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Abstract

Debris flows are a major natural hazard in mountains world wide, because of their destructive

potential. Prediction of occurrence, magnitude and travel distance is still a scientific challenge,

and thus research into the mechanics of debris flows is still needed. Poor understanding of the

processes of erosion and deposition are partly responsible for the difficulties in predicting debris-

flow magnitude and travel distance. Even less is known about the long-term evolution of debris-

flow fans because the sequential effects of debris-flow erosion and deposition in thousands of flows

are poorly documented and hence models to simulate debris-flow fans do not exist. Here I address

the specific issues of the dynamics of erosion and deposition in single flows and over multiple

flows on debris-flow fans by terrain analysis, channel monitoring and fan evolution modeling.

I documented erosion and deposition dynamics of debris flows at fan scale using the Illgraben

debris-flow fan, Switzerland, as an example. Debris flow activity over the past three millenia in

the Illgraben catchment in south-western Switzerland was documented by geomorphic mapping,

radiocarbon dating of wood and cosmogenic exposure dating of deposits. In this specific case I

also documented the disturbance induced by two rock avalanches in the catchment resulting in

distinct patterns of deposition on the fan surface. Implications of human intervention and the

significance of autogenic forcing of the fan system are also discussed.

Quantification and understanding of erosion and deposition dynamics in debris flows at chan-

nel scale hinges on the ability to detect surface change. But change detection is a fundamental task

in geomorphology in general. Terrestrial laser scanners are increasingly used for monitoring down

to centimeter scale of surface change resulting from a variety of geomorphic processes, as they

allow the rapid generation of high resolution digital elevation models. In this thesis procedures

were developed to measure surface change in complex topography such as a debris-flow chan-
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nel. From this data high-resolution digital elevation models were generated. But data from laser

scanning contains ambiguous elevation information originating from point cloud matching, sur-

face roughness and erroneous measurments. This affects the ability to detect change, and results

in spatially variable uncertainties. I hence developed techniques to visualize and quantify these

uncertainties for the specific application of change detection. I demonstrated that use of data filters

(e.g. minimum height filter) on laser scanner data introduces systematic bias in change detection.

Measurement of debris-flow erosion and deposition in single events was performed at Ill-

graben, where multiple debris flows are recorded every year. I applied terrestrial laser scanning

and flow hydrograph analysis to quantify erosion and deposition in a series of debris flows. Flow

depth was identified as an important control on the pattern and magnitude of erosion, whereas de-

position is governed more by the geometry of flow margins. The relationship between flow depth

and erosion is visible both at the reach scale and at the scale of the entire fan. Maximum flow depth

is a function of debris flow front discharge and pre-flow channel cross section geometry, and this

dual control gives rise to complex interactions with implications for long-term channel stability,

the use of fan stratigraphy for reconstruction of past debris flow regimes, and the predictability of

debris flow hazards.

Debris-flow fan evolution on time scales of decades up to ten thousands of years is poorly

understood because the cumulative effects of erosion and deposition in subsequent events are

rarely well documented and suitable numerical models are lacking. Enhancing this understanding

is crucial to assess the role of autogenic (internal) and allogenic (external) forcing mechanisms on

building debris-flow fans over long time scales. On short time scales understanding fan evolution

is important for debris-flow hazard assessment. I propose a 2D reduced-complexity model to

assess debris-flow fan evolution. The model is built on a broad range of qualitative and empirical

observations on debris-flow behaviour as well as on monitoring data acquired at Illgraben as part

of this thesis. I have formulated a framework of rules that govern debris-flow behaviour, and that

allows efficient implementation in a numerical simulation. The model is shown to replicate the

general behaviour of alluvial fans in nature and in flume experiments. In three applications it

is demonstrated how fan evolution modeling may improve understanding of inundation patterns,

surface age distribution and surface morphology.



Declaration

The work in this thesis is based on research carried out at the Department of Geography and

Institute of Hazard, Risk and Resilience of Durham University, United Kingdom. No part of this

thesis has been submitted elsewhere for any other degree or qualification and it is all my own work

unless referenced to the contrary in the text.

