# Gold(I) as an Artificial Cyclase: Short Stereodivergent Syntheses of ( - )-Epiglobulol and ( - )-4 $\beta, 7 \alpha$ - and ( - )-4 $\alpha, 7 \alpha$-Aromadendranediols** 

Javier Carreras, Madeleine Livendahl, Paul R. McGonigal, and Antonio M. Echavarren*


#### Abstract

Three natural aromadendrane sesquiterpenes, (-)epiglobulol, (-)-4 $7,7 \alpha$-aromadendranediol, and (-)-4 $4,7 \alpha-$ aromadendranediol, have been synthesized in only seven steps in 12,15 , and $17 \%$ overall yields, respectively, from ( $E, E$ )farnesol by a stereodivergent gold(I)-catalyzed cascade reaction which forms the tricyclic aromadendrane core in a single step. These are the shortest total syntheses of these natural compounds.


Aromadendranes are a family of hydroazulenes named after $(+)$-aromadendrene (1, Figure 1), the main component in the essential oil from Eucaliptus trees. The related sesquiterpenoids ( - )-globulol (2), (-)-epiglobulol (3), ( - )-4 $\alpha, 7 \alpha$-aromadendranediol (4), and (-)-4 $\beta, 7 \alpha$-aromadendranediol (5)


Figure 1. Naturally occurring aromadendranes.

[^0]are widespread in plant species ${ }^{[1]}$ and display antifungal, ${ }^{[2]}$ antibacterial, ${ }^{[3]}$ antiviral, ${ }^{[4]}$ cytotoxic, ${ }^{[5]}$ and other activities. ${ }^{[6]}$ Interestingly, the antipodes of $\mathbf{1}$ and other aromadendrenes have been isolated from corals. ${ }^{[7]}$ Aromadendranes with amino, isonitrile, isothiocyano, and urea functionalities at C 4 have been found in sponges. ${ }^{[8]}$ Diterpenoids with an aromadendrane structure are also natural products. ${ }^{[9]}$

The synthesis of members of this family of tricyclic sesquiterpenes has attracted significant interest. ${ }^{[10]}(-)$-Epiglobulol (3), isolated in hop ${ }^{[11]}$ and many essential oils, ${ }^{[12]}$ was prepared from $\mathbf{1}$ or the corresponding ketone (apoaromadendrone). ${ }^{[13]} \mathrm{A}$ first total synthesis of $\mathbf{3}$ from the chiral pool was accomplished in eight steps ( $4 \%$ overall yield). ${ }^{[14]}$ A recent synthesis of $( \pm)$-epiglobulol in 18 steps used a rhodium(I)catalyzed hydroacylation/cycloisomerization as the key step. ${ }^{[15]}$
(-)-4 $\alpha, 7 \alpha$-Aromadendranediol (4) was isolated from a marine coral Sinularia may ${ }^{[7]}$ and the leaves of the Amazonian tree Xylopia brasiliensis. ${ }^{[2]}$ A semisynthesis of 4 from (+)-spathulenol ${ }^{[7]}$ and one total synthesis have been reported. ${ }^{[16]}$ This total synthesis involved a three-reaction sequence in a three-component reaction to generate four stereogenic centers in one step and required ten steps to produce $\mathbf{4}$ in $23 \%$ overall yield. (-)-4 $4 \beta, 7 \alpha$-Aromadendranediol (5) has been isolated from the leaves of Chloranthus glaber. ${ }^{[17]}$ A semisynthesis of $\mathbf{5}$ from $(+)$-spathulenol has been reported. ${ }^{[7]}$

We developed a gold(I)-catalyzed cascade cyclization of the dienyne 6, a cascade consisting of a cyclization, 1,5migration of the propargylic OR group, and intramolecular cyclopropanation, thus leading to tricyclic structures closely related to the aromadendrene sesquiterpenes (Scheme 1). ${ }^{[18]}$ This reaction is stereospecific since $(E)-6$ gave the tricyclic product $\mathbf{7}$ having the relative configuration of $\mathbf{3}$ and 5, whereas the geometrical isomer of 6 led to $\mathbf{8}$, the C 4 epimer of 7, having the configuration of 2 and $\mathbf{4}$. We recently applied


