
Raul Kangro, Ants Kaasik (Tartu Ülikool), 2012

E-kursuse "Simulation Methods in

Financial Mathematics (MTMS.02.038)" materjalid

Aine maht 3 EAP

Raul Kangro, Ants Kaasik (Tartu Ülikool), 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14492932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Course introduction

Amount of credits: 3 EAP

Lecturer: Raul Kangro (Assoc. prof., Institute of Mathematical statistics, Tartu

University)

Target Group: Master students of financial and actuarial mathematics program

Breaf description: This course gives an overview of and practical experiece in the

different aspects of applying Monte-Carlo methods for pricing various derivative

securities. Several methods of speeding up Monte-Carlo computations are studied

Goals of the course: The goals of the course are

1. To give an overview of the possibilities of using simulation methods (Monte-Carlo

methods) for pricing various assets, especially finanancial options

2. To give practical skills in effective application of simulation methods for numerical

solutions of various problems of mathematical finance.

Learning outcomes: After completing the course the students

1. Know the principles and practical error estimates of the Monte-Carlo method; are

able to generate the trajectories of the solutions of stochastic differential

equations (especially stock price trajectories) and know how to use the skill in

constructing simulation methods for pricing financial options

2. Know several variance reductions methods for speeding up the Monte-Carlo

simulation (antithetic variates, control variables, stratified sampling) and are able

to use them in option pricing

3. Know the concept of the quasai-random variables and are able to use them in

option pricing.

Topics of the course: Introduction to the R package. Generating random numbers. MC

method for numerical computation of expected values of random variables. Numerical

evaluation of integrals using MC methoc. Implementing Black-Scholes formulas in R.

Simulating the trajectories of stock prices. Implemening Euler's method. The analysis of

the convergence rate of the method. Euler's method in the case of a general market

model. Milstein's method and a weakly second order method for generating stock prices.

Variance reduction methods: antithetic variates and control variates, importance

sampling and stratified sampling. Additional points about stratified sampling, using

stratified sampling for generating the trajectories of the stock price. Pricing Asian options

by MC. Using stratified sampling for pricing Asian options. Quasi-Monte-Carlo methods,

Halton points, Sobol points. Computing the option price sensitivities with MC. Using MC

for pricing American options

Independent works: There are 8 homeworks giving up to 5 points each. The

homeworks are due one week after they were handed out. The late submissions are

allowed but the maximal score for such submissions is reduced by 50%. The solutions of

the practical homeworks have to be submitted through the Moodle web page of the

course as R files. The maximal total score for homeworks is 40 points.

Requirement to be met for final assessment: At least 20 points (50%) for

homeworks is required for qualifying for the final examination.

Composition of the final grade: 60% of the total score is given by the final exam,

40% comes from the homework assignments. The final exam takes place in a computer

lab and consists of 3 computational problems related to option pricing. The final grade is

determined by the total score as follows: the score less than 50 gives F, from 50 to 59.9

gives E, from 60 to 69.9 gives D, from 70 to 79.9 gives C, from 80 to 89.9 gives B and a

score of 90 or more gives A

E-learning activities: The course materials are divided between 16 study weeks and

can be used for independent study or as supporting materials for the computer labs. The

lab handouts contain all of the theoretical materials that are required for this course. The

solutions of the homeworks have to be submitted through Moodle. The final examination

has to be taken in person.

Additional information: Raul Kangro raul.kangro@ut.ee

Creation of the web page of the course was supported by European Union

�����������	
��

������������	
�	�����	
�����������������������������
���������	
�	�������������������������

 � ��!�"# � �$��	�"�� � �� �� ��"�	! �%"�� ��&�'���(��� �� � ����$!) ��
�� ������ � 	
�	 � � � !"	 � "��

"����	�"�������������"��!��
���%�	
���������!����"���"�����

*��������!��$��	�"����������$�������	
�������!����"���"���+�����"$	�$	�"��"����$��	�"�����$�������

+���
��� ����	��!� � ���$	 � �"� � ��"	
��� � ��� � �� ������� � !���� �"� � �"�� ���� ��� �,-"����. �� ��$		��� ���

�����"!"����	%����	
����

/���	�����"	����������	"�!�����������������%
���#�	
������-$�	��"������!���$��"����

0���
����	���1��������$�����"���"����	����	
���"���+���������	
�����"!!"%����	
������"!�"����!����

������"����������'�����$���	
�	�"$��"��2''����324���25����	��������!$��!��%
���"$�����

��	$������	"�$���"$���"���!�	���"��

��

����
��
��
�

���������	
���������		�������������"����������#�"�	��������$�������	����

������
�����

��������		�"�$���	�	�"��"�����$��	�"���
	
��

������������������!��	���!!�	
���$��	�"���	
�	��"�	����
���������	�������
����
��
����

�������������������������������� ���	�!!� � 	
� � ������� � ����� ������������ ��	" � 	
� � $���� �

�"��$	��
��
�����������
���
���

����������������������	!"����	
�	��������

���������������������������	"�������	"������%�"��	
��������������	
���$��	�"�������	

��	�������
��	�

��
��� ����!�" "�""�������"����	"�������	�"�#��$��	���	�"�#��$!	��!���	�"�#�������"�#���������	"�� �

�"%���+	%"�������	��#���	�����������"�#����������
���������
������ �!������
����� �!����"�#
��$$�����

���
��	

��������"����������$���	����	"������	"�

�� %����� ��
���������%���%�����&� '��

�����#������"�$���������	"��"����	������%�	
���������	�+�!$��"�����$���"��

��(�������"�#�&���'��
���������������	���
������
��������

��$�����%���%���������	���!��$	��������������	
����������	6����	����"��������$���	������������������

$����	"��������	
����������!���	
�"��	
����7$����

�)��%�� %�������� �� �

�)��%�� %��������*

�)��%�� %������+�����#������������	���

����&%�����������!���	�����$���	��	����
		����6�����	�������$����	"����!���	�����
��!����	�"���	�����

	����

������%�#�%�����
�������#���#
������%�#�%����+�"�����������#�#�#�#

��� ����������	������
	��	���������	����������

��
�����
�

�������&���$�����"���!����	��������$���	���

����&�����"!$	����!$��"���!����	��"�����$���	��

��&��������8���!��!����	�"���!!��!����	�����	
�����$���	��

��,��%�&���&
��,����%���%�&����

���������������!��!����	�"���!!��!����	�����	
�����$���	�

����������$��"���!!��!����	�����	
�����$���	�

���'��������"�$�	�"���!!��!����	�����	
�����$���	�

����&����	$��!�!"����	
��"���!����	��"�����$���	��6����$���	���
�	�������$����	"���	�����������	�����
����%���
�������

�&��&���8�"���	�"���!����	��"�����$���	��

�����&�����	
��	��������"���!����	��"�����$���	��
��������%������&

�'�&���	������������	�"��"���!����	��"�����$���	���

�������%������ '

����&�	���������"�����$���	��

����&%�����"���!�	�"����	%�������	"����	���	�

����&%�����"��������	��	%�������	"����	���	�

����'�&%�'��������"$���	
���!����	��"����	"�	
���$�����"��������!��!���������������������

���&�������"��	�"�%������8����
��,���"%�#�%����%������"��

�����������"��	�"�%����������

�������&���$�$!�	�����$��"��	
���!����	��"�����$���	���
���
������%��%������"� �� �

������'�&���$�$!�	������"�$�	�"��	
���!����	��"�����$���	���

�����&�&���$�$!�	������8��$��"��	
���!����	��"�����$���	���
�����,����%��%������"����

�������&���$�$!�	���������$��"��	
���!����	��"�����$���	��

��
���	�

�����&�&%����(%�����������	��������	��8�%�	
�����	�"%�����	����	�"!$���	��"���!����	��"���	��

����	���!!����	
������	��"!$���+	"��	"��"		"��#�	
���	
�����"��#��	�

�����,����%���%����-��%�������� ����
����

'����&���"����������"��!���	��8�%�	
��!����	��"� ���"��	
�����������"��!6����$���	 �����������	�!!��� �

$���

"�"�������"����	"���"����	��8��$!	��!���	�"�

��&��	�����"�������$���	��

������&����������"��	
���7$������	��8��

'���&���������"���"�����$���	��	����	�$�����"���"%�������"!$�����"������	��8�	��	$���� !""��"�����	"��

.��#.�����%����-���� ����

��()����&���$��	
���!����	��"�������"%�

���)����&����$��	
���!����	��"�������"!$���

����'�������"���������$���	������9�9����

����.����%���%���"%�#�%����%�������"��
���#��

����'�������"���������$���	��	"��	"��"		"�

����.����%���%���"%�#�� �����

�"�#

������*%+,-./0%120�����!��$��	�"���! �	"�	
��"�-��	�$����"%������%&'()��"�����"!$�������

�%&'()*

*�� ����������	������
	��	���������	����������

������	

���3� �3�	�	��4��"��"��������"����	"����7$�!�	"#�����	���	
���"���7$�!�	"#�����	���	
��#�!����	
��#�!����

	
���"���7$�!�	"#��"	��7$�!�	"#���������"�	�����������"�$�����!"����!�"�-��	���"����	����"� �+&!,�

���:"���%"�,

��/�� ��01234�
��5�&�����������
��6�����7894

���%����$��$����%��%� ���01234�7894�

4��$����"����	"���"������	����	
��!"����!�"�-��	
6��01234%�7894���7894�01234

5�6�������"����	"�����5�����2���"���"��������!"����!�"�-��	�
�������:���������7894

�������
���	
���
��	

�������������"��������	�"��"� ����$��������"�����	��������"���!�+;�$����������	���$	�"�6����$���	� �

����	����
���������$����	"�����������	���$	�"��������	���

���
��.� &�
���������� � "�'����*�"&'" �
�������%����������"�*�&� &� �###��

'�����&����!$��"��	
����"����!�	������	��$��	�"��+�����"�����	��������"���!����	���$	�"���	��!����	��"� �

�6����$���	������	����
���������$����	"�����������	���$	�"��������	���

������$� ���!$� � "� � 	
� � �$�$!�	��� � ���	���$	�"� � �$��	�"� � +���� � "� � � � �	������ � �"���! � ���	���$	�"� � �	 �

�!����	��"��-6����$���	������	����
���������$����	"�����������	���$	�"��������	���
�����*���*�#

$����������!$��"��	
��7$��	�!���$��	�"�������������������"�����	��������"���!����	���$	�"���	��!����	��"��

-6����$���	������	����
���������$����	"�����������	���$	�"��������	���
������*��#��� �&""'#"

����!�� � �$��	�"�� � �8��	 � �"� ���� �"	
�� � ���	���$	�"�� � ���� ������ ������	�� �$���"��! � ���	���$	�� � ����"��

�$����� � +��"� � 	
� � $��	 � ��	����!� � ��� ������ �8�"���	��!! � ���	���$	�� � ����"� � �$�����6 � ���$���	� � �"��

����������	
��������	����
������������	������

��
����
���
��

,�����(� *
;�����(�
<�����#%��%���

;=�>���
<=��>��#��
;= �(��>����'���
;=�� �(���>���� �
,=���%�"%�&�>����#�� �
<=��7894%�01234%�7894�>��#��
,=;�/�">������"�#�&
,=,�/���?�,���#>��"

�!����	��	�������������"��	�"�

�!!��!����	���8���	�"����	�������������"��	�"�

�!����	���	�����������"��	�"��

�!!��!����	���8���	�	
"����	�����������"��	�"��

�!����	���	�����������"��	�"��

�!����	���	��"��	�"���+&!,

�!����	���	��"��	�"���+&!,

�!����	���	��"��	�"���+&!,

��������.�,%�;�

�=�%��>���
�= %�>������"�#�&���'��� *
�=�%��>����'�
�=� %� >���
�= %��� %���>����"

�!����	��	�������������"��	�"��

�����������"%

�����������"!$��

�����������$�9��	��8

�����������$�9��	��8

.�� ����������	������
	��	���������	����������

���

��

�����&%��� � �!"	 �	
���"��	���""�����	���"� �%
��
���������������	
�����	"�� ��� ��� ��� �!����	%���6 �

���$���	 ������ �������$����	"��
�����	
���!"		�����	!������ �/�/� �"���"��	�# �/�/� �"��!����# �/�/� �"� �

"����!"		����"��	������!����

����,%�;%��;������

��������&%�����!"	�	
���������"���"��	� ��""�����	���"��%
��
���������������	
����	����� ��� ��� ���

�!����	%����%�	
������������"!$���6����"�!�"�����	��8����������	
���	
���������$����	"�����6� �����

�������$����������"��

��������%��;������
, ���� �(��**��!� **@�; ��������,�*%������+�, �%���
������������� !"#$������������ %�!"#$���&'�&!"�������&�'�����#

����������

function(arglist){expressions} �$��	�"��������	�"�6��$��	�"�������$�$�!!������������"	�$�����

,"��	
����"	.6������������$!	���!$���	"����$���	���!!"%���8��$	�"��"�����$��	�"��%�	
"$	�����������

��!$����"���!!�	
�����$���	�6���!$��������������	����+������$��	�"��������6�%
���	
���$��	�"���"��

�"����	��"��������!���8������"��	
���	
���$�!���������������"��		��
�&'(&)���A��������,� (�%�;� (��B,�$�$���;�C
����D���� (�%� (�� �� ��

����"
���EDA������A����������F%�A��A���F�

������'������7�&���������8 �����

���
������8��$	���"�!�����������������+&!,
�A�����A� ��/�����A� ���������A��
��-�
���������

������'������7�&���������98����7�&���������:8�������������������4��	
��������

���
��

�����8��$	��#�����"	�	
��������

���
*
�A�����A� ��/�����A� ��B

������A��
��-�
���������
C��
�B
������
����.�-�
���������

C

������������������$������7�&���������8�����!��%
���������������	�����	
����!$��"��	
������	�

�!����	�"��	
��
�-���������������

���
�����	
����8��$	��#�	
���	
������������	�����	
����!$��"��	
��

���"�� �!����	 �"� � 	
� �
�-����� 	 	��� ������

���
� ��� ������ � �8��$	��6 � 	
�� � �"�	��$�� �$�	�! � 	
� �

�-����������8
�$�	���"�������

���
���$���	
����!��	"����������	$��!

*����			
�����		
�����������*%�G�
A�������� �(�G�B

����E=�>������������A����
C
E�������E���
+���.�������,������;� !� ����

�������	
����	
7�&���������8�����!��%
���������

���
������8��$	������	
���������������

+&!,����	��!!6�	
���	
�����������������9�
��������������	�����	�!!�	�$��	
��������

���
������8��$	���

�����6�	
����"�	��$���$�	�!�	
��������������	�%"�,�"�������

���
���$���	
����!��	"����������	$��!
������� (*

�����.�������
-+������,�
�����.��/�*�**** �B

�����.���
�����.�!��
���������5
�����.

C

��� ����������	������
	��	���������	����������

Simulation Methods in Financial Mathematics

Computer Lab 1

Goals of the lab:

• To familiarize yourself with R

• To learn to use the Monte-Carlo method and estimate its error

• To learn to calculate integrals using simulation methods

Monte-Carlo method or simulation method is a computational algo rithm for estimating
the mean of a random variable. The method is based on performing indep endent trials and
averaging these results. That is, if we are interested in EY for some random variable Y ,
we generate n independent values Y1, Y2, . . . , Yn from the distribution of Y and estimate

EY ≈ Hn =
1

n

n
∑

i=1

Yi.

It is important to understand, that for a given random variable Y the expected value EY
is a constant (non-random real number) but the the approximatio n Hn computed by MC
method is a random number, so the error of the computed result is also random. So, when
using MC method, we can never be completely sure that the error of the r esult we get is
as small as we want but we can make the probability of getting a res ult with a large error
very small.

The estimation of the error of Hn can be based on the Central Limit Theorem: for large
enough n we have that the error of Hn (i.e. |Hn − EY |) is less than

ε = −Φ−1(α/2)σY√
n

with approximate probability 1− α. Here Φ denotes the cumulative distribution function
of the standard normal distribution. The inverse of a cumulativ e distribution function is
called the quantile function of that distribution, so actually t he quantile function of the
standard normal distribution is used in the error estimate. The st andard deviation σY of
the random variable Y is also estimated by using Y1, . . . , Yn.

In most cases relevant Y can be expressed as Y = g(X), where X is a random variable
(or random vector) with known distribution and g is some given function. In this case we
generate values of Y by applying the function g to the generated values of X.