Copyright ©2011 by Peter Schürch.

“The copyright of this thesis rests with the author. No quotations from it should be published with-

out the author’s prior written consent and information derived from it should be acknowledged”.

v



Acknowledgements

So I recommended having fun because there is nothing better for people in this world than

to eat, drink, and enjoy life. That way we will experience some hapiness along with all the

hard work God gives them under the sun. In my search for wisdom and in my observation

of people’s burdens here on earth, I discovered that there is ceaseless activity, day and

night. I realized that no one can discover everything no matter what they claim.

(Book of Ecclesiastes 8:15–17 NLT Study Bible, 2008)

The three years and four months I spent in Durham at the Geography Department and with

the people ‘of Geography’ are amongst the most enjoyable years during my training and career

as a geologist so far. The friendly and happy atmosphere made the search for wisdom fun right

until the end of my PhD. There was always someone here to give encouragement and expert

advice when necessary – I was not alone. For this I owe thanks to many people, not only at

the Geography Department, but also to people from Emmanuel Church in Durham, neighbours

in Bearpark, and to family, friends and colleagues in Switzerland. I will try to acknowledge the

individual contributions here, but please forgive me if I forgot to mention your name explicitly.

My supervisors Alex Densmore and Nick Rosser have been great in challenging my thoughts

and gently guiding my research. I value their scientific advice and rigour, which have been crucial

for the success of this work. Their support and indestructible humour during fieldwork was much

appreciated, as days at Illgraben were long and hot, and the generator heavy. The fact that I am

still, as I’m writing this, enjoying my PhD, is very much their merit and how they managed their

student.

vi



vii

A special thanks goes to the people at the Swiss Federal Institute for Forest, Snow and Land-

scape Research (WSL). Brian McArdell facilitated this research in many ways, most importantly

by providing access to precious WSL data on debris flows at Illgraben in Switzerland. Catherine

Berger was my contact person for many queries I had about Illgraben data, and she patiently and

carefully answered all of them. Christof Graf shared his expertise regarding the alarm system with

me.

My PhD project involved quite a bit of fieldwork. A large number of people supported me in

this in many ways: First of all I want to thank my parents Ernst and Elke, who prepared, main-

tained, stored and organized all sorts of equipment when needed, and had it ready for me to pick

up. Various people let me borrow their car for fieldwork (!!!): Christian Schürch, Alex de Graaf,

Marco Quinter, and again my parents. Urs Juon and his colleagues from BSAP Ingenieure AG,

Visp, Switzerland, lent me surveying equipment for free, which I otherwise would have had to

ship over from the UK. I thank them for trusting me, and for meeting all my last minute requests,

often on weekends, this was much appreciated. My hosts at Illgraben, Kurt and Magdalena Bal-

tensperger are acknowledged for letting me stay in their appartment at no cost in my first summer.

Later I stayed many times at the house of Silvia and Leander Tscherrig, where I could also de-

posit equipment between my visits to Illgraben. They also took a great interst in my work and

introduced me to the local wine. Hermann Rovina and colleagues let me access their archive with

geological reports about the Illgraben fan and provided me with photographs of various debris

flows at Illgraben. The land owners, Burgschaft Leuk (Stefan Eggo) and Paul Passeraub (Turt-

mann), are acknowledged for giving permission for sampling boulders. Stuart Lane let me join

the Arolla field trip, which meant I could carry out fieldwork the same time and had a field crew

of senior scientists to help me. A number of people came out to Illgraben just to help with field-

work, this was much appreciated: Vreni and Gerhard Kiefer, Matthias Weil, Brian McArdell, Maja

Schürch, and Michael Lim. The support staff in the Geography Department, particularly Mervyn

Brown, Samatha Waugh, and the IT people have been a great help with day-to-day problems. I

thank Emma Norman for constantly rearranging her fieldwork around my fieldwork schedule.

