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We construct an analytical solution to the anti-plane problem of an inhomogeneous bi-
-material medium with the interfacial crack considering sliding friction. The medium is
exposed to an arbitrary normal and shear loading in the longitudinal direction. Using the
jump function method, the problem is reduced to a solution to singular integral equations for
the jumps of displacements and stresses in the areas with sliding friction. Explicit expressions
for displacements, stress intensity factors and energy dissipation are obtained. Critical load
values for determination of the onset of slippage are investigated. The effect of friction and
loading parameters on the size of the slip zone, stress intensity factors and energy dissipation
is numerically analyzed.
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1. Introduction

Contact problems have received much attention in the literature as a result of their practical
importance. The study of contact phenomena considering friction is one of the most pressing pro-
blems in engineering (Arhipenko and Kriviy, 2008; Goryacheva, 2001; Comninou, 1977; Ostryk
and Ulitko, 2006; Sulym and Piskozub, 2004; Hills et al., 1993; Johnson, 1985; Kalker, 1977)
and others. To a greater or lesser extent, but contact phenomena are always accompanied by
friction at both macroscopic and microscopic levels. Mechanical, electrical, thermal, chemical
processes and vibration that can simultaneously occur due to friction significantly affect de-
gradation of materials, duration of their wave processes, reliability and durability of structural
elements, etc. The effect of friction can be both harmful and helpful, when causing dissipation
of the accumulated strain energy in the body and thus reduce stress.
However, the problem of contact interaction between adjacent surfaces of a crack has not

received sufficient attention. Major achievements in this area include the study of theory of
cracks at the interface of two media assuming the elimination of physically incorrect oscillating
features singularity by a widely used model of local contact directly near the vicinity of the
crack end (Comninou, 1977; Comninou et al., 1980; Comninou and Dundurs, 1980; Kundrat
and Sulym, 2003; Cherepanov, 1966; Herrmann and Loboda, 1999; Kharun and Loboda, 2003).
A wide class of problems on the effect of friction forces on the contact stresses between the
half-planes was examined by Martynyak and Kryshtafovych (2000), Aravas and Sharma (1991),
Weertman et al. (1983). Growth of cracks (in fact, the relative slip of materials) on the verge
of a hard fibrous inclusion considering friction between the components was studied by Brussat
and Westmann (1974).
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This paper proposes a novel technique for obtaining the analytical solution of the anti-
-plane problem (longitudinal shear) for a bi-material with a closed interfacial crack accounting
for friction between surfaces. Therefore, all characteristics of the stress-strain state, such as
displacements, stresses, energy dissipation, slip zone size, etc., are exactly calculated. Note that
the frictional slippage is essentially an incremental process and, therefore, the solution to the
contact problem depends on the load history. We assume that the magnitude and direction of the
external force factors that generate longitudinal shear change quasi-statically (so slowly that it
is not necessary to consider the inertial member) by a certain law, which may be different. Thus,
no incremental formulation is necessary for solving this problem because of quasi-statically way
of the initial step loading.

2. Formulation of the problem

Consider an infinite isotropic matrix consisting of two half-spaces with elastic constants Ek, νk
(k = 1, 2). The half-spaces are mutually pressed to the interface by external normal stresses
σyy(x) < 0. Here, Oxyz are the Cartesian coordinates and xOz is the contact plane of the
half-spaces.

We study the stress-strain state (SSS) of the body section by the plane xOy perpendicular
to the direction of its longitudinal shear. This section forms two half-planes Sk (k = 1, 2), and
the interface between them corresponds to the x-axis L. Under the action of the applied loads,
the cracks may slip at intervals forming the line L′ = ∪Nn=1L′n = ∪Nn=1[b−n ; b+n ] as indicated in
Fig. 1. The normal stress in the body is generated by uniform compression at infinity σ∞yy < 0
and two balanced concentrated forces Pk = ∓iP at the points zk ∈ Sk. The same traditional
notation for the axis z and a complex variable z = x+ iy should not cause misunderstanding in
the solution of the problem.

