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A B S T R A C T

In a conceptual UK geological disposal facility for nuclear waste within a high-strength, crystalline geology, a
cement-based backfill material, known as Nirex Reference Vault Backfill (NRVB), will be used to provide a
chemical barrier to radionuclide release. The NRVB is required to have specific properties to fulfil the opera-
tional requirements of the geological disposal facility (GDF); these are dependent on the chemical and physical
properties of the cement constituent materials and also on the water content. With the passage of time, the raw
materials eventually used to synthesise the backfill may not be the same as those used to formulate it. As such,
there is a requirement to understand how NRVB performance may be affected by a change in raw material
supply. In this paper, we present a review of the current knowledge of NRVB and results from a detailed
characterisation of this material, comparing the differences in performance of the final product when different
raw materials are used. Results showed that minor differences in the particle size, surface area and chemical
composition of the raw material had an effect on the workability, compressive strength, the rate of hydration and
the porosity, which may influence some of the design functions of NRVB. This study outlines the requirement to
fully characterise cement backfill raw materials prior to use in a geological disposal facility and supports ongoing
assessment of long-term post-closure safety.

1. Introduction

Intermediate Level Waste (ILW) comprises a significant proportion,
approximately 450 000 m3, of the UK's projected inventory of radio-
active waste (Nuclear Decommissioning Authority, 2015). This includes
waste arising from the reprocessing of spent nuclear fuel (e.g. spent fuel
cladding) and from the operation, maintenance and decommissioning
of nuclear facilities (e.g. sludges from the treatment of radioactive li-
quid effluents) (Hicks et al., 2008). This waste is destined for final
disposal in a Geological Disposal Facility (GDF) (Nuclear
Decommissioning Authority, 2010a), where the conditioned waste
packages will be placed in vaults excavated in host rock, deep under-
ground (Nuclear Decommissioning Authority, 2010b). In a conceptual
scenario where a high-strength crystalline rock will host the facility, the
vaults will be backfilled with a cement-based material to provide a
physical and chemical barrier to radionuclide release (Nuclear
Decommissioning Authority, 2010b). For this purpose, the Nirex Re-
ference Vault Backfill (NRVB) has been considered (Francis et al.,

1997).
NRVB was designed in the 1990s to fulfil a number of specific re-

quirements for use in a UK geological disposal facility (Francis et al.,
1997; Hooper, 1998). These include (Crossland and Vines, 2001;
Nuclear Decommissioning Authority, 2010c; United Kingdom Nirex
Limited, 2005):

- providing a high alkaline buffered environment, through the dis-
solution of the different cement hydrate phases by groundwater, to
suppress dissolved concentrations of many radionuclides;

- possessing high permeability and porosity to ensure homogeneous
chemical conditions, to allow the escape of the gases generated in
the GDF and to provide a high surface area for radionuclide sorp-
tion; and

- exhibiting low strength to facilitate the possibility of re-excavation
of the vaults, if required.

Despite an initial assessment of NRVB at the time of the design and
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patent (Francis et al., 1997), and subsequently, several assessments of
various aspects of this material (e.g. mineralogy, strength, or porosity,
as described below), there has not been a comprehensive character-
isation of NRVB, where all tests are performed on a consistent batch.
Additionally, some of the raw materials used in early development of
NRVB are no longer available due to changes in the powder suppliers
(Radioactive Waste Management, 2016), therefore, materials to be used
when a GDF is in operation may differ in composition and other key
characteristics. It is important to understand how the chemical and
physical properties of the backfill raw materials may affect the short-
and long-term performance of the backfill, to support development of
GDF engineering and post-closure safety assessment. We here present a
literature review of the published data on NRVB, even where datasets
are incomplete, or details pertinent to the analysis of the data are ab-
sent.

1.1. NRVB hydration

Portland cement (PC), calcium hydroxide [Ca(OH)2] and calcium
carbonate (CaCO3) are the main components of NRVB (Hooper, 1998).
The original formulation used a water/solid ratio (w/s) of 0.55 and a
water to cement (w/c) ratio of 1.367. According to this composition,
Holland and Tearle (2003) described the expected mineralogy of NRVB
and the respective changes in relation with temperature. Theoretically,
at ambient temperature, the phase assemblage of NRVB is expected to
contain calcium hydroxide (also known as portlandite), calcite (CaCO3),
calcium silicate hydrate (C-S-H), AFt (ettringite) and AFm (mono-
carboaluminate) phases, and possibly hydrotalcite if magnesium car-
bonate is present in the limestone flour or in the Portland cement
(Holland and Tearle, 2003). At high temperatures (80 °C), the forma-
tion of hydrogarnet-type phases was also predicted, according to ther-
modynamic modelling (database not specified) performed by the same
authors (Holland and Tearle, 2003), although more recent advances in
cement chemistry and phase assemblage prediction models indicate
that this may be less likely due to the high quantity of carbonate present
in this cement formulation. Experimental X-ray diffraction (XRD) per-
formed on fresh (uncured) NRVB revealed that the main phase present
was calcite, whereas for NRVB cured for 4 months and 3 years, the
phase assemblage was dominated by portlandite (Felipe-Sotelo et al.,
2012).

