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Abstract

We study an infinite system of particles chaotically distributed over a Euclidean
space R?. Particles are characterized by their positions € R and an inter-
nal parameter (spin) o, € R™, and interact via position-position and (position
dependent) spin-spin pair potentials. Equilibrium states of such system are de-
scribed by Gibbs measures on a marked configuration space. Due to the presence
of unbounded spins, the model does not fit the classical (super-) stability theory of
Ruelle. The main result of the paper is the derivation of sufficient conditions of the
existence and uniqueness of the corresponding Gibbs measures.

1 Introduction

The aim of this paper is to study the equilibrium states of the following infinite particle
system in continuum. We consider a countable collection ~y of identical point particles
chaotically distributed over a Euclidean space X (= R?). Additionally, we assume
that each particle x € + possesses an internal structure described by a mark (spin)
o, taking values in a single-spin space S (= R™) and characterized by a single-spin
measure y on S. Each two particles x,y € -« interact via a pair potential given by the
sum of two components:



(i) a purely positional (e.g. distance dependent, possibly singular or hard-core)
potential

O: X xX ->RU{+x}, O(z,y) =D(y,x), 2,y € X (1.1)

(representing e.g. a molecular force);
(i) a (position-dependent) spin-spin interaction of the form Wy, (o, o, ), where

Way =Wys : S X S = R, Wyy(s, t) = Wyy(t,s), s,t €S, (1.2)

are symmetric functions of polynomial growth.

Our system can be seen as a combined type model, which carries features of both
an infinite particle system in continuum (i.e., non-ideal classical gas) and an interact-
ing system of unbounded spins on a discrete set (random graph) formed by positions
of the particles. Therefore we have to take into account two possible catastrophic
effects caused by dense particle configurations and by strong spin interactions, respec-
tively. Notably, our model does not fit the setup of the previous papers on marked point
processes, which have mostly been dealing with the case of compact spins. Thus its
study requires development of new methods, involving an appropriate concept of ther-
modynamical stability. The corresponding physical systems are e.g. magnetic gases,
ferrofluids, amorphous magnets, etc., see [16], [17], [36]. Such compound (with ad-
ditional spin variables) models are of a special interest in mathematical physics be-
cause they provide some (of still very few) examples of continuum systems where the
appearence of an (orientational odering) phase transition has been proved rigorously.
This makes important an alternative question of the absence of phase transition, i.e. the
uniqueness of thermal equilibrium states, expected e.g. in the low density regime. Such
models are still poorly understood, to say nothing of the general case of non-compact
(possibly multi-dimentional vector) marks and unbounded (not necessarily ferromag-
netic or quadratic) spin interactions, which motivates our present study.

Once the interaction potentials have been specified, the whole system is governed
by the heuristic Hamiltonian

H(®y) = Z (z,y) + Z me(azvay)

{z,y}Cy {z,y}Cy

on the phase space I'(X) consisting of marked configurations ¥ = {(z,0,)}, where
the corresponding position configuration v = {z} belongs to the space

IN(X):={yCX: N(ya) <ooforany A € By(X)}.

Here By(X) is the collection of all compact subsets of X and N (yA) denotes the
number of elements of v, := v N A. In what follows, we will use the notation 7, :=
{(@,04), x € M}

_The equilibrium states of the system are described by certain probability measures
on I'(X). In absence of the interaction (the so-called “free” case), the equilibrium state
is unique and given by the marked Poisson measure

#(d7) = Q) x(dos)m.(dv),

xeEY



where 7, is the Poisson measure on I'(X') with intensity (i.e., particle density) z > 0,
see e.g. [12], [8]. If the intgraction is present, the equilibrium states are given by
marked Gibbs measures y on I'(X), which are constructed as perturbations of 7 by the
(heuristic) density exp {—H (7)}. Rigorously, any such  is a probability measure on
['(X) with prescribed conditional distributions 1(d7 | 7 = 7 off A), 7j € ['(X), for an
exhausting system of sets A € By(X). These conditional distributions, or Gibbs speci-
fication kernels of our model, are explicitly given by formulae (2.23) and (2.24) below
and will be denoted by IT (d¥ |7)). So, the study of Gibbs measures is reduced to the
generic problem of reconstructing a Markov random field i on f(X ) from its local
specification IT = {IIx}, Bo(x)- This constitutes the standard Dobrushin-Lanford—
Ruelle (DLR) formalism described in details in Section 2.2.

We denote by G the set of all such measures (for fixed H and x). The study of the
structure of the set G is of a great importance. In particular, there are three fundamental
questions arising here:

(E) Existence: is G not empty?
(U) Uniqueness: is G a singleton?
(M) Multiplicity: does G contain at least two (and hence infinitely many) elements?

In this paper, we derive sufficient conditions for (E) and (U). We ingoduce the set
Gt c Gof tempered Gibbs measures that are concentrated on the space I'y(X) of con-
figurations with certain bounds on their density and spin growth, see (2.39), (2.40).
Under reasonable assumptions on the interaction potentials ® and W (responsible for
the global stability of the system and listed under (A1)-(A6) below), we will prove
that the set G* is not empty (Theorem 4) and, moreover, that G* is a singleton provided
the particle density z is small enough (Theorem 5). To prove the existence, we use
the extension of the analytic method developed in [24] for the case of interacting par-
ticle systems without spins. A crucial technical step here is to prove a uniform bound
of certain exponential moments of the corresponding specification kernels 15 (d7 |7)
as A X for any boundary condition 7 € ft(X ). This in turn allows to show
the compactness (in the topology of local set convergence on f(X )) of the family
{II5 (d¥ 7)), A € Byo(X)} and thus the existence of the limiting points, which can be
identified with elements of G*.

In order to study the uniqueness, we represent (via the natural embedding Z¢ C X))
the configuration space I'(X) in the form f(Q)Zd, where Q is an elementary cube in
X, and construct a lattice model (with intricate non-linear spin space f(Q)) equivalent
to the original continuum model. In this setting we can use the Dobrushin—Pechersky
approach to the uniqueness problem for lattice-type systems, see [14], [6, Theorem
2.6] and also [32, Theorem 4] and [2, Theorem 3], where this method is applied to
continuum systems (without spins) on I'(X'). The uniform exponential moment bounds
allow us to control the interaction growth and to check the conditions of the Dobrushin—
Pechersky criterion for the lattice counterpart of the continuum model. As a by-product
of our method we also prove a decay of correlations for the (unique) Gibbs measure
(Corollary 7), which seems to be entirely new for such systems.



Let us note that a general theory of Gibbs measures with the Ruelle-type (super-)
stable interactions on marked configuration spaces can be found e.g. in [1], [22], [26],
[28] and [35]. However, it is essentially restricted to compact spins and hence does not
apply to our model (see Remark 2.6). The case of unbounded vector spins interacting
via potentials of superquadratic growth and position-position interaction with no hard
core, including the existence and uniqueness problems for the associated Gibbs states,
has not been treated so far in the literature.

The question of the existence of multipliple Gibbs states (phase transitions) has
been discussed for ferromagnetic interactions in [39], [16], [S] (discrete spins), [17],
[36] (hard core position-position interaction, continuous scalar spins) and in our com-
plementary paper [9] (no hard core, continuous scalar spins). The appearance of
Berezinskii-Kosterlitz-Thouless phase transition in a ferrofluid of hard-core particles
with O(2)-invariant spins was shown in [18], see also references given there.

The structure of the paper is as follows. In Section 2 we give a rigorous description
of our model (Subsections 2.1, 2.2, 2.4) and formulate the main results (Subsection
2.5). Section 3 is devoted to the derivation of moment bounds. In Section 4, we prove
our main result on the existence problem — Theorem 4. Section 5 deals with the unique-
ness problem. We start with the lattice representation of our model (Subsection 5.1)
and prove Theorem 5 in Subsection 5.2. In Section 6, we present proofs of several
technical lemmas.



