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Energy Efficient Big Data Networks: | mpact of
Volumeand Variety

Ali M. Al-Salim, Ahmed Q. Lawey, Taisir E. HEI-Gorashi and Jaafar M. H. EImirghani

Abstract—In this article, we study the impact of big
data’s volume and variety dimensions on Energy Efficient
Big Data Networks (EEBDN) by developing a Mixed
Integer Linear Programming (MILP) model to
encapsulate the distinctive features of these two
dimensions. Firstly, a progressive energy efficient edge,
intermediate, and central processing techniqueisproposed
to process big data’s raw traffic by building processing
nodes (PNs) in the network along the way from the sour ces
to datacenters. Secondly, we validate the MILP operation
by developing a heuristic that mimics, in real time, the
behaviour of the MILP for the volumedimension. Thirdly,
we test the energy efficiency limits of our green approach
under several conditions where PNs are less energy
efficient in terms of processing and communication
compared to data centers. Fourthly, we test the
performance limits in our energy efficient approach by
studying a “software matching” problem where different
softwar e packages are required to process big data. The
results are then compared to the Classical Big Data
Networks (CBDN) approach where big data is only
processed inside centralized data centers. Our results
revealed that up to 52% and 47% power saving can be
achieved by the EEBDN approach compared tothe CBDN
approach, under the impact of volume and variety
scenarios, respectively. Moreover, our results identify the
limits of the progressive processing approach and in
particular the conditions under which the CBDN
centralized approach is more appropriate given certain
PNs ener gy efficiency and softwar e availability levels.
Index Terms—Big data volume, big data variety, energy
efficient networks, IP over WDM core networks, MILP,
processing location optimization, software matching.

I. INTRODUCTION

The significant growth in the Internet-connected devices is
leading the world to be inundated by a colossal amount of dat
generated from various domains, such as bioinformatics
health informatics, social media, text, log files, sensors, data
video streaming, purchase transaction records and more. Tq?
term big data has been devised to describe the handling of t
enormous number of data types generated by numerous da

sources.

The first challenge facing the Data Centers (DCs) is the.
enormous volume of data fluxing to them. Facebook and
Twitter create more than 18 Terabytes (TB) every singje da
[1]. More than 210 billion emails are sent every {idy [2]. The
size of the climate change data repositories is projected to gro
to nearly 350 Petabytes (PBs) by 20B(. [3five PBs
is equivalent to the total number of letters delivered by the U
Postal Service in one yedr][4]. Furthermore, the number o

h

Sfand therefore its transmission to emergency services or to data

Internet-connected devices is expected to grow to 100 billion
devices by 202q [5]. The challenge is that much generated
data, currently, is not analyzed or addressed to extract insights
at all [T]. Growth in the speed of generating data, as well as
growthin the volume of data and in the variety of data sources
is causing reduction in the percentage of processed data of
organizations due to the lack of resources and poor analysis
tools [l Thus, a large amount of the data that is to be
processed is either neglected, deleted or delayed. Heece

is unnecessary networking power consumption, extra wastage
of storage and bandwidth because of transferring raw data,
which leadsto increasing the financial and environmental
costs. Fig.1 shows a decrease in the ratio of processed data to
the overall huge volume of big data created continudusly [6].

Data AVAILABLE to an
organization

Blind Zone

e ———————

Percent of data an
organization can PROCESS

Fig 1 Volume of data is increasing, while percentage of dash can be
processed is declinifg]6].

Managing massive data volumes calls for new processing
and communications approaches. In addition, gathering and
transmitting big data is exposing new challenges in terms of
how to efficiently and economically transport big data over the
network with acceptable service quality while providing
adequate processing and storage resources. For instance,
medical sensor data has to be transferred and processed in a
very tight timeframe and the results have to be sent back to the
hospital or patient wearable device as soon as possible before
a health risk materializes. Such application level constraints
impose even more challenges and hard trade-offs on the energy
efficiency that can be attained from optimizing big data

%rocessing and networking.

'’ The main challenge in terms of the volume of data is that the
real interest is typically not in the data itself, but in the
howledge that can be extracted from the data. Therefore, the
é\?;allenge in terms of processing and networking lies in
signing network architectures and algorithms that enable the
data to be processed as close to the source as possible to reduce
its volume and transmit the lower volume “knowledge”, which
we refer to as “Info” resulting in lower network resource
requirements and lower power consumption. Consider for
example heart rate monitoring. The resulting waveform can

Wave a large volume when measured over a long period. The

waveform hopefully indicates for years that the person is fine

centers is redundant data. If the data is processed near the
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source, then a simple message made up of few bits obackup operations of big data on the energy efficient big data
information (knowledge) can be sent either to indicate that thenetworks. In we presented preliminary results that
person is fine or that emergency services should be directed toonsidered big data volume only. The current paper makes a
the person’s location. To capture the range of possible number of new contributions beyof@f]: (i) it considers big
applications (variety), we consider different data reduction data variety for the first tim€ii) it introduces and considgr
factors that relate the volume of the original data to the volumethe new software matching problem in big data netwdiiks
of the knowledge extracted, all measured in bits; and considecompared tdZ1], it provides the MILP formulation which is
different processing requirements for the same volume undenot in and a very wide range of results, (iv) it evaluates
different applications, another variety dimension. for the first time the impact of the power efficiency of PNs, (v)
Therefore, new processing and communication techniquest presents our new Energy Efficient Big Data Networks
are required to process and transmit such colossal amount gEEBDN) heuristic and its complexity, (vi) it presents new
data. Data centers are located in core networks where IP ovaesults under different network topologies.
WDM is used[[7]. In[[3], however, the authors described the
drivers, building blocks, architecture, and enabling 1I. EEBDN:DESCRIPTION WITHILLUSTRATIVE EXAMPLE
technologies for elastic optical networks. The authorf Jn [9]Four main Vs can characterize big data: volume, velocity,
suggested that efficient bulk-data transfer in elastic opticalvariety, and veracity. In this work, we introduce MILP models
networks (EONs) can be achieved with malleable reservatiorand a heuristic to observe the impact of volume and variety of
(MR). The authors if10] discussed the technologies needed big data on the NPC in bypass IP over WDM core networks.
for realizing highly efficient data migration and backup for big
data applications in elastic optical inter-data-center (inter-DC)A. Problem Statement
networks. In[IL1], the authors investigated offline and online In this work, we focus on the big data large volume and variety
routing and spectrum assignment (RSA) problems for anycasand address the problem of power minimization in networks
requests in elastic optical inter-DC networks by formulating anthat support big data. Despite the large volume associated with
Integer Linear Programming (ILP) model and proposedbig data, the real interest in most cases is in the knowledge
several heuristics based on single-DC destination selection. Iderived after processing the data and not in the data itself as
[12], the authors studied the minimization of the overall costdiscussed earlier. Therefore, in this work we address four main
for Big Data placement, processing, and movement acrosproblems. Firstly, where to process big data to minimize power
geo-distributed data centers. B3], the authors proposed a consumption given limited processing capacity at source and
streaming workflow allocation algorithm that takes into intermediate nodes but large processing capability at central
consideration the characteristics of streaming work and thedata centers. Secondly, we address the problem of how to
price diversity among geo-distributed DT&e authors ifil4] optimally, from an energy efficiency point of view, deal with
aimed to keep the communication cost to a minimum bybig data chunks that have variable processing requirements.
satisfying as many big data queries as possible over a numbdrirdly, we consider the problem of jointly optimizing
of time slots. The authors fif] developed a framework to communication and processing power consumption in big data
perform a sequence of MapReduce jobs in Geo-distributechetworks when the processing equipment power consumption
DCs where the processing of jolssoptimized according to  increases for the same task. This increase can happen when
time and monetary cost. I, the authors developean variable size and sophistication equipment is used. Here we
energy efficient cloud computing framewarklP over WDM evaluate the impact on the choice of optimal location to
core networks. process content, given that the optimal location of where to
In f17], we presented preliminary results to demonstrate thafprocess is dictated by the interplay between communications
the Network Power Consumption (NPC) is affected by and processing power consumption. Fourthly, we focus on the
processing and transferring big data in bypass IP over WDMproblem of how to optimally deal with a software matching
networks. We considered one big data type from theproblem where some nodes may not have the full software
MapReduce platform that was obtained from the log files oflibrary needed to process different big data applications
MapReduce clusters from Facebo{k8]] We examined
improving the energy efficiency of big data networks by using B. Contributions
aprogressive processing technique in Processing Nodes (PN§Jompared to previous work, we make the following
along the data journey from the source to the destinatien. W fundamental contributiongi) we evaluate, using MILP and
referred to such a network as an Energy Efficient Tapered Datheuristic, the volume dimensioly nalysing the distribution
Network since there is a significant reduction in the dataof big data volumes in different processing locations that have
transported over the network each time the data is processedifferent processing capabilities where Chunks demand similar
Our work in[L9] and [0 considered big data velocity and processing and yield similar volume reduction ratig$ we
veracity respectively, which are two dimensions of big dataexamine, using MILP, the impact of varidty considering the
that are not related to the current work. In the velocity case where different CPU workloads are required to serve
dimension, we presented several scenarios to procesdifferent volumes of Chunks at different volume reduction
expedited-data and relaxed-data made up of big data Chunksitios; (iii) we use our EEBDN processing technigioe
progressively starting at the source nodes of the networkpptimize the processing locations of the big data Chunks and
moving through the intermediate nodes of the network andcompare the results to the Classical Big Data Networks
finally processing at the centralized data centéms.the (CBDN) technique where no PNs exist in the network. The
veracity dimension, we inspected the impact of cleansing angrocessing locations are optimally chosen at either Source PNs
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(SPNSs), inside‘location optimizet! DCs or at Intermediate  smaller than the volume of Churf&s§]. For example, the input
PNs (IPNs). Thus, we jointly minimize the power consumption Chunks can be video surveillance segments representing few
of the overall network and processing resources; (iv) we assegssinutes or hours. The Info extracted can be the presence or
the impact of energy efficiency of PNs on our EEBDN absence o0& person or an object in the vidé&e refer to this
approach where the PNs constituents (LAN switches, routersatio as the Processing Reduction Ratio (PRR). PRR is the ratio
and servers) consume higher power compared to data centeo$ the final reduced data (the information or knowledge of
equipment; (v) we consider a software matching problem tointerest) to the original data size. For example, a 1 MB video
evaluate the performance limitd our approach where each clip may be the data. The presence or absence of a person in
PN contains different software packages used to procesthe clip may be the knowledge of interest. If the video is
different big data applicationable | defines the acronyms processed and a 1 kB packet is sent instead of the video clip,

