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BACKGROUND: Combining computational toxicology with ExpoCast exposure estimates and ToxCast™ assay data gives us access to predictions of
human health risks stemming from exposures to chemical mixtures.

OBJECTIVES: We explored, through mathematical modeling and simulations, the size of potential effects of random mixtures of aromatase inhibitors
on the dynamics of women's menstrual cycles.
METHODS:We simulated random exposures to millions of potential mixtures of 86 aromatase inhibitors. A pharmacokinetic model of intake and disposi-
tion of the chemicals predicted their internal concentration as a function of time (up to 2 y). A ToxCast™ aromatase assay provided concentration–
inhibition relationships for each chemical. The resulting total aromatase inhibition was input to a mathematical model of the hormonal hypothalamus–
pituitary–ovarian control of ovulation in women.
RESULTS: Above 10% inhibition of estradiol synthesis by aromatase inhibitors, noticeable (eventually reversible) effects on ovulation were predicted.
Exposures to individual chemicals never led to such effects. In our best estimate, ∼ 10% of the combined exposures simulated had mild to cata-
strophic impacts on ovulation. A lower bound on that figure, obtained using an optimistic exposure scenario, was 0.3%.

CONCLUSIONS: These results demonstrate the possibility to predict large-scale mixture effects for endocrine disrupters with a predictive toxicology
approach that is suitable for high-throughput ranking and risk assessment. The size of the effects predicted is consistent with an increased risk of
infertility in women from everyday exposures to our chemical environment. https://doi.org/10.1289/EHP742

Introduction
Concern is growing worldwide over the negative human health and
environmental impacts of chemical pollutants that can interfere
with the production, metabolism, and action of natural hormones,
the so-called endocrine-disrupting chemicals (EDCs). In humans,
EDCs have been linked to reproductive disorders (Sweeney et al.
2015), abnormal or delayed development in children (Schug et al.
2015), changes in immune function (Rogers et al. 2013), and cancer
(Birnbaum and Fenton 2003). Exposure to mixtures of EDCs may
result in effects that can depart frommere summation (Kortenkamp
2007), and human subgroups (e.g., women) may not be sufficiently
protected against mixtures of EDCs by current regulatory limits
(Kortenkamp2014).

Each menstrual cycle in women involves hormonal regulation
of follicular growth and maturation resulting in ovulation of a sin-
gle oocyte (Falcone and Hurd 2013). The cycle is controlled by
coordinated stimulations and inhibitions along the hypothalamus–
pituitary–ovarian axis. Gonadotropin-releasing hormone (GnRH),
secreted by the hypothalamus, stimulates the secretion of gonad-
otropins [follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH)] by the anterior pituitary gland. Those hormones, in
turn, regulate the secretion of ovarian hormones, such as estradiol

(E2) or progesterone (P4). Exposures to EDCs that interfere
directly or indirectly with any of these hormones can eventually
induce infertility or other pathological outcomes. Aromatase is
critical because it irreversibly converts testosterone to E2 and
androstenedione to estrone, maintaining the dynamic balance
between androgens and estrogens.

The objective of the present work was to explore predictively
the effects of exposure to large-scale (i.e., potentially real-life)
mixtures of aromatase inhibitors on the dynamics of menstrual cy-
cling in women. We input exposure estimates from ExpoCast
(Wambaugh et al. 2013) and biological effect data fromToxCast™
(Dix et al. 2007) to coupled pharmacokinetic (PK) and ovarian
cyclemodels; this provided a quantitativemechanistic link between
exposure tomixtures of EDCs and their potential adverse effects on
themenstrual cycle inwomen.We compared the expected effects of
exposures to single EDCs, as is usually considered by risk assess-
ment provisions in different regulations, with estimated effects of
cumulative and concurrent exposures.