2 The model and main results

2.1 Marked configuration spaces

As a location (phase) space X for our particle system, let us fix the d-dimensional
(d > 1) Euclidean space R?. It is endowed with the Lebesgue measure d on the Borel
o-algebra B(X). By By(X) we denote the ring of all bounded sets from B(X). The
configuration space I'(X) consists of all locally finite subsets of X, that is,

INX)={yCX: N(ya) <ooforany A € By(X)}, (2.1)

where N (y4) stands for the cardinality of the restriction 5 := v N A. Let Cy(X) be
the set of all continuous functions f : X — R with compact support. The space I'(X)
is equipped in the standard way with the vague topology, which is the weakest one that
makes continuous all maps

T(X)3vym (f7) =Y f(x), feCo(X)

reYy

It is well known (see, e.g., [19, Section 15.7.7]) that T'(X) is a Polish (i.e., separable
completely metrizable) space in this topology; an explicit construction of the appropri-
ate metric can be found in [23]. By P(I'(X)) we denote the space of all probability
measures on the corresponding Borel o-algebra B(I'(X)).

Let now S be another Euclidean space R™ (with m # d in general) and consider
the Cartesian product X := X x S. For any element Z := (z, s) of X its S-component
s may be seen as a mark (spin, charge etc.) attached to a particle placed at position
z € X. Given a set A C X, we will often write for short A := A x S. The canonical
projection px : X x S — X can be naturally extended to the configuration space
I'(X) :=T'(X x 5). Observe that for a configuration ¥ € I'(X) its image px (7) is
a subset of X that possibly admits accumulation and multiple points, and hence does
not in general belong to I'(X). The marked configuration space I'(X) is then defined
in the following way (see e.g. [8], [12], [20]):

= T(X) = {a eT(X): px(3) € F(X)} . 2.2)
We will systematically use the notation
YA =N Aand Y, ::ﬁﬁx

fory € T'(X), 5 € T(X), A C X and cylinder sets A := A x 5.
We equip I'(X) with the so-called 7-topology defined as the weakest one that
makes continuous the map

L(X)370 (g.9) = Y glz.s) (2.3)
(w,5)€7

for any bounded continuous function g : X x S — R with suppg C A x S for some
A € By(X), i.e. with spatially compact support. This topology has been employed in



different frameworks in e.g. [1], [11] and [26]; for a short ‘account of its properties see
also [10]. An advantage of the 7-topology is that it makes I'(X) a Polish space, in con-
trast to the vague topology inherited from F()? ) (which is generated by the maps (2.3)
with g € Cy(X)). For an example of the T-consistent metric on I'(X) see Section 2 of
[7]. We then endow f(X ) with the associated Borel o-algebra B (f), also coinciding
with the trace o-algebra B(I'(X)) NT'(X). This is the smallest o-algebra for which the
counting variable

= NEHNA) 2.4)
is measurable for any A € B(X x S) with px (A) € By (X).

For a fixed A € By(X), we consider the space

T =Ta(X) = {7 € T(X) : px(3) C A} 25)

of marked configurations located in the cylinder set A=A x S. It will be equipped
with the image topology px o 7 induced from I'( X') under the natural projection

pa: T(X) 37— A € Th(X) (2.6)

and with the corresponding o-algebra B(I'y) = B(I') N Tx(X). Notably, (I'x(X),
B(T'y)) is a standard Borel space, which means that B(I') can be generated by some
separable and complete metric on I'5 (X). We can now define the o-algebra B (I') :=
px'oB(T'y) on [(X), which is constituted by the sets

{a eT(X): 7, € A} . AeTh(X), 2.7)

and hence is o-isomorphic to B(I's (X)). In other words, Bx (I') C B(T') is the smallest
o-algebra generated by all variables (2.4) with px (A) C A. Then (I'(X), B(T)) can
be seen as a projective limit of the measurable spaces (I'x (X), B(T'a)), A € By(X),
with respect to projection maps, cf. (2.6),

para: DaA(X) 330 = Aa € Tar(X), A CA. (2.8)

In particular, this allows us to use a version of Kolmogorov’s tj\zeorem (cf. [30, Theorem
V.3.2]), according to which any probability measure p € P(I") is uniquely determined
by its projections py = pip € ’P(f,\), A € By(X). Here and in what follows, we
denote by P(f) and P(T',) the spaces of probaility measures on B(f) and B(Ty),

respectively. R
We will also need the subset of marked configurations finite in all of X
To=To(X):= |J Ta(X) (2.9)
AeBy(X)

and the subalgebra of local events in T'(X)

Bo@):= |J Ba(D) (2.10)
AeBy(X)



Remark 1 The space f(X ) has a fibre bundle-type structure over I'(X), where the
fibres p)}l () can be identified with the product spaces

ST =] Sar Su:=85.

xTeEY
Thus each 7 € f(X ) can be represented by the pair
:Y\ = (’7) U’y)v Where’Y :PX@) € F(X)v O~y = (O—m)me’y €S

It follows directly from the definition of the corresponding topologies that the map px :
[(X) — T(X) is continuous. Hence for any configuration ~y the space S7 = px' (7)

can be considered as a Borel subset of f(X ).

From now on we fix a single-spin distribution x € P(S) (=: the space of prob-
ability measures on S) and constant z > 0 called the intensity or activity parameter.
Observe that each measurable f : I'o(X) — R can be identified with a family of
symmetric Borel functions f,, : (X x §)" — R, n € N, such that

) = fal(r,01),. 5 (20, 00)) fory = {(21,01), .., (20, on) }-

The marked Lebesgue-Poisson measure X, is defined on (To(X), B(Ty)) by the rela-
tion

16) A (dF) = f(0) .11

e on
#3 [ Al o) o) - x(do)don,
1 n. (X x8)"

which has to hold for all measurable f : To(X) — R,. For each A € By(X) itis a

finite measure on I'y with mass A, (I's) = exp {z [, dz}. Likewise, the Lebesgue-
Poisson measure A, on (T'g(X), B(Tg)) is defined by

[ =104 5 [ e e, @1

holding for all measurable f : T'o(X) — Ry.
It is clear that ), is an image of A\, under the projection px : T'o(X) — To(X),
whereby A, allows the disintegration

X (d7) == Q) x(doz) A=(dy). (2.13)

xreEY



2.2 The model

Following the DLR approach (for its comprehensive exposition see [15]), in this section
we will give the rigorous definition of (grand canonical) Gibbs measures associated
with the interaction potentials (1.1), (1.2) and a single-spin measure x.

We define the Hamiltonian (or energy functional) H : T9(X) — R by the formula

H(®):=U(y) +E(0,), 7= (0, €To(X), (2.14)
involving the positional and spin counterparts
U(Y):= Y, ®(z,y) and E(o)) = > Waylos,0y), (2.15)
{zy}Cy {zy}Cv

where the sums run over all (unordered) pairs of distinct points x, y € 7. By conven-
tion, we put H({0)}) = 0 and H ({(x,0,)}) = 0forall (x,0,) € X.

~

For any A € By(X) and i) = (1, &,) € I'(X), the relative local energy is given by
Ha(Yalm) = HA ) + AHA(Yal1) (2.16)
where
AHAGAID) == D > @@y + D> Y Wiy(0m,&). 2.17)
TEYA YENAC TEYA YENAC

Separating different types of interactions, we may rewrite (2.16) as

Hy(AAlM) = Ua(yaln) + Ex(oal€) (2.18)
with
Us(aln) = T+ Y Y @=,y), 2.19)
TEYA YENAC
Ex(03,18) = BEaloy)+ D Y Wayl0m,&). (2.20)
TEYA YENAC

The local Gibbs state i, € P(T's) with boundary condition 7 € T'(X) fixed
outside volume A € By(X) is defined by the formula

1 (dAn) i= Za(@) exp {—HaGa|D)} Aoa(dAn), (2.21)

where Xz, A is the restriction of the Lebesgue-Poisson measure Xz to B (f A). We will
often omit the subscript A and just write A, (d7A) and A\(dvs ). Here

Za(7) = / exp {—Ha(alf)} He(dn) (2.22)

is the normalizing factor (called the partition function) making ,u?[{ a probability mea-

sure on I A(X) (provided Z (7)) < oo, which will be the case under certain conditions
on the interaction potentials, cf. Corollary 10). Next, we introduce stochastic kernels

T(X) x B(T) 3 (7, B) = 115 (BIf) € [0, 1]



by the formula ) R

IIp (B|7/7\) = /LX (BA’ﬁ) , Be B(F), (2.23)
where By 5 = {7 : A UTac € B} € B(f,\). By construction, the projection of
T4 (-|7) on T'c is just the §-measure concentrated at 7ja<. So, the integral relation

AF@mu@m
— Zy(@) / F@ Ui )exp {—HaGalD)} A (d3n), (2.24)

holds for any measurable function F : ['(X) — R,. Furthermore, the map I'(X) >
A s T, (B|A) is measurable for each fixed B € B(T).