Scheme 1. Gold-catalyzed formation of tricyclic cores of the aromadendranes by cyclization/1,5-OR migration/intramolecular cyclopropanation.
a strategy based on a gold(I)-catalyzed cyclization/1,5-OR migration/intermolecular cyclopropanation for the first total synthesis of (+)-schisanwilsonene A. As part of our program on the synthesis of terpenoids by using new gold-catalyzed cyclization cascades, ${ }^{[19]}$ we decided to target $\mathbf{3}, \mathbf{4}$, and 5, each of which present six stereogenic centers in a tricyclic skeleton. In principle, $\mathbf{3}$ and $\mathbf{5}$ could be synthesized from the dienyne $(S, E)-6$ (Scheme 1), whereas 4 would be prepared from geometric isomer ( $S, Z$ )-6. However, although enantioenriched $(E)$ - 6 could be readily prepared from $(E, E)$-farnesol (9), the starting material, ( $E, Z$ )-farnesol, required for the synthesis of $(Z)-6$ is not commercially available. ${ }^{[20]}$

Herein we report a simple solution to this problem and it allows general access to this class of sesquiterpenes from $(S, E)-6$ as a common precursor by means of a stereodivergent gold(I)-catalyzed cascade process. The reaction can take place intramolecularly by 1,5-migration of OR in $\mathbf{A}$ and in the presence of an external nucleophile (via $\mathbf{B}$ ), thus leading to 7 and 8, respectively, having opposite configurations at C 4 (Scheme 1). Starting from $(R, E)-\mathbf{6}$, enantiomeric aromadendranes can be similarly obtained. This proposal is based on our initial mechanistic study in the $Z$ series, in which we found that the cyclopropyl gold(I) carbene intermediate could be trapped with methanol to form an epimeric compound as a minor product ${ }^{[18]}$ In these transformations, gold(I) acts as an artificial cyclase, ${ }^{[21]}$ thus mimicking the action of terpene cyclases forming polycyclic skeletons by the selective activation of the alkyne terminus of a dienyne, to readily build a tricyclic skeleton with exquisite stereocontrol. ${ }^{[22,23]}$

The dienyne $(S, E)-6(\mathrm{R}=\mathrm{Bn})$ was prepared in four steps and $62 \%$ overall yield by using a route similar to that used in the transformation of the lower homologue geraniol. ${ }^{[19,24]}$ the transformation involved the known Sharpless asymmetric epoxidation of $(E, E)$-farnesol ( $\mathbf{9}$ ) to give the epoxide $(S, S)-\mathbf{1 0}$ ( $88 \%$ yield, $91: 9$ e.r. $)^{[25,26]}$ (Scheme 2). Substitution of the


Scheme 2. a) L-(+)-DIPT, $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{tBuOOH}, 4 \AA \mathrm{M} . \mathrm{S} ., \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-48^{\circ} \mathrm{C}, 88 \%, 82 \% e e ;^{[25]}$ b) $\mathrm{PPh}_{3}, \mathrm{NaHCO}_{3}, \mathrm{CCl}_{4}$, reflux, $6 \mathrm{~h}, 94 \%$; c) $n \mathrm{BuLi}, \mathrm{THF},-40^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$; d) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{Bu}_{4} \mathrm{NI}, \mathrm{THF}, 23^{\circ} \mathrm{C}$ $12 \mathrm{~h}, 91 \%$. DIPT = diisopropyl tartrate, M.S. = molecular sieves, THF = tetrahydrofuran.
primary alcohol by chloride with $\mathrm{CCl}_{4}$ and $\mathrm{PPh}_{3}$ gave 11, which was treated with $n \mathrm{BuLi}$ to yield the propargylic alcohol 12. Finally, benzylation under standard reaction conditions gave $(S, E)-6$.

