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The plasma membrane oxidoreductase (PMOR) activity, which mainly utilises ascorbate as intracellular electron donor, represents a major mechanism for

cell-dependent reduction of extracellular oxidants and might be an important process used by the erythrocytes to keep a reduced plasma environment. We

previously reported that in human erythrocytes, myricetin and quercetin act as intracellular substrates of a PMOR showing a novel mechanism whereby

these flavonoids could exert beneficial effects under oxidative stress conditions. Here, we evaluated the ability of different flavonoids (quercetin, myricetin,

morin, kaempferol, fisetin, catechin, luteolin, apigenin, acacetin, rutin, taxifolin, naringenin, genistein) and of two in vivo O-methylated metabolites of quer-

cetin (isorhamnetin and tamarixetin) to be substrates of PMOR, by comparing their antioxidant capacity (i.e. direct interaction with the oxidant ferricyanide

or with the free radical 1,1-diphenyl-2-picryl-hydrazil) with their ability to penetrate the erythrocytes and donate electrons to the PMOR. The results

obtained indicate that, although most of the flavonoids display significant antioxidant activities, only those (quercetin, myricetin, fisetin) that combine

the cathecol structure of the B ring (responsible for the reducing activity) with the 2,3 double bond and 4-oxo function of the C ring (responsible for

the uptake by erythrocytes) can act as intracellular substrates for PMOR. It is of note that the metabolites of quercetin enter erythrocytes and donate elec-

trons to the PMOR as the parent compound. The present data show a relationship between the flavonoid structures and their ability to provide electrons to the

PMOR, suggesting an additional mechanism whereby dietary flavonoids may exert beneficial effects in man.

Flavonoids: Trans-plasma membrane oxidoreductase: Ferricyanide: 1,1-Diphenyl-2-picryl-hydrazil

It is now well established that diets rich in fruits and vegetables

are protective against the oxidative effects of reactive oxygen

species which are formed in vivo during the cellular aerobic

metabolism and can cause damage to various cellular components

such as DNA, proteins, lipids, etc (Steinmetz et al. 1991a,b; KeliQ1

et al. 1996; Ness & Powles, 1997; Ross & Kasum, 2002). Despite

the cells being well equipped with antioxidant defence systems,

the accumulation of unrepaired products may be critical to the

development of several important pathologies.

Flavonoids are polyphenol compounds, widely distributed in

plant foods, which may exert beneficial effects in various dis-

eases, including cancer, CVD and neurodegenerative disorders

(Steinmetz & Potter, 1991a,b; Richter et al. 1999). Many of the

biological actions of flavonoids have been attributed to their anti-

oxidant properties (Afanas’ev et al. 1989; Bors et al. 1990;

Rice-Evans et al. 1997); more recently, it has been proposed

that flavonoids and their metabolites may exert their effects by

displaying modulatory actions in cells (Williams et al. 2004).

We have previously reported that flavonoids quercetin and

myricetin are efficiently taken up by human erythrocytes and

can act as substrates for the plasma membrane oxidoreductase

(PMOR) activity, suggesting another mechanism whereby flavo-

noids can exert their protective effects (Fiorani et al. 2002).

Indeed, this enzyme activity represents an important means to

defend the cells against extracellular oxidative stressors (May

et al. 1996), and since the erythrocytes are constantly exposed

to oxidative stress, it might have a major role in maintaining a

reduced plasma environment (Kennett & Kuchel, 2003).

The aim of the present study was to evaluate the ability of sev-

eral flavonoids (Fig. 1), commonly present in fruits and veg-

etables (flavonols: quercetin, myricetin, morin, kaempferol,

fisetin; flavanol: catechin; flavones: luteolin, apigenin, acacetin,

rutin; flavanones: taxifolin and naringenin; isoflavone: genistein)

and of two reported in vivo quercetin metabolites, isorhamnetin

and tamarixetin (Spencer et al. 2003a), to interact with human

erythrocyte plasma membrane and induce extracellular reduction

of oxidants.

