 8. Immunostaining of LYPD6 and CCNG2 proteins in placental sections from 
uncomplicated control, preeclampsia (PE) and gestational diabetes mellitus (GDM) pregnancies 
at term. A. Strong LYPD6 antibody staining was found in cytoplasm and nucleus of villous stromal 
Hoffbauer cells (H), fibroblasts (F) and endothelial cells (E) of villous vessels. Additionally, diffuse 
cytoplasm staining of LYPD6 was detected in syncytiotrophoblast (ST). B. CCNG2 antibody showed 
fine granular cytoplasm staining of villous Hoffbauer (H) and fibroblast (F) cells, and weak staining of 
syncytiotrophoblast (ST) and endothelial cells (E) of villous vessels. No localisation differences in 
LYPD6 or CCNG2 antibody staining were detected between control, PE and GDM samples, although 
higher staining intensity was observed in PE and GDM placentas compared to controls. C. Negative 
control (NC) staining without primary antibody. STV, small terminal villi; IMV, intermediate villi; 
SK, syncytial knot; IN, infarction lesion; FN, fibrinoid necrosis. Microscope magnifications x100 and 
x400 were used; scale bar, 50 m. 
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5. DISCUSSION 

5.1. Challenges of placental gene expression  
and epigenetic studies 

The human placenta is gaining increasing scientific attention as its role in 
physiology and disease is further acknowledged. Placenta holds a critical struc-
tural and functional role of mediating fetal development and maternal adaption 
during pregnancy. It also acts as a central interface in fetal and maternal pro-
gramming. Maternal and fetal pregnancy-related conditions involving placenta 
may contribute to the health of mother and child later in their lives. Therefore, 
understanding the function of placenta at the molecular level is crucial for 
health and well-being. However, there are a number of limitations that restrict 
human placental gene expression studies.  

First, placental studies on human tissue are complicated due to restricted 
collection of ethically sensitive biomaterial, resulting in reduced sample sizes 
and small power of reported statistical tests. Several placental studies published 
to date have used samples from either a) early stages of pregnancy originating 
from elective termination of pregnancy either due to personal reasons (elective 
termination of pregnancy) or medical conditions (spontaneous abortion); or b) 
placental tissue sampled after delivery of baby at term. Collecting mid-term 
placental samples is especially difficult due to clinical and ethical restrictions. 
Consequently, only few current studies have explored the molecular biology of 
mid-gestation human placenta (Mikheev et al., 2008; Winn et al., 2007). While 
the study of placental epigenetic and transcriptional regulation in this doctoral 
thesis is novel in its scope and findings, the relatively small number of analysed 
samples ultimately affects its conclusions. In particular, investigation of epige-
netic imprinting and parent-of-origin of allelic expression requires extensive 
collection to accumulate a meaningful set of informative samples. In this doc-
toral thesis, I obtained and analysed a number of family duos (placental samples 
and maternal blood samples) and trios (placental samples, maternal and paternal 
blood samples). However, as the coding regions of CGB genes showed rela-
tively little variability and corresponding SNPs were sparse, the small number 
of informative families limited the interpretation of results of the methylation 
study. 

Second, human hemochorial placentation has been considered as the most 
invasive placentation process among mammals (Benirschke et al., 2006). 
Cytotrophoblast cells invade maternal decidua basalis through rapid prolifera-
tion, attaching the placenta to the mother’s uterus (Boyd, 1970). Consequently, 
the interpretation of results from placental gene expression and epigenetic 
studies is complicated as the collected placental samples often contain a mixture 
of fetal and maternal cells. Moreover, placenta itself is heterogeneous and con-
tains multiple types of cells such as syncytiotrophoblasts and cytotrophoblasts 
with their own physiological functions as well as transcriptional and epigenetic 
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signatures (Avila et al., 2010; Penaherrera et al., 2012). Such heterogeneity at 
the cellular level underlines the need to investigate transcriptional profiles of 
placental samples collected from different locations of the same tissue. Sur-
prisingly however, levels of DNA methylation have been found to be consistent 
across different locations throughout term placenta (Avila et al., 2010; Ferreira 
et al., 2011; Non et al., 2012). While recent technological developments allow 
placental sampling and differentiation of cell layers from term placentas, it is 
not yet possible to achieve clear trophoblast differentiation of maternal or fetal 
cells from samples of early pregnancy. Therefore transcriptional analysis of 
early placental samples is more likely to reflect cells of the maternal-fetal inter-
face rather than homogeneous placental cells.  

Third, transcriptional analysis of placental tissue is complicated because no 
reference genes with stable expression across all three trimesters of pregnancy 
are known. In this doctoral work, the housekeeping genes HPRT1 and GAPDH 
were used as references in RT-qPCR experiments. HPRT1 has been shown pre-
viously to maintain a stable expression level during early pregnancy (Khan et 
al., 2010), as well as in comparisons of complicated placentas (GD, PE) and 
normal term placentas (Lanoix et al., 2012; Meller et al., 2005). The stability of 
GAPDH expression has been confirmed in normal term placentas (both labour 
and caesarean section) and placentas of fetal growth restriction (Murthi et al., 
2008; Patel et al., 2002). However, differential expression of GAPDH has been 
detected between first and third trimester of normal human placentas (Patel et 
al., 2002), indicating that it may be an unfavourable reference gene for expres-
sion studies considering all three trimesters of pregnancy.  
 
 

5.2. Modulation of placental gene expression  
by interindividual variation of methylation and 

pregnancy outcome 

DNA methylation is a mitotically heritable but reversible regulatory mechanism 
that produces different tissues, cell types and phenotypic variability. Methy-
lation depends of the individual’s sex and age, but it is also stochastic and prone 
to changes induced by environmental stimuli (Grigoriu et al., 2011; Jaenisch 
and Bird, 2003; Novakovic et al., 2011). DNA methylation is a common 
mechanism of epigenetic silencing of gene expression and it plays an especially 
important role in placental transcription control (Bird, 2002; Diplas et al., 
2009). Placental DNA methylation is required for normal fetal development and 
maternal adaption to pregnancy. Methylation follows a dynamic pattern to 
ensure fine-scale time-dependent tuning of placental gene expression.  

In my doctoral thesis I investigated the DNA methylation patterns of CGB5 
and CGB8 genes. I compared cases of uncomplicated pregnancies and recurrent 
miscarriages to explain our findings of significantly lower total HCG-coding 
gene expression in cases of RM. The initial hypothesis considered potential 
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imprinting of CGB genes in placenta and aberrant methylation in recurrent mis-
carriage. Candidate CGB8 and CGB5 genes were selected as they contribute 
together up to 82% of total pool of HCG transcripts (Miller-Lindholm et al., 
1997; Rull and Laan, 2005). About 50% of RM cases are currently not linked to 
clinical causes (Jauniaux et al., 2000), suggesting a potential role of genetic 
determinants. In this study, I was able to take advantage of a unique selection of 
family duos and trios and determine parent of origin of expressed alleles in pla-
centa. Differential methylation of HCG-genes has been previously observed in 
trophoblast and tumour cell lines (Campain et al., 1993) supporting the hypo-
thesis that HCG-coding genes may be imprinted in placenta.  

I detected biallelic expression of CGB8 and CGB5 genes in most of the 
analysed trophoblast samples, including both RM and normal cases, thus re-
futing the initial hypothesis of imprinted expression of CGB genes. However, I 
also observed imbalance of expressed alleles in a subset of analysed placentas: 
only maternally derived CGB5 alleles were expressed in three of nine infor-
mative placentas (one ETP and two RM cases) and the promoter region of 
CGB5 was hemimethylated in those cases, compared to hypomethylation 
detected in biallelically expressed samples. Unfortunately, I was unable to 
determine the parental origin of methylated and unmethylated alleles of CGB5 
due to limited number of informative polymorphisms, and loss of information 
about their parental origin in bisulfite-treated DNA. Therefore, it is not clear 
whether CGB5 promoter methylation results from a methylation allelic poly-
morphism (MAP) or polymorphic imprinting. MAP is defined as interindividual 
variation in DNA methylation that is independent of parent-of-origin effect 
(Pastinen et al., 2004; Yuen et al., 2009). Polymorphic imprinting involves a 
subset of individuals that have parent of origin specific silencing of one of the 
alleles (Naumova and Croteau, 2004). The human genes WT1 (Wilms’ tumor 
suppressor) and IGF2R (insulin-like growth factor 2 receptor) are examples of 
polymorphic imprinting in placenta (Jinno et al., 1994; Xu et al., 1993).  

Despite the small number of informative CGB5 cases and limited statistical 
power, I found an association between recurrent miscarriage and gained CGB5 
promoter MAP in placenta. Notably, several recent studies have found similar 
associations between gain of methylation of placental genes, pregnancy out-
come and infant growth-related complications. Specifically, elevated placental 
methylation and decreased expression of WNT2 (wingless-type MMTV inte-
gration site family member 2) and HSD11B2 (hydroxysteroid 11-beta dehydro-
genase 2) genes have been found in SGA infants (Ferreira et al., 2011; Marsit et 
al., 2012). Increased methylation of TUSC3 (tumor suppressor candidate 
3) promoter associated with preeclampsia (Yuen et al., 2009) and higher 
promoter methylation of glucocorticoid receptor gene (NR3C1) was observed in 
placenta of LGA infants (Filiberto et al., 2011). These results illustrate the 
importance of studying tissue-specific variation of DNA methylation. Such 
studies will likely increase our understanding of interindividual differences, 
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complex disease susceptibility, and in the context of this work, potential 
biomarkers for adverse pregnancy outcome. 

There are several possible scenarios to explain the gain of placental methy-
lation that ultimately affects gene expression. First, allele-specific methylation 
may be sequence-dependent and determined by genetic variants, such SNPs 
(Shoemaker et al., 2010). However this is probably not the case for CGB5, since 
no correlation between DNA methylation profiles and neighbouring SNPs was 
apparent in my analysis (Table 1 and Table 2 in Ref. III). Second, aberrant 
accumulation of methylation may be the result of chromosomal abnormalities 
(Papageorgiou et al., 2011). In fact, Turner syndrome (45, X monosomy) was 
found in one of the three cases with hemimethylated CGB5 promoter in this 
study. Admittedly, the mechanisms of X inactivation and genomic imprinting 
have evolved in parallel (Reik and Lewis, 2005), suggesting that the entire 
methylation process may be disturbed in case of Turner syndrome. Third, gain 
of methylation may also be a result of environmental exposures and conditions 
in the placental-maternal interface. It may act as a flexible ‘emergency exit’ tool 
affecting the implantation process when unfavourable developmental conditions 
for the offspring are present (Wolf and Hager, 2009). Finally, the detected 
methylation allelic polymorphism in CGB5 may also be a tag for methylation-
associated functional alteration of one or more undiscovered genes.   

The aberrant methylation pattern of CGB5 promoter may originate from 
male gametogenesis, in which the genome of primordial germ cells has been 
completely demethylated, followed by sex-specific de novo methylation 
(Hajkova et al., 2002; Kerjean et al., 2000; Lee et al., 2002). Alternatively, the 
pattern may originate from pre-implantation embryo stage when the second 
wave of genome-wide demethylation and remethylation occurs, and is being 
maintained clonally in each villus tree (Reik et al., 2001). In both cases, the 
skewed methylation pattern has probably arisen due to defects in establishing 
methylation (Reik et al., 2001). The MAP may be established after implantation 
in first trimester placenta as response to signals from the maternal-fetal interface 
(Buckberry et al., 2012). 
 
 

5.3.Fine-scale tuning of placental gene expression  
and link to pregnancy complications 

The transcription and translation of placental genes is subject to precise tempo-
ral and spatial regulation. Aberrations in these detailed regulation programs 
could result from irregular implantation and placentation, chromosomal or ge-
nomic copy number alterations of total DNA. Such disturbances may lead to 
various pregnancy complications. Despite the great importance of placenta in 
mediating the rapid physiological changes in pregnancy, data on temporal 
dynamics of placental gene expression in normal and complicated pregnancies 
are limited.  
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In the first part of this thesis, the expression pattern of CGB genes in pla-
centa was determined over three trimesters of normal uncomplicated pregnancy. 
Despite the high interindividual variation of mRNA transcription of CGB genes 
between samples in the same study groups, we detected a distinct expression 
pattern of CGB genes over the course of pregnancy. Notably, we found the 
highest total mRNA transcription of CGB genes during first trimester, consis-
tent with the rapid increase in HCG hormone production during the same period 
(Hay, 1988). However, in placental tissue of first trimester pregnancy compli-
cations (recurrent miscarriage, ectopic and molar pregnancy) CGB genes were 
characterised by considerably shifted expression profiles. We detected sig-
nificantly reduced total transcription of HCG-coding genes in cases of recur-
rent miscarriage, and increased transcription level in pregnancies diagnosed as 
molar or ectopic. Interestingly, we observed that the transcription of CGB genes 
and serum hormone levels were not always concordant in pathological preg-
nancies. Spontaneous abortions are characterised by critically low maternal 
serum levels of HCG whereas ectopic and molar pregnancies have high serum 
concentration of HCG. The transcription levels of CGB genes confirm these 
trends (Feng et al., 2006; Letterie and Hibbert, 2000). However, the high 
mRNA expression of CGB genes and low presence of HCG in maternal serum 
is controversial (Sivalingam et al., 2011). In addition, elevated expression of 
maternal HCG hormone but low transcription of CGB genes is found in cases of 
Down syndrome (trisomy 21) (Brizot et al., 1995; Jauniaux et al., 2000). In 
cases of ectopic pregnancy, in which the embryo was implanted in fallopian 
tube, low serum HCG level may indicate unstable hormone assembly or mis-
regulated transport. In placentas of recurrent miscarriage, the low expression of 
HCG may result from transcriptional or post-transcriptional silencing.  