Tasks:

1. We start using the MC method. Let Y = X2, where X has the standard uniform
distribution. Using the sample of size n = 1000 find an estimate of EY , calculate
the error estimate for α = 0.1 and the actual error.

2. Let us write our first useful function for applying MC method in ma ny different
situations. Namely, define the function MC1 with four arguments: the name of a
function g, the name of a function that for a given n generates n random variables
X, the number n of random variables to be generated, and the value of α used in
computing the error estimate. The function should return a vector of t wo numbers;
the estimat of E[g(X) and the error estimate. Additionally, define the function
f(x) = x2 and compute the value MC1(f, runif, 100, 0.1). Is the result correct?

3. Use the function MC1 to repeat the first task 100 times and produce three vectors:
average, error_estimate, actual_error. How many times did the actual error exceed
the error estimate?

4. When using the MC method, we usually do not know beforehand how l arge a sample
should be generated in order to get an answer that is accurate enough for our pur-
poses. Thus simulation continues until the required precision is a chieved (or in some
cases until we cannot wait any longer). In order to do that we first set the number of
random variables to be generated at one go and after generating this n umber of val-
ues we estimate the error. If the error is not small enough we repeat th e generation
process and estimate the error again by using all generated values. Si nce the number
of generations needed for achieving the desired accuracy can be very large, w e do not
store the previously generated random variables (to avoid memory p roblems), and
thus we cannot use the R functions to calculate the mean and standa rd deviation of
the sample. Instead we store only the sum, the sum of squares and t he total number
of values of Y generated so far. The standard deviation can then be estimated as

σY ≈
√

|sum_of_squares_of_y − (sum_of_y)2/n|
n− 1

.

Write a function which takes as the input a function g, a function gen which gen-
erates values from the distribution of X, allowed error ε and α – the probability
of exceeding the allowed error and would return the estimate (with give n precision
with probability 1− α) of the expected value of Y = g(X).

5. Homework (Deadline 16.02.2012) Definite integrals

∫ b

a

g(x) dx

can be viewed as expected values of a function by multiplying and dividi ng the
integrand by a suitable probability density function:

∫ b

a

g(x) dx =

∫ b

a

g(x)

fX(x)
fX(x) ds = E(g̃(X)),

where X is a random variable with the probability density function fX such that
fX(x) > 0, x ∈ [a, b] and

g̃(x) =
g(x)

fX(x)
I[a,b](x).

Here I[a,b](x) is the indicator function of the set [a, b] having value 1 when x belongs
to that interval and 0 otherwise and it is not needed if the density fX or the function
g is constantly zero outside of the interval [a, b]. So there are many ways to compute
by MC the same definite integral (different choices of the random vari able X give
different methods with different convergence properties).

Use the Monte-Carlo method to calculate with precision ε = 0.01 (with probability
α = 0.05) the integrals

∫ 2

−1

√

1 + x2 dx

and
∫ 100

3
e−x1.5+4 dx.

Hint: the indicator function I[a,b](x) can be written in R as (x >= a) ∗ (x <= b).

Simulation Methods in Financial Mathematics

Computer Lab 2

Goals of the lab:

• To familiarize yourself with Brownian motion and the Black-Scholes model of the
market

• To program the Black-Scholes call and put option pricing formula s

• To understand that the prices of options can be calculated as expected val ues

A standard (also called vanilla) option is a contract written by a sel ler that conveys to the
buyer the right – but not the obligation – to buy (in the case of a ca ll option) or to sell (in
the case of a put option) in a future a particular asset, such as a p iece of property, or shares
of stock or some other underlying security, such as, among others , a futures contract, for
the price specified in the contract. In return for granting the optio n, the seller collects a
payment (the premium) from the buyer. We will deal with stock option s.

For example, an European call option gives the buyer the right on a fi xed future date and
time (time T) to buy a share of the fixed company for a fixed price E; such a contract is
equivalent to the right to receive the amount p(S(T)) at time T , where p(s) = max(s −
E, 0). The function p is called the payoff function of the option. A similar put option
gives the owner the right to sell a share at some fixed timepoint with so me fixed price; the
respective payoff function is p(s) = max(E − s, 0).

Actually, there are many different types of options and not all of t hem are related to
buying or selling something, but all options can be viewed as contra cts giving the owner
the right to receive in the future a payment which value is determined b y the future price
(or prices) of the underlying asset (or assets). So it is important to be able to compute
the prices for of options with arbitrary payoff functions.

To find the price of an option, we will first need to model the share pri ce. Based on the
model we can deduce the rule for calculating the price. One of the mos t commonly used
models is the Black-Scholes model

dS(t) = S(t) · (µ · dt+ σ · dB(t)),

where µ is trend, σ is the volatility of the stock price (quantifies the risk of the instrument)
and B is the standard Brownian motion. In a general case µ and σ can depend on time,
stock price and the Brownian motion. In the current lab, however, we d eal with constant
µ and σ.

Tasks:

1. The standard bownian motion is defined by the following properties

• B(0) = 0;

• increments B(t2)−B(t1) are normally distributed N(0,
√
t2 − t1) and indepen-

dent for disjoint intervals.

To generate the paths of a Brownian motion we need to split the interva l [0, T]
into m disjoint intervals and the values of the Brownian motion at the t ime instants

ti = i· T
m

can be generated as B(ti+1) = B(ti)+Xi, where Xi iid normally distributed

N(0,
√

T
m
) random variables.

Produce a graph consisting of 10 different paths of a Brownian motion in interval
[0, 0.5], by dividing the latter into m = 100 subintervals. It is recommended to store
the paths in a matrix with dimensions 100× 10 (one trajectory in each column).

2. When µ and σ are constant, then it is known that,the stock prices corresponding t o
the Black-Scholes model are distributed as

S(t) = S(0)e(µ−σ2/2)t+σB(t).

Thus we have a one-to-one correspondence between the paths of the Brownia n motion
and the paths of a stock price.
Assume S(0) = 100, µ = 0.1, σ = 0.5 and produce a graph of 10 stock price paths
in interval [0, 0.5], by dividing the latter into m = 100 subintervals.

3. For a constant risk-free interest rate r, stock dividend percent D and volatility σ,
one can calculate the option prices for the Black-Scholes model exactly . Program the
Black-Scholes formulas for European call and put options. The resp ective formulas
are

C(S,E, T, r, σ,D, t) = Se−D(T−t)Φ(d1)− Ee−r(T−t)Φ(d2),

P (S,E, T, r, σ,D, t) = −Se−D(T−t)Φ(−d1) + Ee−r(T−t)Φ(−d2),

where

d1 =
ln(S

E
) + (r −D + σ2

2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t,

S is the stock price at time t and Φ is the cdf of a standard normal distribution
(function pnorm in R). Make a graph of call and put option prices at t = 0 and the
respective payoff functions in the interval 0 ≤ S ≤ 200 when r = 0.03, σ = 0.4, E =
100, T = 1, D = 0, by computing the option prices for integer values of S.

4. Homework (deadline 23.02.2012) Make an experiment to test the fact that for
European calls and puts we can calculate the option price as an expected value

H(t, T, S(t)) = E[e−r(T−t)p(S(T))],

where S(T) is a random variable defined as

S(T) = S(t)e(r−D−

σ
2

2
)(T−t)+σ(B(T)−B(t)) (1)

and p is the option payoff function. Use the Monte-Carlo method with error proba-
bility α = 0.05 and allowed error 0.05 and the the parameters from the previous task
to compute the prices of put and call options at t = 0.2 when S(0.2) = 95. Output
the price obtained by MC method, the exact price according to Black-Sch oles for-
mulas and the difference of the results for both put and call option. Compute also
the price of the option with the pay-off function

p(s) = min(
s

20
, 5)

withe the same accuracy. (Hint: use the solution of Task 4 from the previous lab.
Thus one needs to define a generator which for a given n would output n values of
S(T) and a suitable function g, the expected value of which needs to be computed.
For defining the generator of the stock prices, one can benefit from the f act that
B(T)−B(t) has distribution N(0,

√
T − t).)

Simulation Methods in Financial Mathematics

Computer Lab 3

Goals of the lab:

• To program Euler’s method for providing a solution to the stoch astic differential
equation (SDE)

dS(t) = S(t) · (µ · dt+ σ · dB(t))

at time T so that the solution satisfies the initial value S(0) = S0.

• To study the weak and strong convergence rate of Euler’s method experim entally.

As we saw in the first lab, the idea of Monte-Carlo (or simulation) method is very simple:
we just have to generate certain random variables X, apply a function g to generated
values and calculate the average the results together with an error est imate. It turns out
that the simplicity is only apparent: it is not always easy to g enerate efficiently the values
of the random variables and that it is not always obvious what ra ndom variables and
function g to use for a given problem.

The prices of many financial instruments (including options) can be ex pressed as expected
values of certain random variables and therefore it is possible to a pply MC method for
computing the prices. In Lab 2 and homework problem 2 we saw that when we assume
the validity of the Black-Scholes market model with constant volat ility, then generating
the future values of stock prices is easy and hence it is quite straig htforward to use Monte-
Carlo method to compute option prices. When the market model does not ha ve constant
parameters (e.g. σ is not constant), the explicit distribution of the stock prices at the
exercise time T is not available. Thus we have to calculate approximate stock pr ices using
the respective trajectories of the Brownian motion. In the present lab we study the easiest
method for generating the approximate stock prices – Euler’s method . In order to analyze
the error introduced by approximate stock price generation, we sta rt with the market
model with constant µ and σ, so that we know the exact results.

Fix the terminal value T . In order to generate the values of S(T) using Euler’s method,
we fix m – the number of steps and denote dt = T

m
. Now we calculate

Si = Si−1(1 + µdt+ σXi), i = 1, 2, . . . ,m,

where Xi ∼ N(0,
√
dt) and independent.

When using numerical methods for solving SDEs, two types of errors a re distinguished.
Firstly, how much does the generated stock price differ from the exact s tock price (both
based on the same trajectory of the Brownian motion). The rate of convergence of this
error (in m) is called the strong rate of convergence. Secondly, how rapidly does th e
difference between E[g(S̃(T))] and E[g(S(T))] go to zero as m increases, where S̃(T) are
the approximate stock prices (generated using e.g. by Euler’s method) and g is some
function of interest. This rate is called the weak rate of convergence. Bot h rates are
measured in terms of the maximal power q for which the respective errors are less than or
equal to c

mq for some constant q. It can be shown that for most reasonably “nice” functions
g (for example, for functions with bounded first derivative) the weak convergence rate is
at least as large as the strong convergence rate.

It is important to understand that when calculating the price of an o ption by replacing
S(T) with its approximation produced by the Euler’s method and then usin g the Monte-
Carlo method to estimate the expected value the error of the final result consists of two

components: the error of the Monte-Carlo method which we can reduce by i ncreasing the
number of simulations n and the error introduced because of the wrong distribution of the
stock prices which we can reduce by decreasing step length m. If we let n increase without
a bound all that is left is the second error.

Tasks:

1. Program a function for generating n stock prices based on the Euler’s method
S_euler(n,S0,m,T,mu,sigma). Use this function to calculate the price of an Euro-
pean put option when m = 40, S0 = 50, E = 50, T = 0.5, D = 0.1, r = 0.03, σ = 0.7,
using the Monte-Carlo method and allowing the MC error to exceed 0.01 with prob-
ability α = 0.05 (for the stock price generation, take µ = r −D).

2. Study the strong convergence rate of the Euler’s method experimenta lly. First write
a function S_euler_error(n,S0,m,T,mu,sigma), which returns the difference be-
tween the S(T) obtained by the Euler’s method and the exact value based on the
formula

S(T) = S0 · e(µ−σ
2

2
)T+σB(T)

Then use the Monte-Carlo method to estimate the expected value of the abs olute
difference. NB! One has to use the same trajectories on both instances i.e. when
calculating the exact value of S(T) one needs to set B(T) =

∑m
i=1Xi, where Xi are

the random variables used with Euler’s method. Use the parameters fr om the first
task and trend µ = r −D. To analyze the dependence on m calculate the expected
value for m = 5, 10, 20, 40, 80 and the use the R command
nls(log(error)~log(c)-q*log(m),start=list(c=1,q=1))to estimate the rate of
convergence. In that command error has to be the vector of errors and m has to be
a vector of steps used.

3. Determine experimentally the weak rate of convergence of the Euler’s method for
the put option of the previous task using m = 3, 6, 12, 24 steps. NB! The allowed
error for the Monte-Carlo method has to be significantly smaller than the error that
depends on m!

Simulation Methods in Financial Mathematics

Computer Lab 4

Goal of the lab:

• To learn to use Euler’s method for generating stock prices (which enable us to price options) when
the actual distribution of the stock prices is unknown. To learn to compute option prices with a
given accuracy when using a numerical method for generating stock prices.

The Euler’s method for solving a stochastic differential equation (SDE) of the form

dY (t) = α(t, Y (t)) dt+ β(t, Y (t)) dB(t), Y (0) = Y0

can be presented as

Yk+1 = Yk + α(tk, Yk)(tk+1 − tk) + β(tk, Yk)Xk, k = 0, 1, . . . ,m− 1

where Xk ∼ N(0,
√
tk+1 − tk) are iid random variables and Yk are the approximate values of Y (tk).

Typically we take tk = k · T
m

, which in turn means that tk+1 − tk = ∆t = T
m

. More generally, the Euler’s
method for solving a system of N SDE’s of the form

dYi(t) = α(t, Y1(t), . . . , YN (t)) dt+ β(t, Y1(t), . . . , YN (t)) dBi(t), Yi(0) = Yi0, i = 1, . . . , N

is

Yi,k+1 = Yik +α(tk, Y1k, . . . , YNk)(tk+1 − tk) + β(tk, Y1k, . . . , YNk)Xik, i = 1, . . . , N, k = 0, 1, . . . ,m− 1,

where the vectors (X1k, . . . , XNk) are iid random variables with the same n-dimensional normal distri-
bution as (B1(tk+1)−B1(tk), . . . , BN (tk+1)−BN (tk)).

Euler’s method for Black-Scholes market model

dS(t) = S(t)(µ(t, S(t)) dt+ σ(t, S(t)) dB(t)) (1)

with constant step ∆t = T
m

has the form

Si+1 = Si · (1 + µ(ti, Si)∆t+ σ(ti, Si)Xi), (2)

where the random variables Xi are independent and with distribution N(0,
√
∆t).

Let V be the price of an European option with the expiration date T and pay-off function p, then

V = E(exp(−rT)p(S(T))),

where S(t), 0 ≤ t ≤ T follows certain stochastic differential equation (SDE). If the SDE can not be solved
exactly, then instead of S(T) we use Sm, thus we use Monte-Carlo method to compute an approximate
value Vm of V , where

Vm = E[e−rT p(Sm)].

It is known that if p is continuous and has bounded first derivative (ie it is Lipsh itz continuous), then
Euler’s method is weakly convergent with rate 1, hence

|V − Vm| = C

m
+ o(

1

m
),

where C is a constant that does not depend on m and m ·o(1

m
) → 0 as m → ∞. Actually, a more precise

relation

V − Vm =
C1

m
+ o(

1

m
),

where C = |C1|, holds and we use that later in estimating the coefficient C.

Thus, if we use Sm instead of S(T) and use Monte-Carlo method with allowed error ε at a specified
allowed error probability α, then the total error of the computed number V̂m,ε is

|V − V̂m,ǫ| ≤ |V − Vm|+ |Vm − V̂m,ǫ| ≤
C

m
+ o(

1

m
) + ǫ.

The last term is the error of the Monte-Carlo method and can be chosen by us. So, in order to compute
the option price V with a given error ε, we should choose large enough m (so that the term C

m
is small

enough, for example less than ε
2
) and then use MC method with allowed error ǫ = ε

2
). There is one

trouble: we do not know C. One possibility to estimate C is as follow:

1. Choose some values for m0, ǫ0 for m and MC error ǫ. The value of m0 should not be too small,
but very large values take too much computation time; the value of the allowed error ǫ0 should be
sufficiently small (we discuss it in more detail in the next step). In practice we usually use m0 = 5
or m0 = 10.

2. Use MC method twice to compute V̂m0,ǫ0 and V̂2m0,ǫ0 . The value ǫ0 is small enough if the results
differ significantly more than by ǫ0. If we use too large value of ǫ0, then we overestimate the value
of C and hence the final value of m in the following steps and our final computations may take too
much time.

