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Abstract

Parsing performance is typically assumed to correlate with treebank size and
morphological complexity [6, 13]. This paper shows that there is a strong
correlation between derivation perplexity and performance across morpho-
logically rich and poor languages. Since perplexity is orthogonal to morpho-
logical complexity, this questions the importance of morphological complex-
ity. We also show that derivation perplexity can be used to evaluate parsers.
The main advantage of derivation perplexity as an evaluation metric is that it
measures global aspects of parsers (like counting exact matches), but is still
fine-grained enough to derive significant results on small standard test sets
(like attachment scores).

1 Introduction

State-of-the-art accuracy on a particular parsing dataset is typically assumed to cor-
relate with treebank size and morphological complexity of the language in ques-
tion [6, 13]. Out-of-domain evaluation also shows that parsers are typically very
domain-sensitive. For example, as shown in the CoNLL 2007 shared task, parsers
trained on the Penn Treebank are much better at parsing the Wall Street Journal
than at parsing biomedical articles or transcribed speech. This of course relates to
perplexity, since out-of-domain text is much less predictable for language models.
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However, no one has to the best of our knowledge used perplexity as a metric to
better evaluate parsers and treebanks. This paper suggests some ways to do so and
presents some preliminary experiments.

The easiest way to explain perplexity is perhaps by considering the case of a
fair k-sided die. The perplexity of such a die is k, meaning that we are k-ways
perplexed about the outcome of the die. If the die is unfair and always end with the
same side up, the perplexity is 1, meaning that we are certain about the outcome of
the die.

Given a language model lm trained on a corpus (of sentences or derivation or-
ders), we are interested in how well it predicts a sample of test instances x1, . . . , xN .
The perplexity is defined as:

2−ΣN
i=1

1
N

log2 lm(xi)

Better language models will tend to assign higher probabilities to the instances in
our sample and will thus have lower perplexity. In our experiments in this paper,
we use standard trigram language models with modified Kneser-Ney smoothing
and interpolation.

Dependency treebanks are collections of dependency trees. A dependency tree
is a tree that represents a syntactic analysis such that words are vertices with vari-
ous labels and grammatical functions label the directed edges (dependencies). Each
word thus has a single incoming edge, except one called the root of the tree. De-
pendency parsing is thus a structured prediction problem with trees as structured
variables. Each sentence has exponentially many possible dependency trees. The
observed variables are typically sentences with words labeled with part-of-speech
tags. The parsing task for each sentence is to find the dependency tree that maxi-
mizes an objective function which is typically learned from a dependency treebank.

The standard metrics used in dependency parsing are labeled attachment score
(LAS), i.e. the ratio of words with correct syntactic heads and grammatical func-
tions, unlabeled attachment score (UAS), i.e. the ratio of words with correct syn-
tactic heads, and exact matches (EM), i.e. the ratio of sentences in which all words
are assigned correct syntactic heads. The disadvantage of LAS and UAS is that at-
tachment scores do not reflect global properties of the predicted syntactic analyses,
while EM has the disadvantage that differences are seldom statistically significant
on small evaluation data sets. This paper suggests that perplexity of derivation or-
der may also be a useful metric for parser evaluation. It is not a stand-alone metric,
but used in conjunction with LAS or UAS it may supply the global information
that EM is supposed to reflect.

Perplexity of derivation order may also be used to predict state-of-the-art accu-
racy on treebanks and thereby indirectly for treebank evaluation. State-of-the-art
parsing performance is typically assumed to correlate with treebank size and mor-
phological complexity, but in this paper we show that there is a strong correlation
between perplexity of derivation order and parsing performance across morpholog-
ically rich and poor languages.
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1.1 Related Work

Nivre [6] presents an analysis of the CoNLL 2007 shared task, building on [9], and
draws the conclusion that state-of-the-art parsing accuracy primarily depends on
morphological complexity.