Fig. 1. Geometry and loading scheme of the problem

Suppose that the external loading increases or decreases monotonically and consists of a
uniformly distributed at the infinity shear stress σ∞yz = τ(t), σ

∞
xz = τk(t), concentrated forces

with magnitude Qk(t), screw dislocations with Burger’s vector bk(t) at the points z∗k ∈ Sk
(k = 1, 2), t denotes the time as parameter. Note that the positive direction of the forces and
Burgers vectors is chosen along the axis as opposed to implicitly accepted in some studies the
opposite direction. According to Eq. (20.5) (Sulym, 2007), stresses at infinity must always satisfy
the conditions τ2(t)G1 = τ1(t)G2, which provides straightness of the matrix interface at infinity.

Contact between the half-spaces is assumed mechanically perfect omitting L′ where it is
more complicated. The contact in L′ we assume mechanically perfect until the moment when
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relative sliding of the crack surfaces may start in some areas γn ⊂ L′n (Johnson, 1985; Pasternak
et al., 2010; Piskozub, 2014; Piskozub et al., 2014).
Thus, we formulate the problem of longitudinal shear with possible slip in the interfacial

cracks under the action of an inhomogeneous distribution of compressive normal stresses and
frictional forces on the surfaces of contact (line section L). These forces may cause in these
apriority unknown slip zones heat emission, energy dissipation, wear, etc.

3. The problem solution

The presence of such slip zones in the cracks can be simulated by jumps of traction and displa-
cement vectors at L′n (Piskozub, 2014; Piskozub et al., 2014; Sulym, 2007; Sulym and Piskozub,
2004; Piskozub and Sulim, 2008)

[[Ξ]] ≡ Ξ− −Ξ+ = fn(x, t) x ∈ L′n (3.1)

where Ξ(z, t) = [σyz , ∂t/∂x](z, t) is the state vector; f
n(x, t) = [fn3 , f

n
6 ](x, t) is the jump vector.

Hereinafter, the following notation is used: [[ϕ]]L = ϕ(x,−0) − ϕ(x,+0), 〈ϕ〉L = ϕ(x,−0) +
ϕ(x,+0); symbols “+” and “-” correspond to the threshold function on the top and bottom
edges of the line L.
Based on Hooke’s law, expression (3.1) results in

[[σyz ]]L′
n

≡ σ−yz − σ+yz = fn3 (x, t)
[[∂w

∂x

]]

L′
n

≡ ∂w
−

∂x
− ∂w

+

∂x
=
[[σxz
G

]]

L′
n

≡ σ
−
xz

G1
− σ

+
xz

G2
= fn6 (x, t) x ∈ γn ⊂ L′n

fn3 (x, t) = f
n
6 (x, t) = 0 if x 6∈ γn

(3.2)

The boundary conditions at L′n provide that the slipping starts at some zones γn = [a
−
n ; a
+
n ] ⊂ L′n

when reaching the tangent stress σyz of a certain critical value τ
max
yz , moreover, this threshold

shear stress σyz can not exceed τ
max
yz . Confining with classic Amonton’s law of friction (Gory-

acheva, 2001; Hills et al., 1993; Johnson, 1985), consider the contact problem which states that
everywhere in γn, the shear stresses (friction force) are equal

σ±yz(x) = − sgn [[w]]τmaxyz (x) τmaxyz (x) = −ασyy(x)
σyy < 0 |w− − w+| 6= 0

(3.3)

where α denotes the coefficient of sliding friction. Outside the domains γn,there is no slippage,
and the magnitude of shear stresses does not exceed the maximum allowable level

|σyz(x)| ¬ τmaxyz (x) (3.4)

The sign (direction of action) of shear stresses is chosen depending on the sign of the difference
in the mutual displacement [[w]] at the source point of L′n.
The general case of normal pressing gives