In the second part of my thesis I focused on the transcriptiome of human pla-
centa across three months of early pregnancy. So far only three published 
studies have compared the expression profile of the full placental transcriptome 
between tissue material representing different gestational ages (Mikheev et al., 
2008; Sitras et al., 2012; Winn et al., 2007). Although understanding the gene 
expression changes in developing human placenta across the first and the 
second trimester is very important, only one study before the current study had 
investigated this issue (Mikheev et al., 2008). However, the study design did 
not include experimental validation and replication of the discovery outcome 
from microarray analysis. In the current thesis, analysis of data from the 
GeneChip microarray identified 154 genes with significant change in gene 
expression over gestational weeks 5 to 18, and found that most of the genes 
showed increase in transcript levels over this period. I validated 24 top-ranking 
genes from the microarray analysis using RT-qPCR and extended sample sets of 
first, second and third trimester placentas. Ten of the analysed genes showed 
clear expressional peak in mid-pregnancy placentas compared to significantly 
lower expression in first and third trimester. Notably, several genes with gradual 
increase in expression from early to mid-gestation are involved in implantation, 
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regulation of mammalian placental function and embryonic development, also 
proving the importance of dynamic regulation of these genes in placenta (Table 
S9 in Ref. IV). For example, BMP5 (Guenther et al., 2008), CDH11 (Farber et 
al., 2011), FST (Gajos-Michniewicz et al., 2010) and STC1 (Yeung et al., 2012) 
are associated with bone and skeleton formation whereas GATM (Braissant et 
al., 2005) and NRCAM (Grumet, 1991) function in nervous system develop-
ment. STC1 is important in kidney development and implantation (Allegra et 
al., 2009; Yeung et al., 2012). Contribution of STC1 to implantation is also 
found in other mammals like pigs and sheep (Song et al., 2006; Song et al., 
2009). Both Ccng2 and Zfp36l1 participate in implantation and placentation in 
mice (Stumpo et al., 2004; Yue et al., 2005). 

The strength of the current thesis is that in addition to identifying the genes 
specific to mid-gestation human placenta, I addressed the possible involvement 
of those genes in the pathogenesis of term complications. I tested our novel 
hypothesis that late pregnancy complications may be accompanied by abnormal 
expression of mid-gestation genes at term. For instance, genes that are normally 
inhibited in term are insufficiently down-regulated in disease, and genes that 
normally reach the expressional plateau already in mid-gestation are further up-
regulated in late pregnancy. The hypothesis was tested comparatively in normal 
term placentas and placentas from maternal complications (preeclampsia, ges-
tational diabetes mellitus) and fetal complications (overgrowth and growth 
restriction). Several recent studies have shown associations between altered 
placental gene expression and pregnancy complications, such as preeclampsia, 
gestational diabetes, and fetal growth restriction (Enquobahrie et al., 2008; 
Enquobahrie et al., 2009; Sitras et al., 2009a). Although the symptoms of these 
conditions manifest in late pregnancy, their pathogenesis is commonly asso-
ciated with disturbed gene expression and placental development already in 
early pregnancy (Founds et al., 2009). 

In this study, the STC1 gene showed the highest expression in second tri-
mester of normal pregnancy. This gene was also characterised by increased 
mRNA expression levels in all term pregnancy complication groups compared 
to controls, and had the most significant effect in PE and SGA groups. These 
findings are consistent with the reduced fetal growth of transgenic mice over-
expressing human STC1 (Johnston et al., 2010). Moreover, in agreement with 
my mRNA measurements, STC1 protein level was significantly increased in 
postpartum maternal blood plasma of patients with pregnancy complications 
(PE, SGA and GDM). Notably, the highest plasma levels were measured for the 
women with complex pathologies that had simultaneously developed PE and 
given birth to an SGA baby (median 731 pg/ml vs. 418 pg/ml in controls; 
P=4.8x10–4). These data support the previous reports about common pathologic 
origin of preeclampsia and fetal growth restriction due to shallow implantation, 
failure of trophoblast invasion and missing transformation of the uterine 
arteries, ultimately resulting in placental hypoxia (Huppertz, 2011; Nishizawa et 
al., 2011). Furthermore, the STC1 promoter is known to harbour a binding site 
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for HIF-1 transcription factor that regulates genes involved in cellular response 
to low oxygen concentrations (Law et al., 2010). Preeclampsia causes the great-
est damage to the mother’s kidneys and is accompanied by impaired renal func-
tion (Mirza and Cleary, 2009). Moreover, retarded fetal growth during preg-
nancy may lead to lifelong reduction in the number of nephrons that in turn may 
result the hypertensive disorders (Mackenzie and Brenner, 1995). As a link 
between renal failure and preeclampsia, STC1 locus has recently been asso-
ciated to adult chronic kidney disease (Boger et al., 2011; Kottgen et al., 2009). 
However, it remains to be found whether the circulating maternal plasma STC1 
is partially derived from placenta or it reflects maternal renal protective actions 
against pathophysiology of preeclampsia (Huang et al., 2009). Nevertheless, the 
observed increase in maternal plasma levels of STC1 in pregnancy compli-
cations warrants further investigation of its potential as a prognostic biomarker 
of pregnancy. 

In addition to above, I detected significantly higher gene expression of 
LYPD6 (encoding LY6/PLAUR domain containing 6) and CCNG2 (Cyclin-G2) 
in pathological placentas (Table 6). According to immunohistochemical 
staining the corresponding proteins showed higher expression in placentas of 
complicated pregnancies (PE, GDM) compared to normal control placentas 
(Figure 8; Figure S5 and Figure S6 in Ref. IV). Importantly, this study is the 
first to demonstrate LYPD6 protein expression in syncytiotrophoblast. In mice, 
Lypd6 is known to be highly expressed in the embryonic ovary during mouse 
gonad development (Chen et al., 2012). LYPD6 over-expression is associated 
with transcriptional regulation through suppression of transcription activator 
protein AP-1 (Zhang et al., 2010). AP-1 is a dimeric protein composed of Jun 
and Fos proto-oncogenes (Angel and Karin, 1991), and the expression of these 
genes is known to be decreased in PE and PE-FGR placentas (Marzioni et al., 
2010). Thus, the involvement of LYPD6 in pathology of pregnancy compli-
cations warrants further attention. CCNG2 is a cell cycle inhibitor in response to 
diverse growth inhibitory signals, such as oxidative stress, DNA damage and 
differentiation (Bates et al., 1996; Bennin et al., 2002). Increased CCNG2 
expression in pregnancy complications may therefore reflect the local cellular 
stress conditions.  
 
 

5.4. Placental gene expression and  
link to adult disease 

The hypothesis of Developmental Origins of Health and Disease (DOHaD) has 
recently gained increasing attention (Barker et al., 2002; Langley-Evans et al., 
2012). The period from conception to birth and the first years of child’s life are 
considered critical in the context of adult disease susceptibility. The hypothesis 
is now supported by several epidemiologic studies that have found associations 
between adult diseases and measurements from early life. For instance, low 
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birth weight of the infant has been related to increased later life risk of cardio-
vascular diseases (Barker, 1995), hypertension (Eriksson et al., 2000) and type 
2 diabetes (Forsen et al., 2000). Increased infant birth weight, on the other hand, 
is associated with various cancer types (Caughey and Michels, 2009; Harder et 
al., 2008; Michels and Xue, 2006; Michos et al., 2007). In addition to birth 
weight, the size and shape of placenta at birth have been suggested as predictors 
of offspring’s chronic diseases in later life (Barker, 2012). Besides features of 
the newborn, several studies indicate that disorders of maternal metabolism 
during pregnancy such as gestational diabetes mellitus and preeclampsia, may 
increase the mother’s and child’s risk of adulthood diseases and conditions such 
as heart disease, hypertension, chronic kidney disease, type 2 diabetes, stroke 
and obesity (Kajantie et al., 2009; Sattar and Greer, 2002). 

Interestingly, the placental genes detected in the microarray analysis of the 
current thesis have been also associated with several adult disease conditions. In 
particular, the group of genes with peak expression in second trimester placen-
tas is interesting from the clinical perspective (Table 2 and Table S9 in Ref. 
IV). For example, CDH11 is associated with the development of osteoarthritis 
(Karlsson et al., 2010), and GPR183 and MEG3 are involved in the develop-
ment of type 1 diabetes (Heinig et al., 2010; Wallace et al., 2010). GATM and 
STC1 have been found among the top loci in genome-wide association studies 
of chorionic kidney disease (Boger et al., 2011; Kottgen et al., 2009) but are 
also implicated in heart failure (Cullen et al., 2006; Sheikh-Hamad et al., 2003). 
CCNG2 encodes a cell cycle regulator altered in different cancer types (Table 
S9 in Ref. IV). Additionally, the LYPD6 gene may be important in brain neu-
ronal development, as it is located in a microduplication region linked to human 
developmental delay and autistic features (Chung et al., 2012). Clearly, placen-
tal genes regulating in utero fetal development are also involved in pathogenesis 
of chronic adult diseases, underlining the importance of placenta in develop-
mental programming (McKay, 2011). However, the mechanisms by witch in 
utero events influence long-term individual health are still poorly understood. 
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6. CONCLUSIONS  

This doctoral thesis focuses on several important and timely research topics in 
the field of human pregnancy, specifically in placental gene expression. The 
work is summarised in the following conclusions. 

1. The dynamics of placental gene expression during normal human pregnancy 
was explored with target-gene based approaches as well as exploratory ge-
nome-wide techniques. First, focused investigation of the HCG -subunit 
coding (CGB) genes revealed that their placental transcription is highest 
during the first trimester of human pregnancy, followed by a sharp decline in 
expression during the second trimester and modest increase in term placenta. 
This observation is expected, as the HGC genes are crucial for embryo 
implantation, placentation and maintenance of early pregnancy. Second, I 
used microarrays to measure gene expression in placenta during first and 
second trimester of pregnancy (gestational weeks 5 to 18). This study is the 
first of its kind and it reveals an intricate system of dynamic transcription. 
An important result of this study is the identification and validation of 
several mid-pregnancy specific genes with the highest expression at second 
trimester compared to first and third trimesters. The results of this study will 
serve as a resource of gene expression data in placenta for further studies 
focusing on normal or complicated pregnancies.  

2. The findings in my doctoral thesis underline the importance of dynamic and 
fine-scale regulation of placental genes during gestation and in human 
health. Experiments and data analysis revealed genes whose aberrant expres-
sion patterns were informative of pregnancy complications. For instance, 
recurrent miscarriages in the first trimester are generally associated with 
critically low levels of HCG hormone. In agreement with the above, I found 
that the mRNA expression of HCG genes is significantly lower in placentas 
of recurrent miscarriages. As another example, several mid-gestation genes 
identified in the genome-wide screen (CCNG2, STC1, GATM, GPR183, 
CDH11, LYPD6, MEG3) showed aberrant expression patterns in placental 
samples of pregnancy complications such as preeclampsia, gestational dia-
betes mellitus and fetal growth restriction. These findings underline the im-
portance of placental gene expression and provide leads for future studies.  

3. Epigenetic mechanisms are increasingly acknowledged as major regulators 
of gene transcription. In this doctoral thesis, I characterised a transcriptional 
silencing mechanism of pregnancy complication that is driven by DNA 
methylation. I found that most normal placenta samples showed equal CGB5 
and CGB8 gene expression from both paternal and maternal alleles as well 
as hypomethylation of corresponding promoters. In contrast, two recurrent 
miscarriage samples and one sample of elective termination involved 
monoallelic (maternal) transcription of CGB5 gene and promoter hemi-
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methylation, suggesting that the pregnancy complication may be driven by 
aberrant promoter methylation and occasional gain of paternal imprinting 
(GOI). Further investigation of allele-specific transcription and individual 
variability of methylation may lead to predictive biomarkers for the intrau-
terine environment of pregnancy complications. 

4. One of the major results of this work is the discovery of the STC1 protein as 
a potential biomarker of pregnancy complications. STC1 is a secreted glyco-
protein hormone that can be easily extracted from mother’s blood serum and 
is therefore a potentially actionable finding. Increased levels of STC1 are in 
significant association with the restricted fetal growth complication. Further 
studies on larger sample cohorts are required to establish the protein as a 
prognostic biomarker.  