Materials and methods

Materials

Flavonoids, 1,10-phenanthroline, ethyl acetate and 1,1-diphenyl-

2-picryl-hydrazil (DPPHz) were purchased from Sigma-Aldrich

Chemie (Steinheim, Germany). Isorhamnetin and tamarixetin

were purchased from Extrasynthese (Z.I. Lyon Nord, Geney,

France).

K3Fe(CN)6, FeCl3, citric acid, NaH2PO4 and acetonitrile

(HPLC grade) were Carlo Erba products (Milan, Italy).
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Methods

Measurement of chemical ferricyanide reduction by different

flavonoids. To a 1mM-ferricyanide (FIC) solution in PBS (pH

7·4) were added different amounts of the flavonoid solution

(final concentrations 2·5–500mM). After standing for 30min at

378C (a time long enough to reach the reaction thermodynamic

equilibrium), the ferrocyanide (FOC) formation was measured

as reported by Avron & Shavit (1963), using 1,10-phenanthroline

as an indicator and measuring absorption at 510 nm (1 ¼ 10 500/

M per cm). The percentage of FOC formation (% of reduction ofQ2

the 1mM-FIC solution) was plotted against the sample concen-

tration to obtain the EC50, defined as the flavonoid concentration

required to obtain 50% of the maximal FIC-reducing activity.

Measurement of scavenging activity on 1,1-diphenyl-2-picryl-

hydrazil. The free radical-scavenging activity of flavonoids

against the DPPHz free radical was measured using a modified

version of the method of Mallors & Tappel (1966). Briefly, to

0·850ml of 100mM-DPPHz ethanolic solution were added differ-

ent amounts of flavonoid solutions in ethanol (final concentration

1–150mM) in 1ml cuvettes. After standing in the dark for 10min

(a time long enough to reach the reaction thermodynamic equili-

brium), the absorbance (Abs) at 517 nm was measured. Controls

containing ethanol instead of the flavonoid solution and blanks

containing ethanol instead of DPPHz solution were also made.

The DPPHz-scavenging activity was calculated according to the

following formula: DPPHz scavenging activity (%) ¼

(Abscontrol 2 Abssample)/Abscontrol £ 100. The percentage of

scavenging activity was plotted against the sample concentrations

to obtain the EC50, defined as the flavonoid concentration required

to obtain 50% of the maximal scavenging activity.

Human erythrocytes. Human venous blood (in heparin) from

healthy volunteers was obtained by venepuncture. The erythro-

cytes were used immediately after sampling. The blood was cen-

trifuged at 1861·5 g for 10min at 48C. After removal of plasma,

buffy coat, and the upper 15% of the packed erythrocytes, the

erythrocytes were washed twice with cold PBS (150mM-NaCl,

5mM-Na2HPO4, in deionised water, adjusted to pH 7·4) and

then re-suspended as described below.

Incubation of human erythrocytes with flavonoids. A stock

solution (20mM) of each flavonoid was prepared in dimethyl

Fig. 1. Structures of the flavonoids.
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sulfoxide and then diluted 1:2 with PBS. Packed erythrocytes

(10%, v/v) were incubated in PBS at 378C for 10min in the pre-

sence of the flavonoids (flavonols: quercetin, myricetin, morin,

kaempferol, fisetin; flavanol: catechin; flavones: luteolin, api-

genin, acacetin, rutin; flavanones: taxifolin and naringenin; isofla-

vone: genistein) and of two reported in vivo quercetin metabolites,

isorhamnetin and tamarixetin. After this time, the suspensions

were immediately centrifuged at 1861·5 g, the erythrocytes were

washed twice with at least 50 vol. of PBS and then processed as

reported below.

Measurement of ferricyanide reduction by human erythrocytes.

