
This is a repository copy of Local Analysis of Determinism for CSP.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/125804/

Version: Accepted Version

Proceedings Paper:
Otoni, R., Cavalcanti, A. L. C. orcid.org/0000-0002-0831-1976 and Sampaio, A. C. A.
(2017) Local Analysis of Determinism for CSP. In: Cavalheiro, S. and Fiadeiro, J., (eds.)
Formal Methods:Foundations and Applications : 20th Brazilian Symposium, SBMF 2017,
Recife, Brazil, November 29 — December 1, 2017, Proceedings. Lecture Notes in
Computer Science . Springer International Publishing Switzerland , pp. 107-124.

https://doi.org/10.1007/978-3-319-70848-5_8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Local Analysis of Determinism for CSP

Rodrigo Otoni1 �, Ana Cavalcanti2, and Augusto Sampaio1

1 Universidade Federal de Pernambuco, Centro de Informática, Brazil,
{rbo2,acas}@cin.ufpe.br

2 University of York, Department of Computer Science, UK,
ana.cavalcanti@york.ac.uk

Abstract. Nondeterminism is an inevitable constituent of any theory
that describes concurrency. For the validation and verification of con-
current systems, it is essential to investigate the presence or absence
of nondeterminism, just as much as deadlock or livelock. CSP is a well
established process algebra; the main tool for practical use of CSP, the
model checker FDR, checks determinism using a global analysis. We pro-
pose a local analysis, in order to improve performance and scalability.
Our strategy is to use a compositional approach where we start from
basic deterministic processes and check whether any of the composition
operators introduce nondeterminism. We present the algorithms used in
our strategy and experiments that show the efficiency of our approach.

Keywords: Model Checking. FDR. Performance. Experiments.

1 Introduction

Deadlock, livelock, and nondeterminism analyses are crucial in the specification
and design of concurrent systems. Nondeterminism is expected in abstract mod-
els, but may indicate problems in concrete designs. Verification techniques to
investigate the presence or absence of all these properties in a model are essen-
tial for validation and verification of concurrent systems.

Deadlock and livelock have been investigated in depth, and there are very
efficient tools available [1–5, 8]. Determinism has been less studied. It is, how-
ever, specially important in notations for refinement, where nondeterminism is
used for abstraction. It is an inevitable constituent of any theory that describes
concurrency where some form of arbitration is present [9].

CSP is a well established process algebra that is accompanied by a set of
robust tools that allow its practical use both in academia and in industry. In
particular, CSP is capable of modelling both explicit and implicit nondetermin-
ism, such as the ones that can be introduced by parallelism, internal communi-
cations, or renaming. Its versatility in modelling nondeterminism together with
its tool support makes CSP ideal for the analysis of determinism.

FDR [5] is the main tool for practical use of CSP; it is a model checker
that takes as input specifications in CSPM , a machine readable version of CSP.
Other tools for CSP (or CSP dialects) like ProB [7] and PAT [11] also implement

analysis strategies for these classical properties. The approach taken by all these
tools for checking determinism is, however, based on global analysis, where the
entire model is expanded and exhaustively checked. Here, we propose a local
analysis strategy for determinism, to improve performance and scalability.

Local analysis has been adopted in verification of deadlock [1–3] and livelock
[4]. Here, we present a local strategy for the verification of determinism in models
written using a subset of CSP that includes most of its basic operators, with some
restrictions on how they can be used in compositions. As far as we know, this
is the first approach to local analysis of determinism, not only in the context of
CSP, but also of any other formal or semi-formal modelling notation (such as
UML), as well as concurrent programming languages.

Next we present CSP and how it defines determinism. In Section 3 we present
our strategy. Our experiments and their results are discussed in Section 4. Finally
we present our final remarks and future work in Section 5.

2 Background

We present here the background material to our work: CSP in Section 2.1 and
its notion of determinism in Section 2.2.

2.1 CSP

CSP is a process algebra that can be used to describe systems as interacting
components. These components, called processes, are independent entities that
interact among themselves and with the environment. The interactions, called
events, are atomic, instantaneous, and synchronous messages. The main CSP
constructs are presented below; further information can be found in [6, 9].

CSP has two basic processes, SKIP and STOP ; the former does nothing
and terminates, and the latter deadlocks. A prefixing a → P is initially capable
of performing the event a and then behaves like the process P . Events can be
compound to communicate data. For instance, c.5 is the event that represents
the transmission of the value 5 through the channel c.

Guards and conditionals are used in processes g &P and if b then P else Q .
The former behaves as P if g is true, and as STOP otherwise. The latter behaves
as P if b is true, and as Q otherwise. Sequential composition is written as P ;Q ,
which behaves as P , until it finishes, and then behaves as Q .

The process P ✷ Q is the external choice between P and Q , resolved in
favour of either of them when the environment agrees on their initials, the sets
of events that they initially offers. In the internal choice, P ⊓ Q , the environment
has no control over how the choice is resolved, which is nondeterministic. To make
events internal to the process P we can write P \ X , which hides the events in
the set X from the environment.

To model parallelism in CSP we have various options. The process P ||| Q is
the interleaving of P and Q ; in this composition P and Q behave independently.
Another composition is the generalised parallelism, P [[X]]Q , in which P and Q

Fig. 1. Three overlapping pairs of segments (a), and signals of a pair of segments (b);
modified from [10].

synchronise on the events in the set X , but allow the events outside of X to
occur independently; if X is the empty set, the operator behaves as interleaving.