5. Furthermore, the doctoral work revealed that the poorly studied protein 
LYPD6 is highly expressed in placental syncytiotrophoblast. Increased ex-
pression of cytoplasmic proteins LYPD6 and CCNG2 was detected with 
immunohistochemical staining in placental samples from patients with pree-
clampsia and gestational diabetes. The role of these proteins in the placental 
pathology of pregnancy complications requires further investigation. 

6. Aberrant expression of placental genes not only associates with pregnancy 
complications but also is likely to affect the adult health of the mother as 
well as the infant. As an additional novel finding, all tested mid-pregnancy 
specific genes with aberrant expression in pregnancy complications are 
linked to chronic adult diseases, such as cancer, osteoarthritis, diabetes, heart 
disease, kidney disease, among others. This observation supports the recent 
discussion about the role of placenta in developmental programming and in 
utero origin of adult disease. 

7. Proper in utero development programs the health of mother and her baby 
during pregnancy but also later in their life. As the growth and aging of the 
global human population increasingly impact the society, disease prevention 
and extension of working age are important challenges of future science and 
medicine. Thus, understanding the role of placenta in healthy and compli-
cated pregnancy has great clinical and societal importance in predicting 
future adult health.  



59 

7. REFERENCES 

Aguilera, O., Fernandez, A. F., Munoz, A., Fraga, M. F., 2010. Epigenetics and 
environment: a complex relationship. J Appl Physiol. 109, 243–51. 

Akoum, A., Metz, C. N., Morin, M., 2005. Marked increase in macrophage migration 
inhibitory factor synthesis and secretion in human endometrial cells in response to 
human chorionic gonadotropin hormone. J Clin Endocrinol Metab. 90, 2904–10. 

Allegra, A., Marino, A., Coffaro, F., Lama, A., Rizza, G., Scaglione, P., Sammar-
tano, F., Santoro, A., Volpes, A., 2009. Is there a uniform basal endometrial gene 
expression profile during the implantation window in women who became pregnant 
in a subsequent ICSI cycle? Hum Reprod. 24, 2549–57. 

Alsat, E., Guibourdenche, J., Couturier, A., Evain-Brion, D., 1998. Physiological role of 
human placental growth hormone. Mol Cell Endocrinol. 140, 121–7. 

Amaral, P. P., Clark, M. B., Gascoigne, D. K., Dinger, M. E., Mattick, J. S., 2010. 
lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 39, 
D146–51. 

Angel, P., Karin, M., 1991. The role of Jun, Fos and the AP-1 complex in cell-
proliferation and transformation. Biochim Biophys Acta. 1072, 129–57. 

Apps, R., Sharkey, A., Gardner, L., Male, V., Trotter, M., Miller, N., North, R., 
Founds, S., Moffett, A., 2011. Genome-wide expression profile of first trimester 
villous and extravillous human trophoblast cells. Placenta. 32, 33–43. 

Attwood, J. T., Yung, R. L., Richardson, B. C., 2002. DNA methylation and the 
regulation of gene transcription. Cell Mol. Life Sci. 59, 241–257. 

Avila, L., Yuen, R. K., Diego-Alvarez, D., Penaherrera, M. S., Jiang, R., Robin-
son, W. P., 2010. Evaluating DNA methylation and gene expression variability in 
the human term placenta. Placenta. 31, 1070–7. 

Bailey, W. J., Fitch, D. H., Tagle, D. A., Czelusniak, J., Slightom, J. L., Goodman, M., 
1991. Molecular evolution of the psi eta-globin gene locus: gibbon phylogeny and 
the hominoid slowdown. Mol Biol Evol. 8, 155–84. 

Banister, C. E., Koestler, D. C., Maccani, M. A., Padbury, J. F., Houseman, E. A., 
Marsit, C. J., 2011. Infant growth restriction is associated with distinct patterns of 
DNA methylation in human placentas. Epigenetics. 6, 920–7. 

Barker, D. J., 1995. Fetal origins of coronary heart disease. BMJ. 311, 171–4. 
Barker, D. J., 2012. Sir Richard Doll Lecture. Developmental origins of chronic disease. 

Public Health. 126, 185–9. 
Barker, D. J., Eriksson, J. G., Forsen, T., Osmond, C., 2002. Fetal origins of adult 

disease: strength of effects and biological basis. Int J Epidemiol. 31, 1235–9. 
Bartolomei, M. S., Ferguson-Smith, A. C., 2011. Mammalian genomic imprinting. Cold 

Spring Harb Perspect Biol. 3. 
Bates, S., Rowan, S., Vousden, K. H., 1996. Characterisation of human cyclin G1 and 

G2: DNA damage inducible genes. Oncogene. 13, 1103–9. 
Benirschke, K., Kaufmann, P., Baergen, R., 2006. Placental Types. Pathology of the 

human placenta. Springer, pp. 30–41. 
Benirschke, P., Kaufmann, P., 2000. Pathology of the human placenta. Springer, Berlin. 
Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., 

DePaoli-Roach, A. A., Horne, M. C., 2002. Cyclin G2 associates with protein 
phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces 
nuclear aberrations and a G1/S phase cell cycle arrest. J Biol Chem. 277, 27449–67. 



60 

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., 
Einat, P., Einav, U., Meiri, E., et al., 2005. Identification of hundreds of conserved 
and nonconserved human microRNAs. Nat Genet. 37, 766–70. 

Berkowitz, R., Ozturk, M., Goldstein, D., Bernstein, M., Hill, L., Wands, J. R., 1989. 
Human chorionic gonadotropin and free subunits' serum levels in patients with 
partial and complete hydatidiform moles. Obstet Gynecol. 74, 212–6. 

Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–
21. 

Bird, A. P., 1986. CpG-rich islands and the function of DNA methylation. Nature. 321, 
209–13. 

Blackburn, S. T., 2003. Maternal, fetal and neonatal physiology: a clinical perspective. 
Saunders, St. Louis, USA. 

Blaise, S., de Parseval, N., Benit, L., Heidmann, T., 2003. Genomewide screening for 
fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene 
conserved on primate evolution. Proc Natl Acad Sci U S A. 100, 13013–8. 

Bo, M., Boime, I., 1992. Identification of the transcriptionally active genes of the 
chorionic gonadotropin beta gene cluster in vivo. J. Biol. Chem. 267, 3179–3184. 

Bogart, M. H., Pandian, M. R., Jones, O. W., 1987. Abnormal maternal serum chorionic 
gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat 
Diagn. 7, 623–30. 

Boger, C. A., Gorski, M., Li, M., Hoffmann, M. M., Huang, C., Yang, Q., Teumer, A., 
Krane, V., O'Seaghdha, C. M., Kutalik, Z., et al., 2011. Association of eGFR-
Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet. 7, 
e1002292. 

Boyd, J. D., 1970. The human placenta. W. Heffer and Sons, Cambridge. 
Braissant, O., Henry, H., Villard, A. M., Speer, O., Wallimann, T., Bachmann, C., 2005. 

Creatine synthesis and transport during rat embryogenesis: spatiotemporal 
expression of AGAT, GAMT and CT1. BMC Dev Biol. 5, 9. 

Bressan, F. F., De Bem, T. H., Perecin, F., Lopes, F. L., Ambrosio, C. E., Meirelles, F. 
V., Miglino, M. A., 2009. Unearthing the roles of imprinted genes in the placenta. 
Placenta. 30, 823–834. 

Brizot, M. L., Jauniaux, E., McKie, A. T., Farzaneh, F., Nicolaides, K. H., 1995. 
Placental expression of alpha and beta subunits of human chorionic gonadotrophin 
in early pregnancies with Down's syndrome. Hum Reprod. 10, 2506–9. 

Brown, P., McNeilly, J. R., Wallace, R. M., McNeilly, A. S., Clark, A. J., 1993. Cha-
racterization of the ovine LH beta-subunit gene: the promoter directs gonadotrope-
specific expression in transgenic mice. Mol Cell Endocrinol. 93, 157–65. 

Buckberry, S., Bianco-Miotto, T., Hiendleder, S., Roberts, C. T., 2012. Quantitative 
Allele-Specific Expression and DNA Methylation Analysis of H19, IGF2 and 
IGF2R in the Human Placenta across Gestation Reveals H19 Imprinting Plasticity. 
PLoS One. 7, e51210. 

Burton, G. J., Jauniaux, E., Charnock-Jones, D. S., 2010. The influence of the intrau-
terine environment on human placental development. Int J Dev Biol. 54, 303–12. 

Buyalos, R. P., Glassman, L. M., Rifka, S. M., Falk, R. J., Macarthy, P. O., Tyson, V. J., 
DiMattina, M., 1992. Serum beta-human chorionic gonadotropin, estradiol and 
progesterone as early predictors of pathologic pregnancy. J Reprod Med. 37, 261–6. 

Byun, H. M., Siegmund, K. D., Pan, F., Weisenberger, D. J., Kanel, G., Laird, P. W., 
Yang, A. S., 2009. Epigenetic profiling of somatic tissues from human autopsy 



61 

specimens identifies tissue- and individual-specific DNA methylation patterns. Hum 
Mol Genet. 18, 4808–17. 

Campain, J. A., Gutkin, D. W., Cox, G. S., 1993. Differential DNA methylation of the 
chorionic gonadotropin beta-subunit multigene family. Mol Endocrinol. 7, 1331–
1346. 

Carter, A. M., 2007. Animal models of human placentation – a review. Placenta. 28 
Suppl A, S41–7. 

Castellucci, M., Kosanke, G., Verdenelli, F., Huppertz, B., Kaufmann, P., 2000. Villous 
sprouting: fundamental mechanisms of human placental development. Hum Reprod 
Update. 6, 485–94. 

Caughey, R. W., Michels, K. B., 2009. Birth weight and childhood leukemia: a meta-
analysis and review of the current evidence. Int J Cancer. 124, 2658–70. 

Chen, H., Palmer, J. S., Thiagarajan, R. D., Dinger, M. E., Lesieur, E., Chiu, H., Schulz, 
A., Spiller, C., Grimmond, S. M., Little, M. H., et al., 2012. Identification of novel 
markers of mouse fetal ovary development. PLoS One. 7, e41683. 

Chen, K., Rajewsky, N., 2007. The evolution of gene regulation by transcription factors 
and microRNAs. Nat Rev Genet. 8, 93–103. 

Cheng, S. L., Lecanda, F., Davidson, M. K., Warlow, P. M., Zhang, S. F., Zhang, L., 
Suzuki, S., St John, T., Civitelli, R., 1998. Human osteoblasts express a repertoire of 
cadherins, which are critical for BMP-2-induced osteogenic differentiation. J Bone 
Miner Res. 13, 633–44. 

Chi, H., Qiao, J., Li, H., Liu, P., Ma, C., 2010. Double measurements of serum HCG 
concentration and its ratio may predict IVF outcome. Reprod Biomed Online. 20, 
504–9. 

Chim, S. S., Jin, S., Lee, T. Y., Lun, F. M., Lee, W. S., Chan, L. Y., Jin, Y., Yang, N., 
Tong, Y. K., Leung, T. Y., et al., 2008. Systematic search for placental DNA-methy-
lation markers on chromosome 21: toward a maternal plasma-based epigenetic test 
for fetal trisomy 21. Clin Chem. 54, 500–11. 

Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., Wie-
mels, J. L., Nelson, H. H., Karagas, M. R., Padbury, J. F., Bueno, R., et al., 2009. 
Aging and environmental exposures alter tissue-specific DNA methylation 
dependent upon CpG island context. PLoS Genet. 5, e1000602. 

Chung, B. H., Mullegama, S., Marshall, C. R., Lionel, A. C., Weksberg, R., Dupuis, L., 
Brick, L., Li, C., Scherer, S. W., Aradhya, S., et al., 2012. Severe intellectual 
disability and autistic features associated with microduplication 2q23.1. Eur J Hum 
Genet. 20, 398–403. 

Cindrova-Davies, T., Yung, H. W., Johns, J., Spasic-Boskovic, O., Korolchuk, S., 
Jauniaux, E., Burton, G. J., Charnock-Jones, D. S., 2007. Oxidative stress, gene 
expression, and protein changes induced in the human placenta during labor. Am J 
Pathol. 171, 1168–79. 

Coan, P. M., Burton, G. J., Ferguson-Smith, A. C., 2005. Imprinted genes in the 
placenta – a review. Placenta. 26 Suppl A, S10–20. 

Cocquebert, M., Berndt, S., Segond, N., Guibourdenche, J., Murthi, P., Aldaz-Carroll, 
L., Evain-Brion, D., Fournier, T., 2012. Comparative expression of hCG beta-genes 
in human trophoblast from early and late first-trimester placentas. Am J Physiol 
Endocrinol Metab. 303, E950–8. 

Cole, L. A., 2009. hCG and hyperglycosylated hCG in the establishment and evolution 
of hemochorial placentation. J Reprod Immunol. 82, 112–8. 

16



62 

Cole, L. A., 2010. Biological functions of hCG and hCG-related molecules. Reprod 
Biol Endocrinol. 8, 102. 

