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ABSTRACT

This work proposes a melody extraction method which
combines a pitch salience function based on source-filter
modelling with melody tracking based on pitch contour
selection. We model the spectrogram of a musical au-
dio signal as the sum of the leading voice and accompa-
niment. The leading voice is modelled with a Smoothed
Instantaneous Mixture Model (SIMM), and the accompa-
niment is modelled with a Non-negative Matrix Factor-
ization (NMF). The main benefit of this representation is
that it incorporates timbre information, and that the lead-
ing voice is enhanced, even without an explicit separation
from the rest of the signal. Two different salience functions
based on SIMM are proposed, in order to adapt the output
of such model to the pitch contour based tracking. Can-
didate melody pitch contours are then created by grouping
pitch sequences, using auditory streaming cues. Finally,
melody pitch contours are selected using a set of heuristic
rules based on contour characteristics and smoothness con-
straints. The evaluation on a large set of challenging poly-
phonic music material, shows that the proposed salience
functions help increasing the salience of melody pitches
in comparison to similar methods. The complete melody
extraction methods also achieve a higher overall accuracy
than state-of-the-art approaches when evaluated on both
vocal and instrumental music.

1. INTRODUCTION

The task of melody extraction from polyphonic music
recordings has been generally approached with salience-
based or separation-based methods [1]. Salience-based ap-
proaches compute a frame-based pitch salience function,
while separation-based approaches attempt to isolate the
melody source from the mixture more or less explicitly.
Melody oriented pitch salience functions should ideally
only contain a peak at the frequency corresponding to the
melody pitch present at a given instant.

The most commonly used pitch salience function is har-
monic summation [2]. This approach is computationally
inexpensive and has been used successfully in a variety of
forms for predominant melody extraction [3, 4] or multi-
ple pitch estimation [5]. More recently, probabilistic ap-
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proaches based on decomposition models such as Non-
negative Matrix Factorisation (NMF) have gained more in-
terest [6, 7], especially within source separation scenarios.

Salamon and Gómez [3] propose a salience function
based on harmonic summation [2], computed as the sum
of the weighted energies found at integer multiples (har-
monics) of each of the considered frequencies. Durrieu
et al. [6] propose a salience function within a separation-
based approach using a Smoothed Instantaneous Mixture
Model (SIMM), as detailed in Section 2. There are im-
portant differences between the salience functions obtained
with SIMM (Hf0 ) and harmonic summation (HS). Hf0 is
much more sparse, and has a larger range of values, since
the method does not prevent values to be very high or very
low. Figure 3 shows a comparison of both salience func-
tions for one of the excerpts used for evaluation: (a) shows
the pitch salience function obtained with SIMM, and (b)
corresponds to HS, which is more dense and smooth, and
has a smaller range of values.

Melody extraction methods exploit salience functions for
pitch tracking, relying on the energetic predominance of
melody pitches and on melody contour smoothness, using
e.g. streaming rules [4] Hidden Markov Models (HMM)
[7, 8], or pitch contour characteristics [3]. Finally, frames
are classified as voiced or unvoiced (containing a melody
pitch or not respectively), using static or dynamic thresh-
olds [4,7], or exploiting pitch contour salience distribution
[3]. For instance, Durrieu et al. [8] use an empirically cho-
sen fixed threshold, such that voiced frames represent more
than 99.95% of the leading instrument energy. Salamon [9]
proposed a generative model to distinguish melody from
non-melody contours, and Bittner [10] proposed a discrim-
inative classifier based on contour features. While both ap-
proaches learnt from training data, none of them increased
the overall accuracy obtained with the method based on
heuristic rules [3].

Main challenges in melody extraction deal with more
complex music material [1], with melodies played by dif-
ferent instruments, harmonised melodic lines, or music
that features “ensemble” sounds, typically found when
several performers play or sing in unison. Some charac-
teristics of such sounds is the fluctuation of the pitches,
known as voice flutter, typically found in orchestral and
choral music [11]. A key step towards the development
of more advanced algorithms and a more realistic evalua-
tion are large and open annotated databases. Recent works
presented datasets for melody extraction with such char-
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Figure 1: SIMM model. Dashed lines refer to the matrices
which are fixed, while the rest are iteratively estimated

acteristics, e.g. in a variety of genres and instrumentation
(MedleyDB) [12], and in orchestral music (Orchset) [13].
These datasets allow broader definitions of melody than the
one used in Music Information Retrieval Evaluation eX-
change (MIREX) [14], since they are not restricted to a
single instrument. Results on both datasets generally drop
significantly in comparison to results on simpler datasets
used in MIREX [12, 13, 15].