Methods

Workflow Overview
The overall computational workflow is pictured in Figure S1.
Briefly, after selecting the chemicals of interest, we sampled mil-
lions of random mixtures of chemicals using the exposure esti-
mates provided by ExpoCast (Wambaugh et al. 2013). Both
constant and time-varying exposure scenarios of an adult woman
were considered. A pharmacokinetic model of intake and disposi-
tion was then used to estimate the blood concentration (over 2 y)
for each chemical present in each mixture. The resulting aroma-
tase activity inhibition was estimated using the Hill's dose–
response model parameters provided by ToxCast™ (Dix et al.
2007). A mathematical model of the hypothalamus–pituitary–
ovarian hormonal events [based on a study by Chen and Ward
(2014)] was used to predict the levels of E2, P4, and other quanti-
ties characterizing the ovarian cycle, for a reference cycle and
following exposure to the mixtures generated. Monte Carlo
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sampling (Bois et al. 2010) was used to propagate uncertainties
in exposure, kinetics, and dose–response relationships up to ovar-
ian cycle perturbation.

Databases, Chemical Selection, and Mixture Sampling
ExpoCast (Wambaugh et al. 2013) provides exposure estimates,
with measures of uncertainty, for 1,936 chemicals. Those expo-
sure estimates were obtained using far-field, mass-balance human
exposure models (USEtox® and RAIDAR).

In ToxCast™ (11 December 2013 release), the Tox21-
aromatase-inhibition assay is a cell-based assay measuring
CYP19A1 (aromatase) gene activity via a fluorescent protein
reporter gene. Chemicals acting on aromatase mRNA synthe-
sis, degradation, or translation, or on aromatase itself, should give
positive results in this assay (Chen et al. 2015). For each chemical
x assayed, ToxCast™ provides the geometric mean and standard
error for the parameter values AC50,x (half-maximal response), Wx
(exponent), Bx (baseline value) and Tx (maximum value) of a Hill
function fitted to the concentration–inhibition data (scaled using
the positive and negative controls' data):

%Inhibition=Bx + Tx −Bxð Þ CWx
x

ACWx
50,x +CWx

x
: [1]

In ToxCast™, 1,102 chemicals are identified as aromatase
inhibitors by the Tox21-aromatase-inhibition assay (on MCF-7
human breast cells) with a fitting that “mate basic requirements
of Hill model with some minimal confidence in T and B.”
Among those, 256 chemicals (matching either by CAS number or
by chemical name) also had exposure estimates in ExpoCast.
However, cytotoxicity has been shown to induce many false posi-
tive results in ToxCast™ (Judson et al. 2016). Of the 256 chemi-
cals mentioned above, we kept only the 86 that had an AC90
(90% of maximal response) for aromatase inhibition lower than
their cytotoxicity AC10 (10% of maximal response) (as measured
by the ToxCast™ proliferation decrease assay on T47D human
breast cells). The virtual mixtures generated included all of those
86 chemicals.

Exposure Modeling
ExpoCast provided the molecular mass, geometric mean, and
lower and upper 95% confidence limits of the exposure rate
(milligrams per kilogram per day) for each chemical present in
the randomly generated mixtures. For constant exposure model-
ing over 10 mo, we sampled a rate for each chemical from the
corresponding log-normal distribution, but with a standard devia-
tion (SD) scaled by the square root of the number of days of ex-
posure simulated (because a constant exposure rate should be a
time average level in that case) and converted it to micromoles
per kilogram per minute.

More realistic time-varying exposures over a 2-y period were
also modeled [similarly to the report of Bertail et al. (2010)]
using exposure windows of random length and intensity. We first
sampled the number n of exposure windows for each chemical
in the mixture from a scaled exponential distribution (with a
rate parameter equal to 5). That yielded on average 145 expo-
sure events over 2 y (median: 100 events, first quartile: 40
events, third quartile: 200 events). The n exposures’ start and
end times were sampled uniformly over the 2-y period. The ex-
posure rate during each of the n exposure windows was ran-
domly sampled from the log-normal distribution given by
ExpoCast, with an SD scaled by the number of days of the ex-
posure window considered (or unscaled if the exposure lasted
less than a day).

To obtain a lower bound on the effect of mixtures, we simi-
larly simulated random nonoverlapping exposures to the 86
EDCs selected (i.e., each person was exposed to the 86 chemi-
cals, in random order, at random times, but to only one chemical
at a time).

Pharmacokinetics Modeling
For each chemical in each mixture, a one-compartment PK model
was used to estimate its internal concentration (in micromoles) at
steady state in the case of constant oral exposure or at any point
in time in the case of varying oral exposures. Steady-state internal
concentrations for chemical x were calculated as:

Cx,ss =
Fx ×Ex

Ke,x
, [2]

where Fx is the bioavailability of x (unitless), Ex is its exposure
rate (in micromoles per kilogram per minute, sampled as indi-
cated above), and Ke,x is its total body clearance rate constant
(per minute). A body density of 1 was assumed.