τmaxyz (x) = 4α

(

−
σ∞yy
4
+
2
∑

k=1

EjηkRe
Nk
x− zk

)

j = 3− k (3.5)

where

Nk =
Pk
ejk
− κkP k − Pk

ekj
κk = 4− 3νk

ηk =
1

8π(1− νk)
ekj = 2

Gk + κkGj
(1− ν1)(1− ν2)
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Amonton’s law of friction in classical form (3.3) provides, of course, simplification of the
boundary conditions for the basic problem, but making use of more complex models of friction
(Johnson, 1985; Sulym and Piskozub, 2004; Comninou et al., 1980), taking into account the
wear, does not essentially complicate the process of solving

σ±yz(x, t) = ∓pkfn3 (x, t)− Cgn6 (x, t) + σ0±yz (x, t)
σ±xz(x, t) = ∓Cfn6 (x, t) + pkgn3 (x, t) + σ0±xz (x, t)

gnr (z, t) ≡
1

π

∫

L′
n

fnr (x, t)

x− z dx pk =
Gk

G1 +G2
C = G3−kpk

σyz(z, t) + iσxz(z, t) = σ
0
yz(z, t) + iσ

0
xz(z, t) + ipkg

n
3 (z, t)− Cgn6 (z, t)

(3.6)

where z ∈ Sk, r = 3, 6, k = 1, 2.
The superscript “+” refers to k = 2; “-” – k = 1. The superscript “0” denotes the corre-

sponding values in the solid body model without heterogeneity (cracks) under the same external
loading (homogeneous solution). Hereinafter, the following notations (Piskozub et al., 2014; Su-
lym, 2007; Piskozub and Sulim, 2008) are used

σ0yz(z, t) + iσ
0
xz(z, t) = τ(t) + i[τk(t) +Dk(z, t) + (pk − pj)Dk(z, t) + 2pkDj(z, t)]

Dk(z, t) = −
Qk(t) + iGkbk(t)

2π(z − z∗k)
z ∈ Sk k = 1, 2 j = 3− k

(3.7)

Using (3.6), (3.7) and boundary conditions (3.2), (3.3) at the domains γn, the problem
reduces to a system of 2N singular integral equations

fn3 (x, t) = 0

gn6 (x, t) =
1

2C

(

〈σ0yz(x, t)〉+ 2 sgn [[w]]τmaxyz (x)
) (3.8)

whose solution is known (Sulym, 2007).

For a more detailed analysis of the problem solution, consider the partial case of the presence
of a single (N = 1) crack L′1 = [−b; b] with a symmetric zone of slippage γ1 = [−a; a] (a ¬ b)
that can occur when symmetric load acts about the vertical axis.

The solution to (3.8) in this case, after calculating the corresponding integrals, have the
exact form

f6(x, t) =
1

πC
√
a2 − x2

{

π[τ(t)− α sgn [[w]]σ∞yy]x

+
2
∑

k=1

pjIm

[

[Qk(t) + iGkbk(t)]

(

√

z2
∗k − a2x− z∗k
+

1

)]}

+
4α sgn [[w]]

C
√
a2 − x2

2
∑

k=1

EjηkRe

[

Nk

(

√

z2k − a2

x− zk
+ 1

)]

j = 3− k x ∈ [−a; a]

(3.9)

Here the function
√
z2 − a2 is the branch which satisfies the condition

√
z2 − a2/z → 1

z →∞. Similar arguments are used to select the branches
√

z2
∗k − a2 and

√

z2
∗k − a2, k = 1, 2.



Longitudinal shear of a bi-material with frictional sliding contact... 533

Thus, the expression for the jump displacement [[w]] is obtained by integration of Eq. (3.9)

[[w]](x, t) =

x
∫

−a

f6(1)(x, t) dx = −
τ(t)− α sgn [[w]]σ∞yy

C

√

a2 − x2

+
2
∑

k=1

pj
πC
Im{[Qk(t) + iGkbk(t)]I2(x, a, z∗k}

+
4α sgn [[w]]

C

2
∑

k=1

EjηkRe[NkI2(x, a, zk)] j = 3− k |x| ¬ a

(3.10)

and

I2(x, a, z) =
π

2
+ arcsin

x

a
+ I(x, a, z)