Previous works [13, 15] have shown the benefits of us-
ing separation-based approaches such as the [8] for pitch
estimation on orchestral data. However, voicing detection
was identified as a key aspect to improve in their method
[8]. In this work, we address some of the mentioned chal-
lenges, by combining separation and salience-based meth-
ods [16, 17], as presented in Section 2. In Section 3 we
present the methodology to evaluate pitch salience func-
tions and melody extraction methods, and we present and
discuss the results in Section 4.

2. METHOD

We propose a melody extraction method, based on the
combination of a salience function based on a source-filter
model [6] with melody tracking based on pitch contour se-
lection (PCS) [3]. Our intention is to obtain both an accu-
rate pitch estimation and a good voicing detection, based
on their results in [15], and in MIREX.

We propose two different salience functions which aim
at adapting the characteristics of Hf0 to a melody tracking
stage based on pitch contour selection. The first salience
function (CB) combines two salience functions: one based
on SIMM (Hf0 ) [6, 8] and another one based on harmonic
summation (HS) [3]. The second approach (EW) uses an
estimate of the energy of the melody. Both approaches
employ Gaussian filtering, since we hypothesise that such
smoothing is useful to make melody pitches more salient,
particularly in the case of “ensemble” sounds.

We reuse code from Durrieu’s source-filter model imple-
mentation 1 and Essentia 2 [18], an open source library
for audio analysis with a slightly different implementation
of [3] compared to MELODIA 3 . Our source code is avail-
able for research reproducibility 4 .

2.1 Pitch salience function based on SIMM

Following [6], we model the spectrum of the signal as the
lead instrument plus accompaniment: X̂ = X̂v + X̂m,

1 https://github.com/wslihgt/separateLeadStereo
2 http://essentia.upf.edu
3 http://mtg.upf.edu/technologies/melodia
4 https://github.com/juanjobosch/SourceFilterContoursMelody
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Figure 2: Left: Proposed method schema. SIMM:
Smoothed Instantaneous Mixture Model (outputs Hf0 );
SF: salience function, either Harmonic Summation (out-
puts HS) or Energy-based Salience (outputs ES); Fn:
Frame-wise normalisation; Gn: Global normalisation; o:
Hadamard product; Gaussian symbol: Gaussian filtering.
Combining Hf0 with HS we obtain CB. Combining it with
ES we obtain EW. CBM and EWM denote the complete
melody extraction methods.

where X̂ represents the modelled spectrum. The lead in-
strument is modelled as: X̂v = XΦ ◦ Xf0 , where Xf0

corresponds to the source, XΦ to the filter, and the sym-
bol ◦ denotes the Hadamard product. Both source and
filter are decomposed into basis and gains matrices as
Xf0 = Wf0Hf0 and XΦ = WΦHΦ respectively. The fil-
ter basis matrix WΦ is further decomposed into a weighted
sum of smooth spectral atoms: WΓHΓ. Hf0 corresponds
to the pitch activations of the source, which can also be
understood as a representation of pitch salience [6]. The
accompaniment spectrum is modelled as: X̂m = ŴmĤm,
leading to Equation 1.

X ≈ X̂ = (WΓHΓHΦ) ◦ (Wf0Hf0) +WmHm (1)

Several parameters of the algorithm need to be speci-
fied: the number of bins per semitone (Ust), the number
of possible elements of the accompaniment (R), the num-
ber of atomic filters in WΓ (K), and the maximum num-
ber of iterations (Niter). Parameter estimation is based
on Maximum-Likelihood, with a multiplicative gradient
method [8], updating parameters in the following order for
each iteration: Hf0 , HΦ, Hm, WΦ and Wm. Figure 1 rep-
resents the blocks of the Smoothed Instantaneous Mixture
Model.
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Figure 3: Time-frequency pitch salience representation of
an excerpt from ”MusicDelta Beatles.wav” (MedleyDB)
with (a) SIMM: log10(Hf0) is represented, to reduce the
range of values for visualisation purposes) (b) Harmonic
Summation: HS (c) Hf0 (max) normalised per frame and
gaussian filtered (d) Combination (CB).