As an example, we present a specification of a railway network from [10]. It
is composed by a series of segments of tracks, with a signal between every two
adjacent segments used to control the flow of trains. The segments are organised
in overlapping pairs, as shown in Figure 1(a), with segment pairs P1, P2 and P3.
In its initial state the railway can have a number of trains in specific segments.
A safety requirement is that no two trains should be in adjacent segments.

Each pair of segments has three signals: e, which indicates a train entering
the pair; f , which indicates the train moving from the first to the second segment;
and g , which indicates the train leaving the pair. A pair of segments is modelled
as a process that can communicate three events, signal .e, signal .f , and signal .g ,
corresponding to the signals e, f , and g . A graphical representation of a pair of
segments can be seen in Figure 1(b). To deal with all possible initial states of
a pair, three processes are defined. Pair Empty specifies a pair that is initially
empty, Pair First , a pair in which a train is initially in its first segment, and
Pair Second , a pair in which a train is initially in its second segment.

Pair Empty = signal .e → signal .f → signal .g → Pair Empty

Pair First = signal .f → signal .g → signal .e → Pair First

Pair Second = signal .g → signal .e → signal .f → Pair Second

To model a network we compose a number of instances of pairs of segments
in parallel, with each instance having its own signals defined according to its
position in the network. In Figure 2 we present an example of a cyclic network
that has four pairs and four segments, with the last and the first segments being
adjacent to each other. Figure 2(a) gives an overview of the complete network,
in which there is initially a single train in the segment demarcated by signal.0
and signal.1. Figure 2(b) shows the four segment pairs (from Pair0 to Pair3).

The CSP processes that describe the four segment pairs are presented in
Figure 3. Note that these processes define the initial state of each segment pair.
Therefore, although the Pair0 segment pair is formed of the two segments demar-
cated by signal .0 and signal .1, and signal .1 and signal .2, the process is written
as Pair0 = signal .1 → signal .2 → signal .0 → Pair0, because the train is in
the first segment of this pair, and the next relevant event it must communicate

Fig. 2. Graphical representation of a network (a), and its pairs (b).

is signal .1, indicating the train moving from the first to the second segment of
Pair0. So Pair0 follows the form of Pair First , previously explained. Similarly,
Pair1 and Pair2 are modelled as Pair Empty , since the train is not in any of
their segments. Finally, Pair3 is modelled as Pair Second , as the train is in
the second segment of this pair. The composition of the pairs is made using the
generalised parallel operator, since the signals of a pair need to synchronise with
the signals of its adjacent pairs.

Pair0 = signal .1 → signal .2 → signal .0 → Pair0
Pair1 = signal .1 → signal .2 → signal .3 → Pair1
Pair2 = signal .2 → signal .3 → signal .0 → Pair2
Pair3 = signal .1 → signal .3 → signal .0 → Pair3
SyncSet1 = {signal .1, signal .2}
SyncSet2 = {signal .0, signal .2, signal .3}
SyncSet3 = {signal .0, signal .1, signal .3}
RailwayNetwork = ((Pair0[[SyncSet1]]Pair1)[[SyncSet2]]Pair2)[[SyncSet3]]Pair3

Fig. 3. CSP model of the network in Figure 2

The process RailwayNetwork can initially communicate signal .1, and after-
wards signal .2, signal .3, signal .0, signal .1, signal .2 and so on. Each pair syn-
chronises its first two signals with the pair on its left and its last two signals
with the pair on its right, so when the network communicates signal .1, it means
that a train is, simultaneously: moving from segment 1 to segment 2 of Pair0,
entering segment 1 of Pair 1, and leaving Pair3.

2.2 Semantic Models and Determinism

A deterministic system can be thought of as one that always produces the same
output, given a fixed input. CSP has different definitions for this property, de-
pending on the semantic model being used. There are three well established
semantic models for CSP: traces, failures, and failures-divergences.

In the traces model, a process P is represented by traces(P), which is the
set that contains all sequences of events that P can engage. This model does not
allow us to determine if the process is deterministic or not.

In the failures model, a process P is represented by the pair (traces(P),
failures(P)), with failures(P) being a set of pairs (s,X), where s is a trace
of P and X is a set of events that P can refuse after performing s. This model
captures not only how a process can behave, but also how it cannot behave. The
definition of determinism in the failures model is presented below.

Definition 1 (Determinism in the failures model) Process P is determin-
istic if, ∀ tr : traces(P), a : Σ •¬(tr 〈̂a〉 ∈ traces(P) ∧ (tr , {a}) ∈ failures(P))

This definition captures the essence of determinism: a process cannot have the
possibility of both accepting and refusing an event at any given state, which can
lead to different observable behaviours given the same input.

Example 1 The process Ex1a = Pair1 ✷ Pair2 is deterministic, since Pair1
and Pair2 are deterministic and the intersection of their initials is empty. With-
out initial events in common, the environment has a clear choice between Pair1
and Pair2, which, with their traces and failures, do not violate Definition 1.

The process Ex1b = Pair1 ✷ Pair3, on the other hand, is nondeterministic,
because signal .1 is in the initials of both Pair1 and Pair3, so, by performing
signal .1, the environment has no control over how the external choice is re-
solved, allowing Ex1b to both accept or refuse signal .2 afterwards, depending
on whether Pair1 or Pair3 is chosen; the trace 〈signal .1, signal .2〉 and the failure
(〈signal .1〉,{signal .2}), for instance, break the condition of Definition 1. �

Example 2 The composition in Ex2 = Pair1 ||| Pair2 is nondeterminitic be-
cause we have an event, signal .3, after which Pair1 and Pair2 behave differently.
In terms of Definition 1, we note that 〈signal .1, signal .2, signal .3, signal .1〉 is a
trace of Ex2 and (〈signal .1, signal .2, signal .3〉,{signal .1}) is a failure of Ex2. �

Nondeterminism can also arise from divergence, that is captured by the failures-
divergences model [6,9]. Since there are tools that verify divergence in a compo-
sitional way [4], our strategy is based on determinism in the failures model.