For time-varying exposures, internal concentrations were
obtained as a function of time by numerical integration of the fol-
lowing differential over a 2-y period (with an initial value set to
zero):

oCx

ot
=Fx ×Ex −Ke,x ×Cx: [3]

We used quantitative structure-activity relationships (QSAR)
to obtain central estimates of Fx and Ke,x for each of the 86 aro-
matase inhibitors considered. The robustness of the prediction
was evaluated by examining compounds from the training set
similar to the target substances, together with literature data and
references.

Fx central estimates were obtained at several oral dose levels
and were linearly interpolated between dose levels as needed.
Beyond the dose rates of 0.001 to 10 mg=d, the Fx value at the
closest bound was used.

To take into account the uncertainty affecting the QSAR-
estimated PK parameters, we randomly sampled F values from
beta distributions (naturally bounded between 0 and 1), with pa-
rameters calculated such that the distribution modes corre-
sponded to the interpolated value of Fx with a coefficient of
variation (CV) of 20% (for null Fx modes, a and b were set to 1
and 50, yielding a median at 0.01, a first quartile at 0.006, and a
third quartile at 0.03, approximately). Ke,x values were log-
normally sampled with a geometric mean equal to the central
estimates obtained by QSAR and a geometric SD corresponding
to a factor of 3.

Ovarian Cycle Model
We adapted the menstrual cycle model presented by Chen and
Ward (2014). The model describes the inhibitory and stimulatory
effects of hormones E2 and P4 on the hypothalamus–pituitary
axis in women (Figure 1). The equations and definitions of all pa-
rameters used in the model are given in the Supplemental
Material (see “Menstrual cycle model equations”; see also Tables
S3 and S4). In the original model, E2 and P4 were assumed to be
instantaneously in equilibrium between blood and the ovaries.
Instead, we described the kinetics of E2 and P4 using differential
equations (Equations 15–19 in the Supplemental Material,
“Menstrual cycle model equations”). That modification had prac-
tically no impact on the time course of the model variables during
a normal cycle [equilibrium between blood and ovaries is fast, as
assumed by Chen and Ward (2014)], but it allowed us to
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coherently integrate the dynamic aspect of estradiol synthesis in-
hibition by EDCs. The three additional parameters (blood and
ovarian volumes, ovarian blood flow) were obtained from the lit-
erature (see Table S3).

An additional variable, the ratio of disrupted over basal E2
synthesis rate constants (EDCYP19), was introduced to link the in-
ternal doses of chemicals in mixtures to aromatase inhibition.
EDCYP19 was calculated using Hill’s model, parameterized with
the chemical-specific values provided by ToxCast™, as a cumu-
lative product of remaining activity for each of the m chemicals
of the mixture considered:

EDCYP19 =
Yx¼m

x¼1

1−
Tx

100 ACWx
50,x +CWx

x

� �
0
@

1
A: [4]

For constant exposures, Cx was set to the steady-state internal
concentrations Cx,ss. For time-varying exposures, Cx was com-
puted by integration as explained above. The parameter Bx was set
to zero because a positive inhibition with no dosage would not
make sense. AC50,x, Wx, and Tx values were randomly sampled
using the mean and standard error provided by ToxCast™. AC50,x
was sampled from a log-normal distribution (its logarithm is
actually the ToxCast™ fitted value). Wx and Tx were sampled
from truncated normal distributions. Truncation was from 0 to 10
for Wx (values beyond 10 would be found for some chemicals for
which Wx is poorly identified, but have no biological meaning).
Truncation was from 0 to 100 for letrozole's Tx (the positive con-
trol). For the other chemicals, truncation was from 0 to 10,000

over Tx for letrozole to properly rescale the ToxCast™ Tx values
between 0 and 100.

EDCYP19 was entered as an input to the ovarian cycle model,
which was then solved to obtain the time profile of its output var-
iables over 2 y of simulated time. For constant exposures, we
computed the square root of the sum of the squared Euclidean
distances between a reference E2 concentration (EDCYP19 set at
zero) and the perturbed concentrations (at a fixed set of times) as
a summary measure of disruption.

