
Editing Syntax Trees on the Surface

Peter Ljunglöf
Department of Computer Science and Engineering

University of Gothenburg and Chalmers University of Technology
Gothenburg, Sweden

peter.ljunglof@gu.se

Abstract

We describe a system for interactive mod-
ification of syntax trees by intuitive edit-
ing operations on the surface string. The
system has a graphical interface, where
the user can move, replace, add, and in
other ways modify, words or phrases. Dur-
ing editing, the sentence is kept grammat-
ical, by automatically rearranging words
and changing inflection, if necessary. This
is accomplished by combining constraints
on syntax trees with a distance measure
between trees.

1 Introduction

In this paper we describe the underlying theory of
a grammatical editing system, where the actions of
the user are interpreted as constraints on the syntax
tree. The different editing operations that the user
performs on the surface string, are interpreted as
constraints on the underlying syntax tree which is
never shown to the user. The system then searches
for the closest matching tree, in terms of a suitable
tree distance measure.

We believe that our editing system is more intu-
itive and easy to use than a system where the syn-
tax is shown explicitly. Then it can be a useful
pedagogical tool for supporting language learn-
ing and training, for children with communicative
disabilities, and for people learning a second lan-
guage. We also hope that the ideas can be useful
in touch screen devices, as an additional editing
layer in text-based applications such as translation,
email and chat.

The current system is a pedagogical tool for lan-
guage learning, and is still work in progress. As
of April 2011, there is a functioning demo system
which needs more work to be useful for the in-
tended audience.

2 System overview

2.1 No free text input

The editing interaction is purely graphical, which
means that the user is not allowed to enter words,
phrases or sentences from the keyboard. There are
several reasons for this, but the main reason is to
avoid problems with words and grammatical con-
structions that the system doesn’t know anything
about. Systems that are supposed to handle free
text input sooner or later run into problems with
unknown words or phrases (Heift, 2001).

Another reason for disallowing free text input
is to make the system accessible to people with
communicative and/or physical disabilities, or for
alternative input methods such as mobile phone
touch screens.

2.2 Interacting with the system

The words that the user is editing are icon-like ob-
jects that can be selected, inserted, moved around
and deleted. A word is selected by clicking,
and the selection can be increased to multi-word
phrases. The selected word or phrase has an asso-
ciated context-menu consisting of similar words or
phrases, such as different inflection forms, or syn-
onyms, homonyms, etc. When an item is selected
from the context-menu, it replaces the old word
or phrase, and if necessary, the nearby words are
also modified and rearranged to keep the sentence
grammatical.

The user can move the selection to another posi-
tion in the sentence, and the system will automat-
ically keep the sentence grammatical by rearrang-
ingthe words and change inflection, if necessary.
Phrases can be deleted from the sentence by drag-
ging them away. The user can also add or replace
words by dragging new words into the sentence.
All the time, the sentence will adapt by rearrang-
ing and inflecting.

Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa (Eds.)
NODALIDA 2011 Conference Proceedings, pp. 138–145

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14485551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2.2.1 Example: Modifying a phrase
Assume that the system starts with the sentence
“all cats sleep”, and the user wants to see the pos-
sible alternatives to the determiner “all”:

The user now changes “all” to the word “this” in-
stead, thereby changing the number from plural to
singular. Then the system automatically change
the inflection of the other words in the sentence,
so that it is kept grammatical:

2.2.2 Example: Inserting a phrase
Another alternative is to insert a new phrase into
the sentence, by dragging it from a heap of possi-
ble phrases:

The system knows where the new phrase can be
inserted and shows it by making room for it. On
the other hand, the system does not react if the user
tries to insert the phrase in an ungrammatical po-
sition:

2.3 Implementation

The system consists of three implementation lay-
ers. The bottom layer is the GF grammar formal-
ism (Ranta, 2009b). We use GF’s multilingual re-
source grammar to define the different grammar
modules (Ranta, 2009a). The surface strings are
stored as GF syntax trees, and the GF linearisation
algorithm is used for displaying the sentences to
the user. We have no use of parsing the sentences,
since the syntax trees are already known and there
is no free text input.

On top of GF we implement an API for modi-
fying syntax trees by specifying linearisation con-
straints. The API consists of functions that trans-
form trees to obey the constraints, by using as few
transformations as possible. An example of con-

straints can be that the linearisations of some given
tree nodes must come in a certain order (e.g., when
the user moves a word to a position between two
other words). Another example is that the lineari-
sation of a given node must be of a specified form
(e.g., when the user selects a specific word form
from the context menu).

