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Energy Efficient Big Data Networks: Impact of 
Volume and Variety  

 
Ali M. Al-Salim, Ahmed Q. Lawey, Taisir E. H. El-Gorashi and Jaafar M. H. Elmirghani 

Abstract—In this article, we study the impact of big 
data’s volume and variety dimensions on Energy Efficient 
Big Data Networks (EEBDN) by developing a Mixed 
Integer Linear Programming (MILP) model to 
encapsulate the distinctive features of these two 
dimensions. Firstly, a progressive energy efficient edge, 
intermediate, and central processing technique is proposed 
to process big data’s raw traffic by building processing 
nodes (PNs) in the network along the way from the sources 
to datacenters. Secondly, we validate the MILP operation 
by developing a heuristic that mimics, in real time, the 
behaviour of the MILP for the volume dimension. Thirdly, 
we test the energy efficiency limits of our green approach 
under several conditions where PNs are less energy 
efficient in terms of processing and communication 
compared to data centers. Fourthly, we test the 
performance limits in our energy efficient approach by 
studying a “software matching” problem where different 
software packages are required to process big data.  The 
results are then compared to the Classical Big Data 
Networks (CBDN) approach where big data is only 
processed inside centralized data centers. Our results 
revealed that up to 52% and 47% power saving can be 
achieved by the EEBDN approach compared to the CBDN 
approach, under the impact of volume and variety 
scenarios, respectively. Moreover, our results identify the 
limits of the progressive processing approach and in 
particular the conditions under which the CBDN 
centralized approach is more appropriate given certain 
PNs energy efficiency and software availability levels. 
Index Terms —Big data volume, big data variety, energy 
efficient networks, IP over WDM core networks, MILP, 
processing location optimization, software matching. 
 

 INTRODUCTION 
The significant growth in the Internet-connected devices is 
leading the world to be inundated by a colossal amount of data 
generated from various domains, such as bioinformatics, 
health informatics, social media, text, log files, sensors data, 
video streaming, purchase transaction records and more. The 
term big data has been devised to describe the handling of the 
enormous number of data types generated by numerous data 
sources.  

The first challenge facing the Data Centers (DCs) is the 
enormous volume of data fluxing to them. Facebook and 
Twitter create more than 18 Terabytes (TB) every single day 
[1]. More than 210 billion emails are sent every day [2]. The 
size of the climate change data repositories is projected to grow 
to nearly 350 Petabytes (PBs) by 2030 [3].  Five PBs 
is equivalent to the total number of letters delivered by the US 
Postal Service in one year [4]. Furthermore, the number of 

Internet-connected devices is expected to grow to 100 billion 
devices by 2020 [5]. The challenge is that much generated 
data, currently, is not analyzed or addressed to extract insights 
at all [1]. Growth in the speed of generating data, as well as 
growth in the volume of data and in the variety of data sources 
is causing reduction in the percentage of processed data of 
organizations due to the lack of resources and poor analysis 
tools [1]. Thus, a large amount of the data that is to be 
processed is either neglected, deleted or delayed. Hence, there 
is unnecessary networking power consumption, extra wastage 
of storage and bandwidth because of transferring raw data, 
which leads to increasing the financial and environmental 
costs. Fig.1 shows a decrease in the ratio of processed data to 
the overall huge volume of big data created continuously [6]. 

 
Fig 1: Volume of data is increasing, while percentage of data that can be 
processed is declining [6]. 

Managing massive data volumes calls for new processing 
and communications approaches. In addition, gathering and 
transmitting big data is exposing new challenges in terms of 
how to efficiently and economically transport big data over the 
network with acceptable service quality while providing 
adequate processing and storage resources. For instance, 
medical sensor data has to be transferred and processed in a 
very tight timeframe and the results have to be sent back to the 
hospital or patient wearable device as soon as possible before 
a health risk materializes. Such application level constraints 
impose even more challenges and hard trade-offs on the energy 
efficiency that can be attained from optimizing big data 
processing and networking. 

The main challenge in terms of the volume of data is that the 
real interest is typically not in the data itself, but in the 
knowledge that can be extracted from the data. Therefore, the 
challenge in terms of processing and networking lies in 
designing network architectures and algorithms that enable the 
data to be processed as close to the source as possible to reduce 
its volume and transmit the lower volume “knowledge”, which 
we refer to as “Info” resulting in lower network resource 
requirements and lower power consumption. Consider for 
example heart rate monitoring. The resulting waveform can 
have a large volume when measured over a long period. The 
waveform hopefully indicates for years that the person is fine 
and therefore its transmission to emergency services or to data 
centers is redundant data. If the data is processed near the 
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source, then a simple message made up of few bits of 
information (knowledge) can be sent either to indicate that the 
person is fine or that emergency services should be directed to 
the person’s location. To capture the range of possible 
applications (variety), we consider different data reduction 
factors that relate the volume of the original data to the volume 
of the knowledge extracted, all measured in bits; and consider 
different processing requirements for the same volume under 
different applications, another variety dimension. 

Therefore, new processing and communication techniques 
are required to process and transmit such colossal amount of 
data. Data centers are located in core networks where IP over 
WDM is used [7]. In [8], however, the authors described the 
drivers, building blocks, architecture, and enabling 
technologies for elastic optical networks. The authors in [9] 
suggested that efficient bulk-data transfer in elastic optical 
networks (EONs) can be achieved with malleable reservation 
(MR). The authors in [10] discussed the technologies needed 
for realizing highly efficient data migration and backup for big 
data applications in elastic optical inter-data-center (inter-DC) 
networks. In [11], the authors investigated offline and online 
routing and spectrum assignment (RSA) problems for anycast 
requests in elastic optical inter-DC networks by formulating an 
Integer Linear Programming (ILP) model and proposed 
several heuristics based on single-DC destination selection. In 
[12], the authors studied the minimization of the overall cost 
for Big Data placement, processing, and movement across 
geo-distributed data centers. In [13], the authors proposed a 
streaming workflow allocation algorithm that takes into 
consideration the characteristics of streaming work and the 
price diversity among geo-distributed DCs. The authors in [14] 
aimed to keep the communication cost to a minimum by 
satisfying as many big data queries as possible over a number 
of time slots. The authors in [15] developed a framework to 
perform a sequence of MapReduce jobs in Geo-distributed 
DCs where the processing of jobs is optimized according to 
time and monetary cost. In [16], the authors developed an 
energy efficient cloud computing framework in IP over WDM 
core networks. 

In [17], we presented preliminary results to demonstrate that 
the Network Power Consumption (NPC) is affected by 
processing and transferring big data in bypass IP over WDM 
networks. We considered one big data type from the 
MapReduce platform that was obtained from the log files of 
MapReduce clusters from Facebook [18]. We examined 
improving the energy efficiency of big data networks by using 
a progressive processing technique in Processing Nodes (PNs) 
along the data journey from the source to the destination. We 
referred to such a network as an Energy Efficient Tapered Data 
Network since there is a significant reduction in the data 
transported over the network each time the data is processed. 
Our work in [19] and [20] considered big data velocity and 
veracity respectively, which are two dimensions of big data 
that are not related to the current work. In the velocity 
dimension, we presented several scenarios to process 
expedited-data and relaxed-data made up of big data Chunks 
progressively starting at the source nodes of the network, 
moving through the intermediate nodes of the network and 
finally processing at the centralized data centers. In the 
veracity dimension, we inspected the impact of cleansing and 

backup operations of big data on the energy efficient big data 
networks. In [21] we presented preliminary results that 
considered big data volume only. The current paper makes a 
number of new contributions beyond [21]: (i) it considers big 
data variety for the first time, (ii) it introduces and considers 
the new software matching problem in big data networks, (iii) 
compared to [21], it provides the MILP formulation which is 
not in [21] and a very wide range of results, (iv) it evaluates 
for the first time the impact of the power efficiency of PNs, (v) 
it presents our new Energy Efficient Big Data Networks 
(EEBDN) heuristic and its complexity, (vi) it presents new 
results under different network topologies.  

 
 EEBDN: DESCRIPTION WITH ILLUSTRATIVE EXAMPLE 

Four main Vs can characterize big data: volume, velocity, 
variety, and veracity. In this work, we introduce MILP models 
and a heuristic to observe the impact of volume and variety of 
big data on the NPC in bypass IP over WDM core networks. 
 
A. Problem Statement 
In this work, we focus on the big data large volume and variety 
and address the problem of power minimization in networks 
that support big data. Despite the large volume associated with 
big data, the real interest in most cases is in the knowledge 
derived after processing the data and not in the data itself as 
discussed earlier. Therefore, in this work we address four main 
problems. Firstly, where to process big data to minimize power 
consumption given limited processing capacity at source and 
intermediate nodes but large processing capability at central 
data centers. Secondly, we address the problem of how to 
optimally, from an energy efficiency point of view, deal with 
big data chunks that have variable processing requirements. 
Thirdly, we consider the problem of jointly optimizing 
communication and processing power consumption in big data 
networks when the processing equipment power consumption 
increases for the same task. This increase can happen when 
variable size and sophistication equipment is used. Here we 
evaluate the impact on the choice of optimal location to 
process content, given that the optimal location of where to 
process is dictated by the interplay between communications 
and processing power consumption. Fourthly, we focus on the 
problem of how to optimally deal with a software matching 
problem where some nodes may not have the full software 
library needed to process different big data applications.  
 
