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In modern production, milling is considered the widespread cutting process in the formatting
field. It remains important to study this manufacturing process as it can be subject to some
parasitic phenomena that can degrade surface roughness of the machined part, increase tool
wear and reduce spindle life span. In fact, the best quality work piece is obtained with a
suitable choice of parameters and cutting conditions. In another hand, the study of tool
vibrations and the cutting force attitude is related to the study of bearings as they present
an essential part in the spindle system. In this work, a modeling of a High Speed Milling
(HSM) spindle supported by two pair of Active Magnetic Bearings (AMB) is presented. The
spindle is modeled by Timoshenko beam finite elements where six degrees of freedom are
taken into account. The rigid displacements are also introduced in the modeling. Gyroscopic
and centrifugal terms are included in the general equation. The bearings reaction forces are
modeled as linear functions of journal displacement and velocity in the bearing clearance.
A cutting force model for peripheral milling is proposed to estimate the tool-tip dynamic
responses as well as dynamic cutting forces which are also numerically investigated. The
time history of response, orbit, FFT diagram at the tool-tip center and the bearings dynamic
coefficients are plotted to analyze dynamic behavior of the spindle.
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1. Introduction

During the last years, High Speed Milling (HSM) process have become one of the most popular
in the industry of shaping and producing mechanical parts and molds. It allows having complex
forms thanks to the variety of cutting tools composed of several cutting edges and driven by
rotational motion. There are multiple parameters that influence the forces acting on the cutter.
Their knowledge and prediction become important in order to favor the adaptation of cutting
tools conditions. The last researches were concentrated on studying the milling spindle with
different types of bearings, especially AMB as they present many advantages deduced by Knospe
(2007). He showed that AMB were characterized by their accuracy, high robustness to shock and
high rotational speed, which was also proved by Kimman et al. (2010) and Gourc et al. (2011).
Also, among the special feature of AMB, the possibility to vary the number of electromagnets
is treated in literature. Indeed, Bouaziz et al. (2011, 2013) studied that variation effect on the
dynamic behavior of a rigid rotor with a misalignment defect. They demonstrated that the
vibratory level of the rotor decreased with an increase in the electromagnets number. Belhadj
Messaoud et al. (2011) presented the effect of the air gap and rotor speed on electromagnetic
forces. From the results obtained in that work, they concluded that the electromagnetic forces
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intensity increased when the air gap decreased, but it remained unresponsive according to the
rotor speed level.

In addition, it is possible to use various components of AMB such as sensors and feedback
currents to predict cutting forces. In fact, Auchet et al. (2004) expanded a new method to
measure cutting forces by analyzing command voltages of AMB. This cutting force has an
influence on dimensional accuracy due to the tool and work piece deflection in peripheral milling.
For this, a theoretical dynamic cutting force model was presented by Liu et al. (2002) including
the size effect of not deformed chip thickness, the impact of the effective rake angle and the chip
flow angle. Numerical simulation and prediction of cutting forces in five-axis milling processes
with cutter run-out and based on tool motion analysis was presented by Sun and Guo (2011).
The predicted cutting forces illustrate good accordance with experimental results that the tool
orientation angle and cutting depth vary continuously for both the specified cutting conditions
and milling cases. Relative to classical methods, that proposed method permits one to predict
cutting forces with a higher accuracy, and it is able to be directly used in five-axis milling. Lai
(2000) studied the influence of dynamic radii, cutting feed rate, and radial and axial depths of cut
on milling forces. He concluded that the chip thickness presented the most significant influence.
In the same context, Klocke et al. (2009) investigated the influence of cutting parameters in micro
milling on the surface quality and tool life such as cutting speed and feed per tooth. As a results,
they showed that the feed per tooth and feed rate extremely affected the surface quality in micro
milling. In fact, to increase the surface quality, it is necessary to decrease the feed rate value.
From an analytical prediction of the cutting force, Fontaine et al. (2007) presented a method to
optimize the milling tools geometry. The influence of geometrical parameters like helix angle, rake
angle and tool tip envelope radius was studied. The author demonstrates the ability of that type
of model to provide optimization criteria for the design and selection of cutting tools. Budak
(2006a,b) presented the milling force, workpiece and tool deflection, form error and stability
models. From the used method, he checked the process constraints and selected the optimal
cutting conditions. Concerning the machining process stability, Faassen et al. (2003) developed
a dynamic model for milling process in which the stability lobes were generated. This model
structurally predicts the stability limit slightly too conservative. Another new to the dynamical
modeling of AMB to identify machining stability was presented by Gourc et al. (2011). From that
model, the authors concluded that the machining process stability was sensitive to the position
of nodes of mode of the flexible rotor. Also, they confirmed that it was important to take in
consideration strong forced vibrations as they could cause loss off safety. The stability of a high
speed spindle system in the presence of the gyroscopic effect was investigated by Movahhedy
and Mosaddegh (2006). In that study, it has found that the stability lobe predictions based on
stationary FRFs were not conservative when the gyroscopic effects were respectable and that
the gyroscopic effects became significant only at very high speeds compared with conventional
speeds. Also, Gagnol et al. (2007) developed and experimentally validated an integrated spindle
finite-element model in order to characterize the dynamic behavior of a motorized machine tool
spindle. They demonstrated the dependence of dynamic stiffness on spindle speed. Using this
model, a new stability lobes diagram was proposed. A research performed by Zatarain et al.
(2006) showed that mill helix angle could play an important role in instability due to repetitive
impact driven chatter. In order to predict the occurrence of chatter vibrations, Lacerda and Lima
(2004) applied an analytical method in which the time-varying directional dynamic milling forces
coefficients were expanded in Fourier series and integrated along width of the cut bound by entry
and exit angles. Wan et al. (2010) proposed a unified method for predicting stability lobes of
the milling process with multiple delays. It was found that feed per tooth had great influence
on the stability lobes when cutter run out occurred.

