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Abstract

Despite the obvious importance and success of treebanks and other linguis-
tically annotated corpora in the current data-driven statistical paradigm in
computational linguistics, there are many outstanding challenges. This pa-
per identifies some of the more important challenges, which are mainly con-
cerned with how to exploit synergies by linking up different annotation projects
with each other, how to link linguistic annotations to linguistic theory, and
how to assess treebank quality without unintended distortions in the way re-
search is conducted in the field.

1 Introduction

Since the creation of the Penn Treebank by Marcus et al [9] in the early 1990’s,
linguists and computational linguists have succeeded in creating a large number
of excellent linguistically annotated corpora (or treebanks, for short). These tree-
banks cover a large number of languages and a wide range of different linguistic
levels, most importantly syntax, part-of-speech, morphology, discourse, corefer-
ence, predicate-argument structure, semantics, and word and phrase alignments.
They differ from dictionaries and other lexical resources in that they encode lin-
guistic analyses of language phenomena in context, rather than linguistic analyses
of words in isolation, and this is the key to their success.

The treebanks created by the field are an important achievement which, to-
gether with new statistical techniques, have fuelled the recent paradigm change in
computational linguistics from rule-based systems whose language-specific knowl-
edge is encoded as hand-made dictionaries and grammars to data-driven statistical
systems whose language-specific knowledge is induced from raw and annotated
texts. This paradigm change has spurred the development of a wide range of super-
vised and semi-supervised statistical techniques in natural language processing that
build on annotated corpora — with statistical parsing as the most prominent and
successful application so far. Although fully unsupervised techniques have been
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proposed in many areas of natural language processing, they have so far mostly
failed to produce results that are competitive with supervised or semi-supervised
methods, with machine translation as a remarkable exception. Since nothing sug-
gests an imminent breakthrough in fully unsupervised methods outside MT, there
is every reason to believe that annotated corpora will continue to play a crucial role
as the primary source of language-specific knowledge in most statistical systems
in the foreseeable future.

However, despite the obvious importance and success of treebanks in the new
statistical paradigm, there are many outstanding challenges. Some of these concern
how treebanks are created, some concern how they are utilized, and some how they
are compared, merged, and evaluated. In the following, I will describe what I see
as some of the main challenges facing the field, and outline some of the tentative
steps that have been, or in my opinion should be, taken towards resolving them.

2 The main challenges

Challenge 1: Bridging between different annotation schemes

Current treebanks are based on a rich variety of linguistic theories and annotation
schemes. A single, one-size-fits-all annotation scheme covering all languages and
linguistic levels is probably neither desirable, nor possible. But the confusion that
arises from the current wealth of annotation schemes is a major obstacle in the de-
velopment of systems that build on treebanks. The problem is particularly acute
for systems that need to draw on several different treebanks simultaneously. For
example, Chiang [6] identifies badly interacting source and target language anno-
tation schemes as an important obstacle in supervised tree-to-tree translation, and
Meyers [13, 11] points to the lack of coordination between annotation projects as
a major obstacle in annotation merging.

An example of the kind of confusion that may arise, even between closely
related schemes, is illustrated by Figures 1 and 2, which show the syntactic anal-
ysis of four different constructions in two dependency-based annotation schemes:
the dependency conversion of the Penn Treebank produced by the PennConverter
[8], and the native dependency annotation used in the 100,000 word English part
of the Copenhagen Dependency Treebanks [5, 3], the second-largest native (non-
converted) dependency treebank for English after the Prague English Dependency
Treebank [7]. Although the two annotation schemes are both dependency-based
and therefore fall within the same broader family of annotation schemes, the spe-
cific differences between the analyses are considerable (non-shared unlabeled arcs
are shown as dotted red arcs). The PennConverter scheme takes a semantics-
oriented view, motivated by its intended use as training material for parsing se-
mantic dependencies, where content words (nouns, main verbs) tend to dominate
function words (determiners, auxiliary verbs, prepositions). In contrast, the CDT
scheme takes a syntax-oriented view, where function words tend to dominate con-
tent words. There are other differences as well, eg, with respect to the analysis of
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Why , they wonder , should it belong to the EC ?

