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Autoriõigus Reina Uba, 2011
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Abstract

Companies that have years of experience in business process management

often maintain repositories containing hundreds or even thousands of busi-

ness process models. The models in these repositories usually originate

from various sources and are developed by different stakeholders. A com-

mon practice is that new process models are created by extending or re-

fining existing models, or by copying and merging fragments from multiple

models. As a result, process models tend to accumulate duplicate frag-

ments which, if left unconsolidated, may evolve independently and lead to

inconsistencies. Also, it often occurs that organizations manage multiple

business processes that have similar goals, but pertain to different customer

types, different products, business units or geographical regions. For exam-

ple, a business process for handling insurance claims for motor accidents

shares the same goal as a business process for handling house insurance

claims. Naturally, these models will share several common fragments, but

will differ from one another at various points. Managing these processes as

entirely separate entities leads to redundancy and inefficiency.

In this setting, this thesis addresses the following question: How to

identify duplicate fragments in process model repositories, and more gen-

erally, how to identify and consolidate commonalities across models in a

large process model repository?

The thesis proposes two complementary methods for process model con-

solidation, namely process model merging and subprocess extraction. Pro-
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cess model merging takes as input two or more process models and produces

a single consolidated model that analysts can use to manage entire fam-

ilies of similar process models rather than managing them independently.

On the other hand, subprocess extraction is about identifying fragments

that are shared by multiple process models (also known as clones) and

encapsulating these clones as separate subprocesses in order to eliminate

redundancies.

The proposed merging and clone detection methods have been pro-

totyped and validated on large process model repositories sourced from

different domains. The process model merging tool has also been used to

conduct a case study at an insurance company.
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Part I

Overview



Chapter 1

Introduction

In 1947, Goldstein and Neumann demonstrated the usefulness of flowcharts

[Baec 97]. This technique was initially invented to provide a high-level rep-

resentation of computer programs in order to enable communication be-

tween programmers. But due to its generic nature, it quickly gained wider

popularity. Specialists started to use it in other application areas as well,

including business process modeling [Giag 01]. Over time, business pro-

cess modeling based on flowchart-like notations grew up in popularity. In

recent times, its importance has been further enhanced due to globaliza-

tion trends, which push companies to make their business processes more

efficient and repeatable [McAd 01].

1.1 Problem Area

Business process modeling has been exploited in various domains. It has

been used to describe organizations and their operations including busi-

ness processes, people, business objects, information systems and in gen-

eral the organizational environment [Giag 01]. The main purpose of pro-

cess models is to embrace the information that is needed to understand

how complex business procedures need to be carried out among various

stakeholders [Reij 09]. Business process modeling open up several benefits.
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1.1 Problem Area

Firstly, models are simplifications of complex systems that help clarify and

understand aspects of problems where there is uncertainty, change or as-

sumptions [Lind 03]. Secondly, business process modeling allows the key

operations in an organization to be identified. Thirdly, after documenting

these operations, it is possible to measure the efficiency of the processes

and therefore improve their performance [Lee 98]. Finally, business process

models allow organizations to automate everyday work in order to gain fur-

ther efficiency and reduce errors due to handovers of work between multiple

actors.

As organizations undergo constant change, so do their business oper-

ations. Organizations are continuously improving their processes, for in-

stance by adopting new work practices [Canf 05]. Business process models

must reflect these changes, therefore, the business process models are also in

constant change. Additionally, business process models are revised during

company mergers and internal consolidation initiatives [Sche 00].

After a long-term business process management experience, organiza-

tions often end up managing large business process model repositories con-

taining hundreds or even thousands of models that represent several man-

years of effort [Rose 06, Gull 00]. These model collections may contain pro-

cess models that describe multiple variants of the same process. Such vari-

ants arise for example in the context of federated organizations composed of

several more or less independent units, like for example an insurance com-

pany with multiple business units dealing with different insurance products

(e.g. life insurance, motor insurance, travel insurance, etc.). Other times,

these variants arise because an organization is composed of multiple rela-

tively independent units, such as a government composed of independent

government agencies or departments. Regardless of their provenance, it is

generally the case that process models representing variants of the same

process share common fragments, while at the same time diverging in var-

ious ways.
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1.2 Background

Maintaining process model repositories in the presence of process vari-

ants is a challenge. It is essential to keep track of various models, their

invariants, i.e. commonalities, and differences. Ideally, the model frag-

ments that visualize the same part of a process must be changed concur-

rently to reduce inconsistencies among models. However, in reality the

processes in large companies are edited by stakeholders with varying skills,

responsibilities and goals [Card 06] resulting in the process models evolving

independently.

In this thesis we propose two approaches for managing commonalities

among process models. The first approach concentrates on cases when

process models share identical single-entry, single-exit regions that can be

extracted into subprocesses. In this case, shared fragments are factored out

in subprocesses and in the initial models, in which the fragments occurred,

the subprocesses are invoked using call-and-return semantics. The second

approach is intended to be used when process models share fragments which

cannot be refactored out into shared subprocesses. In this case, it is feasible

to use aggregate models in order to enable business analysts to maintain

shared parts in a synchronized manner.

1.2 Background

Before discussing concrete methods for merging process models, we pro-

vide some background on process modeling and similarity measurement in

graph-based models, which will allow us to identify commonalities across

process models represented by means of graphs.

1.2.1 Process Modeling Standards

Business process modeling standards can be classified according to their

main purpose [Ko 09]:
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1.2 Background

• Graphical standards – allow users to express their processes in a

diagrammatic way.

• Execution standards – enable automate business processes and

execute business logic.

• Interchange standards – enable, for instance, to translate graphical

standards to execution standards and vice versa.

• Diagnosis standards – provide administrative and monitoring ca-

pabilities.

In this thesis we restrict ourself to graphical modeling notations only.

The application of similarity search and merging algorithms in case of other

standards is out of the scope of this thesis, although some of the techniques

proposed in the thesis (modulo some extensions) may be applied to exe-

cutable standards as well. Below we review major graphical standards that

are most commonly used for modeling business processes among various

stakeholders [Ko 09].

1.2.1.1 Business Process Modelling Notation (BPMN)

The Business Process Modelling Notation (BPMN) 1 was first released in

2004 by the Business Process Management Initiative (BPMI) [Business 11b].

The objective of the BPMN was to support business process management

by both technical and business users by providing a notation that is intu-

itive and at the same time able to represent complex process semantics.

The BPMN elements are divided into four basic categories: Flow Ob-

jects, Connecting Objects, Swimlanes and Artifacts. Flow Objects are the

1In its most recent version, BPMN was renamed to “Business Process Model and

Notation”. However, for historic reasons and to be consistent with the publications

attached to this thesis, we use the former nomenclature.
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1.2 Background

main graphical elements of a BPMN model, these elements define the be-

havior of a process model. The BPMN flow objects – Process, SubProcess,

Task, Event and Gateway – are depicted in Figure 1.1.

Figure 1.1: BPMN flow objects.

An Activity is the main element of BPMN. It represents a unit of work

that a company does. Activities can be atomic or non-atomic. The types

of activities are: Process, SubProcess and Task. Processes are either un-

bounded or contained within a Pool. A process and a subprocess contain

at least one Task. An Event is something that “happens” during the ex-

ecution of a business process. There are three types of events based on

their effect on the flow: Start, Intermediate and End events. Triggers (i.e.

Message, Timer, Cancel, etc.) can also be related to events. Triggers de-

fine the cause of an event, e.g. a message being received or a timeout that

expires. Gateways are used to control the divergence and convergence of a

sequence flow. Markers within a gateway indicate the type of a flow control

behavior. The types of a flow control include:

• XOR – exclusive decision and merging.

• OR – inclusive decision and merging.

• Complex – complex conditions and situations (e.g. 3 out of 5).

• AND – parallel forking and synchronization.
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1.2 Background

Artifacts are used to provide additional information about a process,

but they do not affect the message flow. The standard set of artifacts

includes Data Object, Group and Annotation. Data objects provide infor-

mation about the data that activities require to be performed and/or what

they produce. Grouping can be used for documentation or analysis pur-

poses. Textual annotations are used to provide additional information for

the reader of the model.

There are two ways of grouping the primary modeling elements – Pools

and by Lanes. Pools group a set of activities that have a common charac-

teristic. A lane is a subpartition within a pool.

Flow objects are connected to each other using Connecting Objects –

Sequence Flow, Message Flow and Association. A sequence flow determines

in which order activities will be performed in a process. A message flow

shows the flow of messages between two entities – between two activities,

between an activity and a pool or between two pools. An association is

used to associate data objects with a flow or connect data objects to an

activity.

Artifacts, connecting objects and pooling elements are depicted in Fig-

ure 1.2.

Figure 1.2: BPMN artifacts, connecting objects and pooling elements.
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1.2 Background

The BPMN main elements are compliant with most flow-chart nota-

tions but offer much more precise flow control semantics. The main benefit

of BPMN is that this notation allows expressing processes at different gran-

ularity levels (using pools, lanes and subprocesses) from the perspective of

the key stakeholders or inter-department [Ko 09].

1.2.1.2 Event-Driven Process Chains (EPCs)

The Event-Driven Process Chains (EPCs) notation was developed for mod-

eling business processes with the goal to be easily understood and used by

business people. EPCs were developed by the Institute for Information

Systems (IWi) at the University of Saarland, Germany. As the name of the

notation indicates, the control flow of a process is captured by means of a

chain of events and functions [Korh 08].