FIC reduction was estimated as reported by Avron & Shavit

(1963). After exposure to the flavonoid, erythrocytes were

washed twice with PBS and re-suspended (10%, v/v) in PBS

þ2·5mM-adenosine containing 1mM-FIC (potassium salt), dis-

solved immediately before use. The suspensions were incubated

for 30min at 378C and then centrifuged at 1861·5 g at 48C. The

resulting supernatant fractions were assayed for their FOC content

using 1,10-phenanthroline as an indicator and measuring absorp-

tion at 510 nm (1 ¼ 10 500/M per cm).Q2

Extracellular and intracellular content of flavonoids. The

extracellular and intracellular content of flavonoids was measured

as described by Ferrali et al. (1997), with slight modifications, by

performing ethyl acetate extractions. To measure the extracellular

concentration of flavonoids, the supernatant fraction obtained at

the end of the incubation time was extracted three times with

ethyl acetate. For the assessment of intracellular flavonoid content

the erythrocyte lysates were extracted three times with ethyl acet-

ate. The absorbance of the clear upper phase was measured spec-

trophotometrically at the wavelength corresponding to the

maximal absorption spectrum (morin 380 nm; quercetin, myrice-

tin, isorhamnetin, tamarixetin, kaempferol 378 nm; fisetin

370 nm; rutin 340 nm; apigenin 350 nm; luteolin 336 nm; acacetin,

genistein 330 nm; taxifolin 325 nm; naringenin 320 nm; catechin

285 nm). The extra- and intracellular concentrations of the flavo-

noids were obtained from the corresponding calibration curve,

performed in ethyl acetate (morin, 1380 ¼ 8·300/M per cm; quer-

cetin, 1378 ¼ 26·000/M per cm; myricetin, 1378 ¼ 18·900/M per

cm; isorhamnetin, 11378 ¼ 48·700/M per cm; tamarixetin,

1378 ¼ 39·300/M per cm; kaempferol, 1378 ¼ 22·500/M per cm;Q3

fisetin, 1370 ¼ 22·700/M per cm; apigenin, 1350 ¼ 15·200/M per

cm; luteolin, 1336 ¼ 68·900/M per cm; acacetin, 1330 ¼ 16·600/M

per cm; genistein, 1330 ¼ 2·500/M per cm; taxifolin,

1325 ¼ 3·200/M per cm; naringenin, 1320 ¼ 2·200/M per cm; cate-

chin 1285 ¼ 4·700/M per cm). In all experiments, ethyl acetate

extraction of a control sample was performed (either erythrocyte

or supernatant fraction), in order to look for possible interferences

with erythrocyte constituents. The results obtained showed that

the absorbance values of the erythrocyte control samples were

identical to those of an ethyl acetate solution.

The percentage of haemolysis was evaluated in the same

samples by measuring the Hb concentration v. the total Hb con-

tent. The extent of lysis was not different from controls and

never higher than 0·5%.

High-performance liquid chromatography analysis of quercetin

and its methylated metabolites. After incubation of the human

erythrocyte suspensions with 50mM-quercetin, tamarixetin or iso-

rhamnetin as described earlier, the samples were centrifuged at

1861·5 g for 5min and the supernatant fractions were collected.

The packed erythrocytes were then extensively washed with

PBS and lysed with cold bi-distilled water. Both samples

(extracellular milieu and erythrocyte lysate) were extracted

three times with ethyl acetate. All the samples were taken to dry-

ness by rotary evaporation and re-dissolved in dimethyl sulfoxide

and diluted with bi-distilled water just before HPLC analysis.

HPLC analysis of quercetin and its methylated derivatives was

performed by using a 25 £ 4·6mm Discovery C18 (5mm;

Supelco, Bellefonte, PA, USA) equipped with a Supelguard Dis-

covery C-18 guard column (2 cm £ 4mm, 5mm). A modified ver-

sion of the analytical HPLC method from Day et al. (2000) was

used. Solvent A (0·1% trifluoroacetic acid) and B (acetonitrile)

were run at a flow rate of 1ml/min. The running gradient was

adjusted to 17% B (2min), increasing to 25% B (5min), 35%

B (8min), 50% B (5min) and then 100% B (10min), followed

by a re-equilibration at 17% B (15min). The injection volume

was 100ml and the eluate was monitored at 270 nm.