3. Estimate the value of C. We use the inequality

|Vm0
− V2m0

| ≤ |Vm0
− V̂m0,ǫ0 |+ |V2m0

− V̂2m0,ǫ0 |+ |V̂m0,ǫ0 − V̂2m0,ǫ0 |.

If we use the more precise infrmation about Vm and V2m and assume that the terms o(1

m0

) and

o(1

2m0

) are practically zero, then it follows that

C ≤ 2m0 · (|V̂m0,ǫ0 − V̂2m0,ǫ0 |+ |Vm0
− V̂m0,ǫ0 |+ |V2m0

− V̂2m0,ǫ0 |)
≤ 2m0 · (|V̂m0,ǫ0 − V̂2m0,ǫ0 |+ 2ǫ0) =: C̄.

4. Choose m1 such that C̄
m1

≤ ε
2

and compute V̄m1,
ε

2
. The last result is an approximation of the true

option price which satisfies the desired error estimate, if the starting value of m0 was large enough
so that the additional error terms of order o(1

m
) are practically equal to zero. In this course we do

not consider methods of determining if the starting value of m0 was sufficiently large and take the
result of the last computation to be the desired answer.

Tasks:

1. Find the value of an European call option with strike price E = 98 at time t = 0 with precision
0.1, when α = 0.05, r = 0.05, D = 0, T = 0.5, S(0) = 100 and σ(t, s) = 0.7− 0.7 e−0.01s. To solve
the problem we have to choose an m so that the error due to m would be sufficiently small.

2. Future risk free interest rate is actually not a constant and can be considered to be a random
variable. In the case Black-Scholes model with a random interest rate the prices of European
options can be computed as

Price = E[exp(−
∫ T

0

r(t) dt)p(S(T))],

where
dS(t) = S(t)((r(t)−D) dt+ σ dB1(t))

and r(t) follows a suitable stochastic differential equation. We conside so calle Cox-Ingersoll-Ross
model

dr(t) = a(b− r(t)) dt+ σ2

√

r(t) dB2(t),

where B1(t) andf B2(t) are independent Brownian motions. So we have a system of stochas-
tic differential equations for S and r. Write a function that for a given values of parameters
D,σ, σ2, T, a, b,m and n generates n values of the future stock prices S(T) by using Euler’s method
with m time steps for solving the system of SDEs for S and r.

3. Homework (Deadline 08.03.2012). Find the price of a call option with maximum error of 0.1 when
considering the market model with a stochastic interest described in task 2. Use the parameter
valuesf (except r) from the first task and additionally let a = 1, b = 0.06, σ2 = 0.1 and r(0) = 0.03.
When computing the expected value, replace the integral with the product of T and the mean value
of r for a given trajectory. For this, the generator should return a two-column matrix, where the
first column contains the approximate values of S(t) and the secon column contains the average
interest rates for each generated trajectory. In order to use the general functions of applying MC
methods we should rewrite the function g so that it works correctly when it’s argument is the result
of the generator, so a correct form is

g=function(x){return(exp(-T*x[,2])*p_call(x[,1]))}

Simulation Methods in Financial Mathematics

Computer Lab 5

Goal of the lab:

• To learn to use higher order discretization methods for stock price gener ation and
study their error rates

There are many numerical schemes of different strong and weak convergence r ates for
solving stochastic differential equations. For example, a stocha stic differential equation of
the form

dS(t) = S(t)(µ(t, S(t)) dt+ σ(t, S(t)) dB(t)) (1)

can be solved by using the following methods:

Euler’s method

Si+1 = Si · (1 + µ(ti, Si)∆t+ σ(ti, Si)Xi), (2)

Milstein’s method

Si+1 = Si ·
(

1 + µ(ti, Si)∆t+ σ(ti, Si)Xi +
1

2
(Si

∂σ

∂s
(ti, Si) + σ(ti, Si))σ(ti, Si)(X

2
i −∆t)

)

(3)
and
A weakly second order method

Si+1 = Si · (1 + µ(ti, Si)∆t+ σ(ti, Si)Xi)

+
1

2

(

L1µ(ti, Si)∆t2 + (L2µ(ti, Si) + L1σ(ti, Si))∆tXi + L2σ(ti, Si)(X
2
i −∆t)

)

, (4)

where random variables Xi are independent and have distribution N(0,
√
∆t) and the

operators L1 and L2 are defined by

L1f(t, s) = s
∂f

∂t
(t, s) + s · µ(t, s) · (f(t, s) + s

∂f

∂s
(t, s)) +

s2σ(t, s)2

2
(2
∂f

∂s
(t, s) + s

∂2f

∂s2
(t, s)),

L2f(t, s) = sσ(t, s)(f(t, s) + s
∂f

∂s
(t, s)).

For example, if µ(t, s) = µ (a constant), then L1µ(t, s) = s · µ2, L2µ(t, s) = sσ(t, s) · µ.

Tasks:

1. Program methods (3) and (4) for generating solutions of the SDE (1) at time T
when the Black-Scholes market model with constant coefficients is assumed.

2. Experimentally find the strong convergence rates of (3) and (4) using procedure nls

in the case when S(0) = 100, T = 0.5, µ = 0.1 and σ = 0.6.

3. Experimentally find the weak convergence rates of (3) and (4) for an European put
option when E = 100, T = 1, r = 0.05, S(0) = 100, D = 0, σ = 0.5.

Homework 4 (deadline 15.03.2012) Use the weakly second order method for compung the price of
the put option with the total error less than 0.1 with probability 0.95 in the case
S(0) = E = 100, T = 1.0, r = 0.05, D = 0.1 and σ(s) = e−s/100+0.3. Note that in
the process of choosing an appropriate value of m one has to take into account the
second order convergence rate, so the procedure of of the previous lab for computing
the price of an option with a given accuracy has to be slightly modified .

Simulation Methods in Financial Mathematics

Computer Lab 6

Goal of the lab:

• To learn to use antithetic variates and control variates for variance reduction in the
Monte Carlo method.

Antithetic variates. Suppose we know, how to generate Y and Ỹ that have the same
distribution but are negatively correlated. Then it is reasonable to generate a random

variable Z = Y+Ỹ
2 as the variance of it is smaller than the variances of Y and Ỹ . This

means that the Monte Carlo method will work faster. In option pricin g the easiest way
to introduce antitethic variates is generating pairs of stock pr ices (S(T), S̃(T)), where the
random variables used to generate the second are the ones used for the fir st but with
changed sign. Assuming the payoff function is monotone, its value s will be negatively
correlated for those price pairs and we can calculate

Price = E[e−rT p(S(T)) + p(S̃(T))

2
].

Control variates. Control variates can be used when in addition to the random variable
of interest, Y , we also know how to generate another random variable Z for which its
expected value is known. This means that we are also able to generate Y1 = Y −a(Z−EZ)
and if Y and Z are strongly correlated and a is chosen wisely, Y1 can have a variance that is
a magnitude smaller than the variance of Y . The constant a should approximate cov(Y,Z)

DZ
.

In this lab the price of an European call option with strike price E = 100 at time t = 0 is
examined when r = 0.1, D = 0.05, T = 0.5, S(0) = 102 and σ(t, s) = 0.5− 0.3 e−0.01s.
Tasks:

1. Enhance the function that calculates expected values with Monte-Carlo met hod so
that it would output the number of generations used (in thousands) to achieve a
specific precision. Use the function for pricing the call option by gene rating stock
prices with Euler’s method with m = 20 and precision 0.05.

2. Enhance the generator of stock prices using Euler’s method so tha t it would output
a matrix with two colums consisting of pairs of antithetic stock p rices. Function
g also needs to be updated to be able to use the output. Compare the nu mber of
generations needed (when using pairs the number of generations is actual ly double
the amount of the counter value)

3. Modify the generator that uses the Euler’s method so that it would use the same
Brownian motion to output the stock prices for a market model with cons tant volatil-
ity and a market model with a non-constant volatility. For the former use the exact
stock price formula. Let S be the stock price corresponding to the non-constant
volatility and S̄ the stock price corresponding to the constant volatility. Use the
Monte Carlo method (with the settings of this lab and constant vola tility σ1 = 0.4)
to find the expected value of

e−rT p(S)− a(e−rT p(S̄)− h).

Here h is the exact price of the option for the market model with constant vo latility
and a is the estimate of

cov(p(S), p(S̄))

var(p(S̄))

based on 1000 generations. Function p is the payoff function for an European call
option. Compare the number of generations needed with the correspondin g number
of the previous task.

Simulation Methods in Financial Mathematics

Computer Lab 7

Goal of the lab:

• To learn to use importance sampling and stratified sampling for s peeding the nu-
merical option pricing process.

The idea of importance sampling comes from the fact that we can compute instead
of the expected value of g(X) in the case of random variable X with probability density

function fX the expected value of g(Y)fX(Y)
fY (Y) using a random variable Y with the probability

density function fY :

E(g(X)) =

∫

∞

−∞

g(x)fX(x) dx =

∫

∞

−∞

g(y)fX(y)

fY (y)
fY (y) dy = E[

g(Y)fX(Y)

fY (Y)
].

This idea is very useful when X is such that g(X) has large values with low probability
and Y increases the chances of seeing the large values of g with higher probability.

Using this idea it can be shown that we can also calculate the price of t he option as

Price = E[e−rT−ηB(T)− η
2
T

2 p(S(T))],

where the stock price S(T) corresponds to the market model

dS(t) = S(t)((r −D + ησ) dt+ σdB(t)).

This is especially useful for out-of-the-money options when there is relati vely low proba-
bility of the payoff function of becoming positive. To reduce the vari ance of the random
variable expectation of which is to be found, we must choose η so that S(0) · e(r−D+ησ)T

would be in the region where the payoff function p is not equal to zero. This kind of
methodology is known as importance sampling because we increase the probability of gen-
erating important values of the random variable. The described metho d is also applicable
when the volatility σ is not constant and can also be used in the case of american options.
Stratified sampling is based on specifying (disjoint) events (Ai)

k
i=1 that partition the

probability space and then invoking the formula

E(Y) =

k
∑

i=1

E(Y |Ai)P (Ai).

There are several possibilities for the latter, including the followin g:

• one can replace the calculation of the expected value of Y by the calculation of the

expected value of
k

∑

i=1

P (Ai)Yi, where Yi are independent and are distributed as Y

given the event Ai;

• Conditional expectations on the right-hand side can be calculated sep arately using
the MC method and then a weighted sum of the results can be calculated. In order
to get the final result with error ε, one should compute the the expected value at
each stratum with the error ε√

P (Ai)
.

Since these two approaches turn out to be equivalent, we use only th e second one. In this
lab we use the system of events

Ai = {B(T) ∈ (
√
TΦ−1(

i− 1

k
),
√
TΦ−1(

i

k
)]}, i = 1, 2, . . . , k,

thus P (Ai) =
1
k
, i = 1, 2, . . . , k.

In the following we will be interested in a call option with S(0) = 50, r = 0.1, σ = 0.5,
T = 1, t = D = 0, E = 100.
Tasks:

1. Use importance sampling to find the price of an European call opt ion with precision
0.01 and error probability 0.05. Use the exact formula for stock price generation. De-
termine the best value of η (best being the one with which least number of generated
random variables is needed) with precision 0.1.

2. Write a procedure, that uses the representation S(T) = S(0)e(r−D−

σ
2

2
)T+σB(T) and

the number i of the strata to generate stock prices corresponding to the event Ai.
Values of the Brownian motion from the conditional distribution can be generated
as

√
TΦ−1(Xi), where Xi ∼ U(i−1

k
, i
k
). Use this procedure to find the price of the

call option when using k with values k = 5, 10, 20, 100 with precision 0.01 (take the
probability of an error as α = 0.05). Compare the number of generations (that is
the sum of the number of generations for all strata) with the ordina ry MC method
as well as with the importance sampling method.

Simulation Methods in Financial Mathematics

Computer Lab 8

Goal of the lab:

• To continue to study the use of stratified sampling for speeding up the numerical
option pricing process.

Stratified sampling is based on specifying (disjoint) events (Ai)
k
i=1 that partition the prob-

ability space and then invoking the formula

E(Y) =
k

∑

i=1

E(Y |Ai)pi,

where pi = P (Ai). It is known that maximal variance reduction is achieved when in
stratum i the number ni of generated random variables is proportional to σipi (where σ2

i

is the conditional variance in stratum i); it is also known that when we generate ni random
variables in stratum i then the variance of

Z =
k

∑

i=1

pi

ni
∑

j=1

Yij
ni

is equal to

DZ =

k
∑

i=1

p2iσ
2
i

ni

and EZ = EY . Thus one possibility for generating the optimal number of Yi is setting the
proportionality constant C to some fixed value and in every stratum generating random
variables until n ≥ Cpi · σi where the value of σi is estimated.

Proofs of the previous results can be found, for example, in P. Glasserma nn, “Monte Carlo
Methods in Financial Engineering”, Section 4.3.

We will continue to use te system of events

Ai = {B(T) ∈ (
√
TΦ−1(

i− 1

k
),
√
TΦ−1(

i

k
)]}, i = 1, 2, . . . , k,

and thus pi = P (Ai) =
1
k
, i = 1, 2, . . . , k. We want to price a call option when r = 0.1,

σ = 0.4, T = 0.5, t = D = 0, E = 100.
Tasks:

1. Write a function for calculating the expected value so that proport ionality constant C
and stratum probability p can be given as input and the expected value is calculated
as the average of n generated values, where n is the smallest number in whole
hundreds such that n

≥
C · p · σY (where σY is the estimate of the standard deviation

of the random variable, whose expected value we are calculating). The o utput of the
function should include the calculated expected value, estimated variance and the
number of generations.

2. Program a procedure that would calculate the price of the option using stratified
sampling, where the conditional expected value in every stratum is calcu lated using
the previously completed function with some given C. Output the overall error esti-
mate (calculated assuming that Z is normally distributed, so that with probability α
we have |Z−EY | ≤ −Φ−1(α2)

√
DZ) and the number of total genrations in addition

to the calculated expected value.

3. Homework 5 (deadline 05.04.2012) Compare the number of random variable g ener-
ations needed for this optimal method with those of the stratified sam pling method
of the previous lab when S0 = 75, 100, 125, k = 10 20, 40, 80 and the allowed error
is 0.01. Thus a proportionality constant C must be picked so that the error estimate
is approximately equal to the allowed error. (Hint: if we multip ly C by a certan
number x, then the error of the final result is divided approximately by

√
x)

Simulation Methods in Financial Mathematics

Computer Lab 9

Goal of the lab:

• To learn to use stratified sampling for speeding the numerica l option pricing process in
situations where the price of the option is depenent on the pat h of the stock price.

We denote by A′ the transpose of a matrix A and by writing Y ∼ N(0, s) we mean that Y is
normally distributed with mean 0 ans standard deviation s.

When v = (v1, . . . , vm)′ is a non-zero vector (i.e. ‖v‖ =
√

v21 + . . .+ v2
m

> 0), W ∼ N(0, a‖v‖)
and Zi ∼ N(0, a), i = 1, . . . ,m are independent random variables and a > 0, then it is easy to
check that by defining a vector X of random variables Xi, i = 1, . . . ,m as

X =
W

‖v‖2v + Z− (v′
Z)

‖v‖2 v

we have that the components of X are independent and have distribution N(0, a), and also
v
′
X = W . Indeed, X is normally distributed since it is a linear combination of (jointly) nor-

mally distributed random variables and by a direct calculation we get that the covariance matrix
E(XX ′) is of the form aIm, where Im is the m×m identity matrix.

If we want to generate at once more than one vector, each corresponding to different value of W ,
then the former formula can be written as

X =
1

‖v‖2vW + Z− (vv′
Z)

‖v‖2 ,

where X is now a m× n matrix with independent normally N(0, a) distributed random variables,
W is a 1×n matrix (a row vector) of independent N(0, a‖v‖) distributed random variables and Z

is a m×n matrix with independent normally N(0, a) distributed random variables. The matrix X

has now the property v
′
X = W (i.e. each column sums with weights vi to the value of Wi). Thus

we can generate independent normally distributed random variables so that we first generate the
value of a lienar combination of the variables and then determine the variables itself.

This result allows us to stratify the generation of normally distributed random variables Xi ac-
cording to any given linear combination (e.g. according to the sum) of the random variables -
we just have to generate the values W from a given stratum and to determine Xi by the above
formula.