The main elements of EPCs are [Aals 99]:

• Functions – main building blocks representing the activities (tasks,

process steps) that need to be executed.

• Events – describe a situation before and/or after the functions are

executed. Functions are linked by events.

• Logical connectors – used for describing logical relationships between

elements in a control flow. There are three types of connectors: ∧
(and), ∨ (or) and XOR (exclusive or).

The basic elements of EPCs are depicted in Figure 1.3

Figure 1.3: The basic set of EPCs elements.
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1.2 Background

The extended EPCs (eEPCs) notation add the organizational structure

and data flow elements like Organizational Unit, Position, Data and System

to EPCs (see Figure 1.4). These additional elements can be only mapped

to a function using a Relation. A relation can be directed in case of data

elements, indicating that the data is written or read. Additionally, a Process

Link is introduced indicating the hierarchical or flat link to another process

model. This can be used instead of an event or a function [Davi 07].

Figure 1.4: Extended set of EPCs elements.

In 2007, Rosemann et al. [Rose 07] introduced the notion of configurable

EPCs (C-EPCs) – an extension to the EPCs modeling language which al-

lows capturing the core configuration opportunities than can arise in the

context of a business process. In C-EPCs functions and connectors may

be configurable. Configurable functions may be included, skipped or con-

ditionally skipped. In order to configure a configurable connector, one or

more of the connector’s incoming branches (in case of a join) or one or more

of its outgoing branches (in case of a split) need to be marked for removal.

In addition, configurable connectors may be “restricted” – a configurable

OR connector into a regular XOR or a regular AND. This operation is called

“restricting” because it reduces the number of possible traces induced by

the connector [Aals 06b, Rosa 10]. The C-EPCs notation makes it possible

to represent families of business process variants in a consolidated way.
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1.2 Background

1.2.1.3 Unified Modelling Language(UML) Activity Diagrams

Unified Modelling Language(UML) (version 2.0) was standardized in 2004.

It contained 13 object-oriented notations [UML 20 S 11] – six structural

diagrams and seven behavioral diagrams. Activity Diagrams belong to the

behavioral diagrams group and is designed for modelling business processes

and flows in software systems.

Figure 1.5 depicts the main elements of UML 2.0 Activity Diagrams.

Figure 1.5: The elements of UML Activity Diagrams.

The main elements of UML Activity Diagrams are Activity Nodes –

Action, Object Node and Control Nodes. An Action is the fundamental

unit of an Action Diagram that represents a transformation or a process

in a modeled system. A Send Signal Action is a special case of an action

that creates a signal instance from its inputs and transmits it to the target

object. An Object Node is an abstract activity node that represents an

instance of a particular class. Control Nodes define the behavior of a process

model. Control nodes are: Initial Node, Final Node, Fork Node, Join Node,

Decision Node and Merge Node. An Initial Node starts an activity. An

activity can be related to more than one initial node. There are two types

of Final Nodes – Activity Final Node and Flow Final Node. An Activity

Final Node stops all flows in an activity while a Flow Final Node just

terminates one flow, the activity remains unaffected. A Fork Node splits a

flow into concurrent paths and a Join Node merges concurrent paths into

one outgoing flow. A Decision Node is a control node that has multiple
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1.2 Background

outgoing flows, only one of them is chosen for processing. A Merge Node

is used to merge alternate flows, it is not used for the synchronization

purpose. Activity Nodes are connected using Control Flow and Object Flow

edges. A Control Flow edge models the flow between actions, an Object

Flow connects object nodes and actions. Actions that have a common

characteristic can be grouped using Activity Partitions, which is a notion

akin to the notion of pool or lane in BPMN, but more general since an

activity may belong to multiple participations, while in BPMN an activity

can only be assigned to one pool/lane.

1.2.1.4 Business Process Graph

In this thesis we did not restrict ourselves to one specific modeling notation.

Our objective was to develop algorithms that are general, easily applicable

and extendible to most popular notations. Therefore, we introduced an

abstraction of a business process model – a business process graph (BPG).

Definition 1 (BPG) Let T be a set of types and Ω be a set of text labels.

A BPG is a tuple (N,E, τ, λ, α), in which:

- N is a finite set of nodes;

- E : N ×N is a finite set of edges;

- τ : (N ∪ E)→ T associates nodes and edges with types;

- λ : (N ∪ E)→ Ω associates nodes and edges with labels;

- α : (N ∪ E) → (T → Ω) associates nodes and edges with attributes,

where an attribute is always a combination of a type and a label;

A BPG is a directed graph that captures the types of nodes and edges

as attributes. This generalization can be performed because of the fact that

although there are many modeling notations, most of them are graph based

and can be transformed to an abstract format [Rosa 11]. In BPG we focused

on the common subset of elements shared by the business process modeling
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1.2 Background

notations previously introduced – the core elements that are common for

all of the modeling notations under observation. Understandably there are

elements which are not captured in the abstract graph, but taking all the

possible node types into account is out of the scope of this thesis. Also, in

this case, the algorithms would get too difficult to comprehend and would

need to be specialized to a notation’s specific behaviors. The fact that the

algorithms introduced by us are easy to extend, for instance, to take into

account the objects and roles of a business process model, is evident in the

Apromore – Advanced Process Model Repository 1 where our algorithms

are integrated.

As previously mentioned, the concept of BPG represents the core func-

tionality of business process notations. Generally, in a BPG we can differen-

tiate three types of nodes – functions, events and routing nodes. Functions

represent work nodes in a process model. When comparing different nota-

tions, the function nodes of BPG represent the function nodes of EPCs, the

activity nodes of BPMN and the actions of UML AD. The events of BPG

capture the behavior of the event elements of EPCs and BPMN, and the

signals of UML AD. There are different types of routing nodes in a BPG:

• AND gateway – executes both of its output branches or waits for all

its input branches to finish to continue the process execution. This

gateway represents the behavior of a ∧ connector in EPCs, a parallel

gateway in BPMN and the fork and join nodes in UML AD.

• XOR gateway – executes only one of its output nodes or waits for

the input from only one of its input branches before it continues the

process execution. This gateway represents an XOR connector in

EPCs, an exclusive gateway in BPMN and the merge and decision

nodes in UML AD.

1http://www.apromore.org/
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1.2 Background

• OR gateway – executes at least one of its outgoing branches or contin-

ues after one or many of its input branches reach the gateway. This

gateway includes the behavior of an OR connector in EPCs and an

inclusive gateway in BPMN. This element is not represented in UML

AD.

1.2.2 Graph Matching

In order to compare and merge process models, we need to identify the

similarities between models. Transforming business process models to the

general graph format enables us to apply the algorithms from the areas

of graph isomorphism detection in order to find similarities and detect

common regions in them.

Determining if two graphs are the same, if one graph is subsumed in

another or if the graphs share a common subgraph has been the focus

of intensive research since the end of the 1970s [Mess 95]. In the following

sections we introduce various graph matching techniques that have resulted

from these research efforts.

1.2.2.1 Graph Isomorphism

Graphs are used for visualization purposes in many areas; for example, in

computer vision [Lonc 98], data visualization in scientific applications and

computer systems [Herm 00], pattern recognition [Cont 04], etc. In many

applications we need to determine if two graph structures are the same. In

these cases, graph isomorphism detection algorithms can be used. In par-

ticular, graph isomorphism detection algorithms can be used to determine

if two business process graphs (or fragments thereof) are identical. This

can be useful in the context of refactoring duplicate fragments into shared

subprocesses.

Graph isomorphism detection relates to the problem of finding a bi-

jective mapping between input graphs. The mapping must preserve the
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1.2 Background

structure of edges [Mess 95]. For instance, let us assume we have two un-

labeled graphs, G1 and G2 depicted in Figure 1.6, and we want to know if

there exists a mapping between their nodes so that the edge relations are

preserved (i.e. these graphs are isomorphic).

Figure 1.6: Unlabeled graph isomorphism.

For clarity reasons the nodes of the graphs are identified uniquely. As

seen from Figure 1.6, such a mapping exists that preserves the node rela-

tions. The depicted mapping is not the only one that fulfills the isomor-

phism requirement. For instance, if the node 5 is mapped with the node d

and the node 4 with the node e, we get another mapping that represents

the isomorphism between the graphs G1 and G2.

Note that in this example, the nodes of the graph do not have labels

attached to them. In the context of business process graphs, nodes have

labels (e.g. names of tasks) and these labels can be taken into account when

determining whether or not two nodes should be mapped. For example,

if on the one hand the labels of node 4 and node d are the same, and on

the other hand the labels of nodes e and 5 are the same, then it becomes

clear that the mapping shown in Figure 1.6 is the correct one. In other

words, node labels make it easier to identify an isomorphism between two

graphs. In the general case however, absence of labels or (equivalently),
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1.2 Background

duplicate labels are unavoidable and therefore labels cannot be used (alone)

to identify an isomorphism. For example, in the context of business process

graphs, all XOR gateways are undistinguishable in terms of their labels.

Thus, in order to determine how to map the XOR gateways of one graph

to those of another graph, we need to take into account the structure of

the graphs.