Software Used
The ACD/Labs Percepta platform modules ACD/Oral Bioavail-
ability and ACD/PK Explorer were used for the prediction of oral
bioavailability (F) and the total body clearance rate constant (Ke),
respectively (see Supplemental Material, “PK modules of ACD/
Labs”; see also Table S1 and Figures S2 and S3). GNU MCSim
v5.6.5 (www.gnu.org/software/mcsim) (Bois 2009) was used to
build the ovarian cycle model. R v3.1.1 (R Development Core
Team) with the parallel, deSolve, and EnvStats packages was
used for database processing, numerical integration of the mod-
els, and graphics.

Results

Estimates of Internal Dose
The relationship between constant exposure rates and steady-
state internal concentrations for the 86 EDCs considered indicates
that exposures ranged from 10−8lmole=kg=d to 10−3lmole=

Figure 1. Regulatory pathways of the human menstrual cycle as implemented in the model. During the follicular phase (1: germ cells; 2: developing follicle;
3: mature follicle; 4: ovulation; 5: corpus luteum formation; 6: corpus luteum degradation), negative feedback by estradiol (E2) reduces follicle-stimulating hor-
mone (FSH) secretion, leading to the selection of one follicle for ovulation. Gonadotropin-releasing hormone (GnRH) secretion is promoted by E2 and inhib-
ited by progesterone (P4), inducing a luteinizing hormone (LH) peak and consecutive ovulation. E2 is mainly produced by follicles and corpus luteum and P4
by corpus luteum.
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kg=d and that the resulting steady-state internal concentrations
ranged from 10−13lM to 10−3lM (see Figure S4). The exposure
rates and pharmacokinetic parameters were Monte Carlo sampled
as described above. For any single EDC, uncertainty is approxi-
mately a factor of 10 for exposures and approximately a factor of
1,000 for the resulting internal concentrations. For time-varying
exposures, Figure S5 shows an example of a simulated random
2-y time course of internal concentration for lindane. Such pro-
files were obtained for each chemical in each simulated mixture.

Cycle Model Behavior
Our implementation of the ovarian cycle model proposed by Chen
and Ward (2014) correctly reproduces their results. Human data
from McLachlan et al. (1990) and Welt et al. (1999) on LH, FSH,
E2, and P4 normal cycles are correctly simulated except for
McLachlan FSH data, for which the baseline levels are not well
matched. There is a large intra- and inter-subject variability in hor-
monal levels across women in those data sets (see Figure S6). We
took the model-simulated normal cycling of E2 as the “reference
cycle” in the following. Constant exposure scenarios result, at
steady state, in a constant level of aromatase inhibition. In that case,
perturbation depends only on that parameter (according to the
model assumptions), so the distance between the perturbed and ref-
erence cycles is a usefulmeasure of effect (see Figure 2). As aroma-
tase inhibition increases, cycles become increasingly perturbed and
exhibit chaotic features (hence the misalignment of the points in
Figure 2). At 5% inhibition (95% of normal aromatase activity),
cycles are shortened, baseline levels change little, and peak levels
either increase or decrease less than proportionally except for LH.
Simply put, the regulations dampen the effect of perturbation. At
∼ 10% inhibition, LH peaks disappear after approximately five
cycles, and a major bifurcation in cycle patterns occurs: cycles are
further shortened, baseline levels are much increased (doubled for
E2 and P4, for example, even though E2 synthesis by aromatase is
decreased), and peak levels mostly decreased; E2 distance to nor-
mal increases up to amaximum (Figure 2). At higher inhibition lev-
els, the cycles increasingly dampen and disappear completely
between 30% and 40% inhibition (see Figures S7–S10). Overall,
according to this model, having ∼ 10% constant inhibition of aro-
matase activity in vivo leads to perturbations of the cycle, which is
still under control and should be compatible with normal reproduc-
tive function. Beyond 10% inhibition, an actual disruption of the
system seems to occur.