2.2 CB: Combination with Harmonic Summation

In order to adapt Hf0 for pitch contour based tracking,
we first propose to combine it with a Harmonic Summa-
tion salience function (HS), since pitch contour tracking,
was originally adapted to this kind of representation [3].
The computation of HS starts with a Short Time Fourier
Transform (STFT) as time-frequency transformation, ap-
plies Equal-Loudness Filters (ELF), finds spectral peaks
positions and magnitudes, and then refines them using
parabolic curve fitting (as implemented in Essentia).

We normalize and combine the considered pitch salience
functions HS(k, i) and Hf0(k, i), where k indicates the
frequency index (bin) and i the frame index. The pro-
cess is illustrated in Figure 2: 1) Global normaliza-
tion (Gn) of HS, dividing all elements by their maxi-
mum value maxk,i(HS(k, i)). 2) Frame-wise normal-
ization (Fn) of Hf0 . For each frame i, divide Hf0(k, i) by
maxk(Hf0(k, i)). 3) Convolution in the frequency axis
k of Hf0 with a Gaussian filter to smooth estimated activa-
tions. The filter has a standard deviation of 0.2 semitones.
4) Global normalization (Gn), whose output is H̃f0 (see
Figure 2 (c)). 5) Combination by means of element-wise
product: Sc = H̃f0 ◦HS (see Figure 3 (d)).

2.3 EW: Energy-based normalisation

In order to reduce the range of salience values of Hf0 , one
possibility would be to simply normalise each frame with
the maximum salience. The drawback of this solution is
that high salience values also appear in unvoiced frames,
which would make voicing detection based on pitch con-
tour selection a complicated task. In order to reduce the
salience of unvoiced parts, we employ a frame-wise en-
ergy estimate of the melody line, using the method in [8].
For energy estimation, a HMM is employed, where each
state corresponds to one bin of the pitch salience func-
tion (Hf0 ), and the probability of each state corresponds
to the estimated salience. Pitch continuity is considered in
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Figure 4: Time-frequency pitch salience representation of
an excerpt from ”MusicDelta Beatles.wav” (MedleyDB)
with (a) SIMM: log10(Hf0) is represented, to reduce the
range of values for visualisation purposes) (b) Energy-
based matrix: ES (c) Hf0 normalised per frame and gaus-
sian filtered (d) Combination (EW).

the transition probabilities, favouring smoothness in pitch
trajectories. The energy of the melody source for each
frame i (Ei), is then computed using the decoded pitch
sequence and the matrix decomposition computed before.

The estimated energy is then used to create a matrix
(ES) with the same size as Hf0 , in which all bins in
one frame are equal to the estimated energy in that frame:
ES(k, i) = Ei, ∀k. ES is then combined with Hf0 to
create the salience function EW, following the same steps
introduced in Section 2.2 (see Figure 2), with the differ-
ence that in the frame-wise normalisation (Fn), Hf0(k, i)
is divided by

∑
kHf0(k, i), instead of the maximum value,

also following Durrieu’s approach. Figure 4 illustrates the
combination.

2.4 Melody tracking

From the proposed lead-enhanced salience functions, we
create pitch contours by grouping continuous sequences
of salience peaks, following [3]. Several parameters need
to be set (default values used here are presented between
brackets). Salience peaks are first filtered per frame: peaks
below a threshold factor τ+ (0.9) of the highest salience
peak are filtered out. Secondly, peaks are filtered if their
salience is below µs−τσ ·σs, where µs and σs are the mean
and standard deviation of the salience of remaining peaks
(in all frames). τσ (0.9) determines the accepted degree
of deviation below mean salience. Contours are created by
grouping peaks which are close in time and frequency, with
several parameters: the minimum allowed contour dura-
tion (100 ms); maximum allowed pitch change during 1 ms
time period (27.56 cents) and maximum allowed gap dura-
tion (tc = 50 ms). Default parameters here are the same as
in [3], except for tc. We analyse the effect of some of these
parameters in Section 4.3.

