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Abstract 

Speech feature variations are mainly attributed to varia-

tions in phonetic and speaker information included in 

speech data. If these two types of information are sepa-

rated from each other, more robust speaker clustering 

can be achieved. We propose a speaker clustering meth-

od using principal component analysis transformation 

by separating speaker information from phonetic infor-

mation, under the assumption that a space with large 

within-speaker variance is a “phonetic subspace” and a 

space with small within-speaker variance is a “speaker 

subspace”. We carried out comparative experiments of 

the proposed method with conventional methods based 

on Bayesian information criterion and Gaussian mixture 

model in an observation space. The experimented results 

showed that the proposed method can achieve higher 

clustering accuracy than conventional methods.  

 

1 Introduction 

 
In automatic interaction management, it is im-

portant to improve interactions by making inter-

action smooth and natural, and be able to elicit and 

to provide communicative signals that allow the 

user to take the turn. Recently there has been grow-

ing interest in the automatic analysis of conversa-

tional data so as to further our understanding of 

human-human communication and multimodal 

signaling of social interactions. Due to advance 

technology, it is possible to study communicative 

behavior and social signaling patterns using auto-

matic analysis techniques. Besides speech and 

speaker recognition, also motion capture and ges-

ture recognition technology can be used, while the 

development in eye-tracker technology allows us to 

study gaze behaviour in an objective manner. 

 

Chen et al. (2009) investigated combining verbal 

with nonverbal cues (i.e., hand gesture and eye 

gaze) to detect floor control shifts in multi-party 

meetings. Jokinen et al. (2010) showed that eye-

gaze is an important cue in deciding turn-taking: 

the use of eye-gaze information improves classifi-

cation accuracy of turn-taking significantly, com-

pared with the use of only speech features or dia-

logue acts. Battersby (2011) studied interactions 

with a motion tracker device, and points out that 

the speaker’s gesturing behavior differs from that 

of the addressees, and that head and hand move-

ments are also different between primary and sec-

ondary addressees. 

 

In this paper, we focus on speaker clustering based 

on speaker recognition technique in multi-party 

conversations. Speaker clustering is a technique for 

clustering utterances from the same speaker, and is 

useful for retrieving the utterances of a specific 

speaker and for improving automatic speech 

recognition performance based on speaker adapta-

tion of the acoustic model. Speaker clustering has 

been studied mainly for broadcast news audio, 

multi-party conversations, and telephone conversa-

tions (Tranter and Reynolds, 2006) (Reynolds and 

Torres-Carrasquillo, 2005).  

 

In previous studies, Chen et al. (1998) presented a 

maximum likelihood approach for acoustic change 

detection; the detection of a turn is based on the 

Bayesian information criterion (BIC), a model se-

lection criterion well-known in statistics. Further-

more, Cheng et al. (2010) proposed three divide-

and-conquer approaches for BIC-based speaker 

segmentation. The three approaches are used to de-

tect speaker changes by recursively partitioning a 

large analysis window into two sub-windows and 

recursively verifying the merging of two adjacent 

audio segments using  BIC, a widely adopted dis-

tance measure of two audio segments. Iso (2010) 

proposed a method for representing a speech seg-

ment with a vector of Vector quantization (VQ) 

code frequencies by using a cosine between two 

vectors as their similarity measure. The clustering 

is done using a spectral clustering algorithm with 

cluster number estimation based on an eigen struc-

ture of the similarity matrix. Nishida et al. (2005) 

proposed a flexible framework in which an optimal 

speaker model (GMM or VQ) is automatically se-

lected based on the BIC and according to the 

amount of training data available. Reynolds et al. 

(1998)  presented the cross likelihood ratio (CLR), 

and  Le et al. (2007) presented the normalized 

cross likelihood ratio (NCLR) and the advantages 

of using it in a speaker diarization system.  
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For speaker identification and verification, Nishida 

et al. (2001) proposed a method based on a statisti-

cal speaker model (GMM) in the "speaker sub-

space" which is created using all speech data pro-

jected to the speaker subspace where the phonetic 

information is suppressed. The speech data include 

two types of information, phonetic and speaker. 

Phonetic information is attributed to the phonetic 

features in speech data, and speaker information is 

attributed to the speaker features in speech data. In 

particular, phonetic information varies depending 

on the speech data. Therefore, if these two types of 

information are separated from each other, robust 

speaker recognition can be achieved.  