I(x, a, z) ≡
√

z2 − a2
x
∫

−a

dx√
a2 − x2(x− z)

= i sgn (Imz) ln
a(z − x)

a2 − xz − i
√
a2 − x2

√
z2 − a2

(3.11)

Introducing mode 3 stress intensity factor (SIF) by expression K3 = lim
r→0(θ=0)

√
πr(σyz), it is

easy to obtain the analytical form for SIF in the case of the crack slip zone [−a; a] ⊂ L′

K±3 (t) =
1

2
√
πa

a
∫

−a

√

a± x
a∓ x [〈σ

0
yz(x, t)〉+ 2 sgn [[w]]τmaxyz (x)] dx =

√
πa[τ(t)− α sgn [[w]]σ∞yy ]

+
1√
πa

2
∑

k=1

pjIm

[

[Qk(t) + ibk(t)Gk]

(

√

z2
∗k − a2

a∓ z∗k
± 1

)]

+ 4α sgn [[w]]

√

π

a

2
∑

k=1

EjηkRe

[

Nk

(

√

z2k − a2

a∓ zk
± 1

)]

j = 3− k

(3.12)

Now it is time to discuss the question about the apriority unknown size of the slip zone a.
While increasing the magnitude of shear load from zero to maximum, there are three phases
that are fundamentally different in view of slipping:

1) The combination of compressive and increasing shear load always fulfills condition (3.4).
There is no slippage at all, and the cracks have no effect on SSS of the matrix.

2) The magnitude of shear load at the time point t∗ becomes sufficient for the occurrence
of conditions (3.3) at least in a limited area γ1 = [−a; a] (a ¬ b). The magnitude of the
load when the slippage first appears, will be called the first critical. To determine this
critical value and the current size of the slip zone, one can put SIF (3.12) equal to zero
(Cherepanov, 1966; Piskozub, 2014; Piskozub et al., 2014).

3) The magnitude of shear load at the time t∗∗ makes the size of the slip zone coincide with
the crack size a = b. Further growth will not lead to an increase in the slip zone, but
singular stress occurs in the crack tip and, therefore, non-zero SIF exists. The magnitude
of the load, when the size of the slip zone coincides with the crack size for the first time,
will be called the second critical.

It is also possible that such a combination of the shear and compressing loading make condi-
tions (3.3) arise instantly along the whole L′ or along the L′, except for the area γ1. This shear
load value will be called the threshold value.
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The analytical form of solution for all SSS components allows obtaining an analytical expres-
sion for the work of friction forces at the slip zone γ1 for arbitrary loading

W d(t) = −
a
∫

−a

|τmaxyz (x)[[w]](x, t)| dx = −
4α

C

a
∫

−a

∣

∣

∣

∣

∣

(

−
σ∞yy
4
+
2
∑

k=1

EjηkRe
Nk
x− zk

)

·
(

− [τ(t)− α sgn [[w]]σ∞yy ]
√

a2 − x2 +
2
∑

k=1

pj
π
Im{[Qk(t) + iGkbk(t)]I2(x, a, z∗k)}

+ 4α sgn [[w]]
2
∑

k=1

EjηkRe[NkI2(x, a, zk)]

)∣

∣

∣

∣

∣

dx j = 3− k

(3.13)

Suppose that the loading of the matrix is symmetric about the vertical axis: the focus points
of the applied concentrated force are zk = ±ih ∈ Sk and z∗k = ±id (k = 2, 1). Thus, simplifying
expressions (3.5), (3.9) and (3.10), one can write expressions for the most important components
of SSS

[[w]](x, t) = −
τ(t)− α sgn [[w]]σ∞yy

C

√

a2 − x2

+
2
∑

k=1

p3−k
2πC

[

(−1)kQk(t) ln
√
a2 + d2 −

√
a2 − x2√

a2 + d2 +
√
a2 − x2

+Gkbk(t)
(π

2
+ arcsin

x

a

)]

+
2α sgn [[w]]