Cole, L. A., 2012a. hCG, the wonder of today’s science. Reprod Biol Endocrinol. 10, 
24. 

Cole, L. A., 2012b. Individual deviations in human chorionic gonadotropin concentra-
tions during pregnancy. Am J Obstet Gynecol. 204, 349 e1–7. 

Cole, L. A., 2012c. The hCG assay or pregnancy test. Clin Chem Lab Med. 50, 617–30. 
Cole, L. A., Hartle, R. J., Laferla, J. J., Ruddon, R. W., 1983. Detection of the free beta 

subunit of human chorionic gonadotropin (HCG) in cultures of normal and malig-
nant trophoblast cells, pregnancy sera, and sera of patients with choriocarcinoma. 
Endocrinology. 113, 1176–8. 

Constancia, M., Hemberger, M., Hughes, J., Dean, W., Ferguson-Smith, A., Fundele, 
R., Stewart, F., Kelsey, G., Fowden, A., Sibley, C., et al., 2002. Placental-specific 
IGF-II is a major modulator of placental and fetal growth. Nature. 417, 945–8. 

Constancia, M., Kelsey, G., Reik, W., 2004. Resourceful imprinting. Nature. 432, 53–
57. 

Cotton, A. M., Avila, L., Penaherrera, M. S., Affleck, J. G., Robinson, W. P., Brown, 
C. J., 2009. Inactive X chromosome-specific reduction in placental DNA methy-
lation. Hum Mol Genet. 18, 3544–52. 

Cullen, M. E., Yuen, A. H., Felkin, L. E., Smolenski, R. T., Hall, J. L., Grindle, S., 
Miller, L. W., Birks, E. J., Yacoub, M. H., Barton, P. J., 2006. Myocardial expres-
sion of the arginine:glycine amidinotransferase gene is elevated in heart failure and 
normalized after recovery: potential implications for local creatine synthesis. 
Circulation. 114, I16–20. 

Davies, W., Isles, A. R., Wilkinson, L. S., 2005. Imprinted gene expression in the brain. 
Neurosci Biobehav Rev. 29, 421–30. 

Diplas, A. I., Lambertini, L., Lee, M. J., Sperling, R., Lee, Y. L., Wetmur, J., Chen, J., 
2009. Differential expression of imprinted genes in normal and IUGR human 
placentas. Epigenetics. 4, 235–40. 

Donker, R. B., Mouillet, J. F., Chu, T., Hubel, C. A., Stolz, D. B., Morelli, A. E., 
Sadovsky, Y., 2012. The expression profile of C19MC microRNAs in primary 
human trophoblast cells and exosomes. Mol Hum Reprod. 18, 417–24. 

Du, X., Rousseau, M., Ounissi-Benkalha, H., Marchand, L., Jetha, A., Paraskevas, S., 
Goodyer, C., Polychronakos, C., 2011. Differential expression pattern of ZAC in 
developing mouse and human pancreas. J Mol Histol. 42, 129-36. 

Dupressoir, A., Marceau, G., Vernochet, C., Benit, L., Kanellopoulos, C., Sapin, V., 
Heidmann, T., 2005. Syncytin-A and syncytin-B, two fusogenic placenta-specific 
murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad 
Sci U S A. 102, 725–30. 

Edelstam, G., Karlsson, C., Westgren, M., Lowbeer, C., Swahn, M. L., 2007. Human 
chorionic gonadatropin (hCG) during third trimester pregnancy. Scand J Clin Lab 
Invest. 67, 519–25. 

Enders, A. C., 2009. Reasons for diversity of placental structure. Placenta. 30 Suppl A, 
S15–8. 

Enders, A. C., Carter, A. M., 2004. What can comparative studies of placental structure 
tell us? – A review. Placenta. 25 Suppl A, S3–9. 

Enquobahrie, D. A., Meller, M., Rice, K., Psaty, B. M., Siscovick, D. S., Williams, 
M. A., 2008. Differential placental gene expression in preeclampsia. Am J Obstet 
Gynecol. 199, 566 e1–11. 



63 

Enquobahrie, D. A., Williams, M. A., Qiu, C., Meller, M., Sorensen, T. K., 2009. 
Global placental gene expression in gestational diabetes mellitus. Am J Obstet 
Gynecol. 200, 206 e1–13. 

Eriksson, J., Forsen, T., Tuomilehto, J., Osmond, C., Barker, D., 2000. Fetal and child-
hood growth and hypertension in adult life. Hypertension. 36, 790–4. 

Eta, E., Ambrus, G., Rao, C. V., 1994. Direct regulation of human myometrial contrac-
tions by human chorionic gonadotropin. J Clin Endocrinol Metab. 79, 1582–6. 

Ewen, K. A., Koopman, P., 2010. Mouse germ cell development: from specification to 
sex determination. Mol Cell Endocrinol. 323, 76–93. 

Ezashi, T., Hirai, T., Kato, T., Wakabayashi, K., Kato, Y., 1990. The gene for the beta 
subunit of porcine LH: clusters of GC boxes and CACCC elements. J Mol 
Endocrinol. 5, 137–46. 

Farber, C. R., Kelly, S. A., Baruch, E., Yu, D., Hua, K., Nehrenberg, D. L., de Villena, 
F. P., Buus, R. J., Garland, T., Jr., Pomp, D., 2011. Identification of quantitative trait 
loci influencing skeletal architecture in mice: emergence of Cdh11 as a primary 
candidate gene regulating femoral morphology. J Bone Miner Res. 26, 2174–83. 

Feng, H. C., Tsao, S. W., Ngan, H. Y., Kwan, H. S., Shih, S. M., Xue, W. C., Chiu, 
P. M., Chan, K. W., Cheung, A. N., 2006. Differential gene expression identified in 
complete hydatidiform mole by combining suppression subtractive hybridization 
and cDNA microarray. Placenta. 27, 521–526. 

Ferguson-Smith, A. C., Surani, M. A., 2001. Imprinting and the epigenetic asymmetry 
between parental genomes. Science. 293, 1086–9. 

Ferreira, J. C., Choufani, S., Grafodatskaya, D., Butcher, D. T., Zhao, C., Chitayat, D., 
Shuman, C., Kingdom, J., Keating, S., Weksberg, R., 2011. WNT2 promoter 
methylation in human placenta is associated with low birthweight percentile in the 
neonate. Epigenetics. 6, 440–9. 

Filiberto, A. C., Maccani, M. A., Koestler, D., Wilhelm-Benartzi, C., Avissar-
Whiting, M., Banister, C. E., Gagne, L. A., Marsit, C. J., 2011. Birthweight is 
associated with DNA promoter methylation of the glucocorticoid receptor in human 
placenta. Epigenetics. 6, 566–72. 

Forsen, T., Eriksson, J., Tuomilehto, J., Reunanen, A., Osmond, C., Barker, D., 2000. 
The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern 
Med. 133, 176–82. 

Founds, S. A., Conley, Y. P., Lyons-Weiler, J. F., Jeyabalan, A., Hogge, W. A., Conrad, 
K. P., 2009. Altered global gene expression in first trimester placentas of women 
destined to develop preeclampsia. Placenta. 30, 15–24. 

Frank, D., Fortino, W., Clark, L., Musalo, R., Wang, W., Saxena, A., Li, C. M., 
Reik, W., Ludwig, T., Tycko, B., 2002. Placental overgrowth in mice lacking the 
imprinted gene Ipl. Proc Natl Acad Sci U S A. 99, 7490–5. 

Freemark, M., 2006. Regulation of maternal metabolism by pituitary and placental 
hormones: roles in fetal development and metabolic programming. Horm Res. 65 
Suppl 3, 41–9. 

Fuke, C., Shimabukuro, M., Petronis, A., Sugimoto, J., Oda, T., Miura, K., Miyazaki, 
T., Ogura, C., Okazaki, Y., Jinno, Y., 2004. Age related changes in 5–methyl-
cytosine content in human peripheral leukocytes and placentas: an HPLC-based 
study. Ann Hum Genet. 68, 196–204. 

Gajos-Michniewicz, A., Piastowska, A. W., Russell, J. A., Ochedalski, T., 2010. 
Follistatin as a potent regulator of bone metabolism. Biomarkers. 15, 563–74. 



64 

Gama-Sosa, M. A., Wang, R. Y., Kuo, K. C., Gehrke, C. W., Ehrlich, M., 1983. The  
5-methylcytosine content of highly repeated sequences in human DNA. Nucleic 
Acids Res. 11, 3087–95. 

Gao, Y., Zhang, H. D., Lin, J. S., Zhang, M. P., Zhang, R. G., 2010. [The imprinting 
status of genetic imprinted gene PEG10 in human hepatocellular carcinomas]. 
Zhonghua Gan Zang Bing Za Zhi. 18, 894–9. 

George, D. L., Phillips, J. A., 3rd, Francke, U., Seeburg, P. H., 1981. The genes for 
growth hormone and chorionic somatomammotropin are on the long arm of human 
chromosome 17 in region q21 to qter. Hum Genet. 57, 138–41. 

Gicquel, C., Rossignol, S., Cabrol, S., Houang, M., Steunou, V., Barbu, V., Danton, F., 
Thibaud, N., Le Merrer, M., Burglen, L., et al., 2005. Epimutation of the telomeric 
imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat 
Genet. 37, 1003–7. 

Goldsmith, P. C., McGregor, W. G., Raymoure, W. J., Kuhn, R. W., Jaffe, R. B., 1983. 
Cellular localization of chorionic gonadotropin in human fetal kidney and liver. J 
Clin Endocrinol Metab. 57, 654–61. 

Grigoriu, A., Ferreira, J. C., Choufani, S., Baczyk, D., Kingdom, J., Weksberg, R., 
2011. Cell specific patterns of methylation in the human placenta. Epigenetics. 6, 
368–79. 

Grumet, M., 1991. Cell adhesion molecules and their subgroups in the nervous system. 
Curr Opin Neurobiol. 1, 370–6. 

Gude, N. M., Roberts, C. T., Kalionis, B., King, R. G., 2004. Growth and function of 
the normal human placenta. Thromb Res. 114, 397–407. 

Guenther, C., Pantalena-Filho, L., Kingsley, D. M., 2008. Shaping skeletal growth by 
modular regulatory elements in the Bmp5 gene. PLoS Genet. 4, e1000308. 

Gurbuz, A., Karateke, A., Mengulluoglu, M., Gedikbasi, A., Ozturkmen, M., Ka-
baca, C., Sahinoglu, Z., 2004. Can serum HCG values be used in the differential 
diagnosis of pregnancy complicated by hypertension? Hypertens Pregnancy. 23, 1–
12. 

Haig, D., 1993. Genetic conflicts in human pregnancy. Q Rev Biol. 68, 495–532. 
Haig, D., 1996. Altercation of generations: genetic conflicts of pregnancy. Am J Reprod 

Immunol. 35, 226–32. 
Haig, D., 2008. Placental growth hormone-related proteins and prolactin-related pro-

teins. Placenta. 29 Suppl A, S36–41. 
Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J., Surani, 

M. A., 2002. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 
117, 15–23. 

Hallast, P., Laan, M., Evolution of the Chorionic Gonadotropin β Genes in Primates. 
eLS. John Wiley & Sons Ltd, Chichester, 2009. 

Hallast, P., Nagirnaja, L., Margus, T., Laan, M., 2005. Segmental duplications and gene 
conversion: Human luteinizing hormone/chorionic gonadotropin beta gene cluster. 
Genome Res. 15, 1535–1546. 

Hallast, P., Rull, K., Laan, M., 2007. The evolution and genomic landscape of CGB1 
and CGB2 genes. Mol Cell Endocrinol. 260–262, 2–11. 

Hallast, P., Saarela, J., Palotie, A., Laan, M., 2008. High divergence in primate-specific 
duplicated regions: human and chimpanzee chorionic gonadotropin beta genes. 
BMC Evol. Biol. 8, 195. 

Hammond, S. M., Caudy, A. A., Hannon, G. J., 2001. Post-transcriptional gene silen-
cing by double-stranded RNA. Nat Rev Genet. 2, 110–9. 



65 

Handwerger, S., Freemark, M., 2000. The roles of placental growth hormone and 
placental lactogen in the regulation of human fetal growth and development. J 
Pediatr Endocrinol Metab. 13, 343–56. 

Harder, T., Plagemann, A., Harder, A., 2008. Birth weight and subsequent risk of 
childhood primary brain tumors: a meta-analysis. Am J Epidemiol. 168, 366–73. 

Hay, D. L., 1988. Placental histology and the production of human choriogonadotrophin 
and its subunits in pregnancy. Br. J. Obstet. Gynaecol. 95, 1268–1275. 

Hay, W. W., Jr., 1994. Placental transport of nutrients to the fetus. Horm Res. 42, 215–
22. 

Heinig, M., Petretto, E., Wallace, C., Bottolo, L., Rotival, M., Lu, H., Li, Y., Sarwar, R., 
Langley, S. R., Bauerfeind, A., et al., 2010. A trans-acting locus regulates an anti-
viral expression network and type 1 diabetes risk. Nature. 467, 460–4. 