The ten languages involved in the multilingual track can be grouped
into three classes with respect to the best parsing accuracy achieved:

• Low (LAS = 76.3-76.9): Arabic, Basque, Greek

• Medium (LAS = 79.2-80.2): Czech, Hungarian, Turkish

• High (LAS = 84.4-89.6): Catalan, Chinese, English, Italian

To a large extent, these classes appear to be definable from typological
properties. The class with the highest top scores contains languages
with a rather impoverished morphology. Medium scores are reached
by the two agglutinative languages, Hungarian and Turkish, as well
as by Czech. The most difficult languages are those that combine a
relatively free word order with a high degree of inflection. Based on
these characteristics, one would expect to find Czech in the last class.
However, the Czech training set is four times the size of the training
set for Arabic, which is the language with the largest training set of the
difficult languages. On the whole, however, training set size alone is
a poor predictor of parsing accuracy, which can be seen from the fact
that the Italian training set is only about half the size of the Arabic one
and only one sixth of Czech one. Thus, there seems to be a need for
parsing methods that can cope better with richly inflected languages.

The same conclusion was the motivation for a workshop in Statistical Pars-
ing of Morphologically Rich Languages at NAACL’10 in Los Angeles, California
[13]. In this paper, we show that, not surprisingly, there is a strong correlation
between treebank size and state-of-the-art accuracy, but also that a stronger cor-
relation exists between relative derivation perplexity and state-of-the-art accuracy,
even across morphologically rich and poor languages.

Evaluation of parsers has been widely debated in recent years. Caroll et al. [2]
review the parsing evaluation metrics that were available at the time and propose a
new one. They first discuss a number of metrics that can be used with unannotated
corpora, incl. coverage, average ambiguity and perplexity. The problem with cov-
erage and average ambiguity is that the metrics do not say anything about accuracy.
The perplexity of a parsing model on a corpus may under certain assumptions tell
us about the accuracy of the model or about the "degree to which a model captures
regularities in the corpus by minimising unpredictability and ambiguity". The ad-
vantages of this metric are that it has a clear probabilistic interpretation, allows
meaningful comparison and can be used "as a method for scaling results obtained
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using other corpus-dependent measures to allow for some degree of cross-corpus
comparison and evaluation." The disadvantages are that the metric is "expensive
to compute", "only applicable to probabilistic models" and that it "only provides
a weak measure of accuracy." The notion of derivation perplexity introduced here
differs from perplexity of a probabilistic parsing model in that it can be read off
structures immediately. We can therefore talk about the derivation perplexity of
parsers as well as treebanks. Consequently, it is not expensive to compute, it is ap-
plicable to non-probabilistic models (such as transition-based dependency parsers),
and we also show that it correlates strongly with stronger measures of accuracy.

Rimell et al. [11] suggest a new evaluation scenario for dependency parsing
of English text. They construct a corpus of 700 English unbounded dependency
constructions. They argue:

These are interesting for parser evaluation for the following reasons:
one, they provide a strong test of the parser’s knowledge of the gram-
mar of the language, since many instances of unbounded depen-
dencies are difficult to recover using shallow techniques in which
the grammar is only superficially represented; and two, recovering
these dependencies is necessary to completely represent the underly-
ing predicate-argument structure of a sentence, useful for applications
such as Question Answering and Information Extraction.

One problem with this approach, noted already by [2], is that the usefulness of
such a corpus depends heavily on what constructions are included. It is certainly
not trivial to distinguish between important and less important constructions. It
would be interesting to see how retrieval of unbounded dependencies in this cor-
pus correlates with other metrics and pipeline evaluations. Another problem is of
course that the metric is language-dependent. The advantage, however, is that re-
trieval of unbounded dependencies in most parsers depends heavily on the rest of
the analysis and thus can be said to capture global aspects of the syntactic analysis.

Finally, we note that many researchers have proposed pipeline evaluation of
parsers where parsers are evaluated in terms of their contribution to a particular
application, e.g. machine translation [4] or textual entailment [14].

