
Mining Discourse Treebanks with XQuery

Xuchen Yao ∗

Johns Hopkins University
Computer Science

xuchen@cs.jhu.edu

Gosse Bouma

University of Groningen
Information Science
g.bouma@rug.nl

Abstract

We argue that a combination of XML and XQuery provides a generic and
powerful method for representing and querying complex (multilevel) anno-
tated corpora. XML is a widely used standard for coding and distributing
annotated corpora, but the advantages of techniques for processing XML are
not always realized in full. We show that XQuery, a completely generic query
language for XML, has the expressive power required for advanced linguistic
queries, its modular nature can help in providing corpus-specific functional-
ity to users, and support of XQuery by XML database systems allows large
corpora to be searched efficiently.

1 Introduction

Annotated corpora can contain information on many different aspects of linguis-
tic structure, and as a consequence, tools to search annotated corpora differ quite
substantially. Even for corpora with the same level of annotation, many different
search tools exist. Lai and Bird [4], for instance, evaluate six different query lan-
guages (Tgrep2, TIGERSearch, Emu, CorpusSearch, NiteQL and LPath) on seven
common search tasks for syntactic treebanks. All languages succeed in at least five
of the seven tasks. The source code for each of the languages shows clearly, how-
ever, that these languages have differences in syntax and need special attention to
work properly. As each corpus tends to support only a single query language, this
means that users, especially those working with multiple corpora, must learn to
work with a different query language each time they need to use a different corpus.

∗We would like to thank the Erasmus Mundus European Masters Program in Language and Com-
munication Technologies (EM-LCT) for support. This work was carried out while the first author
was an EM-LCT student at the University of Groningen.

245

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14484289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For corpora encoding different levels of annotation, the situation can be even
more frustrating. The Penn Discourse TreeBank (Prasad et al. [9]), which we
discuss in more detail below, provides annotation of discourse structure for data
that is syntactically annotated in the Penn Treebank (Marcus et al. [7]). Although
pointers from the discourse annotation to the syntactic annotation are given, it is
not the case that both levels of annotation are available in a single format. Tools are
provided which support searching the discourse annotation while imposing syntac-
tic constraints, but the functionality of these tools is limited, and many naturally
occurring questions require additional programming.

A final problem with many linguistic query languages is that they are exactly
that: they allow the formulation of queries that return fragments of the corpus
satisfying the constraints formulated in the query, but they allow little or no control
over the output of the query. Many lexical acquisition tasks require pairs of items
(such as pairs of verb (stems) and (the (stem of the) head of its) direct object) to be
extracted. For the Penn Discourse Treebank, one might be interested in listing all
discourse connectives, along with the syntactic category of their arguments. Such
tasks require languages which not only support selection of fragments, but also
support for selection of elements in (the context of) matching fragments, and some
form of control over the resulting output.

The majority of modern corpora are made available in XML or can be converted
to XML. Given the fact that very powerful languages for processing XML are avail-
able (most notably, Xpath for searching, and XSLT and XQuery for processing and
querying), the question naturally arises to what extent such languages make corpus
specific search tools superfluous, and to what extent these generic languages can
overcome some of the shortcomings of linguistic query languages.

In this paper, we argue that XML and generic XML processing languages, XQue-
ry in particular, allow a uniform method for representing complex linguistic data,
and for searching and extracting data from complex corpora. We use the Penn Dis-
course Treebank (PDTB) as an example. We use an XMLized version of the PDTB

and show that data discussed in recent research using the PDTB can be extracted
from the corpus using XQuery. Finally, we discuss efficiency issues.

The original PDTB is encoded in plain text and shipped with PDTB API, a Java
package, to accomplish common query tasks. Conversion of the PDTB to XML

means that both the discourse information and the syntactic information of the
corresponding constituents can be represented in a uniform way in a single XML

file. Consequently, querying such files with XQuery becomes possible. This has
several advantages:

• XQuery is capable of extracting both tree-based information (such as syntac-
tic trees) and nontree-like information (such as discourse relations) or more

246

generally, “non-tree navigation” (Lai and Bird [4]).

• XQuery is capable of extracting information from the discourse annotation
and syntactic annotation simultaneously (given a linking between the two,
which is already provided by the original encoding), which is beyond the
ability of the original PDTB APIs.

• As a functional programming language, XQuery code can be modular, re-
usable and extensible, and thus answers the call for “reusable, scalable soft-
ware” in Lai and Bird [4]. A Javadoc style documentation mechanism1 ex-
ists. Corpus-specific modules allow developers to hide much of the com-
plexity of the underlying XML and can help users to access relevant parts of
the annotation easily.