In this paper, a HSM spindle with AMB is modeled by the finite element method based on
the Timoshenko beam theory and used by Nelson and McVough (1976) and Nelson (1980). Six



Cutting parameters and vibrations analysis of magnetic bearing spindle... 693

degrees of freedom are considered. Rigid displacements are also taken in account (Hentati et al.,
2013). AMB are presented as spring and damper elements. Peripheral milling process is modeled
and cutting forces are formulated. The dynamic response at the spindle tool-tip, cutting forces in
x-, y- and z- directions and the influence of some cutting parameters are predicted. The attitude
of the used AMB is then investigated.

2. Modeling of AMB spindle machining

2.1. Mechanical model of the spindle

The studied spindle model is presented in Fig. 1. The modeling is based on using a new
approach developed by Hentati et al. (2013). This method is based on coupling both elastic and
rigid spindle deformations. So, the shaft is discretized into 23 Timoshenko beam elements with
different circular sections, where six elastic degrees of freedom are taken in account. Six degrees
of rigid motion are also considered. Thus, the gyroscopic effect and centrifugal force will be
taken into account in this study. The unbalance is not treated. The tool holder and cutter are
included as parts of the spindle system in the specifically developed finite element model.

Fig. 1. Modeling of the AMB spindle machining

In this AMB spindle model we make use of a classical bearing configuration. Two radial
AMBs and an axial bearing suspend the rotor in the central position. The AMB consists of four
electromagnets symmetrically placed relative to the rotor. Electromagnetic forces produced by
every pair of electromagnets in the x- and y-directions are presented in the following equation
(Bouaziz et al., 2011)

fj(Ij , uj) = −a

[
( I0 − Ij
e0 − uj

)2
−

( I0 + Ij
e0 + uj

)2
]

j = x, y (2.1)

where uj represents small deformations in the j-th direction and e0 is the nominal air gap
between the shaft and the stator, a is the global magnetic permeability, and it is expressed as
follows

a =
µ0Sn

2I20
4

cos θ

µ0, n, S and θ are respectively permeability of vacuum, windings number, cross sectional area
and half angle between the poles of electromagnets.
A proportional derivative controller (PD) is used to determine the control current expressed

as

Ij = kpuj + kdu̇j j = x, y (2.2)
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where u̇j is the velocity corresponding to the small deformation uj, kp presents the proportional
gain. It is assumed to be in periodic form for better stability and controllability of motion of
the spindle AMB system (Bouaziz et al., 2011, 2013; Amer and Hegazy, 2007)

kp = k0 + k1 cosωt+ k2 cos 2ωt (2.3)

and kd denotes the derivative gain.

In this model and as presented in Fig. 1, the electromagnetic field is modeled by stiffness
and damping coefficients. The nonlinear electromagnetic forces at each bearing can be written
in matrix form as follows (Bouaziz et al., 2011)

[Kij ]

{

ux
uy

}

+ [Cij]

{

u̇x
u̇y

}

=

{

fx
fy

}

(2.4)

where [Kij ] is the bearing stiffness matrix, [Cij ] represents the bearing damping matrix

[Kij ] =

[

Kxx 0
0 Kyy

]

[Cij] =

[

Cxx 0
0 Cyy

]

(2.5)

The axial bearing consists of two magnetic actuators on each side of the thrust element. The
magnetic actuators in this setup are reluctance type actuators having a circular u-shaped core
with a tangentially wound coil. The resulting force, fz of the axial bearing is linearized as

fab = KizIz +Kzuz (2.6)

where Kiz, Iz and Kz are the force current dependencies, the control current of the actuator
and the negative stiffness of the axial bearing respectively, uz is the axial displacement of the
shaft.