The main drawback of graph isomorphism detection algorithms is their

computational complexity. The graph isomorphism problem lies in the

NP complexity class. It is not known whether it lies in the P or the NP-

complete complexity classes [Mess 95]. Despite decades of active research in

this area, all algorithms that have been developed to solve the general graph

isomorphism problem require in the worst case exponential time [Mess 95,

Peli 99, Derk 10]. There are algorithms that use approximate or continu-

ous optimizations to solve the problem in polynomial time under certain

assumptions [Peli 99, Derk 10]. Some algorithms use backtracking and for-

ward checking to prune the search space [Ullm 76, Schm 76]. Other algo-

rithms reduce the complexity by specializing on graphs with special prop-

erties [Derk 10, Fort 96, Dick 04] – for instance, there are linear algorithms

for finding graph isomorphism in case of planar graphs [Hopc 74] and poly-

nomial time algorithms for graphs with bounded degree [Luks 82] or with

bounded color class size1 [Arvi 06].

Currently, one of the most efficient algorithms for finding graph iso-

morphism – Nauty – is presented by McKay [McKa 81]. This algorithm

is based on canonical labeling of graph vertices, a technique that we rely

upon in Chapter 2 and reference [Uba 11].

Graph isomorphism is a subclass of a broader problem – subgraph iso-

morphism detection.

1A color class is a set of nodes in the input graphs that share the same label. A

graph has bounded color size if we can put an upper bound to the number of nodes that

have identical label.
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1.2.2.2 Subgraph Isomorphism

There are occasions when it is not desirable to understand if two graphs

are identical. In some cases it is more important to discover if a graph is

subsumed by another. For instance, in the area of chemoinformatics, it may

be interesting to find if a chemical compound is a subcompound of a further

specified compound, given their structural formulas [Corn 70]. A similar

problem is that of scene analysis – there is a need to detect if a relationally

described object is embedded in a scene [Ullm 76]. Also, in case of business

process models, it may be interesting to discover if a model fragment is a

subfragment of another model in order to detect most commonly occurring

model fragments. In these types of problems, the subgraph isomorphism

detection algorithms can be used.

Precisely, given two input graphs G1 and G2, subgraph isomorphism

detection relates to the problem of finding whether a subgraph of G2 is iso-

morphic to G1. In Figure 1.7, , graphs G1 and G2 are depicted. Obviously,

the graphs are not isomorphic because the graph G2 is larger than G1 (i.e.

it contains more vertices and edges). Therefore, we might be interested in

checking if there exists a subgraph in G2 that is isomorphic to G1.

In Figure 1.7, one of the possible isomorphic mappings is described.

Obviously, this is not the only one. Since the graphs are undirected, the

mapping that preserves the isomorphism can also be, for instance, 1 - f, 2

- e, 4 - c, 3 - d, 5 - b. The problem of subgraph isomorphism detection

can be extended to directed and labeled graphs such as business process

models.

The subgraph isomorphism detection problem belongs to the NP-complete

complexity class. Thus, in principle any algorithm to solve this problem has

an exponential worst-case complexity, meaning that a candidate solution

can be checked in polynomial time, but there is no efficient way to identify

a solution [Mess 95].
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Figure 1.7: Subgraph isomorphism.

There are several algorithms addressing the subgraph isomorphism prob-

lem. The most common techniques are based on tree-search algorithms us-

ing backtracking [Ullm 76], look-ahead [Hara 80], relaxation [Sche 05] and

pruning the search space [Cord 04]. Similarly to the graph isomorphism

problem, faster algorithms for graphs with special properties exist, for in-

stance, a linear algorithm in case of planar graphs [Epps 99]. Most of the

algorithms take only two graphs as input; however, algorithms that work

on a collection of graphs have also been introduced [Mess 00].

1.2.2.3 Maximum Common Subgraph Isomorphism

In many cases, graphs are not identical and one is not subsumed by an-

other, but still they share significant amount of similarity. In these cases,

the graphs may share a connected substructure. For instance, in the

area of chemoinformatics – where there is a need for the identification of

maximal common substructures that occur in many structures [Brin 87].

This problem is also relevant in the field of image and video database re-

trieval [Shea 01]. The problem of finding maximal common substructures
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also occurs in case of process models – when finding the largest common

fragment that occurs in many models in order to refactor this out as a

standalone subprocess.

Problems described above can be solved using maximum common sub-

graph isomorphism detection algorithms. Specifically, given two graphs G1

and G2, the maximum common subgraph isomorphism relates to the prob-

lem of finding a maximal subgraph of G1 that is isomorphic to a subgraph

of G2. The problem of maximal common subgraph detection is depicted in

Figure 1.8.

Figure 1.8: Maximal common subgraph isomorphism.

The graphs G1 and G2 in Figure 1.8 are structurally isomorphic as seen

in Figure 1.6. In the case of labeled graphs, such as the one in Figure 1.8,

it is feasible to also preserve the node labels. Despite the fact that the

graphs are significantly similar, there is no label and structure preserving

graph or subgraph isomorphism. Instead, a maximum common subgraph

isomorphism exists. Figure 1.8 also represents a maximal common subgraph

that appears in both graphs, G1 and G2.

The maximal common subgraph problem is in the NP-hard complex-

ity class [Kann 92], meaning that it is at least as hard as the hardest

of the NP problems. There are approximate and exact algorithms for

28



1.2 Background

maximal common subgraph isomorphism detection. Exact algorithms are

based on the maximal clique problem [Bomz 99, Mess 95], clique branch-

ing [Sute 05], backtracking [McGr 82] and decision trees [Shea 01]. Approx-

imate algorithms define heuristics in order to estimate a solution within

acceptable time complexity. These algorithms are based on genetic algo-

rithms [Cici 00], combinatorial optimization and fragment storage [Raym 02].

1.2.2.4 Error-correcting Graph Isomorphism

In real world applications, imprecisions exist in structural descriptions

caused by noise or distortion. These situations occur, for instance, in pat-

tern recognition and image processing [Cont 03]. The algorithms mentioned

previously may not give the desired output in these cases.

Error-correcting subgraph isomorphism addresses this problem by tak-

ing into account the notion of “error” during graph matching. Usually, a

cost is attributed to each type of error and the result of an algorithm is

a (dis)similarity measure [Cont 03]. For example, one particular type of

error occurs when a node in one graph is mapped to a node in another

graph such that the labels of these nodes is slightly different. In the case of

business process subgraph, such errors might come from the fact that pro-

cess models are designed by different stakeholders who use different naming

conventions and vocabulary. Yet, despite these errors, we wish to deter-

mine if there is a fragment of one process graph that resembles a fragment

in another process graph, and more broadly, we wish to determine if two

business process graphs are similar, meaning that they share a significant

volume of similar fragments.

Similarly to the subgraph isomorphism problem, the problem of error-

correcting subgraph isomorphism detection belongs to the NP-hard com-

plexity class [Mess 95].

There are numerous algorithms that address the error-correcting sub-

graph isomorphism problem. They are based on tree-search algorithms
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like the A-star [Nils 82], genetic algorithms [Wang 97], probabilistic relax-

ation [Chri 95] and neural network training techniques [Neuh 06].

Error-correcting subgraph isomorphism detection can be formulated as

a graph edit distance problem. The idea is related to the string edit dis-

tance problem where the distance between two strings is described by the

number of edit operations that are needed to transform one string to an-

other [Leve 66]. The distance between two graphs can be described as

the number of graph edit operations – the insertion, deletion and replace-

ment of nodes and edges [Mess 98]. Similarly to the string edit distance

problem [Rist 97], the costs for the edit operations can be obtained auto-

matically using corpus of examples [Mess 00]. In the case of labeled graphs,

and under some additional assumptions, the graph edit distance can also

be calculated using a Munkres’ (a.k.a. Hungarian) algorithm [Munk 57].

In [Ries 07], Munkres’ algorithm is extended to be applicable to finding the

edit distance between graphs.

1.2.2.5 Graph Matching and Business Process Model Similarity

The methods defined in the area of graph matching give us a foundation

for defining notions of similarity between business process models. How-

ever, graph matching techniques suffer from scalability problems due to

their inherently high computational complexity. By taking into account

the specificities of process models, it is possible to design more specialized

but at the same time more efficient graph matching heuristics to identify

commonalities between business process models.

Graph matching techniques emphasize mainly the structure of models.

However, process models contain significant amount of information in their

node labels. Therefore, when matching business process models, we need

to consider both the information contained in the graph structure, but also

the syntactical and semantical information carried by the graph nodes.
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1.2.3 Schema Matching

Finding similarities between process models is similar to the database schema

matching problem. Numerous techniques have been developed for merging

heterogeneous database schema into a unified schema [Do 02a, Rahm 01].

Most of the schema matchers address the problem of 1 : 1 matching only

because of the difficulty to automatically derive the other types of matches

(1 : n, n : 1, m : n); only some of them cope with 1 : nmatchings [Rahm 01].

The first step behind all the schema matchers is to find an align-

ment between schema elements using their lexicographical information.

Schema matching solutions propose different metrics and instructions for

comparing schema elements using their syntactical and semantical infor-

mation [Do 02b, Madh 01, Mitr 99, Berg 99]:

• Normalization – element names are tokenized using punctuation,

special symbols, digits, etc. as token separators. Abbreviations are

expanded and tokens like articles, prepositions and conjunctions are

removed. Tokens are stemmed to their roots. For example, name PO

Lines will be transformed to {Purchas, Order, Line}.

• Categorization – to reduce the element-to-element comparisons, the

elements are clustered into categories – this allows comparing the

elements within the same category. Categorization is done using the

element names, data types and associated concepts. For example, the

category Money includes each element that is associated with money

(i.e. the name of an element contains token “money” or elements that

are related to money – “price”, “cost”, “value”, etc.).