Portlandite and C-S-H are expected to provide the high alkaline-
buffering capacity of NRVB. It is proposed that when the backfill ma-
terial is first in contact with groundwater, the pH will be buffered by
the dissolution of the more soluble phases, alkali (i.e. Na, K) hydroxides
and sulfates. After the removal of the alkali metal salts, buffering will
continue through the dissolution of portlandite; a solution saturated
with respect to portlandite is formed with a pH of about 12.5 at 25 °C
(Francis et al., 1997). After the portlandite has been exhausted, pH
buffering will be maintained by the incongruent dissolution of C-S-H
phases with relatively high calcium/silicon molar ratios (Ca/Si), around
1.5. From this, dissolution will result in the release of calcium and
hydroxide ions, thus lowering the Ca/Si ratio and reducing the pH value
at which the water is buffered (Harris et al., 2002; Hoch et al., 2012).
The buffering timescale and capacity of NRVB will depend mainly on
the composition and rate of groundwater leaching (Bamforth et al.,
2012; Francis et al., 1997). According to a recent study regarding the
leaching behaviour of C-S-H using demineralised water, even with a
low Ca/Si ratio, the dissolution of C-S-H will buffer the pH to ∼10
(Swanton et al., 2016).

1.2. Physical properties of NRVB

The physical properties of NRVB were summarized by Francis et al.
(1997) and Bamforth et al. (2012). The compressive strength of the
NRVB (w/s = 0.55) was found to be 4.9 MPa, 5.9 MPa and 6.3 MPa
after 7, 28 and 90 days of curing respectively (Francis et al., 1997).

When comparing with compressive strength values obtained for Port-
land cement (w/s = 0.50), (e.g. 31 MPa, 45 MPa and 46 MPa after 7, 28
and 90 days, respectively, from Menéndez et al. (2003)), the values
obtained for NRVB are very low. This relatively low strength thus al-
lows retrievability of waste packages from within NRVB-backfilled
vaults (Crossland and Vines, 2001; Nuclear Decommissioning
Authority, 2010c; United Kingdom Nirex Limited, 2005).

Since the repository operating temperatures will be higher than the
20 °C used for standard cement curing, studies have been performed to
assess the effect of curing temperature (30 °C, 60 °C and 90 °C, cured in
moist or excess volume of water) on the strength of NRVB (Francis
et al., 1997). Results showed that increasing the temperature of curing
corresponds to a reduction in the strength, for example after 28 days of
curing at 90 °C, the compressive strength was halved when compared to
curing at 30 °C (Francis et al., 1997). Similar results have been obtained
with Portland-limestone cement, where a temperature increase nega-
tively influenced compressive strength (Lothenbach et al., 2007). It
should be noted, however, that such high curing temperatures (90 °C)
are not expected within a GDF vault for ILW.

1.3. Microstructural properties of NRVB

Porosity and permeability must be carefully considered when de-
signing a cementitious material for a GDF, since these properties will
influence the transport characteristics of groundwater and radionuclide
species through the cement. For example, having a high porosity (more
than 30%) allows the ingress of groundwater, dissolution of the dif-
ferent hydrate phases, so providing a high alkaline environment. It also
allows the diffusion of gases produced in the waste packages and gives
rise to a high surface area, capable of sorbing radionuclide species.

NRVB is relatively porous; the total porosity of NRVB includes a
high quantity of unreacted material, was reported to be 50% using
mercury intrusion porosity and nitrogen desorption methods, at an
unspecified curing age (Francis et al., 1997). However by, comparing
the density obtained in dry and water conditions by Francis et al., we
can calculate the porosity to be 35%. X-ray computed tomography
(XCT) gave a segmented porosity of ∼40% for large scale samples in
the non-carbonated region of an NRVB-carbonation trial (Heyes et al.,
2015).