Exposing ( $S, E$ )-6 to the cationic gold(I) complex $[(J o h n P h o s) \mathrm{Au}(\mathrm{MeCN})] \mathrm{SbF}_{6}$ (13) for 5 minutes at room temperature gave 7 in $60 \%$ yield (Scheme 3). Other gold(I)


Scheme 3. Reagents and conditions: a) [(JohnPhos) $\mathrm{Au}(\mathrm{MeCN})] \mathrm{SbF}_{6}$ ( $13 ; 2 \mathrm{~mol} \%$ ), $23^{\circ} \mathrm{C}, 5 \mathrm{~min}(60 \%)$; b) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, 1: 1 \mathrm{MeOH} /$ THF, $23^{\circ} \mathrm{C}, 4 \mathrm{~h}(79 \%)$; c) $\left[\operatorname{lr}(\mathrm{cod})\left(\mathrm{PCy}_{3}\right) \mathrm{py}\right] \mathrm{BAr}_{\mathrm{F}}(15 \mathrm{~mol} \%), \mathrm{H}_{2}$ (80 atm), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 4$ days ( $40 \%$ ); d) oxone, $\mathrm{NaHCO}_{3}, 18$-crown- 6 , 1:1:2 acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$, $1 \mathrm{~h}(51 \%)$; e) Li, EDA, $50^{\circ} \mathrm{C}, 1 \mathrm{~h}$ ( $78 \%$ ) ; f) allyl alcohol ( 20 equiv), 13 ( $2 \mathrm{~mol} \%$ ), $-30^{\circ} \mathrm{C}, 15 \mathrm{~min}(56 \%$ $+21 \% 7)$; g) $\left[\mathrm{Pd}_{\left.\left(\mathrm{PPh}_{3}\right)_{4}\right](5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \text { reflux } 72 \mathrm{~h}(72 \%) \text {; }}\right.$ h) $m$ CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ to $23^{\circ} \mathrm{C}(83 \%)$; i) Li, EDA, $50^{\circ} \mathrm{C}, 1.5 \mathrm{~h}(62 \%)$. $\mathrm{BAr}_{\mathrm{F}}=3,5$-bis(trifluoromethyl)phenylborate, cod = 1,5-cyclooctadiene, $\mathrm{EDA}=$ ethylenediamine, JohnPhos $=(2$-biphenyl)-di-tert-butylphosphine; $m$ CPBA $=m$-chloroperbenzoic acid.
catalysts were also screened for this reaction, but the best results were obtained using complex 13. ${ }^{[27]}$ The relative configuration of $\mathbf{7}$ (racemic series) was confirmed by X-ray diffraction. ${ }^{[28,29]}$ Debenzylation of 7 with $\mathrm{H}_{2}(1 \mathrm{~atm})$ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ gave the alcohol 14 (79\% yield), which was hydrogenated with $\left[\operatorname{Ir}(\operatorname{cod})\left(\mathrm{PCy}_{3}\right) \mathrm{py}\right] \mathrm{BAr}_{\mathrm{F}}$ catalyst ${ }^{[30]}$ under high pressure of $\mathrm{H}_{2}$ to give $\mathbf{3}$ in $40 \%$ yield (95:5 e.r.). The synthesis $\mathbf{3}$ from 9 required seven steps and proceeded in $12 \%$ overall yield.

Epoxidation of $\mathbf{7}$ with dimethyldioxirane yielded 15 stereoselectivily. Epoxide opening and ether cleavage with Li in ethylenediamine ${ }^{[31]}$ yielded 5 in $78 \%$ (96:4 e.r.), which gave enantiopure material after crystallization. The synthesis of $\mathbf{5}$ from $\mathbf{9}$ was accomplished in seven steps with $15 \%$ overall yield.