• XQuery is the de facto standard for querying XML databases. By storing
the corpus in an XML database, fast and easy-to-manage retrieval becomes
available, while XQuery can still be used to perform complex queries.

In section 2 the format of PDTB-XML is introduced. Queries which need to access
both the syntactic and discourse annotation and the way in which these can be
implemented in XQuery are introduced in section 3. XML databases and their
efficiency on linguistic queries are tested in section 4. The final section concludes
and addresses future development. Most of the algorithms described in this paper
are implemented as XQuery APIs.2

2 PDTB-XML

The XMLized Penn Discourse TreeBank (PDTB-XML, Yao et al. [12]) is an XML

version of the PDTB (Prasad et al. [9]), created to support unrestricted access to
both discourse and syntactic annotation. The original PDTB corpus uses a spe-
cific format3 for its annotation. Each annotated article corresponds to three files,
containing the original sentences, syntactic trees and discourse relations. A set
of PDTB APIs is provided to support access to and visualisation of the annotation.
Due to this architecture, the PDTB itself is not easily extensible or modifiable. By
converting the annotation to XML files, the three separate annotation layers can be
stored in a single XML file and annotations can be made more explicit and thus
easier to understand and use by introducing elements and attributes. PDTB XML

also inherits the merit of extensibility from XML.
1http://xqdoc.org/
2code.google.com/p/pdtb-xml/source/browse/trunk/xquery/pdtb.xq
3www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf

247

Figure 1: Example of an Explicit relation in XML.

There are five discourse relations in the PDTB (Explicit, Implicit, AltLex, Ent-
Rel, NoRel). Each relation has two arguments (Arg1 and Arg2) and two optional
supplements (Sup1 and Sup2). Sentence (1) contains an Explicit discourse relation
(the connective is underscored, Arg1 is in italics and Arg2 is in bold):

(1) Although preliminary findings were reported more than a year ago, the
latest results appear in today’s New England Journal of Medicine, a forum
likely to bring new attention to the problem. (wsj_0003)

Figure 1 contains the annotation of (1) in XML. Instead of using fields, the
role of each text fragment in the relation is made explicit by means of element
names and attribute names. The link with the syntactic annotation is given in the
<TreeRef> element associated with each <ConnHead>, <Arg1> and <Arg2>.
A <TreeRef> contains one or more <tr> elements pointing to a node in a syn-
tactic tree.

The syntactic annotation (i.e. the PTB) is encoded using the TIGER-XML for-
mat (Brants et al. [1]). Every sentence is syntactically represented by a graph
containing terminals and nonterminals, where nonterminals have edges connect-
ing to terminals. As this graph does not give a direct tree structure an extra tree

248

Figure 2: Fragment of a syntactic tree

element has been added to build the cross references between the syntactic part and
the discourse relation part, as illustrated in Figure 2.

The PDTB-XML re-organizes the annotation format of the PDTB without loss of
information, but with the advantage of a uniform, integrated, representation, and
the possibility of future extensions. In the next section, we show how this uniform
XML representation supports search and extraction tasks which need to refer to
both discourse and syntax.

3 Search and Extraction with XQuery

3.1 XQuery and XPath

XQuery (Walmsley [11]) is a W3C recommendation4 for querying XML databases.
It uses the XPath standard5 for locating elements in an XML document. A simple
example of an XQuery script, which returns all relations with an Explicit connec-
tive of type although, is given below.

for $rel in //Relation[@Class="Explicit" and ConnHead/
Connective[@ConnType="although"]]

return $rel

The for loop iteratively loops over all <Relation> elements somewhere
inside the document. The @ symbol refers to attributes of an element and restricts
the relations we are interested in to those of Class “Explicit”. Furthermore,
we require that the <Relation> must contain a <ConnHead> element which
contains a <Connective> element whose ConnType attribute has the value
“although”.

4http://www.w3.org/TR/xquery/
5http://www.w3.org/TR/xpath/

249

3.2 Navigation in Trees

A variety of programs was developed to query syntactic trees ((Lai and Bird [4]; Lai
and Bird [3]). Although the query languages are different, they are conceptually
very similar. All languages contain operators or connectives for selecting mother,
sibling, ancestor, and descendant nodes in a tree relative to a given node.

One common ground between syntactic trees and XML is tree-based structure.
XPath, the XML navigation language incorporated in XQuery, has extensive sup-
port for selecting XML elements that are siblings, ancestors, or descendants relative
to some given XML element. Table 1 shows how some of the operators of Tgrep2
(Rohde [10]) can be expressed using XPath and XQuery.