B. Contributions 
Compared to previous work, we make the following 
fundamental contributions: (i) we evaluate, using MILP and 
heuristic, the volume dimension by analysing the distribution 
of big data volumes in different processing locations that have 
different processing capabilities where Chunks demand similar 
processing and yield similar volume reduction ratios; (ii) we 
examine, using MILP, the impact of variety by considering the 
case where different CPU workloads are required to serve 
different volumes of Chunks at different volume reduction 
ratios; (iii) we use our EEBDN processing technique to 
optimize the processing locations of the big data Chunks and 
compare the results to the Classical Big Data Networks 
(CBDN) technique where no PNs exist in the network. The 
processing locations are optimally chosen at either Source PNs 
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(SPNs), inside “location optimized” DCs or at Intermediate 
PNs (IPNs). Thus, we jointly minimize the power consumption 
of the overall network and processing resources; (iv) we assess 
the impact of energy efficiency of PNs on our EEBDN 
approach where the PNs constituents (LAN switches, routers 
and servers) consume higher power compared to data centers 
equipment; (v) we consider a software matching problem to 
evaluate the performance limits of our approach where each 
PN contains different software packages used to process 
different big data applications. Table I defines the acronyms 
used in this paper. 

TABLE I  
LIST OF ACRONYMS DEFINITIONS 

Acronyms Definition 
CBND Classical big data networks 
CHT Chunk traffic (Unprocessed big data traffic) 
DC Data center 
EEBDN Energy efficient big data networks 
INF Info traffic (processed big data traffic) 
IPN Intermediate processing node 
NPC Network power consumption 
PN Processing node 
PRR Processing reduction ratio 
SPN Source processing node 

 
C. CBDN vs. EEBDN 
The concept of EEBDN is illustrated in the NSFFENT [22] of 
Fig. 2. Fig. 2-a shows a CBDN. The difference between the 
two approaches is that in CBDN, all big data Chunks traffic 
(CHT) generated by the source nodes is forwarded to the DCs 
directly to be processed there. For example, the source node # 
14 of the National Health Service (NHS) in Fig. 2-a acts as a 
source. In the EEBDN, shown in Fig. 2-b, however, PNs are 
attached to the IP over WDM core nodes (e.g., node #12) to 
process as many Chunks as possible according to PNs 
processing capability to reduce the number of forwarded 
Chunks to the DCs, hence reduce the volume of big data 
traffic. 

The extracted information traffic (INF) from the 
corresponding Chunks is forwarded to the DCs through energy 
efficient routes. We refer to the extracted information as Info. 
The structure of a PN is similar to the cloud structure presented 
in [16].PNs are located close to the user while data centers are 
typically in central locations in the network and may be far 
from the user. Therefore, PNs enable edge processing of big 
data, hence saving power. PNs are different when compared to 
data centers in additional ways. PNs may have a limited set of 
software packages; they are small and hence may be less 
energy efficient. These are among the constraints taken into 
account in our progressive processing approach. The number 
of processed Chunks inside the PNs is variable and depends on 
the PN’s processing capacity which may be limited by the 
available space in the building housing the core network node. 
Note in Fig. 2-b Chunks can be processed either in SPNs or 
IPNs. Once the PNs’ servers are fully utilized, no more edge 
or intermediate processing is performed, centralized 
processing inside the DCs dominates the processing of big data 
since DCs’ capacities are large enough for the central storing 
and processing of the remotely forwarded Chunks from the 
PNs.  In many big data applications, the ratio of the input 
volume of data before processing to the output volume of data 
after processing is very high, i.e. the volume of Infos is much 

smaller than the volume of Chunks [18]. For example, the input 
Chunks can be video surveillance segments representing few 
minutes or hours. The Info extracted can be the presence or 
absence of a person or an object in the video. We refer to this 
ratio as the Processing Reduction Ratio (PRR). PRR is the ratio 
of the final reduced data (the information or knowledge of 
interest) to the original data size. For example, a 1 MB video 
clip may be the data. The presence or absence of a person in 
the clip may be the knowledge of interest. If the video is 
processed and a 1 kB packet is sent instead of the video clip, 
then PRR is 0.001. Therefore, we introduce equation (1) where 
the volume of the Chunks is multiplied by different PRRs to 
produce the Infos, the knowledge in  the Chunks. For instance, 
in MapReduce jobs, a Chunk of 1000 Gigabit (Gb) and PRR 
of 0.001 results in Info of 1 Gb [18]. Accordingly, significant 
network power saving is achieved if such Chunks are 
processed locally in the edge (SPNs) and progressively in the 
IPNs. ܸ݋݂݊ܫ ݂݋ ݁݉ݑ݈݋ ൌ ܴܴܲ ൈ  Ǥ   (1)݇݊ݑ݄ܥ ݂݋ ݁݉ݑ݈݋ܸ

  

(a) (b) 
Fig. 2. (a) CBDN, (b) EEBDN  
 
D. EEBDN: Illustrative Example 

To illustrate the concepts we propose in this work, consider the 
example network shown in Fig. 3. There are four zones in Fig. 
3, with each connected to a certain PN, where each PN receives 
a different number of Chunks depending on its zone user 
population. For instance, zone 2 generates more Chunks 
compared to zone 4 that has a lower user population. The PN 
connected to a certain zone is the SPN as it is the first PN in 
which Chunks are received from its corresponding zone and 
the Chunks are locally or centrally processed. Each SPN can 
locally process a different maximum number of Chunks 
depending on its processing, storage and internal switches and 
routers capacity. The remaining Chunks that cannot be 
processed locally in an SPN are forwarded either to another 
optimally selected PN or a DC. Those PNs that receive Chunks 
from other SPNs are called IPNs. An IPN, with respect to a 
given SPN, might itself be an SPN that implements local 
processing for its corresponding zone. This means that a PN 
can perform both the roles of SPN and IPN if needed. The 
unprocessed Chunk traffic from SPNs to IPNs or to DCs is 
called Chunk Big data Traffic (CHT). After processing the 
Chunks either in SPNs, IPNs or in the DCs, knowledge is 
extracted in the form of smaller rate traffic that we call the Info 
Big Data Traffic (INF). INF propagates from PNs (SPN or 
IPNs) towards DCs through the core network. Note that DCs 
have the special property that both the locally generated INF 
and the remotely received INF from other PNs do not flow 
outside these DCs. As mentioned before, a PN is built at a 
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certain core node. Therefore, the PN ID is the same as the core 
node ID at which it is installed. This also applies to the DC ID. 

 
Fig. 3. EEBDN illustrative example 
Each zone in Fig. 3 represents a probable scenario that our 
approach can optimize as follows: Zone 1: The SPN #1 of zone 
1 is capable of processing all incoming Chunks (Chunks #1, 
#2, #3) and all the output (Infos #1, #2, #3) are optimally 
aggregated to DC #1. This scenario generates only INF in the 
network from SPNs to DCs. Zone 2: The SPN #2 of zone 2 
can process Chunks #4, #5 and #6. Chunk #7 is, however, 
transported as a CHT to an optimal IPN (IPN #5) as one or 
more of the the resources (CPU, storage, internal switches, and 
routers) of SPN #2 have been fully utilized. After Chunk #7 is 
forwarded to IPN #5, it will be processed there and the output 
(Info #7) will be aggregated as an INF through an energy 
efficient route to DC #1. Zone 3: The SPN #3 of zone 3  
processes its own data (Chunks #8 and #9) and also acts as an 
IPN to process other incoming Chunks (Chunk #11 from SPN 
#4) when it is not being fully utilized. The movement of Infos 
from this PN represents the INF. Zone 4: The SPN #4 of zone 
4 has the smallest processing and storage space, thus it 
processes the smallest number of Chunks (Chunk #10) and 
forwards any extra Chunks to the next optimal PN or DC. For 
instance, Chunk #11 is forwarded to IPN #3. However, when 
all other PNs deplete their processing resources, then any extra 
unprocessed Chunks by SPN #4 (i.e., Chunk #12) will be 
uploaded directly from SPN #4 to be processed by an optimally 
selected DC (DC #2 in Fig. 3). For such an event, CHT starts 
to dominate the network traffic from SPNs to DCs. 
 

 IMPACT OF VOLUME ON EEBDN 
This section introduces a MILP model that focuses on the first 
V of big data, i.e., the volume, and evaluates several scenarios 
to study the impact of volume on EEBDN.  
 
A. Volume MILP Model 
In this section, we introduce a MILP model for EEBDN using 
a bypass IP over WDM network, (see [16] and [23] for details 
of MILP in IP over WDM networks). The PNs are attached to 
each core node of the NSFNET and consist of limited 
processing and storage resources, as depicted in Fig. 2, while 
the DCs comprise large enough resources. The NSFNET 
network consists of 14 nodes connected by 21 bidirectional 
links [22]. 

The NPC is comprised of the power consumption of the 
router ports, transponders, EDFAs, regenerators and optical 
switches. On the other hand, power consumptions of the PNs 
and the DCs are composed of the power consumption of the 
servers, storage, and the internal LAN switches and routers. 
We assume that the power consumption of routers and 
switches is proportional to the offered load. Note that, in 
addition to the existence of these big data Chunks and Infos in 
the network, we assume, for realistic considerations, that there 
is additional traffic between core nodes, which is referred to as 
regular traffic. This traffic represents any data that is not 
intended for big data analytics [23].  