2 Dependency Treebanks

Dependency treebanks have become increasingly popular over the last five years.
With the development of fast, reliable dependency parsers [5, 10], theoretically mo-
tivated dependency treebanks such as the 1M word Prague Dependency Treebank
and two competitive shared tasks in dependency parsing at the Conferences on
Natural Language Learning (CoNLL) in 2006–7, large scale evaluation of depen-
dency parsers and pipeline evaluation in natural language processing applications
have become possible. Dependency parsers have among other things been used for
summarization and machine translation [4].
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More formally, a dependency tree for a sentence x = w1, . . . , wn is a tree
T = 〈{0, 1, . . . , n}, A〉 with A ⊆ V × V the set of dependency arcs. Each vertex
corresponds to a word in the sentence, except 0 which is the root vertex, i.e. for
any i ≤ n 〈i, 0〉 6∈ A. Since a dependency tree is a tree it is acyclic. A tree is
projective if every vertex has a continuous projection, i.e. if and only if for every
arc 〈i, j〉 ∈ A and node k ∈ V , if i < k < j or j < k < i then there is a subset of
arcs {〈i, i1〉, 〈i1, i2〉, . . . , 〈ik−1, ik〉} ∈ A such that ik = k.

Characteristics of a large portion of the available dependency treebanks can be
found in the CoNLL shared task organizers’ papers [1, 9], but several other depen-
dency treebanks now exist, incl. treebanks for Ancient Greek, Latin, Romanian and
Thai. The treebanks differ in size and domain dependence, and they adopt differ-
ent annotation guidelines. Different annotation guidelines sometimes complicate
translation-oriented applications, and parallel dependency treebanks are therefore
also being developed.

In our experiments, we use the treebanks from the CoNLL-X and CoNLL 2007
shared tasks.

3 Derivation Perplexity

A transition-based dependency parser p’s derivation perplexity on a text T is de-
fined as the perplexity of the derivation language of p(T ), where p(T ) is the 1-
best parse trees of the sentences in T : The derivation language of p(T ) is the set
of strings σ : w1 . . . wn such that for any wi, wj with dependency structure d if
wi ≺ wj then wi was attached to d in p(T ) prior to the attachment of wj .

The derivation perplexity of a treebank R over a text T is the derivation per-
plexity of f(T ) where f is a function from the strings in T into the canonical parse
of the corresponding trees in R given some parsing algorithm. In this paper, the
parsing algorithm used to obtain canonical parses will be the so-called Swap-Lazy
algorithm introduced in [8].

The Swap-Lazy algorithm was chosen because it is a non-projective depen-
dency parsing algorithm (and many of the treebanks used in our experiments con-
tain non-projective dependencies) and because, as documented in [8], it has higher
accuracy in terms of exact matches than other state-of-the-art transition-based de-
pendency parsing algorithms.

The algorithm works as follows: We begin with a configuration (Stack, Buffer,
Arcs) where Stack is a stack that initially only contains an artificial root element,
Buffer is the string to be read, and Arcs is the dependency structure to be build
(a set of dependency arcs of the form (wi, wj)). The initial configuration is thus
([w0]S , [w1, . . . , wn]B, {}A) with w1 . . . wn the input sentence and where w0 is the
artificial root note in the dependency tree. The transition algorithm halts when
a final configuration is reached of the form ([w0]S , []B, A), i.e. when all words
are read and removed from the stack. Below we only consider unlabeled parsing.
Otherwise different Right-Arc and Left-Arc transitions must be introduced for each
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label. The possible transitions are:

Shift ([. . . , wi]S , [wj , . . .]B, A)) =⇒ ([. . . , wi, wj ]S , [. . .]B, A)

Right-Arc ([. . . , wi, wj ]S , B,A)) =⇒ ([. . . , wi]S , B,A ∪ {(wi, wj)})
Left-Arc [i 6= 0] ([. . . , wi, wj ]S , B,A)) =⇒ ([. . . , wj ]S , B,A ∪ {(wj , wi)})

Swap [0 < i < j] ([. . . , wi, wj ]S , [. . .]B, A)) =⇒
([. . . , wj ]S , [wi, . . .]B, A ∪ {(wj , wi)})

Intuitively, Shift moves an element from the Buffer to the Stack. Right-Arc
builds a dependency arc from the second element (the left word) to the top ele-
ment. (The dependency arcs build using this transition therefore point to the right;
hence, the name.) Left-Arc builds a dependency arc from the top element to the
second element, i.e., left arcs. Swap, finally, reorders words by moving the second
element on the stack back into the buffer. Consequently, Right-Arc and Left-Arc
may build left arcs, resp. right arcs, relative to the original linear order of words. In
other words, the intuition behind this parsing algorithm is to reduce discontinuity
to adjacency by reordering input words.