• The Syntactic similarity between tokens can be computed using a

range of methods, including:
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– Damerau-Levenshtein edit distance – the similarity between to-

kens is computed counting the edit operations necessary to trans-

form one string to another [Leve 66, Dame 64, Lowr 75]. In

most of the cases, the normalized edit distance is used – the raw

edit distance is divided by the maximum edit distance between

two given tokens (i.e. the length of the longest of the two to-

kens) [Lamb 99] or the weight of the editing path is divided by

the length of the editing path [Marz 93]. For example, the edit

distance between tokens “value” and “evaluate” is 4, meaning

that to transform token “value” to “evaluate”, in minimal case,

four edit operations are needed (adding ‘e’ to the beginning of

the token, changing ‘e’ to ‘a’ and adding ‘t’ and ‘e’ to the end of

the token). The normalized edit distance between these tokens

is 0.5 (the edit distance divided by the length of “evaluate”).

– N-grams – the similarity between tokens is measured based on

counting the number of unique n-grams (i.e. substrings with

the length of n characters) in the two input strings. The more

n-grams the two strings share the more similar these strings

are [Ukko 92]. For example, to find 3-gram similarity between

tokens “value” and “evaluate”, we firstly need to identify unique

3-grams in both of them. In “value”, unique 3-grams are “val”,

“alu”, “lue” and in “evaluate”, unique 3-grams are “eva”, “val”,

“alu”, “lua”, “uat”, “ate”. The similarity between these tokens

can be calculated as the ratio of common 3-grams to the all 3-

grams in both tokens. In our example, common 3-grams are

“val” and “alu”, therefore, the similarity between these tokens

is 0.45.

– Affix – the similarity is calculated using common affixes, i.e.

both prefixes and suffixes, between token strings.
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• Semantic similarity – the semantic similarity may be computed

based on loop-ups of synonymy, hypernymy and holonymy relations

captured in a thesaurus. Each thesaurus entry is annotated with a co-

efficient that indicates the strength of the relationship. For example,

these semantic relations between tokens can be automatically derived

using the Wordnet [Mill 95] lexical system.

• Name similarity – the name similarity (ns) of two sets of name

tokens T1 and T2 may be defined as the average of the best similarity

of each token from T1 with each token from T2. This measure is

calculated as follows:

ns(T1,T2) =

∑
t1∈T1

[
max
t2∈T2

sim(t1, t2)
]

+
∑
t2∈T2

[
max
t1∈T1

sim(t1, t2)
]

|T1|+ |T2|

The output of the ns(T1, T2) is the similarity score that is used to match

the database schema elements.

Some techniques try to represent the database schema as a graph and

also use the structural information for schema matching [Do 02b, Meln 02].

There is clearly a lot of room for reusing techniques developed in the

context of schema matching to address the problem of process model match-

ing. However, there are fundamental differences between database schema

and process models. Firstly, a data schema generally has labeled edges (i.e.

associations), edges in a process model usually do not have labels 1. Sec-

ondly, there are fundamental differences in types of nodes and attributes

attached to the nodes – for instance, database schema do not have control

nodes. Control nodes have a behavioral semantics attached to them. In

many cases, different combinations of control nodes may in fact capture the

same behavior and should arguably be treated as being equivalent. Thirdly,

database schema elements have stricter structural relations – for instance,

1This statement applies to process models defined in mainstream process modeling

notations such as BPMN or EPCs.
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when representing the XML schema as a graph, all the predecessors of a

node are describing their successor (i.e. when the type Personnel has prede-

cessors Name, Address and Telephone Number, then all these predecessors

are describing the Personnel type). Therefore, database schema compar-

ison and merging methods are not exactly applicable in case of process

models.

1.3 Problem Statement

The management of large process model repositories requires effective tech-

niques in order to find and organize similarities among various business

process models. For example, before adding a new process model to a

repository, a process analyst needs to check whether similar process models

already exist in order to prevent duplications. Similarly, in the context of

company mergers, ones need to identify common or similar business pro-

cesses between the merged companies in order to analyze their overlap and

identify areas for consolidation. This leads us to the following problem

– after identifying the common parts, how to represent these models in

order to reduce redundancy and improve the manageability of the model

collection?

More precisely, the management of a business process model collection

requires dealing with the following problems:

• Given two process models, how to identify the commonalities between

these models. Which elements in these models represent the same

process fragments?

• Given two or more business process models, how to find all fragments

that are shared among these models effectively in order to refactor

these out as subprocesses?
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• Given two or more business process models, how to find and represent

common fragments which cannot be refactored out as subprocesses.

Moreover, how to construct an aggregated model which does not con-

tain duplicate fragments and incorporates all the behavior of the input

models?

In this thesis we propose two complementary approaches for merging

process models – process merging by refactoring out common subfragments

into separate subprocesses and process merging by representing the similar

models in aggregate process models using configurable process models.

Figure 1.9: Process merging by subprocess refactoring.

In figure 1.9 are depicted two process models, Process1 and Process2,

that share a common fragment. When merging process models by sub-

process refactoring, these common fragments are extracted as subprocesses

and all the fragment occurrences are replaced by a subprocess call.

Process merging by subprocess refactoring operates on a collection of

models. The models are stored in the database so that duplicate fragments

are represented only once. Detected fragments are single-entry-single-exit
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(SESE) fragments, which enables refactoring using simple call-and-return

semantics.

On the other hand, process merging using configurable models enables

one to merge process models in case the common fragments are not exact

SESE fragments. This approach allows business analysts to manage entire

families of similar process models simultaneously. There are two steps in

this merging process – identifying common fragments in process models and

merging the models into a configurable process model so that the common

fragments are represented only once.

Figure 1.10: Process merging using configurable models.

Figure 1.10 describes a situation where the common fragments are not

exact SESE fragments. In the left-hand side we have three input models and
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their overlapping fragments. In the right-hand side we have an configurable

model that subsumes the behavior of the left-hand side models and in which

the common fragments are presented only once.

In this thesis we investigate different metrics for detecting similarities

in process models. Additionally, we develop algorithms for merging process

models using the identified common fragments.

1.4 Publications and Contributions

This dissertation is based on four articles whose contributions are listed

below.

• Publication 1: Clone Detection in Repositories of Business Process

Models

– This article concentrates on indexing process models in order

to facilitate finding duplicate model fragments that can be fac-

tored out as subprocesses. This paper addresses the problem of

retrieving all clones in a process model repository that can be

refactored into shared subprocesses. Specifically, the contribu-

tion of the paper is an index structure, namely the RPSDAG,

that provides operations for inserting and deleting models, as

well as an operation for retrieving all clones in a repository that

meet certain requirements. For this paper, I contributed to the

design of the indexing structure. I implemented the prototype,

conducted all the experiments, and wrote the Evaluation section

of this paper.

• Publication 2: Similarity of Business Process Models: Metrics and

Evaluation

– This paper studies three classes of similarity metrics to answer

process model similarity queries. The contribution of this paper
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is that it presents and validates a collection of similarity metrics.

For this paper, I designed one of the three metrics, implemented

it and conducted the experiments to compare the three classes

of metrics. I also contributed to the write-up of the Evaluation

section of the paper.

• Publication 3: Aligning Business Process Models

– Motivated by the previous paper, we investigate techniques, based

on lexical matching and error-correcting graph matching, in or-

der to align business process models. The contribution of this pa-

per is that it presents and validates a collection of techniques for

automatically matching similar tasks from different processes.

For this paper, I designed one of the techniques for aligning

process models, implemented this technique and conducted the

experiments to compare the three classes of metrics. I also con-

tributed to the write-up of the Evaluation section of the paper.

• Publication 4: Merging Business Process Models

– In this paper we concentrate on merging business process models

using the matching techniques that were investigated in the pre-

vious papers. The main contribution of the paper is an algorithm

that takes as input a collection of process models and generates a

configurable process model. For this paper, I contributed to the

design of the model merging technique. I implemented the pro-

totype, conducted all the experiments, and wrote the Evaluation

section of this paper.

1.5 Structure of the Thesis

This thesis is structured as follows: Chapter 2 corresponds to the publica-

tion “Clone Detection in Repositories of Business Process Models”. This
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chapter analyzes the problem of merging by subprocess refactoring. Specif-

ically, this chapter focuses on the most challenging part of subprocess refac-

toring, which is that of finding duplicate fragments that can then be refac-

tored as subprocesses. We introduce a model storage method where the

models are inserted into a database in such a way that duplicate fragments

are stored only once. This also accelerates finding duplicate fragments.

The problem with this approach is that we can only deal with exact frag-

ments. However, there are cases when the models in a model collection

have high level of similarity, but they do not share exact SESE fragments.

In order to deal with these cases, we developed another merging technique

where similar models are merged to an aggregate model so that the initial

models can be restored from it using a technique called individualization.

Chapter 3 corresponds to the publications “Similarity of Business Process

Models: Metrics and Evaluation” and “Aligning Business Process Models”.

In this chapter, we describe the problem of finding commonalities in pro-

cess models and aligning them accordingly. We compare various algorithms

that can be used to determine the commonalities and similarity degree of

the process models. Then we use some of these algorithms to align the

models and find similar regions. This is the groundwork for the method for

process merging using configurable models that is introduced in Chapter 4,

which corresponds to the publication “Merging Business Process Models”.
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Chapter 2

Business Process Merging by

Refactoring Common

Fragments

The problem of refactoring arises when a process model repository has

frequently overlapping regions among various process models. A common

practice is that new process models are created by extending or refining ex-

isting models, or by copying and merging fragments from multiple models.