Created contours are then characterised by a set of fea-
tures: pitch (mean and deviation), salience (mean, stan-
dard deviation), total salience, length and presence of vi-



Method Salience Description
DUR Hf0 Source-filter model (SIMM) [8]
SAL HS VAMP Implementation of [3]
ESS HS Essentia implementation of [3]

CBM CB HS+Hf0 with PCS
EWM EW Energy weighted Hf0 with PCS

Table 1: Overview of the evaluated melody extraction
methods. PCS: Pitch Contour Selection

brato. Contour features are then exploited for voicing de-
tection, octave error minimisation, and final melody selec-
tion. Non-melody contours are filtered out using a voicing
detection threshold τν , based on contour salience distribu-
tion: τν = Cs − ν · σCs

where Cs and σCs
are the con-

tours’ salience mean and standard deviation. We focus on
the effect of parameter ν (0.2), which controls the amount
of filtered contours. For a more detailed explanation, the
reader is referred to [3].

Complete melody extraction methods using the proposed
salience functions are here denoted as CBM (using CB)
and EWM (using EW) (see Figure 2).

3. EVALUATION

We conduct two different kind of evaluation experiments
in order to analyse the benefits of combining the pro-
posed salience functions with pitch contour-based track-
ing. First, the proposed salience functions are evaluated
and compared to Hf0 and HS in terms of their useful-
ness for melody extraction. Second, the complete melody
extraction approaches are compared to Durrieu et al. [8]
(DUR) and two implementations of Salamon and Gómez
[3]: VAMP plugin MELODIA (SAL) and Essentia (ESS).
Table 1 presents an overview of the evaluated methods.
The motivation to conduct the evaluation at two different
levels is to better understand the benefits of the combina-
tion of salience functions, and the effect on the complete
melody extraction method. The pitch resolution (number
of bins per semitone) was set to Ust = 10, and the hop
size was 256 samples, except for SAL which is fixed to
128. Sampling rate was 44100 Hz. The frequency limits
were set to fmin = 55 Hz and fmax = 1760 Hz for all
algorithms.

3.1 Datasets

The evaluation is conducted on MedleyDB and Orchset
datasets, converted to mono as (left+right)/2. MedleyDB
contains 108 melody annotated files (most between 3 and
5 minutes long), with a variety of instrumentation and gen-
res. We use two definitions of melody, MEL1: the f0

curve of the predominant melodic line drawn from a single
source (MIREX definition), and MEL2: the f0 curve of the
predominant melodic line drawn from multiple sources.

Orchset 5 contains 64 excerpts from symphonies, ballet
suites and other musical forms interpreted by symphonic
orchestras. The definition of melody in this dataset is not
restricted to a single instrument, with all (four) annotators

5 mtg.upf.edu/download/datasets/orchset

agreeing on the melody notes [15]. The focus is pitch esti-
mation, while voicing detection is less important: the pro-
portion of voiced and unvoiced frames is 93.7/6.3%.

3.2 Salience function evaluation

Salience functions are evaluated from two different per-
spectives: pitch and salience estimation accuracy. To
do so, we compute four different metrics [19], using the
ground truth melody.

We start by computing salience function peaks, and then
select the peak closest to the ground truth, which is con-
sidered as the melody salience peak. The first metric is the
frequency error of the salience function ∆fm, computed
as the difference (in cents) between the frequency of the
melody salience peak and the ground truth f0. The follow-
ing metrics deal with salience estimation. The first metric
(RRm) is the reciprocal rank score of the melody salience
peak amongst the rest of salience peaks (the closer to one
the better). The second (S1) is the relative salience of the
melody peak in comparison to the highest salience peak in
that frame (the closer to one the better). Last metric (S3)
computes the salience of the melody peak, divided by the
mean salience of the 3 highest peaks (the higher the bet-
ter). We consider the latter as the single most important
measure, since it quantifies the ability of a method to make
the melody pitch more salient than the rest of the peaks,
which is a key property of a salience function.