When the gold-catalyzed reaction of dienyne ( $S, E$ )-6 was performed in the presence of allyl alcohol as an external nucleophile, the allyl ether $\mathbf{8}$ was obtained with the opposite configuration at C 4 compared to that of 7 (Table 1). While lowering the reaction temperature to $-30^{\circ} \mathrm{C}$ led to a $1: 1$ mixture of $\mathbf{7}$ and $\mathbf{8}$ (Table 1, entry 3), increasing the concentration of allyl alcohol to 20 equivalents favored the intermolecular pathway (Table 1, entry 5). Similar results were obtained with using only $1 \mathrm{~mol} \%$ gold(I) catalyst (Table 1, entry 5). Under the optimized reaction conditions, $\mathbf{8}$ was

Table 1: Gold(I)-catalyzed addition of allyl alcohol to (S,E)-6. ${ }^{[a]}$

|  | 6 $\frac{13(2 \mathrm{~mol}}{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$ | $7+$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry | AllylOH (equiv) | $T\left[{ }^{\circ} \mathrm{C}\right]$ | $t$ [min] | $7 / 8^{[b]}$ |
| 1 | 10 | 23 | 5 | 75:25 |
| 2 | 10 | 0 | 10 | 55:45 |
| 3 | 10 | -30 | 15 | 50:50 |
| 4 | 20 | -30 | 20 | 27:73 |
| $5^{[c]}$ | 20 | -30 | 30 | 33:67 |

[a] 0.05 m. [b] Determined by GC-MS. [c] $1 \mathrm{~mol} \% 13$.
obtained in $56 \%$ yield, along with 7 ( $21 \%$ yield; Scheme 3). Removal of the allylic ether with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ in MeOH gave the alcohol 16, whose structure was confirmed by X-ray crystal diffraction ${ }^{[29]}$ in the racemic series (Figure 2). ${ }^{[26]}$ Although 4 could be synthesized from 16, a more direct

$( \pm)-16$


4

Figure 2. X-ray structures for $( \pm)$ - 16 and 4 . Thermal ellipsoids are shown at $50 \%$ probability.
synthesis was completed from $\mathbf{8}$ by selective epoxidation with $m$ CPBA from the convex face ( $83 \%$ yield), followed by opening of the epoxide and allyl cleavage with Li in ethylenediamine to give 4 in $62 \%$ yield ( $87: 13$ e.r.), yielding enantiopure 4 after crystallization. Spectral data and optical rotation of synthetic $4 \alpha, 7 \alpha$-aromadendranediol matched those reported for the natural compound. The relative and absolute configuration of $\mathbf{4}$ were confirmed by X-ray diffraction (Figure 2). ${ }^{[29]}$ The synthesis of (+)-4, $7 \alpha$-aromadendranediol was similarly carried out from $(R, R)$-10. ${ }^{[27]}$

The stereochemical divergent synthesis of $\mathbf{3}$ and $\mathbf{4}$ from $(S, E)-6$ confirms the proposal that this cascade cyclization process proceeds by intra- or intermolecular reactions of cyclopropyl gold(I) carbene-like intermediates such as $\mathbf{A}$ or B. ${ }^{[18,32]}$ The enantioselectivity is fully preserved in the formation of $\mathbf{3}$ and 5 via 7 by an intramolecular gold(I)catalyzed 1,5 -migration of a propargylic group. The intermolecular reaction of $(S, E)-6$ with allyl alcohol occurs with high enantioselectivity (ca. $96 \%$ ). In this case, the slight racemization is due to the competitive formation of a propargyl
carbocation, presumably facilitated by the higher polarity of the reaction medium.

In summary, we have completed highly concise syntheses of three representative aromadendranes from a single precursor by a stereodivergent gold-catalyzed reaction which establishes four new stereogenic centers from a single one. The three natural sesquiterpenes (-)-epiglobulol (3), (-)$4 \alpha, 7 \alpha$-aromadendranediol (4), and (-)-4 $3,7 \alpha$-aromadendranediol (5) have been synthesized in seven steps in 12,17 , and $15 \%$ overall yields, respectively, from commercially available ( $E, E$ )-farnesol (9), and constitutes the shortest total syntheses of these natural compounds. This route could be extended for the enantioselective synthesis of any enantiomer of other aromadendranes and non-natural analogues.