Hiby, S. E., Lough, M., Keverne, E. B., Surani, M. A., Loke, Y. W., King, A., 2001. 
Paternal monoallelic expression of PEG3 in the human placenta. Hum Mol Genet. 
10, 1093–1100. 

Hishida, T., Naito, K., Osada, S., Nishizuka, M., Imagawa, M., 2007. peg10, an imprin-
ted gene, plays a crucial role in adipocyte differentiation. FEBS Lett. 581, 4272–8. 

Huang, L., Garcia, G., Lou, Y., Zhou, Q., Truong, L. D., DiMattia, G., Lan, X. R., Lan, 
H. Y., Wang, Y., Sheikh-Hamad, D., 2009. Anti-inflammatory and renal protective 
actions of stanniocalcin-1 in a model of anti-glomerular basement membrane 
glomerulonephritis. Am J Pathol. 174, 1368–78. 

Huppertz, B., 2011. Placental pathology in pregnancy complications. Thromb Res. 127 
Suppl 3, S96–9. 

Jaenisch, R., Bird, A., 2003. Epigenetic regulation of gene expression: how the genome 
integrates intrinsic and environmental signals. Nat Genet. 33 Suppl, 245–54. 

Jameson, J. L., Lindell, C. M., Habener, J. F., 1986. Evolution of different transcrip-
tional start sites in the human luteinizing hormone and chorionic gonadotropin beta-
subunit genes. DNA. 5, 227–34. 

Jameson, L., Chin, W. W., Hollenberg, A. N., Chang, A. S., Habener, J. F., 1984. The 
gene encoding the beta-subunit of rat luteinizing hormone. Analysis of gene 
structure and evolution of nucleotide sequence. J Biol Chem. 259, 15474–80. 

Jauniaux, E., Bao, S., Eblen, A., Li, X., Lei, Z. M., Meuris, S., Rao, C. V., 2000. HCG 
concentration and receptor gene expression in placental tissue from trisomy 18 and 
21. Mol Hum Reprod. 6, 5–10. 

Jauniaux, E., Poston, L., Burton, G. J., 2006. Placental-related diseases of pregnancy: 
Involvement of oxidative stress and implications in human evolution. Hum Reprod 
Update. 12, 747–55. 

Jellinek, D. A., Chang, A. C., Larsen, M. R., Wang, X., Robinson, P. J., Reddel, R. R., 
2000. Stanniocalcin 1 and 2 are secreted as phosphoproteins from human fibro-
sarcoma cells. Biochem J. 350 Pt 2, 453–61. 

Jinno, Y., Yun, K., Nishiwaki, K., Kubota, T., Ogawa, O., Reeve, A. E., Niikawa, N., 
1994. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 
6, 305–309. 

Jirtle, R. J., 2012. GeneImprint website, http://www.geneimprint.org/. 
Johnson, W., Jameson, J. L., 1999. AP-2 (activating protein 2) and Sp1 (selective 

promoter factor 1) regulatory elements play distinct roles in the control of basal 
activity and cyclic adenosine 3',5'-monophosphate responsiveness of the human 
chorionic gonadotropin-beta promoter. Mol Endocrinol. 13, 1963–1975. 

17



66 

Johnston, J., Ramos-Valdes, Y., Stanton, L. A., Ladhani, S., Beier, F., Dimattia, G. E., 
2010. Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely 
inhibits cranial intramembranous bone growth. Transgenic Res. 19, 1017–39. 

Jones, P. A., Takai, D., 2001. The role of DNA methylation in mammalian epigenetics. 
Science. 293, 1068–70. 

Kajantie, E., Eriksson, J. G., Osmond, C., Thornburg, K., Barker, D. J., 2009. Pre-
eclampsia is associated with increased risk of stroke in the adult offspring: the 
Helsinki birth cohort study. Stroke. 40, 1176–80. 

Karlsson, C., Dehne, T., Lindahl, A., Brittberg, M., Pruss, A., Sittinger, M., Ringe, J., 
2010. Genome-wide expression profiling reveals new candidate genes associated 
with osteoarthritis. Osteoarthritis Cartilage. 18, 581–92. 

Kaufmann, P., Baergen, R., 2006. Early Development of the Human Placenta. Patho-
logy of Human Placenta. pp. 44–49. 

Kerjean, A., Dupont, J. M., Vasseur, C., Le Tessier, D., Cuisset, L., Paldi, A., Jouan-
net, P., Jeanpierre, M., 2000. Establishment of the paternal methylation imprint of 
the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 
9, 2183–7. 

Khan, M. A., Mittal, S., Kumar, S., Sengupta, J., Ghosh, D., 2010. Quantitative analysis 
of six gene products as candidate markers of early placental villi development in the 
human. Indian J Physiol Pharmacol. 54, 299–308. 

Kim, S. J., Lee, S. Y., Lee, C., Kim, I., An, H. J., Kim, J. Y., Baek, K. H., Kim, E. J., 
Kim, J. M., Lee, J. B., et al., 2006. Differential expression profiling of genes in a 
complete hydatidiform mole using cDNA microarray analysis. Gynecol Oncol. 103, 
654–60. 

King, B. F., 1993. Development and structure of the placenta and fetal membranes of 
nonhuman primates. J Exp Zool. 266, 528–40. 

Kliman, H. J., 2000. Uteroplacental blood flow. The story of decidualization, 
menstruation, and trophoblast invasion. Am J Pathol. 157, 1759–68. 

Kokawa, K., Shikone, T., Nakano, R., 1998. Apoptosis in human chorionic villi and 
decidua in normal and ectopic pregnancy. Mol Hum Reprod. 4, 87–91. 

Kottgen, A., Glazer, N. L., Dehghan, A., Hwang, S. J., Katz, R., Li, M., Yang, Q., Gud-
nason, V., Launer, L. J., Harris, T. B., et al., 2009. Multiple loci associated with 
indices of renal function and chronic kidney disease. Nat Genet. 41, 712–7. 

Kumar, T. R., Matzuk, M. M., 1995. Cloning of the mouse gonadotropin beta-subunit-
encoding genes, II. Structure of the luteinizing hormone beta-subunit-encoding 
genes. Gene. 166, 335–336. 

Lambertini, L., Diplas, A. I., Lee, M. J., Sperling, R., Chen, J., Wetmur, J., 2008. A sen-
sitive functional assay reveals frequent loss of genomic imprinting in human 
placenta. Epigenetics. 3, 261–269. 

Langley-Evans, S. C., Alexander, B., McArdle, H. J., Sloboda, D. M., 2012. Develop-
mental origins of health and disease. J Nutr Metab. 2012, 838640. 

Lanoix, D., Lacasse, A. A., St-Pierre, J., Taylor, S. C., Ethier-Chiasson, M., Lafond, J., 
Vaillancourt, C., 2012. Quantitative PCR pitfalls: the case of the human placenta. 
Mol Biotechnol. 52, 234–43. 

Lapaire, O., Grill, S., Lalevee, S., Kolla, V., Hosli, I., Hahn, S., 2012. Microarray 
screening for novel preeclampsia biomarker candidates. Fetal Diagn Ther. 31, 147–
53. 



67 

Law, A. Y., Ching, L. Y., Lai, K. P., Wong, C. K., 2010. Identification and characteri-
zation of the hypoxia-responsive element in human stanniocalcin-1 gene. Mol Cell 
Endocrinol. 314, 118–27. 

Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., Kaneko-Ishino, T., Ogura, A., 
Ishino, F., 2002. Erasing genomic imprinting memory in mouse clone embryos 
produced from day 11.5 primordial germ cells. Development. 129, 1807–17. 

Lee, K. J., Shim, S. H., Kang, K. M., Kang, J. H., Park, D. Y., Kim, S. H., Farina, A., 
Shim, S. S., Cha, D. H., 2010. Global gene expression changes induced in the 
human placenta during labor. Placenta. 31, 698–704. 

Lefebvre, L., Viville, S., Barton, S. C., Ishino, F., Keverne, E. B., Surani, M. A., 1998. 
Abnormal maternal behaviour and growth retardation associated with loss of the 
imprinted gene Mest. Nat Genet. 20, 163–9. 

Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A., Tilghman, S. M., 
1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. 
Nature. 375, 34–9. 

Letterie, G. S., Hibbert, M., 2000. Serial serum human chorionic gonadotropin (hCG) 
levels in ectopic pregnancy and first trimester miscarriage. Arch Gynecol Obstet. 
263, 168–9. 

Li, E., 2002. Chromatin modification and epigenetic reprogramming in mammalian 
development. Nat Rev Genet. 3, 662–73. 

Li, L., Keverne, E. B., Aparicio, S. A., Ishino, F., Barton, S. C., Surani, M. A., 1999. 
Regulation of maternal behavior and offspring growth by paternally expressed Peg3. 
Science. 284, 330–3. 

Li, Y., Ye, C., Shi, P., Zou, X. J., Xiao, R., Gong, Y. Y., Zhang, Y. P., 2005. Inde-
pendent origin of the growth hormone gene family in New World monkeys and Old 
World monkeys/hominoids. J Mol Endocrinol. 35, 399–409. 

Licht, P., Russu, V., Wildt, L., 2001. On the role of human chorionic gonadotropin 
(hCG) in the embryo-endometrial microenvironment: implications for differentiation 
and implantation. Semin Reprod Med. 19, 37–47. 

Mackenzie, H. S., Brenner, B. M., 1995. Fewer nephrons at birth: a missing link in the 
etiology of essential hypertension? Am J Kidney Dis. 26, 91–8. 

MacLeod, J. N., Lee, A. K., Liebhaber, S. A., Cooke, N. E., 1992. Developmental 
control and alternative splicing of the placentally expressed transcripts from the 
human growth hormone gene cluster. J Biol Chem. 267, 14219–26. 

Malassine, A., Frendo, J. L., Evain-Brion, D., 2003. A comparison of placental develop-
ment and endocrine functions between the human and mouse model. Hum Reprod 
Update. 9, 531–9. 

Maltepe, E., Bakardjiev, A. I., Fisher, S. J., 2010. The placenta: transcriptional, epi-
genetic, and physiological integration during development. J Clin Invest. 120, 1016–
25. 

Mannik, J., Vaas, P., Rull, K., Teesalu, P., Laan, M., 2012. Differential placental 
expression profile of human Growth Hormone/Chorionic Somatomammotropin 
genes in pregnancies with pre-eclampsia and gestational diabetes mellitus. Mol Cell 
Endocrinol. 355, 180–7. 

Männik, J., Vaas, P., Rull, K., Teesalu, P., Rebane, T., Laan, M., 2010. Differential 
expression profile of growth hormone/chorionic somatomammotropin genes in 
placenta of small- and large-for-gestational-age newborns. J Clin Endocrinol Metab. 
95, 2433–42. 



68 

Marsit, C. J., Maccani, M. A., Padbury, J. F., Lester, B. M., 2012. Placental 11-beta 
hydroxysteroid dehydrogenase methylation is associated with newborn growth and a 
measure of neurobehavioral outcome. PLoS One. 7, e33794. 

Marzioni, D., Todros, T., Cardaropoli, S., Rolfo, A., Lorenzi, T., Ciarmela, P., Romag-
noli, R., Paulesu, L., Castellucci, M., 2010. Activating protein-1 family of 
transcription factors in the human placenta complicated by preeclampsia with and 
without fetal growth restriction. Placenta. 31, 919–27. 

Maston, G. A., Ruvolo, M., 2002. Chorionic gonadotropin has a recent origin within 
primates and an evolutionary history of selection. Mol. Biol. Evol. 19, 320–335. 

Mayer, W., Hemberger, M., Frank, H. G., Grummer, R., Winterhager, E., Kaufmann, P., 
Fundele, R., 2000a. Expression of the imprinted genes MEST/Mest in human and 
murine placenta suggests a role in angiogenesis. Dev Dyn. 217, 1–10. 

Mayer, W., Niveleau, A., Walter, J., Fundele, R., Haaf, T., 2000b. Demethylation of the 
zygotic paternal genome. Nature. 403, 501–2. 

McKay, R., 2011. Developmental biology: Remarkable role for the placenta. Nature. 
472, 298–9. 

McLean, M., Bisits, A., Davies, J., Woods, R., Lowry, P., Smith, R., 1995. A placental 
clock controlling the length of human pregnancy. Nat Med. 1, 460–3. 

McLellan, A. S., Fischer, B., Dveksler, G., Hori, T., Wynne, F., Ball, M., Okumura, K., 
Moore, T., Zimmermann, W., 2005. Structure and evolution of the mouse 
pregnancy-specific glycoprotein (Psg) gene locus. BMC Genomics. 6, 4. 

McMinn, J., Wei, M., Schupf, N., Cusmai, J., Johnson, E. B., Smith, A. C., Weksberg, 
R., Thaker, H. M., Tycko, B., 2006. Unbalanced placental expression of imprinted 
genes in human intrauterine growth restriction. Placenta. 27, 540–9. 

