
Robust Constituent-to-Dependency Conversion
for English

Jinho D. Choi and Martha Palmer

Institute of Cognitive Science
University of Colorado at Boulder

E-mail: choijd@colorado.edu, mpalmer@colorado.edu

Abstract

This paper suggests a robust way of converting constituent-based trees in
the Penn Treebank style into dependency trees for several different English
corpora. For English, there already exist conversion tools. However, these
tools are often customized enough for a specific corpus that they do not nec-
essarily work as well when applied to different corpora involving newly in-
troduced POS-tags or annotation schemes. The desire to improve conversion
portability motivated us to build a new conversion tool that would produce
more robust results across different corpora. In particular, we have modi-
fied the treatment of head-percolation rules, function tags, coordination, gap-
ping, and empty category mappings. We compare our method with the LTH
conversion tool used for the CoNLL’07-09 shared tasks. For our experi-
ments, we use 6 different English corpora from OntoNotes release 4.0. To
demonstrate the impact our approach has on parsing, we train and test two
state-of-the-art dependency parsers, MaltParser and MSTParser, and our own
parser, ClearParser, using converted output from both the LTH tool and our
method. Our results show that our method removes certain unnecessary non-
projective dependencies and generates fewer unclassified dependencies. All
three parsers give higher parsing accuracies on average across these corpora
using data generated by our method; especially on semantic dependencies.

1 Introduction

There has been growing interest in statistical dependency parsing. For those who
need to parse, in addition to newswire, a large amount of less structured text
(e.g., web-blogs or automatic translations), dependency parsing has advantages
over constituent-based parsing because it is simple and fast, yet gives useful in-
formation (Shen et al. [19], Cui et al. [3]). Moreover, since dependency structure
is not constrained by word-order, it is considered to be more domain or language
independent than phrase structure.

55

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14484258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Most current state-of-art dependency parsers use a supervised learning approach
(McDonald et al. [13], Nivre et al. [16]), which usually requires a large amount of
annotated data. For English, there are some manually annotated dependency Tree-
banks available (Rambow et al. [18], Čmejrek et al. [20]); nonetheless, constituent-
based Treebanks such as the Penn Treebank (Marcus et al. [11]) are more dominant.
It has been shown that these Penn Treebank style constituent-based trees can reli-
ably be converted into dependency trees using heuristics (Johansson and Nugues
[9]). The result of such a conversion is that statistical dependency parsers have
access to larger amounts of annotated data in dependency structure.

There already exist tools that convert phrase structure to dependency struc-
ture. The most popular one is the LTH constituent-to-dependency conversion tool1

that had been used for the CoNLL’07-09 shared tasks (Hajič et al. [6]) and gave
useful results. The LTH tool makes several improvements over its predecessor,
Penn2Malt2: it adds semantic dependencies extracted from function tags in the
Penn Treebank (e.g,. LOC, TMP; Marcus et al. [10]) and remaps dependencies re-
lated to empty categories, producing non-projective dependencies. Although the
tool works well in many ways, it is somewhat customized to the Penn Treebank
(mainly for the Wall Street Journal corpus), so it does not necessarily work as
well when applied to different corpora. We tested the LTH tool on the OntoNotes
English data (Hovy et al. [7]). These corpora contain part-of-speech tags not in-
troduced in the original Penn Treebank (e.g., EDITED, META) and show occasional
departures from the original guidelines (e.g., inserting NML phrases, separating hy-
phenated words). Unfortunately, these new formats affect the LTH tool’s ability
to find correct dependency relations, motivating us to aim for a more resiliant ap-
proach.

In this paper we present a robust method for doing constituent-to-dependency
conversion across different corpora. In particular, we show improvements due to
modifications of head-percolation rules, function tags, coordination, gapping re-
lations, and empty category mappings. For our experiments, we use 6 different
English corpora from the latest release of the OntoNotes Treebank. To demon-
strate the advantages of our approach for dependency parsing, we train and test
two state-of-the-art dependency parsers, MaltParser and MSTParser, and our own
parser, ClearParser, using converted output from both the LTH tool and our method.
Our results show that our method removes certain unnecessary non-projective de-
pendencies and generates fewer unclassified dependencies. Moreover, all three
parsers give higher parsing accuracies on average across these corpora using data
generated by our method; especially on semantic dependencies. The improvement
in parsing accuracy is even more significant when parsing models are tested on
corpora different from their training corpora, leading us to believe that our method
also gives more robust results across different corpora.