The final layer is the graphical interface, which
communicates with the API to decide which words
can be moved where, and what their contextual
menus should contain.

3 Grammatical Framework

GF is a two-level formalism, with an underly-
ing abstract syntax and a surface concrete syntax
(Ranta, 2009b). It is a high-level grammar for-
malism with good support for both multilingual
and modular grammar writing (Ranta, 2009a). In
this paper we focus on a simplified core language,
which every grammar can be compiled into.

3.1 GF abstract syntax
The abstract syntax of a GF grammar consists of
a finite number of typed functions. In the general
framework, functions can be both higher-order and
dependently typed, but most applications only use
first-order functions with non-dependent types.

A GF function is declared by giving its type,
f : A1 . . . An → A. If n = 0, the function has
no arguments, and is called a constant. From the
function f we can create a term of type A by ap-
plying it to n terms of type A1, . . . , An. In other
words, f(t1 . . . tn) is a term of type A whenever
t1, . . . , tn are terms of types A1, . . . , An, respec-
tively.

This is similar to how syntax trees are licensed
by a context-free grammar, but instead of using
nonterminals in the tree nodes, we use function
names. In fact, the abstract syntax is equivalent to
a context-free grammar without terminal symbols,
where the nonterminals correspond to GF types,
and where the grammar rules have names. A sim-
ple example grammar is shown in Figure 1. Two
terms of type S licensed by this grammar are:

sleep(npp(all(cat), in(this(house))))

spp(sleep(all(cat)), in(this(house)))

Terms can be drawn as context-free syntax trees,
where the nodes contain function symbols instead
of nonterminals. The trees corresponding to the
example terms above are shown in Figure 2.

139

Editing Syntax Trees on the Surface

139



cat , house : N

this, all : N→ NP

sleep : NP→ S

in : NP→ PP

npp : NP,PP→ NP

spp : S,PP→ S

Figure 1: Example abstract grammar

sleep

npp

all

cat

in

this

house

spp

sleep

all

cat

in

this

house

Figure 2: Trees licenced by the grammar

cat◦ = 〈“cat” ; “cats”〉
house◦ = 〈“house” ; “houses”〉
this◦(x) = 〈“this” + x ! 1 ; 1〉
all◦(x) = 〈“all” + x ! 2 ; 2〉

sleep◦(x) = 〈x ! 1+ 〈“sleeps”;“sleep”〉 ! (x!2)〉
in◦(x) = 〈“in” + x ! 1〉

npp◦(x, y) = 〈x ! 1 + y ! 1 ; x ! 2〉
spp◦(x, y) = 〈x ! 1 + y ! 1〉

Figure 3: Concrete syntax for the grammar

3.2 GF concrete syntax
The concrete syntax of a GF grammar is a compo-
sitional mapping from abstract terms to concrete
terms, called the linearisation. The concrete terms
can be quite complex and consist of strings, finite
parameters, recursive records and inflection tables.
We do not use the full concrete language in this pa-
per, but instead use a simplified syntax which all
GF grammars can be compiled into.

Every GF term is a tuple of strings and integer
values. There are two operations; string concate-
nation and tuple selection:

“s1 . . .” + “s2 . . .” = “s1 . . . s2 . . .”

〈t1; . . . ; tk; . . . ; tn〉 ! k = tk

This term language is similar to multiple context-
free grammar (MCFG) (Seki et al., 1991), and in-
deed every GF grammar can be converted to an
equivalent MCFG (Ljunglöf, 2004).

We write t◦ for the linearisation of t. Composi-
tionality can then be formulated as,

f(t1 . . . tn)
◦ = f◦(t◦1 . . . t

◦
n)

where f◦ is the linearisation function correspond-
ing to the abstract function f . The concrete syntax
of our example grammar is shown in Figure 3.

3.2.1 Example linearisation
To illustrate the linearisation algorithm, we here
give the linearisation of the term sleep(all(cat)):

sleep(all(cat))◦

= sleep◦(all◦(cat◦))

= sleep◦(〈“all” + cat◦ ! 2 ; 2〉)
= sleep◦(〈“all” + 〈“cat”;“cats”〉 ! 2 ; 2〉)
= sleep◦(〈“all” + “cats” ; 2〉)
= sleep◦(〈“all cats” ; 2〉)
= 〈〈“all cats”; 2〉 ! 1 +

〈“sleeps”;“sleep”〉 ! (〈“all cats”; 2〉!2)〉
= 〈“all cats” + 〈“sleeps”;“sleep”〉 ! 2〉
= 〈“all cats” + “sleep”〉
= 〈“all cats sleep”〉

Note that the numbers have different meaning in
different linearisation terms: Both 2’s in all◦ de-
notes plural, one for selecting the plural form of
the noun and the other for remembering that the
resulting NP is in plural. On the other hand, the 2
in sleep◦ is used to select the number of the NP,
and then use that number to select the correspond-
ing verb form.