2.2. Model formulation of the cutting forces

Figure 2 presents a cross-sectional view of the cutting force model in peripheral milling. The
cutting force acting on the tool and the workpiece vary depending on chip thickness, shock of
engagement, specific cutting pressure and generated vibrations. They appear only when the tool
is in contact with the part (cutting region). The cutting force is characterized by a tangential
component Ft orthogonal to the specific segment of the cutting edge. This force is assumed to
be proportional to the chip thickness and axial depth of the cut. The radial component Fr is
proportional to Ft and orthogonal to both the cutting edge segment and the z-axis. The third
component is the axial forc Fa. This one is typically much smaller than either Ft or Fr and does
not contribute greatly to the bending moment produced on the cutter.

Fig. 2. Cross-sectional view of a peripheral milling process showing different forces



Cutting parameters and vibrations analysis of magnetic bearing spindle... 695

The milling force variation against cutter rotation can be predicted by calculating Ft, Fr
and Fa for different values of φj

Ft = KtapH
(

φj(t)
)

Fr = KrFt Fa = KaFt (2.7)

where H
(
φj(t)

)
is the instantaneous chip thickness, φj(t) is the rotation angle of tooth j, me-

asured from the positive y-axis as shown in Fig. 2. ap, Kt, Kr and Ka are axial depth and the
specific coefficients of the cut.
The resulting chip thickness H

(
φj(t)

)
is composed of a static part (stationary part)Hs

(
φj(t)

)

due to the rigid body motion of the cutter and a dynamic component Hd
(
φj(t)

)
which is caused

by vibrations of the tool at the present and previous tooth periods. Hs
(
φj(t)

)
and Hd

(
φj(t)

)

assume the following form

Hs
(

φj(t)
)

= fz sin
(

φj(t)
)

Hd
(
φj(t)

)
= [ux(t)− ux(t− τ)] sin

(
φj(t)

)
− [uy(t)− uy(t− τ)] cos

(
φj(t)

) (2.8)

where ux(t) and uy(t) represent deflections of the tool-tip at the present time, ux(t − τ) and
uy(t− τ) are deflections of the tool-tip at the previous time, τ is the tooth passing period time,
defined as τ = 60/NZ and N , Z are respectively the spindle speed and the teeth number of the
cutter.
The rotation angle φj(t) is expressed as follows

φj(t) = Ωt+ jΦp j = 0, 1, . . . , Z − 1 (2.9)

where Ω is the angular velocity in rad/s and Φp is the angle between two subsequent teeth (pitch
angle), expressed as Φp = 2π/Z.

2.3. Equation of motion

As the modeling of the spindle is based on the coupling of rigid displacements and small
elastic deformations, the total displacement vector is expressed as follows

Q = [U1, V1,W1, θx1 , θy1 , θz1, . . . , Ui, Vi,Wi, θxi, θyi , θzi ,XA, YA, ZA, αx, αy, αz ]
T (2.10)

i is the number of nodes, (U1, V1,W1, θx1 , θy1, θz1 , . . . , Ui, Vi,Wi, θxi, θyi , θzi) presents nodal di-
splacements, (XA, YA, ZA, αx, αy, αz) are the displacements of rigid motion.
Applying the Lagrange formalism for kinetic and potential energies, the global equation of

motion is

MQ̈+ (G+D+Cb(t))Q̇ + (K+Kb(t))Q = Fc(x,y,z)(t,Q) + fab(t,Q, Q̇) (2.11)

whereM is the global mass matrix, G – the global gyroscopic matrix

M =

[

MF MRF
MTRF MR

]

G = 2Ω

[

GF GRF
−GTRF GR

]

F and R subscripts respectively represent the flexible or rigid part. D = αM + βK presents
the damping matrix numerically constructed as a linear combination of the mass and stiffness
matrix, where α and β are the damping coefficients. Cb(t) is the variable matrix containing the
damping coefficients of bearings

Cb(t) =















0 · · 0 · · 0
· · · · · · 0

· Cxx 0 · · · ·

0 0 Cyy · · · ·

· · · 0 Cxx 0 ·
· · · · Cyy 0
0 · · · 0 · 0
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K is the global stiffness matrix, Kc – the global centrifugal matrix