3.3 Melody extraction evaluation

Following MIREX methodology, we evaluate melody ex-
traction approaches by comparing the estimated sequence
of pitches against a ground truth sequence of melody
pitches. All evaluated algorithms were set to report an esti-
mated melody pitch even for frames considered unvoiced.
This allows evaluating voicing and pitch estimation sepa-
rately. Five standard melody extraction metrics 6 are com-
puted using mir eval [20]: Voicing recall rate (VR): pro-
portion of frames labelled as melody frames in the ground
truth that are estimated as melody frames; Voicing false
alarm rate (VFA): proportion of frames labelled as non-
melody in the ground truth that are mistakenly estimated
as melody frames; Raw Pitch Accuracy (RPA): proportion
of melody frames in the ground truth for which the esti-
mation is considered correct (within half a semitone of the
ground truth); Raw Chroma Accuracy (RCA): measure of
pitch accuracy, in which both estimated and ground truth
pitches are mapped into one octave, thus ignoring octave
errors; Overall Accuracy (OA): proportion of frames that
were correctly labelled in terms of both pitch and voicing.

4. RESULTS

4.1 Salience function

In order to have an idea of the variance between excerpts,
we compute the mean value of the metrics for each excerpt,
and we then visualise evaluation results with a boxplot, as
presented in Figure 5. The lower and upper lines of each

6 http://www.music-ir.org/mirex/wiki/2014:Audio Melody Extraction
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Figure 5: Salience function evaluation results a) Orchset.
b) MedleyDB with MEL2 definition c) MedleyDB with
MEL1 definition. Mean values represented with a star.

box show the 25th and 75th percentiles of the sample, and
the line inside each box represents the median.

Before analysing results, note that the normalisations and
energy weighting performed in the proposed EW salience
function, do not affect any of the metrics for salience func-
tion evaluation. Any difference in results between EW and
Hf0 is thus only due to the proposed Gaussian filtering per-
formed in each frame of the salience function.

Regarding frequency error (∆fm), the lowest median
value is obtained with CB, but differences amongst all
approaches are not significant on MedleyDB (with both
melody definitions). In the case of Orchset, Hf0 and the
proposed methods obtain lower errors than HS. Note that

on Orchset, results do not really represent the difference
from the closest salience peak and the real melody pitch,
since melody notes are played by orchestral sections, and
individual instruments contributing to the melody are play-
ing slightly different pitches. Additionally, ground truth
pitches in Orchset are actually quantized at the semitone
level, since they were derived from MIDI notes, without
tuning information.

With regard to salience related metrics, we observe that
the reciprocal rank RRm of the proposed salience func-
tions EW and CB is higher than the rest. Also note that HS
performs better on MedleyDB than on Orchset, while Hf0

behaves similarly in both datasets. The performance of
CB is better than EW on MedleyDB, presumably because
of the synergy obtained when combining the two salience
functions. In the case of Orchset, the performance of CB in
comparison to EW is decreased since HS does not perform
as well in orchestral data.

HS obtains the highest mean value of S1 for MEL2 on
MedleyDB, however best S3 results are obtained with CB.
As previously introduced, S1 compares the salience of the
melody peak and the highest salience peak in a frame. S3
measures if the melody peak stands out from the other
peaks of the salience function and by how much. These
results show that HS achieves a high S1 score because the
highest salience peaks do not actually present a high differ-
ence between them (the value of both S1 and S3 are close
to one). HS obtains a median S3 of less than 1 on Orchset,
which attending to the definition of the metric, means that
(in average) the salience of the melody peak is smaller than
the mean of the three highest peaks. Hf0 on the other hand
presents a higher difference between the melody peak and
the following most salient peaks.

We thus conclude that the proposed combinations do not
significantly reduce the estimation error of the melody
pitch frequency (∆fm) with respect to the compared ap-
proaches. However, the proposed combined salience func-
tion (CB) achieves the highest S3 value, meaning that is
the most able to make the melody pitch more salient.