Meller, M., Vadachkoria, S., Luthy, D. A., Williams, M. A., 2005. Evaluation of 
housekeeping genes in placental comparative expression studies. Placenta. 26, 601–
7. 

Mercer, R. E., Kwolek, E. M., Bischof, J. M., van Eede, M., Henkelman, R. M., Wev-
rick, R., 2009. Regionally reduced brain volume, altered serotonin neurochemistry, 
and abnormal behavior in mice null for the circadian rhythm output gene Magel2. 
Am J Med Genet B Neuropsychiatr Genet. 150B, 1085–99. 

Mercer, R. E., Wevrick, R., 2009. Loss of magel2, a candidate gene for features of 
Prader-Willi syndrome, impairs reproductive function in mice. PLoS One. 4, e4291. 

Michels, K. B., Xue, F., 2006. Role of birthweight in the etiology of breast cancer. Int J 
Cancer. 119, 2007–25. 

Michos, A., Xue, F., Michels, K. B., 2007. Birth weight and the risk of testicular cancer: 
a meta-analysis. Int J Cancer. 121, 1123–31. 

Mikheev, A. M., Nabekura, T., Kaddoumi, A., Bammler, T. K., Govindarajan, R., 
Hebert, M. F., Unadkat, J. D., 2008. Profiling gene expression in human placentae of 
different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci. 15, 
866–77. 

Miller-Lindholm, A. K., LaBenz, C. J., Ramey, J., Bedows, E., Ruddon, R. W., 1997. 
Human chorionic gonadotropin-beta gene expression in first trimester placenta. 
Endocrinology. 138, 5459–5465. 

Mirza, F. G., Cleary, K. L., 2009. Pre-eclampsia and the kidney. Semin Perinatol. 33, 
173–8. 

Moffett, A., Loke, C., 2006. Immunology of placentation in eutherian mammals. Nat 
Rev Immunol. 6, 584–94. 



69 

Mohammad, F., Pandey, G. K., Mondal, T., Enroth, S., Redrup, L., Gyllensten, U., 
Kanduri, C., 2012. Long noncoding RNA-mediated maintenance of DNA methy-
lation and transcriptional gene silencing. Development. 139, 2792–803. 

Moore, T., Haig, D., 1991. Genomic imprinting in mammalian development: a parental 
tug-of-war. Trends Genet. 7, 45–49. 

Morgan, H. D., Santos, F., Green, K., Dean, W., Reik, W., 2005. Epigenetic re-
programming in mammals. Hum Mol Genet. 14 Spec No 1, R47–58. 

Morison, I. M., Paton, C. J., Cleverley, S. D., 2001. The imprinted gene and parent-of-
origin effect database. Nucleic Acids Res. 29, 275–6. 

Morison, I. M., Ramsay, J. P., Spencer, H. G., 2005. A census of mammalian imprin-
ting. Trends Genet. 21, 457–465. 

Murthi, P., Fitzpatrick, E., Borg, A. J., Donath, S., Brennecke, S. P., Kalionis, B., 2008. 
GAPDH, 18S rRNA and YWHAZ are suitable endogenous reference genes for 
relative gene expression studies in placental tissues from human idiopathic fetal 
growth restriction. Placenta. 29, 798–801. 

Nakashima, A., Shima, T., Inada, K., Ito, M., Saito, S., 2012. The balance of the 
immune system between T cells and NK cells in miscarriage. Am J Reprod 
Immunol. 67, 304–10. 

Naumova, A. K., Croteau, S., 2004. Mechanisms of Epigenetic Variation: Polymorphic 
Imprinting. Curr Genomics. 5, 417–429. 

Nelissen, E. C., van Montfoort, A. P., Dumoulin, J. C., Evers, J. L., 2011. Epigenetics 
and the placenta. Hum Reprod Update. 17, 397–417. 

Nishizawa, H., Ota, S., Suzuki, M., Kato, T., Sekiya, T., Kurahashi, H., Udagawa, Y., 
2011. Comparative gene expression profiling of placentas from patients with severe 
pre-eclampsia and unexplained fetal growth restriction. Reprod Biol Endocrinol. 9, 
107. 

Noguer-Dance, M., Abu-Amero, S., Al-Khtib, M., Lefevre, A., Coullin, P., Moore, G. 
E., Cavaille, J., 2010. The primate-specific microRNA gene cluster (C19MC) is 
imprinted in the placenta. Hum Mol Genet. 19, 3566–82. 

Non, A. L., Binder, A. M., Barault, L., Rancourt, R. C., Kubzansky, L. D., Michels, K. 
B., 2012. DNA methylation of stress-related genes and LINE-1 repetitive elements 
across the healthy human placenta. Placenta. 33, 183–7. 

Novakovic, B., Saffery, R., 2012. The ever growing complexity of placental epigenetics 
– role in adverse pregnancy outcomes and fetal programming. Placenta. 33, 959–70. 

Novakovic, B., Yuen, R. K., Gordon, L., Penaherrera, M. S., Sharkey, A., Moffett, A., 
Craig, J. M., Robinson, W. P., Saffery, R., 2011. Evidence for widespread changes 
in promoter methylation profile in human placenta in response to increasing 
gestational age and environmental/stochastic factors. BMC Genomics. 12, 529. 

O'Shaughnessy, P. J., Baker, P. J., Johnston, H., 2006. The foetal Leydig cell –differen-
tiation, function and regulation. Int J Androl. 29, 90–5; discussion 105–8. 

Older Aguilar, A. M., Guethlein, L. A., Adams, E. J., Abi-Rached, L., Moesta, A. K., 
Parham, P., 2010. Coevolution of killer cell Ig-like receptors with HLA-C to become 
the major variable regulators of human NK cells. J Immunol. 185, 4238–51. 

Ono, R., Nakamura, K., Inoue, K., Naruse, M., Usami, T., Wakisaka-Saito, N., Hino, T., 
Suzuki-Migishima, R., Ogonuki, N., Miki, H., et al., 2006. Deletion of Peg10, an 
imprinted gene acquired from a retrotransposon, causes early embryonic lethality. 
Nat Genet. 38, 101–6. 

18



70 

Otsuka, S., Maegawa, S., Takamura, A., Kamitani, H., Watanabe, T., Oshimura, M., 
Nanba, E., 2009. Aberrant promoter methylation and expression of the imprinted 
PEG3 gene in glioma. Proc Jpn Acad Ser B Phys Biol Sci. 85, 157–65. 

Papageorgiou, E. A., Fiegler, H., Rakyan, V., Beck, S., Hulten, M., Lamnissou, K., 
Carter, N. P., Patsalis, P. C., 2009. Sites of differential DNA methylation between 
placenta and peripheral blood: molecular markers for noninvasive prenatal diagnosis 
of aneuploidies. Am J Pathol. 174, 1609–18. 

Papageorgiou, E. A., Karagrigoriou, A., Tsaliki, E., Velissariou, V., Carter, N. P., 
Patsalis, P. C., 2011. Fetal-specific DNA methylation ratio permits noninvasive 
prenatal diagnosis of trisomy 21. Nat Med. 17, 510–3. 

Papper, Z., Jameson, N. M., Romero, R., Weckle, A. L., Mittal, P., Benirschke, K., 
Santolaya-Forgas, J., Uddin, M., Haig, D., Goodman, M., et al., 2009. Ancient 
origin of placental expression in the growth hormone genes of anthropoid primates. 
Proc Natl Acad Sci U S A. 106, 17083–8. 

Parrott, A. M., Sriram, G., Liu, Y., Mathews, M. B., 2011. Expression of type II 
chorionic gonadotropin genes supports a role in the male reproductive system. Mol 
Cell Biol. 31, 287–99. 

Pastinen, T., Sladek, R., Gurd, S., Sammak, A., Ge, B., Lepage, P., Lavergne, K., Ville-
neuve, A., Gaudin, T., Brandstrom, H., et al., 2004. A survey of genetic and epi-
genetic variation affecting human gene expression. Physiol Genomics. 16, 184–93. 

Patel, P., Boyd, C. A., Johnston, D. G., Williamson, C., 2002. Analysis of GAPDH as a 
standard for gene expression quantification in human placenta. Placenta. 23, 697–8. 

Penaherrera, M. S., Jiang, R., Avila, L., Yuen, R. K., Brown, C. J., Robinson, W. P., 
2012. Patterns of placental development evaluated by X chromosome inactivation 
profiling provide a basis to evaluate the origin of epigenetic variation. Hum Reprod. 
27, 1745–53. 

Petronella, N., Drouin, G., 2011. Gene conversions in the growth hormone gene family 
of primates: stronger homogenizing effects in the Hominidae lineage. Genomics. 98, 
173–81. 

Pierce, J. G., Parsons, T. F., 1981. Glycoprotein hormones: structure and function. Annu 
Rev Biochem. 50, 465–495. 

Poikkeus, P., Hiilesmaa, V., Tiitinen, A., 2002. Serum HCG 12 days after embryo 
transfer in predicting pregnancy outcome. Hum. Reprod. 17, 1901–1905. 

Policastro, P. F., Daniels-McQueen, S., Carle, G., Boime, I., 1986. A map of the hCG 
beta-LH beta gene cluster. J Biol Chem. 261, 5907–16. 

Pozharny, Y., Lambertini, L., Ma, Y., Ferrara, L., Litton, C. G., Diplas, A., Jacobs, 
A. R., Chen, J., Stone, J. L., Wetmur, J., et al., 2010. Genomic loss of imprinting in 
first-trimester human placenta. Am J Obstet Gynecol. 202, 391 e1–8. 

Rakyan, V. K., Down, T. A., Thorne, N. P., Flicek, P., Kulesha, E., Graf, S., Tomazou, 
E. M., Backdahl, L., Johnson, N., Herberth, M., et al., 2008. An integrated resource 
for genome-wide identification and analysis of human tissue-specific differentially 
methylated regions (tDMRs). Genome Res. 18, 1518–29. 

Rao, C. V., Lei, Z. M., 2007. The past, present and future of nongonadal LH/hCG 
actions in reproductive biology and medicine. Mol Cell Endocrinol. 269, 2–8. 

Rawn, S. M., Cross, J. C., 2008. The evolution, regulation, and function of placenta-
specific genes. Annu Rev Cell Dev Biol. 24, 159–81. 

Reik, W., Dean, W., Walter, J., 2001. Epigenetic reprogramming in mammalian 
development. Science. 293, 1089–93. 



71 

Reik, W., Lewis, A., 2005. Co-evolution of X-chromosome inactivation and imprinting 
in mammals. Nat Rev Genet. 6, 403–410. 

Reik, W., Walter, J., 2001. Genomic imprinting: parental influence on the genome. Nat 
Rev Genet. 2, 21–32. 

Reimand, J., Arak, T., Vilo, J., 2011. g:Profiler – a web server for functional inter-
pretation of gene lists (2011 update). Nucleic Acids Res. 39, W307–15. 

Reiss, D., Zhang, Y., Mager, D. L., 2007. Widely variable endogenous retroviral 
methylation levels in human placenta. Nucleic Acids Res. 35, 4743–54. 

Relaix, F., Wei, X., Li, W., Pan, J., Lin, Y., Bowtell, D. D., Sassoon, D. A., Wu, X., 
2000. Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in 
p53-mediated apoptosis. Proc Natl Acad Sci U S A. 97, 2105–10. 

Rice, J. C., Allis, C. D., 2001. Histone methylation versus histone acetylation: new 
insights into epigenetic regulation. Curr Opin Cell Biol. 13, 263–73. 

Robinson, B. G., Arbiser, J. L., Emanuel, R. L., Majzoub, J. A., 1989. Species-specific 
placental corticotropin releasing hormone messenger RNA and peptide expression. 
Mol Cell Endocrinol. 62, 337–41. 

Rodesch, F., Simon, P., Donner, C., Jauniaux, E., 1992. Oxygen measurements in endo-
metrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 80, 283–5. 

Rougier, N., Bourc’his, D., Gomes, D. M., Niveleau, A., Plachot, M., Paldi, A., Viegas-
Pequignot, E., 1998. Chromosome methylation patterns during mammalian pre-
implantation development. Genes Dev. 12, 2108–13. 

Rudert, F., Zimmermann, W., Thompson, J. A., 1989. Intra- and interspecies analyses of 
the carcinoembryonic antigen (CEA) gene family reveal independent evolution in 
primates and rodents. J Mol Evol. 29, 126–34. 

Rull, K., Laan, M., 2005. Expression of beta-subunit of HCG genes during normal and 
failed pregnancy. Hum Reprod. 20, 3360–3368. 

Rull, K., Nagirnaja, L., Laan, M., 2012. Genetics of recurrent miscarriage: challenges, 
current knowledge, future directions. Front Genet. 3, 34. 

Rull, K., Tomberg, K., Koks, S., Mannik, J., Mols, M., Sirotkina, M., Varv, S., Laan, 
M., 2013. Increased placental expression and maternal serum levels of apoptosis-
inducing TRAIL in recurrent miscarriage. Placenta. 34, 141–8. 