K =

[

KF 0

0 0

]

−Ω2
[

CF 0

0 0

]

︸ ︷︷ ︸

Kc

Kb(t) is the variable matrix containing the stiffness coefficients of bearings

Kb(t) =















0 · · 0 · · 0
· · · · · · 0
· Kxx 0 · · · ·

0 0 Kyy · · · ·

· · · 0 Kxx 0 ·

· · · · 0 Kyy 0
0 · · · 0 · 0















and Fc(x,y,z)(t,Q) denotes the cutting forces in the x-, y- and z-directions, respectively,

fab(t,Q, Q̇) is the electromagnetic force vector exerted by the axial bearing.

3. Results and discussions

In this Section, simulations are based on the spindle system with parameters listed in Tables 1
and 2. The general dynamic equation is solved by the method of resolution by Newmark coupled
with Newton Raphson.

Table 1. Spindle parameters

Parameter Symbol Value Unit

Permeability of vacuum µ0 4π ·10−7 Wb/Am

Air gap between stator and shaft e0 0.8 mm

Effective cross-sectional area of one electromagnet S 200 mm2

Number of windings around the core n 300 –

Half angle between poles of electromagnet θ 22.5 deg

Bias current I0 3 A

Rotor angular velocity N 20000 rpm

Rotor length L 651.95 mm

Stiffness coefficients Kxx,Kxy,Kyx,Kyy – N/m

Damping coefficients Cxx, Cxy, Cyx, Cyy – N·s/m

Derivative gain kd 42.4 As/m

Proportional gain constant k0 4520 –
k1 14869 –
k2 14869 –

Young’s modulus E 2.1 · 1011 Pa

Density ρ 7.85 g/cm3

Poisson’s ratio ν 0.3 –

Moment of inertia I 0.136 kg·m2

The time responses of the tool tip are plotted in Fig. 3. From Fig. 3a, some transient effects
can be observed during the first cycle while a steady state is achieved after that. Their magnitude
is close. In fact, before the cutter is fully engaged, the arc of engagement increases gradually while
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Table 2. Cutting parameters

Parameter Symbol Value Unit

Feed per tooth fz 0.16 mm

Axial depth of cut ap 5 mm

Tangential cutting coefficient Kt 644 N/mm2

Radial cutting coefficient Kr 0.38 N/mm2

Axial cutting coefficient Ka 0.25 N/mm2

Teeth number Z 2 –

Fig. 3. The time response of the tool tip: (a) displacement of the tool tip, (b) orbit of the tool tip

the cutter is entering progressively in the cutting zone. Consequently, this leads to a gradual
increase of vibrations.

The orbit of the tool tip has an elliptical shape explained by the introduction of flexible be-
arings (stiffness coefficient) that make the system asymmetric. Therefore, we note that vibrations
in the x- and y-directions are different from the elliptic trajectory.

The Fast Fourier Transformation (FFT) diagram for the x-response of the tool-tip with
two teeth at a spindle speed of 20000 rpm is shown in Fig. 4. It is found that two frequencies
govern the behavior of the tool-tip response. The major peak corresponds to the frequency
of 2Fr (666.66 Hz) which occurs with the cutting force frequency. An obvious low frequency
peak, corresponding with the rotation frequency, is also found.

Fig. 4. Response of the tool-tip in the x-direction with 2 teeth
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The dynamic cutting force in the x-, y- and z-directions for a two teeth cutter are presented
in Fig. 5. It can be seen that the cutting force is constant as the cutter is always in contact
with the matter and where the evolution of radial engagement is continuous. All the cutting
components have periodic and sinusoidal behavior with a period of time equal to the half of the
rotation period (0.5Tr).

Fig. 5. Cutting forces in the x-, y- and z-directions as function of time

The following part of the study is devoted to presentation of the impact of some parameters
involved in the cutting forces such as the teeth number, feed per tooth and speed rotation.
Figure 6 presents variation of the cutting forces for different values of feed per tooth: 0.1, 0.2
and 0.3mm. It appears that the components in the x- and y-directions increase with an increase
in the feed. It is worth noticing that when fz = 0.1mm, the maximum value of Fy is greater
than the half value as fz = 0.3mm. This evolution is logic and is explained by the fact that the
feed is involved in the cut section. In fact, if the feed increases, the cutting section also increases
and, therefore, the cutting force increases. This result was found by Liu et al. (2002) who also
revealed that this variation was relative to the size effect of the chip thickness. In addition, we
note that the Fy component rises with a greater rate.