Results and discussion

In vitro ferricyanide-reducing activity

The direct interaction of the various flavonoids (belonging to the

family of flavonol, flavanol, flavone, flavanone and isoflavone)

with an oxidant was investigated by monitoring the formation

of its reduction product. For this purpose, increasing concen-

trations (2·5 to 500mM) of the flavonoids were incubated in

PBS containing 1mM-FIC and FOC formation was detected spec-

trophotometrically after 30min. As reported in Fig. 2, quercetin

and myricetin, followed by taxifolin, rutin and fisetin, displayed

a high FIC-reducing activity.

These compounds are characterised by the presence of a B-ring

catechol group (dihydroxylated B-ring) capable of readily donat-

ing hydrogen (i.e. electron). The substitution of 30-OH or 40-OH

of quercetin with a methyl group, as in isorhamnetin or tamarix-

etin, respectively, only slightly decreased the FIC-reducing

activity. A somewhat greater decrease was noticed by changing

Fig. 2. Ferricyanide reduction by various flavonoids. Ferricyanide (1mM) in

PBS (pH 7·4) was incubated for 30min at 378C with the indicated concen-

trations of quercetin (W), myricetin (X), fisetin (A), luteolin (O), isorhamnetinQ8

(B), taxifolin (†), kaempferol ( £ ), tamarixetin (†), morin (þ ), catechin (†),

rutin (2 ), apigenin (r), acacetin (†), genistein (†) and naringenin (†). Then,Q11

ferrocyanide formation was assayed (for details, see p. 000).
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the 30,40 orthodihydroxy arrangement of the B ring to 30,50 meta-

dihydroxy, as in morin. Kaempferol, a flavonol identical to quer-

cetin, but having no hydroxyl group at the 30 position in the B

ring, displayed an even lower activity. The 2,3 double bond in

the C ring does not appear to play a major role for FIC-reducing

activity, since taxifolin displayed remarkably similar effects to

quercetin. However, catechin, which differs from taxifolin lacking

the 4-oxo group in the C ring, showed a strong decrease in FIC-

reducing activity. The substitution of 3-OH of quercetin with 3-O-

rutinoside, as in rutin, decreased the reducing activity by about

10%, whereas a 50% reduction was observed upon dehydroxyla-

tion in the 3-position, as in luteolin. Finally, dehydroxylation at

both the 3- and 30-positions led to a complete loss of activity,

as in apigenin, acacetin (40-methoxyapigenin) and naringenin,

the latter lacking 2,3 double bonds as well. The isoflavone genis-

tein was also inactive.

Table 1 reports the EC50 values as calculated from the curves

illustrated in Fig. 2.

Taken together, these results emphasise the relevance of the cate-

chol-like structure of the B ring in association with the 3-OH group

on the expression of maximal FIC-reducing activity, and show that

the substitution of 3-OHwith 3-O-rutinoside as in rutin, or themeth-

ylation of 30 or 40-OH as in isorhamnetin or tamarixetin only slightly

reduce the antioxidant activity of these compounds.

It is of note that the very high reducing activities displayed by

most flavonoids tested have also been observed by other authors.

As reported by Cao et al. (1997) the flavonoids that containmultiple

OH substitutions (i.e. myricetin, quercetin, luteolin, etc) showed

peroxyl radical-scavenging activity several times higher than

Trolox, an a-tocopherol analogue. They reported that the stoichio-

metric factor (i.e. the number of peroxyl radicals trapped per mol-

ecule of antioxidant) of these flavonoids is about 6–9, whereas

the stoichiometric factor of Trolox is 2. Moreover, other authors

(Firuzi et al. 2005) evaluated the antioxidant activities of flavonoids

by ‘ferric-reducing antioxidant power’ measurement. They showed

that quercetin, fisetin and myricetin appeared the most active com-

pounds in the ferric-reducing antioxidant power assay and theywere

3·02, 2·52 and 2·28 times more active than Trolox, respectively.