Therefore, the problem of overlapping fragments is actual in large process

model repositories. Managing these fragments individually produces incon-

sistencies, since fragments that should evolve synchronously start diverging

from one another.

2.1 Contributions

In the first publication [Uba 11], we studied the problem of finding fre-

quently occurring exact model fragments in a business process repository.

Our aim is not to retrieve all fragments that are isomorphic in the sense of

graph isomorphism [Mess 95], but to retrieve the process model fragments

that can be factored out into separate subprocesses.
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Subprocesses are invoked according to a call-and-return semantics. Hence,

a subprocess has a single start point and a single end point. Accordingly,

we use the Refined Process Structure Tree (RPST) technique [Vanh 09],

that takes a process model as input and computes a tree representing a

hierarchy of its single-entry-single-exit (SESE) fragments.

SESE fragments contained in the RPST can be classified into one of

four classes [Vanh 09]. A trivial (T) fragment consists of a single edge. A

polygon (P) fragment is a sequence of fragments. A bond (B) corresponds

to a fragment where all child fragments share a common pair of vertices.

Any other fragment is a rigid (R).

The RPST is essentially a decomposition of a process model into SESE

regions, with larger SESE regions appearing at the top of the RPST, and

smaller regions appearing below. Figure 2.1 shows an example of process

model decomposition into an RPST. For the sake of illustration, a unique

identifier is associated with each model fragment. Identifier starting with

“P” refers that this fragment is a “polygon‘”, “B” refers that this is a

“bond” and “R” refers that this fragment is a “rigid”. If a model fragment

already exists, the existing identifier is given to this fragment.
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Figure 2.1: Example of RPST decomposition of a model.
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Our contribution is introducing the RPSDAG – an index structure that

provides operations for inserting and deleting models, as well as an op-

eration for retrieving all clones in a repository that meet the following

requirements:

• All retrieved clones must be single-entry- single-exit (SESE) frag-

ments – therefore, these can be extracted to subprocesses and in the

initial models the subprocesses can be invoked using call-and-return

semantics.

• All clones retrieved must be exact clones so that every occurrence

can be replaced by an invocation to a single (shared) subprocess.

While identifying approximate clones could be useful in some sce-

narios, approximate clones cannot be refactored directly into shared

subprocesses, and thus, fall outside the scope of this study.

• Maximality – once we have identified a clone, every SESE fragment

strictly contained inside this clone is also a clone, but we do not wish

to return all such subclones.

• Retrieved clones must have at least two nodes (no “trivial” clones).

For graph indexing, we adapted the graph indexing approach proposed

by Williams et al. [Will 07]. This is an indexing technique that assigns a

unique canonical code to each graph. Graphs that are isomorphic share a

canonical code. This technique allows fast identification of duplicate frag-

ments using string comparison algorithms. Indeed, if we index each SESE

fragment using this technique, we can then efficiently determine whether

or not a SESE fragment in the RPST of a process model is equal to an

already indexed SESE fragment in the RPST of the same model or of an-

other model. When we identify that a SESE fragment is already indexed,

we reuse the existing index by making the parent SESE fragment point to

the already indexed SESE fragment rather than creating a duplicate of the
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SESE fragment. In doing so, we turn a collection of RPSTs into a Directed

Acyclic Graph (DAG), since some of the SESE regions in one RPST may

point to SESE regions in another RPST. This is the reason for the name

RPSDAG.

In [Uba 11], we also describe a representation of the RPSDAG extracted

from the RPST as a table structure that allows storing the RPSDAG struc-

ture. In this way, all clones can be retrieved by using a simple SQL query.

The implementation of the RPSDAG is available as a standalone ap-

plication. The program, source code and example models are available for

download at http://apromore.org/tools. The tool takes a collection of

models as input and produces a listing of all clones found.

2.2 Evaluation

We evaluated our technique using four different datasets: the collection of

the SAP R3 reference process models [Kell 98], a model repository obtained

from an insurance company and two collections from the IBM BIT process

library [Fahl 09]. We observed that the construction of a dag and the

insertion of a new model to a dag are in acceptable time ranges. Also, the

execution time of the SQL query that retrieves all duplicate fragments is

in milliseconds, even if the model collection size is more than 500 models.

In addition, we observed that real life model collections contain significant

amount of duplicate fragments. Thus using our technique can yield a high

refactoring gain.

2.3 Related Work

Clone detection in software repositories has been a topic for research for

many years already. According to Roy et al. [Roy 09], code clones detec-

tion methods can be classified into four main categories: textual, lexical,

syntactic and semantic. The last two use the graph-based techniques for
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clone detection – more precisely the abstract syntax tree (AST) [Baxt 98]

comparison and program dependence graphs (PDG) comparison [Krin 01]

accordingly. The AST method [Baxt 98] is not directly applicable in case of

business process models because the AST method assumes that the input

graph is a tree and applies tree isomorphism detection algorithms. The

technique described by Krinke [Krin 01] is based on the PDGs. This al-

gorithm uses the subgraph isomorphism algorithm for clone detection –

however, we use the canonical codes that make the subfragment matching

faster.

Research on clone detection has also been conducted in the areas of

model-driven engineering. In paper by Deissenboeck et al. [Deis 08], a

method for detecting clones in large repositories of Simulink/TargetLink

models from automotive industry is described. The models are partitioned

into connected components and compared pairwise using a heuristic sub-

graph matching algorithm. The main difference with our approach is that

we use canonical codes for fragment comparison instead of the subgraph

isomorphism based approach. Another difference is that we use fragment

based comparison instead of model pairwise comparison – if one fragment

is compared, then this fragment is matched in all of the models in which

this fragment occurs.

The problem of clone detection in business process model reposito-

ries is also related to the problem of graph database indexing. Graph-

Grep [Shas 02] is designed to find paths in a graph that match with the

regular expression that is given as an input. The indexing is based on the

paths that are indexed up to a certain threshold length; therefore the ap-

proach is less useful in case of clone detection. Similar approach, named

gIndex, is introduced by Yan et al. [Yan 04]. The indexing is based on

frequent fragments. Indexed fragments are as small as possible because

smaller fragments are contained in more models; also the fragments are in
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a predefined size threshold. Similarly to our approach, the canonical la-

beling is used for fragment hashing. Unlike our algorithm, this approach

does not provide returning all clones from the repository. Additionally, the

database is indexed in the preprocessing phase and the quality of an index

may degrade over time after numerous insertions and deletions.

In the paper by He et al. [He 06], a method based on graph closure trees

is introduced. Given a graph G, the closure tree can be used to retrieve

all indexed graphs in which G occurs as a subgraph. We could use the

closure tree to index a collection of process graphs so that when a new

graph is inserted we can check if any of its SESE regions appears in an

already indexed graph. However, the closure tree does not directly retrieve

the exact set of graphs where a given subgraph occurs. Instead, it retrieves

a “candidate set” of graphs. An exact subgraph isomorphism test is then

performed against each graph in the candidate set. In contrast, by storing

the canonical code of each SESE region, the RPSDAG obviates the need

for this subgraph isomorphism testing.

There is a large body of work in the areas of identifying the common sub-

structures in chemical structures databases, for instance papers by Williams

et al. [Will 07] and Deshpande et al. [Desh 03]. The article by Williams et

al. [Will 07] is the basis of our refactoring article. It introduces the graph

decomposition and hashing in order to facilitate common substructures re-

trieval. The proposed method is not directly applicable in case of business

process model refactoring because we are not interested in all subgraphs.

However, the basic ideas from Williams et al. can still be adapted to pro-

cess model repositories. This adaptation is the main contribution of our

work. The article by Deshpande et al. [Desh 03] describes the problem

of classification of chemical compounds that is conducted by indexing fre-

quent substructures using canonical labeling. We are not interested in this

method in case of clone detection because our objective is to retrieve all

clones.
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2.4 Limitations and Future Work

In [Uba 11] we proposed a method for effectively finding model clones that

satisfy the clone retrieval query conditions. Identifying the minimal clone

size and occurrence that is reasonable to refactor to a subprocess is up to

future work. It is clear that refactoring out all clones is not rational because

this reduces the coherence of the model collection.

Another limitation of our work is that it is focused on identifying clones,

but it does not address the problem of actually extracting these clones

into shared subprocesses. This latter step is dependent on the modeling

notation, since different notations used slightly different approaches for

representing subprocesses. Since our work was intended to be notation-

independent, the refactoring step was left outside the scope of the thesis.

We acknowledge however that the subprocess extraction step is necessary

in order to apply the technique in a commercial setting.

Finally, another obvious limitation of the approach is that it is limited

to identical clone retrieval. It may so happen that two fragments are al-

most identical except for negligible differences, due for example to slight

differences in naming conventions. Addressing this limitation is a direction

for future work. In the extreme case, differences between two common frag-

ments might be substantial to the extent that it is unfeasible to refactor

these common fragments into shared subprocesses. In this case, an alter-

native way of consolidating the common fragments is by constructing an

aggregate model. This alternative is the subject of the next chapters.
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Chapter 3

Business Process Alignment

As announced in Section 1.3, the second technique for merging business

process models that we consider in this thesis is that of merging by using

an aggregate model. In the case, the fragments to be merged do not need to

be identical, but only “similar”. To enable this second approach, we need to

have a notion of similarity between process models as well as techniques to

detect the degree of similarity between two models or fragments thereof. In

this chapter, we introduce our work in the area of business process similarity

and alignment.

3.1 Node Similarity

Business process model nodes and their labels carry a lot of information

about a process model [Mend 10a]. Therefore, the majority of business

process model similarity metrics do not concentrate only on the structure

of a process model but also on the information that is stored in the node

labels.