1The LTH tool: http://nlp.cs.lth.se/software/treebank_converter/
2Penn2Malt: http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html

56

2 Improved constituent-to-dependency conversion

Our work was inspired by Johansson [8, Chap. 4], which gives descriptive explana-
tions about how the LTH tool converts Penn Treebank style constituent-based trees
to CoNLL style dependency trees. We carefully followed their steps and modified
certain heuristics to generate more robust output. This section describes some of
the key changes we made to Johansson’s approach.

2.1 Head-percolation rules

ADJP r JJ*|VB*|NN*|ADJP;IN;RB|ADVP;CD|QP;FW|NP;*
ADVP r VB*;RB|JJ*;RB+;ADJP;ADVP;QP;IN;NN;CD;RP;NP;*
CONJP l CC;TO;IN;VB;*
EDITED r VB*|VP;NN*|PRP|NP;IN|PP;S*;*
FRAG l NN*|NP;W*;S;SBAR;IN|PP;JJ|ADJP;RB|ADVP;*
INTJ l VB;NN*;UH;INTJ;*
LST l LS;NN;CD;*
META r VP;NP;*
NAC r NN*;NP;S;SBAR;*
NML r NN*|NML;CD|NP|QP|JJ*|VB*;*
NP r NN*|NML;NX;PRP;FW;CD;NP|QP|JJ*|VB*;ADJP;S;SBAR;*
NX r NN*;NX;NP;*
PP l TO;IN;VBG|VBN;RP;PP;NN*;JJ;RB;*
PRN r *
PRT l RP;PRT;*
QP l JJR|RBR;JJS|RBS;CD;NN*;PDT|DT;ADVP;JJ;*
RRC l VBG|VBN;VP;NP|NN*;ADJP;ADVP;PP;*
S r TO;MD;VB*;VP;*-SBJ;*-TPC;*-PRD;S|SINV|S*Q;SBAR;NP;PP;*
SBAR r IN|TO;DT;MD;VB*;VP;*-PRD;S|SINV|S*Q;SBAR;*
SBARQ r MD;VB*;VP;S*Q;S|SINV;*
SINV r MD;VB*;VP;*-SBJ;*-TPC;*-PRD;S|SINV;NP;*
SQ r MD;VB*;VP;*-PRD;SQ;S;*
UCP l *
VP l TO;MD;VB*;VP;*-SBJ;*-TPC;*-PRD;NN;NNS;NP;QP;JJ*;ADJP;*
WHADJP r JJ*|VBN|VBG;ADJP;*
WHADVP l WRB;WHADVP;WDT;RB;*
WHNP r NN*|NML;CD;VBG;NP;JJ*;WP;QP;WHNP;WHADJP;*
WHPP l IN|TO;*
X r *

Table 1: New head-percolation rules. l/r implies to look for the leftmost/rightmost item.
*/+ implies 0/1 or more characters and *-TAG implies any POS tag with the function tag.
| implies a logical OR and ; is a delimiter between POS tags. Each rule gives higher
precedence to the left (e.g., TO takes the highest precedence in PP).

We use head-percolation rules (from now on, headrules) to find the head of each
constituent in phrase structure. Although there are other headrules available (Ya-
mada and Matsumoto [21]), we designed our own (Table 1) for two reasons. First,
previous rules could not handle POS tags not included in the original Penn Tree-
bank (e.g., EDITED, NML). Second, we found it useful to make more use of function

57

tags; Johansson used one function tag for his rules, PRD (predicative), whereas we
used two additional tags, SBJ (subject) and TPC (topic) (e.g., Figure 1). Further-
more, we made minor modifications to some rules. For example, we changed the
rule for ADJP (adjective phrase) such that adjectives now get higher priority than
nouns.