Even more functionality can be obtained by using the possibility in XQuery to
add user defined functions. For instance, to select only elements that are a leftmost
descendant of a given element, we can add the function left-desc to the module
pdtb:

declare function pdtb:left-desc($desc, $top)
{ if ($top = $desc) then true()

else if ($top/*) then pdtb:left-desc($desc, $top/*[1])
else false()

} ;

Note that left-desc is a boolean function that checks whether $desc is a left-
most descendant of $top. The function is recursive in that it returns true if
$desc = $top and else calls left-desc with the leftmost daughter of $top
as second argument. If $top hs no daughters, the function returns false. A
slight variant of this function returns the set of leftmost daughters of a given node.

In the PDTB-XML Query API, most of the tree patterns in (Rohde [10]) are
implemented in less than 100 lines of code. This offers users functionality equiv-
alent to that of other tree query languages with minimal development effort. The
efficiency problem will be addressed in Section 4.

3.3 A Case Study: Range Relations

A number of discourse researches deal with positional relations between two argu-
ments. Lee et al. [5] investigate the occurrences of shared discourse structures with
a special focus on subordinate clauses. The relevance of their study is based on the
necessity of describing not a single tree discourse hierarchy, but broader structures
with complex dependencies. The authors identify four non-tree-like dependencies:
shared argument, properly contained argument, pure crossing, and partially over-
lapping arguments. Lee et al. [6] investigate to what extent discourse arguments
introduced by a subordinating conjunction (while, because, after, since, ...) can be

250

Axis XQuery example Tgrep2 Meaning
child:: $b:=$a/child::* A < B A immediately

dominates B
descendant:: $b:=$a/descendant::* A<<B A dominates B
following:: $b:=$a/following::* A .. B A precedes B

following-sibling:: $b:=$a/following-sibling::* A $.. B A is a sister of B
and precedes B

parent:: $b:=$a/parent::* A > B A is immediately
dominated by B

ancestor:: $b:=$a/ancestor::* A>>B A is dominated
by B

preceding:: $b:=$a/preceding:: A „ B A follows B
preceding-sibling:: $b:=$a/preceding-sibling::* A $„ B A is a sister of B

and follows B

Table 1: Tree-based navigation with XPath and XQuery

used as argument of a following discourse relation. That is, in examples such as
(2), the discourse particle however connects the clause All of the ... period and the
subordinated clause while other ... results. Lee et al. [6] found 349 instances of
this configuration in the PDTB, about 4% of the relevant cases (in 12% of the cases
only the matrix clause was selected as argument of a following sentence, and in
84% of the cases the complete preceding clause was selected).

(2) GM also had dismal results in the first 10 days of the month, while other
auto makers reported mixed results. All of the Big Three suffered in the
just-ended period, however. (wsj_1139)

Note that gathering the relevant data to study this phenomenon requires access to
both discourse annotation and syntax. Here, we will demonstrate that we can do
this using only the PDTB-XML and XQuery.

The XQuery script we used is given in Figure 3. It searches a corpus file
for relations $rel which contain a discourse connective that is one of the fre-
quent subordinating conjunctions in the corpus, as suggested by Lee et al. [6].
To find such relations, we use a regular expression (i.e. the match function) that
searches the text of connectives for although, however, after, etc. Next, the vari-
able $shared is a following discourse relation, which must meet the requirement
that its first argument (Arg1) must be shared with the second argument (Arg2)
of the discourse relation introduced by the subordinating conjunction. A compli-
cation of the PDTB annotation is that $shared/Arg1 is always the concatena-
tion of $rel/ConnHead (i.e. the conjunction word) and $rel/Arg2. Thus,

251

for $c in collection($dir)/corpus
for $rel in $c/Relations/*/Relation[ConnHead/RawText[

matches(.,"(although|however|after|as|....)","i")]]
let $shared := $c/Relations/*/Relation[

pdtb:gorn2tree(Arg1/TreeRef) =
pdtb:gorn2tree($rel/Arg2/TreeRef)/..]

where $shared
return
<shared> <first>{$rel}</first>

<second>{$shared}</second>
</shared>

Figure 3: XQuery script to find subordinate clauses linked to a discourse relation
introduced by a following sentence (following Lee et al. [6]).

we cannot simply check for identity of the text of the two arguments. Instead,
we check whether the syntactic tree that corresponds to $shared/Arg1 is the
mother of the tree that corresponds to $rel/Arg2. Syntactic trees are found by
the corpus-specific function gorn2tree6 which uses the id/idref mechanism
linking discourse relations to PTB annotation. The XPath expression /.. locates
the mother of an XML element. The where statement checks whether a discourse
relation introducing a shared argument indeed exists, and the return statement
returns the results.7