used in this paper. then PRR is 0.001. Therefore, we introduce equation (1) where
TABLE | the volume of the Chunks is multiplied by different PRRs to

Aoy BZ%%E?CRONYMS DEFINITIONS produce the Infoghe knowledgén the Chunks. For instance,
CBND Classical big data networks in MapReduce jgbs, a Chunk of(]ﬂDGlgab_n (Gb)_an.dl PRR
CHT Chunk traffic (Unprocessed big data traffic) of 0.001 results in Info of 1 G[L§]. Accordingly, significant
DC Data center network power saving is achieved if such Chunks are
EEBDN Energy efficient big data networks processed locally in the edge (SPNs) and progressively in the
INF Info traffic (processed big data traffic) IPNs.
:\T;\IC ::;;?\:vn;flg E‘;Svsrrocf;sss&rrfpgg:e Volume of Info = PRR X Volume of Chunk. (2)
PN Processing node ' _,——_uﬂ h,
PRR Processing reduction ratio ' Al
SPN Source processing node g o - ‘%E

C. CBDN vs. EEBDN s \_ J 7 h..‘ -

The concept of EEBDN is illustrated in the NSFFEZP] [of | T ol o i

Fig. 2 Fig. 2-a showsa CBDN. The difference between the k “H ~{19 (—

two approaches is that in CBDN, all big data Chunks traffic | S, Sk

(CHT) generated by the source nogeforwarded to the DCs H ' BTy

directly to be processed there. For example, the source nodel. L INF CHT.SPN BN DC

14 of the National Health Service (NHS) in Fig. 2-a acts as &g 5 (4 CBD,\E (b) EEBDN ©)

source. In the EEBDN, shown in Fig.b2however, PNs are
attached to the IP over WDM core nodes (e.g., node #12) td. EEBDN: I/lustrative Example
process as many Chunks as possible according to PN%o illustrate the concepts we propose in this work, consider the
processing capability to reduce the number of forwardedexample network shown in Fig. 3. There are four zones in Fig.
Chunks to the DCs, hence reduce the volume of big data, with each connected to a certain PN, where each PN receives
traffic. a different number of Chunks depending on its zone user
The extractd information traffic (INF) from the population. For instance, zone 2 generates more Chunks
corresponding Chunks forwarded to the DCs through energy compared to zone 4 that has a lower user population. The PN
efficient roues We refer to the extracted information as Info. connected to a certain zone is the SPN as it is the first PN in
The structure of a PN is similar to the cloud structure presentedvhich Chunks are received from its corresponding zone and
in .PNs are located close to the user while dateeceate the Chunks are locally or centrally processed. Each SPN can
typically in central locations in the network and may be far locally process a different maximum number of Chunks
from the user. Therefore, PNs enable edge processing of bigepending on its processing, storage and internal switches and
data, hence saving power. PNs are different when compared twuters capacity. The remaining Chunks that cannot be
data centers in additional ways. PNs may have a limited set ofrocessed locally in an SPN are forwarded either to another
software packages; they are small and hence may be lessptimally selected PN or a DC. Those PNs that receive Chunks
energy efficient. These are among the constraints taken intérom other SPNs are called IPNs. An IPN, with respect to a
account in our progressive processing approach. The numbegiven SPN, might itself be an SPN that implements local
of processed Chunks inside the PNs is variable and depen  processing for its corresponding zone. This means that a PN
the PN’s processing capacity which may be limited by the can perform both the roles of SPN and IPN if needed. The
available space in the building housing the core network.nodeunprocessed Chunk traffic from SPNs to IPNs or to DCs is
Note in Fig. 2b Chunks can be processed either in SPNs orcalled Chunk Big data Traffic (CHT). After processing the
IPNs. Once the PNservers are fully utilized, no more edge Chunks either in SPNs, IPNs or in the DCs, knowledge is
or intermediate processing is performed, centralizedextracted inthe form of smaller rate traffic that we call the Info
processing inside the DCs dominates the processing of big dataig Data Traffic (INF). INF propagates from PNs (SPN or
sinceDCs’ capacities are large enough for the central storing IPNs) towards DCs through the core network. Note that DCs
and processing of the remotely forwarded Chunks from thehave the special property that both the locally generated INF
PNs. In many big data applications, the ratb the input  and the remotely received INF from other PNs do not flow
volume of data before processing to the output volume of datautside these DCs. As mentioned before, a PN is built at a
after processing is very high, i.e. the volume of Infos is much
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certain core node. Therefore, the PN ID is the same as the coreThe NPC is comprised of the power consumption of the
node ID at which it is installed. This also applies to the DC ID. router ports, transponders, EDFAs, regenerators and optical
s % s Zoné i3 switches. On the other hand, power consumptions of the PNs

and the DCs are composed of the power consumption of the
servers, storage, and the internal LAN switches and routers.
We assume that the power consumption of routers and
switches is proportional to the offered load. Note that, in

addition to the existence of these big data Chunks and Infos in
i the network, we assume, for realistic considerations, that there
| is additional traffic between core nodes, which is referred to as
cur regular traffic. This traffic represents any data that is not

intended for big data analyti23.

seves LI Table Il defines thgparameters and variables used in the

DC#2

Zone #1 SPN #1

7 7 one #2 Zone #4 EEBDN model:
ll ’ TABLE II
g | E & == ——= LIST OF PARAMETERS AND VARIABLES AND THEIR DEFINITIONS.
" Optical Virtual . .
- SPN ",N DC ( hunk  Info '[.’b:: s Notation ~ Description

- sand d Denote source and destination points of regular traimanc
Fig. 3. EEBDN illustrative example between a node pair.

Each zone in Fig. 3 represents a probable scenario that ourand j Denote end points of a virtual link in the IP layer
approach can optimize as follow&one 1: The SPN #1 of zone  mandn  Denote end points of a physical fiber link in the cpltiayer.

1 is capable of processing all incoming Chunks (Chunks #1,Rsa (Tgsp’s\')SFNET regular traffic demand from nade node ¢
#2, #3) and all the outppt (Infos .#1, #2, #3) are optimally N Set of IP over WDM nodes.

aggregated to DC #1. This scenario generates only INF in they, The set of neighbour nodes of node i in the optigairla
network from SPNs to DC&Zone 2: The SPN #2 of zone 2 N5, Number of servers at tHeN p.

can process Chunks #4, #5 and #6. Chunk #7 is, howeverSW. The CPU workload of the server required to processnkl

generated at source node s (GHz).
g Maximum server workload (GHz).
b, Maximum workload node P, = NS, - MSW (GHz).

transported as a CHT to an optimal IPN (IPN #5) as one or
more of the the resources (CPU, storage, internal switches, an

routers) of SPN #2 have been fully utilized. After Chunk #7 is MSR Maximum internal switches and router capacity of B¢ p
forwarded to IPN #5, it will be processed there and the output (Gbps).
(Info #7) will be aggregated as an INF through an energy ™S Maximum storage of node (Gb).
efficient route to DC #1Zone 3: The SPN #3 of zone 3 NCH Total number of Chunks in one node per second.

Set of Chunks in a source node s.
processes its own data (Chunks #8 and #9) and also acts as gfy,_ The volume of Chunk ¢ generated at source node)s (Gb
IPN to process other incoming Chunks (Chunk #11 from SPNpgg., Processing reduction ratio forhGnk ¢ generated by node
#4) when it is not being fully utilized. The movement of Infos (unitless). o
from this PN represents the INEone 4: The SPN #4 of zone ZVL \’;‘V‘;Tgl“é;o‘;r‘]"’;‘t’fzzg(tgﬁ ":‘;‘ber-
4 has the smallest processing and storage space, thus It Maximun? distance bemr;er'] neighbouring EDFks)
processes the smallest number of Chunks (Chunk #10) angg Power consumption of a router port (W).
forwards any extra Chunks to the next optimal PN or DC. For PTR Power consumption of a transpon@és.
instance, Chunk #11 is forwarded to IPN #3. However, when PO; Power consumption of optical switch installed at niog&! (W).
all other PNs deplete their processing resources, then any extrag Power consumption of EDFA (W).
unprocessed Chunks by SPN #4 (i.e., Chunk #12) will bePRG Power consumption of a regenerator (W).