After closure, the formation of gases is expected to occur in the GDF,
e.g. from corrosion of Magnox cladding, fuel fragments, uranium and
steel under anaerobic conditions, microbial degradation of organic
compounds and radiolysis of water (Harris et al., 1992). As a result, the
permeability of NRVB should be sufficient to allow gas movement
without significant over-pressurisation and cracking (Francis et al.,
1997). The gas permeability coefficient for argon and helium in NRVB
at 28 days of curing (in a membrane of NRVB 20 mm thick, average
pressure of 100 kPa) was found to be approximately 2 × 10−15 m2 in
dry conditions and 5 × 10−17 m2 in saturated grout (Francis et al.,
1997; Harris et al., 1992). The average pore radius was determined to
be 0.45 μm, with a pore size distribution ranging from 5 nm to>1 μm
(Harris et al., 1992). Harris and colleagues concluded, using the pre-
mise that a material is considered to crack if the calculated stress ex-
ceeds the tensile strength, that NRVB is able to release gas at a sufficient
rate without generating cracks (Harris et al., 1992).

Most of the results presented in the above summary were reported
on the basis of unspecified testing methods and precursor materials, and
little other detailed information is available about the cement hydration
and microstructure of NRVB. Due to the importance of a backfill ma-
terial in stabilising radioactive waste in a GDF, a thorough under-
standing of these properties of NRVB is crucial to build a robust post-
closure safety case. In this paper, a full characterisation of NRVB is
performed. The hydration reaction, the mineralogy and the mechanical
properties are studied using two different types of raw materials to
assess the implications of security of cement material supply on cement
characteristics and performance. These results will have important
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implications regarding the applicability of older studies to present day
materials in the disposal of nuclear wastes.

2. Materials and methods

2.1. Materials

Batches of NRVB paste were prepared according to the formulation
presented in Table 1, with a water/solid ratio (where solid includes all
the powder materials used) of 0.55. It is possible to find, in the litera-
ture, data pertaining to NRVB prepared with laboratory (pure) mate-
rials (e.g. Corkhill et al., 2013) and also with industrial materials (e.g.
Butcher et al., 2012). To verify the consistency between the cement
formed using these two types of starting materials, two different bat-
ches of NRVB were studied. For the NRVB formulated using laboratory
chemicals, denoted NRVB (Lab), the starting materials were: CEM I
52.5 N sourced from Hanson Cement Ltd, Ribblesdale works (i.e.
Sellafield specification; BS EN 197-1:2011); Ca(OH)2 (≥95.0%) and
CaCO3 (≥99.0%) were sourced from Sigma-Aldrich. In the case of
NRVB formulated using industrial materials, denoted NRVB (Ind), the
following products were used: CEM I 52.5 N (as above); hydrated lime
sourced from Tarmac Cement & Lime (Tunstead Quarry, Buxton, UK);
and limestone flour sourced from National Nuclear Laboratory (Tendley
Quarry, Cumbria, UK; BS EN 13043:2002).

The particle size distribution was measured using a Mastersizer

Table 1
NRVB formulation (Francis et al., 1997; Hooper, 1998).

Material Content (kg m−3)

CEM I 52.5 N 450
Ca(OH)2/Hydrated lime 170
CaCO3/Limestone flour 495
Water 615

Table 2
Composition of raw materials, as determined by X-Ray Fluorescence analysis (preci-
sion ± 0.1 wt%).

Compound
(wt. %)

CEM I
52.5 N

Limestone
Flour (Ind)

CaCO3

(Lab)
Hydrated
Lime (Ind)

Ca(OH)2
(Lab)

Na2O 0.3 0.2 <0.1 < 0.1 < 0.1
MgO 1.2 1.6 <0.1 0.5 0.5
Al2O3 5.2 1.9 <0.1 < 0.1 0.1
SiO2 19.7 5.4 <0.1 0.5 0.7
P2O5 0.2 0.1 <0.1 < 0.1 < 0.1
K2O 0.5 0.3 <0.1 < 0.1 < 0.1
CaO 64.1 48.1 57.0 73.9 74.5
Fe2O3 2.1 1.7 <0.1 < 0.1 < 0.1
SO3 – 893 ppm 37 ppm – –

Fig. 1. Particle size distribution of (a) CaCO3 and limestone flour and; (b) Ca(OH)2 and
hydrated lime.

Fig. 2. (a) Isothermal calorimetry of NRVB (Lab) and NRVB (Ind). Thermal features
identified are: (1) dissolution and C3A reaction; (2) induction period; (3) reaction of alite
and formation of calcium silicate hydrate; (4) sulfate depletion; (b) Cumulative heat of
NRVB (Lab) and NRVB (Ind).
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3000 PSA, and the results analysed using Malvern Instruments soft-
ware.

The chemical composition of the starting materials, as calculated
using X-ray fluorescence (PANalytical Zetium XRF) of powdered ma-
terials, is shown in Table 2. The composition was very similar for both
Ca(OH)2 and hydrated lime. However, a slight difference was observed
between CaCO3 and limestone flour. For example, CaCO3 contained
more CaO than the limestone flour (57 wt% and 48 wt%, respectively).
On the other hand, limestone flour presented a higher concentration
(between 1.6 and 5.4 wt%) of SiO2, Fe2O3, MgO and Al2O3 than reagent
grade CaCO3, which contained below 0.05 wt% of these elements
(Table 2).