C
Pγ+ ln

√
a2 + h2 −

√
a2 − x2√

a2 + h2 +
√
a2 − x2

|x| ¬ a

K±3 (t) =
√
πa[τ(t)− α sgn [[w]]σ∞yy ]

+
1√
πa

2
∑

k=1

p3−k

(

(−1)kQk(t)a√
a2 + d2

±Gkbk(t)
√
a2 + d2 − d√
a2 + d2

)

+
√
πa
4α sgn [[w]]Pγ+√
a2 + h2

W d(t) = −α
C

∣

∣

∣4π[τ(t) − α sgn [[w]]σ∞yy ]
[a2σ∞yy
8
− Pγ+(

√

h2 + a2 − h)
]

+ σ∞yy(
√

d2 + a2 − d)
2
∑

k=1

(−1)kp3−kQk(t)

− 2Pγ+ ln
√
h2 + a2

√
d2 + a2 + hd+ a2√

h2 + a2
√
d2 + a2 + hd− a2

2
∑

k=1

(−1)kp3−kQk(t)

− 8απ sgn [[w]]P 2γ+2 ln h
2 + a2

h2
+ 4σ∞yyαπ sgn [[w]]Pγ

+(
√

h2 + a2 − h)
∣

∣

∣

(3.14)

Substituting Pk = P = 0 in expressions (3.14), we obtain the known special case of the
half-spaces compressed only by a uniform load σ∞yy < 0 at infinity (Piskozub, 2014; Piskozub
et al., 2014). More interesting is the special case of normal pressing by the concentrated forces
Pk = ∓iP only. Below we analyze expressions (3.14) for various special cases of shear loading.
Hereinafter, τ∗, Q∗k denotes the first critical load values; τ

∗∗, Q∗∗k – the second critical load
values, τ∗∗∗, Q∗∗∗k – threshold load values.
1) Suppose that there are only tangential shear stresses at infinity τ(t) > 0. Given that with

an increasing load sgn [[w]] = −1, we get

K3(t) =
√
πa[τ(t)− α sgn [[w]]σ∞yy ] +

√
πa
4α sgn [[w]]Pγ+√
a2 + h2

(3.15)

From expression (3.15), we obtain the condition for the start of slipping

√
πa[τ(t) + ασ∞yy]−

√
πa
4αPγ+√
a2 + h2

= 0 (3.16)
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Thus, the first critical value τ∗ and size of the slip zone a become

τ∗ = α
(4Pγ+

h
− σ∞yy

)

a(t) =

√

16α2P 2γ+2

[τ(t) + ασ∞yy]
2
− h2 (3.17)

Substituting a = b in (3.17) gives us the second critical value and the condition of non-zero
SIF nascence

τ∗∗ = α
( 4Pγ+√
b2 + h2

− σ∞yy
)

(3.18)

Analysis of Eqs. (3.17) and (3.18) shows however that τ∗ > τ(t) > τ∗∗, which is devoid of
physical meaning. This fact is easily explained since in this case of loading τmaxyz (x) achieves its
own maximum at the point x = 0 ∈ L′1 and, therefore, the uniform growth of magnitude τ(t) will
exceed the value τmaxyz (0) at the last time point having generated the pre-slippage at the remotest
location. This case of loading leads to the following conclusion: geometry of the problem must
be changed by introducing into consideration two slip zones.
2) There is only one concentrated force Q2(t) growing from zero to Qmax and acting at

the point z∗2 = id in the upper half-space. And given the fact that with the increasing load,
sgn [[w]] = −1 using (3.14)1,2, we obtain

[[w]](x, t) = −
ασ∞yy
C

√

a2 − x2 + p1Q2(t)
πC

ln

√
a2 + d2 −

√
a2 − x2√

a2 + d2 +
√
a2 − x2

− αPγ
+

2πC
ln

√
a2 + h2 −

√
a2 − x2√

a2 + h2 +
√
a2 − x2

|x| ¬ a
(3.19)

and

K3(t) =
√
πaασ∞yy +

√

a

π

p1Q2(t)√
a2 + d2

−
√
πa
4αPγ+√
a2 + h2

(3.20)