The family IT = {IIr},cp,(x) constitutes a Gibbsian specification on [(X) (in
the standard sense of [15], [33]). In particular, it obeys the consistency property

/f Iy (BIF) Mo (d317) = Ty (BJ7), (225)

which holds for any B € B(T), 7 € T'(X) and A, A’ € By(X) such that A € A’ (and
thus A C A ). R

Let 1 be a probability measure on I'(X). We say that p is a Gibbs state associated
with the specification 11 if it satisfies the Dobrushin—Lanford—Ruelle (DLR) equation

u(B) = /fHA (BF) u(dA) (2.26)

forall B € B(I') and A € By(X). We denote by G := G(I') the set of all such
measures.

In the “free” case when both ® and W vanish, the corresponding unique Gibbs
state ;4 € G is just the marked Poisson measure 7. Equation (2.26) then simplifies to
Kolmog\orov’s thegrem, which says that 7 is fully determined by its local projections
TA = [)\Z(FA)]fl)\z,A S P(FA), A€ Bo(X)

2.3 Assumptions on the interaction

Let us specify conditions on the interaction potentials ¢, W and single-spin distribution
X to be used in the proof of our main results. For that, we define a partition (Qg);,czq
of X by “elementary” volumes. Here Q, is the half-open cube in X with side length 1
centered at point k = (k™) ..., k(9)) € Z¢ C X, that is,

Qi = {1: = @D, @) eXx: 20 ¢ [W —1/2, k@ 4 1/2)} .2
For k € Z% and v € T'(X) resp. 5 € ['(X), we then write for short

Ve = q, € I'(Qx) =: Tk resp. A :=7q, € 'q,(X)=:T%.

In what follows we always assume that the following conditions hold.



(A1) Finite range of interactions, thatis, 3 R > 0 such that &(z,y) = 0 and W, =0

if |z —y| > R.
(A2) Lower boundedness of ®, that is, 3 M > 0 such that
inf ® > M. 2.28
L inf (z,y) > (2.28)
(A3) Local strong superstability of U, that is, 3 P > 2 such that for some Ag > 0
and Bg > 0
U(yk) = AsN ()" — BaN (k) (2.29)
for any k € Z% and y € T'(X).
(Ad) Uniform polynomial bound on W, := —min{Wy,, 0}, thatis, 3r > 0 and
J, Cw > 0 such that
W, (5,t) < T (Is|" +1t|"+ Cw), s,teS, (2.30)

forall {z,y} C X.

(AS) Exponential moment bound on Y, that is, 3 ¢ > r such that

/eAX‘Squ(ds) < 00 (2.31)
s

for some A, > 0.

In addition, we require the following condition, which guarantees a spin-position
superstability type estimate (3.1) crucial for our method:

(A6) P, q and r satisfy the relation
(P-2)(q/r—1)> 1. (2.32)
Let us point out that neither translation invariance nor continuity of ® and W is
assumed.

Remark 2 (i) For every potential ® obeying (Al) and (A2), the local strong supersta-
bility (A3) readily implies the global one. More precisely, for any A%, € (0, Ag) there
exists a By, > 0 such that

U(y) > Ay Y N(w)” = BeN(y), v €TLo(X). (2.33)
keZd

This can be easily seen from the following chain of estimates

U() > Y [AeN(w)” = BeN(w)] =M D> >~ N(w)N

kezd kezd jedk
> > [AeN(w)" = MNGN(%)* = BaN ()]
keza
> (Ao —8) 3 N(w)® [ (MNys—1) 7= +Bq>} N(7), (2.34)
kezd

10



where in the last line we used Young’s inequality (6.14) and Ny := N (0k) is cardinal-
ity of the set k. By choosing small values of 6 > 0, we can get A}, arbitrarily close to
Ag.

(ii) The size of the elementary cubes in the partition X = ], ., Qy is irrelevant. Fix
any € > 0, then (A3) clearly holds for all Q5 = €(Qo + k), k € Z%, with proper
constants Ag . > 0 and By . > 0.

(iii) One of the best-understood examples of strong superstable interactions is given by
the so-called Dobrushin—-Fisher—Ruelle (DFR) potentials behaving at the diagonal like
O (z,y) > clr — y\fd(lw) as |x —y| — 0, in which case P = 2 + 0. For a detailed
study and historical comments see [34] and also [24, Remark 4.1].

(iv) Assamption (A5) is aimed to compensate the polynomial growth of W~ allowed by
(A4). It is obvious that any measure satisfying condition (2.31) is finite. Thus without
loss of generality we can choose x to be a probability measure. Furthermore, it is typ-
ically assumed that x(ds) := e~V ) ds for some self-interaction potential V : S— R
growing fast enough:

Ay > Ayand By >0: V(s)> Ay |s|? — By, s€S. (2.35)

(v) The case of bounded W, is essentially easier to handle. It can be covered by a
(simplified) version of our method, which will also work for ¢ = 0, P = 2 (excluded
from the general case by condition (2.32)). This requires however Ag to be large
enough. On the other hand, this case fits into Ruelle’s superstability approach extended
in a straightforward manner to marked configuration spaces (see a related comment in
Section 2.6)

(vi) Except for the finite range, we impose no further restrictions on the positive part
WZ/ := max {Wy,, 0} of the spin-spin interaction. Indeed, adding any W;L >0
could only improve our basic estimates in Section 2.5. Of a special interest here are
ferromagnetic interactions Wy, of the form Jyy|s — t|2 or —Jyuy (s, t) with Jpy >
0 (notably, these two cases are not equivalent for our model insofar they cannot be
reduced to each other by changing the single-spin measure x), see also Remark 6.

(vii) Assumption (2.32) is crucial for our method. It excludes the possibilty of ® = 0
(that is, P = 0, cf. (2.29)), which case can however be treated by modified arguments
provided the spin-spin interaction is purely repulsive, that is, W, > 0 (as pointed out
in Remark 22).

(viii) The case of multi-particle potentials ®(x1, ...xy,) and W (s, ...sp) withn > 2
can be studied by similar methods provided the superstability estimate of Proposition
8 holds for the corresponding local Hamiltonians.

(ix) All the results below remain true if we take any non-atomic Radon measure o(dx)
on (X, B(X)) obeying the bound suppcza 0(Qr) < oo as intensity measure of the
point process A, (instead of the Lebesgue mass dzx).

11



2.4 Notations

Throughout the paper, we will use following shorthand notations (related to A €
Bo(X) and k € Z9):

[p:=TA(X);m=yNA

T'a :FA(X);;)/\A :::Y\Q(AXS)
Ek :EQka Ve = VQu

Fk :FQka :)716 _:V\Q;c

Ok := {j # k : dist (Qx, Q;) < R}, where ‘dist’ is the Euclidean distance between
two sets in R¢
Ny := N(0k)- cardinality of the set Ok; obviously, it is independent of k& € Z? and
finite;
Yok = Ujearss Yok = Ujcon;
OAN = AR\ A=AgNAS°
|A] == fA dx — volume of A
QIC = Uje)C Qj, K C Zd
Hy(3k 1) :== Hq,(Ya. 1)
Uk('yk |77) = UQlc ('VQI« |77)
Further notations will be introduced as needed.

Remark 3 By assumption (Al), both ®(x,y) and Wy, vanish for all x € Qy and
y € Q; whenever j ¢ Ok. The total number Ny = N (0k) of “neighbor” cubes Q;,

J € Ok, is independent of k and can be roughly estimated by
/2

= FaTaa) (2.36)

No < vg (RJr\/g/Q)d, V4

where v is the volume of a unit ball in R% and T is the classical gamma function.