2.2 Small clauses

Figure 1 shows a constituent-based tree (left) with a small clause, us happy, a
dependency tree generated by the LTH tool (right-top), and one generated by our
approach (right-bottom). According to our headrules, NP-SBJ becomes the head of
ADJP-PRD in S-1. However, the LTH tool treats ADJP-PRD as an object predicative
(OPRD) of VBP. Both approaches are valid; we take this approach because we find it
easier to integrate this structure with a semantic corpus like PropBank (Palmer et al.
[17]): us happy is annotated as a single argument of made in the PropBank, and by
making happy a child of us, we can simply treat the subtree of us as an argument
of made (ARG1), whereas the treatment gets more complicated when happy is also
a child of made.

He

happyus

made

S

NP VP

VBP S-1

NP-SBJ ADJP-PRD

He made us happy

SBJ
ROOT

root

OBJ PRD

He made us happy

SBJ
ROOT

root

OBJ
OPRD

Figure 1: Small clause example.

2.3 Function tags

We use 14 function tags to generate dependency labels. Some of them are joined
together (e.g., LOC-TMP); the LTH tool converts each joined function tag into a
single dependency label. However, most statistical parsers do not often find joined
tags correctly (cf. Table 9), so it may be better to select just one of the tags from
the joined tag pair. For example, if LOC and TMP are joined (LOC-TMP), we keep
only LOC as a dependency label.3 We follow the precedence table described below
when choosing which tag to keep. There are cases where that the choice becomes
difficult; however, such cases are rare enough that they can be ignored.

DTV|EXT|LGS|SBJ > LOC > BNF|DIR|MNR|PRP|TMP > SEZ|VOC > PRD > ADV
IGNORE ::= CLF|CLR|ETC|HLN|IMP|NOM|PUT|TPC|TTL|UNF

Table 2: Function tag precedences.

3In a sentence, [ADVP There] [VP goes [PP *ICH*-1]] [NP all your payments] [PP-1 down in the
toilet], [ADVP There] is marked with a joined tag, LOC-TMP.

58

Table 2 shows how we set the precedences for selecting a member of a joined func-
tion tag. For example, SBJ takes precedence over LOC, which again takes prece-
dence over MNR and so on. IGNORE shows a list of function tags that we do not use
as dependency labels. There are several reasons for this; mainly, we keep only tags
with more semantic values, which usually appear as modifiers in the PropBank.

2.4 Coordination

We take a right branching approach for coordination (the left conjunct becomes
the head of the conjunction, which becomes the head of the right conjunct). It
sometimes gets hard to decide whether or not a phrase contains coordination. We
consider a phrase contains coordination if it is tagged as an unlike coordinated
phrase (UCP), if it contains a child annotated with a function tag ETC (et cetera), or
if it contains at least one conjunction (CC) or a conjunction phrase (CONJP). Even if
there is a conjunction, if either the left or the right conjunct does not appear within
the same phrase, we do not consider there to be a coordination.

root We sold newboughtold books and then books

S
NP

NP
VP CC ADVP

NP
VP

VP

Figure 2: Coordination example.

Within a coordinated phrase, we use commas and semicolons as separators (sim-
ilar to Johansson’s). In addition to Johansson’s approach, we apply the following
heuristics to check if the left and right conjuncts have the same phrasal type. SKIP
shows a list of POS tags that can be skipped to find the correct conjuncts (e.g., ADVP
in Figure 2).

NounLike ::= NN*|PRP|NML|NP|WHNP|*-NOM
AdjLike ::= JJ*|ADJP
WhAdvLike ::= WHADVP|WRB|WHPP|IN
SKIP ::= PRN|INTJ|EDITED|META|CODE|ADVP|SBAR

if ((parent.pos == UCP) || (left.pos == right.pos) || (left.tag == ETC) ||
(left.pos == NounLike && right.pos == NounLike) ||
(left.pos == AdjLike && right.pos == AdjLike) ||
(parent.pos == WHADVP && (left.pos == WhAdvLike && right.pos == WhAdvLike))
return true;

else return false;

59

2.5 Gapping relations

Most statistical parsers perform poorly on gapping relations because it is hard to
distinguish them from coordination, and they do not appear frequently enough to
be trained on. Johansson’s approach usually generates correct dependencies for
gapping relations; however, it sometimes produces a very flat structure with many
long-distance dependencies. The top tree in Figure 3 shows how gapping relations
are handled by the LTH tool.