Both cement batches were mixed using a Kenwood benchtop mixer
for 5 min. Subsequently, the cement pastes were placed in centrifuge
tubes or steel moulds (for compressive strength analysis) and cured at
20 °C and 95% relative humidity, for 28 days.

2.2. Analytical methods

2.2.1. Mechanical properties
The workability of both NRVB formulations was investigated using a

mini-slump test (Kantro, 1980). The cement paste was placed in a cone
(19 mm top opening x 38 mm bottom opening x 57 mm height) resting
on a sheet of polymethyl-methacrylate. The cone was lifted vertically

upwards and the resulting slump area measured using a scale. Each
mini-slump test was repeated in triplicate.

The setting time was ascertained using a Vicatronic automatic re-
cording apparatus (Vicat needle method) and 400 g of paste at 19–21 °C
and 30–38% relative humidity. The penetration of a needle (1.13 mm
diameter) was monitored and the initial setting time was considered as
the time when the needle penetration was 35 mm; the final setting time
corresponded to less than 0.5 mm of penetration.

After 28 days of curing, compressive strength was measured on
cubes with dimensions of 50 × 50 × 50 mm, in triplicate. Cubes were
placed within a Controls Automax automatic compressive tester for
analysis, with a loading rate of 0.25 MPa/s. The density of both for-
mulations was measured using He pycnometry (Micromeritics AccuPyc
II 1340) using approximately 0.40 g of powder (< 63 μm). A fill
pressure of 82.7 kPa was purged 50 times over 20 cycles at 25 °C with
an equilibration rate of 34.5 Pa/min.

2.2.2. Chemical analysis (hydration)
The heat flow resulting from the NRVB hydration reaction was

studied using isothermal calorimetry analysis (TAM Air, TA
Instruments) at 20 °C. Approximately 20 g of cement paste was mixed
and the measurements were performed for 7 days. As reference sample,
tap water was used.

For identification of the hydrate phases present in NRVB at an early
age (28 days of curing), XRD and TGA-MS were performed on powder
samples (< 63 μm). The former was carried out using a Bruker D2
Phaser diffractometer utilising a Cu Kα source and Ni filter.
Measurements were taken from 5° to 70° 2θ with a step size of 0.02° and
2 s counting time per step. For TG-MS analysis, a PerkinElmer Pyris 1

Fig. 3. X-ray diffraction patterns for (a) NRVB (Lab) and NRVB (Ind) after 28 days of
curing, and (b) Limestone Flour and CaCO3. Crystalline phases are labelled.

Fig. 4. TGA-MS for (a) NRVB (Lab); and (b) NRVB (Ind) after 28 days of curing.
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thermogravimetric analyser was used. The temperature ranged from
20 °C to 1000 °C with a heating rate of 10 °C/minute under N2 (ni-
trogen) atmosphere. A Hiden Analytical mass spectrometer (HPR-20
GIC EGA) was used to record the mass spectrometric signals for H2O
and CO2.

Scanning Electron Microscopy (SEM) imaging and Energy
Dispersive X-ray (EDX) analysis were performed on NRVB monolith
samples mounted in epoxy resin and polished to a 0.25 μm finish using
diamond paste. Backscattered electron (BSE) images were recorded
using a Hitachi TM3030 scanning electron microscope operating with
an accelerating voltage of 15 kV. EDX analysis was performed using
Quantax 70 software and elemental maps were collected for 10 min.

Solid-state nuclear magnetic resonance (NMR) spectra for 29Si were
collected on a Varian VNMRS 400 (9.4 T) spectrometer at 79.435 MHz

using a probe for 6 mm o.d. zirconia rotors and a spinning speed of
6 kHz, a pulse width of 4 μs (90°), a relaxation delay of 2.0 s, and with a
minimum of 30000 scans. 27Al NMR spectra were collected on the same
instrument at 104.198 MHz using a probe for 4 mm o.d. zirconia rotors
and a spinning speed of 12 kHz, a pulse width of 1 μs (25°), a relaxation
delay of 0.2 s, and a minimum of 7000 scans.

2.2.3. Microstructure analysis (porosity)
To determine the Brunauer-Emmett-Teller (BET) surface area, ni-

trogen adsorption-desorption measurements were studied at 77 K on a
Micromeritics 3 Flex apparatus. Powder samples of raw material were
cooled with liquid nitrogen and analysed by measuring the volume of
gas (N2) adsorbed at specific pressures. The pore volume was taken
from the adsorption branch of the isotherm at P/P0 = 0.3. Mercury

Fig. 5. BSE SEM micrograph of (a) NRVB (Lab)
and (b) NRVB (Ind) at 28 days of curing, with the
corresponding EDX maps.