Usually, models are modified by different stakeholders; therefore, there

is a high probability that they use different terms in order to describe the

same things [Ehri 07]. When comparing business process elements, it is
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not reasonable to assume that model nodes are equivalent only if they have

exactly the same labels.

We use four metrics for calculating the similarity between nodes. These

metrics have been put forward and evaluated by Dongen et al. [Dong 08].

All node labels are tokenized and stemmed before calculating the similarity.

The similarity is calculated using the following metrics:

• Syntactic similarity – the similarity between nodes is calculated based

on the string edit distance [Leve 66] of the node labels. The edit

distance is normalized to the sizes of input strings.

• Semantic similarity – the similarity between nodes is calculated us-

ing the semantic information of their labels, using synonymes, hyper-

onymes, etc. For instance, WordNet [Mill 98] can be used for this

purpose.

• Attribute similarity – the information of the node attributes is also

taken into account for calculating similarity between nodes; for ex-

ample, types and labels of attributes.

• Contextual similarity – this similarity metric also takes into account

the structure of the process model, capturing the similarities of the

nodes that are connected to it. This is particularly useful when com-

puting the similarity between two control-flow nodes, e.g. two splits.

3.2 Model Matching Techniques

Before merging process models, there is a need to determine the similarities

and common process parts of process models – the parts that represent

the same subprocess which must occur only once in an aggregate model.

This leads to the problem of business process alignment – to determine

a mapping between business process models and align nodes that might

represent the same element in different models.
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In the paper “Similarity of business process models: Metrics and eval-

uation” [Dijk 11] we compared three different model similarity approaches

– node matching, structural similarity and behavioral similarity.

3.2.1 Node Matching Similarity

The node matching similarity technique matches nodes lexicographically,

using their labels and attributes. The optimal mapping between models

is calculated using the Munkres’ algorithm [Munk 57]. In our approach, it

is not feasible to match nodes that have low amount of similarity. There-

fore, we match nodes if and only if their similarity is above a predefined

threshold.

Figure 3.1 shows two models from the insurance domain and achieved

mappings using the node matching technique. The node matching tech-

nique does not take into account the structural information of models, it

matches model nodes even if one of them is in the beginning of the model

and the other is at the end.

3.2.2 Structural Similarity

The structural similarity metric takes into account the information stored

in the nodes as well as the structure of process models. We define the sim-

ilarity metric based on the graph edit distance [Hart 68] between business

process graphs. Analogously to node matching similarity, the initial map-

ping is calculated based on the information of the nodes only. Then, using

the initial mapping, a graph mapping is found – if both nodes of an edge

are mapped, then the edge is considered as mapped. After the mapping

phase, the edit distance between models can be calculated based on the

number of substituted, deleted and added nodes and edges.

Figure 3.2 shows the same models as depicted in Figure 3.1. The map-

pings are calculated using the graph edit distance. In some cases, using

the structural matching technique, less nodes are matched than in case of
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Figure 3.1: Mapping between process models using node matching similarity

pure lexical approach because the structural matching penalizes of match-

ing nodes that are located apart in the process model.

The problem with the structural similarity is that it relies on calculating

an error-correcting graph isomorphism which is an NP-complete problem.

There are several heuristics to overcome this problem [Dijk 09a]. In paper

“Aligning Business Process Models” [Dijk 09b], we focused on two of them

that gave the best precision in [Dijk 09a]:
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Figure 3.2: Mapping between process models using structural matching

similarity

• Greedy graph matching – a matching technique that tries to establish

a mapping that has an optimal matching score. The score takes into

account the similarity of matched nodes as well as the presence or

absence of edges between matched nodes. The algorithm starts with

an empty mapping. In every step, it adds a node pair to the mapping

that increases the mapping score the most. If there are several such

pairs, then the pair is selected randomly.

• A-star graph matching – the mapping is constructed using the well-

known A-star algorithm. The algorithm starts with an empty map-

ping. In each step, the algorithm selects an existing partial mapping

with the lowest edit distance from the partial mapping set (if there

are multiple such mappings, the mapping is selected randomly). Then

the algorithm selects an unmatched node n1 from the first graph and
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creates mappings with all the nodes n2, that are not matched in

the partial mapping, from the other graph. Additionally, a mapping

with the “dummy” node is created – representing the deletion of a

node. New mappings are created by adding each pair (n1, n2) to the

mapping in the partial mapping set that has the smallest graph-edit-

distance (i.e. the most “plausible” partial mapping seen so far). This

procedure is repeated until all nodes are matched.

3.2.3 Behavioral Similarity

Behavioral similarity metrics are based on the node labels as well as the

causal relations between nodes that represent tasks or events. The bene-

fit of using the behavioral similarity over structural similarity is that the

behavioral similarity also takes into account indirect causal relations that

might might have been introduced during the insertion or deletion of nodes.

Following previous work by van Dongen et al. [Dong 06], we compute

the behavioral similarity of two process models by computing their distance

in the document vector space constructed from their causal footprints. The

causal footprint of a model is a graph, i.e. causality graph, that contains

a set of activities and conditions when those activities can occur. A causal

footprint describes the process model at a very high level. This does not

capture the entire process model but only its control flow. The behavioral

similarity between process models is calculated by computing their distance

in the document vector space constructed from their causal footprints.

The implementation of these metrics can be found in the “similarity plu-

gin” of the ProM process mining and analysis framework. 1 The similarity

search using the greedy and node matching algorithms is also integrated in

the Apromore platform 2.

1Available at: http://prom.sourceforge.net.
2http://www.apromore.org
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3.3 Evaluation

We evaluated the above model matching techniques in two ways: how well

they perform in the context of model similarity search, and how well they

perform in the context of model alignment.

3.3.1 Similarity Search Evaluation

In “Similarity of business process models: Metrics and evaluation” [Dijk 11],

we evaluated node matching, structural and behavioral similarity tech-

niques in the context of model similarity search. The term “model similarity

search” refers to the following problem, given a process model (called the

query model) and given a collection of process models (called the docu-

ment models), find those document models that are most similar to the

query model. In our experiments we used the SAP reference model col-

lection [Kell 98]. From the model collection we randomly extracted 100

models. From these 100 models 10 models were randomly selected for

query models. The labels of the query models were changed in order to

investigate the effect of differences in the node labeling. The relevance of

all the possible “query model” and “document model” pairs were man-

ually evaluated by multiple subjects with different levels of expertise in

process modeling. This manual rating of the similarity was used as the

“golden standard” with respect to which the automated similarity search

techniques were compared. As the baseline for comparison we used a text-

based engine, namely the Indri search engine [Metz 04].

The quality of the process model similarity techniques was evaluated

using the notions of precision and recall. Precision is the fraction of rele-

vant instances among all instances retrieved by an algorithm, recall is the

fraction of relevant instances retrieved by an algorithm among all relevant

instances. Figure 3.3 shows the average precision and recall scores across

all the queries. All the similarity algorithms that were under evaluation
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Figure 3.3: Precision-recall curve (precisions are averaged across all 10

queries)

outperformed the pure text-based search engine; the structural similarity

yielded the best results.

3.3.2 Model Alignment Evaluation

The previous study [Dijk 11] showed that the structural similarity gives

the best results in the case of business process model similarity search. A

related problem is that of business process model alignment defined as fol-

lows: Given a pair of models M1 and M2, find the most adequate mapping

between nodes of M1 and the nodes of M2. The notion of “most adequate”

is subject to expert interpretation. The goal is to come up with automated

techniques that mimic as close as possible the judgement of human experts.

In the paper “Similarity of business process models: Metrics and evalu-

ation” [Dijk 11], we only used the A-star algorithm for structural similarity.

Therefore, in the paper “Aligning Business Process Models” [Dijk 09b], we

also took the greedy matching technique under evaluation and measured

their performance in aligning business process models. The pure lexical

based technique was also included in the study in order to provide a base-

line with respect to which other techniques can be benchmarked.
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The algorithms were evaluated using models from the Dutch local gov-

ernment domain. We calculated mappings between 17 process model pairs

and compared the results with the mappings determined by human experts.

The results were expressed by means of precision, recall and F-Score. F-

Score is a measure that considers both the precision and the recall, it can

be interpreted as a weighted average of the precision and recall.

Our experiments showed that the pure lexical technique had the lowest

precision and F-Score. Also, we denoted that the stemming procedure does

not improve the quality of results. A-star algorithm performed moderately

better than the naive lexical approach. The greedy algorithm produced

the best results, without suffering from the performance bottlenecks of the

A-star technique.

3.4 Related Work

There is a large body of work in the areas of model similarity metrics. Most

of the proposed business process similarity metrics either remain unvali-

dated or do not take into account label similarity (they assume that labels

are equal in case of node equality) nor behavioral similarity – focusing on

structural similarity instead. However, there are works that concentrate on

all similarity metrics – label, structural and behavioral similarity – but these

works apply their algorithms for computing the similarity between state-

charts [Neja 07] or state machines [Womb 06]. In [Neja 07], Nejati et al.

proposed a similarity metric for computing similarity between statecharts.

The similarity is calculated using the lexical information of the labels of

states and behavioral similarity, using the approximation of bi-similarity as

well as the nested structure of states in a statechart. Because of the latter

feature, the technique is specific to statecharts. Multiple similarity metrics

are investigated and evaluated in paper by Wombacher [Womb 06]. The

work focuses on workflows modeled using the Finite State Automata. Even
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though the business process models can be visualized using reachability

graphs (which are basically automata), these can potentially be infinite or

exponential in size of the process model [Valm 96].