2.5 Main results

Let us fix parameters x,9 > 0 and define control functions F : To(X) — R and
F, :T(X) = R} U{+oco} by formulae

FA)=sN+9) loa|", 7=(7,0), (2.37)
rey
and
Fa(3) = sup {e‘a“f‘F(%)}, a>0. (2.38)
keZd

respectively. Introduce the space of tempered configurations

~

Iy(X):= {? e(X): F,(3) < oo forany o > O} (2.39)
and the corresponding set G* of tempered Gibbs measures that are supported by ft (X),

i.e.

G :={neg:ulux) =1}, (2.40)
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Obviously, the spaces ft (X) and G* are independent of the choice of positive x and 1.
Furthermore, I'y (X ) can be characterized in the following way:

T(X)={7€T(X): Y e MFH) < ooforanya>0,. (2.41)
kezd

The next two theorems summarize the main results of this paper.
Theorem 4 (Existence and a priori estimate)
(i) The set G* is not empty.
(ii) For any given values
k€ (0,As) and V€ (0,4,), (2.42)

there exists a (explicitly computable) positive constant U := U(k, 1) such that
each y1 € G obeys the moment estimate

sup [ exp (PG} u (@) < V. (2.43)
kezd JT

The proof will be given in Section 4. It is based on the uniform bound of ex-
ponential moments for the corresponding specification kernels (similar to (2.43), see
Theorem 15) and local equicontinuity of this specification (Theorem 20), which in turn
implies that it possesses a cluster point p € G°.

Theorem 5 (Uniqueness) For any given Joy > 0 there exists zo = 2zo(Jo) > 0 such
that Gt is a singleton for all 7 < Jy and z < z.

Remark 6 The threshold activity value zy can be computed explicitly. Observe that
A ()] fFA N(va) dX.(vA) = z for any A € Bo(X), so that z can be interpreted
as the point density of the underlying Poisson point process, cf. [8, p. 41]. Thus the
uniqueness regime is achieved in the systems with low particle density. On the other
hand, for large z (that is, high particle density) one expects the existence of multiple
Gibbs states, see [9] for the case of ferromagnetic spin-spin interactions, where suf-
ficient conditions of such multiplicity (i.e., appearence of a phase transition) in our
model are given.

Our proof of the uniqueness employs a lattice representation of our system and the
Dobrushin—Pechersky criterion, see Section 5.2. Sufficient conditions of this criterion
are checked using the moment bounds from Section 3.

Remark 7 A result that seems to be completely new for this type of systems is the
decay of correlations of the Gibbs measures. Consider bounded functions G1,G> :
['(X) = R, such that Gy is Bq, (I')-measurable and Gy is Bq,, (I')-measurable, for

some ki, ky € Z%. Let || - ||oo denote the usual sup norm. Set

COVM(Gl; GQ) = M(Gle) — M(Gl)u(GQ)

13



and assume that conditions of Theorem 5 are satisfied. Let p be the corresponding
unique tempered Gibbs measure. Then, there exist positive constants € and a such that

|Cov,(G1; G2)| < €||G1]lsol|G2l|oo exp{—alki — kal}. (2.44)

This estimate is an immediate by-product of the (proof of) Theorem 5 and follows from
[6, Theorem 2.7] adapted to our setting via the lattice representation of the initial
continuum model, see Section 5.1. Such approach (even in the case of a system without
marks) can be seen as a (simpler) alternative to the method of clusters expansions (the
only method by which similar results on I'(X') have been obtained).

2.6 Comments

1. In [1, 22, 26, 28, 35], a theory of Gibbs measures (on marked configuration spaces)
based on Ruelle’s classical approach ([37, 38]) has been elaborated. To this end, one
has to require either stability or, moreover, superstability of the energy functional, ex-
pressed by the inequalities

H#)>-C-N(y)

and

H®H)>A > N(w)?—B-N(v) (2.45)
kezd

respectively, holding for any 5 € T (X) with some A, B, C' > 0. These bounds, which
must be uniform in the variables o, € S, obviously fail in the case of unbounded spin
interactions like in (2.14)—(2.15).

It seems to be possible to establish an analogue of Ruelle’s superstability estimates
replacing the term N (v;)? in (2.45) by the control functional F'(7y) (defined by (2.37)
and involving both particles’ positions and their spins). This will allow us to construct
the corresponding Gibbs states u satisfying the regularity condition

sup { K¢ Z F@) v < oo for pra.a. 5 € T'(X).
KeN HI<F

As for the uniqueness problem for such Gibbs states, one has to develop a contraction
theory of the Kirkwood—Salsburg equations for the corresponding marked correlation
functions. So far, this was only done in [26] under condition (2.45) which, as already
mentioned above, does not cover our model.

2. Gibbs measures p € G represent so-called annealed thermodynamic states of
our particle system; they describe the thermal equilibrium of this system as a whole.
Alternatively, one can consider thermodynamic states of the spin system alone for a
fixed typical configuration (sample) vy, which is distributed according to a Gibbs mea-
sure 1® on I'(X) defined by the position-position interaction ®. These are commonly
referred to as quenched states, cf. [3, 4, 29]. The corresponding Gibbs measures .,
on the product spaces S” were constructed in [10]. The relationship between Gibbs
measures of these two types can be expressed by the disintegration formula

p(dy) = py(doy) M(dy), (2.46)
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where M := p%u € P(I'(X)) is the projection of p on I'(X), cf. Remark 1 and [11,
formula (2.6)]. In general, the projected measure M does not coincide with the Gibbs
measure ;® and cannot be described in terms of position-position interactions alone.
Thus it is not clear whether the existence result from [10] could be used in order to
prove the existence of the annealed Gibbs measure p. Furthermore, (2.46) indicates
that one cannot directly compare (e.g., by means of various correlation inequalities
known for measures on S7, see e.g. [15], [27]) any two annealed Gibbs states related
to different spin-spin potentials Wy, .

Let us remark that the multiplicity (phase transition) problem for quenched Gibbs
measures of ferromagnetic type has been studied in [11]. On the other hand, the ques-
tion of uniqueness for quenched systems with unbounded spins remains so far open.
The main source of difficulties here (making standard methods not applicable) is that
the underlying discrete set v C R? is highly inhomogeneous, so that 1 ®-a.s. it holds
supgeza N (k) = +oo.

3. Analogously to the case of simple (i.e., unmarked) point processes, one can
show that each . € G satisfies the so-called Georgii-Nguen—Zessin (GNZ) equation
(see e.g. [26, 28]). It says that for any measurable function G : X x I' — R, the
following identity holds:

[ X6 7 u@
— [ [ 6@ 0@ e (-AHUER) #(d7) x(do,)d
rJ/x
Here, cf. (2.17),

AH({@YA) =Y [@(2,y) + Way(00,6)], T = (0,6).

yey

3 Exponential moment estimate

3.1 One-point estimates

The following proposition is a starting point in the realization of our approach. It
describes the superstability property of the system in terms of the control functional F'.
The proof involves simple but tedious calculations based on assumptions (A1)-(A6)
and will be given in Section 6.

Proposition 8 For any (arbitrarily small) § > 0 one finds a positive constant Cs such
that

—Hy(k 1) < = (Ao =) N(y)" +0 > lou|"+6 Y F@;)+Cs (3.1
TEVK jEOk

forallk € Z* and 7,7 € f(X) Here Cs := Cs(k,¥; J) is a non-decreasing function
of J.

15



Remark 9 Using the arguments from the proof of Proposition 8 (or, more precisely,
Lemma 33) and the global superstability of U(7y) (see Remark 2), we get the bound

— HA(al0) < —(As =6) D> N(uaNQi)" +6 > |oul+ Cas()

kezZd TEYA
< —(Ap = P MN(12) 6 Y fou|T+ Cas(@), (3:2)
TEYA

where N is the cardinality of the set {j €7 Q;NA) # @}. Both inequalities in

(3.2) hold for an arbitrary domain A € By(X), any 7j € T'(X) and § € (0, Ag) with
an appropriate constant Ca 5(7) > 0 (the explicit value of which is irrelevant for our
purposes).