Some said1 Putin Aprilin some said2

SBJ PMOD
OBJ

visited May

ROOT

root

SBJ TMP

,

P
GAP-SBJ

DEP
GAP-PMOD

Some said1 Putin Aprilin some said2

SBJ PMOD
OBJ

visited May

ROOT

root

SBJ TMP

,

GAP

SBJ
P

TMP

Figure 3: Gapping relation example.

As illustrated, comma, some, said2, and May become children of said1. Although
this is an accurate representation, automatic parsers almost never find these depen-
dencies correctly. The bottom tree in Figure 3 shows our approach of handling
gapping relations. In our case, comma, some, and May become children of said2,
which then becomes a child of said1. This way, parsers can easily learn the local
information, yet still can recover the original representation by using the gapping
relation (GAP).

2.6 Empty category mappings

Our approach to empty category mappings is similar to Johansson’s, except for our
handling of *RNR* (right node raising; see Figure 4). *RNR* appears in coordinated
phrases such that there are always at least two *RNR* nodes mapped to the same
antecedent. In this case, we map the antecedent to its closest *RNR* as illustrated in
Figure 4. This way, we can eliminate many non-projective dependencies without
sacrificing loss of semantic interpretation.

3 Experiments

We evaluate the changes we have made to the conversion process by training sev-
eral parsers and testing them on various corpora.

60

root I know his admiration for and trust in you*RNR*-1 *RNR*-1

NP
PP

NP-1

NML

NMLCC

NP
PPNML

NML

NML
NP

NP VP
S

Our

LTH

Figure 4: Right node raising (*RNR*) example. The solid dependency link labeled as ‘Our’
shows our way of handling *RNR*, and the dashed dependency labeled as ‘LTH’ shows
Johansson’s way of handling *RNR*. After the conversion, *RNR* nodes are dropped from
the dependency tree.

3.1 Corpora

For our experiments, we use OntoNotes release 4.0 (Hovy et al. [7]).4 We choose,
from among all data, six different English corpora: GALE Broadcast Conversa-
tion (EBC), GALE Broadcast News (EBN), the Sinorama Chinese Treebank English
Translation (SIN), the Xinhua Chinese Treebank English Translation (XIN), GALE

Web Text (WEB), and the Wall Street Journal (WSJ). EBC and EBN contain broad-
cast conversations and news from various sources like CNN, NBC, etc. SIN contains
English translations of the Sinorama magazine from Taiwan. XIN contains English
translations of the Xinhua newswire from Beijing. WEB contains documents from
web-blogs and newsgroups. Finally, WSJ contains non-financial news from the
Wall Street Journal.5

EBC EBN SIN XIN WEB WSJ ALL
Train 14,873 11,968 7,259 3,156 13,419 12,311 62,986
Eval. 1,291 1,339 1,066 1,296 1,172 1,381 7,545
Avg. 15.21 19.49 23.36 29.77 22.01 24.03 21.02

Table 3: Corpora distributions (in # of sentences). Avg.-row shows the average sentence
length of each corpus (sentence length = # of words in sentence).

Table 3 shows how the corpora are divided into training and evaluation sets. For
WSJ, we use Sections 0-21 for training, Section 24 for development, and Section 23
for evaluation. We do not separate development sets for the other corpora because

4At this moment, the OntoNotes release 4.0 is not available to the public, but it will soon to be
available through the Linguistic Data Consortium (LDC).

5WSJ from OntoNotes contains only a subset of the entire Penn Treebank, extracting non-
financial news only. Thus, the data is not bias from financial news.

61

all parsing models are optimized only for WSJ. ALL-column shows the total num-
ber of sentences when all corpora are combined.