We use the previous result to generate the increments of a Brownian motion B(t1)−B(0), B(t2)−
B(t1), . . . , B(T) − B(tm−1) so that their sum B(T) would be in a given stratum (i.e. v =
(1, 1, . . . , 1)′). To accomplish this we first need to generate the value of W (from the desired
stratum) according to the distribution N(0,

√
T) and calculate the vector of Brownian motion

increments X using the formula presented (for intervals that have equal lengths, a =
√

T

m
).

It is useful to know that in R the matrix multiplication is % ∗ % and transposed matrix can be
obtined by the function t().

Tasks:

1. Write a procedure that, given the inputs k,m, T , would draw k different Brownian motion
paths such that every stratum (based on the value of B(T) and defined as in the previous
lab) would include the terminal value of exactly one path.

2. Enhance the stock price generation function that is based on Euler’s method and non-
constant volatility so that one could use the optimal stratified sampling. Using optimal
stratified sampling find the price of an European call with prec ision 0.01 in the case when
r = 0.06, D = 0.03, σ(s) = 95

95+s
, T = 0.5, S(0) = 105, E = 100, using α = 0.05.

Simulation Methods in Financial Mathematics

Computer Lab 10

Goal of the lab:

• To learn to use Monte-Carlo method for pricing Asian options

An Asian option is an option which payoff depends on the average sto ck price. Let A(T)
be the average stock price for the period [0, T] i.e.

A(T) =
1

T

∫ T

0
S(t) dt.

The most typical payoff functions for Asian options are p(s, a) = max(s − a, 0) (i.e. at
time T the value of the option is p(S(T), A(T)) = max(S(T) − A(T), 0); it is known
as the average strike call option), p(s, a) = max(a − s, 0) (average strike put option),
p(s, a) = max(a−E, 0) ja p(s, a) = max(E−a, 0) (average price call and put options with
strike price E). When the stock price is governed by the Black-Scholes market model, then
the price of all the named options at time t = 0 can be calculated as the expected value

Hind = E[e−rT p(S(T), A(T))],

where S(T) corresponds to the Black-Scholes market model with trend µ = r −D. Thus
to use the MC method we need to generate (in addition to the stock prices at time T)
the average values of stock prices which depend also on the intermediat e values of the
stock price paths. The simplest way of calculating the average is us ing the average of
S(i T

m
), i = 0, 1, . . . ,m− 1; a better approximation can be calculated as

A(T) ≈ 1

m

m
∑

i=1

Si−1

(

1 + (r −D)
T

2m
+

σ

2
(B(ti)−B(ti−1))

)

.

The idea leading to the improved formula is to write

1

T

∫ T

0
S(t) dt =

1

T

m
∑

i=1

∫ ti

ti−1

S(t) dt =
1

T

m
∑

i=1

∫ ti

ti−1

(S(ti−1) +

∫ t

ti−1

dS(τ)) dt,

using the equation for dS(τ) and to approximate the resulting double integrals by replacing
the integrands wiht their values at the beginning of the integratio n intervals.

We will assume that the Black-Scholes market model with constant par ameters holds and
fix r = 0.1, D = 0, σ = 0.4, T = 0.5, S(0) = 100. We will consider average strike calls
and average price calls with strike price E = 100.

Tasks:

1. Write a generator which for a given value of n would generate n pairs of (terminal)
stock price and average stock price. Calculate the stock prices using the exact
formula (also use it when calculating the average stock prices); calcu late the average
as the mean of S(i T

m
), i = 0, 1, . . . ,m−1. Find the weak convergence rate depending

on m (by using the values 5, 10, 20, 40 for m and a small enough MC error). For
both options find m for which the error caused by the choice of m is less than 0.1
(using the result obtained for the weak rate of convergence).

2. Repeat the task when the average price is calculated according to the improved
formula. To study the rate of weak convergence use the values 2, 4, 6, 8 for m and
take 0.01 for the MC error.

Simulation Methods in Financial Mathematics

Computer Lab 11

Goal of the lab:

• To learn to use stratified sampling for speeding up the pricing of a sian options

We will consider the case where the average stock price is calculated usin g the formula

A(T) ≈ 1

m

m
∑

i=1

Si−1

(

1 + (r −D)
T

2m
+

σ

2
(B(ti)−B(ti−1))

)

,

where ti = i T
m
. We already know, how to generate the increments of the Brownian motion

∆B = (B(t1)−B(t0), B(t2)−B(t1), . . . , B(tm)−B(tm−1))
′ (here a

′ denotes the transpose
of a) so that given a vector v = (v1, . . . , vm)′ the stratifying would be based on the values
of v′∆B:

• Generate the value of W from the desired stratum of N(0, ‖v‖
√

T
m
).

• Generate a random vector Z = (Z1, . . . , Zm)′, where Zi ∼ N(0,
√

T
m
)

• Calculate

∆B =
1

‖v‖2Wv + Z− 1

‖v‖2v(v
′
Z).

When we want to generate a matrix with dimensions m × n so that each column would
represent the increments of the Brownian motion of a corresponding genera ted value of
W (thus in total there are n values of W), then we need to modify the formula as follows:
W must be generated as a row vector with n components, Z must be a m×n matrix and
the increment matrix can then be calculated as

∆B =
1

‖v‖2vW + Z− 1

‖v‖2 (vv
′
Z).

Using this formula there are several possibilities for stratificati on:

• When we want the the strata based on the values of B(T), we take v = (1, 1, . . . , 1)′.
This stratification should be appropriate for European options.

• When we want the the strata based on the average values of the Brownian motion
1
T

∫ T

0 B(t) dt, we may approximate the integral by

1

T

∫ T

0
B(t) dt ≈

m−1
∑

i=0

B(ti)

m
=

m−1
∑

i=1

i
∑

j=1

∆Bj =

m−1
∑

j=1

m− j

m
∆Bj

and hence should use stratification with v = (m−1
m

, m−2
m

, . . . , m−m
m

)′. This stratifi-
cation should be appropriate for Asian options when the payoff does not depend on
the stock price at time T .

• When we want the the strata based on differences of B(T) and the average values
of the Brownian motion, we take v = (1

m
, 2
m
, . . . , m

m
)′. This stratification should be

appropriate for average strike options.

Tasks:

1. Let m = 20. Consider the pricing of Asian options with payoff functions p(s, a) =
max(50 − a, 0) and p(s, a) = max(s − a, 0) using the MC method with error 0.01
in the case when S(0) = 49, r = 0.05, D = 0.02, T = 0.5, σ = 0.5. Compare the
number of generations required when not using any variance reduction met hods and
when using the optimal stratified sampling with the number of strat a k = 40 for all
the abovementioned stratifications (3 different values of v).

2. Homework 6 (deadline 26.04.2012). When volatility is not constant, then we have
to use a numerical method for generating the stock prices and an approx imation for
the average stock price. Implement MC for pricing Asian options by us ing Euler’s
method for generating the option prices and the simple formula for com puting the
values of the average stock price. Use this method for computing the p rice of the
average strike put option in the case S0 = 90, r = 0.05, D = 0.02, T = 1, σ(s, t) =

0.4+0.5 ·e− s+5t

100 , with the total error that is less than 0.01 with the probability 0 .95.
Use an appropriate variance reduction method if necessary.

Simulation Methods in Financial Mathematics

Computer Lab 12

Goals of the lab:

• To learn the generation of Halton sequences for quasi-Monte Carlo simulation

• To learn to compute the price of an European option by using quasi- Monte Carlo
method

The speed of convergence of Monte-Carlo methods for computing expected values i s always
c

√

n
, where n is the number of random variables generated. It is possible to redu ce the

constant c, but for Monte-Carlo methods the convergence speed with respect to n is always
the same. It turns out that if we replace the random numbers in a Monte-Carlo method by
specially constructed (non-random) values, it is possible to imp rove the convergence rate
to C

n
. The basis for this improvement are so called low discrepancy sequences whi ch are

sequences in the m-dimensional unit cube [0, 1]m which for every value of n cover the cube
in some sense as well as possible. One (the simplest possible) class of such a sequences is
so called Halton sequences.

To generate Halton sequences we need to know how to represent a number, say k, in a
number system that has base b where b ≥ 2. To find this representation we can use the
fact that if

k =
∞

∑

i=0

αi(k)b
i, αi(k) ∈ {0, 1, . . . , b− 1},

then the multipliers αi(k) can be determined as

αi(k) = (k%/%bi)%%b,

where %/% symbolizes the process of finding the division quotient (an integer) and %%
symbolizes the process of finding the remainder. Denote

ψb(k) =

∞

∑

i=0

αi(k)

bi+1
.

When generating an m-dimensional Halton sequence, m numbers b1, b2, . . . , bm that do
not have a common factor (usually m first prime numbers are chosen) and point xk is
defined as a point with coordinates

xkj = ψbj (k), j = 1, . . . ,m.

When the expected value must be calculated from a function which uses m independent
values from the uniform distribution U(0, 1) then we can replace these values with the
coordinates of a point from the quasi-random sequence. Other distributions can also be
replaced by applying the inverse of the cumulative distribution fu nction to the coordinates.

Tasks:

Task 1 Write a function Corput with input n1, n2 and b, that would output the values of
function ψb(k) for k = n1, n1 + 1, . . . , n2 (to deal with all the values of k simulta-
neously R function outer can be used). Produce the graphs showing the first 200
points of the Halton sequence using the function Corput in the case when m = 2
with a) b1 = 2, b2 = 3 and b) b1 = 17, b2 = 19.

Task 2 Consider pricing an European put option with E = 100 at time t = 0 using the
Euler’s method when r = 0.1, D = 0, T = 0.5, S(0) = 105 and σ(t, s) = 0.6 −
0.5 e−0.01s. We want to study how much the use of Halton sequence speeds up the
convergence of the MC method in the cases when m = 5 and m = 20. To do this,
replace the increments of the Brownian motion with values that are generated using
a Halton sequence (coordinates of which are based on the first m prime numbers)
and find the errors for cases n = 10000, 20000, . . . , 100000. For comparison, find the
errors for regular MC method for the same values of n. Use the knowledge that the
expected value is 7, 731 when m = 5 and it is 7, 577 when m = 20.

Simulation Methods in Financial Mathematics

Computer Lab 13

Goal of the lab:

• To learn to use Quasi Monte Carlo methods for pricing financial opti ons.

The procedure of implementing a Quasi Monte Carlo methods is as follow s:

1. Implement a Monte-Carlo method for for computing EY , where Y is the random
variable we are interested in. It can be a simple MC or a method using various
variance reduction techniques.

2. Rewrite your MC method so that it is based on generating independent uniformly
distributed random variables. This can be achieved, for example, b y applying the
knowledge that if FX is the cumulative distribution function of a continuous random
variable X, then the random variable F−1

X (U), where U ∼ U(0, 1) is uniformly
distributed in the interval (0, 1), has the same distribution as X. So, if our MC
method uses random variables from the distribution N(0, a), then we can generate
them by

X = aΦ−1(U),

where U ∼ U(0, 1) and Φ is the cumulative distribution function of the standard
normal distribution.

3. If for generating one value of Y we use m uniformly distributed random variables,
then replace them by coordinates of a point of a m-dimensional low discrepancy
sequence.

4. Compute the final answer using as the simple average of the larg est number of values
of Y that can be generated in reasonable time.

The final answer is usually much more accurate than the answer obtai ned with a simple
MC using the same number of generated values of Y . Unfortunately there are no efficient
procedures for estimating the error of the answer obtained by this procedure that is called
Quasi Monte Carlo method.

In this lab we use Sobol sequences. The Sobol sequences are based on the va n der Corput
sequences (like Halton sequences) but for every coordinate base 2 is used. Different coor-
dinates are obtained by applying specifically constructed matrices tha t change the order of
the sequence. The generation of a Sobol sequence is not too hard to implemen t, however
we will use pre-defined functions in this lab.

There are several add-on packages of R that implement quasi random number generators.
One such library is randtoolbox and we are going to use the generators from this library.
The function for generating Sobol sequences is sobol() and the function for Halton se-
quences is halton()

Tasks:

1. Install and load package randtoolbox, if needed. Installation can usually be done
by the command install.packages("randtoolbox")and loading by the command
library("randtoolbox"). If you do not have administrative rights and R is not
configured well, you still can install packages for your own use. For t his make a
catalog where you are going to install your own R packages. Then you can use
commands

.libPaths("your catalog paths")

install.packages("randtoolbox",lib="your catalog path")

to install the package. Generate first 200 Sobol points for dimension 10 and visualize
the placement by scatterplots that can be created with R function pairs(). Compare
the placement with Halton points.

2. Consider pricing an European put option with E = 100 at time t = 0 using the
Euler’s method when r = 0.1, D = 0, T = 0.5, S(0) = 105 and σ(t, s) = 0.6 −
0.5 e−0.01s. We want to study how much the use of Sobol sequence speeds up the
convergence of the MC method in the cases when m = 5 and m = 20. To do this,
replace the increments of the Brownian motion with values that are generated using
a Sobol sequence and find the errors for cases n = 10000, 20000, . . . , 100000. For
comparison, find the errors for regular MC method for the same values o f n. Use
the knowledge that the expected value is 7, 731 when m = 5 and it is 7, 577 when
m = 20.

3. Homework 7 (Deadline 10.05.2012) Assume that the Black-Scholes market model
with constant parameters r = 0.05, D = 0, σ = 0.5, T = 0.5, S(0) = 90 holds.
Consider pricing the average price put option (see Lab 10). Start from the Monte-
Carlo method that uses the exact formula for computing the stock prices and the
improved formula for computing the average stock price values. Modi fy this method
for using Sobol points. Find the prices and error estimates for m = 4 and m = 10
corresponding to n = 10000, 20000, . . . , 100000 and for n = 1000000 by the standard
Monte-Carlo method and also prices by QMC using Sobol points for th e same number
of generations. Does QMC give more accurate answers for the same number of
generations?

Simulation Methods in Financial Mathematics

Computer Lab 14

Goal of the lab:

• To learn a way to compute derivatives of the option price with respect to market
parameters

Often the behavior of the random variable X depends on some parameter θ and therefore
the expected value E(g(X(θ)) depends also on that parameter, so we have

V (θ) = E[g(X(θ))]

and often one is interested in the value of the derivative of the expected value with respect
to that parameter. For example, stock price (and hence the price of an option) depends
on the initial stock price S(0), the volatility σ, risk free interest rate r etc and we may
want to know how the price changes if some of the parameters changes . A general way to
compute the derivatives is to use finite difference approximations, for example

V ′(θ) =
V (θ + h)− V (θ − h)

2h
+O(h2).

When using Monte-Carlo method for computing the values of V it is important not to
compute V (θ + h) and V (θ − h) independently, but to write

V (θ + h)− V (θ − h)

2h
= E[

g(X(θ + h))− g(X(θ − h))

2h
]

and to compute this expected value by MC by using the same random var iables for gen-
erating both the values of X(θ + h) and X(θ − h) at the same time.

Let us consider an European call option with E = 100, T = 0.5, assume r = 0.05, D = 0,
S(0) = 100 and that the Black-Scholes market model holds.

Tasks:

1. Assume that the volatility is constant: σ = 0.5. Implement Monte-Carlo method for
computing the derivative of the price of the option with respect to S(0), using the
exact formula for generating the stock prices. Compute the derivative at S(0) = 100
using h = 20 and allowed MC error 0.001 (corresponding to α = 0.05).

2. If we want to compute the derivative with a given total error then we have to estimate
the error coming from the choice of h. For this the Runge’s method can be used.
We assume that error coming from the choice of h is C · h2 with an unkonwn h.
In order to esitmate C we do two computations, one for h = 2h0 and the other on
with h = h0 (where h0 is some value we choose) and using the difference of the
answers it is possible to estimate C. After that we can choose h so that C · h2 ≤ ǫ

2 ,
where ǫ is the allowe total error and do the final computation with this va lue of h
and allowed MC error ǫ

2 . Find the derivative of the option price considered in the
previous problem with total error less than 0.0005 with probability 0.95.

3. Consider the case of non-constant volatility σ(s) = 1−0.5·e−(s−100)2/200. Implement
the procedure for computing the value of the derivative of the option price with
respect to the initial stock price with a given accuracy. Use variance reduction
techniques for speeding up the computation and find the value as exact ly as you can
so that the total computation time does not exceed 3 minutes; give an es timate of
the total error of your answer.

Simulation Methods in Financial Mathematics

Computer Lab 15

The aim of this lab is to learn to use two additional methods for computing sensitivities
of option prices.