Fig. 6. 29Si MAS NMR spectra, and deconvolution results, for (a) NRVB (Lab) and; (b) NRVB (Ind) after 28 days of curing.
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intrusion porosimetry (MIP) was used to study the total porosity and
pore distribution of the samples. Small pieces of cement paste were
placed into the sample holder of an Autopore V 9600 (Micromeritics
Instruments). Washburn's law was used to determine the pore diameter,
by applying the following equation: D = (−4cosθ)γ/P, where D is the
pore diameter (μm), θ the contact angle between the fluid and the pore
mouth (°), γ the surface tension of the fluid (N/m), and P the applied
pressure to fill the pore with mercury (MPa). The maximum pressure
applied was 208 MPa, the surface tension was 485 mN/m and the
contact angle was 130°.

The XCT scans were performed at the University of Strathclyde
using a Nikon XTH 320/225 system, equipped with a 225 kV reflection
gun, a microfocus multimetal target, and a 2000 × 2000 pixel flat
panel photodetector (cell size 0.2 × 0.2 mm). The rotation stage po-
sition was set so the X-ray source-to sample distance was minimal and
allowed a minimum voxel size of 3 micrometres. Scanning conditions
were an accelerating voltage of 100 keV, 28 μA current (corresponding
to power 2.8 W) using a silver target. The exposure time for each
projection was 2.829 s, lasting 3141 projections (1 frame per projec-
tion) and leading to a scan-time of 2.5 h. Gun conditions would not
saturate photodetector, consequently no metallic filter was required

during the scans. Projections were overlapped in 3 different heights of
the sample with CT Pro 3D software (© 2004–2016 Nikon Metrology) to
reconstruct the centre of rotation of the 3D volumes. Once re-
constructed, a software built-in algorithmic correction has been applied
to correct for artifacts related to beam-hardening (Brooks and Dichiro,
1976). All volumes were reconstructed in 16 bit greyscale, and con-
verted to a.tif stack. A volume of interest (VOI) was selected for each
sample, using standards previously reported in the literature, i.e. the
VOI should be at least 100 μm3, or higher than 3 to 5 times the size of
the largest distinct feature, to minimise finite size error. In this study,
the VOI size chosen was 0.42 mm3 (250 × 250 x 250 voxels at 3 μm
resolution).

3. Results and discussion

3.1. Mechanical properties

The workability, determined by mini-slump testing, of NRVB (Lab)
and NRVB (Ind) was found to be 56.5 ± 0.8 mm diameter and
68.4 ± 1.7 mm diameter, respectively. The higher fluidity of NRVB
(Ind) is likely related to the difference observed in the particle size
distribution between the sources of calcium carbonate (Fig. 1a), where
50% of the particles were smaller than 19.7 μm for CaCO3, and 11.5 μm
for limestone flour. For laboratory and industrial grade Ca(OH)2
(Fig. 1b), the particle size distribution was found to be very similar.

For general applications, the initial setting time of a cement should
not be less than 45 min, and the final setting time should not be greater
than 10 h (Bensted and Barnes, 2008; Taylor, 1997). Using the Vicat
method, it was possible to obtain an initial setting time of 5.3 h, and a
final setting time of 7.7 h for NRVB (Lab). For NRVB (Ind) the values
were very similar, with the initial and final setting times at 5.5 h and
7.3 h. This is in contrast to the initial NRVB formulation study, where
an initial setting time of 4.05 h and a final setting of 4.50 h was ob-
served (Francis et al., 1997). Since the w/s ratio in the present study is
the same as that used by Francis et al. (1997), this difference is likely to
be related to the use of different raw material, and a consequent dif-
ference in the reactivity of the materials.

After 28 days of curing, the compressive strength and density of the
two materials were compared. The compressive strength was de-
termined to be 8.2 ± 0.2 MPa for NRVB formulated using laboratory
materials and 7.15 ± 0.04 MPa for NRVB formulated with industrial
materials. This is somewhat greater than that measured by Francis et al.
(1997), who found a compressive strength of 5.9 MPa at 28 days for
NRVB prepared using components available in the early 1990s. Since no
characterisation of these starting materials was published, it is not
possible to ascertain which component of this early NRVB formulation
gave rise to the reduced strength, although it may be postulated that the
52.5 MPa grade cement used in our trials was of a higher strength grade
than the materials used historically, as cement production at this high
strength grade was much less common in the early 1990s. The density
was determined by helium pycnometry to be 2.251 ± 0.001 g/cm3 for
NRVB (Lab) and 2.328 ± 0.002 g/cm3 NRVB (Ind); previous mea-
surements of NRVB density using the Archimedes method (100 mm
cubes) gave a density of 1.7 g/cm3 in water-saturated NRVB samples
and 1.1 g/cm3 in oven dried samples (Francis et al., 1997). This lower
value could reflect the difference in the methodology used; the Archi-
medes method determines bulk density, whereas pycnometry allows the
determination of solid density as helium gas reaches all of the pores
within the cement.