140

Peter Ljunglöf

140



4 Trees and tree editing

Formally, an ordered tree is a connected directed
acyclic non-empty graph, in which every node
v ∈ V (where V denotes the set of nodes) has
exactly one parent node ↑v, except the root node
which has no parent. Furthermore, there is a
precedence relation (≺) defined on sibling nodes.

Each abstract GF term t is a tree where each
node v has a label v̂. The label values are GF
functions. We write v◦ for the linearisation of the
subtree rooted at v; i.e., v◦ = v̂◦(v◦1 . . . v

◦
n) when

v1 . . . vn are the children of v. Note that this is
only meaningful if the tree is type-correct.

An example tree representing the term tc =
sleep(all(cat)) consists of the nodes a, b and c,
where â = sleep, b̂ = all , ĉ = cat , a = ↑b, and
b = ↑c.

4.1 Tree edit distance

The tree edit distance is a distance measure be-
tween trees (Tai, 1979). It is a modification of the
well-known Levenshtein string edit distance; the
distance between two trees is the number of edit
operations required to transform one of them into
the other. The allowed operations are insertion,
deletion and replacement:

• insert(v, f, p, j, k) inserts a new node v with
label f as the jth child of the node p. Fur-
thermore, the new node becomes the parent
of p’s existing children j to k − 1.

• delete(v) removes the node v. All children
of v become children of v’s parent node.

• replace(v, f) replaces the label of v with f .

Note that the resulting tree after an editing opera-
tion is not guaranteed to be type-correct. In fact,
for deletions and insertions, we always need at
least two operations to get a new type-correct tree.

4.2 Constrained linearisation

In GF, not all strings in a linearisation of a sub-
tree node have to be used in the linearisation of
the full tree. In the example grammar, cat◦ con-
tains two strings, but only one of them is used in
t = sleep(all(cat))◦. In this paper we need to talk
about only the parts of a linearisation that are used,
and for this purpose we define the constrained lin-
earisation JvKt of a subtree node v in a tree t. The
formal definition is a bit complex, but the intuition

is that JvKt consists of the strings in v◦ that are ac-
tually used when calculating t◦. For the example
tree tc with the node c representing the child, we
get the constrained linearisation JcKtc = 〈“cats”〉.

4.3 Constraints for automatic tree editing
Each GF grammar rule f : B1 . . . Bn → A can
be seen as a constraint on f -labeled nodes and its
children. Checking that a tree is grammatical ac-
cording to the grammar, which in GF is the same
as checking that the tree is type-correct, can then
be implemented as a constraint satisfaction prob-
lem (Sulzmann and Stuckey, 2008). Furthermore,
when we formulate the grammar as constraints on
trees, we can add additional constraints for speci-
fying in more detail how our intended tree should
look like.

By using tree constraints and the notion of tree
edit distance, we can describe a system for inter-
active tree editing. The system starts with a gram-
matical tree, and the user specifies additional con-
straints on the tree. Then the system searches for
the closest grammatical tree (in terms of tree edit
distance) that meets the constraints. This contin-
ues until the user is satisfied.

This approach lifts the level of tree editing from
procedural to declarative: the user does not have
to think about how to modify the tree, but instead
what the tree should look like. First we have struc-
tural constraints on the tree:

• We can state that a node should be in the tree,
v ∈ V , or should not be in the tree, v /∈ V .

• We can state properties about node labels,
v̂ = f , and node parents, ↑v = v′; as well
as the order between node siblings, v ≺ v′.

Since our final goal is to allow for editing directly
on the concrete surface strings, we also need some
linearisation constraints:

• We can specify that the (constrained) lineari-
sation of a node should be, or should not be,
a string (tuple): JvK = s, resp. JvK 6= s.

A special case is ¬JvK, meaning that the node
is not realised in the final sentence; this is
true either if it linearises to the empty string:
JvK = ε, or if the node is removed com-
pletely: v /∈ V .