Table II defines the parameters and variables used in the 
EEBDN model: 

TABLE II  
LIST OF PARAMETERS AND VARIABLES AND THEIR DEFINITIONS. 
Notation Description ݏ ܽ݊݀ ݀ Denote source and destination points of regular traffic demand 

between a node pair. ݅ ܽ݊݀ ݆ Denote end points of a virtual link in the IP layer. ݉ ܽ݊݀ ݊ Denote end points of a physical fiber link in the optical layer. ܴ௦ௗ The NSFNET regular traffic demand from node ݏ  to node d 
(Gbps). ܰ Set of IP over WDM nodes. ௜ܰ  The set of neighbour nodes of node i in the optical layer. ܰܵ௣ Number of servers at the PN p. ܵ ௦ܹ௖ The CPU workload of the server required to process Chunk c 
generated at source node s (GHz). ܹܵܯ            Maximum server workload (GHz). ܯ ௣ܲ Maximum workload node p. ܯ ௣ܲ ൌ  ܰܵ௣ ή  ௣ Maximum internal switches and router capacity of the PN pܴܵܯ .(GHz) ܹܵܯ
(Gbps). ܵܯ௣ Maximum storage of node p  (Gb). ܰܪܥ Total number of Chunks in one node per second. ܪܥ௦ Set of Chunks in a source node s.            ܪܥ ௦ܸ௖  The volume of Chunk c generated at source node s (Gb). ܴܴܲ௦௖ Processing reduction ratio for Chunk c generated by node s 
(unitless). ܹܮ                Number of wavelengths in a fiber. ܤ Wavelength bit rate (Gbps). ܵ Maximum distance between neighbouring EDFAs (km). ܴܲ                 Power consumption of a router port (W). ܴܲܶ              Power consumption of a transponder (W). ܲ ௜ܱ Power consumption of optical switch installed at node i א N (W). ܲܧ Power consumption of EDFA (W). ܴܲܩ Power consumption of a regenerator (W). ܦ௠௡ Distance between node pair (m, n) (km). ܣ௠௡ Number of EDFAs on physical link (m, n). Typically,  ܣ௠௡ ൌቔ஽೘೙ௌ െ ͳቕ ൅  .௠௡ Number of regenerators on physical link (m, n). ܷܲܰ Power usage effectiveness of IP over WDM networks (unitless)ܩܴ .[22] ʹ
PUN is defined as the ratio of the power drawn from the electric 
source to the power used by the equipment (networking in this 
case). PUN accounts for cooling, lighting and related power 
consumption. ܷܲ Power usage effectiveness of the PNs and DCs (unitless). ܵܲܯ Server maximum power consumption (W). ܵܤܧ PNs’ and DCs’ switch energy per bit (W/Gbps). ܴܤܧ PNs’ and DCs’ router energy per bit (W/Gbps). ܴܵ Internal PNs’ and DCs’ switches redundancy. ܴܴ Internal PNs’ and DCs’ routers redundancy. ܴܵܩ PNs and DCs storage redundancy. ܲܵܩ PNs’ and DCs’ storage power per Gigabit (W/Gb). ߜ Server power per GHz, ߜ ൌ  ሺܵܲܯ െ  ܹܵܯ ሻ Ȁܧܮܦܫܲ
(W/GHz). GHz is used to specify the capability of a processor 
and the number of processors a job needs. ܰܥܦ Number of location optimized DCs. ܪܥ ௦ܶ௣ Big data Chunks traffic generated at SPN s and directed to 
destination node p (p could be SPN, IPN or DC) (Gbps). 
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 ௣ௗ Aggregated big data Info traffic from PN p to DC d. Node pܨܰܫ 
could be SPN or IPN only (Gbps). ܥ௜௝ Number of wavelength channels in the virtual link (i,j). ܴ௜௝௦ௗ

 Traffic flow of the regular traffic Rsd between node pair (s, d) 
traversing virtual link (i, j). ௠ܹ௡௜௝

 Number of wavelength channels in the virtual link (i, j) 
traversing physical link (m, n). ௠ܹ௡ Number of wavelength channels in the physical link (m,n). ܪܥ ௜ܶ௝௦௣

 Traffic flow of the big data Chunks traffic CHTsp between node 
pair (s, p) traversing virtual link (i, j). ܨܰܫ௜௝௣ௗ Traffic flow of the big data Info traffic INFpd between node pair 
(p, d) traversing virtual link (i, j). ܴܣ௜ Number of aggregation ports in router i utilized by regular traffic 
Rsd ܪܥܣ௜ Number of aggregation ports in router i used in big data Chunks 
traffic CHTsp.   ܫܣ௜ Number of aggregation ports in router i utilized by big data Info 
traffic INFpd. ܨ௠௡ Number of fibers in physical link (m,n). ܲܰ ௣ܹ Total PN p workload (GHz). ௦ܻ௣௖ Yspc = 1 if Chunk c is generated at SPN s and processed in PN p, 
else Yspc = 0. ܵܪܥ௣ Amount of big data Chunks stored in PN p (Gb). ܥܦௗ DCd = 1 if a DC is built at core node d, else DCd  = 0. 

Under the bypass approach, the total IP over WDM NPC is 
composed of the following components 
1) The power consumption of router ports ෍ ܴܲ ή  ሺܴܣ௜ ൅ ௜ܪܥܣ ൅ ௜ሻܫܣ ൅ ܴܲ ή ෍ ൫ܥ௜௝൯Ǥ௝אேǣ ௜ஷ௝௜אே  

(2) 
2) The power consumption of transponders ෍ ෍ ܴܲܶ ή ௠ܹ௡ Ǥ௡אே೘௠אே  (3) 

3) The power consumption of regenerators is ෍ ෍ ܩܴܲ ή௡אே೘௠אே  ௠ܹ௡ ή ௠௡ܩܴ Ǥ (4) 

4) The power consumption of EDFAs ෍ ෍ ܧܲ ή ௠௡ܣ ή ௠௡ܨ Ǥ௡אே೘௠אே  (5) 

5) The power consumption of optical switches ෍ ܲ ௜ܱ௜אே Ǥ (6) 

Equation (2) evaluates the total power consumption of the 
router ports for all the types of traffic, which are the regular 
traffic Rsd, big data Chunks traffic CHTsp, and big data Info 
traffic INFpd. It computes the total power consumption of the 
ports aggregating data traffic and the ports connected to optical 
nodes. Equations (3) and (4) evaluate the power consumption 
of all the transponders and regenerators in the optical layer. 
Equation (5) evaluates the total power consumption of the 
EDFAs in the optical layer. Equation (6) evaluates the total 
power consumption of the optical switches. 

The power consumption of the PNs and DCs is composed of 
the following sections: 
1) The power consumption of internal PNs and DCs switches 

and routers ܴܲܵ ൌ ෍ ෍ ܪܥ ௦ܶ௣௦אே ή  ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ேאሻ                                  ௣ܤܧܴ  ൅ ෍ ෍൫ܪܥ ௣ܶௗ ൅ ேήאே௣א௣ௗ൯ௗܨܰܫ ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ሻ  ൅ܤܧܴ ෍ ෍ ேא௣ௗௗܨܰܫ ή ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ேאሻ௣ܤܧܴ Ǥ 
(7) 

Equation (7) evaluates the total power consumption of the 
internal switches and routers in the PNs and DCs. This is done 

by multiplying the incoming and outgoing big data traffic by 
the switches’ and routers’ energy per bit. We performed the 
analysis by considering a network architecture where ܴܵ ൌܴܴ ൌ ͳ. 
2) The power consumption of all servers inside PNs and DCs ෍ ߜ ή ܲܰ ௣ܹ௣אே ൅  ܰܵ௣ ή  Ǥ  (8)ܧܮܦܫܲ

3) The power consumption of the storage  ෍ ௣ܪܥܵ ή ܩܴܵ ή ேא௣ܩܵܲ Ǥ (9) 

 Note that server power consumption is a function of the idle 
power, maximum power and CPU utilization [24]. Therefore, 
the power consumption of all servers inside the PNs and DCs 
is calculated using equation (8). Equation (9) represents the 
storage power consumption of node p. We performed the 
analysis by considering a network architecture where ܴܵܩ ൌ ͳǤ 
The model is defined as follows: Objective: Minimize  ܷܲܰ ή ቌ෍ ܴܲ ή  ሺܴܣ௜ ൅ ௜ܪܥܣ ൅ ௜ሻܫܣ ൅ ܴܲ ή ෍ ൫ܥ௜௝൯௝אேǣ௜ஷ௝௜אே ൅ ෍ ෍ ܴܲܶ ή ௠ܹ௡ ൅௡אே೘௠אே ෍ ෍ ܩܴܲ ή ௠ܹ௡௡אே೘௠אேή ௠௡ܩܴ ൅ ෍ ෍ ܧܲ ή ௠௡ܣ ή ௠௡ܨ ൅௡אே೘௠אே ෍ ܧ ௜ܱ௜אே ቍ 

൅  ܷܲ ή ቌ෍ ߜ ή ܲܰ ௣ܹǤ௣אே ൅  ܰܵ௣ ή  ܧܮܦܫܲ
൅ ෍ ෍ ܪܥ ௦ܶ௣௦אே ή  ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ேאሻ௣ܤܧܴ  ൅ ෍ ෍൫ܪܥ ௣ܶௗ ൅ ܰܫ ௣ܶௗ൯ௗאே௣אேή ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ሻ  ൅ܤܧܴ ෍ ෍ ேא௣ௗௗܨܰܫ ή ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ே൅אሻ௣ܤܧܴ ෍ ௣ܪܥܵ ή ܩܴܵ ή ேא௣ܩܵܲ ቍǤ 

(10) 
Equation (10) gives the model objective, which is to 

minimize the IP over WDM NPC as well as the PNs’ and DCs’ 
power consumption. 
Subject to: PNs and DCs Constraints: 
1) Processing counter of big data Chunks constraint  ෍ ௦ܻ௣௖௣אே ൌ ͳǡ ݏ׊ א ܰǡ ܿ׊ א  ௦Ǥ (11)ܪܥ

Constraint (11) ensures that a Chunk c generated by PN s is 
processed by no more than one PN p. However, our model 
performs slicing, i.e., multiple servers could process a given 
Chunk in a PN as long as these servers belong to that PN. 
2) Big data Chunks traffic constraint  ܪܥ ௦ܶ௣ ൌ ෍ ܪܥ ௦ܸ௖ ή ௦ܻ௣௖௖א஼ுೞ ǡ ǡݏ׊ א ݌ ܰǤ  (12) 