3 Strategy for Local Analysis of Determinism

Our analysis of a process is compositional. If the possibility of nondeterminism
is found, the analysis stops and indicates the nondeterministic component.

Our strategy is sound for the verification of determinism, but not complete.
When nondeterminism is indicated, we may have found a source of nondeter-
minism or it may be an inconclusive result. Local approaches to the analysis
of classical concurrency properties tend to give up completeness in favour of
efficiency gains; see [1–3], for deadlock analysis, and [4], for livelock analysis.

Example 3 We consider the following processes.

Ex3a = a → b → Ex3a Ex3c = Ex3a ⊓ Ex3b

Ex3b = c → d → SKIP Ex3d = Ex3a[[{a}]]Ex3c

The process Ex3c is nondeterministic, due to its internal choice. The process
Ex3d , on the other hand, is deterministic. When analysing Ex3d , however, our
strategy indicates the nondeterminism in Ex3c and stops. �

In Section 3.1 we present the subset of CSP that our strategy can currently
handle, and the metadata gathered for the component processes. In Section 3.2,
the rules to check for determinism are presented.

3.1 Process Structure and Metadata

In our strategy we deal with two categories of processes, Basic Processes and
Composite Processes, defined in Figure 4. Event, Condition, ProcessName, and
SetOfEvents are the syntactic categories of the possible events, logical conditions,
names of processes, and sets of events of CSP. We assume that all processes are
divergence free and do not have parameters.

Due to the nature of the set of operators that can be used to create Basic
Processes, they are deterministic by definition. A Composite Process is the result
of a composition of Basic Processes or other Composite Processes.

The subset of CSP that we deal with, as can be seen in Figure 4, includes
most of the basic operators of CSP. They are, however, restricted on their use.
Prefixing, guards, conditionals, and sequential composition can only be used in

Process ::= BasicProcess | CompositeProcess

BasicProcess ::= Event “ → ” BasicProcess

| Condition “ & ” BasicProcess

| “ if ” Condition “ then ” BasicProcess “ else ” BasicProcess

| BasicProcess “ ; ” BasicProcess

| “SKIP” | “STOP” | ProcessName

CompositeProcess ::=
ProcessName “ ✷ ” ProcessName | ProcessName “ ⊓ ” ProcessName

| ProcessName “ ||| ” ProcessName | ProcessName “[[” SetOfEvents “]]” ProcessName

| ProcessName “ \ ” SetOfEvents

Fig. 4. BNF of the subset of CSP considered.

the definition of Basic Processes, while external and internal choice, interleaving,
generalized parallel, and hiding are restricted to Composite Processes.

Each process in our strategy, upon being verified to be deterministic, is asso-
ciated with a Set of Possible Behaviours (SPB). This is a set of sets of pairs, with
each set of pairs in an SPB representing an alternative behaviour of the process,
and each pair in a set representing a parallel behaviour. The first component of
each pair in the set is a sequence that represents part of the syntactic structure
of the process, and its second component is a set, which stores data relative to
synchronisations among components of the process.

Example 4 The processes Ex3a and Ex3b, from Example 3, have the SPBs:
SPB(Ex3a) = {{(〈a, b,Ex3a〉,∅)}}, and SPB(Ex3b) = {{(〈c, d , SKIP 〉,∅)}}.
Each one has one set, because they do not have choices, with one pair, which
holds the structure of the process, since there is no parallelism; the second ele-
ment of the pairs is the empty set, also because we do not have any synchroni-
sations between processes. For the process Ex4 = Ex3a ✷ Ex3b we have that
SPB(Ex4) = {{(〈a, b,Ex3a〉,∅)}, {(〈c, d , SKIP 〉,∅)}}, which captures its two
alternative behaviours, that depend on how the choice is resolved. �

Each element of a synchronisation set is itself a pair, with an integer value as
the first component, and a set of events as the second component; the events in
the set are the ones being synchronised. The integer values identify the sets that
match in a synchronisation.

Example 5 We consider the following processes.

Ex5a = a → STOP Ex5c = b → Ex5c

Ex5b = Ex5a[[{a}]]Ex3a Ex5d = Ex5b[[{b}]]Ex5c

With the generalised parallel operator we add the synchronisation set to all
pairs of the SPB of the composition, so, for the process Ex5b, we have that
SPB(Ex5b) = {{(〈a, STOP 〉,{(1,{a})}), (〈a, b,Ex3a〉,{(-1,{a})})}}; the module
of the integer value uniquely identifies the synchronisation and its signal is used
to differentiate between the two argument processes of the parallelism.

If Ex5b is used in a composition with generalised parallel, we add the new
synchronisation set to its pairs. For Ex5d , we have the set shown below.

SPB(Ex5d) =

(〈a, STOP 〉, {(1, {a}), (2, {b})}),
(〈a, b,Ex3a〉, {(−1, {a}), (2, {b})}),
(〈b,Ex5c〉, {(−2, {b})})

When more than one pair has a synchronisation set with the same integer, in
this case 2, only one of those pairs need to synchronise with a counterpart with
the opposite integer, in this case -2. �

Now we present the formal definition of SPB. It is important to record whether
a sequence leads to a recursion or not. To this end, we add the name of the

process that represents the final behaviour of the sequence as its last element.
We call the set that contains these new sequences Valid Sequences (VS). With
VS it is possible to know if a Basic Process, which can only have one sequence,
is cyclic or not just by checking if the last element of its sequence is a process
name (indicating a recursion), or if it is SKIP or STOP .