Let us consider European options. For simplicity we also assume th at the stock price
behaves according to Black-Scholes market model with constant volatil ity. Then the price
of an option with payoff function p is given by

H = E[e−rT p(S(T))],

where T is the exercise time and the final stock price S(T) is given by

S(T) = S0e
(r−σ2/2)T+σB(T).

In addition to the difference quotients method considered in the previ ous lab, we consider
the following two methods.

1. Pathwise derivative method. Let θ denote a parameter in the stock price formula.
Assume that the function p is continuous with piecewise continuous and bounded
derivative, then it can be shown that we can change the order of taking expected
value and differentiation when computing the derivative of the price with respect to
θ:

∂H

∂θ
= E[

∂(e−rT p(S(T)))

∂θ
].

For example, if θ = S0 we have

∂H

∂S0
= E[e−rT p′(S(T))

∂S(T)

∂S0
] = E[e−rT p′(S(T))

S(T)

S0
].

2. Likelihood ratio method. Suppose we know the probability density function fS
of the final stock price. If θ is a market parameter, then the density function depends
on θ (is a function of s and θ). Using the density function, we can write

H =

∞
∫

−∞

e−rT p(s)fS(s, θ) ds.

Assuming again, that we can change the order of integration and d ifferentiation, we
get now

∂H

∂θ
=

∞
∫

−∞

p(s)

(

∂

∂θ
(e−rT fS(s, θ))

)

fS(s, θ)

fS(s, θ)
ds

= E[p(S(T))R(S(T), θ)],

where

R(s, θ) =
∂
∂θ
(e−rT fS(s, θ))

fS(s, θ)
.

If θ is not r of T , we can further write

R(s, θ) = e−rT ∂

∂θ
ln fS(s, θ).

Since according to our assumptions S(T) is log-normally distributed, we have

fS(s) =
1

sσ
√
2πT

exp

(

−
(ln s

S0
− (r − σ2

2)T)2

2σ2T

)

.

Thus for θ = S0 the likelihood ratio method leads to the formula

∂H

∂S0
= E[e−rT p(S(T))

ln(S(T)/S0)− (r − σ2/2)T

S0σ2T
].

Consider two European options: the usual call option and so called b inary call option with
the payoff function

p(s) =

{

1, s ≥ E,

0, s < E.

Let T = 0.5, S0 = 100, E = 100, σ = 0.5, r = 0.05, D = 0.

• Task1: Compute the derivative of the usual call option with respect to S0 with both
methods with accuracy 1%. Compare the number of generated stock prices.

• Task2: Compute the derivative of the binary call option with respect to S0 with
accuracy 1% by using a suitable method described in the lab.

Homework 8 (Deadline May 25, 2012) Find the derivatives of both usual and binary call options
with respect to σ with accuracy 1% with all suitable methods (including the method
of Lab 14). Compare the numbers of generated stock prices. Which method is the
best for each option type?

Simulation Methods in Financial Mathematics

Computer Lab 16

The aim of this lab is to practice using MC for pricing american optio ns.

In this lab we consider pricing an American put option in the case of H eston market model

dS(t) = S(t)((r −D) dt+
√

V (t) dB1(t)),

dV (t) = κ · (θ − V (t)) dt+ ξ
√

V (t) dB2(t),

where B1 and B2 are uncorrelated Brownian motions. Recall that American options give
the holder the right to exercise the option at any time before the maturity date T . It can
be shown that the price of option can be computed as

price = max
τ

E[e−rτ)p(S(τ))],

where τ is so called stopping time (exercise strategy, that uses information only from the
past).

We consider the case S(0) = 100, r = 0.05, D = 0, T = 0.5, E = 100, κ = 1 ξ = 0.1,
θ = 0.36, V (0) = 0.4. For pricing options we discretize the model by choosing integer m,
defining ti =

iT
m

and writing

Si+1 = Si(1 + (r −D)
T

m
+

√

ViX1,i),

Vi+1 = Vi + κ · (θ − Vi)
T

m
+ ξ

√

ViX2,i,

where X1,i and X2,i are independent, normally distributed, with variance T
m

.

For pricing an American option we replace it with so-called Bermudan op tion, for which
it is possible to sell the option only at time moments ti = i · T

m
, i = 1, 2, . . . ,m.

Denote by Wi the value of option at t = ti, then Wm = p(S(T)). Let Ci denote the
continuation value of option at t = ti (the value after we decide not to exercise), then

Ci = E(e−r T

mWi+1 | Fi),

where Fi is the information available at time ti. If we know the continuation values of
an Bermudan option at any time moment ti, then it defines the optimal exercise strategy:
exercise the option at the first time ti for which the payoff value p(S(ti)) is larger than
the continuation value.

A numerical method using the observations above is Longstaff-Schwartz method:

1. Simulate n trajectories for stock prices and variances for time moments ti, i =
0, . . . ,m.

2. For each time moment assume a form for the continuation value

Ci(x) =

k
∑

q=0

cqφq(x),

where φq are basis functions (polynomials, for example) and x corresponds to the
state of the market model (pair of S and V values in the case of Heston model).

3. Define Wm,j = p(Sm,j) for j-th trajectory

4. at each time moment ti, i = 1, 2, . . . ,m estimate the parameters of Ci by linear

regression for Y = e−r T

mWi+1,j , using only the trajectories that satisfy p(Si,j) > 0.

5. Define

Wi,j =

{

p(Si,j), if p(Si,j) > Ci(xi,j),

e−r T

mWi+1,j , otherwise.

Here xi,j denotes the state of the market model at time t = ti for j-th trajectory.

6. compute the approximate price as the average of e−r T

mW1,j ; also estimate the MC
error using the variance of those numbers.

Task1 Write a procedure, that for a given n generates n trajectories of the stock prices and
squared volatilities for Heston market model.

Task2 Assume

Ci(s, v) = c0+c1(s−E/2)+c2(v−θ)+c3(s−E/2)2+c4(s−E/2)(v−θ)+c5(v−θ)2.

Generate n = 10000 trajectories and find (using the command lm() the coefficients
of the continuation value function for t = tm−1. Plot the graph of the continuation
value function.

Task3 Implement Longstaff-Schwartz algorithm for pricing the option. Compute also the
error estimate.

Task4 Use Longstaff-Schwartz algorithm for pricing an American straddle option with pay-
off

p(s) = |s− E|.
Assume the Black-Scholes market model with parameters S(0) = 52, r = 0.05,
D = 0, σ = 0.5, E = 50, T = 0.5. Implement the method so that it is possible
to give as the arguments the number of basis functions, the number of timesteps m
and the number of trajectories n and to get the approximate option price with MC
error estimate as the answer (there still remains the error that depends on m, it is
not necessary to estimate that).

A method for deriving numerical methods for ordinary and

stochastic differential equations

There are many ideas that can be used for deriving numerical methods for differential
equations. We’ll discuss one of them, namely integral expansion meth od.

Let us start from an ordinary differential equation

y′(t) = f(y(t), t).

We can rewrite it in a differential form:

dy(t) = f(y(t), t)dt.

For deriving a numerical method, we consider a small interval [ti, ti+1] and use the differ-
ential equation to approximate the value y(ti+1) in terms of the known value yi = y(ti).
Integrating the differential form ower the small interval, we get

y(ti+1)− yi =

∫ ti+1

ti

f(y(t), t) dt. (1)

As any differentiable function z(t) can be written as

z(t) = z(ti) +

∫ t

ti

dz(τ)

we can write

f(y(t), t) = f(yi, ti) +

∫ t

ti

d[f(y(τ, τ)]

and hence, after substituting this into (1) we have

y(ti+1) = yi + f(yi, ti)(ti+1 − ti) +

∫ ti+1

ti

(
∫ t

ti

d[f(y(τ, τ)]

)

dt. (2)

If we stop at this point and throw away the double integral term, we get Euler’s method

yi+1 = yi + f(yi, ti)(ti+1 − ti).

If we want a more accurate method, we should continue working with the double integral.
Since

d[f(y(τ, τ)] =
∂f

∂y
(y(τ), τ)dy(τ) +

∂f

∂t
(y(τ), τ)dτ

=

(

∂f

∂y
(y(τ), τ)f(y(τ), τ) +

∂f

∂t
(y(τ), τ)

)

dτ

we can denote

g(y, t) =
∂f

∂y
(y, t)f(y, t) +

∂f

∂t
(y, t)

and write
∫ t

ti

d[f(y(τ, τ)] =

∫ t

ti

g(y(τ), τ) dτ

=

∫ t

ti

(

g(yi, ti) +

∫ τ

ti

d[g(y(w), w)]

)

dτ

= g(yi, ti)(t− ti) +

∫ t

ti

(
∫ τ

ti

d[g(y(w), w)]

)

dτ.

Substituting it into (2) we get

y(ti+1) = yi + f(yi, ti)(ti+1 − ti) + g(yi, ti)
(ti+1 − ti)

2

2

+

∫ ti+1

ti

(
∫ t

ti

(
∫ τ

ti

d[g(y(w), w)]

)

dτ

)

dt. (3)

If we throw away the triple integral, we get a second order method

yi+1 = yi + f(yi, ti)(ti+1 − ti) +

(

∂f

∂y
(yi, ti)f(yi, ti) +

∂f

∂t
(yi, ti)

)

(ti+1 − ti)
2

2
.

In principle, we can continue expanding the triple integral to get a third order method
and so on.

Similar ideas can be used for constructing numerical methods for stocha stic differential
equations but we have to use Itô’s formula for computing differentia ls of stochastic pro-
cesses.

Let us consider a stochastic differential equation of the form

d(Y (t)) = α(t, Y (t)) dt+ β(t, Y (t)) dB(t), (4)

where B(t) is the standard Brownian motion. By integrating over the interval [ti, ti+1] we
get

Y (ti+1)− Y (ti) =

∫ ti+1

ti

α(t, Y (t)) dt+

∫ ti+1

ti

β(t, Y (t)) dB(t). (5)

Now we have two integral terms and have to use expansions in both of them. In order
to make expressions shorter, let us define operators (functions that take a function of two
arguments as input and return another function of two arguments for the result) L1 and
L2 by

(L1f)(t, y) =
∂f

∂t
(t, y) + α(t, y)

∂f

∂y
(t, y) +

β(t, y)2

2

∂2f

∂y2
(t, y)

and

(L2f)(t, y) = β(t, y)
∂f

∂y
(t, y),

where f is an arbitrary twice differentiable function of two variables t and y. Then Itô’s
formula for the process f(t, Y (t)) can be written as

df(t, Y (t)) = (L1f)(t, Y (t)) dt+ (L2f)(t, Y (t)) dB(t)

wich, after integrating from ti to t gives

f(t, Y (t)) = f(ti, Y (ti)) +

∫ t

ti

(L1f)(z, Y (z)) dz +

∫ t

ti

(L2f)(z, Y (z)) dB(z). (6)

By using (6) in the cases f = α and f = β, we can write (5) as

Y (ti+1)− Y (ti) = α(ti, Y (ti))∆t+ β(ti, Y (ti))(B(ti+1)−B(ti)) +R, (7)

where ∆t = ti+1 − ti and

R =

∫ ti+1

ti

∫ t

ti

(L1α)(z, Y (z)) dz dt+

∫ ti+1

ti

∫ t

ti

(L2α)(z, Y (z)) dB(z) dt

+

∫ ti+1

ti

∫ t

ti

(L1β)(z, Y (z)) dz dB(t) +

∫ ti+1

ti

∫ t

ti

(L2β)(z, Y (z)) dB(z) dB(t). (8)

By throwing away terms with double integrals (the remainder R), we get Euler’s method
for stochastic differential equations.

By analysing the double integral terms one can show that the largest error is caused by
trowing away the last term, where both integrals are with respect to Brownian motions.
We can approximate this term better by expanding it. Applying (6 to L2β, we get

∫ ti+1

ti

∫ t

ti

(L2β)(z, Y (z)) dB(z) dB(t) = (L2β)(ti, Y (ti))

∫ ti+1

ti

∫ t

ti

dB(z) dB(t) + R̃,

where R̃ has triple integral terms. Since according to Itô’s formula we have

1

2
d
(

(B(t)−B(ti))
2 − t

)

= (B(t)−B(ti)) dB(t),

we get

(L2β)(ti, Y (ti))

∫ ti+1

ti

∫ t

ti

dB(z) dB(t) =
1

2
(L2β)(ti, Y (ti))((B(ti+1)−B(ti))

2 −∆t).

If we add this term to Euler’s method, we get Milstein’s method for solving stochastic
differential equations:

Yi+1 = Yi + α(ti, Yi)∆t+ β(ti, Yi)Xi+1 +
1

2
(L2β)(ti, Yi)(X

2
i+1 −∆t). (9)

If we use the formula (6 for expanding all terms of R and throw away triple integral terms,
we get a method

Yi+1 = Yi + α(ti, Yi)∆t+ β(ti, Yi)Xi+1

+
1

2

[

(L1α)(ti, Yi)∆t2 + (L2α+ L1β)(ti, Yi)∆tXi+1 + (L2β)(ti, Yi)(X
2
i+1 −∆t)

]

, (10)

where Xi ∼ N(0,
√
∆t) are independent random variables.

H:\MC\MC12\lab1.R 10. aprill 2012. a. 16:42

#exercise 1

n=100

X=runif(n)

Y=X**2 #or Y=X^2

EY=mean(Y)

#estimate the error

alpha=0.1 #the prob. of actual error being larger than the estimate

estimate=-qnorm(alpha/2)*sd(Y)/sqrt(n)

#exercise 2

MC1=function(g,Xgen,n,alpha){

X=Xgen(n)

Y=g(X)

EY=mean(Y)

estimate=-qnorm(alpha/2)*sd(Y)/sqrt(n)

return(c(EY,estimate))

}

f=function(x){return(x^2)}

MC1(f,runif,100,0.1) #Yes, it is correct, the exact anser is 1/3 and the actual error is

smaller than estimate.

#Exercise 3

n=1000

alpha=0.1

exact=1/3

N=100 #we repeat the computation N times

average=rep(0,N)

error_estimate=rep(0,N)

actual_error=rep(0,N)

for(i in 1:N){

result=MC1(f,runif,n,alpha)

average[i]=result[1]

error_estimate[i]=result[2]

actual_error[i]=abs(result[1]-exact) #error is abs value of difference

}

#exercise 4

MC2=function(g,Xgen,error,alpha){

N=10000#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

error_estimate=error+1# Make the estimate to be large than the given error to start the

while cycle

n=0 #the number of values generated so far

while(error_estimate>error){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

error_estimate=-qnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean

value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum_y/n

}

#try out

MC2(f,runif,0.001,0.05)

#can use other functions and generators

-1-

H:\MC\MC12\lab1.R 10. aprill 2012. a. 16:42

MC2(sin,rexp,0.01,0.05) #E(sin(X)), X has standard exponential distribution (lambda=1)

#if we want to use nonstandard generator, then we have to define corresponding function of

one variable

#runif can take more arguments, see ?runif

?runif

gen=function(n){return(runif(n,min=1,max=100))} #generates uniformly distributed random

numbers between 1 and 100

g=function(x){return(x*sin(x))}

MC2(g,gen,0.1,0.05)

-2-

H:\MC\MC12\lab2.R 10. aprill 2012. a. 16:43

#Exercise 1

#first try: generating one trajectory of the Brownian motion

T=0.5

m=100 #the number of time steps

B=rep(0,m+1) #make a place for values corresponding to t=0, T/m,2*T/m,...,T

dt=T/m

for(i in 2:(m+1)){ #here we can decide what the variable of the cycle denotes. In the code

here it denotes the index of the component of the vector of B values we are going compute

Xi=rnorm(1,sd=sqrt(dt)) #or Xi=sqrt(dt)*rnorm(1)

B[i]=B[i-1]+Xi #the current value is the previous one plus the random increment

}

#an alternate form, where i denotes the value that is known and in the cycle we compute the

next one:

#for(i in 1:m){

Xi=sqrt(dt)*rnorm(1)

B[i+1]=B[i]+Xi

#}

t=seq(0,T,length.out=m+1) #t=(0:m)/m*T

plot(t,B,type="l")

#modification to get M trajectories together

M=10

B=matrix(0,nrow=m+1,ncol=M) #a pace for the values of the brownian motion. In each column of

the matrix there is going to be one trajectory

for(i in 2:(m+1)){

Xi=rnorm(M,sd=sqrt(dt)) # one value for each trajectory

B[i,]=B[i-1,]+Xi #computes new values of all trajectories by using previous values (in

the previous row) and adding a different random increment to each one

}

matplot(t,B,type="l")