PRP P SBJ PPRN SBJ VC PCLRPMOD NMOD

it ’s right to refrain

SBJ PRD EXPVMOD

Why , they wonder , should it belong to the EC ?

cause pnct subj pnct vobj pnctdobj preds

[subj]

pobj nobj nobj
it ’s right to refrain

subj nobjpreds vobj

Figure 1: Differences between PennConverter’s dependency conversion of the
Penn Treebank (top) and the CDT scheme (bottom): attribution (left) and expletive
construction (right). (Differing arcs shown with dashed lines.)

it was John who came

SBJ PRD CLFSBJ

Prices were mixed in Zurich and lower in Stockholm

SBJ PRD LOC CC GAPPMOD GAPPMOD

it was John who came

subj

ref

relpreds subj

Prices were mixed in Zurich and lower in Stockholm

subj preds loc <coord:2> <preds:2> <loc:2>nobj nobj

Figure 2: Differences between the PennConverter scheme (top) and the CDT
scheme (bottom): cleft sentence (left) and gapping (right)

attribution verbs, gapping, extrapositions, cleft sentences, and the use of additional
secondary dependencies and coreference links in the CDT treebanks.

Both schemes are linguistically well-motivated, so it is not a question about
one scheme being right and the other being wrong. Indeed, with differences like
these, there is no objective criterion for deciding which annotation framework pro-
vides the most empirically adequate analysis of the texts. From a theoretical point
of view, it may even be misleading to talk about the best scheme, as if there is
only one: since we are modelling unobservable properties of language, there is no
guarantee that we cannot end up with a set of highly different models which are
equally adequate with respect to their observable consequences. For this reason,
the relevant challenge is not to create a single unified annotation scheme to be used
by all treebanks created in the field, an impractical and unrealistic task — the rel-
evant challenge is to find better ways of translating between different annotation
schemes and merging them, in order to pool costly treebank resources.

There are probably many ways of achieving this goal, but the diagram in Fig-

3



Figure 3: Treebank conversion: Converting a T ′-treebank T ′
B to a T -treebank TB,

and creating T -parsers P(X ,T ′
X) and PA,B by pooling treebanks.

ure 4 illustrates the kind of system that I have in mind for treebank conversion
and automatic annotation (for simplicity, I will refer to a linguistically annotated
corpus T as a ‘treebank’, and to an automatic annotation system P trained on T as
a ‘parser’). In the diagram, I am assuming that we have two annotation schemes
T,T ′ applied to two corpora A,B respectively, yielding manually corrected “gold”
treebanks TA,T ′

B. For example, TA might be the Copenhagen Dependency Treebank
for English, T ′

B might be the Penn Treebank, and my goal might be to convert the
Penn Treebank to CDT format, or to build a better CDT parser that would use the
Penn Treebank as training material.

We can create parsers PA,P′
B without any pooling by training them on TA,T ′

B
independently. But in order to pool the treebanks, we need to do something else.
Inspired by stacked dependency parsing,1 one possibility is to use the P′

B parser
to create an automatically parsed T ′-corpus T ′

A, and use TA,T ′
A to create a stacked

T -parser P(X ,T ′
X) where T ′

X is a T ′-annotation of X , eg, a parse produced by P′
B.

This stacked parser can then be used to convert T ′
B into a T -treebank TB = P(B,T ′

B).
Finally, the original treebank TA and the converted treebank TB can be pooled to
train a new T -parser PA,B. The parser PA,B and the stacked parser P(X ,P′

B(X)) will
utilize the information from both TA and T ′

B, and can therefore be expected to per-
form better than the PA parser, especially if TA is a large high-quality treebank.
When using the stacked parser P(X ,T ′

X) as a conversion system, it would probably
be helpful to include a designated bridging treebank in the system, ie, an overlap-
ping subcorpus A∩B where the T ′ annotation has been hand-converted into the

1Stacked dependency parsing [16, 10, 18], which is the current state-of-the-art approach in de-
pendency parsing, employs two or more dependency parsing systems to a single treebank, so our
setup is a slight variation of the original setup.
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corresponding T annotation.2

As a variation on this setup, the corpus B might consist of parallel texts, with
A as a subcorpus of B, and T ′

B,TA as treebank annotations of the source and target
texts in B and A, respectively; TA+T ′

A will then be available as a bridging treebank.
The goal is to extend the T -annotation to B. For example, in the CDT treebanks, T ′