• We can specify a linear precedence con-
straint: JvK ≺ Jv′K means that the rightmost

141

Editing Syntax Trees on the Surface

141



word in JvK is adjacent to the leftmost word
in Jv′K; it also implies that both linearisations
are non-empty.

Two special cases are ε ≺ JvK and JvK ≺
ε, meaning that the linearisation comes first
resp. last in the sentence.

4.3.1 Example: Modifying a phrase
The context-menu example, from section 2.2.1,
can be explained like this. Assume that we start
with the following tree tc:

tc = sleep(all(cat))

t◦c = “all cats sleep”

This tree has the nodes a, b, cwith the labels sleep,
all , cat , respectively. Now we want to say that
the second word (whose corresponding node is c)
should be in its singular form. This can be spec-
ified by the constraint JcK = “cat”. The system
can then apply the tree editing operations to search
for the closest type-correct tree t′c which meets the
constraint. In this case we need only one opera-
tion: we rename the b node from all to this:

t′c = sleep(this(cat))

t′◦c = “this cat sleeps”

4.3.2 Example: Inserting a phrase
Our second example, introduced in section 2.2.2,
is when the user wants to insert a prepositional
phrase tp = in(this(house)) into the tree tc. First
we encode the whole subtree tp as structural con-
straints:

d̂ = in ↑e = d
ê = this ↑f = e

f̂ = house

Now we can specify where tp should be inserted
by giving linearisation constraints:

• If we state that the phrase should come right
after “sleeps”, JaK ≺ JdK, the system needs
to first insert a spp-labeled node above a and
then insert d as the 2nd child:

tcp = spp(sleep(all(cat)), in(this(house)))
t◦cp = “all cats sleep in this house”

• If we instead state that the phrase should
come directly before “sleeps”, JdK ≺ JaK, the
system inserts an npp-labeled node below a,
and inserts d as the 2nd child:

t′cp = sleep(npp(all(cat), in(this(house))))

t′◦cp = “all cats in this house sleep”

4.4 Fine-tuning the search

When the grammar is large, there might be several
possible syntax trees that are equally close to the
original tree. One possible solution to this prob-
lem is to use a more fine-grained distance measure,
where the cost of the editing operations depend on
the nodes and the labels that are involved.

If the grammar used in example 4.3.1 contains
the singular determiner each in addition to this ,
then there will be two possible solution trees:
sleep(this(cat)) and sleep(each(cat)). Our solu-
tion is to augment the grammar with distance val-
ues between different functions. In this case the
grammar could state that replacing all 7→ each is
cheaper than all 7→ this , to force the resulting tree
to be sleep(each(cat)).

We can introduce similar costs for deleting and
inserting nodes; so that some functions prefer
some other functions as parents, or siblings. This
could be used, e.g., for PP attachment problems
when inserting new phrases.

5 Syntactic editing of the surface string

Now we are ready to get rid of the syntax trees
altogether, and introduce syntactic editing oper-
ations directly on the surface string. Our final
goal is to implement a syntactic editor where the
user does not need any knowledge of syntax trees.
Therefore the text is presented to the user as a se-
quence of words, and in this section we define in-
tuitive editing operations on the words.

To implement these operations, we only make
use of three GUI “gestures”: select-click, context-
click and drag. In a 2-button mouse interface, they
are commonly implemented by left-click, right-
click, and click-and-hold. In a touch-screen in-
terface, they can be implemented by touch-and-
release, touch-and-hold, and touch-and-drag; but
there are of course other possibilities.

5.1 Editing operations

Since the user only modifies the surface string, we
need a way of translating surface editing opera-
tions onto the underying syntax tree. We use the
fact that in GF, each surface word belongs to one
and only one node in the syntax tree. So, when
the user makes a gesture on a word w ∈ JvKt, we
interpret it as a gesture on the underlying node v.

During editing, there is an information state
consisting of the current tree, and a single node
which is called the selected node v∗. The selected

142

Peter Ljunglöf

142



node is displayed to the user by highlighting the
words in Jv∗Kt. Sometimes there are other nodes
v having the same linearisation, JvKt = Jv∗Kt. In
that case we always select the maximal node, such
that Jv∗Kt 6= J↑v∗Kt always holds. The nature
of GF grammars ensures that there always exist a
unique maximal node.