#exercise 2

#let us use previous brownian motion values, so we have to compute just the corresponding

stock prices

S0=100 #the starting price

S=matrix(S0,nrow=m+1,ncol=M) # a place of the values of the stock prices. For each time

moment is different row, columns correspond to the price trajectories

mu=0.1

sigma=0.5

T=0.5

for(i in 2:(m+1)){

time=(i-1)*dt # the first row corresponds to t=0, second row to t=dt, third one to

t=2*dt etc

S[i,]=S0*exp((mu-sigma**2/2)*time+sigma*B[i,]) # The i-th row is computed using the i-th

row of the Brownian motion

}

matplot(t,S,type="l")

#Exercise 3

Put=function(S,E,T,r,sigma,D,t=0){

tau=T-t

d1=(log(S/E)+(r-D+sigma**2/2)*tau)/(sigma*sqrt(tau))

d2=d1-sigma*sqrt(tau)

value=-S*exp(-D*tau)*pnorm(-d1)+E*exp(-r*tau)*pnorm(-d2)

return(value)

}

-1-

H:\MC\MC12\lab2.R 10. aprill 2012. a. 16:43

Call=function(S,E,T,r,sigma,D,t=0){

tau=T-t

d1=(log(S/E)+(r-D+sigma**2/2)*tau)/(sigma*sqrt(tau))

d2=d1-sigma*sqrt(tau)

value=S*exp(-D*tau)*pnorm(d1)-E*exp(-r*tau)*pnorm(d2)

return(value)

}

r=0.03

sigma=0.4

E=100

T=1

D=0

Call(100,E,T,r,sigma,D) #compute just one value to see if the function is working correctly

Put(100,E,T,r,sigma,D) #the same for the put option

n=200 #how many points use for drawing the graph

S=seq(0,200,length.out=n) #make a vector of the stock prices

plot(S,Call(S,E,T,r,sigma,D),type="l") #here Call computes option prices for all stock prices

#defining payoff functions

p_put=function(S,E){

pmax(E-S,0) #note that the function is pmax (from parallel maximum), not just max

}

matplot(S,cbind(Put(S,E,T,r,sigma,D),p_put(S,E)),type="l") #this is one way to put the

graphs of many functions to one picture

-2-

H:\MC\MC12\lab3.R 10. aprill 2012. a. 16:44

#exercise 1

S_euler=function(n,S0,m,T,mu,sigma){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

for(i in 1:m){

Xi=rnorm(n,sd=sqrt(dt))

S[i+1,]=S[i,]*(1+mu*dt+sigma*Xi)

}

return(S[m+1,])

}

#define parameters

m=40

S0=50

E=50

T=0.5

D=0.1

r=0.03

sigma=0.7

mu=r-D

MCerror=0.01

alpha=0.05

#the function for computing expected values with MC method from the first lab

MC2=function(g,Xgen,error,alpha){

N=10000#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

error_estimate=error+1# Make the estimate to be large than the given error to start the

while cycle

n=0 #the number of values generated so far

while(error_estimate>error){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

error_estimate=-qnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean

value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum_y/n

}

#for pricing an European option, we define the payoff function

p_put=function(S,E){

pmax(E-S,0) #note that the function is pmax (from parallel maximum), not just max

}

#option price is the expected value of the discounted payoff, so define the corresponding

function

g=function(x){

return(exp(-r*T)*p_put(x,E))#the values of the parameters r,T,E have to be defined

outside of any function

}

#we also need to define a generator that for a given n computes n random variables (final

stock prices S(T) for European options)

generator=function(n){

-1-

H:\MC\MC12\lab3.R 10. aprill 2012. a. 16:44

return(S_euler(n,S0,m,T,mu,sigma))

}

#now we can use the function MC2 to get an approximate option price

answer=MC2(g,generator,MCerror,alpha)

##Exercise 2

#When the market parameters are constant, there is an exact formula for S(T) in therms of

the final value B(T) of the brownian motion

#we want to see how different is the value computed by Euler's method from the exact value

S_euler_error=function(n,S0,m,T,mu,sigma){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

B=matrix(0,nrow=m+1,ncol=n) #to keep track of the values of Brownian motion

for(i in 1:m){

Xi=rnorm(n,sd=sqrt(dt)) #the increment of the brownian motion

B[i+1,]=B[i,]+Xi

S[i+1,]=S[i,]*(1+mu*dt+sigma*Xi) #Euler's method uses the increments of the path of

the Brownian motion

}

BT=B[m+1,] #for comparison we have to compute the exact value for the same brownian

motion, so we need the final value

S_exact=S0*exp((mu-sigma**2/2)*T+sigma*BT)# the exact value of S(T)

return(S[m+1,]-S_exact)

}

#check if the code works

S_euler_error(n=10,S0,m=5,T,mu,sigma)

#we are actually interested in the mean absolute error

m=5

generator=function(n){

return(S_euler_error(n,S0,m,T,mu,sigma))

}

error_5=MC2(abs,generator,error=0.01,alpha)

error_5

#if we use just 5 time steps to approximate the final value of S, the obtained result is not

very accurate

#let us see, how the difference between the exact and approximate stock prices change, when

we change m

m=10

error_10=MC2(abs,generator,error=0.01,alpha)

#OK, it got smaller. But how the error depends on m?

#for this we fit the curve c/m**q for the error. The parameter q is called the rate of

convergence

#large rate means that we usually get good results for smaller values of m

#To find the rate, we do many computations

m_values=c(5,10,20,40,80)

errors=rep(0,length(m_values))

for(i in 1:length(m_values)){

m=m_values[i]

errors[i]=MC2(abs,generator,error=0.01,alpha)[1]

print(m)

}

#it turns out that instead of fitting c/m**q to errors we get a more accurate value if we

take logarithm before fitting

nls(log(errors)~log(c)-q*log(m_values),start=list(c=1,q=1))

#so the rate is approximately 0.5. This means, that if we want to reduce the error in S

values 2 times, we have to multiply the current value of m by four

-2-

H:\MC\MC12\lab3.R 10. aprill 2012. a. 16:44

#this is quite slow convergence, usually a large value of m is needed for the error to be

small

#the rate of convergence of the S values is called the strong convergence rate

###########################Exercise 3

#If we use Euler's method for generating values of S(T) in option pricing, we introduce an

additional error that depends on the value of m (the number of time steps)

#So, if we fix m and use MC2 to compute an option price, we usually do not get the exact

value of the price even when we let the error given to MC2 to go to 0

#We are interested, how the part of the error that comes from fixing a value of m behaves

#If we assume a BS market model with constant coefficients, we know the exact option price

#So we can study how the difference between the computed price and the exact price goes to 0

#by fitting the curve c/m**q to this difference gives us the weak convergence rate

#it is called weak rate because option prices can converge well even if the stock prices do

not converge very fast

#weak convergence rate is at least as large as the strong convergence rate, but can be larger

#the function for put:

Put=function(S,E,T,r,sigma,D,t=0){

tau=T-t

d1=(log(S/E)+(r-D+sigma**2/2)*tau)/(sigma*sqrt(tau))

d2=d1-sigma*sqrt(tau)

value=-S*exp(-D*tau)*pnorm(-d1)+E*exp(-r*tau)*pnorm(-d2)

return(value)

}

#compute the exact value

exact=Put(S0,E,T,r,sigma,D,t=0) #the exact value of the put option

m_values=c(3,6,12,24)

errors=rep(0,length(m_values))

#we need the generator for stock prices

generator=function(n){

return(S_euler(n,S0,m,T,mu,sigma))

}

#the function g is the same as in the exercise 1

for(i in 1:length(m_values)){

m=m_values[i]

errors[i]=MC2(g,generator,MCerror,alpha)[1]-exact

print(m) #to see how many computations are finished. In R console you should choose menu

Misc und uncheck Buffered Output

}

#check if the errors are clearly larger than MCerror

errors

#yes, MC error is 0.01, but the computed errors are above 0.05. So we can assume that the

numbers we see describe accurately the part of the error that comes from m

#What is the convergence rate?

nls(log(errors)~log(c)-q*log(m_values),start=list(c=1,q=1))

#it is higher than the weak convergence rate. I got 0.86. It can be proved that actually it

is 1. To see that, we should do computations with larger value of m and smaller value of MC

error, but it

#takes too much time.

-3-

H:\MC\MC12\lab4.R 10. aprill 2012. a. 16:46

m=ceiling(2*Cbar/total_error)

-1-

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

MC2=function(g,Xgen,error,alpha){

N=10000#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

error_estimate=error+1# Make the estimate to be large than the given error to start the

while cycle

n=0 #the number of values generated so far

while(error_estimate>error){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

error_estimate=-qnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean

value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum_y/n

}

#exercise 1

#generator for constant volatility

#Euler's method (actually not needed for this lab)

S_euler=function(n,S0,m,T,mu,sigma){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

t=seq(0,T,length.out=m+1)

for(i in 1:m){

Xi=rnorm(n,sd=sqrt(dt))

S[i+1,]=S[i,]*(1+mu*dt+sigma*Xi)

}

return(S[m+1,])

}

#Milstein's method, constant volatility

S_Milstein=function(n,S0,m,T,mu,sigma){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

t=seq(0,T,length.out=m+1)

for(i in 1:m){

Xi=rnorm(n,sd=sqrt(dt))

S[i+1,]=S[i,]*(1+mu*dt+sigma*Xi+1/2*sigma**2*(Xi**2-dt))

}

return(S[m+1,])

}

#weakly second order method, constant mu and sigma

#define first functions needed in the method

L1mu=function(t,s){

return(s*mu**2)

}

L2mu=function(t,s){

return(s*sigma*mu)

}

L1sigma=function(t,s){

return(s*mu*sigma)

-1-

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

}

L2sigma=function(t,s){

return(s*sigma**2)

}

#define the method. Since functions work only if sigma and mu are correctly defined outside

of the funciton

#write this function also so that it takes sigma and mu from outside (do not use

corresponding arguments)

S_secondorder=function(n,S0,m,T){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

t=seq(0,T,length.out=m+1)

for(i in 1:m){

Xi=rnorm(n,sd=sqrt(dt))

term1=S[i,]*(1+mu*dt+sigma*Xi)

term2=1/2*(L1mu(t[i],S[i,])*dt**2)

term2=term2+1/2*(L2mu(t[i],S[i,])+L1sigma(t[i],S[i,]))*dt*Xi

term2=term2+1/2*L2sigma(t[i],S[i,])*(Xi**2-dt)

S[i+1,]=term1+term2 #can also be written as one long expression

}

return(S[m+1,])

}

#--

#exercise 2 : finding strong convergence rates

#define functions that compute the differences between approximate final stock prices and

#exact stock prices for the same Brownian motion

#similar to what we did in Lab 3

S_Milstein_error=function(n,S0,m,T,mu,sigma){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

t=seq(0,T,length.out=m+1)

B=matrix(0,nrow=m+1,ncol=n)

for(i in 1:m){

Xi=rnorm(n,sd=sqrt(dt))

S[i+1,]=S[i,]*(1+mu*dt+sigma*Xi+1/2*sigma**2*(Xi**2-dt))

B[i+1,]=B[i,]+Xi

}

BT=B[m+1,] #for comparison we have to compute the exact value for the same brownian

motion, so we need the final value

S_exact=S0*exp((mu-sigma**2/2)*T+sigma*BT)# the exact value of S(T)

return(S[m+1,]-S_exact)

}

#the same for the weakly second order method

S_secondorder_error=function(n,S0,m,T,mu,sigma){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

t=seq(0,T,length.out=m+1)

B=matrix(0,nrow=m+1,ncol=n)

for(i in 1:m){

Xi=rnorm(n,sd=sqrt(dt))

term1=S[i,]*(1+mu*dt+sigma*Xi)

term2=1/2*(L1mu(t[i],S[i,])*dt**2)

term2=term2+1/2*(L2mu(t[i],S[i,])+L1sigma(t[i],S[i,]))*dt*Xi

-2-

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

term2=term2+1/2*L2sigma(t[i],S[i,])*(Xi**2-dt)

S[i+1,]=term1+term2

B[i+1,]=B[i,]+Xi

}

BT=B[m+1,] #for comparison we have to compute the exact value for the same brownian

motion, so we need the final value

S_exact=S0*exp((mu-sigma**2/2)*T+sigma*BT)# the exact value of S(T)

return(S[m+1,]-S_exact)

}

#define parameters

S0=100

T=0.5

mu=0.1

sigma=0.6

m_values=c(5,10,20,40,80)

errors=rep(0,length(m_values))

#Strong convergence rate for Milsteins method

#define generator of differences between exact and approximate prices

generator=function(n){

return(S_Milstein_error(n,S0,m,T,mu,sigma))

}

#find mean absolute errors for different m

for(i in 1:length(m_values)){

m=m_values[i]

errors[i]=MC2(abs,generator,error=0.01,alpha=0.05)[1]

print(m)

}

#find the convergence rate

nls(log(errors)~log(c)-q*log(m_values),start=list(c=1,q=1))

#observed rate is close to 1 (theoretically is equal to 1)

#the same for the second order method

#define generator of differences between exact and approximate prices

generator=function(n){

return(S_secondorder_error(n,S0,m,T,mu,sigma))

}

m_values=c(5,10,20,40,80)

errors=rep(0,length(m_values))

for(i in 1:length(m_values)){

m=m_values[i]

errors[i]=MC2(abs,generator,error=0.01,alpha=0.05)[1]

print(m)

}

nls(log(errors)~log(c)-q*log(m_values),start=list(c=1,q=1))

#rate close to 1, strongly first order (like Milsteins method)

#conclusions: both Milstein's and the weakly second order method

#approximate final stock prices better than Euler's method

#the weakly second order method does not approximate final stock prices significantly better

than Milstein's method

#---

#exercise 3: weak convergence rates

#define data

E=100

T=1

r=0.05

S0=100

-3-

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

D=0

mu=r-D #when pricing options, we take the trend parameter to be r-D

sigma=0.5

#function for the put option price for constant sigma

Put=function(S,E,T,r,sigma,D,t=0){

tau=T-t

d1=(log(S/E)+(r-D+sigma**2/2)*tau)/(sigma*sqrt(tau))

d2=d1-sigma*sqrt(tau)

value=-S*exp(-D*tau)*pnorm(-d1)+E*exp(-r*tau)*pnorm(-d2)

return(value)

}

#compute the exact value

exact=Put(S0,E,T,r,sigma,D,t=0)

m_values=c(3,6,12,24)

errors=rep(0,length(m_values))

#weak convergence of the Milstein's method

#we need the generator for stock prices

generator=function(n){

return(S_Milstein(n,S0,m,T,mu=r-D,sigma))

}

p_put=function(S,E){

pmax(E-S,0) #note that the function is pmax (from parallel maximum), not just max

}

#option price is the expected value of the discounted payoff, so define the corresponding

function

g=function(x){

return(exp(-r*T)*p_put(x,E))#the values of the parameters r,T,E have to be defined

outside of any function

}

for(i in 1:length(m_values)){

m=m_values[i]

errors[i]=MC2(g,generator,0.01,0.05)[1]-exact

print(m) #to see how many computations are finished. In R console you should choose menu

Misc und uncheck Buffered Output

}

#check if the errors are clearly larger than MCerror

errors

#yes, MC error is 0.01, but the computed errors are above 0.03. So we can assume that the

numbers we see describe accurately the part of the error that comes from m

#What is the convergence rate?

nls(log(abs(errors))~log(c)-q*log(m_values),start=list(c=1,q=1))

#close to 1, theoretically 1

#so Milsteins's method is not better than Euler's method when computing option prices. Weak

convergence rates are the same

#repeat for the second order method

#converges very fast, so can not use many values of m so that MC error is smaller than

observed error

m_values=c(1,2,4,8) #the theoretical convergence rate is valid for large enough m, but we

can not use large values of m because computations become too slow

errors=rep(0,length(m_values))

generator=function(n){

return(S_secondorder(n,S0,m,T))

}

for(i in 1:length(m_values)){

-4-

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

m=m_values[i]

errors[i]=MC2(g,generator,0.01,0.05)[1]-exact

print(m) #to see how many computations are finished. In R console you should choose menu

Misc und uncheck Buffered Output

}

#check if the errors are clearly larger than MCerror

errors

#the last error is not more than 2 times larger than the MC error, so we should repeat the

last comptation with smaller MCerror

#since the computations were quite slow, we just drop the last value before estimating the

convergence rate ...