Definition 2 (Valid Sequences (VS))

VS = {a : Σ∗, b : N ∪ {SKIP , STOP} • a⌢〈b〉}

where N is the set that contains all the valid names of processes.

To record a trace of behaviour in a parallel process with synchronisations, we
use Synchronisation Sets, which is the set that contains integers associated with
all possible sets of events on which a process can synchronise.

Definition 3 (Syncronisation Sets (SyncSets)) SyncSets = P(Z× P(Σ))

Finally we define the eTraces (a shorthand for Enhanced Traces) of a given
process P . Its elements are pairs whose first element is a VS sequence and the
second one is a set of SyncSets.

Definition 4 (Enhanced Traces of P (eTraces(P)))

eTraces(P) =

et : VS × SyncSets | front(first(et)) ∈ traces(P) ∧

∃n ∈ N ∪ {SKIP , STOP} •
P/front(first(et)) ≡F n

∧
last(first(et)) = n

where P/t represents the behaviour of P after it has performed the trace t , and
≡F indicates equivalence in the failures model [9].

An element of eTraces represents a possible Basic Process. The restrictions
in Definition 4 ensure that each sequence leads the process to a recursive be-
haviour, or to SKIP or STOP . For a process P , the set SPB(P) is a subset of
P(eTraces(P)). The eTraces pairs in a set of an SPB represent Basic Processes
in parallel, and pairs in different sets represent choices.

Now we present how SPB is calculated. For the Basic Processes, we calculate
SPB as shown below; P and Q are processes, and n is a process name.

– SPB(n) = {{(〈n〉,∅)}}
– SPB(a → P) = {setP : SPB(P) • prefixing L {a} × setP M}
– SPB(g & P) = SPB(P)
– SPB(if g then P else Q) = SPB(P)
– SPB(P ;Q) = {setP : SPB(P) ; setQ : SPB(Q) • seqComp L setP × setQ M}

– prefixing(event , eTrace) = (〈event〉⌢first(eTrace),∅)

– seqComp(eTrace1, eTrace2) = if last(first(eTrace1)) = SKIP
then (front(first(eTrace1))⌢first(eTrace2),∅)
else eTrace1

For a process call, we create a sequence with the call. For a prefixing, a → P , we
apply prefixing to all pairs formed of the event a and a sequence in a set of the
SPB of P; L... M is the relational image operator. The function prefixing yields
the original sequence with the new event as its head.

We assume that the predicates in guards and conditionals are always true;
in those cases we simply keep the SPB of P . In the conditional, if the processes
P and Q are not equivalent, the strategy returns the possibility of nondeter-
minism. With this approach, we record behaviours for the processes that may
not be actually possible. The addition of behaviours, however, can only lead to
nondeterminism, never remove it. So, as already explained, it is possible that
we indicate a nondeterminism that does not exist, but a process defined to be
deterministic is guaranteed to be so.

For sequential composition we apply seqComp to all pairs of SPB(P) and
SPB(Q), using relational image. This function returns the front of the first se-
quence appended with the second sequence, if the first one ends in SKIP , or
the first sequence unmodified otherwise.

Example 6 The calculation of SPB(Ex3a) is shown below.

SPB(Ex3a) = {{(〈Ex3a〉,∅)}}
SPB(b → Ex3a) = {{(〈b,Ex3a〉,∅)}}
SPB(a → b → Ex3a) = {{(〈a, b,Ex3a〉,∅)}}
SPB(Ex3a) = SPB(a → b → Ex3a)

We differentiate between the process Ex3a and its recursive call. For sequential
composition, SPB(Ex3a ;Ex3b) = SPB(Ex3a), since the sequence of Ex3a ends
in a recursion, and SPB(Ex3b ; Ex3a) = {{(〈c, d , a, b,Ex3a〉,∅)}}, because the
sequence of Ex3b ends in SKIP . �

We now present the SPB for the Composite Processes; X is a set of events, and
i is a fresh integer, different from zero.

– SPB(P ✷ Q) = SPB(P) ∪ SPB(Q)
– SPB(P ⊓ Q) = SPB(P)
– SPB(P ||| Q) = {setP : SPB(P) ; setQ : SPB(Q) • setP ∪ setQ}

– SPB(P [[X]]Q) =

setP : SPB(P) ; setQ : SPB(Q)•
addSync L setP × {X } × {i} M
∪
addSync L setQ × {X } × {−i} M

– SPB(P \ X) = {setP : SPB(P) • remove L setP × {X } M}

– addSync(eTrace,X , id) = (first(eTrace), second(eTrace) ∪ {(id ,X)})
– remove((T ,S),X) = (removeT (T ,X), removeS (S ,X))

– removeT (〈〉,X) = 〈〉
removeT (〈a〉⌢t ,X) = if a ∈ X then remove(t ,X) else 〈a〉⌢remove(t ,X)

– removeS (∅,X) = ∅

removeS ({(id , evSet)} ∪ s,X) = {(id , evSet \X)} ∪ removeS (s,X)

For external choice, we get the union of the sets of the operands. For internal
choice, since the composition is only deterministic if both operands are equiv-
alent, we simply keep the SPB of one of them. For interleaving, for every pair
of sets of SPB(P) and SPB(Q), we record their union. The calculation for a
generalised parallel is similar to that of an interleaving, but we also add the
new synchronisation to the elements of the sets, using the function addSync. For
hiding we remove the elements in X from SPB(P), with the function remove.