3.2 Converting phrase structure to dependency structure

All corpora are annotated in Penn Treebank phrase structure style (Marcus et al.
[11]). For each corpus, we generate two sets of dependency trees, one converted
by the LTH tool, and the other converted by our approach. For the LTH tool,
we mostly use their default settings, but exclude the GLARF labels (e.g., NAME,
POSTHON, SUFFIX, TITLE; Meyers et al. [14]) and the APPO label for appositions.
However, we include the QMOD label for quantifier phrases as we include this label
in our approach. During conversion, we discard sentences of length 1 to avoid a
bias to such a trivial case.

EBC EBN SIN XIN WEB WSJ ALL
LTH- dep 1.44 0.81 0.70 0.29 0.95 0.51 0.82
Our - dep 1.29 0.73 0.69 0.21 0.83 0.46 0.73
LTH- sen 11.14 8.66 8.47 5.30 11.29 7.27 9.27
Our - sen 9.19 7.39 8.22 3.75 9.02 6.24 7.78

Table 4: Distributions of non-projective dependencies (in %). ‘LTH’ indicates output from
the LTH tool, and ‘Our’ indicates output from our approach. The top two rows show %
of non-projective dependencies among all dependencies. The bottom two rows show % of
dependency trees containing at least one non-projective dependency. The numbers do not
account for non-projective dependencies caused by punctuation.

Table 4 shows the distribution of non-projective dependencies in each corpus. Our
approach generates fewer non-projective dependencies because of our new method
of handling *RNR* nodes (cf. Section 2.6).

EBC EBN SIN XIN WEB WSJ ALL
LTH 4.77 1.51 1.16 1.63 1.93 1.93 2.20
Our 0.86 0.57 0.33 0.44 1.03 0.25 0.60

Table 5: Distributions of unclassified dependencies (in %).

Table 5 shows the distribution of unclassified dependencies (labeled as DEP). Some
of these dependencies may not be errors; they can be rather ambiguous in nature.
However, reducing the number of unclassified dependencies as much as possible
is preferred because they can appear as noise during training. The numbers show
that our approach reduces the percentage of unclassified dependencies from 2.2%
to 0.6%, a reduction of 72.7%.

3.3 State-of-art dependency parsers

To show the impact each conversion method has on dependency parsing, we train
and test two state-of-art dependency parsers, MaltParser (Nivre et al. [16]) and

62

MSTParser (McDonald et al. [13]), and our own parser, ClearParser. First, we train
all parsers on each corpus and test on the same corpus. Then, we train all parsers
on WSJ, and test on the other corpora. In addition, we test all parsers on WSJ using
models trained on EBN. No extensive optimization is made for any parser, so the
performances of these parsers are expected to improve with further optimizations.

For MaltParser, we choose Nivre’s swap algorithm for parsing (Nivre [15]), and
LibLinear multi-class SVM for learning (Fan et al. [5]).6 For MSTParser, we choose
Chu-Liu-Edmonds’ algorithm for parsing (McDonald et al. [13]), and the Margin
Infused Relaxed algorithm (MIRA) for learning (Mcdonald and Pereira [12]). For
ClearParser, we choose Choi-Nicolov’s approach to Nivre’s list-based algorithm
for parsing (Choi and Nicolov [2]), and LibLinear L2-L1 SVM for learning.

3.4 Accuracy comparisons

3.4.1 Overall parsing accuracies

EBC EBN SIN XIN WEB WSJ ALL
Malt - LTH 82.91 86.38 86.20 84.61 85.10 86.93 85.44
Malt - Our 83.20 86.40 86.03 84.85 85.45 87.40 85.65
MST - LTH 81.64 85.47 85.02 84.10 84.05 85.93 84.49
MST - Our 82.54 85.68 85.11 83.85 84.03 86.43 84.69
Clear - LTH 83.36 86.32 86.80 85.50 85.53 87.15 85.88
Clear - Our 84.06 86.77 86.55 85.41 85.70 87.58 86.09

Table 6: LAS (in %) when trained and tested on the same corpora.