We can do even better, however. Note that Lee et al. [6] restrict their search
to the “12 most common subordinating conjunctions in the PDTB.” The practical
reason for this restriction is that it allows finding the relevant cases by string match-
ing over the text of connectives. There seems to be no principled reason, however,
for this restriction. In the PDTB-XML we can also require that $rel/ConnHead
must introduce a subordinate clause. Thus, instead of using a regular expression,
we can select the relevant $rel relations as follows:

$Arg2Tree[@cat="S" and starts-with(../@cat, "SBAR")]]

Here, we use $Arg2Tree as shorthand for the $rel/Arg2 tree. If $Arg2Tree
is of category S and is dominated by an SBAR (or one of the subcategories of SBAR

used in the PTB), we assume Arg2 is a subordinate clause.8 Now, we also find
cases where the subordinating conjunction is a less frequent, such as so that in the
example below.

6Tree nodes are numbered using the method of Gorn [2].
7The actual script uses a more detailed return statement, which normalizes the results and

returns only relevant parts of the two discourse relations.
8We also defined a case where the tree corresponding to $rel/Arg2 is of category S-NOM and

dominated by a category PP-TMP (to cover the after/before/since V-ing cases.

252

(3) Computers have increasingly connected securities markets world-wide,
so that a buying or selling wave in one market is often passed around
the globe. So investors everywhere nervously eyed yesterday’s opening in
Tokyo, where the Nikkei average of 225 blue-chip stocks got off to a rocky
start (wsj_2276)

The case-study in this section has concentrated on finding data that meets cer-
tain syntactic requirements (i.e. subordinate clauses), and that is used in a specific
way in the discourse relations. Lee et al. [5] study cases where a discourse argu-
ment is shared, properly contained, crossing or overlapping with another discourse
argument. Such studies can be carried out using the PDTB-XML and XQuery as
well. All arguments in the PDTB-XML are linked to one or more syntactic con-
stituents. All syntactic constituents have a yield which consists of words that have
an @id attribute reflecting their position in the sentence. Given a set of pointers to
syntactic constituents, we can easily obtain its span by collecting the @id in the
yield of these constituents and selecting the smallest and largest member (using
the sort function of XQuery and numerical comparisons). Given the range of a
discourse argument, it is straightforward to define notions such as containment or
overlap.

4 Performance Test

The PDTB-XML consists of files 2159 files (376MB in total). Running an XQuery
script withn an XQuery processor such as Saxon9 requires a scan of all the files and
a tree-traversal of each file. For large amounts of data, this can lead to substantial
memory consumption and long processing times. Indexing the PDTB-XML as a
native XML database can improve performance. Here we chose to experiment with
two open source XML database systems, eXist10 (Meier [8]) and Oracle Berke-
ley DB XML.11 A database system such as eXist brings two benefits to querying.
Firstly, eXist has implemented an index-driven XQuery mechanism, where struc-
tural indices are used to identify relationships between nodes and thus in order to
compute path expressions, nodes on the disk do not even need to be loaded into
memory. This guarantees a high speed performance. Secondly, this index-based
approach causes the axis (an axis defines a node-set relative to the current node,
such as parent, child, etc.) to have only a minimal effect on performance. For
instance, the XPath expression A//D is supposed to be even faster than A/B/C/D.

9http://saxon.sourceforge.net/
10http://www.exist-db.org
11http://www.oracle.com/database/berkeley-db/xml/index.html

253

The testing scenario is intended to investigate whether an XML database can
facilitate a user’s everyday usage. An open source XQuery processor, Saxon-HE
9.2, is compared against eXist (v1.4) and Berkeley DB XML (BDB in short, v2.5.13).
The hardware setting is Intel Xeon X5355 @2.66GHz with 16G RAM. All of the
systems execute exactly the same XQuery and the time is recorded. All output
is diverted to a null device (/dev/null) to avoid a slow-down caused by flushing
standard output.

We have selected seven query tasks covering all parts of the PDTB-XML (see
Table 2). Tasks 1-3 are from Lai and Bird [4], and focus on the syntactic part of the
PDTB-XML. Task 4 extracts only discourse relations. Task 5 first queries syntax
and then queries corresponding discourse elements, while task 6 works the other
way around. Task 7 is a complex example inspired by the case study in section 3.
From the results in Table 2 the following observations can be drawn:

1. Indexing can greatly reduce query time, especially in simple tasks (such as
task 1-4).

2. In complex tasks, computing references on-the-fly determines the total query
time. Saxon outperforms eXist in task 6 and 7 and BDB in task 5 and 6.