3.2. Chemical analysis (hydration)

Fig. 2a shows the isotherm generated for both NRVB formulations
during hydration. It is possible to identify the four main hydration
stages, as observed in a plain Portland cement. In comparison to Port-
land cement, the heat flow was lower (Fig. 2b) by a factor of ∼2

Fig. 7. 27Al MAS NMR spectra of NRVB (Lab) and NRVB (Ind) after 28 days of curing.

Fig. 8. Pore entry size distribution of NRVB (Lab) and NRVB (Ind) using MIP.
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(Jansen et al., 2012). This is related to the much lower fraction of
material undergoing hydration in the NRVB formulation. Comparing
the two formulations of NRVB, it can be observed that the heat flow was
very similar, however one subtle difference was observed: the curve
corresponding to the sulfate depletion period (labelled 4, Fig. 2a) of
NRVB (Ind) indicates that it evidenced a more intense reaction than
NRVB (Lab). One possible explanation is the formation of additional
calcium monocarboaluminate hydrate in NRVB (Ind) as observed in
XRD and NMR data (discussed below). In accordance with the particle
size analysis (Fig. 1a), determination of the surface area of the CaCO3

sources indicated that the limestone flour used in NRVB (Ind) had a
significantly higher surface area than CaCO3 used in NRVB (Lab), with
values of 5.2 ± 0.2 m2/g and 3.7 ± 0.2 m2/g, respectively. The
higher surface area is responsible for a higher rate of calcite dissolution
and also the availability of more nucleation sites, resulting in the for-
mation of more hydration products (Scrivener et al., 2015). Another
factor to consider is the higher content of sulfate present in the in-
dustrial raw material, which may give rise to the observed differences;
the limestone flour of NRVB (Ind) had 893 ppm sulfur, compared with

37 ppm in the hydrated lime of NRVB (Lab) (Table 2).
The main phases identified in the NRVB formulations by X-ray

Diffraction (XRD) were calcite (CaCO3; PDF 01-086-0174) and por-
tlandite (Ca(OH)2; PDF 01-072-0156) (Fig. 3a). Ettringite
(Ca6Al2(OH)12(SO4)3·26H2O; PDF 00-041-1451), calcium mono-
carboaluminate hydrate (Ca4Al2(OH)12(CO3)3·5H2O; PDF 01-087-0493)
and calcium hemicarboaluminate hydrate (Ca4Al2(OH)12 [OH
(CO3)0.5]·5.5H2O; PDF 00-041-0221) were also identified. These results
are in agreement with those identified previously in NRVB cured at
ambient temperature (Felipe-Sotelo et al., 2012). While the phase as-
semblage for each formulation was similar, subtle differences were
observed in the peak intensities of several reflections; mono-
carboaluminate reflections were more intense in NRVB (Ind) than
NRVB (Lab), while reflections of calcite were more intense in NRVB
(Lab), which is also apparent in the XRD patterns corresponding to
limestone flour and CaCO3 (Fig. 3b). These differences may be attrib-
uted to the chemical composition, particle size distribution and surface
area of the CaCO3 and limestone flour, however, preferential orienta-
tion cannot be ruled out, especially for layered or platy phases such as

Fig. 9. XCT data of (a) NRVB (Lab) and (b) NRVB (Ind). Top: Slices
through the tomographic reconstruction, showing the selected VOI
(square); centre: selected slices through the VOI in each sample; and
bottom: segmented into solid (white) and pore (black) regions.
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monocarboaluminate and portlandite.
TG-MS analysis confirmed the presence of the phases identified by

XRD (Fig. 4). The two peaks between 100 and 200 °C can be attributed
to the presence of ettringite and monocarboaluminate, while the peaks
between 400 and 500 °C, and 650–800 °C correspond to portlandite and
calcite, respectively (Lothenbach et al., 2007; Sun, 2011). The same
peaks were observed for both formulations, however for the NRVB (Ind)
(Fig. 4b) an additional peak was observed at ∼ 650 °C, corresponding
to the presence of magnesian calcite and supported by the presence of a
greater quantity of Mg in NRVB (Ind) than NRVB (Lab) (Table 2).