B
might be the 100,000 word treebank for the source language Danish, and TA might
be one of the 30,000 word treebanks for the target languages English, German,
Italian, or Spanish, and the goal is to extend the target language treebank to all
translations of texts in the Danish treebank. In this case, we would like to train a
stacked parser P(X ,T ′

X) from T ′(A) and the bridging treebank T +T ′ on A, and use
the parser to produce TB = P(B,T ′

B).
To sum up, the challenge is to make it easier to convert annotations from one

scheme to another, and to create automatic annotation systems that can utilize
multiple treebanks with different annotation schemes simultaneously. Solving this
challenge will have great practical value, because it will make it easier to convert
one treebank format into another, transfer treebank annotations from one language
to another, and create monolingual and synchronous parsing systems that build on
pooled treebank resources. Small, high-quality bridging treebanks can be expected
to improve the quality of these systems, and building bridging treebanks and deter-
mining how large they need to be, is therefore an important task for future research.

Challenge 2: Bridging annotations at different linguistic levels

Many annotation projects take a narrow scope where they focus on a single lan-
guage, a single linguistic level, and perhaps even a single text genre. Many of
the most influential annotated corpora for English are based on a narrow-scope
approach: eg, Penn Treebank, Penn Discourse Treebank, PropBank, NomBank,
TimeBank, and the MATE/GNOME scheme for coreference annotation. Other an-
notation projects take a wide scope where they seek to provide a coherent unified
annotation for a wide variety of languages, linguistic levels, and text genres: eg,
the Prague Dependency Treebanks (Czech, English, Arabic), the Copenhagen De-
pendency Treebanks (Danish, English, German, Italian, Spanish), and OntoNotes
(English), which cover syntax, morphology, semantics, discourse, and coreference.

From a scientific perspective, the narrow-scope and wide-scope approaches
complement each other: narrow-scope encourages deep explorative analysis of a
narrowly defined set of phenomena, whereas wide-scope encourages a focus on
the integration between the different linguistic levels, including their interfaces,
similarities between the different levels, and their link to a unified linguistic theory.
The lack of coordination between narrow-scope treebanks means that they may
be based on mutually incompatible assumptions about the underlying linguistic
structure, the division of labour between the different treebanks, and the choice
of analyses for the phenomena where they overlap. This can make it difficult to

2The English CDT treebank includes a small 4,500 word CDT-annotated subset of the Penn Tree-
bank, which can be used as a bridging treebank by treebank conversion systems.
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Figure 4: Annotation merging: Merging treebanks TA,T ′
B using parsers PA,P′

B and
merger P′′ trained on gold-standard merge T ′′

A∩B, resulting in T ′′-parser P′′.

produce a coherent unified wide-scope treebank by merging several narrow-scope
treebanks for different linguistic levels, as pointed out by Meyers et al [13, 11].

Since future applications in language technology are likely to require a coher-
ent set of annotations at several linguistic levels, the integration between annota-
tions at the different linguistic levels should be a key priority in future treebanking
research — either as research in unified wide-scope annotation, or as research in
systems for annotation merging. The GLARF system proposed by Meyers et al [11]
is partly rule-based and designed for a specific set of treebanks. It would therefore
be desirable with research in probabilistic general-purpose annotation merging sys-
tems that could be trained on two (or more) treebanks TA,TB on the basis of a small
bridging treebank TA

⋂
B, as shown schematically in Figure 4.

Challenge 3: Building a multi-parallel “bridging” corpus community

The researchers in the field should agree on a balanced, general-purpose, mixed-
genre English corpus to be used as the English component in a collaborative multi-
parallel “bridging” corpus. National research groups would be responsible for
translating the English corpus into their own language and contributing their an-
notations. If these translations formed a substantial part of the corpora used in
national treebank projects, it would be a lot easier to merge annotation systems and
transfer annotations from one language to another.3

The English source corpus should be constructed with great care. It should be
composed so that it is suitable for annotation at all linguistic levels (morphology,
syntax, discourse, anaphora, semantics), with a permissive license (preferably an
open-source license) that places as few restrictions on the subsequent use as pos-