A body of work has been conducted in the area of business process model

similarity. In [Li 08], Li et al. introduced the similarity metric based on

high level change operations described in their previous work [Webe 08].

The problem with their approach is that they do not find similarities be-

tween processes but transformations from one process to another, assuming

that all activities in process models have unique labels. This approach is

not applicable in our case when models are not derived from one base model

but are originated from different sources. The paper by Lu et al. [Lu 09]

introduces the definition of similarity between process variants in terms

of their various dimensions. The similarity measure is calculated by com-

paring process model fragments by means of execution sequences. It is

targeted towards querying model variants with certain features from model

collections. These features can cover other aspects than tasks and their

relations, such as the use of resources and timing characteristics. In paper

by Aalst et al. [Aals 06a], process models are compared using their event

log containing typical behavior. In our case, the process execution logs are

not available. Ehrig et al. [Ehri 07] use syntactic, semantic and structural

measures to compute similarity between process model nodes. The over-

all similarity between models is obtained by aggregating these similarity

measures in a combined similarity measure. Another semantical approach

is introduced by Brockmans et al. [Broc 06]. These last two approaches

are very similar to the semantic matching technique analyzed in our paper,

although they do not evaluate their approaches experimentally. Our exper-

iments suggest that approaches based on graph matching are superior to

those based purely on linguistic comparison.

Model similarity methods are also used in the areas of gap detection be-

tween software capacities and organizational needs. Juntao and Li [Junt 08]
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introduced an automatic method for gap analysis. The proposed technique

takes two process models as input – one specifying software capacities and

the other describing organizational needs. Initially, the similarities between

the models are found using lexical similarity and similarity propagation.

The mapping between process models is found using the Hungarian algo-

rithm [Munk 57]. Finally, the distance of models is described using high

level edit operations – replacement, deletion, movement and insertion of

activities.

3.5 Limitations and Future Work

In the experimental evaluation of business process alignment techniques,

even the best technique only achieved F-Score in the order of 65%, which is

in a way acceptable, but rather low. The reason for this rather low score is

that the pairs of models used in this evaluation were in fact quite different.

They used very different vocabularies and naming conventions, and in some

cases had very different structures. To tackle this heterogeneity, we used

tokenization, stemming, Wordnet and even term classification based on

the APQC 1. Therefore, the open question for future work is to develop

similarity measures that would perform even if the node labels are very

distinct in terms of string edit distance.

The similarity metrics under evaluation were able to match only one

node to another. However, in some cases, it would be feasible to match one

node to many nodes; for instance, if during process model refinement one

node is decomposed into several ones. When finding similarities between

these models, it would be more accurate to map one node to several nodes.

There are works that define matchers that are able to detect complex corre-

spondences between groups of activities [Weid 10] but do not perform well

in terms of precision and recall compared to simple 1-to-1 matchers.

1http://www.apqc.org/

57



Chapter 4

Business Process Merging

Using Configurable Models

In the context of company mergers and restructurings, companies often

have to manage business process model collections that contain multiple

variants of business processes. Usually, these models, originating from dif-

ferent companies or departments, need to co-evolve. Teams of analysts

need to analyze the similarities and differences between process models

and create integrated process models that can be used to drive the process

consolidation effort. This process is time-consuming and error-prone.

4.1 Contributions

In the article “Merging Business Process Models” [Rosa 10], we introduced

a semi-automatic approach to aggregate a collection of process models into

a single model. The purpose of the merged model is that an analyst can

then view the commonalities and differences between multiple variants and

manage their co-evolution and convergence – instead of making changes in

all models individually, the analyst can change the models in one place in

a synchronized manner.
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The approach proposed in the article is dictated the following require-

ments:

• Behavior-preservation – the behavior or a merged model must sub-

sume the behavior of all of its input models.

• Traceability – an analyst must be able to trace from which process

model(s) the element in question originates.

• Reversibility – an analyst must be able to derive the initial models

from the merged model.

This algorithm takes a collection of models as an input and generates

a configurable process model [Rose 07]. A configurable process model cap-

tures a family of processes in an aggregated manner and allows analysts

to understand what these process models share, what their differences are,

and why and how these differences occur. Configurable process models are

a suitable output for a process merging algorithm, because they provide a

mechanism to fulfill the traceability requirement.

In the first phase, the algorithm finds a mapping between business pro-

cess models. The mapping can be obtained using the algorithms intro-

duced in Chapter 3. Usually, automatically delivered mappings should be

examined by an analyst. In our approach, we use a greedy graph match-

ing algorithm for calculating a mapping between process models because

this gave the best results compared to other approaches [Dijk 09b]. Using

the calculated mapping between process models, we construct maximum

common regions. These maximum common regions are represented in the

configurable model only once. In Figure 4.1, three models from the video

post production domain are depicted. The figure also shows the common

regions among the process models.

The nodes in the common region are connected with the nodes outside

of this region using configurable connectors. The edge labels of the config-

urable merged model indicate the models from which the edge originates.
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Figure 4.1: Video post production models, common regions.

The merged model of the process models depicted in Figure 4.1 is shown

in Figure 4.2. All the common regions are occurring only once in the

merged model. Some nodes of the model are annotated with a thicker

border to indicate variation points. The initial models can be restored using

a procedure known as individualization. Individualization is conducted

so that only the edges that contain the identifier of the initial model are

retained.

In some scenarios, especially when merging a large number of complex

models, it may be convenient to visualize commonalities between models.

Therefore, in the extension of the merge paper [Business 11a], we developed

a tool to represent most recurrent fragments in the input models. The
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Figure 4.2: Video post production models, merged model.

resulting model is called “digest”. Specifically, the digest of a merged graph

is a non-configurable process graph that comprises all edges of a merged

graph that have a frequency above a given threshold. This algorithm takes

a configurable process model as input and retains only the model parts that

occur at least a predefined number of times. When removing edges from a
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merged graph, we may create a disconnected graph. To avoid disconnected

graphs we reconstruct a path where needed and add a special placeholder

node, labeled “#”, to indicate the presence of nodes in the merged model,

which do not satify the digest condition.

Figure 4.3: Video post production models, digest.

Figure 4.3 depicts a digest view of the merged process model from Fig-

ure 4.2. In the left-hand side model, the digest for frequency 2 is visualized.

This means that all the edges of process models which occurred at least in

two process models are retained. The right hand side model represents the

digest with frequency 3 – only these edges which occur in all of the initial

process models are retained.

The process merging algorithm has been implemented as a standalone

tool, namely Process Merger, that is freely available as a part of the Syner-
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gia toolset 1. The implementation of the algorithm has also been integrated

into the Apromore platform 2. Apromore allows users to store and edit pro-

cess models in a variety of languages (EPCs, BPMN, YAWL and BPEL).

This is made possible via an internal, canonical representation of process

models that captures a range of modeling constructs found across multi-

ple process modeling languages. This internal format makes it possible to

merge process models that are modeled in different languages. Digests can

subsequently be extracted from the merged model.

4.2 Evaluation

We evaluated our algorithm in various aspects – the sizes of the merged

models and the overall compression factor as well as the scalability of the

algorithm. In addition, we evaluated the usefulness of the algorithm in an

industrial setting.

Size is a key factor affecting the understandability of a process model;

therefore, it is desirable to have merged models as compact as possible.

The sizes of the merged models were evaluated using the SAP reference

model collection. The models that had a similarity greater than 0.5 were

merged and the compression rate was calculated. The compression rate

is the size of the merged model relative to the sizes of the input models.

A compression factor close to 0.5 means that the input models are very

similar, a compression factor 1 and above shows that the input models

are completely different. Our results showed that the average compression

factor for this model collection was 0.68, meaning that using the merging

algorithm, the average compression rate was 68% compared to the case

when the models were just juxtaposed side-by-side.

Additionally, we evaluated the merging algorithm in case of large pro-

cess models. We considered four model pairs from the domains of land

1http://www.processconfiguration.com
2http://www.apromore.org
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development and insurance. Our experiments showed that the merging op-

erator can handle pairs of models with even around 350 nodes each in a

matter of milliseconds.

To evaluate the usefulness of the algorithm, we conducted a case study

with a large insurance company. The case study showed that the merge al-

gorithm is useful also in the real life cases. Moreover, after the experiments

the insurance company decided to integrate our Process Merger in their

development environment to produce batch reports showing the degree of

consolidation of their models on a regular basis.

4.3 Related Work

The problem of merging process models has been under investigation in

several papers. In [Sun 06], Sun et al. described the problem of merging

block-structured workflow nets. The algorithm first finds the mapping pairs

– merge points, and then merges the models by applying a set of “merge

patterns” (sequential, parallel, conditional and iterative). The merge can

be lossless or lossy. The last one refers to the fact that it is not guaranteed

that all tasks of initial models remain in the merged model. Therefore,

this approach does not satisfy our reversibility requirement. Also, it is not

possible to trace from which model the nodes originated. Another drawback

is that the proposed method is not fully automated.