EBC EBN SIN XIN WEB WSJ ALL
Malt - LTH 74.80 82.40 81.74 79.39 80.42 80.59 80.01
Malt - Our 75.60 83.05 81.81 81.46 80.81 81.17 80.85∗

MST - LTH 76.65 82.45 82.29 80.46 80.64 80.02 80.49
MST - Our 77.20 83.06 82.52 80.88 80.82 81.04 81.01∗

Clear - LTH 76.37 83.16 83.53 81.29 81.83 81.29 81.36
Clear - Our 77.14 84.16 83.66 82.45 82.26 82.32 82.16∗

Table 7: LAS (in %) when trained and tested on different corpora.

Table 6 shows labeled attachment scores (LAS) of each parser when trained and
tested on the same corpora. All parsers give higher parsing accuracies on average
using data generated by our approach. It is not clear which significance tests are
appropriate for our data; the data contains too many dependencies (over 165K) so
even a 0.2% improvement becomes statistically significant using the Chi-square
test (thus, all improvements made in ALL-column are significant with p ≤ 0.025).

6MaltParser comes with a default feature template designed for LibSVM (Chang and Lin [1]), so
we contacted the MaltParser team to get a different feature template for LibLinear.

63

If we use the Wilcoxon signed-ranks test, pretending that each corpus is an inde-
pendent sample, these 0.2% improvements are not statistically significant.

Table 7 shows LAS of each parser when trained and tested on different corpora.
All parsers use models trained on WSJ except they use models trained on EBN

when testing on WSJ. All parsers make statistically significant improvements (by
the Wilcoxon signed-ranks test, p ≤ 0.03) on average using data generated by our
approach. This suggests that our method might create more uniform structures
across different corpora, improving domain adaptation.

3.4.2 Parsing accuracies on semantic dependencies

Table 8 shows LAS on semantic dependencies (BNF, DIR, EXT, LOC, MNR, PRD, PRP,
TMP) using the ALL evaluation set. There are a total of 11,583 and 11,934 seman-
tic dependencies in the LTH and our data, respectively. In terms of F1-score, all
parsers again give consistently higher parsing accuracies using data generated by
our approach.

Precision Recall F1-score
LTH Clear LTH Clear LTH Clear

Malt - Same 67.97 68.68 62.67 63.00 65.21 65.72
MST - Same 66.86 67.67 60.80 60.82 63.69 64.06
Clear - Same 69.56 70.22 65.62 65.74 67.53 67.91
Malt - Diff 57.33 57.83 55.99 56.38 56.65 57.10
MST - Diff 57.65 58.53 54.64 54.49 56.10 56.44
Clear - Diff 58.81 60.22 58.60 59.69 58.70 59.95

Table 8: LAS on semantic dependencies using the ALL evaluation set. Same/Diff-rows
show results using the same/different corpora for training and testing.

Table 9 shows LAS on joined semantic dependencies (e.g., LOC-PRD) using the
LTH-ALL evaluation set (our data does not include those dependencies; Section 2.3).
There are a total of 240 of these dependencies. As shown, all parsers give below
50% accuracies on these dependencies.

Same Diff
Precision Recall F1-score Precision Recall F1-score

Malt 56.29 35.42 43.48 45.54 21.25 28.98
MST 58.82 33.33 42.55 60.49 20.42 30.53
Clear 66.43 39.58 49.60 51.49 28.75 36.90

Table 9: LAS on joined semantic dependencies using the LTH-ALL evaluation set.

64

4 Conclusion and future work

We present a more robust method of doing constituent-to-dependency conversion
across different corpora. Our results show that parsers generally perform more ac-
curately using data generated by our approach than by the LTH tool; especially for
semantic dependencies. The improvements are even more significant when pars-
ing models are tested on corpora different from their training corpora, leading us to
believe that our method generates data that is more suitable for domain adaptation.

In the future, we are planning to apply automatic error detection techniques (Dick-
inson [4]) to make our data more consistent. We will also generate dependency
trees with empty categories for dropped arguments. Finally, we will try to inte-
grate semantic roles from PropBank directly into the dependency trees.