Distance between node pair, fm (km).
Number of EDFAs on physical link (m).nTypically, A,,, =

[Dm"— 1] + 2.

uploaded directly from SPN #4 to be processed by an optlmaIIyD
selected DC (DC #2 in Fig. 3). For such an event, CHT starts
to dominate the network traffic from SPNs to DCs.

RGpp Number of regenerators on physical link (i
PUN Power usage effectiveness of IP over WDM networks|@ss.
IT1.  IMPACT OFVOLUME ON EEBDN PUN is defined as the ratio of the power drawn fromelectric

This section introduces a MILP model that focuses on the first source to the power used by the equipment (networkitigjs
V of big data, i.e., the volume, and evaluates several scenarios gﬁf}ihmﬁ)ﬁg'naccounts for cooling, lighting and relapewer
to study the impact of volume on EEBDN PU Power usage effectiveness of s and DCs (unitless).

SMP Server maximum power consumption (W).
A. Volume MILP Model SEB PNs and DCs$ switch energy per bit (W/Gbps).

REB PNs and DCsrouter energy per bit (W/Gbps).

In this section, we introduce a MILP model for EEBDN using
abypass IP over WDM networksee[[L6] and [23] for details

Internal PNs’ and DCs’ switches redundancy.
Internal PNs’ and DCs’ routers redundancy.

of MILP in IP over WDM netWOka). The PNs are attached to RSG PNs and DCs storage redundancy.
each core node of the NSFNET and consist of limited PSG PNs’ and DCs’ storage power per Gigabit (W/Gb).
processing and storage resources, agthpin Fig. 2 while 8 Server power per GHz,§ = (SMP— PIDLE) / MSW

(W/GHz). GHz is used to specify the capability of agqasso

the DCs comprise large enough resources. Th(_a _NSF_NET and the number of processors a job needs.
network consists of 14 nodes connected by 21 bidirectionalpy Number of location optimized DCs.
links [22]. CHT,, Big data Chunks traffic generated at SPN s and difets

destination node p (p could be SPN, IPN or DC) (Gbps)
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INF, Aggregated big data Info traffic froN p to DC d. Nodep
could be SPN or IPN only (Gbps).

Cij Number of wavelength channels in the virtual linf.(i,

RiS].d Traffic flow of the regular traffic R between node pair (s)
traversing virtual link (i, ).

wl Number of wavelength channels in the virtual link j)

" traversing physical link (m,)n

Woan Number of wavelength channels in the physical link Ym,n

CHT? Traffic flow of the big data Chunks traffi€#7s, between nod
pair (s, p) traversing virtual link (i).j

INFP¢ Traffic flow of the big data Info traffidVF,. between node pe

Y (p, d) traversing virtual link (i,)j

AR; Number of aggregation ports in routetilized by regular traffi
de

ACH; Number of aggregation ports in routersed in big data Chun
traffic CHTp.

Al; Number of aggregation ports in routertilized by big data Infi
traffic INFpa.

Fpn Number of fibersn physical link (m,.

PNW, Total PN p workload (GHz).

Yope Yspc = 1 if Chunk c is generated @PNs and processed in PN
else ¥ =0.

SCH, Amount of big data Chunks stored in BNGb).

DCy DCy =1 ifaDC is built at core node d, el&xCy = 0.

Under the bypass approach, the total IP over WDM NPC is

composed of the following components
1) The power consumption of router ports

ZPR- (AR; + ACH; + AL,)) + PR - Z (c;)).

ieN JEN:i#j (2)
2) The power consumption of transponders
Z Z PTR - Wiy, @)
MEN NENy,
3) The power consumption of regeneratisrs
Z PRG * Wy, * RGpyy. @)
MEN NENy,
4) The power consumption of EDFAs
Z Z PE - A - Fun- (5)
MEN NENy,
5) The power consumption of optical switches
ZPOi' (6)
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by multiplying the incoming and outgoing big data traffic by
the switchesand routersenergy per bit. We performed the
analysis by considering a network architecture wikste=
RR = 1.
2) The power consumption of all servers inside PNs and DCs
Z 8-PNW, + NS, - PIDLE. ®)
PEN
3) The power consumption of the storage

Z SCH, - RSG - PSG. ©)
PEN

Note that server power consumption is a function of the idle
power, maximum power and CPU utilizatif@4]. Therefore,
the power consumption of all servers inside the PNs and DCs
is calculated using equation (8). Equation (9) represents the
storage power consumption of node p. We performed the
analysis by considering a network architecture wizsre= 1.
The model isdefined asfollows: Objective: Minimize
PUN - PR (AR; + ACH; + Al,) + PR - Cij

+Z Z PTR-Wmn+Z Z PRG - Wy,

mEN neNp, MEN neENp

-RGmn+Z Z PE-Amn-an+ZEOi

MEN NENy, iEN

Z &+PNW,.+ NS, - PIDLE

peEN
+ Z Z CHT,,

DEN SEN

+ Z Z(CHTM +INTyq)

PEN dEN
- (RS- SEB + RR - REB)

+ Z Z INF,q - (RS- SEB + RR - REB)
PEN dEN

+PU-<

- (RS-SEB + RR - REB)

+ZSCH -RSG - PSG |.
DEN

(10

Equation (2) evaluates the total power consumption of the Equation {0) gives the model objective, which is to

router ports for all the types of traffic, which are the regular
traffic Rsg, big data Chunks traffi€HTsp, and big data Info
traffic /NFpqa. 1t computes the total power consumption of the

minimize the IP over WDM NPC as well as the Phisd DC$
power consumption.
Subject to: PNsand DCs Constraints:

ports aggregating data traffic and the ports connected to optical) Processing counter of big data Chunks constraint

nodes. Equations (3) and (4) evaluate the power consumptio

of all the transponders and regenerators in the optical layer.

n Zyspc=1,VSEN,VCECHS.

PEN

(11)

Equation (5) evaluates the total power consumption of theConstraint (11) ensures that &u@kc generated by PN s is

EDFAs in the optical layer. Equation (6) evaluates the total
power consumption of the optical switches.

processed by no more than one PN p. However, our model
performs slicing, i.e., multiple servers could process a given

The power consumption of the PNs and DCs is composed ofhunkin a PN as long as these servers belong to that PN.

the following sections:

1) The power consumption of internal PNs and DCs switches

and routers
PSR = Z Z CHT,, - (RS-SEB + RR - REB)

PEN SEN
+ Z Z (CHTyq + INF,q)

PEN dEN

- (RS -SEB + RR - REB)

+ INF,, - (RS - SEB + RR - REB).
Zdz ’ @)
Equation (7) evaluates the total power consumption of the

internal switches and routers in the PNs and DCs. This is don

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

2) Big data Chunks traffic constraint
CHT,, = CHVy  Yspe , Vs, p € N.

CECH
Constraint (12calculates the big data Chunks traffic generated
at source node s and directed to node p. This traffic is generated
by transmitting E1Vsc. from node s to node p in one second.

3) Aggregated processed big data traffic constraint

Z INF,y = Z Z CHVe + Yspe - PRR,

deN

(12)

(13)
SEN CcECHg
Vp €N.

gonstramt (13) represents the aggregated big data Info traffic
INFya generated by PN p and destined to DC d. The big data

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Info traffic is obtained by multiplying the Chunks HEs) . . (NFa m=p
allocated to the PN p by the PRR Z INF" — Z INF; ={‘“"Fpa m=d o
4) Number and locations @Cs constraints JeN:iz] TN i € N.vd € I‘i,t:’;e;wéfe 24)
ZINde 2DCy, VAEN, (14) Constraints 22-24) represent the flow conservation
pEN constraints for the regular traffi€ss, big data Chunks traffic
ZINFW <Z-DCy VAEN, (15) CHTy and big data Info traffidVFsq, in the IP layer. These
peN constraints ensure that the total outgoing traffic should be
DCN = ZDCd- (16) equal to the total incoming traffic, except for the source and
den destination nodes. It can also ensure that the flow can be

Constraints (14) and (1%uild a DC in location d if that divided into multiple flow paths in the IP layer.
location is selected to store the results of the processed big da Virtual link capacity constraint

traffic (i.e., Infos) or selected to process the incoming big data

Chunks from PNs, where Z is a large enough unitless numbe(Z Z R +Z Z CHTf}’+Z z INFi?d> <Cy,.B
to ensure that D= 1 wheny, .y INFpq4 is greater than zero. SEN deNis=d SEN peN:s=p PEN deN: p=d (25)
Constraint (1Blimits the total number of built DCs to DCN. Vi,j €N:i#]j.

5) PNs andDCs workload and processing capacity constraints Constraint (_25) ensures that the summation of gll traffic flows
through a virtual link does not exceed its capacity.