 

Conventional speaker-clustering methods do not 

distinguish between phonetic and speaker infor-

mation. We propose a speaker clustering method 

based on a statistical speaker model (GMM) in the 

“speaker subspace”, which is created using all 

speech data projected to the speaker subspace 

where the phonetic information is already sup-

pressed. In speaker clustering, we believe that our 

method is effective in separating speaker from 

phonetic information because the variance in dura-

tion of each segment enlarges variation of phonetic 

information in the segment more in comparison 

with speaker identification and verification. We 

carried out speaker clustering experiments with 

three methods. The first method was a hierarchical 

agglomerative clustering method based on the BIC 

in an observation space. The second method was a 

hierarchical clustering method based on CLR using 

GMM in an observation space. The third method is 

the proposed method based on GMM in the speak-

er subspace obtained from an observation space. 

Our proposed method clusters using the CLR. 

 

The remainder of this paper is organized as fol-

lows: Section 2 explains speaker clustering based 

on GMM in speaker subspace, Section 3 describes 

our speaker clustering experiments and section 4 

concludes the paper. 

 

2 Speaker Clustering based on GMM 

in Speaker Subspace 
 

2.1 Separation of phonetic and speaker sub-

spaces 

 

We describe a separation method of phonetic and 

speaker information. The speech feature variation 

is mainly caused by the variation in the phonetic 

information included in speech data. This insight 

enables the separation of the phonetic and speaker 

information based on this variance. Principal com-

ponent analysis (PCA) is conducted to locate each 

speaker’s speech data of phonetic information in a 

subspace constructed using the principal compo-

nent axes (lower order axes), and speaker infor-

mation in a complementary subspace constructed 

using the higher order axes. We call the subspace 

with the large variation constructed using the lower 

axes “phonetic subspace”, and the subspace with 

the small variation constructed using the higher ax-

es “speaker subspace”. 
 

A sequence of speech data {  
( )
} (  

       ( )) of a segment    is observed in an n-

dimensional observation space. Its mean vector 

 ̅( ) and covariance matrix  ( ) are then computed 

from the training data as follows: 
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The covariance matrix R can be composed of ei-

genvectors and a matrix of eigenvalues as follows: 

  ( )   ( ) ( ) ( ) , (3)  

where  ( )  is a diagonal matrix whose diagonal 

components are eigenvalues   
( )
 (          ) 

of  ( ) , and  ( )  is a matrix whose columns are 

eigenvectors   
( )
 (          ) of  ( ). 

The eigenvalues   
( )

, which are obtained by eigen-

value decomposition, represent a variance in the 

eigenvectors   
( )

, which are orthonormal bases. In 

this study, a space constructed by eigenvectors cor-

responding to the largest eigenvalues up to   num-

bers is the phonetic subspace, which represents the 

phonetic information. A space constructed by 

(   ) eigenvectors corresponding to the remain-

ing small (   ) eigenvalues is the speaker sub-

space, which is complementary to the phonetic 

subspace. The speaker subspace represents the 

speaker information. Consequently, the input 

speech can be separated into phonetic and speaker 

information by projecting both type of information 

to the speaker and phonetic subspaces, respectively. 

 

 

 

 

57



2.2 Speaker clustering based on projection to 

speaker subspace 

 

Clustering ideally produces one cluster for each 

speaker in a conversation and assigns all segments 

from each speaker to a single cluster. Gaussian 

mixture models are trained using the speech data 

projected to the speaker subspace for each segment. 

 

The Mel-frequency cepstral coefficient (MFCC) is 

commonly used in speaker recognition and is ob-

tained from the log filter-bank amplitudes using a 

discrete cosine transform (DCT). However DCT is 

not designed to transform a space by taking into 

account data distribution as well as correlation of 

feature parameters. In this study, we used PCA in-

stead of DCT to diagonalize a data covariance ma-

trix and decorrelate the feature parameters of the 

log filter-bank amplitudes. This PCA, which we 

used instead of DCT for signal processing, can also 

construct respective speaker subspace. 

 

 A sequence of speech data {  
( )
} of a segment   

observed in an n-dimensional observation space is 

projected to the speaker space by using Eq. (4) and 

the speaker model (GMM) is trained in the speaker 

subspace by using the projected speech data. 