Example 7 Considering the processes Ex7a = a → b → c → Ex7a, and
Ex7b = Ex7a[[{b}]]Ex7a, we calculate SPB(Ex7b \ {b}).

SPB(Ex7b) = {{(〈a, b, c,Ex7a〉,{(1,{b})}), (〈a, b, c,Ex7a〉,{(-1,{b})})}}
SPB(Ex7b \ {b}) = {{(〈a, c,Ex7a〉,{(1,{})}), (〈a, c,Ex7a〉,{(-1,{})})}}

�

If a synchronisation introduces deadlock or if a synchronisation channel is hidden,
there is the possibility that our strategy considers invalid behaviours of the
process. This, however, can only introduce nondeterminism, never remove it.

Example 8 We consider the following processes.

Ex8a = b → a → c → d → Ex8a Ex8b = Ex7a[[{a, b}]]Ex8a

The process Ex8b is deterministic, because it is deadlocked from the start. Our
strategy, however, predicts a nondeterministic behaviour when both Ex7a and
Ex8a offer event c to the environment, which never happens. �

Pairs of a set of a SPB are equivalent, ≡, if the front of their sequences are equal,
both either recurse or end in SKIP or STOP , and they have the same mean-
ingful synchronisations with equivalent pairs. A synchronisation is meaningful if
it involves at least one of the events in the sequence of the pair.

Definition 5 (Meaningful Synchronisations) Given a pair (Seq, SetOfSyncs),
a synchronisation set sync ∈ SetOfSyncs is meaningful if sync ∩ ran(Seq) 6= ∅.

Example 9 We consider the following SPBs.

SPB(Ex9a) = {{(〈a, b, c,P〉,{(1,{r})}), (〈x , y , SKIP 〉,{(-1,{r})})}}
SPB(Ex9b) = {{(〈a, b, c,P〉,{(2,{r})}), (〈x , y , SKIP 〉,{(-2,{r})})}}
SPB(Ex9c) = {{(〈a, b, c,Q〉,∅), (〈x , y , SKIP 〉,∅)}}

They are all equivalent, since the only difference between them is their synchro-
nisation sets, with the synchronisations of Ex9a and Ex9b not being meaningful,
as they do not affect the sequences, and Ex9c not having synchronisations. �

In the next section, we present the algorithms that use the SPB of component
processes to check determinism of a composite process.

Algorithm 1 External Choice (P,Q)

1: for each setP ∈ SPB(P), setQ ∈ SPB(Q) do

2: for each elemP ∈ setP, elemQ ∈ setQ do

3: if head(first(elemP)) == head(first(elemQ)) ∧ ¬(setP ≡ setQ) then

4: return false
5: return true

Fig. 5. Algorithm to check if external choice introduces nondeterminism.

3.2 Composition Rules

The algorithms that verify if the compositions are deterministic return true if
the given composition is deterministic, and false otherwise. We present here
the algorithms for external choice, and parallelism. The algorithms for internal
choice and hiding can be found in the extended version of this paper1.

External Choice

The external choice, with our restrictions, can only introduce nondeterminism if
its two operands have at least one common initial event, since these are their only
points of interaction. In this scenario the composition is deterministic only if the
two processes have the same behaviour after every common initial event. The
algorithm for this operator can be seen in Figure 5. It checks for all pairs of sets
of SPB(P) and SPB(Q) if they have sequences that start with the same event.
If they do, those sets need to be equivalent not to introduce nondeterminism.

Internal Choice

An internal choice only results in a deterministic process if its operands have
the same behaviour. The algorithm for this operator simply checks if the SPBs
of both operands are equivalent, that is, if the SPBs have equivalent sets.

Parallelism

We deal with parallelism in two forms: interleaving and generalised parallel.
We first discuss how interleaving can introduce nondeterminism. Afterwards,
we present our considerations about generalised parallel. Finally, we show the
algorithm for the verification of parallel compositions.

Differently from external and internal choice, with interleaving, as well as
with the other parallel operators, both operands execute at the same time, so we
must take into account all of their events, not only the initials. With interleaving,

1 http://www.cin.ufpe.br/∼rbo2/SBMF2017.zip

we need to consider that when one of its operands is offering a specific event to
the environment, the other operand can be offering any of its events.

The condition for a composition using interleaving to be deterministic is that,
after each event in common to both processes, the composition needs to offer the
same events to the environment, no matter which process performs the event, so
the environment does not observe any different behaviour.

Example 10 We consider the following processes.

Ex10a = a → b → Ex10a Ex10d = Ex10a ||| Ex10b

Ex10b = a → Ex10b Ex10e = Ex10b ||| Ex10c

Ex10c = b → Ex10c Ex10f = Ex10a ||| Ex10e

The process Ex10d is nondeterministic, because after performing event a, the
environment can synchronise on either a again or on a and b, depending if a was
performed by Ex10a or Ex10b. The process Ex10e is deterministic, because the
alphabets of its components are disjoint, so there are no events in common. The
composition in Ex10f is deterministic, because, although there is an intersection
of the alphabets, events a and b are always available to the environment. �

Generalised parallel allows us to have parallelism with synchronisations. The
events that are not in the synchronisation set are analysed in a similar way
to what is done with interleaving, and the events in the synchronisation set
cannot introduce nondeterminism on their own, because each synchronised event
happens only once and both operands engage in this event.

Example 11 The process Ex11 = Ex10a[[{a}]]Ex10b, differently from Ex10d ,
is deterministic, because the event a is in the synchronisation set, so, after it
occurs, the only possibility for the parallel composition is to offer event b. �

We use the same algorithm for the two forms of parallelism discussed. It receives
the processes being composed and the synchronisation set. For interleaving, the
synchronisation set is empty. The algorithm is presented Figure 6.