Thanks to the Sedymont project, led by Fritz Schlunegger, I was able to attend the European

Geoscience Union meeting in Vienna in 2009 and the TopoEurope meeting in fall 2010 in Oslo.

Also the Sedymont meetings in Leuk were very enjoyable, and discussions with members of the

Sedymont team, particularly Georgie Bennet and Fritz Schlunegger, have been very useful in



viii

focusing my ideas. Exposure dating of boulders on the Illgraben fan would not have been possible

without the help of Susan Ivy-Ochs, Florian Kober, Vassili Alfimov and Peter Kubik from ETH

Zurich. Preparation of wood samples and dating by the radiocarbon lab of the Physical Institute

of the University of Bern was facilitated by Fritz Schlunegger and funded by the Swiss National

Science Foundation (20T021-120464).

I also owe thanks to all those people who have thoroughly reviewed parts of this thesis: Dave

Milledge, Michael Lim, Susan Ivy-Ochs, Florian Kober, Tristram Hales, Jason Kean, Oliver Ko-

rup, Nick Cox, Bob Hilton and several anonymous reviewers. I thank M. Imran for preparing the

LATEX template used for this thesis.

Whilst writing my acknowledgements a number of names crossed my mind; probably for

a reason, so I shall thank them here for their help (in no particular order): Emma Raven, Tori

Milledge, Andreas Vieli and Gwendolyn Vieli-Leisinger, Ed Llwellin, Emma Marsh, Thomas van

Stiphout, Dirk Rieke-Zapp, Pat Thee, Pam and Dave Bulman, Edna and Maurice Abbott, Pam and

Alan McKendrick, Nick Odoni, Rich Hardy, Chris Stokes, Louise Bracken, Jeff Warburton, Carly

Maynard, Claire and Gideon Copestake, Patrice Carbonneau.

Without funding this PhD project would have been impossible, and I owe thanks to a range

of institutions for providing support: Fieldwork was funded by a NERC grant NE/G009104/1 and

a Royal Geographical Society fieldwork grant. My living expenses were covered by a Durham

University Doctoral Fellowship.

Most importantly I want to thank my wife for constant encouragement, for letting me go on

field work or to conferences and spending many days away from home and for checking refer-

ences. My son Fabio was a constant source of joy, irrespective of whether I had a good or bad day

at work. Finally I thank my parents Elke and Ernst, who raised me to be curious and perseverant

enough to start and finish a PhD.



Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Definition of debris flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Current understanding of debris-flow erosion and deposition . . . . . . . . . . . 3

1.3.1 Classification of debris flows . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Erosion and deposition processes . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Modeling debris flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Evolution and morphology of debris-flow fans . . . . . . . . . . . . . . 13

1.4 Research questions and road map . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Post-glacial fan evolution and sediment storage in an alpine debris-flow catchment 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Geomorphic impact of rock avalanches . . . . . . . . . . . . . . . . . . 22

2.1.2 Sediment storage and evacuation by debris flows . . . . . . . . . . . . . 24

2.1.3 Patterns of debris-flow deposition on fans . . . . . . . . . . . . . . . . . 25

2.1.4 Field site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Terrain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



Contents x

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Geomorphic mapping and terrain analysis . . . . . . . . . . . . . . . . . 34

2.3.2 Depositional chronology and exposure ages from 10Be and 36Cl and 14C

dating of wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Detection of surface change in complex topography using terrestrial laser scanning:

application to the Illgraben debris-flow channel 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Accquisition of test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Field site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Terrestrial laser scanning procedure and survey layout for the test data set 53

3.2.3 Point cloud registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 Georeferencing, gridding and quality check of DEMs . . . . . . . . . . . 57

3.3 Elevation ambiguity of point cloud data . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Uncertainty in TLS-derived DEMs . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Relationship between incidence angle and point density . . . . . . . . . 62