3Translations are known to be coloured by the source language, so national treebank projects can-
not be expected to work on translation corpora exclusively. But since translation to and from English
is one of the major applications for language technology, the decision to include translations as a
substantial part of the annotated corpus would make sense, also from a purely national perspective.
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sible. To accommodate the needs of different treebank projects large and small,
the English source corpus should be diverse, balanced, mixed-genre and general-
purpose, and structured as an onion: there should be a tiny core corpus (say, 1,000
words) consisting of isolated sentences or small text excerpts chosen for their lin-
guistic variation, supplemented with a wide range of larger corpora (say with 3k,
10k, 30k, 100k, etc. up to 10M words) that extend the smaller corpora by expand-
ing the existing text excerpts and adding new text excerpts from more texts.4

It is important that the bridging corpus is accepted by the researchers in the
field as the standard base corpus in most annotation projects (unless there is good
reason otherwise), so the decision procedure must be thought out carefully. Eg,
perhaps a community committee can specify a set of desiderata for the English
source corpora. Different research groups can then come up with competing pro-
posals, which the entire treebanking community can vote on — with a possible
revote after a phase where the best proposals are merged.

Challenge 4: Linking treebanks with linguistic theories

When creating a treebank, the linguistic annotations are not observable quantities,
but theoretical constructs informed by the annotators’ conception of linguistic the-
ory coupled with their intuitions about the language and the text. To be meaningful,
annotations must therefore be interpreted within some notion of linguistic theory.
We obviously need to be careful: we cannot corroborate a theory with annotations
that presume the theory, which is why some annotation projects seek to be “theory-
neutral”, ie, to avoid basing the annotations too closely on linguistic theory. On the
other hand, a theory-neutral approach is not bullet-proof, and it takes more than a
few counter-examples in a theory-neutral annotation to disprove a theory: after all,
the counter-examples might just be artifacts of ill-conceived annotation guidelines
or misjudged intuitions by the annotators.

From a methodological point of view, I think the best solution to this dilemma
is to give the annotations a clear interpretation in terms of linguistic theory, but
allow annotators to mark cases where the theory is hard to apply. During the anno-
tation, this will promote a rich interaction between the annotation and the linguistic
theory. Moreover, without a clearly formulated interpretation of the annotations, it
is difficult for other researchers to criticize the annotations or the underlying theory.
The Copenhagen Dependency Treebanks may serve as an example of the approach
that I am advocating. The annotations are heavily informed by the dependency
theory Discontinuous Grammar [2], which stipulates how dependency structures
determine the word order and the compositional semantics. The linguistic theory
has been a huge help in the design of the annotation scheme. Since the theory
is much cleaner if discourse structure is viewed as the continuation of sentential
syntax to the inter-sentential level, a tree-structured discourse supplemented with
coreference relations has been a guiding principle in our discourse annotation (a

4The “Pie in the Sky” corpus [12] may serve as an inspiration.
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Figure 5: Example of a CDT syntax-discourse annotation. The primary depen-
dencies form a tree structure shown on the top, the bottom arcs encode additional
secondary dependencies and coreference links needed for semantic interpretation.

similar principle applies to morphology, with some adjustments that deal with non-
concatenative morphology [5, 14]). The annotators have encountered hard cases,
which have sharpened the theory by requiring revisions in theory and analysis. But
the basic assumption about a tree-based discourse structure has held up, which has
allowed us to contribute to the long-standing theoretical debate about whether dis-
course structure is best viewed as a tree or as a graph [4]. Figure 5 shows a unified
CDT annotation of syntax and discourse.

The new data-driven statistical paradigm in computational linguistics has many
virtues, but it has also led to an unhealthy decline in interactions with theoretical
linguistics: treebanks and other linguistically annotated corpora are now the only
place where linguistics really comes into play. In my view, one of the main chal-
lenges for the treebanking community is to build a stronger two-way interaction be-
tween linguistic annotation and linguistic theory: the theory should provide sense
and direction for the annotations as well as their application in natural language
processing. This is the best way of using linguistic theory as a guide to simpler and
more useful annotation, the best way of moving linguistic theory forward, and the
best way of bringing linguistics back into computational linguistics.