  ̂ 
( )
   ( ) (  

( )   ̅( )) (4) 

 

The orthogonal matrix  ( )  has columns that are 

higher order eigenvectors   
( )(       ), which 

were obtained with PCA for the segment. Figure 1 

shows an example of the projection to the speaker 

subspace. The speaker subspaces of segments A 

and B, shown with rectangles, are respectively de-

noted by    and   . The regions enclosed by ellip-

ses indicate the speech data. The speaker subspace 

is a space constructed by axes whose variance is 

small. Therefore, after projecting the speech data 

of segments A and B to each speaker subspace, a 

within-speaker variance becomes smaller than that 

in an observation space, leaving a fixed between-

speaker variance. 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: Projection to speaker space 

Figure 2 shows a conceptual diagram of the pro-

jected phonetic subspace. The orthonormal basis 

vector   
( )

 configures the phonetic subspace, and 

the orthonormal basis vectors   
( )

 and   
( )

 con-

figure the speaker subspace. The input feature vec-

tor    can be divided into phonetic vector 

        
( )

 and speaker vector         
( )

 by using Eqs. 

(5) and (6), respectively.         
( )

 shows the pho-

netic vector projected to the phonetic subspace, and 

        
( )

 shows the speaker vector projected to the 

speaker subspace.  
 

 
Figure 2: Phonetic vector and speaker vector 
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A common approach used in speaker clustering is 

hierarchical agglomerative clustering with a CLR 

consisting of the following steps: 

 

1. Form one cluster from each segment. 

 

2. Construct a speaker subspace in the segment 

by performing PCA. 

 

3. Project speech data in the segment to the 

speaker subspace by using Eq. (4). 

 

4. Construct a statistical speaker model (GMM) 

in the respective speaker subspaces. 

 

5. Compute the CLR as pair-wise distances be-

tween each cluster (Reynolds et al. ,1998). The 

CLR    for clusters   and   is given by Eq. (7). 
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 (     )
    

 (     )
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where    is a segment of cluster  ,     is its  th 

frame feature of the segment,    is the number 

of frames of a segments,    is the parameters of 

GMM for cluster  , and     (  |  ) is the av-

erage log likelihood of the segment of cluster   
given by model   . 
 

6. Merge the closest pairs of clusters, if the min-

imum distance between the clusters is smaller 

than the threshold  . 

 

7. Update distances of remaining clusters to form 

a new cluster by using the unweighted pair-

group method using arithmetic averages 

(UPGMA) (Sneath and Sokal, 1973) by Eq. (8). 
 

 (   )   
 

    
∑∑    (        ) 

  

   

  

   

 

(8) 

where r and s are the cluster number,    and    
indicate the number of segments in each cluster, 

and     (        ) is obtained by Eq. (7). 

 

8. Iterate steps 5-7. The clustering process finish-

es if all distances between clusters are not 

smaller than the threshold  . 

 

3 Experiments 
 

3.1   Experimental Setup 

 

We used corpus of spontaneous Japanese (CSJ) as 

evaluation data. The CSJ consists of 3302 talks 

(662 hours, 1417 speakers) collected from academ-

ic conference presentations and extemporaneous 

speeches (Maekawa, 2003). The talks are segment-

ed into utterances at every pause of longer than 300 

milliseconds. We chose utterances of multiple 

speakers randomly from the CSJ to make the test 

sets as close to actual multi-party conversations as 

possible. We used five test sets (1-5), each of 

which consisted of five speakers. The duration of 

an utterance ranged from 30 to 70 seconds. In addi-

tion, we also used another five test sets (6-10), 

each of which consisted of 10 speakers. The dura-

tion of an utterance ranged from 20 to 50 seconds. 

The duration of one speaker's total speech was 

about 100 seconds. There are not overlapping ut-

terances in the test tests. Table 1 lists the detail of 

each test set. 

 

The speech data was sampled at 16 kHz, analyzed 

with an analysis window size of 25 ms with 10-ms 

overlap, and parameterized into 24 cepstral coeffi-

cients obtained using a 24-channel Mel-frequency 

spaced filter-bank. 

 
Table 1:  Details of each test set 

Test 

set No. 
Number of 

speakers 
Number of 

segments 
Total segments 

time (min) 

1 5 55 44.5 

2 5 57 45.1 

3 5 59 44.4 

4 5 58 44.8 

5 5 55 45.0 
6 10 177 95.0 
7 10 181 93.7 
8 10 183 93.5 
9 10 174 81.4 
10 10 171 91.5 

 

We carried out speaker clustering experiments with 

three methods: The first method was a hierarchical 

agglomerative clustering method based on BIC in 

an observation space with 24 dimensional MFCC 

parameters. The second method was a hierarchical 

clustering method based on the CLR using GMM 

in an observation space with 24 dimensional 

MFCC parameters. The third method was the pro-

posed method based on GMM in the speaker sub-

space obtained from an observation space with 24 

channel log filter-bank amplitudes. Our method 

clustered using CLR.  