Effects of Single Chemicals
We first simulated 1,000,000 constant exposures to each of the 86
chemicals considered, taken individually. In that case, despite
accounting for uncertainty in exposure levels and dose–response
parameters, none induced >1% aromatase inhibition. Hence, none
of those chemicals alonewas able to induce a significant disruption
of the ovarian cycle. Figure 3 places those chemicals on a mapwith
the slope W of the Hill dose–response curve at AC50 and the log-
margin of exposure as coordinates. The margin of exposure was
defined as the ratio of the 97.5th percentile of internal concentra-
tions overAC50. The log10-margins of the chemicals studied ranged
from −10 to −1:8, indicating that for all chemicals, the high end of
internal exposure concentrations was at most 1% of AC50. In that
case, Equation 1 shows that the logarithm of aromatase inhibition is
approximately equal to the product ofW times the log-margin of ex-
posure. The color background of the map codes for the resulting
risk index (i.e., the log10-inhibitions) and ranges from<−2 (1%) to
approximately −80 (10−78 %), much too low to elicit changes in
ovarian cycles such as those in Figure 2. Therefore, no effects can
be expected from typical exposures to those chemicals when

Figure 2. Euclidean distance between an estradiol (E2) normal cycle and a per-
turbed cycle as a function of aromatase inhibition at steady state. Distance is
computed over 2 y based on7,301 timepoints (one every 144min).

Figure 3.Map of the aromatase inhibitors studied over a plane defined by
dose–response slope W and log-margin of exposure (see text). Colors vary
linearly with powers of 10 of aromatase inhibition resulting from W and
margin of exposure combinations, from red (10−2) to blue (10−80). For the
chemicals–numbers correspondence, see Table S1.

Table 1. Top-ranking chemicals according to their individual risk indices.
Those chemicals are in the top left corner of Figure 3.

ExpoCast name CAS number Risk indexa

Letrozole 112809-51-5 −2:99
Estrone 53-16-7 −3:41
Fulvestrant 129453-61-8 −4:30
Triflumizole 68694-11-1 −4:81
2,4,7,9-Tetramethyl-5-decyne-4,7-diol 126-86-3 −5:11
n-Methyl-2-pyrrolidone 872-50-4 −5:49
Rhodamine 6G 989-38-8 −5:51
Anastrozole 120511-73-1 −6:04
Fenvalerate 51630-58-1 −6:05
Imazalil 35554-44-0 −6:31
aRisk index=W × log10ðE95=AC50Þ, where E95 is the 95th percentile of the exposure
values sampled, W is the Hill exponent, and AC50 the half-maximal response.
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considered alone. Table 1 gives the list of the 10 chemicals for
which individual risk is the highest. Note that letrozole is the refer-
ence chemical for the Tox21 aromatase inhibition assay, which is
consistent with its high rank. The others are found in therapeutic
drugs, agrochemicals, food contaminants, consumer products, and
othermaterials.

Effects of Mixtures of Chemicals
We generated 1,000,000 hypothetical mixtures of the 86 aroma-
tase inhibitors studied and evaluated their global effect on E2
synthesis and the resulting ovarian cycle disruption. Figure 4
shows a histogram of the resulting inhibition levels. Depending
on the (random) composition of the mixtures, and given the
uncertainties on exposures and effect parameters, responses
ranged from 0% to 100% inhibition, but on average were very
high. Such inhibition levels may lead to perturbation of the ovar-
ian cycle, according to the model.

Real-life exposures to chemicals do not usually occur at con-
stant levels. We simulated time-varying exposures (see Figure
S5) to investigate the resulting effects on aromatase inhibition
and ovarian cycle disruption. To define a lower bound on mixture
effects, we first simulated fluctuating levels of exposure to EDCs,
but without concomitant exposures to them. Interactions can still
occur in that case because of storage in the body or because of
persistent effects on the ovarian cycle. Figure 5 shows that only
0.3% of the simulated exposures caused >10% average aromatase
inhibition. The maximum inhibition found was close to 50%.
More realistic exposure scenarios do not prohibit concomitant
exposures. In that case (Figure 6), the distribution of simulated
time-averaged inhibitions is shifted toward greater effects, and
average inhibitions >20% are not uncommon (yet they do not
reach the extreme levels observed in Figure 4). Because inhibi-
tion changes with time, the distances between normal and per-
turbed cycles do not follow the pattern shown in Figure 2
(distances can be much larger), and the link between estradiol in-
hibition and cycle disruption is harder to establish. Examination
of the time course of the dominant follicle mass (F) for 1,000 ran-
dom simulations of mixtures of the 86 chemicals shows that per-
turbed cycles typically have a baseline shifted up (which may or