PNW, = Z Z SWee  Yope. VPEN, an 5) Optical layer flow conservation constraints:
SEN cECHy C:: =1
PNW, < NS, - MSW + (M - DC,), VpEN. (18) Z wi Z wi =) ¢ 'Tnnzlj
Constraint {7) represents the total workload at PNvhich is L e T 0 eherwise (26)
the summatiorof the CPU workload of all the servers in that Vi, j,m € N:i # j.

PN. Constraint (18) ensures that the total workload of PN pConstraini(26) represents the flow conservation constraints in
does not exceed the maximum workload assigned td°filis  the optical layer. It ensures that the total outgoing wavelengths
M is a large enough unitless numbleowever, the workload in a virtual link should be equal the total incoming
capacity is large enoughafDC is builtat core node p. Note  wavelengths, except for the source and the destination nodes
that, the model implements a consolidation process byof the virtual link. It is assumed that wavelength conversion is
processing as many Chunks as possibleimitie same server available in the model to enable better utilization of bandwidth

to minimize the NPC and number of active servers. and reduce blocking probabilities.
6) PNs andDCs storage constraints 6) Physical link capacity constraints
SCH, = Z Z CHVic " Yope, VpEN, (19) Z Z Wi < WL By vmeN,n € N,,. @7)
SEN c€ECHy iEN JEN:i#j
SCH, < MS, + (H-DC,), VpEN. (20) Constraint (27) ensures that the summation of the wavelengths

Constraint 19) represents the size of Chunks in Gb stored inin a virtual link traversing a physical link dsnot exceed the
PN p. Constrain{20) ensures that the total data stored in PN p capacity of the fibers in the physical link.
does not exceed the storage capacity of that RNs a large 7) Wavelengths capacity constraint

enough unitless number taigantee that there is no storage wi —w
R mn = Wnn N,n € N, 28
capacity limitation at th®&Cs. ;,»E;:j vmeN,n € (28)
7) PNs andDCs internal switches and routers constisin Constraint (28) ensures that the summation of the wavelengths
ZCHTsp < MSR, + (A~ DC,), Vp € N. 21) traversing a p.hysicall link @ not exceed the total number of
SN wavelengths in that link.

Constraini(21) ensures that the total amount of big data traffic 8) Number of aggregation ports utilized by regular traffic
between the PNs doest exceed the maximum switching and constraint

routing capacity of the internal switches and routers in those AR = L. Z R
PNs On the other hand, the capacity of thesDGvitches and ‘"B L

routers is unlimited, where Ais a large enough unitless numbeg) Number of aggregation ports utilized by CHT traffic
to guarantee that there is no capacity limitation at the DCs. To  constraint

Vi € N. (29)

avoid blocking of big data Chunks, we assume that the internal ACH. = Z CHT
. . . [ ip Vi € N.
switches and routers capacity of the PNs is also large enough. B & (30)
ThelP over WDM Network Constraints: 10)Number of aggregation ports utilized by INF traffic
1) Flow conservation constraints for the regular traffic constraint
Rsq i=s 1
JENTi%] jENTi#] 0  otherwise (22) _ deN:i#p (31)
vs,d,i EN:s+d Constraints 29-31) calculate the number of aggregation ports
2) Flow conservation constraints for the big data Chunksfor each router that serves the regular traflie, big data
traffic Chunks trafficCHTs, and big data Info traffiéVE..
CHT, i=s
D, CHTY = > cHy = {—CHTsp i=p B. EEBDN Heuristic
JeNtz JEN: 2] 0 otherwise 23 In this section, we validate the MILP operation by developing

Vs,p,i EN:s #p.

3) Flow conservation constraints for the big data Info traffic & heuristic that mimics, in real time, the behaviour of the

MILP. Having obtained results from the MILP we developed
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|
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End
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locally?
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insight into what minimizes power consumption in our of implementing full edge processing, (i.e. not all Chunks are
proposed progressive processing big data networks. Werocessed locally in the SPNs). This is done by forwarding the
observed from the results that the MILP attempts to process allemaining non-locally processed Chunks from all SPNs along
the data in the source node if the source node has enoughe minimum hop path to the nearest IPNs/DCs. An IPN is
capacity, which reduces the communication transmissionselected if there is spare processing capacity. This results in
power consumption needed otherwise to reach remotdehe CHT traffic demands between the SPNs and IPNs/DCs.
processing node$ the source processing node does not haveThe heuristic then obtains the INF demands resulting from
enough capacity then the chunks are transmitted to therocessing the non-locally processed Chunks in IPNs.
processing node at minimum hop distance and when such! 7,50, | | Progressive and Central
intermediate nodes are depleted of processing capability, the| e memryscar 2 \|Processmg _______
minimum hop data centre is used. Routing in the network was topology  parameters:||
observed to follow minimum hop routing. None of these rules | i |links in the network, PNs'|
were written in the MILP. The MILP was only required to o Servers por mode. (NSpy |
minimize the total power consumption (network and || [foerssaar traffic demand) |
processing). We therefore used these insights to construct oyr L&sd). . !
heuristic, which therefore mimics the MILP behaviour. The |i [Generate number of chunks| !
heuristic uses simple rules as described above and hence caf (5 hor eah  node|,
run fast unlike the MILP. Therefore, the heuristiccanbeused & —_____ T _______ ;
to provide real time control and routing in the network.
The heuristic is used for two main purposes. Firstly, as a|i~-,~ -~~~ ot I |
verification of the MILP results. Secondly, since the heuristic |r-—=------ f----
uses simple rules, it runs fast unlike the MILP. Therefore, it|;
can enable network control (which chunk to process where fon'!
example) and routing which can both be performed in real time !
through the use of the heuristic. The second objective (reali
time control of the network) is fully achieved by our heuristic. |;
The first objective (verification of MILP) is partially achieved. |
The heuristic uses the optimum data centre node locations!
(nodes 4 and 13) obtained from the MILP. The heuristic is|:
otherwise independent of the MILFhe flowchart in Fig. 4 ||
shows the heuristic, which aims to process the incoming| |~~~ "~~~ [~~~ 7~
Chunks by utilizing the minimum number of resources so that
minimal power is consumed. The heuristic is initialized by
defining the physical network topology, in this case the
NSFNET, with 14 nodes and 21 links. 12 PNs are distributed Yes
in the network and 2 DCs are located at nodes 4 anNdi8
that between each node pair there exists a regular traffig
demandR.« in the network.
Each node receives a number of Chus from its
corresponding zone. Each chunk is characterized by a volume
and CPU workload requirements. The heuristic starts at théig. 4. EEBDN: volume heuristic. _
edge processing stage by selecting an SPN, then picks a chunk Therefore, in this case the network has three traffic
from this SPN to read its CPU requirement. The heuristicdemandsZNFiq from partial local processing in SPN8/Fsq
checks the processing capacity of that SPN and thakls ~ from progressive processing in IPN and ##é7s demands.
processed locally in the current SPN in case there are enoughgdain, these types of traffic demands are routed over the
processing resources. This approach guarantees th@etwork as well as the regular traffRsq according to the
implementation of as much edge processing as possible. Theeuristic in[22] and the total NPC is calculated.
heuristic repeats this process for all SPNs. Note that changing
the order of SPN selection does not change the results as eafh Complexity Analysis
SPN can be totally packed with processing jobs and in this caséhe proposed EEBDN heuristic aims to work around the NP-
all processing tasks have the same CPU requirement. hard complexity25] of the MILP model solved using CPLEX.
Once a chunk is processed locally in an SPN, aThere are two main processes in the heuristic. Firstly, the bin
corresponding INF demand is calculated between that SPNpacking problem where objects (where a number of Chunks
and the nearest DC following a minimum hop path. In case allper node (B)) of different volumes must be packed into a finite
Chunks are processed locally by SPNs, the only demands iRumber of bins (servers) each of capacity C in a way that
the network are therefore the INF and regular demands. Thos@linimizes the number of bins used. This is a greedy
demands are routed and the NPC is calculated using th@Ppproximation algorithm where for each Chunk, it attempts to
algorithm developed in[2B]. However, the progressive place it in the first server that can accommodate this Chunk
processing stage inside the IPNs and the central processinghus, it requiresO(g log ) time [26]. Secondly, the
stage inside the DCs are started when the SPNs are not capatgieneration of initial set of paths is based on minimum hop
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routing algorithm, which has a complexity of the or@¢éN) the size of the chunk which is quoted in Gb and we consider
[27], where N is the number of nodes in the network. Thus, thethe transmission of each chunk in one second. Therefore, for
overall complexity i90(B log B) + O(N) for the processes of example, the data rate associated with the transmission of an
the proposed heuristic. 80 Gb chunk is 80Gb/s. Secondly, each chunk has a GHz
number associated with it which indicates the processing
V. RESULTS OFVOLUME SCENARIOS requirement of the chunk. For example, a processor may be
Our MILP model and the heuristic were evaluated using theable to handle 4 GHz and the chunk may require 1 GHz. Thus,
NSFNET network depicted in Fig. 2. The storage capacity ofif B = 5, this means that the total number of Chunks to be
the PNs was assigned to be large enough. Note that we usguiocessed in the network is 70 (since there are 14 nodes in the
processor cycles in GHz as a measure of the total processilySFNET), and it will take one second for the transmission of
capability of a nodg[Zg]. Table Ill summarizes the input the given Chunks and the corresponding Infos. This is a
parameters. We performed the MILP optimization using thereasonable assumption as we consider the network resources
AMPL/CPLEX software running on a PC with 8 GB RAM and capacity to be enough to handle the Chunks. We leave the

ani5 CPU. The heuristic is implemented using MATLAB on impact of the capacitated resources on the EEBDN for future
the same PC. A single run for the MILP took around 10 s towork. Note that there is no transmission of Chunks and Infos
finish, while the heuristic took less than 1 s. Note that thein the network when they are handled by the DCs.