4.2 Melody extraction

After analysing salience functions results, we focus on
complete melody extraction methods. Figure 6 shows the
results for all metrics obtained with all approaches in both
Orchset and MedleyDB with both melody definitions. Re-
sults are reported for experiments conducted with the same
parameters values as in [3], except for the maximum al-
lowed gap tc = 50 ms. An analysis of the effect of the
parameters is presented in Section 4.3.

Comparing the results obtained with the proposed meth-
ods, we observe that CBM achieves the best overall accu-
racy in both datasets. This is specially noticeable in Or-
chset, partially due to the higher recall. Pitch related ac-
curacies are quite similar in both approaches, especially
for MedleyDB. In comparison with other methods, both of
the proposed methods yield a higher OA than ESS (base-
line), for both datasets and both melody definitions. The
OA is also higher in comparison to the rest of the related
approaches, for both MEL1 and MEL2 on MedleyDB. In
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Figure 6: Evaluation results on all metrics, for Med-
leyDB with both MEL1 and MEL2 definitions and Orch-
set. ”SAL*” denotes the results obtained with SAL with
ν = −1 for MedleyDB and ν = 1.4 for Orchset

the case of Orchset, only DUR yields a better OA than the
proposed methods, due to a very high recall. Note that
DUR always obtains almost perfect recall on all datasets,
and very high false alarm rates, since this method out-
puts almost all frames as voiced. The influence of this
fact on the overall accuracy depends on the amount of
voiced frames of the dataset. Since Orchset mostly con-
tains voiced frames (93.7%), it is beneficial, but Med-
leyDB contains full songs with large unvoiced portions,
and false alarms in this data considerably reduce the OA.

The proposed approaches achieve a slightly lower RPA in

comparison toHf0 . This is related to the fact that Durrieu’s
method estimates most frames as voiced. Even though it is
considered a pitch related metric, RPA is actually also af-
fected by voicing estimation, since it compares estimated
pitches with voiced ground truth pitches. If some of the
melody contours are not created, or erroneously filtered
(e.g. due to a lower salience in comparison to the rest of
the contours), this will affect both voicing related metrics
and pitch related metrics. That is the case for our pro-
posed methods: while many frames are correctly identi-
fied as unvoiced, some contours which correspond to the
melody are filtered or simply not created, which decreases
pitch related accuracies. However, reducing the voicing
false alarm rate helps achieving a better overall accuracy.

SAL and ESS obtain lower pitch related accuracies (RPA,
RCA) than the proposed methods, specially in orchestral
music. Given that the only difference between them is the
salience function, we can conclude that the results are im-
proved thanks to the use of a source-filter model and gaus-
sian filtering. This could be expected from the previously
presented salience function evaluation results, since the
proposed salience functions are able to make the melody
pitch more salient.

Also note that the difference between RCA and RPA is
much higher in SAL than in the proposed methods, spe-
cially on Orchset. This shows that the kind of signal rep-
resentation underneath the proposed pitch salience func-
tions is very effective at reducing the amount of octave er-
rors [6, 21].

4.3 Parameter tuning

Previous results can be further improved by adapting
melody extraction parameters to the proposed salience
functions. We first analysed the influence of Gaussian fil-
tering (see Figure 2) on the complete melody extraction
system CBM, by suppressing it from the pitch salience
creation process. The effect is quite small on MedleyDB,
but it helped improving pitch estimation on Orchset (4%
points). This could be due to the small differences in the
pitch played by the individual instruments contributing to
the melody. As previously observed with the salience func-
tion evaluation results, by smoothing Hf0 we are able to
make more salient the pitches of the notes played by or-
chestral sections in unison.

Several other parameters affect different parts of the
method: salience function creation, contour creation or
melody contour selection. Figure 7 shows the effect of the
number of iterations (Niter), maximum allowed gap in the
contour (tc ∈ {50, 75, 100} ms) and voicing tolerance pa-
rameter (ν ∈ {−1, 0.2, 1, 1.4}). For the sake of clarity,
we only show results from CBM, since the highest overall
accuracy was obtained with this method. Results obtained
with other methods are also presented, including the effect
of Niter on DUR. Best results in vocal music are obtained
with few iterations, but complex data (such as instrumen-
tal, and especially orchestral music) benefits from a higher
number of iterations.