By equating SIF (3.20) to zero, we obtain the first critical value

Q∗2 =
παd

p1

(4γ+P

h
− σ∞yy

)

(3.21)

and the condition when slippage appears at the first time. The slip zone size is determined from
the equation

ασ∞yy +
p1Q2(t)

π
√
a2 + d2

− 4αPγ
+

√
a2 + h2

= 0 (3.22)

Without the component σ∞yy, one can obtain the exact solution

a(t) =

√

h2d2[Q2(t)2 −Q∗22 ]
h2Q∗22 − d2Q2(t)2

(3.23)

It is clear that there is no slippage when Qmax(1) < Q
∗
2. Substituting a = b in Eq (3.22) gives

us the second critical value and the condition of non-zero SIF nascence

Q∗∗2 =
πα
√
d2 + b2

p1

( 4γ+P√
h2 + b2

− σ∞yy
)

(3.24)

or when the component σ∞yy is absent

Q∗∗2 =
4παγ+P

p1

√
d2 + b2√
h2 + b2

= Q∗2
h
√
d2 + b2

d
√
h2 + b2

(3.25)
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So, taking Qmax  Q∗∗2 in general, we get the following scenario of changing the SSS:
• when Q∗2 ¬ Q2(t) ¬ Q∗∗2 , the jump of displacements [[w]](x, t) and the slip zone size a(t)
are defined from Eqs. (3.19), (3.23), thus expression (3.14)3 for calculating the energy
dissipation takes form

W d(t) = −α
C

∣

∣

∣4πασ∞yy

(a2σ∞yy
8
− Pγ+(

√

h2 + a2 − h)
)

+ σ∞yy(
√

d2 + a2 − d)p1Q2(t)− 2Pγ+p1Q2(t) ln
(h+ d)[4παγ+P − p1Q2(t)]
(h− d)[4παγ+P + p1Q2(t)]

+ 8απP 2γ+2 ln
16π2α2γ+2P 2(h2 − d2)
h2[16π2α2γ+2P 2 − p21Q22(t)]

− 4σ∞yyαπPγ+(
√

h2 + a2 − h)
∣

∣

∣

(3.26)

• when Q∗∗2 ¬ Q2(t) ¬ Qmax, the size a(t) in formulas (3.19), (3.20) and (3.26) should be
replaced by b instead of (3.23), then we have a = b and (3.20) defines a non-zero SIF.

To determine the threshold load, it is enough to direct a→∞ in formula (3.25)

Q∗∗∗2 =
4παγ+P

p1
(3.27)

For a more detailed analytical analysis, we suppose that the component σ∞yy is absent. Having
found that for the considered problem statement which provides a single sliding zone γ1 = [−a; a]
(a ¬ b), the condition h > d must consider the increasing load magnitude Q2(t)  Q∗2. Thus,
noting the correlation 1 ¬ (h

√
d2 + b2)/(d

√
h2 + b2) ¬ h/d, one can conclude that the size

of the slip zone will coincide with the crack size before the time when the ratio Q2(t)/Q
∗
2

reaches the value h/d. Taking the value h = d, we obtain the threshold case of the third phase:
Q∗2 = Q

∗∗
2 = Q

∗∗∗
2 . The choice of parameter values h < d requires changing the geometry of

the considered problem to the case with the arising slip zone along the L′, except for the area
γ1 = [−a; a] (a ¬ b).
Similar reasoning for such cases of shear loading as that for the concentrated force acting at

the point z∗1 = −id in lower half-space, a pair of mutually opposite or collinear balanced con-
centrated forces acting in different semi-spaces and simultaneously increasing from zero to Qmax
etc., provides similar to Eq (3.19)-(3.27) expressions for the components of SSS.
When the materials of the half-spaces are identical (G1 = G2 = G), it is enough to assume

in the above formulas C = G/2, p1 = p2 = 1/2. For smooth contact between the half-spaces one
should put α = 0 in the above formulas. This immediately gives an instant increase of the slip
size to the whole area L′ for any asymmetric shear loading.