Algorithm 2 iterates over all pairs of behaviours of P and Q , evaluating all
scenarios. In each iteration, it initially defines avEvents (line 2), the set of events
that is always available to the environment, in the given pair of behaviours.

To calculate avEvents we use setOfAvailableEvents, which yields a set of
events that must belong to an Enhanced Trace that has only one event in its
sequence and is recursive. These sequences stand out because they do not lead
to a change in the state of the composition. Another requirement is that these
events need to be able to occur freely, which can be denied by synchronisations.

Example 12 We consider the following SPBs.

SPB(Ex12a) = {{(〈a, b,P〉,∅), (〈c,Q〉,∅), (〈d , SKIP 〉,∅), (〈e,R〉,∅)}}
SPB(Ex12b) = {{(〈x ,S 〉,{(1,{x})}), (〈x , y ,T 〉,{(-1,{x})}), (〈e, f ,U 〉,∅)}}

Algorithm 2 Parallelism (P,Q,X)

1: for each setP ∈ SPB(P), setQ ∈ SPB(Q) do

2: avEvents = setOfAvailableEvents(setP,setQ,X)
3: for each elemP ∈ setP, elemQ ∈ setQ do

4: if head(first(elemP)) == head(first(elemQ)) ∧ head(first(elemP)) 6∈ X ∧
(¬allSetsEquiv(SPB(P)) ∨ ¬allSetsEquiv(SPB(Q))) then

5: return false
6: for each evP ∈ front(first(elemP)), evQ ∈ front(first(elemQ)) do

7: if evP == evQ ∧ evP 6∈ X then

8: eventsP = avEvents ∪ nextEvents(elemP,evP,setP) ∪ {evQ}
9: eventsQ = avEvents ∪ nextEvents(elemQ,evQ,setQ) ∪ {evP}

10: if eventsP 6= eventsQ then

11: return false
12: return true

Fig. 6. Algorithm to check if parallelism introduces nondeterminism.

If we execute Parallelism(Ex12a,Ex12b,{e}), we have one iteration of the algo-
rithm with avEvents = {c}. The pairs with the sequences 〈a, b,P〉, 〈x , y ,T 〉,
and 〈e, f ,U 〉 are discarded for having more than one event. The pair with
〈d , SKIP 〉 is discarded for not being recursive. The pairs with sequences 〈x ,S 〉,
and 〈e,R〉 are discarded due to their synchronisations, the former with the pair
(〈x , y ,T 〉,{(-1,{x}), and the latter with the synchronisation being introduced in
this composition, through the synchronisation set {e}. �

With avEvents calculated, Algorithm 2 starts checking each pair of elements of
the behaviour of P and Q . If we have two elements with the same initial events
(line 4), then, for each operand, all the sets in its SPB need to be equivalent,
which is checked by allSetsEquiv .

Example 13 We consider the following processes.

Ex13a = Ex10a ✷ Ex10c Ex13b = Ex13a ||| Ex10c

The composition Ex13b is nondeterministic, because, after performing b, the
environment does not know if a is still available, since b can be performed by
Ex13a or Ex9c, so it is possible to accept or refuse a, given the circumstances.
Algorithm 2 returns false because the conditional in line 4 returns true, having
allSetsEquiv(SPB(Ex13a)) = false. �

Requiring that the SPB of each process have all sets equal is, however, not
enough to ensure determinism, as we can see in the next example.

Example 14 We consider the following processes.

Ex14a = a → b → a → Ex14a Ex14b = Ex14a ||| Ex14a

The process Ex14b is nondeterministic, because after the environment performs
the trace 〈a, b, a〉 it is possible to accept or refuse b. During the evaluation,
the conditional in line 4 returns true, allSetsEquiv(SPB(Ex14a)) = true, so
nondeterminism is not identified by Algorithm 2 at this point. �

We then have the core of Algorithm 2 (line 6). The algorithm checks, for each
event e that is in the intersection of the alphabets, if the events available to the
environment, after e in P is performed, is equal to the events available after e

in Q is performed. If they are not, then a source of nondeterminism has been
found. This verification is only carried out if e is not in the synchronisation set.

We assume that the two sequences that we are analysing at a given moment
are offering specific events, but we do not assume anything of the other sequences.
The events available to the environment after the execution of the event in each
process are given by the union of three sets: avEvents; the set of events that are
available in the process that performed the event, after its execution; and the set
that contains the event in question, that is still available in the other process.

The function nextEvents (lines 8 and 9) returns the set of events that a
process offers to the environment after one of its events, e, has occurred; in
Algorithm 2, e can be evP or evQ . First it adds the event that comes after
e, if any, to the return set. Afterwards it checks if the pair that contains e

synchronises with other pairs, and if e is present in those pairs, which leads to
a change in their states as well. If e is indeed present, then the events after it in
these events will also be included in the return set.

Example 15 For process Ex14b, we have avEvents = ∅. The conditional in line
7 returns true for the first events in both Ex14a operands, with eventsP and
eventsQ being both the result of ∅ ∪ {b} ∪ {a}, so eventsP == eventsQ (line
10). For the first event of the first operand, a, and the second event of the second
operand, b, the conditional in line 7 returns false. For the first event of the first
operand, a, and the third event of the second operand, a, the conditional in line
7 returns true, but eventsP = ∅ ∪ {b} ∪ {a}, and eventsQ = ∅ ∪ {a} ∪ {a}, so
Algorithm 2 returns false in line 11. �

Example 16 We consider the following processes.