computational complexity of the MILP grows fast with

network size.
TABLE 1Il

INPUT DATA FOR VOLUME MODEL

We considered the following scenario. The processing
capacity of each PN is different and varies between 5 and 15
servers per PN. Each Chunk demands 3 GHz of the CPU for
processing. The volume of each Chunkis 80 Gb and the.PRR

Server CPU capacitiy GHz (MSW 4 GHz is assumed to be 0.001 for all Chunks (i.e., 99.9% reduction).
Max server power consumptighISP) 300 W8] An example of such case is Electrocardiography (ECG) used
Idle server power consumption (PIDLE) 200 W to detect abnormality during each heartbeat of millions of
PNs and DCs switch power consumptierg( 3.8 KW patients. TabléV summarizes the input values needed in this
PNs and DCs switch capaci@$ 320 Gbp{16[29] scenario. TABLE IV

Eg%%y per bit of th&Ns and DCs sWitctSEB) = 111 g75 wiGbps VOLUME SCENARIO A PARAMETERS.

PNs and DCs router power consumptiBiR( 5.1 kW gﬁﬂlﬁrpoefr ’s\l:r:‘/]:rirpo;r CpZLrJ(\:A;?JﬁE;d Chunk volume PRR.

PNs and DCs router capacigR) 660 Gbpq16[29 node (B) PN (NS) | GHz(swy | Gb (CHV

Energy per bit of the PNs and DCs routREB) = 7.727 WiGhps 5-30 5-15 3 8o[ig 0.001]fig

PR/CR The results in Fig. 5-a are based on our MILP optimization
PNs' and DCs' storage power per Gigabit (PSG)  0.008 W/GHTE] and heuristic and compare our EEBDN power consumption
Router power consumptio® R 825 W[BJ| with the NPC of the CBDN approach where big data Chunks
IP over WDM regenerator power consumpti®iRG 1334 W[BQ| are sent directly to the DCs for processing.

IP over WDM transponder power consumption (PTF

167 W[EQJ

IP over WDM optical switch power consumptidn@)

For the MILP, and for all cases, the NRfCreased when 3
increased as more Chunks are delivered to the network.

VieEN : 85 WED Introducing the PNs has, however, greatly bounded the growth
IP over WDM EDFA power consumptioR ) 55 W] in power consumption when the number of Chunks increased
Wavelength bit rate (B) 40 Gbps which leads to network power savings compared to the

Distance between EDFAS (S) 80 km classical approach in all the cases of the considered values of

Number of wavelengths per fibai) 32 B due to processing near the source. At p = 5, the network

:\IlDucT/ltj;rvsll;ll?ﬂczgSvTel?Eggnézeegﬁzgilé:gs’:) BURG is power saving is smaller than that at f = 15 since the big data
PNis and DCS power Usage effectiveneiis)( 550 traffic is a small portion of the overall network traffic at these

The MILP in Section ILA is used to evaluate the proposed 'OW number of Chunks per node (Network traffic = Regular

EEBDN. In addition, the same model can be used to evalua'fjerafﬁc + Big data traffic) At p = 15, big data traffic becomes

the CBDN approach by introducing a constraint that preventdarger due to the large number of Chunks generated per node

the processingf big data outside thBCs. and therefore saving power by processing big data Iead; to best
Note that the amount of computational resources required tgretwork power saving at these intermediate levels of big data

process the data is the same in our approach and the classié(?lu(?"(\t p =30, the big data voll_Jme_has_ become so large and
approach where all Chunks are processed inBids. To ominant that full edge processing (i.e. in the SPNs and IPNs)

provide a holistic assessmeot the impact of the volume is not possible given the servers numbers in SPNs and IPNs
dimension on the EEBDN. we evaluate the proposedand therefore the network carries more Chunks (unprocessed

big data) compared to the case where § = 15 which has more

Infos. Note that a maximum network power saving c%38

A Deterministic Chunks Volume, PRR 8:001, Number of ~ achievedat p =15, and an average network power saving of
Servers pePN= 5-15 Server 32% is computed consideringjl  values, compared to the

In this scenario, we consider the number of Chunks generatef‘]l""ss'Cal approach wheno PNs exist in the network for the

per node(B) which vary between 5 and 30. There are two range of parameters considergd. .
different units used in conjunction with each chunk. Firstly, For the heu”_St'f:' the same inputs in Table IV are use_d. We
used the heuristic to evaluate the impact of volume in the

progressive processing approach in two volume scenarios.
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current scenario only due to paper length limitations. The The main goal in this article is to show the effectiveness of
performance of the EEBDN heuristic was compared to theour progressive processing approach compared to the classical
MILP performance in Fig. 5-a and the heuristic and MILP are centralized processing approach. We carried out a comparison
in close agreemerfErom Fig. 5-athe heuristic power savings with the classical (centralized) case, which is the case that is
approach those of the MILP (The MILP power saving is only known in the literature and can act as a benchmark.
slightly (i.e. 1.15%) higher thathe heuristic’s). Moreover, the  Furthermore, we have evaluated the complexity of our
heuristic can help extend the evaluation by increasing theheuristic in Section IIC and therefore provide details relating
number of incoming Chunks and resources beyond the MILPto complexity / efficiency of our heuristic. The effectiveness
computational limits. Note that the heuristic for the classical of our heuristic was evaluated and it is shown to produce
approach is implemented using the same heuristic with amesults close to the optimum MILP results, for example Fig. 5-
additional condition that prevents processing big data outside.
the DCs. The results for the EEBDN were repeated 11 times
and the graphs show the average values. The 95% confidence
interval isshown as error-bars.

Fig. 5-b shows the utilization of the processing capacity as a
% of the PN processing capacit p = 5 all the SPNs are
capable of performing edge processing. Whé&nbetween 10
and 15 some PNs with large capacities perform edge
processingas well as processing received Chunks from other
SPNs that have less processing space, hence PNs here perforn
progressive processing. This results i@HET between SPNs
and IPNs, and very small amount of CHT between SPNs and

DCs, thereby minimizing the DCs processing utilizatiblote _ (a) ®)
that PN #12, which has the capacity to process up to 20 Fig 6. (a) IQSN(;OS_T_BS’ network, and (bC)BtE')"f m’:"*mmk-
. aye P . [se======] t
Chunks,is 100% utilized at p = 15. This is because this node b EEEON (ML)
processed its own 15 Chunks and handled an extra five Power saving % heurisitc Power saving % (MILP)
progressed Chunks from other SPMs B > 20, no edge 2 : : : : : 80%
processing inside SPNs and progressive processing inside 2 s ! ! ' ' o 2
. . . . . S o t--—-—— = S
IPNs is possible since all PNs processing space is depleted an{ = ! ! ! 8
all Chunks are centrally processed insideDi@s. This is why § T BT -—---rf--1H--= ] 40w £
the DCs processing utilization increases dramatically. Note | | | ! oy
. - o 05 === + - -— 0, 5]
that nodes 4 and 13 have high utilization as they are the two|  °° E : : : R
data center nodes. oL .5115_1 ALER Eﬁ"‘ - - 3 o -
=== CBND heuristic CBDN (MILP) Number of chunks per node (B)
EEBDN heuristic EEBDN (MILP) @)
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Fig. 7. CBDN power consumption vs EEBDN power consumpfian
COST239 network, (b) Italian network.