Constraint (12) calculates the big data Chunks traffic generated 
at source node s and directed to node p. This traffic is generated 
by transmitting CHVsc from node s to node p in one second. 
3) Aggregated processed big data traffic constraint  ෍ ேא௣ௗௗܨܰܫ ൌ ෍ ෍ ܪܥ ௦ܸ௖ ή ௦ܻ௣௖ ή ܴܴܲ௦௖௖א஼ுೞ௦אே ݌׊    (13)  א ܰǤ  
Constraint (13) represents the aggregated big data Info traffic 
INFpd generated by PN p and destined to DC d. The big data 
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Info traffic is obtained by multiplying the Chunks (CHVsc) 
allocated to the PN p by the PRRsc. 
4) Number and locations of DCs constraints  ෍ ௣ௗܨܰܫ ൒ ேאௗ௣ܥܦ ǡ    ݀׊ א ܰǡ    (14)      ෍ ௣ௗܨܰܫ ൑ ܼ ή ௗܥܦ ǡ௣אே ݀׊   א ܰǡ (15) ܰܥܦ ൌ ෍ ேאௗǤ      ௗܥܦ  (16) 

Constraints (14) and (15) build a DC in location d if that 
location is selected to store the results of the processed big data 
traffic (i.e., Infos) or selected to process the incoming big data 
Chunks from PNs, where Z is a large enough unitless number 
to ensure that DCd = 1 when σ INF୮ୢ୮஫୒  is greater than zero. 
Constraint (16) limits the total number of built DCs to DCN. 
5) PNs and DCs workload and processing capacity constraints  ܲܰ ௣ܹ ൌ ෍ ෍ ܵ ௦ܹ௖ ή ௦ܻ௣௖௖א஼ுೞ ǡ௦אே ݌׊                       א ܰǡ (17) ܲܰ ௣ܹ ൑ ܰܵ௣ ή ܹܵܯ ൅ ൫ܯ ή ݌׊               ௣൯ǡܥܦ א ܰǤ (18) 
Constraint (17) represents the total workload at PN p, which is 
the summation of the CPU workload of all the servers in that 
PN. Constraint (18) ensures that the total workload of PN p 
does not exceed the maximum workload assigned to this PN, 
M is a large enough unitless number. However, the workload 
capacity is large enough if a DC is built at core node p. Note 
that, the model implements a consolidation process by 
processing as many Chunks as possible within the same server 
to minimize the NPC and number of active servers. 
6) PNs and DCs storage constraints  ܵܪܥ௣ ൌ ෍ ෍ ܪܥ ௦ܸ௖ ή ௦ܻ௣௖௖א஼ுೞ ǡ௦אே ݌׊                     א ܰǡ (19)       ܵܪܥ௣ ൑ ௣ܵܯ ൅ ൫ܪ ή ݌׊                        ௣൯ǡܥܦ א ܰǤ (20) 

Constraint (19) represents the size of Chunks in Gb stored in 
PN p. Constraint (20) ensures that the total data stored in PN p 
does not exceed the storage capacity of that PN.  H is a large 
enough unitless number to guarantee that there is no storage 
capacity limitation at the DCs. 
7) PNs and DCs internal switches and routers constraints  ෍ ܪܥ ௦ܶ௣  ൑ ௣ܴܵܯ ൅ ൫ܣ ή ݌׊                ௣൯ǡܥܦ א ܰǤ௦אே  (21) 

Constraint (21) ensures that the total amount of big data traffic 
between the PNs does not exceed the maximum switching and 
routing capacity of the internal switches and routers in those 
PNs. On the other hand, the capacity of the DCs’ switches and 
routers is unlimited, where A is a large enough unitless number 
to guarantee that there is no capacity limitation at the DCs. To 
avoid blocking of big data Chunks, we assume that the internal 
switches and routers capacity of the PNs is also large enough. 
The IP over WDM Network Constraints: 
1) Flow conservation constraints for the regular traffic ෍ ܴ௜௝௦ௗ௝אேǣ ௜ஷ௝ െ ෍ ௝ܴ௜௦ௗ௝אேǣ ௜ஷ௝ ൌ ൝ ܴ௦ௗ           ݅ ൌ ݅        െܴ௦ௗݏ ൌ ݀Ͳ        ݁ݏ݅ݓݎ݄݁ݐ݋ 

ǡݏ׊ (22)  ݀ǡ א ݅ ܰǣ ݏ ് ݀ 
2) Flow conservation constraints for the big data Chunks 

traffic ෍ ܪܥ ௜ܶ௝௦௣௝אேǣ௜ஷ௝ െ ෍ ܪܥ ௝ܶ௜௦௣௝אேǣ ௜ஷ௝ ൌ ൝ ܪܥ ௦ܶ௣     ݅ ൌ ܪܥെݏ ௦ܶ௣  ݅ ൌ  ݁ݏ݅ݓݎ݄݁ݐ݋      Ͳ݌
ǡݏ׊ (23) ǡ݌ א ݅ ܰǣ ݏ ്  Ǥ݌

3) Flow conservation constraints for the big data Info traffic 

෍ ேǣ௜ஷ௝א௜௝௣ௗ௝ܨܰܫ െ ෍ ேǣ௜ஷ௝א௝௜௣ௗ௝ܨܰܫ ൌ ൝ ݉      ௣ௗܨܰܫ ൌ ݉    ௣ௗܨܰܫെ     ݌ ൌ ݀     Ͳ         ݁ݏ݅ݓݎ݄݁ݐ݋  
ǡ݌׊ (24) א ݅ ܰǡ א ݀׊ ܰǣ ݌ ് ݀Ǥ 

Constraints (22-24) represent the flow conservation 
constraints for the regular traffic Rsd, big data Chunks traffic 
CHTsp and big data Info traffic INFpd, in the IP layer. These 
constraints ensure that the total outgoing traffic should be 
equal to the total incoming traffic, except for the source and 
destination nodes. It can also ensure that the flow can be 
divided into multiple flow paths in the IP layer.  
4) Virtual link capacity constraint ቌ෍ ෍ ܴ௜௝௦ௗௗאேǣ ௦ஷௗ௦אே ൅ ෍ ෍ ேאேǣ ௦ஷ௣௦א௜௝௦௣௣ ܶܪܥ ൅ ෍ ෍ ேאேǣ ௣ஷௗ௣א௜௝௣ௗௗܨܰܫ ቍ ൑ ௜௝ܥ Ǥ  ܤ

ǡ݅׊ (25) א ݆ ܰǣ ݅ ് ݆Ǥ 
Constraint (25) ensures that the summation of all traffic flows 
through a virtual link does not exceed its capacity. 
5) Optical layer flow conservation constraints:  ෍ ௠ܹ௡௜௝௡אே೘ െ ෍ ௠ܹ௡௜௝௡אே೘ ൌ ൝ ݉           ௜௝ܥ ൌ ݅െܥ௜௝          ݉ ൌ ݆ Ͳ        ݁ݏ݅ݓݎ݄݁ݐ݋ 

ǡ݅׊ (26) ݆ǡ א ݉ ܰǣ ݅ ് ݆Ǥ 
Constraint (26) represents the flow conservation constraints in 
the optical layer. It ensures that the total outgoing wavelengths 
in a virtual link should be equal the total incoming 
wavelengths, except for the source and the destination nodes 
of the virtual link. It is assumed that wavelength conversion is 
available in the model to enable better utilization of bandwidth 
and reduce blocking probabilities. 
6) Physical link capacity constraints  ෍ ෍ ௠ܹ௡௜௝௝אேǣ ௜ஷ௝௜אே ൑ ܮܹ ή ௠௡ܨ Ǥ ݉׊ א ܰǡ א ݊ ܰ௠Ǥ (27) 

Constraint (27) ensures that the summation of the wavelengths 
in a virtual link traversing a physical link does not exceed the 
capacity of the fibers in the physical link.  
7) Wavelengths capacity constraint ෍ ෍ ௠ܹ௡௜௝௝אேǣ ௜ஷ௝௜אே ൌ ௠ܹ௡ ݉׊ א ܰǡ א ݊ ܰ௠Ǥ (28) 

Constraint (28) ensures that the summation of the wavelengths 
traversing a physical link does not exceed the total number of 
wavelengths in that link. 
8) Number of aggregation ports utilized by regular traffic 

constraint ܴܣ௜ ൌ ͳܤ ή ෍ ܴ௜ௗௗאேǣ ௜ஷௗ ݅׊  א ܰǤ (29) 

9) Number of aggregation ports utilized by CHT traffic 
constraint ܪܥܣ௜ ൌ ͳܤ ή ෍ ܪܥ ௜ܶ௣௣אேǣ ௜ஷ௣ ݅׊         א ܰǤ 

(30) 
10) Number of aggregation ports utilized by INF traffic 

constraint ܫܣ௜ ൌ ͳܤ ή ෍ ேǣ ௜ஷ௣א௜ௗௗܨܰܫ ݅׊           א ܰǤ 
(31) 

Constraints (29-31) calculate the number of aggregation ports 
for each router that serves the regular traffic Rsd, big data 
Chunks traffic CHTsp and big data Info traffic INFpd. 
 
B. EEBDN Heuristic  
In this section, we validate the MILP operation by developing 
a heuristic that mimics, in real time, the behaviour of the 
MILP. Having obtained results from the MILP we developed 
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insight into what minimizes power consumption in our 
proposed progressive processing big data networks. We 
observed from the results that the MILP attempts to process all 
the data in the source node if the source node has enough 
capacity, which reduces the communication transmission 
power consumption needed otherwise to reach remote 
processing nodes. If the source processing node does not have 
enough capacity then the chunks are transmitted to the 
processing node at minimum hop distance and when such 
intermediate nodes are depleted of processing capability, the 
minimum hop data centre is used. Routing in the network was 
observed to follow minimum hop routing. None of these rules 
were written in the MILP. The MILP was only required to 
minimize the total power consumption (network and 
processing). We therefore used these insights to construct our 
heuristic, which therefore mimics the MILP behaviour. The 
heuristic uses simple rules as described above and hence can 
run fast unlike the MILP. Therefore, the heuristic can be used 
to provide real time control and routing in the network. 