 

The clustering results were aligned with the ground 

truth speaker labels to measure their accuracy 

based on the diarization error rate (DER) (Iso, 

2010): 
 

     
            

    
  

(9) 

 

where       is the total length of segments not 

aligned with the speaker labels,        is the total 

length of segments aligned with the wrong speaker 

labels, and      is the total length of all segments 

in a test set. We also calculated the purity metric 

(Iso, 2010): 
 

        
     

    
  

(10) 

where       is the total length of the speaker label, 

which is the longest utterances for each cluster. 

 

3.2  Experimental results 

 

Table 2 lists the clustering results for test sets 1-5, 

and Table 3 lists the clustering results for test sets 

6-10. The parameter   for the BIC is the turning 

parameter, MN indicates the number of mixtures of 

the GMM, and SD for the proposed method indi-
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cates the dimensions of the speaker subspace. To 

investigate the phoneme -dependency of each ei-

genvector axis, we compared 20 combinations of 

dimensions with 1-20th, 1- 21st, 1-22nd, 1-23rd, 1-

24th, 2-20th, 2-21st, …, and 4-24th eigenvectors. 
 

Table 2: Clustering results for the test sets 1-5 

 DER(%) Purity(%) Parameter 

BIC 8.8 90.5           

GMM 10.1 89.4 MN = 2 

Proposed 

method 

6.8 92.2 MN = 4 

SD = 2–21 

 

Table 3: Clustering results for the test sets 6-10 

 DER(%) Purity(%) Parameter 

BIC 10.8 87.9           

GMM 12.8 86.4 MN = 4 

Proposed 

method 

7.1 92.2 MN = 4 

SD = 2–21 

 

Tables 2 and 3 show that the proposed method ob-

tained a higher clustering accuracy than that ob-

tained with the conventional methods based on the 

BIC and GMM, for both groups of test sets. Test 

sets 5-10 contained five speakers and test sets 6-10 

contained 10 speakers. Therefore, the proposed 

method can obtain high clustering accuracy with a 

variation in the number of speakers. 

 
Figures 3 and 4 show the relation between cluster-

ing accuracy and the number of mixtures for the 

conventional GMM and the proposed method for 

test sets 1-5 (Fig. 3) and 6-10 (Fig.4). The optimal 

number of mixtures of the GMM varies because 

GMM of two mixtures is best for test sets 1-5 and 

GMM of four mixtures is best for test sets 6-10. 

However, the optimal number of mixtures of the 

proposed method does not depend on the number 

of speakers. 
 

 
Figure 3: DER in each mixture for test sets 1-5 

 

 
Figure 4: DER in each mixture for test sets 6-10 

 

A preliminary experiment, showed that the first ax-

is of PCA should not be used for configuring the 

low-dimensional axes of the speaker subspace in 

the proposed method. Therefore, Fig. 5 shows the 

DER when the higher-dimensional axes of the 

speaker subspace are reduced. The number of mix-

tures is four for all cases. 

 
Figure 5: DER in various ranges of eigenvectors 

composing the speaker subspace 

 

As clearly shown in the Fig. 5, the best DER was 

obtained when SD was 2-21 for both test sets. 

However, in each test set, the best DER varied by 

the dimensions of the speaker subspace because the 

variation in utterance lengths was large. Therefore, 

we will study how to select the optimal dimensions 

of the speaker subspace by considering the varia-

bility of phoneme in speech data. 

 

The average number of clusters with the BIC was 

5.0, the GMM was 5.8, and the proposed method 

was 5.6 for test sets 1-5. The standard deviation 

was 0.71 for the BIC, 1.30 for the GMM, and 0.89 

for the proposed method. For test sets 6-10, the av-

erage number of clusters was 11.6, 13.8, and 14.0, 

for the BIC, GMM and proposed method, respec-

tively. The standard deviation by the BIC was 0.55, 

the GMM was 2.56 and the proposed method was 

1.22. The proposed method used a threshold for the 

CLR to stop the clustering process. For future work, 

we will use BIC as a stopping criterion of cluster-
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ing for the proposed method to improve the estima-

tion accuracy of the number of speakers. 