Given a dependency structure, there is a canonical derivation of it using the
Swap-Lazy algorithm. The derivation sequences constructed from the trees in a
treebank are used to train the classifiers that decide which transition to apply in a
particular configuration when parsing with the MaltParser [9, 8]. Since each deriva-
tion step corresponds to finding a syntactic head for a word, we use the derivation
order as a linear reordering simply by printing the words in the order they are
attached to the dependency structures. Put differently, a derivation will gradu-
ally expand the set of Arcs. For a derivation ([w0]s], [w1, . . . , wn]B, {}A) =⇒∗

([w0]S , []B, A) there is a linear order≺ such that for any wi, wj such that wi ≺ wj ,
wi was added to A before wj . It is this linear order whose perplexity is com-
puted in our experiments. In our first experiment, we use the dependency trees
from treebanks. In our second experiment, we use the output from four different
transition-based dependency parsers.

4 Experiments

4.1 Data

Our experiments cluster the treebanks in three groups: the treebanks used in the
CoNLL-X Shared Task (excl. Chinese, which was not available to us), those used in
the CoNLL 2007 Shared Task, and the treebanks that were used in both shared tasks
and are genuine dependency treebanks, i.e. not converted constituent-based tree-
banks. Using only genuine dependency treebanks have become standard, e.g. [7],
when parsing performance is evaluated in terms of exact matches. The third set of
treebanks excludes very large treebanks (>200k tokens) and Greek, which our lan-
guage modeling software (SRI Language Modeling Toolkit [12]) did not process
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correctly. The CoNLL-X treebanks is thus a set of 12 treebanks, the CoNLL 2007
treebanks a set of 10 treebanks, and the genuine dependency treebanks is a set of 7
treebanks. In sum, the three clusters of treebanks are as follows:

name number languages
C06 12 Arabic, Bulgarian, Czech, Danish, Dutch

German, Japanese, Portuguese, Slovene, Spanish,
Swedish, Turkish

C07 10 Arabic, Basque, Catalan, Chinese, Czech,
English, Greek, Hungarian, Italian, Turkish

gen.dt 7 Arabic(C06), Arabic(C07), Czech, Danish, Slovene,
Turkish(C06), Turkish(C07)

4.2 Language Model Parameters

We use a 3-gram language model with modified Kneser-Ney smoothing and inter-
polation as implemented in the freely available SRI Language Modeling Toolkit
[12]. Kneser-Ney smoothing was found to consistently outperform other smooth-
ing techniques in [3].

4.3 Perplexity and State-of-the-Art Accuracy

This experiment was designed to quantify to what extent state-of-the-art parsing
accuracy can be predicted from the derivation perplexity of a treebank. For the
experiment, we reimplemented the Swap-Lazy algorithm for training the oracle
in MaltParser [8] and printed out words in the order of derivation (attachment).
Briefly put, the Swap-Lazy algorithm can keep words on the buffer or place them
on the stack, but at some point it will attach words to the dependency structure
being build, and the words are simultaneously removed from the stack. It is at this
point that the word is printed. The result is a linear reordering of the input text
that corresponds to the derivation order. The perplexity of this derivation order is
computed by training a language model on the reordered training data and running
it on the reordered test data. The language model parameters are described above.

What is correlated with state-of-the-art accuracy is not string perplexity and
derivation order perplexity, but treebank size over these perplexities. In particular,
we correlate (i) treebank size with accuracy (as our baseline), (ii) treebank size
over string perplexity with accuracy and (iii) treebank size over derivation order
perplexity with accuracy.