Challenge 5: Quantifying treebank quality

Any treebank project is faced with a wealth of choices where there are good linguis-
tic arguments for more than one choice. Even close collaborators working within
the same annotation project may disagree about the right analysis. The wealth of
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annotation schemes in treebanking is therefore unsurprising. Ideally, these choices
should be made in a more principled way, and in some distant future, treebank
quality will perhaps be evaluated by the perplexity that a linguistically based lan-
guage model trained on the treebank assigns to an unseen corpus, and hard design
decisions in the annotation scheme will perhaps be made partly or fully on the basis
of such scores. But so far, there is no easy solution in sight. Measuring treebank
quality is probably one of the hardest and most important outstanding problems in
the field, and any research that can adress these problems even tentatively should
be encouraged by the field.5

Unfortunately, in the absence of a better measure, inter-annotator agreement
seems to have taken up an unhealthy role as the primary measure of annotation
quality. Reviewers routinely request agreement figures when reviewing treebank
papers, and people have suggested that low κ values (say, below 0.8 or 0.67) makes
inter-coder reliability so low as to leaving the annotations useless (cf. the excellent
review article by Artstein and Poesio [1]). There is no doubt that agreement and re-
lated measures have important uses: annotation projects should keep constant track
of inter-annotator agreement and confusion tables for the individual relations, and
prompt annotators and linguists to try to eliminate major sources of disagreement.
However, apart from that, it is not clear that agreement has a constructive role to
play: Reidsma and Carletta [17] have shown that agreement is a poor predictor of
the performance of a system based on machine learning; more importantly, if used
as a proxy for annotation quality by treebank designers and reviewers, an exagger-
ated focus on agreement may lead to distortions in the way treebanks are designed.

Agreement and confusion scores are highly beneficial when used to identify
misunderstandings and formulate linguistically well-motivated clarifications of the
annotation scheme. The distortions happen when treebank projects design their
annotation schemes so that they optimize agreement, regardless of whether the
agreement-boosting measures fail to be linguistically motivated. As an extreme
case, we can construct a dependency treebank with 100% inter-annotator agree-
ment by picking an annotation scheme where every word is analyzed as a depen-
dent of the preceding word, using a single dependency label; a parser trained on this
treebank would have a 100% labeled attachment score. Slightly more subtle agree-
ment measures that correct for chance agreement, like κ and α, will assign a low
agreement score to this annotation scheme; but even they can be tricked to yield a
near-100% score, if we subdivide our single label into several subtypes which are
easy for humans (and parsers) to disambiguate. For example, we can use the word
class (or some other easily inferable quantity) as our relation label — which is what
the Copenhagen Dependency Treebank, and many other treebanks, inadvertently
do when they use labels such as ‘pobj’ for prepositional objects, ‘nobj’ for nominal
objects, etc. For this reason, chance-corrected agreement provides a false sense of

5Nilsson, Nivre and Hall [15] have made an interesting experiment where they show that simple
treebank transformations (changing the structure of coordinations or verb groups) can improve Malt-
Parser performance, but they also show that these transformations are suboptimal for the MSTParser,
ie, their method cannot really be used to make an unambiguous case for one analysis over the other.
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security, and does not produce comparable scores even when comparing treebanks
with the same underlying corpus and number of labels.

Another way of boosting agreement is to instruct annotators to always use a
particular ad-hoc analysis for ambiguous constructions, eg, preferring VP attach-
ments over NP attachments when in doubt. This move increases agreement, but
also induces an arbitrary bias which may be harmful in some applications. Semi-
automatic annotation also boosts agreement because annotators are biased towards
accepting the analysis proposed by the parser, unless it is clearly wrong. Even
worse, we may decide to simplify the annotation scheme by merging linguistically
well-motivated labels that are often confused with each other, such as dependency
relations that reflect fine-grained semantic distinctions (adverbial relations, dis-
course relations), and so on. The experience of the CDT annotators, and many
others in the field, is that semantic distinctions are really hard to make, and that
disagreements are often caused by truly ambiguous texts where the two differing
analyses either lead to essentially the same meaning, or the context does not con-
tain sufficient information about the speaker’s true intentions. But that does not
necessarily imply that the distinction does not encode important information, it is
just noisy information.

The big question is: do we really improve treebank quality by making lin-
guistically unmotivated design decisions that improve agreement, but reduce in-
formativity? There are many desiderata for a good measure of treebank quality,
but one of the more important is that it should be impossible to improve the qual-
ity score by merely throwing away information, for example, by merging labels
mechanically. Agreement clearly fails on this criterion. Perhaps chance-corrected
agreement measures can be fixed in part by measuring agreement using the highest-
scoring set of merged labels, rather than the unmerged set of labels, but it is not
clear that the resulting score would be interesting.