The heuristic is used for two main purposes. Firstly, as a 
verification of the MILP results. Secondly, since the heuristic 
uses simple rules, it runs fast unlike the MILP. Therefore, it 
can enable network control (which chunk to process where for 
example) and routing which can both be performed in real time 
through the use of the heuristic. The second objective (real 
time control of the network) is fully achieved by our heuristic. 
The first objective (verification of MILP) is partially achieved. 
The heuristic uses the optimum data centre node locations 
(nodes 4 and 13) obtained from the MILP. The heuristic is 
otherwise independent of the MILP. The flowchart in Fig. 4 
shows the heuristic, which aims to process the incoming 
Chunks by utilizing the minimum number of resources so that 
minimal power is consumed. The heuristic is initialized by 
defining the physical network topology, in this case the 
NSFNET, with 14 nodes and 21 links. 12 PNs are distributed 
in the network and 2 DCs are located at nodes 4 and 13. Note 
that between each node pair there exists a regular traffic 
demand Rsd in the network. 

Each node receives a number of Chunks (ȕ) from its 
corresponding zone. Each chunk is characterized by a volume 
and CPU workload requirements. The heuristic starts at the 
edge processing stage by selecting an SPN, then picks a chunk 
from this SPN to read its CPU requirement. The heuristic 
checks the processing capacity of that SPN and the Chunk is 
processed locally in the current SPN in case there are enough 
processing resources. This approach guarantees the 
implementation of as much edge processing as possible. The 
heuristic repeats this process for all SPNs. Note that changing 
the order of SPN selection does not change the results as each 
SPN can be totally packed with processing jobs and in this case 
all processing tasks have the same CPU requirement. 

Once a chunk is processed locally in an SPN, a 
corresponding INF demand is calculated between that SPN 
and the nearest DC following a minimum hop path. In case all  
Chunks are processed locally by SPNs, the only demands in 
the network are therefore the INF and regular demands. Those 
demands are routed and the NPC is calculated using the 
algorithm developed in [22]. However, the progressive 
processing stage inside the IPNs and the central processing 
stage inside the DCs are started when the SPNs are not capable 

of implementing full edge processing, (i.e. not all Chunks are 
processed locally in the SPNs). This is done by forwarding the 
remaining non-locally processed Chunks from all SPNs along 
the minimum hop path to the nearest IPNs/DCs. An IPN is 
selected if there is spare processing capacity. This results in 
the CHT traffic demands between the SPNs and IPNs/DCs. 
The heuristic then obtains the INF demands resulting from 
processing the non-locally processed Chunks in IPNs. 

 
Fig. 4. EEBDN: volume heuristic. 

Therefore, in this case the network has three traffic 
demands: INFsd from partial local processing in SPNs, INFsd 
from progressive processing in IPN and the CHTsd demands. 
Again, these types of traffic demands are routed over the 
network as well as the regular traffic Rsd according to the 
heuristic in [22] and the total NPC is calculated. 

 
C. Complexity Analysis 
The proposed EEBDN heuristic aims to work around the NP-
hard complexity [25] of the MILP model solved using CPLEX. 
There are two main processes in the heuristic. Firstly, the bin 
packing problem where objects (where a number of Chunks 
per node (ȕ)) of different volumes must be packed into a finite 
number of bins (servers) each of capacity C in a way that 
minimizes the number of bins used. This is a greedy 
approximation algorithm where for each Chunk, it attempts to 
place it in the first server that can accommodate this Chunk. 
Thus, it requires ʝሺߚ ݃݋݈ ߚሻ  time [26]. Secondly, the 
generation of initial set of paths is based on minimum hop 
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routing algorithm, which has a complexity of the order ܱሺܰሻ 
[27], where N is the number of nodes in the network. Thus, the 
overall complexity is ʝሺߚ ݃݋݈ ߚሻ ൅ ܱሺܰሻ for the processes of 
the proposed heuristic. 
 

 RESULTS OF VOLUME SCENARIOS 
Our MILP model and the heuristic were evaluated using the 
NSFNET network depicted in Fig. 2. The storage capacity of 
the PNs was assigned to be large enough. Note that we used 
processor cycles in GHz as a measure of the total processing 
capability of a node [28]. Table II I summarizes the input 
parameters.  We performed the MILP optimization using the 
AMPL/CPLEX software running on a PC with 8 GB RAM and 
an i5 CPU. The heuristic is implemented using MATLAB on 
the same PC. A single run for the MILP took around 10 s to 
finish, while the heuristic took less than 1 s. Note that the 
computational complexity of the MILP grows fast with 
network size. 

TABLE III  
 INPUT DATA FOR VOLUME MODEL. 

Server CPU capacity in GHz (MSW)  4 GHz 

Max server power consumption (MSP) 300 W [16] 

Idle server power consumption (PIDLE) 200 W 

PNs and DCs switch power consumption (PS) 3.8 kW  [16, 29]  

PNs and DCs switch capacity (CS) 320 Gbps [16, 29] 

Energy per bit of the PNs and DCs switch ሺܵܤܧሻ ൌܲܵȀܵܥ 
11.875 W/Gbps  

PNs and DCs router power consumption (PR) 5.1 kW  [16, 29] 

PNs and DCs router capacity (CR) 660 Gbps [16, 29] 

Energy per bit of the PNs and DCs router ሺܴܤܧሻ ൌܴܲȀܴܥ 
7.727 W/Gbps  

PNs' and DCs' storage power per Gigabit (PSG) 0.008 W/Gb [16] 

Router power consumption (PR) 825 W [30] 

IP over WDM regenerator power consumption (PRG) 334 W [30] 

IP over WDM transponder power consumption (PTR) 167 W [30] 
IP over WDM optical switch power consumption (POi) ݅׊ א ܰ 

85 W [30] 

IP over WDM EDFA power consumption (PE) 55 W [30]   

Wavelength bit rate (B) 40 Gbps 

Distance between EDFAs (S) 80 km 
Number of wavelengths per fiber (WL) 32 
Number of location optimized DCs (DCN) 2  
IP over WDM power usage effectiveness (PUN) 1.5 [16] 
PNs and DCs power usage effectiveness (PU) 2.5 [16] 

 The MILP in Section III.A is used to evaluate the proposed 
EEBDN. In addition, the same model can be used to evaluate 
the CBDN approach by introducing a constraint that prevents 
the processing of big data outside the DCs.  

Note that the amount of computational resources required to 
process the data is the same in our approach and the classical 
approach where all Chunks are processed inside DCs.  To 
provide a holistic assessment of the impact of the volume 
dimension on the EEBDN, we evaluate the proposed 
progressive processing approach in two volume scenarios. 

 
A. Deterministic Chunks Volume, PRR = 0.001, Number of 

Servers per PN = 5-15 Server 
In this scenario, we consider the number of Chunks generated 
per node (ȕ) which vary between 5 and 30. There are two 
different units used in conjunction with each chunk. Firstly, 

the size of the chunk which is quoted in Gb and we consider 
the transmission of each chunk in one second. Therefore, for 
example, the data rate associated with the transmission of an 
80 Gb chunk is 80Gb/s. Secondly, each chunk has a GHz 
number associated with it which indicates the processing 
requirement of the chunk. For example, a processor may be 
able to handle 4 GHz and the chunk may require 1 GHz. Thus, 
if ȕ = 5, this means that the total number of Chunks to be 
processed in the network is 70 (since there are 14 nodes in the 
NSFNET), and it will take one second for the transmission of 
the given Chunks and the corresponding Infos. This is a 
reasonable assumption as we consider the network resources 
capacity to be enough to handle the Chunks. We leave the 
impact of the capacitated resources on the EEBDN for future 
work. Note that there is no transmission of Chunks and Infos 
in the network when they are handled by the DCs.  
 We considered the following scenario. The processing 
capacity of each PN is different and varies between 5 and 15 
servers per PN. Each Chunk demands 3 GHz of the CPU for 
processing. The volume of each Chunk is 80 Gb and the PRRsc 
is assumed to be 0.001 for all Chunks (i.e., 99.9% reduction). 
An example of such case is Electrocardiography (ECG) used 
to detect abnormality during each heartbeat of millions of 
patients. Table IV summarizes the input values needed in this 
scenario. 

TABLE IV  
VOLUME SCENARIO A PARAMETERS. 