may not return to normal) and an irregular succession of peaks
(corresponding to ovulation) (Figure 7). The 1,000 simulations
examined can be classified into four groups. In group 1 (17% of
the samples), the cycles are practically normal with no baseline
shifts and at most one or two missing ovulations. In group 2
(73% of cases), baseline shifts are always present but without
major irregularities in ovulation. Group 3 (7% of cases) has sys-
tematic baseline shifts and frequent or prolonged anovulations.
Such cycling would clearly impair fertility. In group 4 (3% of
cases), disruption is catastrophic or total. Figure S11 shows the
corresponding plots for E2 time courses. Judging by these plots,
E2 profiles can have a shifted baseline even in normal ovulation
profiles, but otherwise, the patterns are rather similar.

Figure 4. Histogram of the average percent inhibition of estradiol (E2) syn-
thesis by random mixtures (n=1,000,000) of 86 aromatase inhibitors at con-
stant exposure levels.

Figure 5. Histogram of the average percent inhibition of estradiol (E2) syn-
thesis by random mixtures (n=1,000,000) of 86 aromatase inhibitors with
time-varying nonconcomitant exposures. For visibility, the first histogram bar
has been truncated (it represents ∼90,000 simulations). Note: E2, estradiol.

Figure 6. Histogram of the average percent inhibition of estradiol (E2) syn-
thesis by random mixtures (n=1,000,000) of 86 aromatase inhibitors with
time-varying exposures.
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Discussion
We linked ToxCast™ data and ExpoCast estimates of exposures to
(mixtures of) aromatase inhibitors and estimated their effects on the
ovarian cycle in women. To our knowledge, this is the first applica-
tion of computational toxicology and high-throughput testing to assess-
ment of the combined effects of exposures to a large number of EDCs.

Our approach is predictive, and we had to make many
assumptions and simplifications. ToxCast™ and ExpoCast are
incomplete, and a full inventory of all the EDCs to which women
are exposed is not yet available. Therefore, we were only able to
look at a subset of the potential EDCs. We used human exposure
estimates reported by Wambaugh et al. (2013), who gave sum-
mary statistics for the distribution of exposures to individual
chemicals. This information allowed us to take the correspond-
ingly large uncertainty into account via Monte Carlo simulations.
However, we cannot differentiate between uncertainty and vari-
ability in those exposure estimates, and we cannot identify sub-
groups of sensitive individuals. We cannot even focus on women,
our target population. More sophisticated exposure models
(Isaacs et al. 2014) could help in that respect, but they still deal
only with single chemicals and provide no data or estimates on
coexposures. Depending on age, occupation, socioeconomic sta-
tus, ethnicity, and health condition, we are exposed to different
cocktails of chemicals in our diet, workplace, environment, and

so forth (Tornero-Velez et al. 2012). We modeled coexposures
by random sampling, either at a constant level or, more realisti-
cally, with time-varying exposure profiles and hence with time-
varying mixture complexity. That approach is still imperfect,
and we had to guess about the distribution of the number of expo-
sure windows, for example. We respected the distribution of pop-
ulation exposure levels documented by ExpoCast, but lacking
coexposure information, our estimates might be lower or higher
than in reality. Efforts are ongoing to collect relevant data in, for
example, the European Total Diet Study (Vin et al. 2014). An
analysis of such data (Traoré et al. 2016) shows that among
153 synthetic chemicals studied in seven typical French diets
(food associations), three are aromatase inhibitors according to
ToxCast™: zearalenone, triadimenol, and lindane. In this regard,
mixtures of ≥86 aromatase inhibitors may seem unrealistic, but
only food contaminants were studied by Traoré et al. (2016).