Through SEM imaging and EDX analysis it was possible to identify
the microstructure of the different hydrate phases, as shown in Fig. 5.
The large Ca-containing rhombohedral crystals (labelled A, Fig. 5) are
portlandite. The Ca and Si-rich phase surrounding portlandite crystals
(labelled B, Fig. 5) may be C-S-H. The areas containing higher con-
centrations of aluminium (labelled C, Fig. 5) suggest the presence of
AFm phases. The areas labelled D are indicative of the presence of
sulfate-containing AFm phases and/or ettringite, due to the higher
concentration of both aluminium and sulfate. Comparing the SEM
images of the two formulations, it is possible to identify the same hy-
drate phases, however the matrix of NRVB formulated with industrial
materials has a more fine grained morphology, consistent with the
analysis of limestone flour.

In the 29Si MAS NMR spectra (Fig. 6) it was possible to identify some
unreacted Portland cement through the presence of alite (chemical
shifts −69 and −73.9 ppm) and belite (−71.2 ppm) (Scrivener et al.,
2016) in both NRVB formulations. Contributions from Q1 (−79 ppm),
Q2(1Al) (−83 ppm) and Q2 (−84 ppm) silicate environments were also
observed in both formulations; these chemical shifts are characteristic
of C-S-H (Richardson, 2008; Richardson et al., 2010). A small resonance
was also observed at −90 ppm corresponding to Q3(1Al). The presence
of Al shows the incorporation of this element in the C-(A)-S-H
(Richardson et al., 2010). Comparison of the two formulations reveals a
small difference in the spectra (Fig. 6a and b) between NRVB (Lab) and
NRVB (Ind); this is related to the intensity of Q2 (−84 ppm), Q2(1Al)
(−83 ppm) and Q3 (1Al) (−90 ppm). A possible reason is the difference
observed in the reactivity of the raw materials used in the two for-
mulations, specifically the higher surface area of the limestone flour.

Fig. 7 shows the 27Al NMR spectra of NRVB (Lab) and NRVB (Ind).
The small peak observed at approximately −69 ppm (more evident for
NRVB Ind) is attributed to the substitution of Al for Si in C-S-H
(Lothenbach et al., 2008), in agreement with the observation of small
peaks corresponding to Q2(1Al) and Q3(1Al) in the 29Si MAS NMR
spectra (Fig. 6). The peaks visible at approximately +13 and + 9 ppm
indicate the presence of octahedrally coordinated Al in ettringite and
AFm phases. As stated previously in the literature (Lothenbach et al.,
2008), it is not possible to distinguish between the different AFm phases
due to the similar chemical shift. Comparing the two formulations, it is
possible to see a difference in the proportion of ettringite and AFm
phases present; the presence of more AFm in NRVB (Ind) is related to
the higher availability of dissolved carbonate (higher surface area) and
consequent formation of monocarboaluminate, in accordance with the
results observed by isothermal calorimetry (Fig. 2a) and XRD (Fig. 3a).

3.3. Microstructure (porosity)

A two-fold approach was applied to determine the porosity of the
two NRVB formulations, to ensure all pore sizes were considered in the
analysis. Mercury Intrusion Porosimetry, where it is understood that the
pore diameters obtained correspond to the pore entry size and not the
real size of the pore (Scrivener et al., 2016), was performed to compare
the trend and changes in the pore size distribution between the two
NRVB formulations (Diamond, 2000). Fig. 8 shows the pore entry size
diameter in relation to the cumulative intrusion for NRVB (Lab) and
NRVB (Ind). The curve for NRVB (Lab) allocates essentially all of the
pores to threshold pore entry radii below 0.8 μm, whereas for NRVB

(Ind) the curve allocates all of the pores to sizes below 0.5 μm. This
small difference is also evident in the total porosity obtained, where for
NRVB (Lab) the percentage of total porosity obtained was 38 ± 1%
and for NRVB (Ind) was 32 ± 1%. It is important to note that, due to
the low compressive strength of NRVB (around 8 MPa), this technique
(which reaches pressures of 208 MPa in the instrument used in this
study) might not be suitable to use to quantify the finer pores due to the
potential for collapse of pores during analysis. This is expected to occur
at ∼0.14 mL/g of intrusion for NRVB (Lab) and at ∼0.15 mL/g for
NRVB (Ind) based on the strength data.

X-ray Computed Tomography was also used to study the porosity of
NRVB. This technique has the advantage of being non-invasive and to
allow three-dimensional reconstructions, but has limitations in spatial
resolution. Fig. 9 shows selected slices of the VOI for the two samples
analysed. Quantitative analysis was performed using segmentation of
the VOI. A threshold value was chosen based on the line shape of the
image histograms, which show peaks of higher and lower absorption
voxels, where the lower absorption voxels correspond to surrounding
air and internal void space (Landis and Keane, 2010), allowing dis-
crimination between pore space and binder phases (solid). The MIP
results were used to guide the thresholding process, so the comparison
between the results obtained by the two techniques is to some degree
influenced by this.