Fig. 6. Predicted cutting forces for different feed per tooth: (a) x-direction, (b) y-direction

Figure 7 shows axial depth of the cut effects the cutting force value. When this parameter
changes, the cutting force vary significantly. It increases when the cutting depth increases. This
raise is explained by the increase of the width of chip. For these values of axial cutting depth,
we find that the cutting forces Fy are always more important than the cutting force Fx.
Figure 8a shows the instantaneous cutting forces for the tooth number Z = 3. It can be seen

from variation of Fy that the cutting operation starts when the second tooth comes out, with
the maximum value reaching 580N.
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Fig. 7. Predicted cutting forces for various cutting depth: (a) x-direction, (b) y-direction

Fig. 8. Cutting force in the x-, y- and z-directions: (a) Z = 3 teeth, (b) Z = 4 teeth

Although the shape of cutting forces is affected and changed compared to that with two
teeth, the distribution is still continuous. This difference is explained by the summation of
cutting forces of teeth in attack with the mutter. So, it is possible that the number of teeth
variation will significantly influence the accuracy of the finished part. Figure 8b also presents
the predicted values of the cutting force for the same conditions but for a four teeth tool. It is
noticed that the shape and values for the cutting force components Fx and Fy are similar to those
of the cutter with three teeth. Also, these levels for the cutting forces, for a four flutes, seems to
be typical for peripheral milling as this result is approximately close to the experimental ones
found by Budak (2006a). The percentage ratio of the difference between the absolute maximum
predicted and measured value relative to the measured value represents an error of 9%.

The variation of dynamic coefficients (Kxx,Kyy) is presented in Fig. 9. It is clear that the
curves have a periodic form with amplitude reaching 1.8 · 107 N/m. The coefficient Kxx is less
important than Kyy, that is why we have obtained in Fig. 3 vibrations in the x-direction more
severe than in the y-direction.

The damping coefficients, presented in Fig. 10, have low amplitude varying from about
−4.1535 · 104 to −4.15345 · 104N·s/m with instability in the beginning.

Figure 11 shows the effect of the nominal air gap on the dynamic coefficients. This result
reveals that the amplitude of both stiffness and damping coefficients decrease with an increase
in the nominal air gap. This result was also proved by Bouaziz et al. (2011).

The impact of the bias current I0 on the dynamic coefficients is presented in Fig. 12. For
different values of I0: I0 = 5A, I0 = 6A and I0 = 6.5A, it is found that Kxx and Cxx rise when
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Fig. 9. Stiffness coefficients of the bottom AMB in the x- and y-directions

Fig. 10. Damping coefficients of the bottom AMB in the x- and y-directions

Fig. 11. Dynamic coefficients variation at the bottom AMB in the x-direction as function of e0

I0 increases. Indeed, equation (2.1) shows that the electromagnetic forces are proportional to the
bias current. Therefore, the damping and stiffness coefficients should be increased to minimize
the fluctuations.

Figure 13 presents variation of the stiffness and damping coefficients for rotational speeds
of N = 20000 rpm and N = 40000 rpm, respectively. We remark that the damping coefficients
increase in a noticeable way relative to the stiffness coefficients. This is explained by the fact
that the vibrations generated with the highest rotational speed should be absorbed and reduced
due to damping. A too small change is noted for the stiffness coefficients at the beginning.
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Fig. 12. Dynamic coefficients variation at the bottom AMB in the x-direction as function of I0

Fig. 13. Dynamic coefficients of the bottom AMB in the x-direction as function of rotation speed

4. Conclusion

This study presents dynamical analysis of a high speed AMB spindle in the peripheral milling
process. The spindle rotor is modeled by finite elements using the Timoshenko beam theory. The
rigid motions are also considered. A mechanistic model of the peripheral milling is presented
including the influence of instantaneous chip thickness. To solve the general equations of motion,
the Newmark coupled with the Newton Raphson numerical method is used. The solution gives
the spindle dynamic response and explains variation of the cutting force. Analyzing this work, we
conclude that the cutting force is related to the cutting parameters introduced in the modeling
such as the effect of thickness of the formed chip, feed per tooth, cutting depth and the number
of teeth in the cutter. So, it is necessary to select a suitable cutter with the determined flute
number in order to obtain an ideal cutting force distribution. This ideality appears first, when the
absolute value of the cutting force perpendicular to the feed direction during the cutting process
is as small as possible; secondly, when the cutting force distribution is continuous. Concerning
the modeling of the bearing, it is clear that the dynamic coefficients are influenced by the air
gap as they increase when this parameter decreases. Also they increase with an increase in the
rotational speed.
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