Sasaki, H., Matsui, Y., 2008. Epigenetic events in mammalian germ-cell development: 
reprogramming and beyond. Nat Rev Genet. 9, 129–40. 

Sattar, N., Greer, I. A., 2002. Pregnancy complications and maternal cardiovascular 
risk: opportunities for intervention and screening? BMJ. 325, 157–60. 

Schaller, F., Watrin, F., Sturny, R., Massacrier, A., Szepetowski, P., Muscatelli, F., 
2010. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in 
mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet. 19, 
4895–905. 

Schuster-Gossler, K., Simon-Chazottes, D., Guenet, J. L., Zachgo, J., Gossler, A., 1996. 
Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-
dependent phenotype. Mamm Genome. 7, 20–4. 

Sedman, L., Padhukasahasram, B., Kelgo, P., Laan, M., 2008. Complex signatures of 
locus-specific selective pressures and gene conversion on Human Growth Hormone/ 
Chorionic Somatomammotropin genes. Hum Mutat. 29, 1181–93. 

Seitz, H., Royo, H., Bortolin, M. L., Lin, S. P., Ferguson-Smith, A. C., Cavaille, J., 
2004. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. 
Genome Res. 14, 1741–8. 



72 

Sheikh-Hamad, D., Bick, R., Wu, G. Y., Christensen, B. M., Razeghi, P., Poin-
dexter, B., Taegtmeyer, H., Wamsley, A., Padda, R., Entman, M., et al., 2003. 
Stanniocalcin-1 is a naturally occurring L-channel inhibitor in cardiomyocytes: 
relevance to human heart failure. Am J Physiol Heart Circ Physiol. 285, H442–8. 

Sherman, G. B., Wolfe, M. W., Farmerie, T. A., Clay, C. M., Threadgill, D. S., Sharp, 
D. C., Nilson, J. H., 1992. A single gene encodes the beta-subunits of equine 
luteinizing hormone and chorionic gonadotropin. Mol Endocrinol. 6, 951–9. 

Shi, Q. J., Lei, Z. M., Rao, C. V., Lin, J., 1993. Novel role of human chorionic gonado-
tropin in differentiation of human cytotrophoblasts. Endocrinology. 132, 1387–95. 

Shoemaker, R., Deng, J., Wang, W., Zhang, K., 2010. Allele-specific methylation is 
prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 20, 
883–9. 

Simister, N. E., 2003. Placental transport of immunoglobulin G. Vaccine. 21, 3365–9. 
Sitras, V., Fenton, C., Paulssen, R., Vartun, A., Acharya, G., 2012. Differences in Gene 

Expression between First and Third Trimester Human Placenta: A Microarray 
Study. PLoS One. 7, e33294. 

Sitras, V., Paulssen, R., Leirvik, J., Vartun, A., Acharya, G., 2009a. Placental gene 
expression profile in intrauterine growth restriction due to placental insufficiency. 
Reprod Sci. 16, 701–11. 

Sitras, V., Paulssen, R. H., Gronaas, H., Leirvik, J., Hanssen, T. A., Vartun, A., 
Acharya, G., 2009b. Differential placental gene expression in severe preeclampsia. 
Placenta. 30, 424–33. 

Sivalingam, V. N., Duncan, W. C., Kirk, E., Shephard, L. A., Horne, A. W., 2011. 
Diagnosis and management of ectopic pregnancy. J Fam Plann Reprod Health Care. 
37, 231–40. 

Smallwood, A., Papageorghiou, A., Nicolaides, K., Alley, M. K., Jim, A., Nargund, G., 
Ojha, K., Campbell, S., Banerjee, S., 2003. Temporal regulation of the expression of 
syncytin (HERV-W), maternally imprinted PEG10, and SGCE in human placenta. 
Biol Reprod. 69, 286–93. 

Soares, M. J., Muller, H., Orwig, K. E., Peters, T. J., Dai, G., 1998. The uteroplacental 
prolactin family and pregnancy. Biol Reprod. 58, 273–84. 

Song, G., Bazer, F. W., Wagner, G. F., Spencer, T. E., 2006. Stanniocalcin (STC) in the 
endometrial glands of the ovine uterus: regulation by progesterone and placental 
hormones. Biol Reprod. 74, 913–22. 

Song, G., Dunlap, K. A., Kim, J., Bailey, D. W., Spencer, T. E., Burghardt, R. C., Wag-
ner, G. F., Johnson, G. A., Bazer, F. W., 2009. Stanniocalcin 1 is a luminal epithelial 
marker for implantation in pigs regulated by progesterone and estradiol. Endo-
crinology. 150, 936–45. 

Springer, M. S., Murphy, W. J., Eizirik, E., O'Brien, S. J., 2003. Placental mammal 
diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci U S A. 
100, 1056–61. 

Srisuparp, S., Strakova, Z., Fazleabas, A. T., 2001. The role of chorionic gonadotropin 
(CG) in blastocyst implantation. Arch Med Res. 32, 627–634. 

Steenman, M. J., Rainier, S., Dobry, C. J., Grundy, P., Horon, I. L., Feinberg, A. P., 
1994. Loss of imprinting of IGF2 is linked to reduced expression and abnormal 
methylation of H19 in Wilms' tumour. Nat Genet. 7, 433–9. 

Stenman, U. H., Alfthan, H., Hotakainen, K., 2004. Human chorionic gonadotropin in 
cancer. Clin Biochem. 37, 549–61. 



73 

Stenman, U. H., Tiitinen, A., Alfthan, H., Valmu, L., 2006. The classification, functions 
and clinical use of different isoforms of HCG. Hum Reprod Update. 12, 769–784. 

Strahl, B. D., Allis, C. D., 2000. The language of covalent histone modifications. 
Nature. 403, 41–5. 

Struwe, E., Berzl, G., Schild, R., Blessing, H., Drexel, L., Hauck, B., Tzschoppe, A., 
Weidinger, M., Sachs, M., Scheler, C., et al., 2010. Microarray analysis of placental 
tissue in intrauterine growth restriction. Clin Endocrinol (Oxf). 72, 241–7. 

Stumpo, D. J., Byrd, N. A., Phillips, R. S., Ghosh, S., Maronpot, R. R., Castranio, T., 
Meyers, E. N., Mishina, Y., Blackshear, P. J., 2004. Chorioallantoic fusion defects 
and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a 
CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol. 24, 
6445–55. 

Summers, K., Crespi, B., 2005. Cadherins in maternal-foetal interactions: red queen 
with a green beard? Proc Biol Sci. 272, 643–9. 

Surani, M. A., Hayashi, K., Hajkova, P., 2007. Genetic and epigenetic regulators of 
pluripotency. Cell. 128, 747–62. 

Than, N. G., Romero, R., Goodman, M., Weckle, A., Xing, J., Dong, Z., Xu, Y., 
Tarquini, F., Szilagyi, A., Gal, P., et al., 2009. A primate subfamily of galectins 
expressed at the maternal-fetal interface that promote immune cell death. Proc Natl 
Acad Sci U S A. 106, 9731–6. 

Tong, S., Wallace, E. M., Rombauts, L., 2006. Association between low day 16 hCG 
and miscarriage after proven cardiac activity. Obstet. Gynecol. 107, 300–304. 

Toppings, M., Castro, C., Mills, P. H., Reinhart, B., Schatten, G., Ahrens, E. T., 
Chaillet, J. R., Trasler, J. M., 2008. Profound phenotypic variation among mice 
deficient in the maintenance of genomic imprints. Hum Reprod. 23, 807–18. 

Tsai, S., Hardison, N. E., James, A. H., Motsinger-Reif, A. A., Bischoff, S. R., Thames, 
B. H., Piedrahita, J. A., 2011. Transcriptional profiling of human placentas from 
pregnancies complicated by preeclampsia reveals disregulation of sialic acid 
acetylesterase and immune signalling pathways. Placenta. 32, 175–82. 

Tsui, D. W., Lam, Y. M., Lee, W. S., Leung, T. Y., Lau, T. K., Lau, E. T., Tang, M. H., 
Akolekar, R., Nicolaides, K. H., Chiu, R. W., et al., 2010. Systematic identification 
of placental epigenetic signatures for the noninvasive prenatal detection of Edwards 
syndrome. PLoS One. 5, e15069. 

Tycko, B., 2006. Imprinted genes in placental growth and obstetric disorders. Cytogenet 
Genome Res. 113, 271–8. 

Varrault, A., Gueydan, C., Delalbre, A., Bellmann, A., Houssami, S., Aknin, C., 
Severac, D., Chotard, L., Kahli, M., Le Digarcher, A., et al., 2006. Zac1 regulates an 
imprinted gene network critically involved in the control of embryonic growth. Dev 
Cell. 11, 711–22. 

Verona, R. I., Mann, M. R., Bartolomei, M. S., 2003. Genomic imprinting: intricacies of 
epigenetic regulation in clusters. Annu Rev Cell Dev Biol. 19, 237–259. 

Virgin, J. B., Silver, B. J., Thomason, A. R., Nilson, J. H., 1985. The gene for the beta 
subunit of bovine luteinizing hormone encodes a gonadotropin mRNA with an 
unusually short 5'-untranslated region. J Biol Chem. 260, 7072–7. 

Wagschal, A., Feil, R., 2006. Genomic imprinting in the placenta. Cytogenet. Genome 
Res. 113, 90–98. 

Wallace, C., Smyth, D. J., Maisuria-Armer, M., Walker, N. M., Todd, J. A., Clayton, D. 
G., 2010. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters 
susceptibility to type 1 diabetes. Nat Genet. 42, 68–71. 

19



74 

Wan, H., Versnel, M. A., Cheung, W. Y., Leenen, P. J., Khan, N. A., Benner, R., 
Kiekens, R. C., 2007. Chorionic gonadotropin can enhance innate immunity by 
stimulating macrophage function. J Leukoc Biol. 82, 926–33. 

Weksberg, R., Shen, D. R., Fei, Y. L., Song, Q. L., Squire, J., 1993. Disruption of 
insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat 
Genet. 5, 143–50. 

Wildman, D. E., 2011. Review: Toward an integrated evolutionary understanding of the 
mammalian placenta. Placenta. 32 Suppl 2, S142–5. 

Wilkins, J. F., Ubeda, F., 2011. Diseases associated with genomic imprinting. Prog Mol 
Biol Transl Sci. 101, 401–45. 

Winn, V. D., Haimov-Kochman, R., Paquet, A. C., Yang, Y. J., Madhusudhan, M. S., 
Gormley, M., Feng, K. T., Bernlohr, D. A., McDonagh, S., Pereira, L., et al., 2007. 
Gene expression profiling of the human maternal-fetal interface reveals dramatic 
changes between midgestation and term. Endocrinology. 148, 1059–79. 

Wolf, J. B., Hager, R., 2009. Selective abortion and the evolution of genomic 
imprinting. J Evol Biol. 22, 2519–2523. 

Wood, A. J., Oakey, R. J., 2006. Genomic imprinting in mammals: emerging themes 
and established theories. PLoS Genet. 2, e147. 

Xu, Y., Goodyer, C. G., Deal, C., Polychronakos, C., 1993. Functional polymorphism in 
the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun. 
197, 747–754. 

Yeung, B. H., Law, A. Y., Wong, C. K., 2012. Evolution and roles of stanniocalcin. 
Mol Cell Endocrinol. 349, 272–80. 

Yu, L., Chen, M., Zhao, D., Yi, P., Lu, L., Han, J., Zheng, X., Zhou, Y., Li, L., 2009. 
The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta. 30, 
443–7. 

Yuasa, S., Onizuka, T., Shimoji, K., Ohno, Y., Kageyama, T., Yoon, S. H., Egashira, T., 
Seki, T., Hashimoto, H., Nishiyama, T., et al., 2010. Zac1 is an essential transcrip-
tion factor for cardiac morphogenesis. Circ Res. 106, 1083–91. 

Yue, L., Daikoku, T., Hou, X., Li, M., Wang, H., Nojima, H., Dey, S. K., Das, S. K., 
2005. Cyclin G1 and cyclin G2 are expressed in the periimplantation mouse uterus 
in a cell-specific and progesterone-dependent manner: evidence for aberrant 
regulation with Hoxa-10 deficiency. Endocrinology. 146, 2424–33. 

Yuen, R. K., Avila, L., Penaherrera, M. S., von Dadelszen, P., Lefebvre, L., Kobor, M. 
S., Robinson, W. P., 2009. Human placental-specific epipolymorphism and its 
association with adverse pregnancy outcomes. PLoS One. 4, e7389. 

Yuen, R. K., Penaherrera, M. S., von Dadelszen, P., McFadden, D. E., Robinson, W. P., 
2010. DNA methylation profiling of human placentas reveals promoter hypo-
methylation of multiple genes in early-onset preeclampsia. Eur J Hum Genet. 18, 
1006–12. 

Zhang, Y., Lang, Q., Li, J., Xie, F., Wan, B., Yu, L., 2010. Identification and characteri-
zation of human LYPD6, a new member of the Ly-6 superfamily. Mol Biol Rep. 37, 
2055–62. 