Ex16a = a → b → c → Ex16a Ex16d = Ex16a ||| Ex16b

Ex16b = d → e → f → Ex16b Ex16e = Ex16c[[{d}]]Ex16d

Ex16c = d → e → g → Ex16c

To check if Ex16e is deterministic we use SPB(Ex16c) = {{(〈d , e, g ,Ex16c〉,∅)}},
and SPB(Ex16d) = {{(〈a, b, c,Ex16a〉,∅), (〈d , e, f ,Ex16b〉,∅)}}. There is one
set in SPB(Ex16a) and in SPB(Ex16b), so Algorithm 2 performs one iteration,
with avEvents = ∅, since there is no sequence with a freely occurring event.

We check every pair being analysed (line 3). For the pairs (〈d , e, g ,Ex16c〉,∅)
and (〈a, b, c,Ex16a〉,∅), the conditional in line 4 returns false, since the head of
the sequences is different, and so does all six occurrences of the conditional in line

7, inside the loop in line 6, because the two sequences have no event in common.
For (〈d , e, g ,Ex16c〉,∅) and (〈d , e, f ,Ex16b〉,∅), the conditional in line 4 also
returns false, this time because d ∈ X , but when the loop in line 6 executes for
the second event of each sequence, the conditional in line 7 returns true. In this
case we have that eventsP = ∅ ∪ {g} ∪ {e} and eventsQ = ∅ ∪ {f } ∪ {e}, so
Algorithm 2 returns false. �

Example 17 We consider the following processes.

Ex17a = Ex16a ✷ Ex16b Ex17b = Ex17a[[{e}]]Ex16c

We have SPB(Ex17a) = {{(〈a, b, c,Ex16a〉,∅)}, {(〈d , e, f ,Ex16b〉,∅)}}. The
application of Algorithm 2 to Ex17b occurs similarly to that of Ex16e, but two
iterations occur. The first iteration, with the sets {(〈a, b, c,Ex16a〉,∅)}, and
{(〈d , e, g ,Ex16c〉,∅)} occurs without problems. The second iteration, with the
sets {(〈d , e, f ,Ex16b〉,∅)} and {(〈d , e, g ,Ex16c〉,∅)}, however, leads the con-
ditional in line 4 to return true when analysing the only two pairs, because
allSetsEquiv(Ex17a) = false, leading Algorithm 2 to return false. �

The way we calculate the available events after an event occurs is the main source
of efficiency gain when we deal with parallelism. A global analysis would con-
sider all possible states of the other sequences to carry out the verification. Our
strategy, with the use of avEvents, considers only a small part of the state space.
The sequences that perform various events before a recursion, SKIP , or STOP ,
can offer different events, depending of their state, but, more importantly, can
refuse to offer them. Since we cannot rely on the events of these sequences to
ensure determinism we discard them altogether. For Ex16d , for instance, FDR4
visits 54 states, while our strategy only considers 9 states.

We have implemented all the algorithms presented in this section, plus the
algorithm to check hiding, to construct a prototype determinism checker. In the
next section, we show the results of experiments carried out using this prototype.

4 Experimental Results

We performed a number of experiments to compare FDR4 with our prototype.
The railway network described in Section 2.1 is our main case study. To evalu-
ate every algorithm, we also considered processes involving external and internal
choice, interleaving, and hiding. The prototype and the files used in the experi-
ments are available online, on the link referenced on Page 11.

We used two models of the railway network: the original, deterministic,
model, and a modified nondeterministic model, with an error in the last two
pairs of tracks. For each model we consider three scenarios, consisting of one, six,
and eleven trains, respectively. For each scenario, eight instances are evaluated,
with an increasing number of pairs of tracks. The instance number indicates the
number of pairs of tracks in it. The results of the experiments with the railway
network can be seen in tables 1 to 6; the * indicates an out-of-memory error.

Table 1. Deterministic instances with
one train in the railway.

Instance FDR4 Prototype

25 0.12s 0.35s

50 0.22s 0.46s

75 0.32s 0.50s

100 0.37s 0.56s

500 2.94s 1.38s

1000 8.67s 2.19s

5000 4m20.06s 20.13s

10000 * 1m29.63s

Table 2. Nondeterministic instances with
one train in the railway.

Instance FDR4 Prototype

25 0.13s 0.38s

50 0.23s 0.43s

75 0.30s 0.53s

100 0.48s 0.61s

500 3.65s 1.38s

1000 12.76s 2.21s

5000 10m33.92s 19.74s

10000 * 1m26.83s

Table 3. Deterministic instances with six
trains in the railway.

Instance FDR4 Prototype

25 0.52s 0.35s

50 3m6.67s 0.44s

75 * 0.50s

100 * 0.60s

500 * 1.37s

1000 * 2.18s

5000 * 19.55s

10000 * 1m24.65s

Table 4. Nondeterministic instances with
six trains in the railway.

Instance FDR4 Prototype

25 0.17s 0.35s

50 2.16s 0.45s

75 22.56s 0.50s

100 2m11.05s 0.55s

500 * 1.36s

1000 * 2.07s

5000 * 19.88s

10000 * 1m24.16s

Table 5. Deterministic instances with
eleven trains in the railway.

Instance FDR4 Prototype

25 0.18s 0.34s

50 * 0.43s

75 * 0.51s

100 * 0.58s

500 * 1.37s

1000 * 2.20s

5000 * 19.97s

10000 * 1m22.75s

Table 6. Nondeterministic instances with
eleven trains in the railway.