3. BDB is not good at resolving coreferences, thus it was slow in task 5 and 6.
The reason for this is unknown.

Our experiments lead to mixed results. For most simple queries, results can be
retrieved within two minutes in a deployed database system. But as the complexity
goes up, the execution time also increases. This increase is mostly due to the fact
that relations between syntax and discourse must be computed during retrieval.
Thus the advantages of indexing do not apply. Efficiency of querying complex and
interlinked XML is still a problem that needs to be addressed in future work.

5 Conclusion

In this paper, we have investigated the merits of XQuery for processing corpora
with complex linguistic annotation. We have concentrated on the PDTB, a cor-
pus that combines annotation of discourse relations with links to the corresponding
syntactic annotation (from the PTB). The PDTB-XML combines the two annotations
in a single XML format, thus offering a uniform representation, with possibilities
for future extensions. The general purpose XML query language XQuery offers the
functionality to query the syntactic part of the PDTB-XML, and can be used to for-
mulate queries that need to address both the syntactic and the discourse annotation.
Finally, we have compared two native XML databases, eXist and Oracle Berkeley

254

Query Saxon eXist BDB

1 sentences that include the word saw 5m51s 19s 15s

2 NPs whose rightmost child is a noun 6m23s 55s 1m20s

3 VPs that contain a verb immediately followed by

an NP immediately followed by a PP

6m43s 1m18s 1m20s

4 all Explicit relations whose connective type is

because

2m9s 0.5s 0.1s

5 return connectives and corresponding POS tags of

all Explicit relations

7m17s 2m27s 30m30s

6 all words with POS=“CC” that function as

connectives

7m3s 15m21s 21m33s

7 all arguments that are in a range-contains relation

to another argument

32m26s did not

finish in

1h

7m13s

Table 2: Execution time of common queries

DB XML against a stand-alone XQuery processor, Saxon. The evaluation shows
that by indexing the elements and attributes in the XML database the query time
can be greatly reduced for simple tasks. Computing dependencies between XML

elements on the fly, as is typically required for queries that address both syntax
and discourse annotation, means that the advantages of indexing are lost to a large
extent, and processing times go up sharply. Efficiency of such queries needs to be
addressed in future research.

References

[1] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The tiger treebank. In In Proceedings of the Workshop on Treebanks
and Linguistic Theories, pages 24–41, 2002.

[2] S. Gorn. Explicit definitions and linguistic dominoes. In J. Hart & S. Takasu,
editor, Systems and Computer Science, pages 77–115. 1967.

[3] C. Lai and S. Bird. Querying linguistic trees. Journal of Logic, Language
and Information, 19(1):53–73, 2010.

[4] Catherine Lai and Steven Bird. Querying and updating treebanks: A criti-
cal survey and requirements analysis. In In Proceedings of the Australasian
Language Technology Workshop, pages 139–146, 2004.

255

[5] Alan Lee, Rashmi Prasad, Aravind Joshi, Nikhil Dinesh, and Bonnie Webber.
Complexity of Dependencies in Discourse: Are Dependencies in Discourse
More Complex than in Syntax? In the 5th International Workshop on Tree-
banks and Linguistic Theories, Prague, Czech Republic, December 2006.

[6] Alan Lee, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. Departures
from Tree Structures in Discourse: Shared Arguments in the Penn Discourse
Treebank. In Proceedings of the Constraints in Discourse III Workshop, 2008.

[7] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: The Penn treebank. Computational
Linguistics, 19(2):313–330, 1994.

[8] Wolfgang Meier. eXist: An Open Source Native XML Database. In Ak-
mal Chaudhri, Mario Jeckle, Erhard Rahm, and Rainer Unland, editors, Web,
Web-Services, and Database Systems, volume 2593 of Lecture Notes in Com-
puter Science, pages 169–183. Springer Berlin / Heidelberg, 2003.

[9] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo,
Aravind Joshi, and Bonnie Webber. The Penn Discourse TreeBank 2.0. In
Proceedings of the Sixth International Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, May 2008.

[10] D.L.T. Rohde. Tgrep2 user manual. URL: http://tedlab.mit.edu/˜dr/Tgrep2,
2004.

[11] Priscilla Walmsley. XQuery. O’Reilly, 2007.

[12] Xuchen Yao, Irina Borisova, and Mehwish Alam. PDTB XML: the XML-
ization of the Penn Discourse TreeBank 2.0. In Proceedings of the Seventh
conference on International Language Resources and Evaluation (LREC 10),
Malta, 2010.

256