We re-evaluated the volume scenario of MILP model and
heuristic on two more different networks. The COST239
network[B3], (see Fig 6-a), which is smaller than the NSFNET
and consists of 11 nodes and 25 bidirectional links, and the
Italian network[B4][35], (see Fig 6-b) which is bigger than the
NSFNET and consists of 21 nodes and 36 bidirectional links.
The results in Fig. 7-a and Fig. 7-b show that the average
power savings of the MILP model and the heuristic obtained
(b) in the COST239 network are 58% and 56%, respectively for
Fig. 5. () CBDN power consumption E&BDNpower consumption (MIL the volume scenario. On the other hand, the power savings of

and heuristic) for volume scenario A. (b) Utilizatiohprocessing capaci ‘g - . . 0
% in theEEBDN with different values of B for volume scenario A. the MILP and heuristic obtained in the Italian network are 52%
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and 51%, respectively for the volume scenario. Note that nodearchitecture) results in changes in power consumption
#4 and #8 are selected as the best DCs locations in COST23®unded typically by less than thé% figure.
network, and nodes #7 and #9 are selected in the Italian Fig. 8-b shows that the SPNs now have the ability to locally
network. These node selections were made based on a MILProcess all the Chunkshen g = 10 since their processing
optimization similar to that if_[7]. The heuristic and MILP capacity has increased. 20 < p < 40, PNs start to reach their
results are in close agreement in the cases described above. maximum processing capacity, such as PNar#d2#3 at =

20 and 30, respectively. Note thatily at p = 20 is the

B. Deterministic Chunks Volume. PRR = 0.001. Number of Processing utilization of nodes #7 and #10 > 100% because
Servers per PN = 180 Servers ’ they are selected &Cs, while atall other values of p, nodes

In this scenario, we have considered a variation of scenario A4 @nd #13 dominate the selectivity DCs locations, as in
where the average processing capability per node is increasegcenaro AWe also note th.at_the processing utilization of the
but the processing capacity per node remains random betwednCs of the present scenario is sm_aller than that of scenario A
10 and 30 servers instead of 5 to 15 servers. This is to stud§t P = 30, at which the DC utilization eefesthe maximum

the effect of increasing the processing capacity on the/alué for scenario AThis is due to the growth in the PNs
progressive processing of larger big data volume, whichProcessing capability in the current scenario, which helps to

eventually influences the energy efficiency of the network. Sed €duce the DCsprocessing utilization

Table V. CBDN EEBDN Power saving %
6 F-—="-50--D2-c-— - ——- - — 60%

50%
40%
3 F-—==F====-FF-r-l--1-f=-1 § 30%
2 Fr===7-H--""#-r- 1 20%
10%
0%

TABLE V
VOLUME SCENARIO B PARAMETERS. 5
Number of | Number of | CPU Worklogd Chunk volumel
Chunks per| servers per| per Chunkin in Gb (CHV.)
node (B) PN (NS) | GHz (SW)
10-60 10-30 3 80[1g 0.00178]
Fig. 8-a displays the NPC of the classical networks and
EEBDN. The power saving increased 10 < < 30 and
reached a maximum valuwd 52% atp = 30 (compared to the
maximum power savingf 38% at f = 15 in scenario A). This
is because the majority of the big data traffic in the network is
the INF whenl 0 < 8 <30 with a small amount of CH&s most
of the Chunks are processed locally and in the interrreedia
nodes After that point (i.e.p > 30), theCHT between the PNs
and DCs dominates the network where the computing
resources of all PNs are depletedhich leads to reduced
power savings. However, the average power saving increases
to 44% for 10 > 3 > 60 (higher than the average power saving
of 32% in scenario A) as more Chunks are processed in SPNs
and IPNs. Thus, increasing the PNs processing capacity has a (b)
positive impact on both the average network power saving andfig. 8. (2)CBDN power consumption vVEEBDN power consumption f
the total number of served Chunks in the system. volume scenario B. (b) Utilization of processing capyaitin EEBDN with
It should be noted that a full treatment of the internal design® e ont \alues of p for volume scenario B.

of processing nodes requires consideration of their internal . harys increasing the PNs’ processing capacity has a
pr 9 d . oteworthy impact on network power saving as the volume of
architecture. For example, a fat-tree, spine-and-leaf, D-Cell o

some other data center architecture. This is however be onFr'e processed big data inside SPNs and IPNs increases, which
: YONEsults in serving a larger number of Chunks as close to the

D e e ocuces, 10 dge as possie. I both scenario, hese are very genera
piexity ’ results as they contain all the cases, which are full edge

the number of switches and routers needed by considering th rocessing inside SPNs when big data traffic is small,

?a:?eoltjr?;t%fatr:ifgch:rnrgll:ar:jgbtoaassvri(t)ccr? isrlg%onuc')[g? $E|ds g‘e Soag rogressive processing inside IPNs for intermediate levels of
y : pp ig data traffic, and full central processing inside the DCs

is appropriate for the ingress/egress router, which has to hand . T X

the entire PN traffic. The approach however replaces the many\ﬁhen the volume of big data traffic is very high.
small switches in the fat-tree or spine-and-leaf by a single larg
switch, or few large switches. This is not a typical
implementation; however it may be considered in our small
processing nodes that have 5 to 15 servers or 10 to 30 serve

maximum 60 servers). It is an approach, which simplifies the! : . ) :
( ) PP b Flustrated in the previous sectionis. reality, however, PNs

models used. Typically, in current data centers, about 90% o ht b oed with ts that h |

the power consumption of IT is attributed to servers and 1094 19Nt DE €quipped with components that have lower energy

to communication equipment3§]. Therefore, having efficiency compared to those hosted in the centralized. DCs

considered the power consumption of a large switch (or fewTh'.? tr_mght_ bSNdu.? tlo ;[E_chnol(:_gy, econon?|c atr;1d/qr spatce

large switches) instead of multiple smaller switches (and theilJImI ations n sltesin this section, we analyze the impac
on the power consumption of EEBDN of utilizing less energy

PRR

NPC in MW

Network power saving %

%. Assessing the Energy Efficiency Limits of PNs in the
EEBDN

lﬁgogressive processing is an appealing approach to reduce the

power consumption associated with big data traffic as

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2787624, IEEE
Transactions on Network and Service Management

11

efficient equipment (servers, LAN switches and routers) inINF traffic, the network power saving is already small;
PNs compared to the large DCs. Two cases were studied: (therefore, the network can only sustain PNs equipment with
PRR=0.001 and (ii) PRR=0.6;th =30 (Chunks per PN) in  energy efficiency values very close to those in data centers,

both cases. e.g. within 20%.
Results are shown in Fig. 9 where the y-axis is NPC. Note CBDN
that total power consumption follows similar trends. The x- === EEBDN with PRR=0.6
. PN ti t fth EEBDN with PRR=0.001
axis represents PNs power consumption as a percentage o i Network power saving % with PRR=0.6
data centers equipment power consumption. For instance, 10% a5 —=— Network power saving % with PRR=0.001 1009
. S r=-=-7T-----r--r--°1------r-——T---—--- (]
means that the PNs equipment consume 10% more power in g g im R
compared to the corresponding equipment in the .DCs ' . - v A | so %
Therefore, if the DC server consumes a maximum of 300 W, |3 2° [ E T 5714 : Sl E
. . - - - ] - - 0

the PNs server consumes a maximum of 330Sikce the £ 2 pgip oo b 1| ° é
equipment in the classical approach is regarded as the basis o| £ 15 [ :', :’ ::; ; :; ::: : :; 0% &
this comparison, the total power consumption in the classical 1k :; ::; :: 0N ::: . :g E
approach is not affected by this analysis as shown in Fig. 9 (red| . | _:, E? oy Y E; _ E; 0% 2

e . . N ] n {1} Ll - 1 L]
bars). In addition, and to reduce the complexity of the analysis Ep: :H o P R 80
the DCs are fixed in the optimal locations obtained in Section o o, 20% S0% A% % 80% 90%

. X ) . s equipment power consumpnon%above DCs equipment power

IV.A and IV.B as their location is not the critical element that consumption
we want to assess. Fig. 9. CBDN power consumption vs EEBDN power consumption when PNs

When PRR=0.001 (green bars) and the PNs equipmen;f%{“;{f’:“(“)eé“fyictflfgzf;(;i more power than DCs equipment at PRR=0.001 and
power consumption is 0%o 60% greater than the DCs ' '
equipment’s power consumption, the power saving is at its :
maximum After this critical staggthe energy efficiency of our D. ?c;f:}g?rr:arl:gaetchlng Problem and lts Effect on EEBDN
approach declines gradually, approaching the energy . g . . . . .
efficiency of the classical central processing approach (i.eAnother idealistic assumption made in the previous sections is

80% case). Comparing this to the case where the PRR=0.6, thnat all PNs can process all types of big data Chunks, i.e. they

notice that our approach is useful only when the PNsAe provided with all the necessary software packages that

cqupment poverconsumpion  betveen 0% to 20% grearef2 IO [0 2 e poseple bhes o e, T -
than the DCs equipment power consumption. Beyond this y P P 9

range, the optimal solution is processing the majority of the?hnedir‘:‘]togac?iflg?&:rgsé& r:?are(faoirr?’Pllr\]lsﬂ:)lfm tsrfgt'%r:];o\;vrﬁaiizezf
Chunks in the centralized DCs rather thathe PNs, he ovgrall EEBDN approach gi]n terms of numbgr of processed
Therefore, our approach is the better approach at a Wide'&h ks at the ed F')I'ph' Vsis i ied b tp di
range of energy inefficiency values at PNs when the type o unks at the edge. 1his analysis 1S carried by extending our
model to include a software matching dimension where

big data applications allows for higher reductions (i.e. lower . . .
PRRs). This is because lower PRR is associated with highe(t;hl‘mkS are associated with the correct PNs hosting the

. o . appropriate software package that can process that chunk. Note
network power savings, and to lose this high savingPtie
need to be implemented using equipment with lower energ that DCs are assumed to host all the software packages needed

efficiency (70% to 90% less energy efficient than the DCs), yl'herefore, if the software required by the arrived chunk is not