5.1.1 Selecting a phrase

There are two possibilities when the user select-
clicks a word w:

• If the word is unselected, w /∈ Jv∗Kt, or if all
words in the sentence are selected, the inter-
pretation is that the user wants to start over,
and select another node v such that w ∈ JvKt.
The node v will be the maximal node with the
minimal linearisation covering w. By “min-
imal linearisation” we mean that there is no
descendant v′ such that w ∈ Jv′Kt 6= JvKt

• If the word is already selected, w ∈ Jv∗Kt,
the interpretation is that the user wants to in-
crease the selection. We do this by select-
ing the closest maximal ancestor v such that
JvKt 6= Jv∗Kt.

Phrases can also be selected by context-clicking
and dragging; if the user performs an operation on
an unselected word, its covering node becomes se-
lected before the operation is performed.

5.1.2 Displaying a context menu

When the user context-clicks a wordw, the system
displays a modification menu for the selected node
v∗. Let s = Jv∗Kt be the currently highlighted
phrase.

The modification menu is calculated like this:
We search for nearby trees satisfying the con-
straint Jv∗K 6= s, i.e., so that v∗ is linearised dif-
ferent from the current linearisation. For each of
these trees, we display a menu item consisting of
its linearisation of v∗. If there are no such alter-
native linearisations, increase the selection and try
again.

When the user selects a menu item, the cur-
rent tree is replaced by the corresponding new tree.
The selected node v∗ remains selected. The exam-
ple in section 4.3.1 shows what happens when the
user selects the menu item “cat” for the selected
word “cats”.

5.1.3 Deleting a phrase

The user can delete the selected phrase by drag-
ging it to the trash can. This introduces the linear
constraint ¬Jv∗K, saying that either v∗ should be
removed, or that Jv∗K should be empty. The sys-
tem then searches for the closest tree satisfying the
constraint.

5.1.4 Moving a phrase

The user can drag the selected phrase to another
position in the sentence, which is interpreted as a
linear precedence constraint on v∗. If the phrase is
moved to between words w and w′, we introduce
the constraints JvK ≺ Jv∗K ≺ Jv′K, wherew ∈ JvKt
and w′ ∈ Jv′Kt.

If the phrase is moved to the beginning or end
of the sentence, instead of between two words, the
constraints become ε ≺ Jv∗K ≺ Jv′K, or JvK ≺
Jv∗K ≺ ε, respectively

5.1.5 Inserting a phrase

We assume that somewhere on the screen there
is a lexicon of phrases that the user can add to
the sentence. If the user drags a phrase from the
lexicon into the sentence between two words, we
first deselect the currently selected node. Then we
create new nodes and constraints representing the
new phrase, as in the example in section 4.3.2,
and select the topmost node. Finally we can add
the same constraints as when moving a phrase,
JvK ≺ Jv∗K ≺ Jv′K, but recall that v∗ now denotes
the topmost node in the inserted phrase, and not
the previously selected phrase.

5.1.6 Replacing a phrase

Instead of inserting the user can replace phrases,
by dragging a phrase from the lexicon and drop-
ping it onto the selected phrase. As usual, if the
user drops onto a currently unselected word, the
system reselects it as explained in section 5.1.1.

All descendants v1, v2, . . . of the selected node
v∗ are removed by adding constraints v1, v2, . . . /∈
V . Furthermore, the new phrase should be added
at v∗. We do this by letting v∗ be the topmost
node of the phrase, create new descendant nodes
v′1, v

′
2, . . ., and then add associated constraints:

v̂∗ = f, v̂′1 = a, ↑v′1 = v∗, v′1 ≺ v′2, . . .

If there is no nearby tree matching the constraints,
the system can increase the selection and try again.

143

Editing Syntax Trees on the Surface

143



6 Discussion

6.1 Grammar formalism

The underlying grammar formalism is GF, but
there are of course other formalisms that can be
used in the same way. The most important feature
is the separation of abstract and concrete syntax,
which several formalisms have in different ways.
Formalisms such as HPSG and LFG are probably
also well suited for surface string editing, but the
theory of editing presented in this paper must of
course be adapted to the underlying formalism.

6.2 Example applications

We hope that our grammatical editing system can
be a useful pedagogical tool for supporting lan-
guage learning and training, for children with
communicative disabilities, and for people learn-
ing a second language. We also believe that the
ideas can be useful in touch screen devices, as an
additional editing layer in text-based applications
such as translation, email and chat.