Received: February 3, 2014
Published online: April 1, 2014
Keywords: cyclization • gold • natural products • terpenoids • total synthesis
[1] H. J. M. Gijsen, J. B. Wijnberg, A. de Groot, Prog. Chem. Org. Nat. Prod. 1995, 64, 149-193.
[2] I. C. Moreira, J. H. G. Lago, N. C. M. Young, N. F. Roque, J. Braz. Chem. Soc. 2003, 14, 828-831.
[3] a) C. Gaspar-Marques, M. F. Simões, B. Rodríguez, J. Nat. Prod. 2004, 67, 614-621; b) Y. Yamakoshi, M. Murata, A. Shimizu, S. Homma, Biosci. Biotechnol. Biochem. 1992, 56, 1570-1576; c) J. M. Jacyno, N. Montemurro, A. D. Bates, H. G. Cutler, J. Agric. Food Chem. 1991, 39, 1166-1168; d) M. Murata, Y. Yamakoshi, S. Homma, K. Aida, K. Hori, Y. Ohashi, Agric. Biol. Chem. 1990, 54, 3221-3226.
[4] a) M. Nishizawa, M. Emura, Y. Kan, H. Yamada, K. Ogawa, N. Hamanaka, Tetrahedron Lett. 1992, 21, 2983-2986; b) N. De Tommasi, C. Pizza, C. Conti, N. Orsi, M. L. Stein, J. Nat. Prod. 1990, 53, 830-835.
[5] a) Z.-S. Su, S. Yin, Z.-W. Zhou, Y. Wu, J. Diang, J.-M. Yue, J. Nat. Prod. 2008, 71, 1410-1413; b) H. Tada, F. Yasuda, Chem. Pharm. Bull. 1985, 33, 1941-1945.
[6] a) A. Matsuo, K. Atsumi, M. Nakayama, S. Hayashi, J. Chem. Soc. Perkin Trans. 1 1981, 2816-2824; b) T. D. Hubert, D. F. Wiemer, Phytochemistry 1985, 24, 1197-1198; c) Y. Asakawa, M. Toyota, T. Takemoto, I. Kubo, K. Nakanishi, Phytochemistry 1980, 19, 2147-2154; d) N. Pérez-Hernández, H. Ponce-Monter, M. I. Ortiz, R. Cariño-Cortés, P. Joseph-Nathan, Z. Naturforsch. C 2009, 64, 840-846; e) T. S. Wu, Y. Chan, Y. Leu, Chem. Pharm. Bull. 2000, 3, 357-361.
[7] a) C. M. Beechan, C. Djerassi, H. Eggert, Tetrahedron 1978, 34, 2503-2508.
[8] a) E. Fattorusso, S. Magno, L. Mayol, C. Santacroce, D. Sica, Tetrahedron Lett. 1975, 31, 269-270; b) C. C. da Silva, V. Almagro, J. Zukerman-Schpector, E. E. Castellano, A. J. Marsaioli, J. Org. Chem. 1994, 59, 2880-2881; c) S. Kozawa, H. Ishiyama, J. Fromont, J. Kobayashi, J. Nat. Prod. 2008, 71, $445-$ 447; d) H. Ishiyama, S. Kozawa, K. Aoyama, Y. Mikami, J. Fromont, J. Kobayashi, J. Nat. Prod. 2008, 71, 1301-1303.
[9] A. S. R. Anjaneyulu, M. V. R. Krishnamurthy, G. V. Rao, Tetrahedron 1997, 53, 9301-9312.
[10] a) G. Büchi, W. Hofheinz, J. V. Paukstelis, J. Am. Chem. Soc. 1966, 88, 4113-4114; b) G. Buechi, W. Hofheinz, J. V. Paukstelis, J. Am. Chem. Soc. 1969, 91, 6473-6478; c) J. A. Marshall, J. A. Ruth, J. Org. Chem. 1974, 39, 1971-1973; d) H. J. M. Gijsen, J. B. P. A. Wijnberg, G. A. Stork, A. de Groot, Tetrahedron 1991,