We searched for the 86 selected aromatase inhibitors in a
database of consumer products marketed in the United States
(Gabb and Blake 2016). Briefly, this database was constructed by
scraping product information from online retailers and currently
contains 53,743 products. Twelve of the 86 aromatase inhibitors
were detected in 5,701 products (representing 11% of the prod-
ucts in the database). [It is worth noting that none of the 86 aro-
matase inhibitors is among the volatile fragrance chemicals

Figure 7. Typical simulated time profiles of dominant follicle mass during time-varying exposures to random mixtures of 86 aromatase inhibitors. Four classes
(rows) of increasing disruption are illustrated (see text). Left column: least disrupted profile in its class; Right column: most disrupted. Responses range from
regular ovulation (1A) to complete disruption (4B).
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detected in consumer products (Steinemann 2015; Steinemann
et al. 2011), so aromatase inhibitors are unlikely to be hidden in
generic “fragrance” or “flavor” designations on consumer product
labels.] Two-way combinations of these chemicals were found in
220 products, and the three-way combination of carminic acid,
FD&C blue no. 1, and retinol was found in 3 products. These
findings may not seem to indicate a large problem, but it is an
incomplete view of combinatorial exposure. Consider that 3,660
of 4,501 makeup products (81%) in the database contain at least
one of the aromatase inhibitors evaluated (carminic acid, retinol,
and artificial colors are common ingredients in makeup) and that
a typical consumer uses several products each day, possibly even
several makeup products. This increases the likelihood of com-
bined exposures. In addition, no readily available data address asso-
ciations for all near- and far-field exposures for the 86 aromatase
inhibitors, which are used in industrial or agricultural processes
(18), consumer product formulations (12), biocidal applications
(38), and pharmaceutical drugs (18). These usage categories are
likely to be independent, so focusing on a few known associations
would only give partial answers and would underestimate global
risk. We are striving for a more extensive picture. To address the
potential overestimation of mixture effects when generating purely
random associations, we present the results of a very optimistic ex-
posure scenario (with no coexposures at all). This scenario gives a
lower bound estimate: 0.3% of exposures would lead to >10% aver-
age aromatase inhibition in women.

ToxCast™ aromatase inhibition data were obtained by expos-
ing cells in vitro. We had no easy way to assess the in vitro
kinetics of the substances assayed, and reconstruction methods
(Armitage et al. 2014) require input data that we did not have.
We assumed that the nominal assay concentrations were those
actually experienced by the cells and that equivalent extracellular
concentrations in vivo would lead to the same levels of aromatase
inhibition. That is a typical assumption, but it is not necessarily cor-
rect (Coecke et al. 2013). To obtain extracellular concentrations
in vivo, we estimated bioavailability and total clearance with
QSAR methods and input them in a simple one-compartment
PK model with oral exposure only (even though inhalation or
dermal exposures might be more relevant). Again, more sophisti-
cated [physiologically based pharmacokinetic (PBPK)] models
and additional PK data would give more precise and more accu-
rate predictions (El-Masri et al. 2016; Wambaugh et al. 2015).

On the effect side, we only considered chemicals for which
the ToxCast™ dose–response parameters were estimated with
reasonable confidence. This was a conservative choice, and addi-
tional chemicals would have been included if more relaxed crite-
ria had been chosen (at the cost of lower confidence in the
results). A concern with large databases such as ToxCast™ is the
quality assurance for the data provided. Aromatase inhibition
may not be the most sensitive toxicity end point, for example, or
the action may be due to a burst effect of cytotoxicity (Judson
et al. 2016). From the original set of 256 aromatase inhibitors for
which we had exposure estimates and ToxCast™ data, 170 were
excluded based on cytotoxicity. Those were mostly weak inhibi-
tors (data not shown). For the screen, we kept only the 86 sub-
stances that had an aromatase inhibition AC90 lower than their
cytotoxicity AC10 as measured by the ToxCast™ proliferation
decrease assay on T47D human breast cells, a cell type similar to
the MCF-7 used by the aromatase inhibition assays (Aka and Lin
2012). We preferred that screen to the omnibus z-score criterion,
which aggregates cytotoxicity results from different cell types
and species. For the remaining 86 substances, we may still have
downplayed other types of toxicity. Cytotoxicity, it should be
noted, is not a negligible end point, and an evaluation of the cyto-
toxicity of mixtures would be interesting in its own right.