Zoricic, S., Maric, I., Bobinac, D., Vukicevic, S., 2003. Expression of bone morpho-
genetic proteins and cartilage-derived morphogenetic proteins during osteophyte 
formation in humans. J Anat. 202, 269–77. 

Zygmunt, M., Herr, F., Munstedt, K., Lang, U., Liang, O. D., 2003. Angiogenesis and 
vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol. 110 Suppl 1, S10–
8. 



75 

8. SUMMARY IN ESTONIAN 

Platsenta geeniekspressioon normaalses ja  
komplitseeritud raseduses 

Platsenta on loote kest, mille kaudu on loode seotud ema organismiga. Raseduse 
jooksul vahendab platsenta loote ja ema vahelist suhtlust, reguleerides nii hap-
niku kui toit- ja jääkainete liikumist, sekreteerides erinevaid hormone ning 
kaitstes loodet ema immunoloogilise äratõukereaktsiooni ja välistegurite eest. 
Imetajates toimunud kiire liigisisese evolutsiooni tulemusena on platsentast 
kujunenud üks varieeruvama struktuuri ning geeniregulatsiooniga organeid. 
Platsentale on iseloomulikud duplikaatgeenide perekondade ja aktiivsete retro-
transposonide rohkus ning teatud mikroRNA gruppide esinemine. Samuti on 
platsenta erakordne imprinditud geenide rikastatuse poolest. Imprinting on epi-
geneetiline mehhanism, mis tagab geenide monoalleelse avaldumise ainult ühelt 
vanemalt päritud geenialleelilt. 

Platsenta ehitus, funktsioonid ning geeniregulatsioon muutuvad dünaami-
liselt läbi raseduse, et tagada ema metabolismi kohanemine rasedusega ja opti-
maalne loote üsasisene areng. Inimese rasedus on jagatud kolmeks trimestriks. 
Esimesel trimestril toimub platsenta moodustumine, loote implantatsioon ning 
embrüonaalne areng. Teisel trimestri jooksul kujunevad detailselt välja loote 
organstruktuurid ning viimastele raseduskuudele on iseloomulik kiire loote kasv 
ning organite lõplik areng. Kuigi geneetiliselt on platsenta identne lootega, on 
loote ja platsenta geenide avaldumine erinev. Normaalseks raseduse kulge-
miseks on tähtis platsenta geenide avaldumise korrektne ajaline ning ruumiline 
regulatsioon. Paraku ei ole inimese platsenta transkriptsioomi dünaamikat läbi 
kogu raseduse veel põhjalikult uuritud ning suurimad ebaselgused puudutavad 
raseduse teist trimestrit.  

Üks tähtsamaid platsenta poolt toodetud rasedushormoone on inimese koor-
iongonadotropiin (human chorionic gonadotropin; hCG). Heterodimeerne glü-
koproteiin hCG koosneb -subühikust ja vereseerumi hormooni taset määravast 
-alaühikust. -alaühikut kodeerib süntsüütsiotrofoblasti rakkudes avaldunud 
primaadispetsiifiline CGB geeniperekond. hCG süntees algab juba embrüos 
ning on vajalik embrüo implantatsioonil ja platsenta moodustumisel. Raseduse 
alguses stimuleerib hCG munasarja kollaskehas progresterooni tootmist, mis on 
vajalik raseduse säilimiseks esimestel rasedusnädalatel. Lisaks aitab hCG kaasa 
platsenta verevarustusele ning immuunotolerantsi kujunemisele ema ja loote 
vahel. Pärast embrüo pesastumist emaka limaskesta jõuab hCG esmakordselt 
ema verre ning on seal mõõdetav kogu raseduse jooksul. Seni pole CGB 
geenide ekspressiooni dünaamikat läbi normaalse raseduse veel uuritud. On 
teada, et normist oluliselt kõrgem või madalam hCG valgu tase seostub mitmete 
raseduskomplikatsioonidega. Näiteks on esimese trimestri korduvate raseduse 
katkemistega patsientidel hCG tase seerumis kriitiliselt madal ning samuti on 
alanenud CGB geenide transkriptsioon platsentas.  
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Normaalselt funktsioneeriv platsenta on eduka raseduse aluseks. Raseduse 
esimese poole tüsistused on enamasti seotud häiretega implanteerumisel ja plat-
senta moodustumisel, samuti immunoloogiliste ning verevarustuse probleemi-
dega. Raseduse teises pooles avalduvad komplikatsioonid on seotud ema ja 
loote metaboolsete häiretega. Patoloogiate kujunemise molekulaarsed mehha-
nismid ning geeniekspressiooni dünaamika on seni põhjalikult kaardistamata. 
Sellest tulenevalt on hiljuti järjest enam tähelepanu kogumas komplitseeritud 
rasedustest pärineva platsenta geeniekspressiooni uuringud. Uuringute ees-
märgiks on teha kindlaks molekulaarsed mehhanismid, mis on seotud rasedus-
patoloogiate kujunemisega, kuid samuti uute mitteinvasiivsete biomarkerite 
ning ravimisihtmärkide tuvastamine.  

Käesoleva doktoritöö kirjanduse ülevaade käsitleb platsenta evolutsiooni 
imetajates, kirjeldab platsenta omadusi ning molekulaarset evolutsiooni pri-
maatides ja inimeses ning tutvustab lähemalt primaatide platsentas avaldunud 
kooriongonadotropiini hormooni ja selle -alaühikut kodeerivaid geene. Järg-
misena tutvustatakse inimese platsenta geeniekspressiooni alaseid uuringuid 
ning antakse ülevaade platsenta geenide epigeneetilisest regulatsioonist.  

Uurimustöö eksperimentaalse osa eesmärkideks on (a) võrdlevalt uurida 
platsenta geenide avaldumist normaalse ja komplitseeritud raseduse korral ning 
(b) tuvastada geenid, mille avaldumine ning funktsioon on rasedustüsistuste 
platsentas häiritud. Kitsamalt keskendub töö kahe suurema alateema uurimisele: 
1)  Platsenta-spetsiifiliste hCG -alaühikut kodeerivate geenide ekspressiooni 

analüüs, et 
- tuvastada CGB geenide avaldumine normaalse raseduse platsentas I, II ja 

III trimesteril ning võrdlevalt I trimestri raseduskomplikatsioonide plat-
sentades (korduv iseeneslik raseduse katkemine, emakaväline rasedus, 
moolrasedus); 

- uurida kõgeima transkriptsiooni aktiivsusega hCGβ geenide, CGB5 ja 
CGB8, ekspressiooni vaigistamist DNA metüleerimise teel korduvate 
raseduse katkemiste platsentades.  

2)  Platsenta transkriptoomi kirjeldamine raseduse I ja II trimestritel mikro-
kiipide abil, et 
- määrata kindlaks geenid, mis on spetsiifiliselt avaldunud inimese plat-

sentas raseduse II trimestril; 
- uurida, kas II trimestri platsentas avaldunud geenide ebatüüpiline eks-

pressioon raseduse III trimestril on seotud ema ja loote raseduspato-
loogiatega (preeklampsia, rasedusaegne diabeet, loote kasvuhäired);  

- määrata kõige olulisemate rasedustüsistustega seotud geenide valgu aval-
dumise tase normaalse ja komplitseeritud raseduste korral ning hinnata 
nende võimalikku edasist rakendamist biomarkerina. 
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Uurimistöö peamised tulemused on: 
1) CGB geenide transkriptsioon normaalse raseduse platsentades on kõrgeim 

raseduse esimesel trimestril, langeb oluliselt teiseks trimestriks ning tõuseb 
taas kolmandal trimestril. Nii nagu hCG hormooni tase, varieerub ka CGB 
geenide transkriptsioon suuresti indiviidide ja kliiniliste gruppide vahel.  

2) Korduva raseduse katkemise platsentades on CGB geenide transkriptsioon 
oluliselt alanenud võrreldes esimese trimestri normaalse rasedusega (P=0.03). 

3) CGB5 ja CGB8 geenid on normaalse raseduse platsentades avaldunud võrd-
selt mõlemalt vanemalt päritud geenialleelidelt. 

4) Kahes korduva raseduse katkemise platsentas ja ühes ühes esimese trimestri 
raseduse katkestuse platsentas oli CGB5 geen transkribeeritud vaid emalt 
päritud alleelidelt. CGB5 promootorala DNA metülatsiooni analüüs näitas, 
et CGB5 geeni promootor oli nendes kudedes hemimetüleeritud. Seega võib 
CGB5 geeni isalt päritud alleelide vaigistamine toimuda promootorala 
metüüleerimise tulemusel.  

5) Normaalse raseduse esimese ja teise trimestri 5–18 rasedusnädalatel kogu-
tud platsentade transkriptoomi analüüs tuvastas 154 oluliselt suurenenud või 
alanenud avaldumisega geeni (ANOVA; FDR korrigeeritud P<0.1).  

6) Mikrokiibi tulemuste RT-qPCR replikatsioon ja validatsioon 24 geeni korral 
kinnitas üldjoontes mikrokiibi analüüsi tulemusi ning tõi välja 16 statisti-
liselt olulise signaaliga geeni. Kümne geeni ekspressioon oli normaalse 
raseduse jooksul oluliselt kõrgem II trimestri platsentas võrreldes I ja III 
trimestriga (BMP5, CCNG2, CDH11, FST, GATM, GPR183, ITGBL1, 
PLAGL1, SLC16A10, STC1). Nelja uuritud geeni puhul suurenes ekspres-
sioon oluliselt teiseks trimestriks ning jäi saavutatud tasemele kuni raseduse 
lõpuni (LYPD6, MEG3, NRCAM, ZFP36L1). Kahe geeni ekspressioon 
suurenes pidevalt läbi kogu raseduse (NEDD9, NR3C1). 

7) Leitud geenide ekspressioon on häiritud raseduskomplikatsioonidega plat-
sentades, mis on seotud ema metabolismi häirete (preeklampsia, rasedus-
aegne diabeet) ja loote kasvuanomaaliatega (loote kasv liiga väike/suur 
sõltuvalt gestatsiooni ajast).  

8) Valgu STC1 tase ema veres on oluliselt kõrgem preeklampsia, loote kasvu-
peetuse ja ema rasedusaegse diabeedi korral (P<0.035). Kõrgeim plasma 
STC1 on iseloomulik kompleksanomaaliale, milles loote kasvupeetus on 
kombineeritud ema preeklampsiaga (P=4.8x10–4). Edasised uuringud näita-
vad, kas STC1 glükoproteiini on võimalik kasutada biomarkerina.  

9) Kahe uuritava valgu (LYPD6 ja CCNG2) ekspressioon platsentas on olu-
liselt suurenenud preeklampsia ja rasedusaegse diabeediga komplitseeritud 
rasedustes. Lisaks demonstreeris käesolev töö esmakordselt LYPD6 valgu 
ekspresiooni platsenta süntsüütsiotrofoblastis. 

10) Kirjanduse analüüs näitas, et geenid, mis on raseduse keskpaigas platsentas 
kõrgelt avaldunud, võivad lisaks raseduspatoloogiatele olla seotud ka mit-
mete täiskasvanuea krooniliste haigustega, nagu näiteks artriidi, kroonilise 
neerupuudulikkuse ja diabeediga. 

20
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Kokkuvõttes käsitleb antud doktoriväitekiri platsenta geeniekspressiooni kahest 
vaatenurgast. Esiteks uuritakse hüpoteesipõhiselt CGB geenide avaldumist 
platsentas ning teiseks viiakse läbi globaalne platsenta transkriptoomi analüüs 
ning selle validatsioon. Uurimus keskendub normaalse ja komplitseeritud rase-
duse võrdlusele. 

Üks töö olulisematest leidudest on CGB geenide avaldumismuster normaal-
ses raseduses ning häiritud avaldumine rasedustüsistuste korral. See leid kinni-
tab CGB geenide rolli embrüo implantatsioonil, platsentatsioonil ning varajase 
raseduse säilitamisel.  

Käesolevas töös uuriti esmakordselt platsenta geeniekspressiooni dünaami-
kat inimese raseduse esimese ja teise trimestri jooksul. Raseduse esimese poole 
transkriptoomi analüüs tuvastas mitmed geenid, mis on kõrgelt ekspreseeritud 
teise trimestri platsentas. Nende geenide häiritud avaldumine on iseloomulik 
kolmanda trimestri rasedusanomaaliatele, kuid samuti kroonilistele täiskasva-
nuea haigustele.  

Kuna rahvastiku kasv ja vananev elanikkond avaldavad ühiskonnale järjest 
suuremat mõju, on tööea pikendamine ja haiguste ennetamine üks tuleviku tea-
duse ja meditsiini väljakutsetest. Platsenta funktsioon mõjutab ema ja loote 
heaolu nii raseduse ajal kui ka edasises elus. Seega omab platsenta geeniregulat-
siooni mõistmine normaalses ja komplitseeritud raseduses suurt kliinilist ja 
sotsiaalset tähtsust.  
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