; ; . available in the receiving SPN, the SPN forwards (i.e.
Our goal here is to show the impact of processing locally atcheg that chunk to thge nearest IPN/DC that host (the
versus processing totally in the central data centers. Totaﬁn uired package. In the software matching problem. it is
processing in the central data centers becomes more attractivggrth notl?n th%t. bia data apolications mag Ft))e num,erous
at the point when PNs are 90% less energy efficient than datyorth 9 g PP may )
ceners and here the long journey to central dataeserjtist covering f<_3r exa”.“p'e hea!thcarg, vehicular, smgrt .C'ty’
becomes viable, comparing for example PRR=0.001 and th manufacturing, agriculture, financial and other applications.
' e . Therefore, a single PN may not hold a full suite of software
80% and 90% cases, for the set of power consumption ' - :

' : . ckages to support all the applications, due to size (storage
parameter we us_ed. In practice such a point may not be reac_h (c)i exgmple) Iiraii)tations or (fupe to security isolatioﬁ andg
with current e_qument_trends and therefore edge processin silience requirements \;vhere some high valu,e (e.g. financial)
may remain viable f_o_r big data even when the edge equmentr life critical (e.g. healthcare) applications have to be
is not as energy efficient as the central data center equmenf? A

. i S Segregated.
An extreme potential scenario may be a situation where the
qent_ral data center power usage effectiveness (coolng.1 MILP Model Extension Description
lighting) beco.mes a factor of 2 better than the edge PN POWET ) addition to the parameters mentioned in Sectia@ |iwe
usage effectiveness and PNs are made of convent|onz:1(§efined the following barameters: ’
processors that are four to five times less energy efficient tha 9p :

. Set of all software packages
the best recent processors that have 64 cores which may bqup'g PK,, = 1if software package (g € S) is availableat node

used in data centers in futul87][38]. This situation is p; otherwisePK,,, = 0.
represented by the 90% case in Fig. 9. We conclude that atcsr,., CSF,,=1if Chunks c generated at node s needs software
lower PRR, the EEBDN has the ability to host energy package g; otherwise;SF, ., = 0.

inefficient equipment in PNs and yet gain considerable Inaddition to the constraints mentioned in Section IIL. A, we
network power saving. However, at higher PRR, i.e. higherdefine the following constraint:
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(32) Typically, site software licenses can be offered which cover all
PT, the sites of the user. If however a given software package does
Vs,p € N,Vc € CH; not offer this facility then the extra cost may be offset by the
Constraint (32) ensures that chunk ¢ generated at node §inancial savings as a result of energy savings, however
which requires software packagecgn be processed at node p techno-economic studies are beyond the scope of this paper. It
if p contains the required package g. is also worth highlighting the fact that the non-availability of a
software package in a close-by PN may lead to longer journeys
D.2 Results _ _ in the network and increased power consumption. Fig. 10
We assume that each PN receige6=10) Chunks from its  shows the split between edge and central processing as nodes
corresponding zone, and each chunk needs a unique softwafRyve more of the software packages, up to the point where
package. This models the case where CHupkgulation every node has all the software packages.
spans a wide spectrum of types. In addition, we analyze a

different number of packages per PNh each case V. IMPACT OFVARIETY ON EEBDN

corresponding to a certain number of packages per PN, all PNgariety means that there are different types of big data such as
host the same types of packages. Hosting different types ofpy intensive, memory intensive, Input/output (10) intensive,
packages can only be an informed decision when the packaggspu-Memory intensive, CPU/IO intensive, and memory-1O
are optimally placed at PNs, which we leave for future work. jntensive applications. Each requires difference amount of
Also, recall that DCs contain the set of all software packagesprocessing, memory, storage, and networking resourEes.
Upon the arrival of the Chunks, the SPN decides whether tQjifferent types come from the diversity of big data sources,
process the Chunks locally based on software availability,sych as sensors, smart devicasd social networks, etc.
otherwise, the chunk is forwarded to the nearest DC. Therefore, big data has a complexity feature as it comes from
not only traditional structured data (e.g., customer data, sales
data) but also unstructured (e.g., social media, photos) PDF
and/or semi-structured, which @ascombination of both (e.g.,
email, XML). Such complexity can cause tradiabdatabase
systems to struggle to store, process and analyze big data to
obtain useful information since they are not related to the
relational database technologies. Successful organizations that
rely on big data to enrich their decision-making should be able
to handle the variety of dafa][1]

® Number of incoming chunks to the DCs in the classical approach
@Number of processed chunks in the PNs

120

100 Ve
80 ’
60

40

Number of porcessed chunks

20

2
2
;
;
;
7

L4
10

g
?
%

A Variety MILP Model
Fig. 10. Software packages availability and its impact on EEBDN petformance at The MILP model presented in Section Ill.A is also used to
g=10. evaluate the impact of variety on EEBDN. However, the input
Fig. 10 shows the effect of software package availably insidedata to the mode$ modified to satisfy the distinct features of
the PNs on the network performangep=10. The x-axis the variety domain.
represents the number of packages per PN, while the y-axis
guantifies the number of edge processed Chunks (i.e. in SPNsB. Results of Variety Scenarios
Since we assume that the packages are homogeneousi¥e present in this section the following two scenarios.
distributed among the PNs (i.e. all PNs host similar packages),
when a chunk is not matched to its SPN due to lack of theB.1 Deterministic CPU Workload per Chunk with Different
required package, thishdnkcannot be matched to any other PRRper Chunk
IPN and itis processed in the central DCs. The extremeIn this scenario, all Chunks have similar CPU requirements
example for this case is when all PNs lack all packages while they exhibit different PRRs. Each PRR could represent
shown in Fig10 at 0 number of packages per PN. a particular application that encodes information diffelyent
The performance of our approach almost linearly improvesTable VI demonstrates the input parameters used in this
with the availability of more software packages in PNs as moresection.
Chunks are processed in the edge network while the rest are
forwarded to the DCs. When PNs host the full package set, the

Number of software packges available in the PNs

TABLE VI
VARIETY SCENARIO B.1 PARAMETERS

maximum performance can be reached as all Chunks arg Numberof i Number ofi CPU workload o\ \/o1imé

; ; ; Chunks per! Servers pei per Chunkin:. PRR.
processed locally in the edge SPNs. Note that in this case, thefe PN PN(NS) | GHz (Swy) " Gb (CHV)
are 120 software packages running in the network. The number : 10330 0.0014
of running packages in the network can be reduced by 1060 10-30 3[3] (random (random
optimally allocating packages to PNs according to the uniform) [1§] | uniform) [Z8]

incoming Chunks-SPN-packages distribution.
guarantee processing all Chunks wé#tsmaller number of
software instances in the network.

This canThe values of the PREof Chunks range between 0D0and1

per Churk, i.e., some Infos volume would be equal to its
corresponding Bunk volume, with PRR: being generated
The proposed edge processing (with progressive processinglsing a random uniform distribution. Each chunk demands
approach may increase the number of software package€PU workload of 3 GHz. Fig. 11-a shows that the maximum
installed, however this may not have a direct cost implication.power saving is 43% at § = 30 Chunks. An interesting feature
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in this figure is the effect of “variety of big data applications”
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rate, therefore we explored the conceivable space in this

on the network power saving compared to the previous sectionscenario. For instance, Chunk #1 has a large volume and
i.e., volume scenario, B, where we obtained a maximum powerequires high processing workload and produces information
saving of 52% with a single value for PRR = 0.001. PRR inwith very small volume (i.e. high reduction ratio).

this scenario covers values with small reduction percentages,
i.e., INF volume is larger here compared to the volume

VARIETY SCENARIO B.2 PARAMETERS.

TABLE VI

scenario in B, which reduces the power savings achieved. g‘ﬁm’gpoefr ggrr\‘/‘gg;; %Zt’ (‘;‘;?Jr'j'lfﬁf Chunkvolume 0
From the.results in Fig. 11-b, it is apparent that' the systerm PN (B) PN (NS) | GHz (SWy in Gb (CHV,) o
shows similar performance volume scenario B in which 14 10330 0.001-1
some PNs exhaust their processing capacity earlier than other 1060 10-30 (random (random (random
nodes, such as PNs #1, #7 add # [ = 10, while other PNs uniform) [31] | uniform)[Z8] | uniform) [1§]

are fully utilized later as is the case RN #9at = 40. Note This @anrepresent a WordCount progrda®], which is both

that the selecteBCs in all cases here are nodes #4 ab8 # Cpy-intensive and network intensive as an application. This
when applying the different number of Chunks per node. Theprogram reads text input files to search and count the number
similar performance of this scenario and volume scenario A ispf occurrences of a specific word to produce a very small
due to the assumed inseqsitivity of CPU utilization to differenty,gjume Info that is only an integer number indicating the count
values of PRR as shown in Table VI. value. Chunk #4 comes with large volume, needs, large
processing resources and produces large volume Info. diis ¢
represent an image processing application that modifies certain
properties of an image, such as brightness level, which does
not result in a huge reduction in image size. Hig.shows
those two points in the explored space and displays their
corresponding applications.