The evidence provided by ToxCast™ is also not perfectly
predictive of in vivo outcomes in humans. For example, the
Tox21 aromatase inhibition assay uses the MCF-7 breast cancer
cell line, which might not respond as normal ovary cells would.
In addition, our model of the ovarian cycle (Chen and Ward
2014) describes only approximately the complex dynamic inter-
actions between ovarian follicular growth and hormonal homeo-
stasis. The hypothalamus and pituitary gland are treated as a
single compartment, and the description of the central hormonal
controls is simplified. More complex models have been proposed
(Hendrix et al. 2014), but they still make many assumptions and
do not seem to offer dramatically better performance. In addition,
we note that we treated the parameters of the ovarian cycle as
constant, when in fact they are affected by both uncertainty and
variability in response to EDCs, adding to the tails of the distribu-
tions of our results. However, we did not have sufficient informa-
tion to define statistical distributions for those parameters.

In terms of results, an obvious question is that of the “bad”
actors, that is, the chemicals responsible for the predicted effects.
The answer is provided by Figure 3 (and partially by the top-ten
Table 1) because here, the impact of individual chemicals on aro-
matase is only conditioned by internal dose and inhibition po-
tency. Figure 3 is a useful prioritization tool. It is rather simple to
construct and does not require running the ovarian cycle (the PK
model is needed). However, it does not give an answer in terms
of magnitude of effect at the subject level. For that, we need the
whole-body ovarian cycle model.

One of the consistent features of E2 cycle perturbation that
we found is that the baseline (interovulation) levels of E2 tend to
increase (to approximately twice the normal level) in response to
aromatase inhibition (which implies a lower rate of E2 synthesis
by aromatase). That counterintuitive feature of the complex cycle
dynamic is induced by central nervous system (CNS) feedback.
Beyond a certain level of inhibition, the control of E2 remains in
effect (peaks are still observed) but moves the baseline to a higher
value. We do not have confirmation that this is the case in women
exposed to EDCs, but that would be interesting information and a
potential biomarker of effects. We also note that we lack good
measures of perturbation for such complex systems. We used vis-
ual inspection to classify cycles for 1,000 time-varying exposures
(Figure 7). Perturbation analysis of more cycles would require
more sophisticated tools. Finally, many other perturbation path-
ways exist for ovarian cycle disruption that were not accounted
for (e.g., actions mediated by the androgen or estrogen receptor).
The simplicity of our model also precludes investigation of syner-
gistic or antagonistic effects that could result from metabolic or
toxicodynamic interactions (Cheng and Bois 2011).

Conclusion
High-throughput data collection requires high-throughput analy-
sis, extrapolation, and decision tools if we want to avoid a bottle-
neck and accumulation of unused data. We developed such a
tool, making use of our increasing understanding of toxicity
mechanisms.

This exercise in prediction suggests large data gaps. Our
knowledge of exposure to actual mixtures is minimal except in a
few cases (e.g., tar, tobacco smoke). For the chemicals studied
here, quantitative knowledge of their routes of exposure and PK
parameters is also lacking. Our knowledge of endocrine disrup-
tion mechanisms is still in its infancy. We should check, for
example, the inhibition potential of the 86 substances studied
here with better tests and with better characterization of the
in vitro fate of the chemicals. Nevertheless, we now have a priori-
tized list and some reason to deepen our investigations. We
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should also research relevant human biomarkers of exposure and
effects for validation of the results and for better actions.

The basic assumption of regulatory practice and most risk
assessments is that keeping individual chemicals under control
with reasonable safety factors will keep their joint effects at bay.
That may not be the case. Some women have various levels of
ovarian dysfunction that can be caused by various internal and
external factors. Environmental chemical exposures add on to
that background (National Research Council 2009; Zeise et al.
2013). We found that even though individual chemicals are likely
“safe” as used now, their joint effects, when they exceed a few
dozen in number, can lead to severe disruption of the ovarian
cycle in women in a sizable number of cases. Obviously, this
study does not provide definite proof that some fertility problems
can be caused by real-life exposures to EDCs. Nevertheless, risk
assessment practice and regulations should start thinking of the
problem of mixtures not as an unsolvable one, but as needing a
clearly laid out research agenda. In the case in point, the simple
graphical map of internal dose and potency we propose could al-
ready be used for prioritization. Given the magnitude of the range
of the predicted effects on ovarian cycling, while waiting for con-
firmation of our results, a cautionary attitude should be adopted.
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