1,1-Diphenyl-2-picryl-hydrazil scavenging activity

As a further approach to estimate the relative potency of the

tested flavonoids in reactions involving electron donation, we

used the DPPHz assay, widely employed for the assessment of

antioxidant activity. DPPHz, a stable organic free radical, displays

a characteristic absorption maximum between 515 and 517 nm

that diminishes in the presence of compounds reducing it to its

hydrazine form by hydrogen–electron donation. The different

kinetic behaviour of antioxidants is an important factor in the

evaluation of the radical-scavenging activity (Bandonienè & Mur-

kovic, 2002). Fig. 3 (EC50 values are shown in Table 1) illustrates

the scavenging activity of the tested flavonoids after a 10min

incubation in ethanol in the presence of DPPHz (100mM). Com-

plete conversion of DPPHz to its hydrazine derivative was

observed at much lower concentrations of the flavonoids than

those necessary to fully reduce FIC, an event probably ascribable

to the different concentration of the oxidising substrate employed

in the two experimental conditions. The results obtained were

nevertheless similar to those previously described for the FIC-

reduction assay, with some important exceptions. Quercetin, myr-

icetin and fisetin most effectively scavenged the DPPHz radical,

confirming previous results showing that the scavenging activity

of flavonoids is related to the presence of (i) a 30- 40 dihydroxy-

lated B ring, (ii) the 2,3-double bond in conjugation with a 4-

oxo function in the C ring and finally, (iii) the additional presence

of both 3- and 5- hydroxyl groups (Williams et al. 2004). It

should be noted, however, that in contrast with the results

obtained measuring FIC reduction, the substitution of 30 or 40-

OH with a methyl group (for example, isorhamnetin or tamarixe-

tin) or 3-OH with 3-O-rutinoside (for example, rutin) substantially

reduced the scavenging activity. The remaining compounds,

either inactive or poorly active in the FIC assay, produced similar

outcomes in the DPPHz assay.

Human erythrocyte ferricyanide-reducing activity promoted by

different flavonoids

FIC is a mild oxidant which does not cross the cell membrane and

accepts electrons from the PMOR activity. Although the physio-

logical electron donors for this enzyme are ascorbic acid and

NADH (May, 1999; May et al. 1999), our recent findings indicate

that quercetin and myricetin are also potent electron donors for

the PMOR in human erythrocytes (Fiorani et al. 2002, 2003).

Experiments were therefore performed to determine the potency

of the tested flavonoids in supporting the ability of human

erythrocytes to reduce extracellular oxidants. For this purpose,

Table 1. Flavonoid concentrations required to obtain 50% of the maximal effect (EC50 values)

concerning ferricyanide reduction and 1,1-diphenyl-2-picryl-hydrazil (DPPHz)-scavenging

activity*

Flavonoid EC50 ferricyanide reduction (mm) EC50 DPPH
z-scavenging activity (mm)

Quercetin 96·5 6·23

Myricetin 97·3 6·37

Fisetin 114·8 6·75

Rutin 116·1 9·67

Luteolin 160·0 12·79

Isorhamnetin 108·0 12·94

Taxifolin 118·3 13·83

Kaempferol 197·1 18·4

Catechin 282·6 18·55

Tamarixetin 112·0 18·56

Morin 159·4 27·23

*The values have been calculated from the curves reported in Figs. 2 and 3 respectively.
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erythrocytes were first incubated for 10min with a 50mM concen-