6.2.1 Touch screen devices

An example application can be a translation tool
for a touch screen device such as a mobile phone,
as a kind of interactive phrasebook. This kind
of application is already being developed in the
MOLTO project, but currently it has very limited
editing facilities (Angelov et al., 2010). Other
touch screen possibilities include chat and email,
where the user can create messages by dragging
around text blocks instead of writing with a error-
prone touch screen keyboard. It could also work
together with speech recognition, to correct mis-
recognised phrases in a grammatical way.

6.2.2 Robust parsing

Another possible application can be robust parsing
for limited-domain dialogue systems. It is possi-
ble to describe a dialogue system as a GF gram-
mar (Ljunglöf, 2009), but the problem with GF
is that the concrete syntax is not robust. Suppose
that we use a statistical parser such as the MALT
parser (Nivre et al., 2007). This returns a parse
tree for every string, but in most cases, the tree is
not grammatical. Then we can use the techniques
in this paper for finding the closest grammatical
tree, together with a confidence measure.

6.2.3 The GRASP project
The GRASP1 project is developing another exam-
ple application, an interactive system for Com-
puter Assisted Language Learning (CALL). There
are two intended target groups: one is children and
adults trying to learn another language; another
group is persons with communicative disabilities
who are learning to read and write in their first lan-
guage.

The idea of the final GRASP system is that it
will work as an interactive textbook, where the
user can read different texts and also experiment
with and modify the texts. The system will be di-
vided into modules dealing with different linguis-
tic features, e.g., inflection, simple phrases and
more advanced constructions. The modules can
be used on their own, or can be combined for more
advanced training.

The texts are stored as syntax trees in a multi-
lingual GF grammar, which makes it possible to
linearise the texts in parallel for several languages.
This can be useful for second language learning,
as the system can display the text in the user’s first
language in parallel. Multilinguality is also useful
for first language learning, e.g., by displaying the
parallel text in a symbol language such as Bliss-
symbolics.

6.3 Current status

The GRASP system is work in progress, and not
all features described in this paper are imple-
mented, as of April 2011. There is a functioning
demonstration system, which needs more work to
be useful for the intended audience. In particu-
lar, the implementation is still too slow and the
demonstration grammar needs to be expanded.

The current demostration grammar is a small
monolingual Swedish grammar, and the module
system is not fully developed. The grammar
handles noun phrase inflection, fronting of noun
phrases, and verb inflection.

7 Acknowledgements

The author would like to thank three anonymous
reviewers for their valuable comments on an ear-
lier version of this paper. The GRASP project is
financed by Sunnerdahls Handikappfond.

1GRASP is an acronym for “grammatikbaserad språkin-
lärning” (grammar-based language learning).

144

Peter Ljunglöf

144



References
Krasimir Angelov, Olga Caprotti, Ramona Enache,

Thomas Hallgren, and Aarne Ranta. 2010. The
MOLTO phrasebook. In SLTC’10, 3rd Swedish
Language Technology Conference.

Trude Heift. 2001. Intelligent language tutoring sys-
tems for grammar practice. Zeitschrift für Interkul-
turellen Fremdsprachenunterricht, 6(2).

Peter Ljunglöf. 2004. Expressivity and Complexity
of the Grammatical Framework. Ph.D. thesis, Uni-
versity of Gothenburg and Chalmers University of
Technology, Gothenburg, Sweden.

Peter Ljunglöf. 2009. Dialogue management as inter-
active tree building. In DiaHolmia’09, 13th Work-
shop on the Semantics and Pragmatics of Dialogue,
Stockholm, Sweden.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen
Eryiǧit, Sandra Kübler, Svetoslav Marinov, and
Erwin Marsi. 2007. Maltparser: A language-
independent system for data-driven dependency
parsing. Natural Language Engineering, 13(2):95–
135.

Aarne Ranta. 2009a. The GF resource grammar li-
brary. Linguistic Issues in Language Technology, 2.

Aarne Ranta. 2009b. Grammatical Framework: A
multilingual grammar formalism. Language and
Linguistics Compass, 3(5):1242–1265.

Hiroyuki Seki, Takashi Matsumara, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free
grammars. Theoretical Computer Science, 88:191–
229.

Martin Sulzmann and Peter J. Stuckey. 2008. HM(X)
type inference is CLP(X) solving. Journal of Func-
tional Programming, 18(2):251–283.

Kuo-Chung Tai. 1979. The tree-to-tree correction
problem. JACM, Journal of the Association for
Computing Machinery, 26:422–433.

145

Editing Syntax Trees on the Surface

ISSN 1736-6305 Vol. 11
http://hdl.handle.net/10062/16955