Note that the superposition of the obtained above solutions for different kinds of loading can
not be used because of nonlinearity of the problem.

4. Numerical analysis

Using the above-mentioned approach, we determine the dependence of the slip zone size, shape
of the displacement jump, energy dissipation and SIF on the basic parameters of SSS (distance
and magnitude of the applied force, friction coefficient, ratio of elastic properties) in the most
illustrative example of loading No. 2. To apply formulas (3.20)-(3.27), we introduce dimensionless
values: size of the slip zone a/b, the coordinate and distance from the crack of the points of
application of the shear and pressing forces respectively x/b, d/b, h/b; Q2(t)/Q

∗∗∗
2 and Q2(t)/Q

∗
2

– the absolute and relative intensity of shear magnitude; [[w]](x)C/(2αγ+P ),W d(t)C/(8πγ+2P 2)
and K3

√
b/(4
√
παγ+P ) – the displacement jump, energy dissipation and SIF, respectively.
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The dependence of size a/b on the relative magnitude of the applied force Q2(t)/Q
∗∗∗
2 is

shown in Fig. 2a for different values d/b, h/b. It is noticeable that the growth rate of the size
increases when d/b approaches h/b. Growing distance from the crack position of the coordinate
h/b also leads to an increase in the rate of growth a/b.

Note that whileQ2(t)/Q
∗
2 ¬ 1, there is no slippage. The slippage area increases monotonically

and simultaneously with an increase in the load.

Fig. 2. (a) Dependence of the slip zone size on the coordinates of points of application of concentrated
forces; (b) influence of friction in the slip zone on SIF

When the loading force magnitude excesses the second critical value (phase 3), then non-zero
SIF in the vicinity of the crack tip appears. The calculated SIF is compared with the known
SIF for an interfacial crack in the absence of friction, and it is shown in Fig. 2b. The presence
of friction allows significant reduction of SIF (decline by 30%).

Fig. 3. (a) Shape of the displacement jump depending on the shear magnitude; (b) changes of the
energy dissipation vs. load and coefficient of friction

Figure 3a depicts the influence of different settings on the shape of the displacement jump. It
is noticeable that the highest sensitivity to the changing of the shape of the displacement jump
is observed when placing the shear force application point closer to the crack. Approaching the
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points of application of normal forces lessens the effect on the shape of the displacement jump,
but significantly changes its amplitude.

Figure 3b indicates the energy dissipation during the second phase of loading by solid lines
and by the dotted line – energy dissipation during the third phase of shear loading after reaching
the maximum size of the slip zone. One observes the tendency of increasing the dissipation of
energy when the coefficient of friction grows, or when approaching the point of force application
to the crack position, or when the points of application of clamping forces are withdrawn.

5. Conclusions

We build an effective solution to the problem of a bi-material with a closed interfacial crack
where sliding friction is possible. Different ways of loading of the solid body by arbitrary normal
compression and monotonically increasing loading in the longitudinal direction is taken into
account. This solution allows obtaining explicit expressions for displacements, stress intensity
factors and energy dissipation. The dependence of the contact zone size on the loading parameters
at different stages is analyzed. The critical load values for determination of the onset of slipping
are investigated. Upon reaching the second critical value of the load when the slip zone size
matches the size of the crack, the singular stresses in the vicinity of the ends of the crack and
non-zero values of stress intensity factors appear.

We numerically analyze the effect of friction and loading parameters on the size of the slip
zone, energy dissipation and stress intensity factors. It is discovered that the slip zone appears
and grows fastest when the pressing normal stresses are minimal. The growth rate of the slip
zone also promotes the increase of the distance of the application point of concentrated loading
factors from it. The growth of the coefficient of friction significantly reduces the intensity of
stresses at the vicinity of the ends of cracks at the third stage of loading. Energy dissipation for
the examined cases of loading is calculated. The energy dissipation becomes more intense when
the point of force application is closer to the sliding zone.
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