Until we get a better measure of treebank quality, reviewers should probably
focus less on total agreement and more on a qualitative assessment of the confu-
sion table, which encodes the probability Conf(l′|l) with which the other annotators
used label l′ when one of the annotators used label l. In the CDT project, 10% of
the annotated texts are double-annotated: this allows us to compute a confusion
table, which is included in the CDT annotation manual [3]. As an illustration, Fig-
ure 6 shows some of the confusion scores for the syntactic relations in the ongoing
CDT annotation: “Agr” specifies the relation-specific agreement, ie, how often did
the annotators agree on the label when one of them used the label; “N” specifies the
number of tokens for which one of the annotators used the label; and “SN1” spec-
ifies the primary signal-to-noise ratio, defined as the ratio between the probability
that the other annotators used the same label relative to the probability that the
other annotators used the most frequent alternative label. In a classification task,
the SN1 ratio can be expected to show a better correlation with machine learning
success than agreement, since most classifiers will pit the two highest-ranked la-
bels against each other, ie, the label will be hard to learn if the ratio is smaller than
1. Perhaps an even better predictor of classification success can be constructed by
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Rel Agr SN1 N Confusion list
expl 86% 8.6 53 expl86% subj10% preds1% time0% pobj0%

focal 42% 3.2 38 focal42% attr13% other8% pnct6% loc5% nobj3% err2%
correl2% eval2% mod2% pobj2% subj1% dobj1% . . .

iobj 63% 2.4 19 iobj63% dobj26% robj5% pnct1% subj1% nobj0% attr0%
possd0% modp0%

conc 21% 1.8 23 conc21% contr13% mod13% prg8% other8% pobj6%
nobj6% conj5% attr5% pnct4% dobj2% subj2% possd1%
appr0%

iter 19% 0.4 26 time46% iter19% other7% vobj5% attr3% eval3% mod3%
nobj1% dobj1% relr1% cause1% name1% . . .

Figure 6: Some confusion scores from the CDT annotation manual.

taking the frequencies with which the different labels occur into account.
Although the CDT annotation is still ongoing and we hope to improve the inter-

annotator consistency, it is worth noting that even labels with a high degree of
confusion contain a lot of information, which will be lost if we start merging labels
to improve agreement. By releasing the confusion table along with the treebank,
the decision about which labels to merge can be left to the users of the treebank.
However, when allowing a higher level of disagreement in the treebank, we also
have to reconsider how we score parsers trained on the treebank. That is, the parser
must get a score of 1 if it produces time or iter when the gold standard says iter, but
a score of 0 if it produces subj. For example, a parser that produces label l′ when
the gold standard has label l can reasonably be scored with:

max
(

1,
Conf(l′|l)
Conf(l|l)

)

It is quite possible that there are better ways of using the confusion table to score
data-driven systems. The central point here is that the current focus on agreement
in treebanking is unfortunate because it has unintended side effects in terms of
what people decide to annotate and how they design their annotation schemes:
increasing agreement by increasing bias with ad-hoc rules or losing informativity
is not necessarily what we need most at the present state of our science.

3 Conclusions

With the advent of data-driven systems, linguistic annotation has become a great
success and is maturing as a field. There is however still a number of important
unsolved challenges. Most of them are concerned with how to exploit synergies
by linking up different annotation projects with each other, even when they use
different base corpora, focus on different linguistic levels and different languages,
and are based on different conceptions of linguistic theory. Designated data-driven
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bridging tools coupled with collaborative bridging corpora are probably the key to
long-term success in this area.

The wealth of different annotation schemes suggest that we need more research
in how we assess the quality of linguistic annotations, and how we compare com-
peting annotation schemes. At the same time, we must be careful to avoid that
our measures of annotation quality do not lead to unintended incentives that distort
what people annotate and how they design their annotation schemes. In particular,
the current focus on inter-annotator agreement is probably unfortunate because the
scores are hard to compare and encourage information loss and bias in the form of
linguistically unmotivated ad-hoc principles. Finding better measures of annota-
tion quality is therefore a key priority for the field.
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