Below we will frequently use the moment estimate

/f eXp{aN(VA +b Y I%q} ()

TEYA

= Z |A|" an </S ellsl® X(ds)>n = exp{z|A|ea/SebS|q X(ds)} < 00,

(3.3)

which holds for any A € By(X) and a € R, b < A, (cf. (2.31)) and follows from

the definition of the Lebesgue-Poisson measure )., assumption (A5) and disintegration
formula (2.13).

Corollary 10 The partition function Z (7)) satisfies the estimate
1< ZA(M) < o0 (3.4)
forall A € By(X) and ij € T'(X).

Proof. The lower bound can be immediately seen from the equalities Xz, A0) =1
and Ua(ya ) = Eq unse (04, [€) = 0if yo = (. The upper bound follows from
(3.2) and (3.3). O

Lemmas 11 and 14 below provide us with crucial estimates on the “one-point”
kernels 1, (dy|7) := g, (dy[n), k € Z%, subject to varying boundary conditions
7 € T'(X). To this end, let us fix some x € (0, Ag) and ¥ € (0, A,) in definition
(2.37) of the functional F, cf. (2.42).

Lemma 11 For any (arbitrarily small) § > O there exists a constant Z5 > 0 such that
forall k € Z% and i) € T(X)

[ exp{F(F)} I (A7 [7) < exp{ Z5+8 Y F(@y) ¢ - (3.5)
r jEIk
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Proof. Without loss of generality we may assume that
0 <min{As — k; A, —I}.

Taking into account that Zq, (77) > 1, cf. (3.4), and using estimate (3.1), we obtain

/fexp{mk)} Ty (d717)

<expi Cs+0 Z F(;) /ﬁ exp{AX Z o'mlq} X(dﬁk) (3.6)

JEOk TEYEK

The integral in the RHS of (3.6) is calculated explicitly in (3.3). Then we have

/F ,/sw exp {AX Z |Jz|q} ® x(dog) A(dyk) = exp {ng}'

TEVK TEVE
where £, = [gexp {A, [s|’} x(ds) is finite because of (A5). Therefore (3.5) holds
with
Hs = Cs + 2&,, 3.7
which depends on J through C; and hence is non-decreasing in J and z. O
A subsequent application of Jensen’s inequality to both sides in (3.5) immediately

implies the following estimate of Dobrushin’s type (cf. [13]). It states a kind of weak
dependence on boundary conditions, which could be achieved by choosing § < No_l.

Corollary 12 Under assumptions of Lemma 11 we have the bound
[ PG @) <25+ 3 F@) G3)
r jEk
Remark 13 By virtue of (the first inequality of) (3.2) and (3.3) one can see that for
any fixed k € (0, Ag) and ¥ € (0, A,)

ﬁ exp{F@EV} Ty (47 [7) < Cu(A,7), ke AeBo(X), (39
N

where Ci,(A, 1) < oo is an increasing function of A. However, this estimate is too
rough for our purposes and will be improved by more refined arguments employing the
Markov property of the specification 11, see Section 3.2.

Here and in what follows, we denote by dy., (v1,v2) the total variation distance
between two measures v; and v on a o-algebra F, that is,

dyar (V17 VZ) ‘= SUDPacF |V1(A) - VQ(A)‘ .
Our second fundamental lemma evaluates this distance between local Gibbs states

uZ(d%) = ,ugk (dAx) and w5 (d7g) = ugk(d%) on B(T'},) with boundary condi-
tions 7] and ¢ respectively, cf. (2.21).
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Lemma 14 There exists a non-decreasing function ¢(z,J,L) of z,J,L > 0 such
that
dvar (i, 15) < 2+ 6(2, 7, L) (3.10)

forall k € 7% and any pair of boundary conditions 1,< € T'(X ) obeying the constraint
Sup;ezd {F(Tb), (gj)} < L.

The proof is rather cumbersome and will be given in Section 6.

3.2 Volume estimates

The aim of this section is to prove a uniform estimate on exponential moments of
the specification kernels, which in turn will be used in the proof of Theorem 4. For
a finite subset K C Z<, consider the union of elementary cubes Qx := Uskex Qk

(cf. (2.27)) and the corresponding cylinder set Q;C = Qx x S. Write for brevity
i (d7[3) := g, (d7|3). As usual, K "Z¢ means a limit taken along any ordered
by inclusion and exhausting the whole Z¢ sequence of such sets. Our strategy will be
to start from the one-point estimate (3.5) and then by the consistency property (2.25)
extend it to arbitrarily large cubic domains.

Theorem 15 Under assumptions of Lemma 11 there exists a constant ¥ := U(x, 9) <
oo such that the estimate

timsup [ exp (P50} e (@[7) < 0 (3.11)
Kzd JT

holds for all k € Z.¢ and < € T(X).

Proof. Introduce the notation
ml1C,) = [ exp (PG} e (&318) 2 0
T

whereby n;(K,<) = F(S,) if k ¢ K. An application of identity (2.25) and inequality
(3.5) shows that for each k € K

(K9 = In / / exp{F(5)} T, (4717) T (d7[9)

IN

Eg—i—ln/exp 0 Z I (d7)3) .

jEOk
Assume without loss of generality that 6N, < 1. The multiple Holder inequality then
yields

)

/ H lexp{F (7;)} H,C (dnld) < H

U jeok jeok

[ [ explF () (@
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Therefore

(K, <Zs+6 > mi(K)+6 Y F (3.12)

jEKNK jekendk
Fix arbitrary kg € K and small enough o > 0 so that e*?d Ny < 1, where

p = sup max lj— k| < R+Vd.
kezd 1€0

Multiplying both sides of inequality (3.12) by e~**o—*| and taking into account that
|ko — j| — |ko — k| < p, we obtain the estimate

ny, (K, 3)e ko= < =5emalkoHl

4§ Z n](’c §) —alko—j| + Z —a\ko gl . (3.13)

jEKNOK jeKeNdk

Thus we can see that

sup {nk(K,ae_alkO_kl}

ke
5+ e*P§ | Ny sup {nk(IC Qe ko= k‘} + Z F(S)e ko=l
ke jeKe
so that
nko(lc,é\) § sup {nk(lc’g)efa‘k()*k‘}

keKx

< (1= e No) T B+ et N " p(G)emll] L (3.14)
jeKe

It follows from (2.41) that for any < € ft(X ) we have
Z F(@)e‘o‘”| —0as K 127,
jexe

which in turn implies the bound

lim sup ng, (K, <) < (1 — e*6Ny) ™" Es.
K 274

Passage to the limit as o — 0 shows that

lim sup ny, (K,3) < (1 — 6Ng) ™" E5 =: Uy,
Kzl

which completes the proof. (]

Corollary 16 For any domain A € By(X) and N > 0, there exists Up(N) < oo such
that

limsup/AF(ﬁA)N g, (d7[S) < WA (N),
K zd JT

which holds uniformly for all < € T, (X).
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4 Existence of Gibbs measures

In this section, we use the estimates obtained in Section 3 in order to prove that, for
any 7 € I'y(X), the family of Gibbsian specification kernels {II5 (-|7), A € Bo(X)}
contains a cluster point.

Definition 17 (¢f. [15, Def. 4.6]) We say that a sequence of probability measures
{tm} men on T'(X) is locally equicontinuous (LEC) if for any A € By(X) and any

(B} e © Ba(T) with B, \, 0 as n — oo, we have
lim lim sup g, (By) = 0. .1

n—oo meN

We equip the space P(f) of probability measures on f(X ) with the topology of
local set convergence, which is defined as the coarsest topology making the evaluation
map p — p(B) continuous for each B € Fy := By(T'). This topology (which is
Hausdorff but not metrizable) is well suited to the study of local interactions (i.e., those
having finite range as in assumption (A1)). In particular,

fim S 1 HfF i (B) — u(B) asm — oo, VB € F. (42)

The latter is equivalent to claiming that
/Afd,um—>/Afdu as m — oo, 4.3)
T T

for all bounded Fj-measurable functions f : f(X ) — R. Observe that the local set
convergence is equivalent to convergence in the space [0, 1]7°.