Number of 
Chunks per 

node (ȕ) 

Number of 
servers per 
PN (NSp) 

CPU workload 
per Chunk in 
GHz (SWsc) 

Chunk volume 
in Gb (CHVsc) 

PRRsc 

5-30 5-15 3 [31] 80 [18] 0.001 [18] 

 The results in Fig. 5-a are based on our MILP optimization 
and heuristic and compare our EEBDN power consumption 
with the NPC of the CBDN approach where big data Chunks 
are sent directly to the DCs for processing.  
 For the MILP, and for all cases, the NPC increased when ȕ 
increased as more Chunks are delivered to the network. 
Introducing the PNs has, however, greatly bounded the growth 
in power consumption when the number of Chunks increased 
which leads to network power savings compared to the 
classical approach in all the cases of the considered values of 
ȕ due to processing near the source.  At ȕ = 5, the network 
power saving is smaller than that at ȕ = 15 since the big data 
traffic is a small portion of the overall network traffic at these 
low number of Chunks per node (Network traffic = Regular 
traffic + Big data traffic). At ȕ = 15, big data traffic becomes 
larger due to the large number of Chunks generated per node 
and therefore saving power by processing big data leads to best 
network power saving at these intermediate levels of big data 
value. At ȕ = 30, the big data volume has become so large and 
dominant that full edge processing (i.e. in the SPNs and IPNs) 
is not possible given the servers numbers in SPNs and IPNs 
and therefore the network carries more Chunks (unprocessed 
big data) compared to the case where ȕ = 15 which has more 
Infos. Note that a maximum network power saving of 38% is 
achieved at ȕ = 15, and an average network power saving of 
32% is computed considering all ȕ values, compared to the 
classical approach where no PNs exist in the network for the 
range of parameters considered. 
 For the heuristic, the same inputs in Table IV are used. We 
used the heuristic to evaluate the impact of volume in the 
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current scenario only due to paper length limitations. The 
performance of the EEBDN heuristic was compared to the 
MILP performance in Fig. 5-a and the heuristic and MILP are 
in close agreement. From Fig. 5-a, the heuristic power savings 
approach those of the MILP (The MILP power saving is only 
slightly (i.e. 1.15%) higher than the heuristic’s). Moreover, the 
heuristic can help extend the evaluation by increasing the 
number of incoming Chunks and resources beyond the MILP 
computational limits. Note that the heuristic for the classical 
approach is implemented using the same heuristic with an 
additional condition that prevents processing big data outside 
the DCs. The results for the EEBDN were repeated 11 times 
and the graphs show the average values. The 95% confidence 
interval [32] is shown as error-bars. 
 Fig. 5-b shows the utilization of the processing capacity as a 
% of the PN processing capacity. At ȕ = 5 all the SPNs are 
capable of performing edge processing. When ȕ is between 10 
and 15, some PNs with large capacities perform edge 
processing, as well as processing received Chunks from other 
SPNs that have less processing space, hence PNs here perform 
progressive processing. This results in a CHT between SPNs 
and IPNs, and very small amount of CHT between SPNs and 
DCs, thereby minimizing the DCs processing utilization. Note 
that PN #12, which has the capacity to process up to 20 
Chunks, is 100% utilized at ȕ = 15. This is because this node 
processed its own 15 Chunks and handled an extra five 
progressed Chunks from other SPNs. At ȕ > 20, no edge 
processing inside SPNs and progressive processing inside 
IPNs is possible since all PNs processing space is depleted and 
all Chunks are centrally processed inside the DCs. This is why 
the DCs processing utilization increases dramatically. Note 
that nodes 4 and 13 have high utilization as they are the two 
data center nodes. 

 
(a) 

 
(b) 

Fig. 5. (a) CBDN power consumption vs EEBDN power consumption (MILP 
and heuristic) for volume scenario A. (b) Utilization of processing capacity 
% in the EEBDN with different values of ȕ for volume scenario A. 

 The main goal in this article is to show the effectiveness of 
our progressive processing approach compared to the classical 
centralized processing approach. We carried out a comparison 
with the classical (centralized) case, which is the case that is 
known in the literature and can act as a benchmark. 
Furthermore, we have evaluated the complexity of our 
heuristic in Section III.C and therefore provide details relating 
to complexity / efficiency of our heuristic. The effectiveness 
of our heuristic was evaluated and it is shown to produce 
results close to the optimum MILP results, for example Fig. 5-
a. 

    
(a) (b) 

Fig 6. (a) The COST239 network, and (b) the Italian network. 

 
(a) 

 
(b) 

Fig. 7. CBDN power consumption vs EEBDN power consumption (a) 
COST239 network, (b) Italian network. 
We re-evaluated the volume scenario of MILP model and 
heuristic on two more different networks. The COST239 
network [33], (see Fig 6-a), which is smaller than the NSFNET 
and consists of 11 nodes and 25 bidirectional links, and the 
Italian network [34, 35], (see Fig 6-b) which is bigger than the 
NSFNET and consists of 21 nodes and 36 bidirectional links. 
 The results in Fig. 7-a and Fig. 7-b show that the average 
power savings of the MILP model and the heuristic obtained 
in the COST239 network are 58% and 56%, respectively for 
the volume scenario. On the other hand, the power savings of 
the MILP and heuristic obtained in the Italian network are 52% 
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and 51%, respectively for the volume scenario. Note that nodes 
#4 and #8 are selected as the best DCs locations in COST239 
network, and nodes #7 and #9 are selected in the Italian 
network. These node selections were made based on a MILP 
optimization similar to that in [7]. The heuristic and MILP 
results are in close agreement in the cases described above. 
 

B. Deterministic Chunks Volume, PRR = 0.001, Number of 
Servers per PN = 10-30 Servers 

In this scenario, we have considered a variation of scenario A 
where the average processing capability per node is increased 
but the processing capacity per node remains random between 
10 and 30 servers instead of 5 to 15 servers. This is to study 
the effect of increasing the processing capacity on the 
progressive processing of larger big data volume, which 
eventually influences the energy efficiency of the network. See 
Table V.   

TABLE V 
VOLUME SCENARIO B PARAMETERS. 

Number of 
Chunks per 

node (ȕ) 

Number of 
servers per 
PN (NSp) 

CPU workload 
per Chunk in 
GHz (SWsc) 

Chunk volume 
in Gb (CHVsc) 

PRRsc 

10-60 10-30 3 [31] 80 [18] 0.001[18] 

 Fig. 8-a displays the NPC of the classical networks and 
EEBDN. The power saving increased at 10 ≤ ȕ ≤ 30 and 
reached a maximum value of 52% at ȕ = 30 (compared to the 
maximum power saving of 38% at ȕ = 15 in scenario A). This 
is because the majority of the big data traffic in the network is 
the INF when 10 ≤ ȕ ≤ 30 with a small amount of CHT as most 
of the Chunks are processed locally and in the intermediate 
nodes. After that point (i.e., ȕ > 30), the CHT between the PNs 
and DCs dominates the network where the computing 
resources of all PNs are depleted, which leads to reduced 
power savings. However, the average power saving increases 
to 44% for 10 ≥ ȕ ≥ 60 (higher than the average power saving 
of 32% in scenario A) as more Chunks are processed in SPNs 
and IPNs. Thus, increasing the PNs processing capacity has a 
positive impact on both the average network power saving and 
the total number of served Chunks in the system. 
 It should be noted that a full treatment of the internal design 
of processing nodes requires consideration of their internal 
architecture. For example, a fat-tree, spine-and-leaf, D-Cell or 
some other data center architecture. This is however beyond 
the scope of the current work. It also introduces high 
complexity that is hard to handle in the MILP. We calculated 
the number of switches and routers needed by considering the 
amount of traffic arriving to a processing node and the data 
rate that can be handled by a switch or a router. This approach 
is appropriate for the ingress/egress router, which has to handle 
the entire PN traffic. The approach however replaces the many 
small switches in the fat-tree or spine-and-leaf by a single large 
switch, or few large switches. This is not a typical 
implementation; however it may be considered in our small 
processing nodes that have 5 to 15 servers or 10 to 30 servers 
(maximum 60 servers). It is an approach, which simplifies the 
models used. Typically, in current data centers, about 90% of 
the power consumption of IT is attributed to servers and 10% 
to communication equipment [36]. Therefore, having 
considered the power consumption of a large switch (or few 
large switches) instead of multiple smaller switches (and their 

architecture) results in changes in power consumption 
bounded typically by less than the 10% figure. 
 Fig. 8-b shows that the SPNs now have the ability to locally 
process all the Chunks when ȕ = 10 since their processing 
capacity has increased. At 20 ≤ ȕ ≤ 40, PNs start to reach their 
maximum processing capacity, such as PNs #2 and #3 at ȕ = 
20 and 30, respectively. Note that only at ȕ = 20 is the 
processing utilization of nodes #7 and #10 > 100% because 
they are selected as DCs, while at all other values of ȕ, nodes 
#4 and #13 dominate the selectivity of DCs locations, as in 
scenario A. We also note that the processing utilization of the 
DCs of the present scenario is smaller than that of scenario A 
at ȕ = 30, at which the DC utilization reaches the maximum 
value for scenario A. This is due to the growth in the PNs’ 
processing capability in the current scenario, which helps to 
reduce the DCs’ processing utilization.  

  
(a) 

 
(b) 

Fig. 8. (a) CBDN power consumption vs EEBDN power consumption for 
volume scenario B. (b) Utilization of processing capacity % in EEBDN with 
different values of ȕ for volume scenario B. 
In summary, increasing the PNs’ processing capacity has a 
noteworthy impact on network power saving as the volume of 
the processed big data inside SPNs and IPNs increases, which 
results in serving a larger number of Chunks as close to the 
edge as possible. In both scenarios, these are very general 
results as they contain all the cases, which are full edge 
processing inside SPNs when big data traffic is small, 
progressive processing inside IPNs for intermediate levels of 
big data traffic, and full central processing inside the DCs 
when the volume of big data traffic is very high. 
 
C. Assessing the Energy Efficiency Limits of PNs in the 

EEBDN 
Progressive processing is an appealing approach to reduce the 
power consumption associated with big data traffic as 
illustrated in the previous sections. In reality, however, PNs 
might be equipped with components that have lower energy 
efficiency compared to those hosted in the centralized DCs. 
This might be due to technology, economic and/or space 
limitations in PN sites. In this section, we analyze the impact 
on the power consumption of EEBDN of utilizing less energy 
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efficient equipment (servers, LAN switches and routers) in 
PNs compared to the large DCs. Two cases were studied: (i) 
PRR=0.001 and (ii) PRR=0.6, with ȕ =30 (Chunks per PN) in 
both cases. 
 Results are shown in Fig. 9 where the y-axis is NPC. Note 
that total power consumption follows similar trends. The x-
axis represents PNs power consumption as a percentage of the 
data centers equipment power consumption. For instance, 10% 
means that the PNs equipment consume 10% more power 
compared to the corresponding equipment in the DCs. 
Therefore, if the DC server consumes a maximum of 300 W, 
the PNs server consumes a maximum of 330 W. Since the 
equipment in the classical approach is regarded as the basis of 
this comparison, the total power consumption in the classical 
approach is not affected by this analysis as shown in Fig. 9 (red 
bars). In addition, and to reduce the complexity of the analysis, 
the DCs are fixed in the optimal locations obtained in Section 
IV.A and IV.B as their location is not the critical element that 
we want to assess.  