tration of each flavonoid, centrifuged and extensively rinsed, re-

suspended in PBS supplemented with adenosine and 1mM-FIC

and finally incubated for 30min at 378C. Formation of FOC

was subsequently measured in the supernatant fraction. It is

important to note that this response, as previously shown for quer-

cetin (Fiorani et al. 2002), is mediated by the activity of the

PMOR and not by the flavonoids released from the cells. For

this purpose, erythrocytes were incubated with 50mM-flavonoids

(listed earlier; p. 000) for 10min, washed twice with at leastQ4

50 vol. of PBS and then incubated (10%, v/v) with PBS plus ade-

nosine. After 30min, the erythrocyte suspensions were centri-

fuged and flavonoid content was assayed either in the

supernatant fractions and in erythrocytes after ethyl acetate

extractions, as detailed earlier (p. 000). The results obtained con-Q4

sistently demonstrated that none of the flavonoids was signifi-

cantly released during post-treatment incubations (not shown;

Fiorani et al. 2002). As illustrated in Fig. 4, quercetin and myri-

cetin, followed by fisetin, isorhamnetin and tamarixetin were the

most potent compounds in promoting the PMOR activity. Kaemp-

ferol, luteolin, taxifolin and morin were significantly less effective

and the remaining flavonoids were inactive. For a correct

interpretation of these results the cellular uptake of the different

flavonoids was next assessed under equal loading conditions.

Fig. 5 shows that quercetin, myricetin, kaempferol, fisetin,

morin, luteolin, isorhamnetin, tamarixetin, apigenin and acacetin,

were efficiently taken up by the erythrocytes and actually accu-

mulated at levels above the initial extracellular loading concen-

tration. The uptake of naringenin, genistein, taxifolin and finally

catechin was remarkably lower and that of rutin was virtually

undetectable.

Thus, all compounds displaying significant FIC-reducing

activity (Fig. 2), and efficiently taken up by the erythrocytes

(Fig. 5), act in parallel as intracellular substrates for the PMOR

activity. Examples are quercetin, myricetin, fisetin as well as

the in vivo plasma metabolites of quercetin, isorhamnetin and

tamarixetin. It is important to point out that the two latter com-

pounds were not converted within the erythrocytes to their de-

methylated form (for example, to quercetin), an event that

Fig. 3. 1,1-Diphenyl-2-picryl-hydrazil (DPPHz)-scavenging activity by various

flavonoids. DPPHz (100mM) in ethanol was incubated for 10min at 378C with

the indicated concentrations of quercetin (W), myricetin (X), fisetin (A), luteo-

lin (O), isorhamnetin (B), taxifolin (†), kaempferol ( ), tamarixetin (†), morin

(þ ), catechin (†), rutin (2), apigenin (r), acacetin (†), genistein (†) and nar-Q11

ingenin (†) dissolved in ethanol. The decrease of the absorbance at 517 nm

was then measured and the scavenging activity was expressed as percen-

tage of the absorbance of the control DPPHz solution.

Fig. 4. Effect of various flavonoids on the rate of ferricyanide (FIC) reduction

in human erythrocytes. Human packed erythrocytes were incubated for

10min at 378C in PBS (10%, v/v) in the presence of 50mM-flavonoid. After

centrifugation the cells were washed twice with PBS and the packed erythro-

cytes were re-suspended in PBS (10%, v/v) plus 2·5mM-adenosine contain-

ing 1mM-FIC. After 30min of incubation at 378C, the cell suspensions were

centrifuged and the ferrocyanide (FOC) content was assayed as detailed on

p. 000. Flavonoid-dependent FIC-reducing activity was determined upon sub-Q9

traction of basal FIC-reducing activity detected in the untreated samples. All

data are the means of at least three independent determinations, with stan-

dard deviations represented by vertical bars.