Theorem 18 (cf. [15, Prop. 4.9]) Any LEC sequence {ji },,cn C P(T) has at least

one cluster point, which is a probability measure on f(X ).

Sketch of the proof. It is straightforward that the family {st,},,y contains a
cluster point y as an element of the compact space [0, 1], and y is an additive function
on Fy. The LEC property (4.1) implies that 1p := pj pt is o-additive on each B(f,\).
Thus {pa} ¢ Bo(X) forms a consistent (w.r.t. projective maps (2.8)) family of measures
and by the corresponding version of the Kolmogorov theorem (see [30, Theorem V.3.2
]) generates a probability measure on B(I") (which obviously coincides with 1). O

Remark 19 It follows from [15, Prop. 4.15] that, although the topology of ’P(f) is not
metrizable, for each (topological) cluster point p there exists a subsequence { Hon }ien

loc .
such that p,; — pasj — oo.

Let now {K,,,},,cn be any increasing sequence of finite subsets of 74 such that

K /* Z% and hence Qx,, := |J ek, Qi /1 X asm — oo, and introduce notation
A = Ak, and I, := Ty, .

Theorem 20 For any < € T'(X) the family {IL, (dY[Q) },, e is LEC.
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~

Proof. Fix A € By(X) and {B,}, .y C Ba(T') as in Definition 17. It is sufficient
to prove that Ve > 0 there exist integers mg and ng such that IT,,, (B, <) < e for any
m > mg and n > ng.

To this end, for 7" > 0 let us consider the set

T :={F€D(X): F(An) =6N(an)" +9 Y o' <T

mG’YAR

(where Ap was defined in Section 2.4) and estimate the corresponding measures of
B, NT'r and B, N [I'7]° separately. Observe (by analogy with (6.20) and (6.21)) that
forany ]l <p< Pand1<r <gq

- T
sup § N(yap)%s D low|" p < ———.
Selr il max {k; 9}
Using bound (3.2) we then see that there exists a constant ca (") such that
1, (a UAae) exp {—HA (M [7)} < ea(T). (4.4)

uniformly for all 5,7 € f(X)
Next, write

IL,, (By, [$) = (B N [C7)°S) 4 I (B, N Tr [$).

According to Chebyshev’s inequality applied to the measure IT,,, (d¥[<) on f(X ) we
have

L ((Y:f () 2TH) < T2 /f F @) Mo (A7)

forany T > 0 and f € L%(T, II,, (d3[3)). Setting f (3) = F (YA ) we obtain, cf.
Corollary 16,

Mo (Ba N P11°[8) < Ty ([Fr]°) < 272 4.5)

for any € > 0 and T greater than some 7T'().
On the other hand, there exists mg such that A,,, D A for m > mg. For all such m,
it follows from (2.24) and the consistency property (2.25) of the specification II that

IL,, (Bn NIy |5) = [ [ [ 1y 5, (A UAae) TIa (dﬁﬁ)} IL, (d3[3).  (4.6)
T LT
Since B,, | # as n — oo, by (3.4) and (4.4) we obtain
/f 1y ot (a UAae) Ta (d717) < en(T)A-(By) < 2/2
for n greater than some n(e,T). Hence, the right-hand side in (4.6) does not exceed

€/2 as well. Combining this with estimate (4.5) we can see that Ve > 0 and m > my,
n > ng = n(e, T(e)) it holds

I, (BnlS) <e/2+¢/2 =¢,
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which completes the proof. (]
Now we are in a position to prove our first main result.
Proof of Theorem 4. (i) Existence: It follows from Theorems 18 and 20 that
for any ¢ € I'* the family {IL,, (47 [<)},,cy has a cluster point 1 = u(<) € P(I).
Therefore by Remark 19 there exists a subsequence A,,;, j € N, such that

lim L, (B[S) = u(B), B € By(T). (4.7)
Jj—o0
Let us check that p solves the DLR equation (2.26) for all A € By(X) and B € Bo(f).
As the interaction has finite range, the function 5 — II (B |¥) is By(I')-measurable.

Using (4.3) and the consistency property (2.25) of the specification I, we thus can pass
to the limit

1_[A (B |:Y\) Hmj (d:}/\ |€)

= lim L, (B[O) = u(B)

j—o0

[ My (BF) p(d7) = lim |

T J—=oo Jr

and conclude that ¢ € G. Finally, by (3.11) and Beppo Levi’s monotone convergence
theorem we see that

K,L—00 j—00

[ 3 e rE @ = i tm S e [ (PEIAL L, (@56)
I keza |k|<K r

< Y e Mimsup [ )L, (@R <w Y e <o
kezd Jree T kezd

for all o > 0, which by (2.41) implies that 11(T'; (X)) = 1 so that 1 € G*.

(ii) A priori estimate (2.43). Consider an arbitrary ;1 € G (not necessarily given
by the limit transition above). With the help of (2.26), Theorem 15 and Fatou’s lemma
we have

[ e tF G ALk @) = Jim [ [ exo(PE) A LY @51 (40

<.
ot

for any k£ € Z% and L > 0, where U > 0 is the same constant as in (3.11). By Levi’s
theorem this implies the bound

lim sup / exp{F(5) A L} T (47 [) | o (dS) < W
IC/’Zd r

[ exp(FG (@) = lim_ [ exp(FG) AL} i (@) < W,
r o JTy

and (2.43) is proved. O
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Remark 21 A standard application of the Borel-Cantelli lemma to the moment bound
(2.43) yields the following improved support property for any i € G*. Indeed, under
the conditions of Theorem 4 all 1 € G* are carried by the set

P(X) = {a eT(X): sup [NW +3 W] flog (1-+ K]~ < oo}7

kezd ae
_ (4.8)
which is smaller than T'y(X), cf. (2.39) and (2.41).

Remark 22 Let us consider a special case when all the potentials are non-negative,
ie, ®(z,y) > 0and Wy,(s,t) > 0. This would make superfluous the superstability
assumptions (A3) and (A6). Indeed, in this case we can use the control functional

F(:}/\) = "{N(’Y) +192|0-:v‘q7 :Y\ = (’Y’U)a

ey

instead of (2.37), with arbitary fixed k. > 0 and 9 € (0, A,,). Then we have the estimate
[ exptF G} ] @50 < [ explPG0) A (@3
k k
= exp {ze“/ eVl x(ds)} < oo, (4.9)
s

which holds uniformly for all j € f(X) and k € 7.2, cf. (3.3). This enables us to mimic
the proof of Theorem 4 and construct in this way a Gibbs measure . € G obeying the
a priori bound supy, [z exp{F (i)} p (d7) < oo.

S Uniqueness of Gibbs measures

The aim of this section is to prove Theorem 5. First we will develop the lattice repre-
sentation of our model, in order to use the abstract Dobrushin—Pechersky uniqueness
criterion.

5.1 Lattice representation of the model

Let Q = fQO, where Qg is the elementary cube centered at the origin, cf. (2.27).
Recall that (Q, B(Q)) is a standard Borel space and fix the Lebesgue-Poisson measure
XZ thereon. Consider the product space A := QZd = [lpeza Q> Qk := Q, and endow
it with the product topology and the corresponding Borel o-algebra B(.A). Elements
of A, to be called lattice configurations, are infinite sequences @ := (o;)peze With
ay, € Q. By construction, B(.A) is generated by cylinder sets

A’;117~~~7£€7:L = {a €eA: ap, €by,...,ax, € bm} 6D

.

with all possible choices of k; € Z¢, b; € B(Q)and 1 <i <m € N.

23



Remark 23 Observe that in our notations Qy, is the k-th copy of Q = fQO, so that
Q. # I'q,. These spaces are isomorphic via the translation by k.

Define the map

~

T:-T(X)>7—TH)=ac A (5.2)

where @ := (o )peze With o, =7, — k € fQo‘ Here we write
n—a:=={.., (r—a,s), ...}

for a marked configuration j = { ..., (z,s), ... } € I'(X) and a € X. Moreover, for
any B € I'(X) we define the shifted set B — a constituted by all configurations ; — a
with i) € B.