#of cause the estimate is not very accurate, if a small number of computations is used

errors=errors[-4] #everything except the fourth value

m_values=m_values[-4]

nls(log(abs(errors))~log(c)-q*log(m_values),start=list(c=1,q=1))

#the observed convergence rate was close to 2. The theoretical weak convergence rate is 2

#this method is better than Euler's and Milstein's methods in terms of the weak convergence

rates

#usually a relatively small m is needed to obtain a very high accuracy. Each time we double

the value of m, the error is reduced approximately 4 times

#hint for homework: define functions sigma, dsigma (derivative of sigma) and d2sigma (the

second derivative) as functions of s

#then define L1mu, L2mu, L1sigma,L2sigma using those functions

#also modify the definition of the method S_secondorder so that it works when sigma is a

function of s

-5-

H:\MC\MC12\lab6.R 10. aprill 2012. a. 16:47

MC2=function(g,Xgen,error,alpha){

N=1000#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

error_estimate=error+1# Make the estimate to be large than the given error to start the

while cycle

n=0 #the number of values generated so far

while(error_estimate>error){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

error_estimate=-qnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean

value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum_y/n

}

-1-

H:\MC\MC12\lab7.R 10. aprill 2012. a. 16:48

MC2=function(g,Xgen,error,alpha){

N=1000#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

error_estimate=error+1# Make the estimate to be large than the given error to start the

while cycle

n=0 #the number of values generated so far

while(error_estimate>error){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

error_estimate=-qnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean

value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum_y/n

}

#exercise 1

#generator for constant volatility

#Euler's method (actually not needed for this lab)

S_importance=function(n,S0,T,mu,sigma,eta=0){

BT=rnorm(n,sd=sqrt(T))

S=S0*exp((mu+eta*sigma-sigma**2/2)*T+sigma*BT)

return(cbind(S,BT))

}

g=function(X){

return(exp(-r*T-eta*X[,2]-eta**2*T/2)*p_call(X[,1],E))

}

S0=50

E=100

r=0.1

sigma=0.5

D=0.0

T=1

MCerror=0.01

p_call=function(S,E){

return(pmax(S-E,0))

}

generator=function(n){return(S_importance(n,S0,T,mu,sigma,eta))}

print("search for the best eta value")

for(eta in seq(1,3,by=0.1)){

answer1=MC2(g,generator,MCerror,0.05)

print(c(eta,answer1[1],answer1[2]))

}

#exercise 2

S0=50

E=100

r=0.1

sigma=0.5

-1-

H:\MC\MC12\lab7.R 10. aprill 2012. a. 16:48

D=0.0

T=1

S_strat=function(n,S0,r,D,sigma,T,i,k){

U=runif(n,min=(i-1)/k,max=i/k)

BT=sqrt(T)*qnorm(U) #normally distributed under the condition, that the value is in Ai

S=S0*exp((r-D-sigma**2/2)*T+sigma*BT)

return(S)

}

p_call=function(S,E){

return(pmax(S-E,0))

}

g=function(x){return(exp(-r*T)*p_call(x,E))}

MCerror=0.01

#use stratified sampling, simple approach

for(k in c(5,10,20,40)){

price=0#here we add the contribution of each stratum

n=0#the total number of generated values

generator=function(n){

return(S_strat(n,S0,r,D,sigma,T,i,k))

}

for(i in 1:k){

answer=MC2(g,generator,sqrt(k)*MCerror,0.05) #the error in the stratum should be the

desired error divided by the probability of the stratum.

price=price+1/k*answer[1]

n=n+answer[2]

}

print(c(price,k,n))

}

#as k increases, the number of generated variables gets smaller

#for this problem (out of the money option) the importance sampling with the best eta is

better than the simple stratified sampling

#but it is possible to use a better version of the stratified sampling or to combine the

methods ...

-2-

H:\MC\MC12\lab8.R 10. aprill 2012. a. 16:49

#exercise 1

MC_stratified=function(g,Xgen,C,p_i){#p_i is the probability of the stratum, C is a positive

constant

N=100#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

sdY=1 #any opositive number to make sure that the while cycle starts

n=0 #the number of values generated so far

while(n<C*p_i*sdY){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

}

return(c(sum_y/n,n,sdY**2)) #the estimate of EY is sum_y/n, instead of the estimated

variance we could return for example p_i times the standard deviation

}

#exercise 2

r=0.1

sigma=0.4

T=0.5

D=0

E=100

S0=100

###############

C=1000

alpha=0.05

k=10

S_strat=function(n,S0,r,D,sigma,T,i,k){

U=runif(n,min=(i-1)/k,max=i/k)

BT=sqrt(T)*qnorm(U) #normally distributed under the condition, that value is in Ai

S=S0*exp((r-D-sigma**2/2)*T+sigma*BT)

return(S)

}

price_C=function(C,g,k){

generator=function(n){ #Since we want to change i inside the function, we have to define

the generator here

return(S_strat(n,S0,r,D,sigma,T,i,k))

}

price=0 #here we add the contribution of each stratum

n=0#the total number of generated values

DZ=0 #for error estimate

for(i in 1:k){

p_i=1/k #the probability of i-th stratum

answer=MC_stratified(g,generator,C,p_i)

price=price+1/k*answer[1]

n=n+answer[2]

DZ=DZ+p_i**2*answer[3]/answer[2] #if the MC_stratified returns

p_i*standard_deviation, then the last term is answer[3]**2/answer[2]

}

error_estimate=-qnorm(alpha/2)*sqrt(DZ)

return(c(price,error_estimate))

}

-1-

H:\MC\MC12\lab8.R 10. aprill 2012. a. 16:49

price_C(1000,g,10)

-2-

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49

#task 1

Brown_stratified=function(k,m,T){#k-the number of stratums, m- the number of time steps,

T-the final time

v=rep(1,m) #for the final value, we just sum the increments

B=matrix(0,nrow=m+1,ncol=k) #trajectories are in columns

a=sqrt(T/m) #the standard deviation of increments

v_norm=sqrt(sum(v**2))

for(i in 1:k){

W=a*v_norm*qnorm(runif(1,min=(i-1)/k,max=i/k)) #the value for B(T) in the stratum

Z=rnorm(m,sd=a)

X=W/v_norm**2*v+Z-(t(v)%*%Z)/v_norm**2*v #increments of Brownian motion

B[2:(m+1),i]=cumsum(X)

}

t=seq(0,T,length.out=m+1)

matplot(t,B,type="l")

}

#task 2

#v has to be a vector of lenth m (the number of time steps)

S_euler_stratified=function(n,S0,m,T,mu,sigma,i,k,v){

dt=T/m

S=matrix(S0,nrow=m+1,ncol=n)

t=seq(0,T,length.out=m+1)

#compute the vector of increments

a=sqrt(T/m) #the standard deviation of increments

v_norm=sqrt(sum(v**2))

W=a*matrix(v_norm*qnorm(runif(n,min=(i-1)/k,max=i/k)),nrow=1)

#final values in the stratum

Z=matrix(rnorm(m*n,sd=a),nrow=m)

X=1/v_norm**2*v%*%W+Z-(v%*%t(v)%*%Z)/v_norm**2

for(i in 1:m){

S[i+1,]=S[i,]*(1+mu*dt+sigma(t=t[i],s=S[i,])*X[i,])

}

return(S[m+1,])

}

#now can use the method from the previous lab to price options

MC_stratified=function(g,Xgen,C,p_i){#p_i is the probability of the stratum, C is a positive

constant

N=100#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

sdY=1 #any opositive number to make sure that the while cycle starts

n=0 #the number of values generated so far

while(n<C*p_i*sdY){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

}

return(c(sum_y/n,n,sdY**2)) #the estimate of EY is sum_y/n, instead of the estimated

variance we could return for example p_i times the standard deviation

}

#data

r=0.06

D=0.03

-1-

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49

T=0.5

S0=105

E=100

alpha=0.05

mu=r-D

sigma=function(t,s){

return(95/(95+s))

}

#for call option

p_call=function(S,E){

return(pmax(S-E,0))

}

g=function(x){return(exp(-r*T)*p_call(x,E))}

#the function for computing the price and error estimate for a given C by the optimal

stratified sampling

price_C=function(C,g,k){

generator=function(n){ #Since we want to change i inside the function, we have to define

the generator here

return(S_euler_stratified(n,S0,m,T,mu,sigma,i,k,v))

}

price=0 #here we add the contribution of each stratum

n=0#the total number of generated values

DZ=0 #for error estimate

for(i in 1:k){

p_i=1/k #the probability of i-th stratum

answer=MC_stratified(g,generator,C,p_i)

price=price+1/k*answer[1]

n=n+answer[2]

DZ=DZ+p_i**2*answer[3]/answer[2] #if the MC_stratified returns

p_i*standard_deviation, then the last term is answer[3]**2/answer[2]

}

error_estimate=-qnorm(alpha/2)*sqrt(DZ)

return(c(price,error_estimate))

}

#compute price for a given m

m=10

v=rep(1,m) #v has to be of length m

C=1000

price_C(C,g,100)

#Computing with a given accuracy

total_error=0.01

m0=5

#First computation with given C

C=1000

m=m0

v=rep(1,m) #we have to change v whenever we change m in order to use the current generator

answer1=price_C(C,g,100)

V1=answer1[1]

m=2*m0

v=rep(1,m)

answer2=price_C(C,g,100)

V2=answer2[1]

#For optimal MC, the answers are computed with the same MC error eps0 as before

#This is not a problem, we just have to use the sum of estimated errors when we before used

2*eps0

#are the computations accurate enough to get a reasonably good estimate of the convergence

-2-

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49

reate parameter C?

abs(V2-V1)>2*(answer1[2]+answer2[2])

#the result was FALSE, so we may get a quite bad estimate of m. So it may be a good idea to

make C larger (giving better estimates). Fut first check how large is the "bad" estimate of

m we get

#if it turns out to be relatively small, then it does not make sense to spend time for more

accurate estimates

#estimate C (valid for first order methods with weak convergence rate 1)

Cbar=2*m0*(abs(V1-V2)+answer1[2]+answer2[2])

m=ceiling(2*Cbar/total_error)

m

#I got 182, so it is quite large. Let us try to get a better estimate for m. The

computations were very farst, so we may multiply C by a relatively last number

#If we multiply C by x, the computation time increases approximately x times. For very farst

computations, we may try to multiply by relatively large x, say 100

C=100*1000

m=m0

v=rep(1,m) #we have to change v whenever we change m in order to use the current generator

answer1=price_C(C,g,100)

V1=answer1[1]

m=2*m0

v=rep(1,m)

answer2=price_C(C,g,100)

V2=answer2[1]

#For optimal MC, the answers are computed with the same MC error eps0 as before

#This is not a problem, we just have to use the sum of estimated errors when we before used

2*eps0

#are the computations accurate enough to get a reasonably good estimate of the convergence

reate parameter C?

abs(V2-V1)>2*(answer1[2]+answer2[2])

#the result was still FALSE, so we may still get a quite bad estimate of m. So it may be a

good idea to make C larger again (giving better estimates). Fut first check how large is the

"bad" estimate of m we get

#if it turns out to be relatively small, then it does not make sense to spend time for more

accurate estimates

#estimate C (valid for first order methods with weak convergence rate 1)

Cbar=2*m0*(abs(V1-V2)+answer1[2]+answer2[2])

m=ceiling(2*Cbar/total_error)

m

#now the estimate is not very large (I got 57). So it is perfectly OK to use that m for

final computation. But let us see, if we can get a better estimate with reasonable time

#Previous computations were not very fast, so let us multiply C by 4 only

C=4*100*1000

m=m0

v=rep(1,m) #we have to change v whenever we change m in order to use the current generator

answer1=price_C(C,g,100)

V1=answer1[1]

m=2*m0

v=rep(1,m)

answer2=price_C(C,g,100)

V2=answer2[1]

#For optimal MC, the answers are computed with the same MC error eps0 as before

#This is not a problem, we just have to use the sum of estimated errors when we before used

2*eps0

#are the computations accurate enough to get a reasonably good estimate of the convergence

reate parameter C?

abs(V2-V1)>2*(answer1[2]+answer2[2])

-3-

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49

#the result is no TRUE

#let us estimate m

Cbar=2*m0*(abs(V1-V2)+answer1[2]+answer2[2])

m=ceiling(2*Cbar/total_error)

m

#It turned out for my current computations, that the more accurate estimate happened to be

the same as before (57), so we indeed did not gain much by the last repetition

#Let us compute the price with given accuracy. For this we have to use the m we found and

pick C so that MC error is less than total_error/2

v=rep(1,m) #need to redefine v. Let us keep C the same as in the last computation (we could

make it smaller if the last computations were very slow and the error part of the

#answer2 is smaller than total_error/2)

answer=price_C(C,g,100)

#the result was: price is 16.957282632, MC part of the error is 0.002405796

#the the answer is accurate enough (actually, the total error of the answer is smaller than

required, since MC part is less than total_error/2.

#if the answer was not accurate enough, we should redefine C bu multiplying it by

(answer[2]/(total_error/2))**2 or a slightly large number, to be on the safe side. I would

recommend to use an additional

#factor 0f 1.1

-4-

H:\MC\MC12\lab10.R 10. aprill 2012. a. 16:50

MC2=function(error,Xgenerator,g,alpha=0.05){

n0=100000#the number of values to generate in one go

n=n0

X=Xgenerator(n0)

Y=g(X)

sum_y=sum(Y)

sum_y2=sum(Y**2)

sd_estimate=sqrt(abs(sum_y2-sum_y**2/n)/(n-1))

error_estimate=-qnorm(alpha/2)*sd_estimate/sqrt(n)

while(error_estimate>error){

X=Xgenerator(n0)

Y=g(X)

sum_y=sum_y+sum(Y)

sum_y2=sum_y2+sum(Y**2)

n=n+n0

sd_estimate=sqrt(abs(sum_y2-sum_y**2/n)/(n-1))

error_estimate=-qnorm(alpha/2)*sd_estimate/sqrt(n)

}

return(c(sum_y/n,error_estimate,n))

}

gen_Asia1=function(S0,mu,sigma,T,m,n){

dt=T/m

S=S0

A=0

B=0

for(i in 1:m){

A=A+S/m

dB=rnorm(n,sd=sqrt(dt))

B=B+dB

t=i*dt

S=S0*exp((mu-sigma**2/2)*t+sigma*B)

}

return(cbind(S,A))

}

mvalues=c(5,10,20,40)

m=mvalues[1]

r=0.1

D=0

mu=r-D

sigma=0.4

T=0.5

S0=100

E=100

#exercise 1

#average strike

g=function(X){

return(exp(-r*T)*pmax(X[,1]-X[,2],0))

}

gen=function(n){

return(gen_Asia1(S0,mu,sigma,T,m,n))

}

price1=MC2(0.1,gen,g,0.05)

prices=rep(NA,length(mvalues))

MCerror=0.05

for(i in 1:length(mvalues)){

m=mvalues[i]

-1-

H:\MC\MC12\lab10.R 10. aprill 2012. a. 16:50

prices[i]=MC2(MCerror,gen,g,0.05)[1]

}

errors=prices[-length(mvalues)]-prices[-1]

errors

#find the convergence rate

nls(errors~C/mvalues[-length(mvalues)]**q*(1-1/2**q),start=list(C=1,q=1))

nls(log(errors)~log(C)-q*log(mvalues[-length(mvalues)])+log(1-1/2**q),start=list(C=1,q=1))

#weak convergence rate is 1

#computing option price with given accuracy

error=0.1

m=5

price1=MC2(MCerror,gen,g,0.05)[1]

m=10

price2=MC2(MCerror,gen,g,0.05)[1]

abs(price2-price1)>2*MCerror

#if TRUE, then OK, otherwise it may be a good idea to repeat

#the computations with smaller MCerror (therwise the final estimate of m may be too large)

Cbar=2*5*(abs(price2-price1)+2*MCerror)

m1=ceiling(Cbar/(error/2))

m=m1

final_price=MC2(error/2,gen,g,0.05)

-2-

H:\MC\MC12\lab11.R 10. aprill 2012. a. 16:50

MC2=function(error,Xgenerator,g,alpha=0.05){

n0=100000#the number of values to generate in one go

n=n0

X=Xgenerator(n0)