The experiment was done for the CoNLL-X shared task treebanks, as well as
for the CoNLL 2007 treebanks. Treebank sizes over perplexities are then correlated
with state-of-the-art results, i.e. the best results obtained in the shared tasks. We
also report correlations with the average results of the shared task participants. This
may in fact be a more interesting measure for treebank evaluation, since a treebank
where 10 participants achieve an UAS > 90% is probably "easier" than one where
only one participant does so, even if the best scores are identical. It is, however,
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more common to focus on the best results obtained in the shared tasks or in the
literature [6, 9, 13].

4.4 Perplexity as a Metric for Parser Evaluation

We ran our parsing evaluation experiments on the genuine dependency treebanks.
This is a common practice used, for example, in [7] and [8]. We ran the MaltParser
[10] with four different parsing algorithms (Arc-Eager, Arc-Standard, Swap-Eager
and Swap-Lazy) and default feature settings to obtain four different outputs on
each of the CoNLL test sections. UAS, EM and perplexity of derivation order
were computed, and Pearson ρ was calculated from these numbers. The average
Pearson ρwhich is reported below, is the average Pearson ρ for the seven treebanks.

5 Results

We first list the average perplexities and derivation perplexities of the treebanks.

name av. perplexity av. deriv. perpl. increase
C06 292.5 532.8 82.2%
C07 320.3 508.8 37.0%
gen.dt 278.2 447.8 96.6%

Note the higher increase from perplexity to derivation perplexity with genuine
dependency treebanks.

5.1 Perplexity and State-of-the-Art Accuracy

The correlation coefficients for state-of-the-art parse accuracy and treebank size
over string/derivation perplexity are presented in the table below.

Pearson ρ C06 C07
best av best av

treebank size 0.21245816 0.037759424 0.72245934 0.55952737
string perplexity 0.47495902 0.506099378 0.643438377 0.548117203
deriv perplexity 0.47015543 0.514647899 0.810661115 0.737857396

The results indicate that (treebank size over) derivation order perplexity is
much better at predicting state-of-the-art parsing accuracy than treebank size only.
While there is a strong correlation between (treebank size over) string perplexity
and accuracy, the notion of derivation order perplexity seems more relevant than
mere string perplexity.

Since the correlation between derivation perplexity and accuracy cuts across
morphological complexity, and since morphological complexity is orthogonal to
perplexity, this questions the importance of morphological complexity to parsing
performance. Morphologically poor languages such as Chinese typically lead to
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very high perplexities (in our case ∼900), while morphologically rich languages
such as Turkish typically exhibit moderate perplexities (in our case ∼120).

5.2 Perplexity as a Metric for Parser Evaluation

We only ran our parsing evaluation experiments on the seven genuine dependency
treebanks. We ran the MaltParser [10] with four different parsing algorithms (Arc-
Eager, Arc-Standard, Swap-Eager and Swap-Lazy) and default feature settings to
obtain four different outputs on each of the CoNLL test sections, thus running a
total of 28 dependency parsers. We computed the Pearson ρ correlations between
UAS, EM and perplexity of derivation order for each treebank and averaged over
these numbers. Perplexity of derivation order (P) correlates as well with UAS and
EM as they correlate internally. All correlations were significant (p < 0.05), where
significance is derived from ρ.

ρ p-value
P/UAS -0.5670 0.0172
P/EM -0.5464 0.0217
UAS/EM 0.5510 0.0206

Of course this result only says that the three metrics are correlated, but not
which of the three is more useful. Since they capture different aspects and have dif-
ferent weaknesses, as argued above, we suggest to use all three metrics in liaison.
It would again be interesting to correlate these metrics with pipeline evaluations.

6 Conclusion

We have introduced the notion of derivation order perplexity which is much bet-
ter at predicting state-of-the-art parsing accuracy than treebank size only. It was
shown that there is a strong correlation between state-of-the-art parsing accuracy
and derivation order perplexity across morphologically poor and rich languages.
Derivation order perplexity can also be used as a metric for parser evaluation and
has the advantages that it captures global aspects of syntactic analyses and is fine-
grained enough to obtain statistically significant results on small data sets.
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