Küster et. al. [Kust 08] introduced a method for process merging. Their

approach is divided into three steps. In the first step, the differences be-

tween models is detected, using correspondences between process models

and the SESE fragment technique they present in [Vanh 07]. In the sec-

ond step, they visualize the differences, and in the last step, the process

models are iteratively merged based on the modeler’s input. Their main

aim is to assist modelers in the merging procedure not conduct the process

automatically.
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Gottschalk et al. introduced the problem of merging the EPC dia-

grams [Gott 08]. The focus of their work was on integrating the behavior

of the input models to the merged model. In their approach, they use ab-

straction of the EPC models, namely a function graph, where the original

EPC models are reduced to their active nodes – functions and connectors

are replaced with edge annotations. The graphs are merged using a set

union. The solution proposed by them does not satisfy our traceability and

reversibility requirements. Also, their approach does not support approx-

imate node label matching. Finally, they assume that the input models

have a single start and a single end node.

Li et al. [Li 10] presents a different approach to the model merging.

Given a collection of similar process models (process variants) their goal

is to construct a reference model such that the average distance between

the reference model and input models is minimal. Intelligibly, the refer-

ence model does not subsume the behavior of the initial models; also, the

traceability is not provided. Additionally, their approach only works for

block-structured process models with AND and XOR blocks.

Mendling and Simon [Mend 06] describe the process of business process

model view integration. A process model view is the instantiation of a

process model for a specific stakeholder or business object involved in the

process. The similarities between models can only be defined in terms of

functions and events, connectors and more complex graph topologies are

not taken into account. Moreover, a method for finding correspondences

is not provided. Models that are merged may be partial views of the pro-

cess model; therefore, the merged model allows these views to be run in

parallel. In other words, the corresponding parts are separated by AND

connectors. However, this approach may introduce deadlocks in the merged

models. This merging method also fails to correspond to our traceability

and reversibility requirements that we stated for our method.
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4.4 Limitations and Future Work

The problem of maintaining a large set of business process models is

discussed in paper by Reijers et al. [Reij 09]. Their solution was to main-

tain the process models in an aggregate manner. The difference from our

approach is that the method they proposed is mostly manual and addressed

to be applicable in the process designing phase instead of restructuring ex-

isting models. Also, their solution is proposed for one modeling notation

(EPCs) while our approach is applicable to other modeling notations as

well, due to the process graph abstraction.

4.4 Limitations and Future Work

The drawback of the method proposed above is the possibility that the

resulting merged models can become relatively large and complex even after

applying some optimizations introduced in our paper [Rosa 10]. Several

studies have shown [Mend 07, Mend 10b] that large process models are

more difficult to maintain and comprehend and they have a higher error

probability than small models. Therefore, it might be easier to work with

individual modes, but still, in a way that ensures that the individual models

are kept synchronized. A direction for future work would be to develop

methods for maintaining process model variants individually, but at the

same time propagating the changes to all variants in a synchronized manner.
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Chapter 5

Conclusions

This research introduced two complementary methods for business process

merging. Business process model merging helps to reduce redundancies in

a process model repository and enables to modify duplicate fragments in

the models in a synchronized manner. Business process model alignment

and similarity search techniques based on lexical and graph matching help

to identify duplicate or similar fragments for the purpose of process model

merging.

The first method concentrated on refactoring recurring model fragments

into separate subprocesses. The main restriction of this approach is that the

fragments that can be extracted in this way must be identical to one another

and must have a single entry point and a single exit point so as to comply

with the call-and-return semantics of subprocess invocation. Despite this

restriction, our experiments indicate that real life business process model

collections contain a significant amount of clones that comply with these

requirements.

The second approach introduced the idea of merging two or more pro-

cess models into a single configurable process model. This merging ap-

proach can be separated into two phases. In the first phase, there is a need

to determine similarities and aligning parts between the input models. We
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proposed and evaluated several algorithms that can be used for this pur-

pose. The performance of these algorithms was measured in the areas of

business process similarity search and alignment. The second phase for this

merging approach is to aggregate input process models, using the discov-

ered commonalities. The aggregate model must be constructed so that the

duplications are eliminated as much as possible, the merged model sub-

sumes the behavior of the input models, the input models are restorable

from it and it is possible to trace back which model each edge/node comes

from.

All the algorithms introduced in this thesis have been implemented as

standalone applications or have been integrated into the ProM framework

or the Apromore process model repository.
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Appendix A

List of Abbreviations

Abbreviation Meaning Page
AST Abstract syntax tree 44
BPG Business Process Graph 21

BPMN Business Process Modelling Notation 15
BPMI Business Process Management Initiative 15

C-EPCs Configurable EPCs 19
DAG Directed Acyclic Graph 43

eEPCs Extended EPCs 18
EPCs Event-Driven Process Chains 18
IWi Institute for Information Systems 18

PDG Program dependence graph 44
RPSDAG An index structure for storing RPSTs of the models 42

RPST Refined Process Structure Tree 40
SESE Single-entry-single-exit 35

UML AD Unified Modelling Language Activity Diagrams 20
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(Summary in Estonian)

Äriprotsessimudelite ühildamine

Ettevõtted, kellel on aastatepikkune kogemus äriprotsesside haldamises,

omavad sageli protsesside repositooriumeid, mis võivad endas sisaldada

sadu või isegi tuhandeid äriprotsessimudeleid. Need mudelid pärinevad

erinevatest allikatest ja need on loonud ning neid on muutnud erinevad os-

apooled, kellel on erinevad modelleerimise oskused ning praktikad. Üheks

sagedaseks praktikaks on uute mudelite loomine, kasutades olemasolevaid

mudeleid, kopeerides neist fragmente ning neid seejärel muutes. See omako-

rda loob olukorra, kus protsessimudelite repositoorium sisaldab mudeleid,

milles on identseid mudeli fragmente, mis viitavad samale alamprotsessile.

Kui sellised fragmendid jätta konsolideerimata, siis võib see põhjustada

repositooriumis ebakõlasid – üks ja sama alamprotsess võib olla erinevates

protsessides erinevalt kirjeldatud. Sageli on ettevõtetel mudelid, millel

on sarnased eesmärgid, kuid mis on mõeldud erinevate klientide, toodete,

äriüksuste või geograafiliste regioonide jaoks. Näiteks on äriprotsessid ko-

dukindlustuse ja autokindlustuse jaoks sama ärilise eesmärgiga. Loomu-

likult sisaldavad nende protsesside mudelid mitmeid identseid alamfrag-

mente (nagu näiteks poliisi andmete kontrollimine), samas on need prot-

sessid mitmes punktis erinevad. Nende protsesside eraldi haldamine on

ebaefektiivne ning tekitab liiasusi.
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Doktoritöös otsisime vastust küsimusele: kuidas identifitseerida protses-

simudelite repositooriumis korduvaid mudelite fragmente, ning üldisemalt

– kuidas leida ning konsolideerida sarnasusi suurtes äriprotsessimudelite

repositooriumites?

Doktoritöös on sisse toodud kaks üksteist täiendavat meetodit äriprot-

sessimudelite konsolideerimiseks, täpsemalt protsessimudelite ühildamine

üheks mudeliks ning mudelifragmentide ekstraktimine. Esimene neist võtab

sisendiks kaks või enam protsessimudelit ning konstrueerib neist ühe kon-

solideeritud protsessimudeli, mis sisaldab kõikide sisendmudelite käitumist.

Selline lähenemine võimaldab analüütikutel hallata korraga tervet pere-

konda sarnaseid mudeleid ning neid muuta sünkroniseeritud viisil. Teine

lähenemine, alamprotsesside ekstraktimine, sisaldab endas sagedasti esi-

nevate fragmentide identifitseerimist (protsessimudelites kloonide leidmist)

ning nende kapseldamist alamprotsessideks.

Meetodid protsesside ühildamiseks ning neist kloonide leidmiseks on

prototüpiseeritud ning allalaetavad eraldi rakendustena ja/või integreeritud

protsessijuhtimise süsteemidesse. Meetodid on valideeritud kasutades suuri

äriprotsessimudelite repositooriume erinevatest domeenidest. Protsesside

ühildamise tööriista on kasutatud kindlustusfirma juhtumianalüüsis.

Dissertatsioon koosneb viiest peatükist. Esimene peatükk on sissejuha-

tus, milles antakse ülevaade probleemist ja selle üldisest taustast – popu-

laarsematest modelleerimise notatsioonidest ning algoritmidest, mida saab

kasutada graafi kujul olevate mudelite võrdlemiseks. Peatükid 2, 3 ja 4 on

seotud avaldatud artiklitega.

Artiklite kokkuvõtted on jagatud järgmisestesse teemadesse:

• Peatükk 2: Protsessimudelite ühildamine kloonide ekstrak-

timise teel – refereerib artiklit “Clone Detection in Repositories

of Business Process Models”, kus kirjeldasime meetodit äriprotses-

simudelite indekseerimiseks, mis aitab kaasa protsessimudelite repos-

itooriumist kiirele korduvate protsessifragmentide leidmisele.
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• Peatükk 3: Protsessimudelite sarnasuse leidmine – kirjeldab ar-

tiklite “Similarity of Business Process Models: Metrics and Evalu-

ation” ja “Aligning Business Process Models” tulemusi. Artiklites

uurisime ning võrdlesime erinevaid meetodeid äriprotsessimudelite

sarnasuste leidmiseks ning joondamiseks.

• Peatükk 4: Protsessimudelite ühildamine konfigureeritud mu-

delisse – kirjeldab artiklis “Merging Business Process Models” tutvus-

tatud meetodit äriprotsesside ühildamiseks agregeeritud mudelisse.

Artiklite kokkuvõtetele järgneb inglisekeelne dissertatsiooni kokkuvõte,

lühendite nimekiri, kirjanduse loetelu ning eestikeelne dissertatsiooni kokku-

võte.
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