No cracks were observed in the samples at this early age (28 days of
hydration). The porosities obtained from tomographic data were 39%
for NRVB (Lab) and 35% for NRVB (Ind). This difference is related, once
more, to the difference observed in the hydration reaction of both ce-
ments, due to the smaller particle size and higher surface area of
limestone flour.

The porosity results are in the same range presented by Heyes et al.
(2015) (∼40%), however they are lower than those reported by Francis
et al. (1997), where the porosity measured using MIP and nitrogen
desorption was around 50%. It is important to note, however, that by
estimating the porosity using the density values measured in Francis
et al. (∼35%), the results obtained in this paper are very similar. Dif-
ferences in the characteristics between the raw materials used in the
1990's and those used in the present study are likely to be responsible
for the differences observed.

3.4. Influence of precursor materials on NRVB characteristics and
properties

In summary, the differences in the surface area and chemical com-
position of the raw materials, particularly CaCO3 and limestone flour,
impacted the properties of the NRVB formulations. In addition to dif-
ferences between the NRVB formulations investigated here, we also
observed differences between the results obtained in this study when
compared to the characterisation performed in the early 1990's, likely
due to differences in the raw material and other unspecified properties.
The impact of raw material selection on properties required for geolo-
gical disposal are discussed below.

Workability, compressive strength and setting time were affected by
the use of different raw materials. In the present study, the higher
surface area of limestone flour resulted in a higher workability and
lower compressive strength for NRVB formulated with industrial raw
materials when compared to NRVB formulated with laboratory raw
materials. When comparing our data with those from the early 1990's
(Francis et al., 1997), the workability and setting time were a factor of
∼1.5 lower in the present study, which we attribute to differences in
fineness of the precursor materials used. The differences observed
should not strongly influence the ability for the backfill to be poured
within vaults, and the compressive strength values obtained are low
enough to allow re-excavation of the vaults if necessary.

With regards to the long-term behaviour of NRVB, differences in the
rate of hydration, the quantity of different hydrate phases, and the
hydrate phase assemblage may influence the buffering capacity of the
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material. In the present study, the rate of hydration was faster in NRVB
formulated with industrial raw materials due to the high surface area of
limestone flour. The quantity of monocarboaluminate was also greater,
which is a consequence of the higher availability and reactivity of
dissolved carbonate in limestone flour. Furthermore, small differences
in the chemical composition of limestone flour, for example, the pre-
sence of S (and, to a lesser extent, Mg) influenced the rate of hydration.
This may have implications for the hydrate phase assemblage at time-
scales longer than 28 days of curing; further work is required to in-
vestigate this.

Through 29Si MAS NMR spectroscopy we have shown the in-
corporation of aluminium in the C-(A)-S-H of NRVB, and that the choice
of raw material influences the quantity incorporated (Figs. 6 and 7).
Previous studies have shown that aluminium incorporated into amor-
phous silica reduces the dissolution rate, even in high alkaline en-
vironments (Chappex and Scrivener, 2013, 2012; Iler, 1973). Therefore,
the buffering behaviour of the repository may not occur on the pre-
dicted time scale, or result in a pH comparable to that estimated when
considering C-S-H dissolution only (Nuclear Decommissioning
Authority, 2010b).

Finally, we observed that the choice of raw material also influences
the 28-day porosity of the final NRVB, which is associated with the
differences in hydration reaction outlined above; the formation of more
hydrate products in NRVB formulated with industrial materials resulted
in a slightly lower porosity. In a repository environment, such a dif-
ference may strongly influence the rate of groundwater ingress and the
egress of gas, which are key design functions of NRVB.

4. Conclusion

The use of different raw materials in the synthesis of NRVB has been
investigated, and the differences in workability, setting time, hydration
and porosity analysed. These results are compared with those pre-
viously reported in the literature for this material, and the potential
effects of differences in raw materials on the final use of NRVB have
been explored. Surface area, fineness and chemical composition of the
raw materials, particularly limestone flour, have been shown to influ-
ence, to a small extent, final backfill properties including setting time,
compressive strength and buffering capacity. The effects on porosity
seem to be significant, but this may also be due to differences in ana-
lysis techniques applied to investigate this property. This study high-
lights the importance of a detailed characterisation of raw materials
used in the formulation of NRVB for use in a geological disposal facility,
especially in light of concerns surrounding security of cement supply for
future applications.
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