~

Lemma 24 T: I'(X) — A is a measurable bijection.

Proof. The map T is clearly one-to-one by its construction. The inverse map T~! acts
as

T ':Asar— T (@) =7 eT'(X) (5.3)
where 7 := J;cza(ar + k). To establish the measurability of T it is sufficient to
consider cylinder sets of the form (5.1). Then

T (AII:;::Z%:) = ﬂ B, ) € B(f)v 5.4
1<i<m

where B, ) € Bo(f) is defined for each k € Z% and b € B(Q) as follows:
Brp) = {? eT(X): A € Ek} , b =b+k e B(Tq,).

FurAthermore, observe that such sets on the right-hand side in (5.4) generate the whole
B(T'), which means the measurability of T~! as well. O

Thus, for any ;1 € P(T') we can define its push-forward image T,z € P(A), where
P(A) is the set of all probability measures on .A.

Lemma 25 The map T, : P(I') — P(A) is injective.

v(B). By Lemma 24, A := T(B) € B(A) and T"'(A) = B. Thus T,u(A)
w(T~1(A)) # v(T~1(A)) = T.v(A), and the statement is proved.
Define a family of one-point states 9 = {m® : k € Z¢, @ € A} by the formula

Proof. Let 1,v € P(T) and o # v. Then there exists B € B(T') such that u(B) #
(]

mE(b) = puf T(b+k), beB(Q), (5.5)

where p, 1= nq, is the local Gibbs state of the initial model given by (2.21). The
corresponding one-point specification 3 = {pg ckeZd ac A} is constituted by
probability kernels

Ax B(A) > (@, A) — pF(A) =11, (']I‘_lA ]T‘la) ’

cf. (2.23). It is clear that m{ € P(Qy) coincides with the projection of p§¥ € P(A)
onto the k-th component of the product space A.
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Lemma 26 Forany k € Z¢ and @, @ € A we have the following statements:

(i) Measure m$ has the form
mi(dg) = 271 T A(dp),

where Hi (B |@0) := Hq, (B+k|T @), B € Q = fQo and Z = Zq, (T~ '@)
is the normalizing factor (cf. (2.22)).

(ii) Assume that Qo = Ty, where Ok is defined in Sec. 2.4. Then mY = m%
(Markovian property).

Proof. The statement immediately follows from the definition of measure m{ and
energy function Hy, cf. (2.16), and the translation invariance of the Lebesgue-Poisson
measure Xz. O

We denote by M (3) the set of probability measures w € P(.A) which are consis-
tent with the singleton specification ‘B, that is,

/ P (A) w(dd) = w(A), k€ Z7, A € BA). (5.6)
A

For a measurable non-negative function h : @ — R define the subset M, () of those
w € M(P) that satisfy the bound

sup / h(ag) w(da) < co. (5.7)
kezdJ A

Lemma 27 Let i € G*. Then Top € My, (B) with hp = Fg, where F is defined
by formula (2.37).

Proof. The consistency property (5.6) and bound (5.7) follow directly from the DLR
equation (2.26) and estimate (2.43), respectively. U
The next statement is crucial for our approach.

Proposition 28 We have N (G') < N (M. (B)).

Proof. Follows directly from Lemmas 25 and 27. O

Thus, in order to show that G* contains at most one element, it is sufficient to prove
that My, . () does so.

The uniqueness in question will be studied with the help of the Dobrushin—Pechesky
criterion for lattice Gibbs states, extending Dobrushin’s famous criterion [13] to the
case of non-compact spins. This abstract result originally appeared in [14], see also
[6, Theorem 2.6] for its further developments and [2, Theorem 3], [32, Theorem 4]
resp. [31] for applications to some models of interacting particle systems (both in the
continuum and on a lattice). More precisely, we will use the following adaptation of
the Dobrushin—Pechesky criterion to our setting.

Theorem 29 (Uniqueness Criterion) There exist a positive threshold value 0, :=
6.(d, R) < 1 and a function L* : RS — (0,00) such that N (M (R)) < 1 provided
the family M of one-point local Gibbs states satisfies the following two conditions:
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(DP-1) There exist constants § < 6, and = > 0 such that

/Qh(ﬁ) mi(dB) SE+6 Y hlay)

jEOk
for any k € Z% and all boundary conditions & € A.

(DP-2) There exists a constant { < N, 0_1 such that
dyar (mf, mg/) </
for any k € Z% and all boundary conditions @, @' € A obeying the constraint

sup {h(@;); h(@))} < L*(E,6,0). (5.8)
JEZL

Remark 30 The original result is more refined in that precise threshold values §, and
L*(E,4,0) are given. We do not need this level of precision here and will show that
(in our setting) the constants L* and 6, can be chosen arbitrarily large and small,
respectively. Actually, L*(Z, 5, ) tends to infinity as = / o0, § /0, or £ 7 Ny .
The values of . and L*(E, 8, L) depend only on the geometry of the interaction (that
is, the dimension d and interaction radius R only) and are the same for all control
Sfunctions h : Q — R .

5.2 Proof of the uniqueness

In this section, we establish the uniqueness of tempered Gibbs measures due to small
activity parameter z > 0 as stated in Theorem 5. For this, we will use the lattice
representation of our model constructed in the previous section and verify for it both
conditions (DP-1) and (DP-2) of Theorem 29.

Proof of Theorem 5. According to Proposition 28 it is sufficient to prove that
N (Mp,.(B)) < 1. To do so, we check conditions of Theorem 29 for h := hp defined
in Lemma 27.

A simple change of variables shows that

/ h(B) mE(dB) = / F@i) 1]~ ()
Q

Tk

for any & € A. Set 7] := T~'a € ['(X) and observe that F(@;) = hr(a;). Corollary
12 implies that the inequality

/f FG) 1@ <546 3 F(3) (5.9)

jEOk

holds for any 6 > 0 with a positive constant = := =;5(7, z), which is non-decreasing
both in J and z. Thus (DP-1) is proved.
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Let us now check (DP-2). Fix L > 0 and let @, @ € A be boundary conditions
satisfying
sup {h(a@;); h(@))} < L. (5.10)
jezd

By a change of variables it is easy to see that
dvar (mfa mg,) = dyar (:uga /f];) for ﬁ = Tilav Si= T 'a'.

Condition (5.10) implies that sup; {F(7};); F(5;)} = sup;{h(@;); h(@))} < L.
Thus, for given =, § as in (DP-1) and arbitrary ¢ and [y, by Lemma 14 we can find
2o > 0 such that the bound o

dvar(ﬂZa N;) <t

holds uniformly for any z < zy, J < Jo and all 7, S such that F'(7;), F'(S;) < L. This
completes the proof. (]
6 Proofs of auxiliary results

Our first aim is to prove Proposition 8. We start with some preparations.