Y=g(X)

sum_y=sum(Y)

sum_y2=sum(Y**2)

sd_estimate=sqrt(abs(sum_y2-sum_y**2/n)/(n-1))

error_estimate=-qnorm(alpha/2)*sd_estimate/sqrt(n)

while(error_estimate>error){

X=Xgenerator(n0)

Y=g(X)

sum_y=sum_y+sum(Y)

sum_y2=sum_y2+sum(Y**2)

n=n+n0

sd_estimate=sqrt(abs(sum_y2-sum_y**2/n)/(n-1))

error_estimate=-qnorm(alpha/2)*sd_estimate/sqrt(n)

}

return(c(sum_y/n,error_estimate,n))

}

gen_Asia1=function(S0,mu,sigma,T,m,n){

dt=T/m

S=S0

A=0

B=0

for(i in 1:m){

A=A+S/m

dB=rnorm(n,sd=sqrt(dt))

B=B+dB

t=i*dt

S=S0*exp((mu-sigma**2/2)*t+sigma*B)

}

return(cbind(S,A))

}

gen_Asia2=function(S0,mu,sigma,T,m,n){

dt=T/m

S=S0

A=0

B=0

for(i in 1:m){

dB=rnorm(n,sd=sqrt(dt))

A=A+S/m*(1+mu*T/(2*m)+sigma/2*dB)

B=B+dB

t=i*dt

S=S0*exp((mu-sigma**2/2)*t+sigma*B)

}

return(cbind(S,A))

}

#exercise 1

m=20

r=0.05

D=0.02

mu=r-D

sigma=0.5

T=0.5

S0=49

-1-

H:\MC\MC12\lab11.R 10. aprill 2012. a. 16:50

E=50

gen_Asia2_strat=function(S0,mu,sigma,T,m,n,i,k,v){

dt=T/m

S=S0

a=sqrt(dt)

v=matrix(v,m,1)

vnorm=sqrt(sum(v**2))

W=matrix(a*vnorm*qnorm(runif(n,min=(i-1)/k,max=i/k)),nrow=1,ncol=n)#rnorm(1,sd=a*vnorm)

Z=matrix(rnorm(m*n,sd=a),nrow=m,ncol=n)

dB=1/vnorm**2*v%*%W+Z-v%*%t(v)%*%Z/vnorm**2

A=0

B=0

for(j in 1:m){

#dB=rnorm(n,sd=sqrt(dt))

A=A+S/m*(1+mu*T/(2*m)+sigma/2*dB[j,])

B=B+dB[j,]

t=j*dt

S=S0*exp((mu-sigma**2/2)*t+sigma*B)

}

return(cbind(S,A))

}

MC_strat_opt=function(Xgenerator_strat,g,pi,C){

n0=100#the number of values to generate in one go

n=n0

X=Xgenerator_strat(n0)

Y=g(X)

sum_y=sum(Y)

sum_y2=sum(Y**2)

sd_estimate=sqrt(abs(sum_y2-sum_y**2/n)/(n-1))

#error_estimate=-qnorm(alpha/2)*sd_estimate/sqrt(n)

while(C*pi*sd_estimate>n){

X=Xgenerator_strat(n0)

Y=g(X)

sum_y=sum_y+sum(Y)

sum_y2=sum_y2+sum(Y**2)

n=n+n0

sd_estimate=sqrt(abs(sum_y2-sum_y**2/n)/(n-1))

}

return(c(sum_y/n,sd_estimate,n))

}

price1=function(C,k,g,v){

Z=0

DZ=0

n=0

gen=function(n){

return(gen_Asia2_strat(S0,mu,sigma,T,m,n,i,k,v))}

for(i in 1:k){

pi=1/k

tmp=MC_strat_opt(gen,g,pi,C)

Z=Z+pi*tmp[1]

n=n+tmp[3]

DZ=DZ+pi**2*tmp[2]**2/tmp[3]

}

return(c(Z,-qnorm(alpha/2)*sqrt(DZ),n))

-2-

H:\MC\MC12\lab11.R 10. aprill 2012. a. 16:50

}

alpha=0.05

#average strike call

g=function(X){

return(exp(-r*T)*pmax(X[,1]-X[,2],0))

}

gen=function(n){

return(gen_Asia2(S0,mu,sigma,T,m,n))

}

price_mc=MC2(0.01,gen,g,0.05)

C=10000

v=rep(1,m)

price_opt=price1(C,40,g,v)

price_opt=price1(C*(price_opt[2]/0.01)^2,40,g,v)

v=1-1:m/m

price_opt2=price1(C,40,g,v)

price_opt2=price1(C*(price_opt2[2]/0.01)^2,40,g,v)

v=1:m/m

price_opt3=price1(C,40,g,v)

price_opt3=price1(C*(price_opt3[2]/0.01)^2,40,g,v)

#average price put

g=function(X){

return(exp(-r*T)*pmax(E-X[,2],0))

}

gen=function(n){

return(gen_Asia2(S0,mu,sigma,T,m,n))

}

price1_mc=MC2(0.01,gen,g,0.05)

C=10000

v=rep(1,m)

price_opt=price1(C,40,g,v)

price_opt=price1(C*(price_opt[2]/0.01)^2,40,g,v)

v=1-1:m/m

price_opt2=price1(C,40,g,v)

price_opt2=price1(C*(price_opt2[2]/0.01)^2,40,g,v)

v=1:m/m

price_opt3=price1(C,40,g,v)

price_opt3=price1(C*(price_opt3[2]/0.01)^2,40,g,v)

price1_mc

price_opt

price_opt2

price_opt3

-3-

H:\MC\MC12\lab12.R 10. aprill 2012. a. 16:51

#

b=2

k=11

n=32

digits=k%/%b^(0:(n-1))%%b

sum(digits/b**(1:n))

###many numbers in one go

k=1:11

digits=outer(k,b^(0:(n-1)),"%/%")%%b

digits%*%(1/b**(1:n))

Corput=function(n1,n2,b){

n=32

k=n1:n2

digits=outer(k,b^(0:(n-1)),"%/%")%%b

return(digits%*%(1/b**(1:n)))

}

plot(Corput(1,200,2),Corput(1,200,3))

plot(Corput(1,200,17),Corput(1,200,19))

#if b values get large, the unit square is not covered very well

#for relatively small number of points

#task 2

S_euler=function(n,S0,m,T,mu,sigma){

S=S0

dt=T/m

for(i in 1:m){

t=(i-1)*dt

S=S*(1+mu*dt+sigma(S,t)*sqrt(dt)*qnorm(runif(n)))#rnorm(n))

}

return(S)

}

sigma=function(s,t){

return(0.6-0.5*exp(-0.01*s))

}

m=5

r=0.1

D=0

mu=r-D

T=0.5

S0=105

gen=function(n){

S_euler(n,S0,m,T,mu,sigma)

}

g=function(S){

return(exp(-r*T)*pmax(E-S,0))

}

E=100

N=100000

S=gen(N)

mean(g(S))

S_euler_qmc=function(n,S0,m,T,mu,sigma,b){

S=S0

dt=T/m

for(i in 1:m){

-1-

H:\MC\MC12\lab12.R 10. aprill 2012. a. 16:51

t=(i-1)*dt

S=S*(1+mu*dt+sigma(S,t)*sqrt(dt)*qnorm(Corput(1,n,b[i])))#rnorm(n))

}

return(S)

}

b=c(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, 59, 61, 67, 71)

gen_qmc=function(n){

S_euler_qmc(n,S0,m,T,mu,sigma,b)

}

S=gen_qmc(N)

mean(g(S))

-2-

H:\MC\MC12\lab13.R 10. aprill 2012. a. 16:51

#task 1

#.libPaths("h:/rlibs")

#install.packages("rngWELL",lib="h:/rlibs")

#install.packages("randtoolbox",lib="h:/rlibs")

#library(randtoolbox)

sobolpoints=sobol(200,10)

pairs(sobolpoints)

haltonpoints=halton(200,10)

pairs(haltonpoints)

#task 2

m=5

r=0.1

D=0

mu=r-D

T=0.5

S0=105

E=100

sigma=function(s,t){

return(0.6-0.5*exp(-0.01*s))

}

#put option

g=function(S){

return(exp(-r*T)*pmax(E-S,0))

}

#Euler's method for MC

S_euler=function(n,S0,m,T,mu,sigma){

S=S0

dt=T/m

for(i in 1:m){

t=(i-1)*dt

S=S*(1+mu*dt+sigma(S,t)*sqrt(dt)*qnorm(runif(n)))#rnorm(n))

}

return(S)

}

S_euler_qmc=function(n,S0,m,T,mu,sigma,qrn_gen){

S=S0

dt=T/m

dB=sqrt(dt)*qnorm(qrn_gen(n,m)) #matrix of increments, trajectories in rows

for(i in 1:m){

t=(i-1)*dt

S=S*(1+mu*dt+sigma(S,t)*dB[,i])

}

return(S)

}

m=5

mcError=rep(NA,10)

qmcError=rep(NA,10)

exact=7.731

for(i in 1:10){

n=i*10000

mcError[i]=abs(mean(g(S_euler(n,S0,m,T,mu,sigma))-exact))

qmcError[i]=abs(mean(g(S_euler_qmc(n,S0,m,T,mu,sigma,halton))-exact))

}

m=20

mcError=rep(NA,10)

qmcError=rep(NA,10)

-1-

H:\MC\MC12\lab13.R 10. aprill 2012. a. 16:51

exact=7.577

for(i in 1:10){

n=i*10000

mcError[i]=abs(mean(g(S_euler(n,S0,m,T,mu,sigma))-exact))

qmcError[i]=abs(mean(g(S_euler_qmc(n,S0,m,T,mu,sigma,sobol))-exact))

}

#

b=2

k=11

n=32

digits=k%/%b^(0:(n-1))%%b

sum(digits/b**(1:n))

###many numbers in one go

k=1:11

digits=outer(k,b^(0:(n-1)),"%/%")%%b

digits%*%(1/b**(1:n))

Corput=function(n1,n2,b){

n=32

k=n1:n2

digits=outer(k,b^(0:(n-1)),"%/%")%%b

return(digits%*%(1/b**(1:n)))

}

plot(Corput(1,200,2),Corput(1,200,3))

plot(Corput(1,200,17),Corput(1,200,19))

#if b values get large, the unit square is not covered very well

#for relatively small number of points

#task 2

S_euler=function(n,S0,m,T,mu,sigma){

S=S0

dt=T/m

for(i in 1:m){

t=(i-1)*dt

S=S*(1+mu*dt+sigma(S,t)*sqrt(dt)*qnorm(runif(n)))#rnorm(n))

}

return(S)

}

m=5

r=0.1

D=0

mu=r-D

T=0.5

S0=105

gen=function(n){

S_euler(n,S0,m,T,mu,sigma)

}

g=function(S){

return(exp(-r*T)*pmax(E-S,0))

}

E=100

N=100000

-2-

H:\MC\MC12\lab13.R 10. aprill 2012. a. 16:51

S=gen(N)

mean(g(S))

S_euler_qmc=function(n,S0,m,T,mu,sigma,b){

S=S0

dt=T/m

for(i in 1:m){

t=(i-1)*dt

S=S*(1+mu*dt+sigma(S,t)*sqrt(dt)*qnorm(Corput(1,n,b[i])))#rnorm(n))

}

return(S)

}

b=c(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, 59, 61, 67, 71)

gen_qmc=function(n){

S_euler_qmc(n,S0,m,T,mu,sigma,b)

}

S=gen_qmc(N)

mean(g(S))

-3-

H:\MC\MC12\lab14.R 10. aprill 2012. a. 16:52

MC2=function(g,Xgen,error,alpha){

N=1000#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

error_estimate=error+1# Make the estimate to be large than the given error to start the

while cycle

n=0 #the number of values generated so far

while(error_estimate>error){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

error_estimate=-qnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean

value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum_y/n

}

-1-

H:\MC\MC12\lab15.R 10. aprill 2012. a. 16:53

S0=100

E=100

T=0.5

D=0

r=0.05

sigma=0.5

#Task 1

#modification of MC so that answer is computed with a given relative error

MC2_relative=function(g,Xgen,error,alpha){

N=1000#the number of variables to be generated in one go

sum_y2=0 #the sum of the squares of all generated Y values

sum_y=0 # the sum of the Y values generated so far

error_estimate=error+1# Make the estimate to be large than the given error to start the

while cycle

n=0 #the number of values generated so far

EY=1 #to make sure the while cycle starts

while(error_estimate/abs(EY)>error){

X=Xgen(N) #new set of X values

Y=g(X) #corresponding Y values

n=n+N # the total number of generated values is increased by N

sum_y=sum_y+sum(Y) #total sum of Y values

sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y

sdY=sqrt(abs(sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y

based on all generated values

error_estimate=-qnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean

value of all generated Y values

EY=sum_y/n

}

return(c(EY,n)) #the estimate of EY is sum_y/n

}

gener=function(n,S0,sigma){#generator of stock prices according to the exact formula

B=sqrt(T)*rnorm(n)

S=S0*exp((r-D-(sigma^2)/2)*T+sigma*B)

return(S)

}

gen=function(n){return(gener(n,S0,sigma))}

g=function(S){return(exp(-r*T)*(S>=E)*(S/S0))} #for pathwise derivative

MC2_relative(g,gen, 0.01, 0.05)

#for likelyhood ratio method

g=function(S){exp(-r*T)*pmax(S-E,0)*(log(S/S0)-(r-0.5*sigma^2)*T)/(S0*(sigma^2)*T)}

MC2_relative(g,gen, 0.01, 0.05)

#task 2

for binary option only the likelyhood ratio method from the current lab is suitable, since

the payoff function is not differentiable

g=function(S){exp(-r*T)*(S-E>=0)*(log(S/S0)-(r-0.5*sigma^2)*T)/(S0*(sigma^2)*T)}

MC2_relative(g,gen, 0.01, 0.05)

-1-

H:\MC\MC12\lab16.R 10. aprill 2012. a. 16:54

#lab 15

#pricing American options

#task 1

trajectories=function(n){

dt=T/m

S=matrix(S0,nrow=n,ncol=m+1)

V=matrix(V0,nrow=n,ncol=m+1)

for(i in 1:m){

S[,i+1]=S[,i]*(1+(r-D)*dt+sqrt(V[,i])*sqrt(dt)*rnorm(n))

V[,i+1]=V[,i]+kappa*(theta-V[,i])*dt+xi*sqrt(V[,i])*sqrt(dt)*rnorm(n)

}

return(list(S=S,V=V))

}

S0=100

r=0.05

D=0

T=0.5

E=100

kappa=1

xi=0.1

theta=0.36

V0=0.4

m=20

X=trajectories(5)

#task 2

phi1=function(s,v){

return(s-E/2)

}

phi2=function(s,v){

return(v-theta)

}

phi3=function(s,v){

return((s-E/2)^2)

}

phi4=function(s,v){

return((s-E/2)*(v-theta))

}

phi5=function(s,v){

return((v-theta)^2)

}

n=10000

X=trajectories(n)

p=function(s,E){

return(pmax(E-s,0))

}

W=p(X$S[,m+1],E)

i=m #time t=t[m-1]

Si=X$S[,i]

Vi=X$V[,i]

Y=exp(-r*T/m)*W

in_money=p(Si,E)>0

Ci=lm(Y~phi1(Si,Vi)+phi2(Si,Vi)+phi3(Si,Vi)+phi4(Si,Vi)+phi5(Si,Vi),subset=in_money)

#task 3

m=40

X=trajectories(n)

W=p(X$S[,m+1],E)

-1-

H:\MC\MC12\lab16.R 10. aprill 2012. a. 16:54

for(i in m:2){

Si=X$S[,i]

Vi=X$V[,i]

Y=exp(-r*T/m)*W

in_money=p(Si,E)>0

Ci=lm(Y~phi1(Si,Vi)+phi2(Si,Vi)+phi3(Si,Vi)+phi4(Si,Vi)+phi5(Si,Vi),subset=in_money)

W=Y

Cvalues=predict(Ci,newdata=data.frame(Si=Si,Vi=Vi))

p_values=p(Si,E)

W[p_values>Cvalues]=p_values[p_values>Cvalues]

}

W=exp(-r*T/m)*W #at t=0, the value of a trajectory is discounted value at t=t[1]

price=mean(W)

alpha=0.05

MCerror=-qnorm(alpha/2)*sd(W)/sqrt(n)

-2-