Acknowledgments
We gratefully acknowledge the support of the National Science Foundation Grants CISE-
CRI-0551615, Towards a Comprehensive Linguistic Annotation and CISE-CRI 0709167,
Collaborative: A Multi-Representational and Multi-Layered Treebank for Hindi/Urdu, and
a grant from the Defense Advanced Research Projects Agency (DARPA/IPTO) under the
GALE program, DARPA/CMO Contract No. HR0011-06-C-0022, subcontract from BBN,
Inc. Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

References
[1] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-

chines, 2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[2] Jinho D. Choi and Nicolas Nicolov. K-best, locally pruned, transition-based de-
pendency parsing using robust risk minimization. In Recent Advances in Natural
Language Processing V, pages 205–216. John Benjamins, 2009.

[3] Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question answer-
ing passage retrieval using dependency relations. In Proceedings of ACM-SIGIR’05,
pages 400–407, 2005.

[4] Markus Dickinson. Correcting dependency annotation errors. In Proceedings of
EACL’09, pages 193–201, 2009.

[5] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification journal of machine learning re-
search. The Journal of Machine Learning Research, 9:1871–1874, 2008.

[6] J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Martí, L. Màrquez,
A. Meyers, J. Nivre, S. Padó, J. Štěpánek, P. Straňák, M. Surdeanu, N. Xue, and
Y. Zhang. The conll-2009 shared task: Syntactic and semantic dependencies in mul-
tiple languages. In Proceedings of CoNLL’09 Shared Task, pages 1–18, 2009.

65

[7] Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph
Weischedel. Ontonotes: the 90 In Proceedings of HLT-NAACL’06, pages 57–60,
2006.

[8] Richard Johansson. Dependency-based Semantic Analysis of Natural-language Text.
PhD thesis, Lund University, 2008.

[9] Richard Johansson and Pierre Nugues. Extended constituent-to-dependency conver-
sion for english. In Proceedings of NODALIDA’07, 2007.

[10] M. Marcus, G. Kim, M. Ann Marcinkiewicz, R. Macintyre, A. Bies, M. Ferguson,
K. Katz, and B. Schasberger. The penn treebank: Annotating predicate argument
structure. In ARPA Human Language Technology Workshop, pages 114–119, 1994.

[11] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a
large annotated corpus of english: The penn treebank. Computational Linguistics, 19
(2):313–330, 1993.

[12] Ryan Mcdonald and Fernando Pereira. Online learning of approximate dependency
parsing algorithms. In Proceedings of EACL’06, pages 81–88, 2006.

[13] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of HLT-
EMNLP’05, pages 523–530, 2005.

[14] Adam Meyers, Ralph Grishman, Kosaka Michiko, and Shubin Zhao. Covering tree-
banks with glarf. In Proceedings of the EACL’01 Workshop on Sharing Tools and
Resources for Research and Education, 2001.

[15] Joakim Nivre. Non-projective dependency parsing in expected linear time. In Pro-
ceedings of ACL-IJCNLP’09, pages 351–359, 2009.

[16] Joakim Nivre, Johan Hall, and Jens Nilsson. Maltparser: A data-driven parser-
generator for dependency parsing. In Proceedings of LREC’06, pages 2216–2219,
2006.

[17] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An anno-
tated corpus of semantic roles. Computational Linguistics, 31(1):71–106, 2005.

[18] Owen Rambow, Cassandre Creswell, Rachel Szekely, Harriet Taber, and Marilyn
Walker. A dependency treebank for english. In Proceedings of LREC’02, 2002.

[19] Libin Shen, Jinxi Xu, and Ralph Weischedel. A new string-to-dependency machine
translation algorithm with a target dependency language model. In Proceedings of
ACL:HLT’08, pages 577–585, 2008.

[20] M. Čmejrek, J. Cuřín, and J. Havelka. Prague czech-english dependency treebank:
Any hopes for a common annotation scheme? In HLT-NAACL’04 workshop on Fron-
tiers in Corpus Annotation, pages 47–54, 2004.

[21] Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis with sup-
port vector machine. In Proceedings of the 8th International Workshop on Parsing
Technologies (IWPT’03), pages 195–206, 2003.

66