Lemma 31 Foranyv,n € I'(X) and k € 7% we have the estimate

MN; M
~Uk(kln) < =AaN(w)” + =2 N(w)? + BaN(w) + 5 D N(ny). (6.1)
jEOk

Proof. By definition (2.19) of the conditional energy Uy (7yx|n) and assumptions
(A1)-(A3) on &(x, y), we immediately obtain

—Uk(wln) = =Ulw) = > Y. ®(,y) (6.2)
TEYVE YENIK
< — [AeN(%)” = BoN ()] + MN () > N(1;)
JjEOIk
MN M
= —AsN(w)" + 5 SN (1) + BaN (1) + 5 > Ny,
jeok
and the proof is complete. O

Lemma 32 For any ¢ > 0 the spin-spin energy Ei(o|€) satisfies the following esti-
mate:

— J ' Ex(0l€) < [(No +1) Z o ") + Z Z |§y|7“(1+s)}

TEVE jEOk yEN;
1 -1 —1
+ <1 + 2CW) (o + DN+ 3 Ny | 63)
jedk

forallk € Z¢ and o}, € SV, & € S™.
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Proof. By definition (2.20) of Ej (0 |¢) we have
—Ep(onl) < D Wo(owmoy)+ > Y Wo(0m,,). (6.4)
{z,y}Cr €YK YENoK

Let us estimate each sum in (6.4) by means of the classical Young inequality

P
ab§i+77 fora,b>0andp,q>1s.t.p 1 4+q =1 (6.5)
p q

To this end, observe that 1—_‘_5 + 1+i*1 = 1 for any £ > 0. Using (A4) and then (6.5),
we get

T Wolowoy) < Y (lowl" + oy "+ Cw)

{z.y}C {z,y} Tk
r N N -1
< [N(’Yk) _ ” Z ‘0—93| L Cw (’ch)[ 2('7k) ]
TEYK

o)) L Nawte

_Z 1+¢ 147t

TEVE

1
+ §CWN<’YI¢)2

T 13 ]- 6_1
<D e+ (1 + 2CW) N(w)*™ . (66)

TEVE

Similarly, for each j € Ok we have

TS W 006) < S0 (ol + 16,7 + Cw)

TEYK YEN, TEYL YEN,
SN@m) Y lowl"+ Nw) D 161"+ CwN(y)N ()
TEYK Yyen;
<3 [l N 3 167+ N T
TEVK YEN;

1
+5Cw [N(w)* + N(m)?] . (6.7)
Another application of Young’s inequality yields the bound

ope! 1+ el

-1 -1
N(yk)N ()™ < N(w)** pp—

2+¢e1 + N ;)

by which we conclude that

LHS(6.7) < Y fou| 7 + 37 g, [/

TEVE Yyen;
1 1 .
+ (1 + 2CW> [N(%)Q“ + N(n;)?te } . (6.8)

Combining (6.6)—(6.8), we obtain the desired estimate (6.3). O
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Lemma 33 For any € > 0 there exists a constant D. > 0 such that the following
superstability bound holds:

— Hy(3[7) + A N ()"

Se N+ D o+ Y [ Nm)T+ D117 ]| +De, (69

TEYL JEOk YyeEN;

forally,m € f(X) and k € Z°. Furthermore, D. := D.(J) can be chosen as a
non-decreasing functions of J .

Proof. It readily follows from (6.1) and (6.3) that

~Hy(Fl7) < ~AeN ()" + BogN(w)** " +C7 S N(y)*** " (6.10)

jEOk
+J[(No +1) D o+ Y |£y‘r(1+8)}
TEVK YENok
forany 3,7 € I'(X), k € Z% and ¢ > 0. Here
M 1
Bs 7 Z:B¢+CJ(N0+1)7 CJZ:7+J 1+§CW s (6.11)

are both non-decreasing functions of 7. Now let us fix some € > 0 such that
t:=r(l+¢)<gq and p=2+e <P, (6.12)

which is possible due to assumption (A6). Note that by (6.5) we have for any 61,602 > 0

S loal' < 00 loal"+ 07 N(w), (6.13)

TEVK TEVK

P

N < 0:N(p)" +65 7. (6.14)
Substituting both (6.13) and (6.14) into (6.10) and then taking 61, 3 small enough we
get the required result. (]
Proof of Proposition 8 . For any given ¢ the estimate (3.1) follows immediately from
Lemma 33 with € = d max{1, k,9} and Cs(x, 9, T) = D(T). O

Remark 34 For i) = () we have the (slightly stronger than (6.10) and (6.11)) bound

~H(F) < —AeN()" + B ;N(w)* <+ 7 3 o[ (6.15)

TEVK

where the constant B‘%J =Bs+J (1 + %C’W) is independent of € > 0.
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Proof of Lemma 14. To keep track of the dependence on the model parameters
(z and J in particular), all constants in the estimates below will be written explicitly
(although they need not be the best possible).

The general formula for the total variation distance between two probability mea-
sures states that

dvar (,u/kr (d% |ﬁ)a i (d:}?k |€))

1 ~ SN 1A S
:i/f | Z 1) exp {—H ([0} — Z,, ' () exp{—Hr(Fr[3)}| A=(dFk). (6.16)

Multiplying the right-hand side by the expression Z; (7)) Zx (<) > 1 and using (2.22),
we see by an elementary calculation that

dvar (e (dVk[1), 1k (d7[S)) < min{Zy (1), Zk(<)}

x / lexp{— Hi (54 7)} — exp{—Hu (3} 2u(die). (6.17)

For simplicity, let us first set ¢ = @ so that Hy(Vx|0) = Hy(7x). Observe that
Hy(Akn) = Hi(3) = 0 for 4, = (). Therefore

/f lexp{— Hu (3 7)) — exp{—Hu(3i)}] A (d1)
- / o [L P LA exp {—He o)} 3-(070), ©18)

where, cf. (2.17),

AH,Fl) = D [®(e,y) + Way(0s,6)]-

TEYK,YENOK

Obviously,
max {exp [~AH(Vx[0)], |1 —exp [-AHy x[0)][} (6.19)
< exp {[AHL(k|7)] ™} < exp { ST [ () + Wey(os, )] } :
TEYE YENOK

where superscript ~ denote the negative part of the corresponding function.
Recall that ) = (7, ) € T'(X) has to obey the bound sup; F'(7);) < L. Hence

L

sup ¢ N(1), Y 16,1

5 d
JEL YEN;

forall 1 < p < P. Moreover, by (6.5) a similar estimate also holds for any 1 < r < ¢:

Do lal < D l6l + T SNy < £ 621)

yen; YEN;
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Temporarily writing N for N(~;) and taking into account that &~ < M, we im-
mediately see by (6.2) and (6.20) that

Z Z P~ (x,y) < MNNLL. (6.22)

TEYE YENOK

Next, we fixe > 0,t¢ € (r,q) and p € (2, P) as in (6.12). Then, by (6.7) and (6.21) we
have

TN Wion &) <ML Y Joul + N Y 167 + Cw NAGL

TEVK YENSK TEVE YENoK

SNL | D lowl"+ (1+Cw)N| . (6.23)

TEYE

Combining the above inequalities with the superstability bound (6.15) on Hy (7)) and
then setting
13%73-:2213@ +MLM+T 1+ Cw) A+ ML),

we obtain the estimate

max {—Hy(Y[7), — Hi(3k) +In |1 —exp {—AH,(Y[0) }}
< —AgNT £ By NP+ T Y [|a$|t +No.c|ax\’“} . (6.24)

TEVK

Notice that by Young’s inequality the following uniform bound holds:
P _P_
= —AgNP + B} NP} < (Ag) 77 (B ;)7 7. 2
Co.7 11{,1%)0{{ oN" + By sN'} < (Ae)” 77 (Bo 4) (6.25)
Thereafter, using the disintegration (2.11) we conclude (analogously to (3.3)) that

RHS (6.18)

= C®A7J/ L/m ¢7 T t*‘f“ L T " d - Az d
e . Swexp{ Z['U‘ 0 o—|}} &) x(doa) . (dy)

TEVK TEVk

= eC@,J/F o [gJ]N("/k) A (dyg) = eCo.g Z (ZiJ') — (Caa lexp {zE,} — 1],
k n=1 ’
(6.26)

where

£, = /Sexp {J (\s\t+/\/0,c|s|")} x(ds) 6.27)

is finite by assumption (AS5).
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We proceed in a similar way to obtain an upper bound on Z (7). Indeed, with the
help of (6.24)—(6.27) one gets

Zu(@) = / exp{— He (Gl } 3o (d55)

Iy
< (Cos / exp {j 3 <|o’w‘t + NoL O—J)} &) x(doz)A-(dyi)
T J S

TEVK TEVk

=exp{Co 7+ 2E,}. (6.28)

Putting (6.26) and (6.28) together and using the well-known inequality e® — 1 < ae®
for all @ > 0, we conclude that

dvar (1x (A7k[7), px(d7|0)) < 2€; exp{2 (Ca.g + 2E,)} - (6.29)

By the triangle inequality the above bound extends to general boundary conditions
¢ # (. This yields the desired estimate (3.10) with

&(z, T, L) =2E, exp{2(Co,7 +2E,)},

which is a non-decreasing function of 7, z, and L. O
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