Instance FDR4 Prototype

25 0.13s 0.37s

50 12.77s 0.43s

75 8m25.50s 0.51s

100 * 0.58s

500 * 1.45s

1000 * 2.13s

5000 * 19.98s

10000 * 1m23.92s

The experiments were run in a server with an Intel Core i7-2600k, 16GB of
RAM, 160GB of SSD, and Ubunto 17.94 64-bit. We used FDR 4.2.0. The results
show that while for smaller examples FDR has a better performance, due to
the overhead of calculation of metadata in our approach, it struggles to analyse
large parallel systems. Our prototye was able to analyse the largest instance in
less than two minutes, a very promising result.

To analyse the impact of external choice, our experiments consist of a number
of processes in the form Basici = a.i → b.i → c.i → Basici , all composed with

this operator. Nondeterministic instances were created by modifying the last
process to Basici = a.(i − 1) → b.i → c.i → Basici . For the evaluation of the
hiding operator, we modified the instances of the external choice experiments
by hiding event b.i after each composition, with the nondeterministic instances
hiding a.i , instead of b.i , after the last composition.

The experiments with internal choice consist of compositions of processes
of the form Basici = a.0 → b.0 → c.0 → Basici , with the nondeterministic
instances having b.1, instead of b.0, in the last process. For interleaving, we
compose processes with the same structure of the processes used in the external
choice experiments, with the nondeterministic instances having their last two
processes ending with new events, ... → c.(i − 1) → d → e → f → Basic(i − 1)
and ... → c.i → d → e → g → Basici .

The results of our additional experiments are in the extended version of this
paper. With them we identified that FDR4 does not scale well, specially with
interleaving. For all problems considered, except the 10000 instance of our hiding
experiment, the prototype completed its analysis in less than two minutes. It is
fair to remember that, while FDR4 would correctly identify processes like Ex3d
as deterministic, our prototype would indicate the possibility of nondeterminism.

5 Conclusion

In this paper we propose a local analysis for the verification of determinism,
considering a subset of CSP. We analyse each composition that is part of the
process being verified, gathering metadata about them. With the metadata we
gather, we are able to guarantee determinism by only checking conditions on the
argument processes of the composition. We performed some experiments and
the results show that our approach scales better than that of FDR4, the main
tool for verification of CSP models, specially when dealing with interleaving.

Local analysis has been used for the verification of properties of concurrency.
For livelock, a compositional strategy that handles a subset of CSP similar to
our own is presented in [4]. For deadlock, there are works aimed at CSP that
involve adherence to deadlock-free patters [2, 3], with a focus on the analysis
of cyclic networks of processes. Recent improvements on local deadlock analysis
for CSP are reported in [1], but this work also presents an incomplete strategy.
As already mentioned, we are not aware of any other approach to compositional
analysis of determinism, so our work is an original contribution in this direction.

The composition of techniques that verify deadlock, livelock, and determin-
ism locally is possible. By identifying a subset of CSP shared by all of them, an
integrated approach to analyse all the three classical properties is viable.

Our strategy can be improved. We will widen the considered subset of CSP,
removing some of the restrictions, to allow non-tail recursion and parameters. We
will also prove the correctness of the algorithms and perform more case studies.

Acknowledgements

This work was partially supported by INES (grants CNPq/465614/2014-0, and
FACEPE/APQ/0388-1.03/14) and FACEPE (grant IBPG-0074-1.03/16). We
thank Madiel Conserva Filho and Joabe Jesus Júnior for the helpful discussions.

References

1. Antonino, P.R.G., Gibson-Robinson, T., Roscoe, A.W.: Tighter Reachability Cri-
teria for Deadlock-Freedom Analysis. In: FM 2016: Formal Methods - 21st Inter-
national Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings. pp.
43–59 (2016)

2. Antonino, P.R.G., Oliveira, M.V.M., Sampaio, A., Kristensen, K.E., Bryans, J.W.:
Leadership Election: An Industrial SoS Application of Compositional Deadlock
Verification. In: NASA Formal Methods - 6th International Symposium, NFM
2014, Houston, TX, USA, April 29 - May 1, 2014. Proceedings. pp. 31–45 (2014)

3. Antonino, P.R.G., Sampaio, A., Woodcock, J.: A Refinement Based Strategy for
Local Deadlock Analysis of Networks of CSP Processes. In: FM 2014: Formal Meth-
ods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings. pp.
62–77 (2014)

4. Filho, M.S.C., Oliveira, M.V.M., Sampaio, A., Cavalcanti, A.: Local Livelock Anal-
ysis of Component-Based Models. In: Formal Methods and Software Engineering
- 18th International Conference on Formal Engineering Methods, ICFEM 2016,
Tokyo, Japan, November 14-18, 2016, Proceedings. pp. 279–295 (2016)

5. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: FDR3 - A Modern
Refinement Checker for CSP. In: Tools and Algorithms for the Construction and
Analysis of Systems: 20th International Conference. pp. 187–201 (2014)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

7. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi,
S., Mandrioli, D. (eds.) FME 2003: Formal Methods. pp. 855–874. LNCS 2805,
Springer-Verlag (2003)

8. Ramos, R., Sampaio, A., Mota, A.: Systematic Development of Trustworthy Com-
ponent Systems. In: FM 2009: Formal Methods, Second World Congress, Eind-
hoven, The Netherlands, November 2-6, 2009. Proceedings. pp. 140–156 (2009)

9. Roscoe, A.: Understanding Concurrent Systems. Springer-Verlag New York, Inc.,
New York, NY, USA, 1st edn. (2010)

10. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley
& Sons, Inc., New York, NY, USA, 1st edn. (1999)

11. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under
Fairness. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification: 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings. pp. 709–714. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