In any case, the influence of pitch salience creation pa-
rameters is relatively small in comparison to the influence
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of pitch contour tracking parameters. For instance, OA
generally increases considerably when the maximum gap
between pitches in a contour is decreased from 100 ms to
50 ms. This is probably due to the noise added in unvoiced
frames by the SIMM, which can partially be filtered in the
contour creation process. The effect of the voicing param-
eter (ν) is evident: a higher value increases the voicing
threshold and less contours are filtered, which is beneficial
in Orchset. Setting a lower threshold is benefitial in Med-
leyDB with MEL1 definition, since the amount of voiced
frames is smaller. Default peak filtering parameter values
(τσ , τ+) provided good results in MedleyDB, but OA can
be increased up to 60% in Orchset, by increasing τσ from
0.9 to 1.3 with ν = 1.4. This allows a higher difference in
salience below the salience mean during pitch contour cre-
ation, which is appropriate to deal with the higher dynamic
range in classical music.

Regarding instrumentation, OA in MedleyDB vocal mu-
sic is higher than in instrumental, but with the proposed
method, we increased it in about 10 and 8 percentage
points (pp) over the baseline (ESS) respectively. The im-
provement is even more evident in Orchset. According
to the results, we can conclude that our salience function
leads to a better accuracy than HS, for both single instru-
ments and instrument sections.

CBM obtained 25 percentage points (pp) higher OA in
MedleyDB (with MEL1 definition, see Figure 7) compared
to DUR, and slightly worse in Orchset (around 4 pp with
the best parameters mentioned. Additionally, CBM gen-
erally needs less iterations (Niter) compared to DUR to
achieve the best results, which is very positive given the
high computational weight of the estimation algorithm. In
comparison to the approach by Salamon et al., we obtained
5 and 30 pp higher accuracy in MedleyDB (with MEL1
definition) and Orchset respectively, using the best voicing
parameter for each dataset in both algorithms (CBM and
SAL*). This corresponds to about 10% and 100% relative

increase, due to the low accuracy of SAL in Orchset.
The selection of parameters has been here performed au-

tomatically, but it could be performed automatically by se-
lecting the best performing configuration in a training set.
Another possibility is to use a pitch contour classification
approach [10], by training a classifier to distinguish be-
tween melody and non-melody pitch contours using the
proposed salience functions [22].

5. CONCLUSIONS

This paper presents a melody extraction method based on
the combination of a source-filter model and pitch contour
based tracking. We proposed two different salience func-
tions and we have shown that Gaussian filtering and the
combination of a source-filter model with harmonic sum-
mation help increasing the salience of melody pitches. The
signal representation employed proved to improve pitch es-
timation accuracy and to reduce octave errors in compar-
ison to harmonic summation. Our complete melody ex-
traction method obtains similar or higher overall accuracy
in comparison to similar approaches, when evaluated on a
large and varied dataset. This is achieved by accurate voic-
ing detection and pitch estimation.

Future work deals with improving the salience function,
in order to further reduce the amount of noise in unvoiced
parts, and to improve the adaptation to the contour creation
process. We also foresee the use of a supervised method
for pitch contour classification and melody tracking.
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acterisation of melodic pitch contours and its applica-
tion for melody extraction,” in 13th Int. Soc. for Music
Info. Retrieval Conf., Porto, Portugal, Oct. 2012, pp.
187–192.

[10] R. Bittner, J. Salamon, S. Essid, and J. Bello, “Melody
extraction by contour classification,” in Proc. Interna-
tional Society of Music Information Retrieval (ISMIR),
October 2015.

[11] S. Ternström and J. Sundberg, “Intonation precision of
choir singers,” The Journal of the Acoustical Society of
America, vol. 84, no. 1, pp. 59–69, 1988.

[12] R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Can-
nam, and J. Bello, “Medleydb: a multitrack dataset

for annotation-intensive mir research,” in Proc. ISMIR,
2014, pp. 155–160.

[13] J. Bosch, R. Marxer, and E. Gómez, “Evalua-
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