 

4   Conclusions 
 

We proposed a speaker-clustering method using a 

GMM trained in speaker subspace using speech da-

ta projected to the speaker subspace. The proposed 

method used PCA transform to construct the 

speaker subspace. 

 

From the results of the speaker clustering experi-

ments, the DER with the BIC was 8.8% for test 

sets 1-5 and 10.8% for test sets 6-10, that with the 

CLR using a GMM was 10.1% for test sets 1-5 and 

12.8% for test sets 6-10, and that with the proposed 

method was 6.8% for test sets 1-5 and 7.1% for test 

sets 6-10. Therefore, the proposed method obtained 

a higher speaker clustering accuracy than that with 

the conventional methods. The experiments also 

demonstrated that separating the phonetic and 

speaker subspaces using PCA was effective. 

 

For future work, we will evaluate the proposed 

method on the National Institute of Standards and 

Technology (NIST) databases to demonstrate its 

generality. It is also necessary to study how to se-

lect the optimal number of dimensions of the 

speaker subspace. Moreover, we will study on 

speaker clustering for test data included overlap-

ping utterances. 

 

References 
 
Lei Chen and Mary P. Harper. 2009. Multimodal Floor 

Control Shift Detection, Proc. ICMI-MLMI. 

 

Kristiina Jokinen, Kazuaki Harada, Masafumi Nishida, 

and Seiichi Yamamoto. 2010. Turn-alignment Using 

Eye-gaze and Speech in Conversational Interaction, 

Proc. Interspeech, pp.2018-2021. 

 

Stuart Battersby. 2011. Moving Together: the Organiza-

tion of Non-verbal Cues During Multiparty Conversa-

tion, PhD Thesis. 

 
Sue E. Tranter and Douglas A. Reynolds. 2006. An 

Overview of Automatic Speaker Diarization Systems,  

IEEE Transactions on Audio, Speech, and Language  

Processing, Vol.14, No.5, pp.1557-1565.  

 

Douglas A. Reynolds and Pedro A. Torres-Carrasquillo.  

2005. Approaches and Applications of Audio Diariza 

tion, Proc. ICASSP, Vol.5. pp.953-956. 

 

Scott Chen and Ponani Gopalakrishnan. 1998.  Speaker  

Environment and Channel Change Detection and Clus 

tering via the Bayesian Information Criterion, Proc.  

DARPA Broadcast News Transcription and Understand 

ing Workshop, pp.127-132. 

 

Shih-Sian Cheng, Hsin-Min Wang, Hsin-Chia Fu. 2010.  

BIC-based Speaker Segmentation Using Divide-and- 

conquer Strategies with Application to Speaker Diariza 

tion, IEEE Transactions, Vol.18, pp.141-157. 

 

Kenichi Iso. 2010. Speaker Clustering Using Vector  

Quantization and Spectral Clustering,  Proc. ICASSP,   

pp. 4986 – 4989. 

 

Masafumi Nishida and Tatsuya Kawahara. 2005.   

Speaker Model Selection Based on the Bayesian Infor 

mation Criterion Applied to Unsupervised Speaker In 

dexing, IEEE Transactions on Speech and Audio Pro 

cessing, Vol.13, No.4, pp. 583-592.  

 

Douglas A. Reynolds, Elliot Singer, Beth A. Carlson,  

Gerald C. O'Leary, Jack J. McLaughlin, and Marc A.  

Zissman. 1998. Blind Clustering of Speech Utterances  

based on Speaker and Language Characteristics, Proc.  

ICSLP, pp.3193-3196.  

 

Viet-Bac Le, Odile Mella, and Dominique Fohr. 2007.  

Speaker Diarization using Normalized Cross Likelihood  

Ratio, Proc.Interspeech, pp.1869-1872.  

 

Masafumi Nishida and Yasuo Ariki. 2001. Speaker  

Recognition by Separating Phonetic Space and Speaker  

Space, Proc. EUROSPEECH, Vol. 2, pp. 1381-1384. 

 

Peter Sneath and Robert R. Sokal. 1973. Numerical  

Taxonomy, W. H. Freeman and Company. 

 

Kikuo Maekawa. 2003. Corpus of Spontaneous Japa 

nese: Its Design and Evaluation, Proc. ISCA & IEEE  

Workshop on SSPR, pp.7-12. 

61