47, 4409-4416; e) H. J. M. Gijsen, J. B. P. A. Wijnberg, G. A. Stork, A. de Groot, M. A. de Waard, J. G. M. van Nistelrooy, Tetrahedron 1992, 48, 2465 -2476; f) H. J. M. Gijsen, J. B. P. A. Wijnberg, C. van Ravenswaay, A. de Groot, Tetrahedron 1994, 50, 4733-4744; g) H. J. M. Gijsen, J. B. P. A. Wijnberg, A. de Groot, Tetrahedron 1994, 50, 4745-4754; h) S. L. Gwaltney II, K. J. Shea, Tetrahedron Lett. 1996, 37, 949-952; i) R. Guillermo, J. R. Hanson, A. Truneh, J. Chem. Res. Synop. 1997, 28-29; j) F. J. Moreno-Dorado, Y. M. A. W. Lamers, G. Mironov, J. B. P. A. Wijnberg, A. de Groot, Tetrahedron 2003, 59, $7743-7750$; k) Y. M. A. W. Lamers, G. Rusu, J. B. P. A. Wijnberg, A. de Groot, Tetrahedron 2003, 59, 9361-9369.
[11] R. Tressl, K.-H. Engel, M. Kossa, H. Koppler, J. Agric. Food Chem. 1983, 31, 892-897.
[12] a) A. Elaissia, H. Medinia, M. L. Khoujab, M. Simmonds, F. Lynend, F. Farhat, R. Chemli, F. Harzallah-Skhiri, Chem. Biodiversity 2011, 8, 352-361; b) M. Z. Özel, F. Gögüs, A. C. Lewis, J. Chromatogr. Sci. 2008, 46, 157-161; c) H. Nazemiyeh, S. M. Razavi, R. Hajiboland, A. Delazar, S. Esna-asharii, R. Bamdad, L. Nahar, S. D. Sarker, Chem. Nat. Compd. 2007, 43, $736-737$; d) M. E. A. Stefanello, A. C. R. F. Pascoal, M. J. Salvador, Chem. Biodiversity 2011, 8, 73-94.
[13] H. J. M. Gijsen, K. Kanai, G. A. Stork, J. B. P. A. Wijnberg, R. V. A. Orru, C. G. J. M. Seelen, S. M. van der Kerk, A. de Groot, Tetrahedron 1990, 46, 7237-7246.
[14] D. Caine, J. T. Gupton III, J. Org. Chem. 1975, 40, 809-810.
[15] Y. Oonishi, A. Taniuchi, M. Mori, Y. Sato, Tetrahedron Lett. 2006, 47, 5617-5621.
[16] B. Simmons, A. M. Walji, D. W. C. MacMillan, Angew. Chem. 2009, 121, 4413-4417; Angew. Chem. Int. Ed. 2009, 48, 43494353.
[17] Y. Takeda, H. Yamashita, T. Matsumoto, H. Terao, Phytochemistry 1993, 33, 713-715.
[18] E. Jiménez-Nuñez, M. Raducan, T. Lauterbach, K. Molawi, C. R. Solorio, A. M. Echavarren, Angew. Chem. 2009, 121, 6268-6271; Angew. Chem. Int. Ed. 2009, 48, 6152-6155.
[19] a) E. Jiménez-Núñez, K. Molawi, A. M. Echavarren, Chem. Commun. 2009, 7327-7329; b) K. Molawi, N. Delpont, A. M. Echavarren, Angew. Chem. 2010, 122, 3595-3597; Angew. Chem. Int. Ed. 2010, 49, 3517-3519; c) M. Gaydou, R. E. Miller, N. Delpont, J. Ceccon, A. M. Echavarren, Angew. Chem. 2013, 125, 6524-6527; Angew. Chem. Int. Ed. 2013, 52, 6396-