When PRR=0.001 (green bars) and the PNs equipment 
power consumption is 0% to 60% greater than the DCs 
equipment’s power consumption, the power saving is at its 
maximum. After this critical stage, the energy efficiency of our 
approach declines gradually, approaching the energy 
efficiency of the classical central processing approach (i.e. 
80% case). Comparing this to the case where the PRR=0.6, we 
notice that our approach is useful only when the PNs 
equipment power consumption is between 0% to 20% greater 
than the DCs equipment power consumption. Beyond this 
range, the optimal solution is processing the majority of the 
Chunks in the centralized DCs rather than in the PNs.  

Therefore, our approach is the better approach at a wider 
range of energy inefficiency values at PNs when the type of 
big data applications allows for higher reductions (i.e. lower 
PRRs). This is because lower PRR is associated with higher 
network power savings, and to lose this high saving, the PNs 
need to be implemented using equipment with lower energy 
efficiency (70% to 90% less energy efficient than the DCs). 

Our goal here is to show the impact of processing locally 
versus processing totally in the central data centers. Total 
processing in the central data centers becomes more attractive 
at the point when PNs are 90% less energy efficient than data 
centers and here the long journey to central data centers just 
becomes viable, comparing for example PRR=0.001 and the 
80% and 90% cases, for the set of power consumption 
parameter we used. In practice such a point may not be reached 
with current equipment trends and therefore edge processing 
may remain viable for big data even when the edge equipment 
is not as energy efficient as the central data center equipment. 

 An extreme potential scenario may be a situation where the 
central data center power usage effectiveness (cooling, 
lighting) becomes a factor of 2 better than the edge PN power 
usage effectiveness and PNs are made of conventional 
processors that are four to five times less energy efficient than 
the best recent processors that have 64 cores which may be 
used in data centers in future [37, 38]. This situation is 
represented by the 90% case in Fig. 9. We conclude that at 
lower PRR, the EEBDN has the ability to host energy 
inefficient equipment in PNs and yet gain considerable 
network power saving. However, at higher PRR, i.e. higher 

INF traffic, the network power saving is already small; 
therefore, the network can only sustain PNs equipment with 
energy efficiency values very close to those in data centers, 
e.g. within 20%.  

 
Fig. 9. CBDN power consumption vs EEBDN power consumption when PNs 
equipment consume more power than DCs equipment at PRR=0.001 and 
PRR=0.6 with Ƣ=30.  

 

D. Software Matching Problem and Its Effect on EEBDN 
Performance  

Another idealistic assumption made in the previous sections is 
that all PNs can process all types of big data Chunks, i.e. they 
are provided with all the necessary software packages that 
correspond to all the possible types of Chunks. This is 
obviously not possible in small sized PNs due to processing 
and storage limitations. Therefore, in this section, we assess 
the impact of software shortage in PNs on the performance of 
the overall EEBDN approach in terms of number of processed 
Chunks at the edge. This analysis is carried by extending our 
model to include a software matching dimension where 
Chunks are associated with the correct PNs hosting the 
appropriate software package that can process that chunk. Note 
that DCs are assumed to host all the software packages needed. 
Therefore, if the software required by the arrived chunk is not 
available in the receiving SPN, the SPN forwards (i.e. 
matches) that chunk to the nearest IPN/DC that host the 
required package. In the software matching problem, it is 
worth noting that big data applications may be numerous 
covering for example healthcare, vehicular, smart city, 
manufacturing, agriculture, financial and other applications. 
Therefore, a single PN may not hold a full suite of software 
packages to support all the applications, due to size (storage 
for example) limitations, or due to security, isolation and 
resilience requirements where some high value (e.g. financial) 
or life critical (e.g. healthcare) applications have to be 
segregated. 
 
D.1 MILP Model Extension Description 
In addition to the parameters mentioned in Section III.A, we 
defined the following parameters: ܵ Set of all software packages ܲܭ௣ǡ௚ ௣ǡ௚ܭܲ  ൌ ͳ if software package g ሺ݃ א ܵሻ is available at node 

p; otherwise, ܲܭ௣ǡ௚ ൌ ͲǤ  ܨܵܥ௦ǡ௖ǡ௚ ܨܵܥ௦ǡ௖ǡ௚=1 if Chunks c generated at node s needs software 
package g; otherwise,  ܨܵܥ௦ǡ௖ǡ௚ ൌ ͲǤ 

In addition to the constraints mentioned in Section III.A, we 
define the following constraint: 
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௦ܻ௣௖ ൑ ෍ ௦ǡ௖ǡ௚ܨܵܥ ή ௌא௣ǡ௚௚ܭܲ   (32) 

ǡݏ׊ ݌ א ܰǡ ܿ׊ א  ௦ܪܥ
Constraint (32) ensures that chunk c generated at node s, 

which requires software package g, can be processed at node p 
if p contains the required package g. 

 
D.2 Results  
We assume that each PN receives ȕ (=10) Chunks from its 
corresponding zone, and each chunk needs a unique software 
package. This models the case where Chunks’ population 
spans a wide spectrum of types. In addition, we analyze a 
different number of packages per PN. In each case 
corresponding to a certain number of packages per PN, all PNs 
host the same types of packages. Hosting different types of 
packages can only be an informed decision when the packages 
are optimally placed at PNs, which we leave for future work. 
Also, recall that DCs contain the set of all software packages. 
Upon the arrival of the Chunks, the SPN decides whether to 
process the Chunks locally based on software availability, 
otherwise, the chunk is forwarded to the nearest DC. 

 
Fig. 10. Software packages availability and its impact on EEBDN performance at 
Ƣ=10. 

Fig. 10 shows the effect of software package availably inside 
the PNs on the network performance at ȕ=10. The x-axis 
represents the number of packages per PN, while the y-axis 
quantifies the number of edge processed Chunks (i.e. in SPNs). 

Since we assume that the packages are homogeneously 
distributed among the PNs (i.e. all PNs host similar packages), 
when a chunk is not matched to its SPN due to lack of the 
required package, this Chunk cannot be matched to any other 
IPN and it is processed in the central DCs. The extreme 
example for this case is when all PNs lack all packages as 
shown in Fig. 10 at 0 number of packages per PN.  

The performance of our approach almost linearly improves 
with the availability of more software packages in PNs as more 
Chunks are processed in the edge network while the rest are 
forwarded to the DCs.  When PNs host the full package set, the 
maximum performance can be reached as all Chunks are 
processed locally in the edge SPNs. Note that in this case, there 
are 120 software packages running in the network. The number 
of running packages in the network can be reduced by 
optimally allocating packages to PNs according to the 
incoming Chunks-SPN-packages distribution. This can 
guarantee processing all Chunks with a smaller number of 
software instances in the network. 

The proposed edge processing (with progressive processing), 
approach may increase the number of software packages 
installed, however this may not have a direct cost implication. 

Typically, site software licenses can be offered which cover all 
the sites of the user. If however a given software package does 
not offer this facility then the extra cost may be offset by the 
financial savings as a result of energy savings, however 
techno-economic studies are beyond the scope of this paper. It 
is also worth highlighting the fact that the non-availability of a 
software package in a close-by PN may lead to longer journeys 
in the network and increased power consumption. Fig. 10 
shows the split between edge and central processing as nodes 
have more of the software packages, up to the point where 
every node has all the software packages. 

 
 IMPACT OF VARIETY ON EEBDN 

Variety means that there are different types of big data such as 
CPU intensive, memory intensive, Input/output (IO) intensive, 
CPU-Memory intensive, CPU/IO intensive, and memory-IO 
intensive applications. Each requires difference amount of 
processing, memory, storage, and networking resources.  The 
different types come from the diversity of big data sources, 
such as sensors, smart devices, and social networks, etc. 
Therefore, big data has a complexity feature as it comes from 
not only traditional structured data (e.g., customer data, sales 
data) but also unstructured (e.g., social media, photos, PDF) 
and/or semi-structured, which is a combination of both (e.g., 
email, XML). Such complexity can cause traditional database 
systems to struggle to store, process and analyze big data to 
obtain useful information since they are not related to the 
relational database technologies. Successful organizations that 
rely on big data to enrich their decision-making should be able 
to handle the variety of data [1].  
 
A. Variety MILP Model 
The MILP model presented in Section III.A is also used to 
evaluate the impact of variety on EEBDN. However, the input 
data to the model is modified to satisfy the distinct features of 
the variety domain. 
 
B. Results of Variety Scenarios  
We present in this section the following two scenarios. 
 
B.1 Deterministic CPU Workload per Chunk with Different 

PRR per Chunk 
In this scenario, all Chunks have similar CPU requirements 
while they exhibit different PRRs. Each PRR could represent 
a particular application that encodes information differently. 
Table VI demonstrates the input parameters used in this 
section.  

TABLE VI  
VARIETY SCENARIO B.1 PARAMETERS. 