Fig. 5. Flavonoid uptake by human erythrocytes. Human packed erythrocytes

were incubated for 10min at 378C in PBS (10%, v/v) in presence of 50mM-

flavonoid. After centrifugation, the cells were washed twice with at least

50 vol. of PBS, then lysed by re-suspending with 3 vol. of cold distilled water

and maintained 10min at 48C. Flavonoids were extracted from either the

haemolysate or supernatant fraction with ethyl acetate, as described on

p. 000. All data are the means of at least three independent determinations,Q10

with standard deviations represented by vertical bars. The data are

expressed as percentage of the flavonoid recovered in erythrocytes with

respect to the total flavonoid content (extra þ intracellular concentration).
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would explain the identical abilities to reduce extracellular oxi-

dants mediated by the PMOR activity. This notion is clearly

established by the HPLC analysis which revealed that only iso-

rhamnetin or tamarixetin are recovered inside the cell after

exposure of erythrocytes to the methylated derivatives.

Fig. 6 (A) shows concentration-dependence curves of the FIC-

reducing activity of isorhamnetin, tamarixetin and quercetin by

human erythrocytes. As illustrated, the two methylated metab-

olites are able to act as intracellular substrates of the PMOR

already at concentrations #5mM with a rate quite similar to

that of quercetin. Similarly, the intracellular uptake of these com-

pounds was substantially identical (Fig. 6 (B)).

Additional flavonoids, namely kaempferol, morin and luteolin,

were also efficiently taken up by the erythrocytes (Fig. 5) but

displayed poor direct (Fig. 2) or cell-mediated (Fig. 4) FIC

reduction. Taxifolin was less efficiently taken up by the erythro-

cytes (Fig. 5) and, while more effective than kaempferol and

luteolin in reducing FIC (Fig. 2), caused a similar erythrocyte-

dependent reduction of extracellular oxidants (Fig. 4). Although

apigenin, acacetin, genistein and naringenin were accumulated

in the erythrocytes in fairly high amounts (Fig. 5), these com-

pounds were unable to reduce FIC chemically (Fig. 2) and in

the cell-mediated assay (Fig. 4). Rutin was similar to quercetin

in promoting chemical reduction of FIC (Fig. 2) but was not

taken up by the erythrocytes (Fig. 5) and therefore unable to

behave as intracellular substrates for the PMOR activity (Fig. 4).

Finally, catechin did not permeate the cell membrane (Fig. 5) and

thus was inactive in the cell-mediated assay (Fig. 4), while it was

poorly effective in the chemical FIC-reduction assay (Fig. 2). It is

of note that taxifolin, which shows a chemical FIC-reducing

activity similar to that of quercetin (Fig. 2), contributes to a

lesser extent to the PMOR activity (Fig. 4). This fact is quite

probably linked to the poor uptake of taxifolin by human erythro-

cytes (Fig. 5). This flavonoid, as already mentioned, differs from

quercetin at the 2,3 position, lacking in the double bond. Narin-

genin, which, as taxifolin, lacks a 2,3 double bond, penetrates

the erythrocyte membrane with a percentage similar to taxifolin.

However, naringenin does not display chemical FIC-reduction

activity or DPPHz-scavenging ability. This fact is probably

linked to the lack of 3- and 30-hydroxyl groups. Catechin, that

does not have either the 2,3 double bond or a 4-carbonyl group,

penetrates the erythrocyte membrane in very small amounts.

Therefore, it could be attributed to the 2,3 double bond and to

the 4-carbonyl group ring a pivotal role on flavonoid uptake by

erythrocytes.

Kaempferol and morin, although efficiently taken up by eryth-

rocytes, were remarkably less effective than quercetin in promot-

ing reduction of extracellular FIC. This observation confirms the

previous results emphasising the notion that the cathecol plays a

pivotal role in the above biological response.

In conclusion, in the present study the in vitro evidence of anti-

oxidant capacity of various polyphenolic compounds was related

with that obtained from a biological system represented by human

erythrocytes. The results obtained show that the flavonoids, which

possess the catechol structure in the B ring (responsible for the

reducing activity) in conjunction with a 2,3 double bond and

4-oxo function in the C ring (which favour the uptake of flavonoid

by erythrocytes) appear to be the most potent agents in acting as

electron donors to the PMOR activity. On the other hand, the role

of quinone and quinone methide should be also considered, oxi-

dation products of quercetin (Awad et al. 2000, 2001), which

may display cytotoxic effects (MacGregor & Jurd, 1978; Sahu

& Washington, 1991; Bolton et al. 1998; Penning et al. 1999).