Power saving %
50%

40%

30%

NPC in MW

20%

Network power saving %

0/
10% @Volume per chunk

BCPU workload per chunk
u PRR per chunk
1 1

Image
Processing

0%

WordCount

Number of chunks per node ()

(a) El H 1 TE AT 8 E
g o 3 {E HE-H--H--F
= | IE | H ' H B
> g o4 N - 1E = -- B 1
£ $ o : Wi A ) fE H I
g ' : B 2 A IE
S s¢ L T T B 6 8 9 10
a “? Sample of input data for node #8 at = 10
é’ Fig. 12 Sample of input data for variety scenario B.2 for node #8 at § = 10.
3 Fig. 13-a displays the main findings and differences with the

previous variety scenario B.1, where the CPU workload per
Chunk was fixed at 3 GHz. The main observations are as
follows: first, the maximum power saving (4j%xceeds the

one obtained in the variety scenario B.1 (43%iis is due to

the ability to consolidate the CPU processing for more Chunks
by PNs as some Chunks arrive with lower processing
requirements compared to the variety scenario B.1. Second,
the maximum power saving occeadat § = 40 and not B = 30

as observed in the variety scenario B.1. This is also due to the
extra available processing space at the IPNs due to processing
B.2 Different CPU Workloads and PRR per Chunk Chunks with low processing requirements.

This scenario further investigates the effects of various data This paper tries to capture the distinct features of variety
types on the overall network and PN performance. We takepy allowing the modelled big data network to handle Chunks
into account different volumes of big data Chunks generatedissociated with different reduction ratios, CPU processing
by PNs with different PR&per Chunk, such that each PRR  requirements, and volumes. There are a number of key take
represents a specific type of data and each Chunk acquireszvay messages. Fig. 13-a shows results when the network has
distinct CPU portion to reflect a more realistic picture for the regular traffic and big data traffic. Here the larger the big data
network. Table VII shows that the CPU workload per Chunk traffic, the more is the traffic reduction that can be achieved by
Chunk volume and PRRper Chunk which follow a random  processing big data and hence the larger the power saving. As
uniform distribution between 1 and 4 GHz, 10 and 330 Gb andshown in Fig. 13-a, however, beyond a certain big data traffic
0.001 and 1, respectively. Fig. 12 shows a sample of the inpufolume, the processing capability of PNs at the edge get
data for this scenario considering node #8 at § = 10. Note the depleted and the power savings drop (in Fig. 13-a, the savings
variation among different Chunks in terms of volume, drop from 47% to 44%). In addition, big data applications that
processing requirements and reductions ratios. This is becausgave small PRR (i.e. large reduction after processing) are
big data applications and forms are growing at an incrediblecritical in terms of network power saving and hence should be

(b)
Fig. 11 (a) CBDN power consumption vs EEBDN power camstion fol
variety scenario B.1. (b) Utilization of processingaeity % in EEBDN witl
different values of B for variety scenario B.1
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given priority. Fig 12 shows example applications and their VI. FUTURE WORK
PRR values. Future research directions include:

Fig. 13b shows the processing utilization for the different 1. Attaching a metric to each Chunk that specifies how many
PNs and DCs. First, we note that some PNs are capable now times this Chunk will likely be used in the future
of serving more Chunks compared to variety scenarioTBis (frequency). For example, a Chunk made up of temperature
shows the impact of having various CPU workloads per readings (where the reduction is based on the number of
Chunk, which extend the PNs ability to serve more Chunks readings above a threshold) may only be used once, as the
with lower CPU requirements. Secondly, the model, in most  readings become dated.
stages, selected optimally the prevailid@ locations at nodes 2. Attaching a metric that specifies the popularity of Chunk
#4 and #3. Note that we re-evaluated our results where we  where a Chunk that is popular is demanded by several other
optimized the locations of 5 DCs rather than 2 DCs locations PNSs, so there is a PN to PN communications. For example,
inthe NSFNET. Nodes #1, #4, #7, #9 and #13 are the optimum weather readings where a value of temperature or pressure
DCs locations for all scenarios including the classical (extracted) above a certain value is demanded and is useful
approach. Under the 2 DCs scenario the EEBDN approach in several nodes to predict / report future weather trends
resulted in up td62% and 47% power saving compared to another example is the patient set of readings which are
CBDN approach under the volume and variety scenarios. With  confidential, therefore, those readings will likely be of

5 DCs the savings increased¥ and48% under the volume interest to the source node, data centre and doctor node.
and variety scenarios due to the availability of more nearby3. Our approach can easily be generalized to handle big data
destinations for the data. bulks that are partially or fully processed at each node,
CBDN @1 EEBDN Power saving % where each bulk contains several Chunk&ome
10 p===- T TR g applications produce bulks of data Chunks. Our study can
g fono- R L TT s e = be generalized to model this scenario. In this case, Chunks
: __13;_’:/____ R | 40% = belonging to a certain big data bulk can be progressively
= H H H 1 | 5 [30% & processed in different PNs along different paths and the
g 4 f--mmrogroTos oo -—1:————5————_ 0% o results can be aggregated to the DCs. This helps perform
s lom LA _1'____:_____ 100 S partial and/or full processing of the bulk (depending on
# 0% g . . L.
E ! E ! E ! Lo z PNs processing capacity). Therefore, it is advantageous to
0 — o 20 30 a0 50 80 ° find a "window" of contiguous spare capacity at
Number of chunks per node () intermediate nodes. If such a window can be identified, the
(@) efficiency improves as each intermediate node processes a

bit more the bulk until one node on the way extracts Info

from the corresponding Chunk, otherwise, the final data

D center has to process part or the whole bulk.

S 4. Clustering can be implemented where SPNs and IPNs form
clusters that complement each other in terms of the

N availability of software packages, e.g. each PN has a

Q g‘ different software package.
g 8 5. Scheduling can be implemented by introducing storage
S (‘? nodes that have less processing capabilities to store Chunks

z &’ until a processor of the correct software type is free.

= N

< 2 S
2 VII.  CONCLUSIONS

This paper presenteal Mixed Integer Linear Programming
(MILP) modelto study the impact of big data’s volume and

(b) variety on network power saving carrying big data traffic. We
Fig. 13. (a) CBDN power consumption vs EEBDN power comgtion foi employed Our_ pTOQreSSNG processmg teChm_que to process big
variety scenario B.2. (b) Utilization of processing asity % in the EEBDI data raw traffic in the edge stage, intermediate stage, and the
with different values of f for variety scenario B.2. central processing stage. This is done by building PNs in the

Furthermore, it should be noted that energy efficiency in corelSP network centers that host the IP over WDM nodes. The
networks is essential due to the high energy density in cora&olume scenarios captured generic results that show how the
nodes and the increasing power consumption of large datprocessing capability of the PNs dictates the big data volume
centers which are placed in the core network, a view shared bghat exists in SPNs, IPNs and D@¢ge obtained up to 52% and
GreenTouch where the GreenTouch effort resulted in the34% of network power saving in two different volume
development of methods to improve the energy efficiency ofscenarioscompared to the power consumption of the classical
core networks by 316x compared to their 20aels [B0], processing approach where the Chunks are directly forwarded
{44, [7]. Our work here considers big data traffic as well as from the source node to the DCEhe results of the MILP
regular traffic. For regular traffic see equations 2, 22, 25, 29model for the volume dimension are validated by developing
and for example the explanation of Fig. 13-a. The interest ina heuristic that mimics the MILP model behaviour. We further
big data is attributed to its large volume and the ability to assessed the energy efficiency limits of PNs in the EEBDN and
reduce this volume through processing, hence saving power. the results showed that employing PNs equipment with lower
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energy efficiency compared to the DCs equipment led to lower

utilization of our approachFurthermore, we analgz the

software matching problem and its impact on EEBDN
performance. The results revealed that the performance of our

15

(MASCOTS), 2011 IEEE 19th International Symposium 2011, pp.
390-399.

[19] A. M. Al-Salim, T. El-Gorashi, A. Q. Lawey, and M. Elmirghani,
"Greening Big Data Networks: Velocity Impact,” IET ©ptectronics.
2017.

approach improves with the availability of more software [20] A. M. Al-Salim, T. El-Gorashi, A. Q. Lawey, and M. Elmirghani,

packages in PNs as more Chunks are processed in the edge

"Greening Big Data Networks: IEEE/ACM

Transactions on Networking, Submitted on Nov. 2016.

Veractiy Impact,”

network and the approach reached maximum performanc@l] A. M. Al-Salim, H. M. Mohammad Ali, A. Q. Lawe¥l,. El-Gorashi, and

when PNs host the full software package set. The variety
scenarios revealed the impact of serving Chunks with different

CPU workloads, volumes and PRRs on the power saving.

view of that, Chunks that utilize small portions of the CPU hel

J. M. Elmirghani, "Greening Big Data Networks: Volume Irigain
Transparent Optical Networks (ICTON), 2016 17th rdngional
Conference on, 2016, pp.6l-

II’[22] G. Shen and R. S. Tucker, "Energy-minimized designH over WDM

networks," Journal of Optical Communications and Nekwag, vol. 1,

the nodes process as many Chunks as possible inside the loca pp. 176-186, 2009.
servers, hence, reducing the number of unprocessed Chunks i#B8] X. Dong, T. E. El-Gorashi, and J. M. Elmirghani,n"Ghe energy

the network. We obtained up to 47% and 43 % of network

power savings in two different variety scenarios.
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