Number of 
Chunks per 

PN 

Number of 
Servers per 
PN (NSp) 

CPU workload 
per Chunk in 
GHz (SWsc) 

Chunk volume 
in Gb (CHVsc) 

PRRsc 

10-60 10-30 3 [31] 
10-330  
(random 

uniform) [18] 

0.001-1  
(random 

uniform) [18] 

The values of the PRRsc of Chunks range between 0.001 and 1 
per Chunk, i.e., some Infos volume would be equal to its 
corresponding Chunk volume, with PRRsc being generated 
using a random uniform distribution. Each chunk demands 
CPU workload of 3 GHz.  Fig. 11-a shows that the maximum 
power saving is 43% at ȕ = 30 Chunks. An interesting feature 
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in this figure is the effect of “variety of big data applications” 
on the network power saving compared to the previous section, 
i.e., volume scenario, B, where we obtained a maximum power 
saving of 52% with a single value for PRR = 0.001. PRR in 
this scenario covers values with small reduction percentages, 
i.e., INF volume is larger here compared to the volume 
scenario in B, which reduces the power savings achieved. 
 From the results in Fig. 11-b, it is apparent that the system 
shows similar performance to volume scenario B in which 
some PNs exhaust their processing capacity earlier than other 
nodes, such as PNs #1, #7 and #11 at ȕ = 10, while other PNs 
are fully utilized later as is the case for PN #9 at ȕ = 40. Note 
that the selected DCs in all cases here are nodes #4 and #13 
when applying the different number of Chunks per node. The 
similar performance of this scenario and volume scenario A is 
due to the assumed insensitivity of CPU utilization to different 
values of PRRsc as shown in Table VI. 

 
(a) 

 
(b) 

Fig. 11 (a) CBDN power consumption vs EEBDN power consumption for 
variety scenario B.1. (b) Utilization of processing capacity % in EEBDN with 
different values of ȕ for variety scenario B.1 

 
B.2 Different CPU Workloads and PRR per Chunk  
This scenario further investigates the effects of various data 
types on the overall network and PN performance. We take 
into account different volumes of big data Chunks generated 
by PNs with different PRRsc per Chunk, such that each PRRsc 
represents a specific type of data and each Chunk acquires a 
distinct CPU portion to reflect a more realistic picture for the 
network. Table VII shows that the CPU workload per Chunk, 
Chunk volume and PRRsc per Chunk which follow a random 
uniform distribution between 1 and 4 GHz, 10 and 330 Gb and 
0.001 and 1, respectively. Fig. 12 shows a sample of the input 
data for this scenario considering node #8 at ȕ = 10. Note the 
variation among different Chunks in terms of volume, 
processing requirements and reductions ratios. This is because 
big data applications and forms are growing at an incredible 

rate, therefore we explored the conceivable space in this 
scenario. For instance, Chunk #1 has a large volume and 
requires high processing workload and produces information 
with very small volume (i.e. high reduction ratio). 

TABLE VII 
VARIETY SCENARIO B.2 PARAMETERS. 

Number of 
Chunks per 

PN (ȕ) 

Number of 
Servers per 
PN (NSp) 

CPU workload 
per Chunk in 
GHz (SWsc) 

Chunk volume 
in Gb (CHVsc) 

PRRsc 

10-60 10-30 
1-4  

(random 
uniform) [31] 

10-330  
(random 

uniform) [18] 

0.001-1 
 (random 

uniform) [18] 

This can represent a WordCount program [39], which is both 
CPU-intensive and network intensive as an application. This 
program reads text input files to search and count the number 
of occurrences of a specific word to produce a very small 
volume Info that is only an integer number indicating the count 
value. Chunk #4 comes with large volume, needs, large 
processing resources and produces large volume Info. This can 
represent an image processing application that modifies certain 
properties of an image, such as brightness level, which does 
not result in a huge reduction in image size. Fig. 13 shows 
those two points in the explored space and displays their 
corresponding applications. 

 
Fig. 12. Sample of input data for variety scenario B.2 for node #8 at ȕ = 10. 
 Fig. 13-a displays the main findings and differences with the 
previous variety scenario B.1, where the CPU workload per 
Chunk was fixed at 3 GHz. The main observations are as 
follows: first, the maximum power saving (47%) exceeds the 
one obtained in the variety scenario B.1 (43%). This is due to 
the ability to consolidate the CPU processing for more Chunks 
by PNs as some Chunks arrive with lower processing 
requirements compared to the variety scenario B.1. Second, 
the maximum power saving occurred at ȕ = 40 and not ȕ = 30 
as observed in the variety scenario B.1.  This is also due to the 
extra available processing space at the IPNs due to processing 
Chunks with low processing requirements. 

This paper tries to capture the distinct features of variety 
by allowing the modelled big data network to handle Chunks 
associated with different reduction ratios, CPU processing 
requirements, and volumes. There are a number of key take 
away messages. Fig. 13-a shows results when the network has 
regular traffic and big data traffic. Here the larger the big data 
traffic, the more is the traffic reduction that can be achieved by 
processing big data and hence the larger the power saving. As 
shown in Fig. 13-a, however, beyond a certain big data traffic 
volume, the processing capability of PNs at the edge get 
depleted and the power savings drop (in Fig. 13-a, the savings 
drop from 47% to 44%). In addition, big data applications that 
have small PRR (i.e. large reduction after processing) are 
critical in terms of network power saving and hence should be 
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given priority. Fig 12 shows example applications and their 
PRR values. 
 Fig. 13-b shows the processing utilization for the different 
PNs and DCs. First, we note that some PNs are capable now 
of serving more Chunks compared to variety scenario B.1. This 
shows the impact of having various CPU workloads per 
Chunk, which extend the PNs ability to serve more Chunks 
with lower CPU requirements. Secondly, the model, in most 
stages, selected optimally the prevailing DC locations at nodes 
#4 and #13. Note that we re-evaluated our results where we 
optimized the locations of 5 DCs rather than 2 DCs locations 
in the NSFNET. Nodes #1, #4, #7, #9 and #13 are the optimum 
DCs locations for all scenarios including the classical 
approach. Under the 2 DCs scenario the EEBDN approach 
resulted in up to 52% and 47% power saving compared to 
CBDN approach under the volume and variety scenarios. With 
5 DCs the savings increased to 54% and 48% under the volume 
and variety scenarios due to the availability of more nearby 
destinations for the data.  

 
(a) 

 
(b) 

Fig. 13. (a) CBDN power consumption vs EEBDN power consumption for 
variety scenario B.2. (b) Utilization of processing capacity % in the EEBDN 
with different values of ȕ for variety scenario B.2. 

 Furthermore, it should be noted that energy efficiency in core 
networks is essential due to the high energy density in core 
nodes and the increasing power consumption of large data 
centers which are placed in the core network, a view shared by 
GreenTouch where the GreenTouch effort resulted in the 
development of methods to improve the energy efficiency of 
core networks by 316x compared to their 2010 levels [30], 
[40], [7]. Our work here considers big data traffic as well as 
regular traffic. For regular traffic see equations 2, 22, 25, 29 
and for example the explanation of Fig. 13-a. The interest in 
big data is attributed to its large volume and the ability to 
reduce this volume through processing, hence saving power. 

 FUTURE WORK 
Future research directions include: 
1. Attaching a metric to each Chunk that specifies how many 

times this Chunk will likely be used in the future 
(frequency). For example, a Chunk made up of temperature 
readings (where the reduction is based on the number of 
readings above a threshold) may only be used once, as the 
readings become dated.  

2. Attaching a metric that specifies the popularity of Chunk 
where a Chunk that is popular is demanded by several other 
PNs, so there is a PN to PN communications. For example, 
weather readings where a value of temperature or pressure 
(extracted) above a certain value is demanded and is useful 
in several nodes to predict / report future weather trends; 
another example is the patient set of readings which are 
confidential, therefore, those readings will likely be of 
interest to the source node, data centre and doctor node. 

3. Our approach can easily be generalized to handle big data 
bulks that are partially or fully processed at each node, 
where each bulk contains several Chunks. Some 
applications produce bulks of data Chunks. Our study can 
be generalized to model this scenario. In this case, Chunks 
belonging to a certain big data bulk can be progressively 
processed in different PNs along different paths and the 
results can be aggregated to the DCs. This helps perform 
partial and/or full processing of the bulk (depending on 
PNs processing capacity). Therefore, it is advantageous to 
find a "window" of contiguous spare capacity at 
intermediate nodes. If such a window can be identified, the 
efficiency improves as each intermediate node processes a 
bit more the bulk until one node on the way extracts Info 
from the corresponding Chunk, otherwise, the final data 
center has to process part or the whole bulk. 

4. Clustering can be implemented where SPNs and IPNs form 
clusters that complement each other in terms of the 
availability of software packages, e.g. each PN has a 
different software package. 

5. Scheduling can be implemented by introducing storage 
nodes that have less processing capabilities to store Chunks 
until a processor of the correct software type is free. 
 

 CONCLUSIONS 
This paper presented a Mixed Integer Linear Programming 
(MILP) model to study the impact of big data’s volume and 
variety on network power saving carrying big data traffic. We 
employed our progressive processing technique to process big 
data raw traffic in the edge stage, intermediate stage, and the 
central processing stage. This is done by building PNs in the 
ISP network centers that host the IP over WDM nodes. The 
volume scenarios captured generic results that show how the 
processing capability of the PNs dictates the big data volume 
that exists in SPNs, IPNs and DCs. We obtained up to 52% and 
34% of network power saving in two different volume 
scenarios, compared to the power consumption of the classical 
processing approach where the Chunks are directly forwarded 
from the source node to the DCs. The results of the MILP 
model for the volume dimension are validated by developing 
a heuristic that mimics the MILP model behaviour. We further 
assessed the energy efficiency limits of PNs in the EEBDN and 
the results showed that employing PNs equipment with lower 
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energy efficiency compared to the DCs equipment led to lower 
utilization of our approach. Furthermore, we analyzed the 
software matching problem and its impact on EEBDN 
performance. The results revealed that the performance of our 
approach improves with the availability of more software 
packages in PNs as more Chunks are processed in the edge 
network and the approach reached maximum performance 
when PNs host the full software package set. The variety 
scenarios revealed the impact of serving Chunks with different 
CPU workloads, volumes and PRRs on the power saving. In 
view of that, Chunks that utilize small portions of the CPU help 
the nodes process as many Chunks as possible inside the local 
servers, hence, reducing the number of unprocessed Chunks in 
the network. We obtained up to 47% and 43 % of network 
power savings in two different variety scenarios. 
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