However, according to the literature (Cao et al. 1997; Lee et al.

2003) the pro-oxidant activities of natural antioxidants are unli-

kely to be a significant problem ‘in vivo’, and most of the studies

show that flavonoids exert beneficial effects against pathological

conditions such as CVD, cancer (Steinmetz et al. 1991a,b) andQ1

neurodegenerative disorders. Therefore, diets rich in these pheno-

lic compounds are now strongly recommended. However, some

doubts on the physiological relevance of these results arise from

the bioavailability of these compounds. In fact, it should be

underlined that plasma concentrations reached after flavonoid

consumption vary highly according to the nature of the polyphe-

nol and to the food source. Data reported in the literature show

that the plasma concentrations of total metabolites can vary

from 0 to 4mmol/l after consumption of 50mg aglycone equiva-

lents, and the relative urinary excretion ranged from 0·3 to 43%

of the ingested dose, depending on polyphenolic compounds

(Manach et al. 2005).

Q5

Fig. 6. Ferricyanide (FIC)-reducing activity (A) and flavonoid uptake (B) by

human erythrocytes. Human packed erythrocytes were incubated for 10min

at 378C in PBS (10%, v/v) with 50mM-flavonoid (isorhamnetin (B); tamarixe-

tin (†); quercetin (r)). After centrifugation the cells were washed twice with

PBS and the packed erythrocytes were: (A) re-suspended at 10% packed

cell volume in PBS plus 2·5mM-adenosine containing 1mM-FIC and the fer-

rocyanide (FOC) formation was assayed as reported in the legend of Fig. 4,

or (B) lysed by re-suspending with 3 vol. of cold distilled water and the flavo-Q11

noid content was measured as described in the legend of Fig. 5. Flavonoid-

dependent FIC-reducing activity was determined upon subtraction of basal

FIC-reducing activity detected in the untreated samples. All data are the

means of at least three independent determinations, with standard deviations

represented by vertical bars.
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Moreover, as pointed out by Kroon et al. (2004), most of the

dietary polyphenols undergo extensive modifications during trans-

fer across the small intestine and then again in the liver, so that

the forms reaching the blood and tissues are in general neither

aglycones (except for green tea catechins) nor the various glyco-

sides as the dietary source (Kroon et al. 2004). Circulating glucur-

onides, sulfates, and O-methylated forms are believed to be those

most likely to exert bioactivity and express beneficial effects in

human and animals (Spencer et al. 2001a,b, 2003b, 2004;

Guglielmone et al. 2002; Schroeter et al. 2003). It should be con-

sidered, however, as pointed out by Spencer et al. (2004), that

there is the possibility that both flavonoid and O-methylated fla-

vonoid glucuronides may be de-conjugated by the action of b-glu-

curonidases present in human tissues such as liver or small

intestine or during local conditions of inflammation. In this

case, free aglycone or O-methylated forms will be released and

may go on to express cellular effects. Indeed, glucuronidases

are present in a number of tissue within the body (Tukey et al.

2000) and may be released by certain cells.

In the bloodstream, erythrocytes encounter a variety of oxidant

stressors which can be both endogenous, from cellular generation

of superoxide and H2O2 (van Dyke & Saltman, 1996) and exogen-

ous in areas of inflammation. Therefore, the PMOR activity in

erythrocytes can play a protective role by reducing extracellular

oxidants. The fact that specific flavonoids, abundantly present in

fruits and vegetables as well as their plasma metabolites, act as

substrates for this membrane enzyme provides an efficient way

to maintain a redox state in the plasma, supporting the statement

of the beneficial effects of dietary flavonoids.
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