6399; d) A. Pitaval, D. Leboeuf, J. Ceccon, A. M. Echavarren, Org. Lett. 2013, 15, 4580-4583.
[20] A mixture of isomers is also available. $(Z, Z)$ - or $(E, Z)$-farnesol are just available as analytical standards. Although ( $E, Z$ )farnesol can be prepared in two steps from nerylacetone (10:1 $E, Z / E, E$ mixture, $55 \%$ yield): J. S. Yu, T. S. Kleckley, D. F. Wiemer, Org. Lett. 2005, 7, 4803-4806), pure nerylacetone is commercially available only in milligram amounts.
[21] M. Willot, M. Christmann, Nat. Chem. 2010, 2, 519-520.
[22] Selected examples of gold(I)-catalyzed polycyclizations: a) A. Fürstner, L. Morency, Angew. Chem. 2008, 120, 5108-5111; Angew. Chem. Int. Ed. 2008, 47, 5030-5033; b) P. Y. Toullec, T. Blarre, V. Michelet, Org. Lett. 2009, 11, 2888-2891; c) S. G. Sethofer, T. Mayer, F. D. Toste, J. Am. Chem. Soc. 2010, 132, 8276-8277.
[23] For lead references on late transition metal catalyzed polycyclizations of polyenes: a) M. A. Schafroth, D. Sarlah, S. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2012, 134, 2027620278; b) O. F. Jeker, A. G. Kravina, E. M. Carreira, Angew. Chem. 2013, 125, 12388-12391; Angew. Chem. Int. Ed. 2013, 52, 12166-12169; c) M. J. Geier, M. R. Gagné, J. Am. Chem. Soc. 2014, 136, 3032-3035.
[24] D. K. Mohapatra, C. Pramanik, M. S. Chorghade, M. K. Gurjar, Eur. J. Org. Chem. 2007, 5059-5063.
[25] J. Tanuwidjaja, S.-S. Ng, T. F. Jamison, J. Am. Chem. Soc. 2009, 131, 12084-12085.
[26] The syntheses of $( \pm)$-epiglobulol and $( \pm)-4 \alpha, 7 \alpha$-aromadendranediol was also carried out from a 1.2:1 mixture of geranyl- and nerylacetone. See the Supporting Information for details.
[27] See the Supporting Information for additional details.
[28] Racemic 7 was prepared in four steps from a 1.2:1 mixture of geranyl- and nerylacetone. ${ }^{[27]}$
[29] CCDC $983695(4), 983696[( \pm)-7)], 983697[( \pm)-16)]$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[30] B. Wüstenberg, A. Pfaltz, Adv. Synth. Catal. 2008, 350, 174-178.
[31] H. C. Brown, S. Ikegami, J. H. Kawakami, J. Org. Chem. 1970, 35, 3243-3245.
[32] a) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; b) C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912.


[^0]:    [*] Dr. J. Carreras, M. Livendahl, Dr. P. R. McGonigal, Prof. A. M. Echavarren
    Institute of Chemical Research of Catalonia (ICIQ)
    Av. Països Catalans 16, 43007 Tarragona (Spain)
    Prof. A. M. Echavarren
    Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili, C/Marcel.li Domingo s/n 43007 Tarragona (Spain) E-mail: aechavarren@iciq.es
    [**] We thank the European Research Council (Advanced Grant No. 321066), the MINECO (CTQ2010-16088/BQU), and the ICIQ Foundation for financial support. We thank Elina Buitrago (visiting student from the University Stockholm) for experiments on the synthesis of $( \pm)$-3, and the ICIQ X-Ray Diffraction and Chromatograpy units.
    Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie. 201402044. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA . This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