3.4.3 Influence of laser footprint size on elevation ambiguity . . . . . . . . . . 64

3.4.4 Mitigation of gridding error . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Application to surface change calculation . . . . . . . . . . . . . . . . . . . . . 70

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Dynamic controls on erosion and deposition on debris-flow fans 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents xi

5 Debris-flow fan evolution modeling 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Numerical modeling of alluvial fans . . . . . . . . . . . . . . . . . . . . 88

5.1.2 Modeling debris flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.3 Specifications of a debris-flow fan evolution model . . . . . . . . . . . . 92

5.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Model space geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.3 Data management and storage . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.4 Flow routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.5 Governing equations and principles . . . . . . . . . . . . . . . . . . . . 96

5.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Behaviour of single flows . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 Analysis of model output and base run . . . . . . . . . . . . . . . . . . . 104

5.3.3 Validation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.4 Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Model applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.1 Fan evolution and influence on debris-flow magnitude-frequency relation-

ship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 The influence of fan morphology on inundation patterns . . . . . . . . . 116

5.4.3 The influence of apex disturbance on fan surface age and debris-flow mag-

nitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.1 Model principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.3 Model application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusions 136

6.1 General findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 Findings relevant for Illgraben . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Contents xii

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Notation 142

Bibliography 144

Appendices 159

A Supplementary material for Chapter 2 160

A.1 Photo documentation of the Illgraben fan and catchment . . . . . . . . . . . . . 160

A.2 Laboratory report for radiocarbon dating of wood samples . . . . . . . . . . . . 167

B Supplementary material for Chapter 3 169

C Supplementary material for Chapter 4 170

C.1 Calculation of debris flow volumes from hydrographs . . . . . . . . . . . . . . . 170

C.2 Quantitative comparison of elevation change and flow depth . . . . . . . . . . . 174

D Supplementary material for Chapter 5 175

D.1 Technical documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.1.1 Model execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.1.2 List of matlab routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

D.1.3 Definition of the model space . . . . . . . . . . . . . . . . . . . . . . . 176

D.1.4 Description of output variables . . . . . . . . . . . . . . . . . . . . . . . 177

D.1.5 Sample parameter file . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

D.2 Table of model experiments and parameters . . . . . . . . . . . . . . . . . . . . 180

D.3 Results from validation experiments . . . . . . . . . . . . . . . . . . . . . . . . 185

D.4 Influence of α and ε on fan slope . . . . . . . . . . . . . . . . . . . . . . . . . . 185

E Content of data DVD 187



List of Figures

1.1 Classification of debris flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview map of Illgraben catchment and fan in south-western Switzerland. . . . 23

2.2 Geomorphic map of the Illgraben fan, radiocarbon dating of wood samples and

exposure dating of boulders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Terrace reconstruction in Illgraben catchment. . . . . . . . . . . . . . . . . . . . 37

2.4 Channel fragments and apex reconstruction. . . . . . . . . . . . . . . . . . . . . 39

2.5 Topographic cross-channel profiles in the Illgraben catchment. . . . . . . . . . . 44

2.6 Photographs of the Illgraben catchment 1921 and 2009. . . . . . . . . . . . . . . 47

3.1 Overview of study reach: digital elevation model and photograph with scan stations. 51

3.2 Misalignement in point cloud data from multiple scan stations. Definition of inci-

dence angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Maps of elevation ambiguity, elevation range and standard deviation of elevation

in point cloud data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Relationship between incidence angle and point density on the ground. . . . . . . 63

3.5 Relationship between incidence angle and laser footprint size. . . . . . . . . . . 65

3.6 Map of maximum laser footprint size and relationship with standard deviation of

elevation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Elevation uncertainty in change detection, concept sketch. . . . . . . . . . . . . 69

3.8 Example of volumetric surface change analysis with volumetric error. . . . . . . 72

4.1 Study area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Difference DEMs and flow cross sections. . . . . . . . . . . . . . . . . . . . . . 81

4.3 Erosion and deposition as a function of flow depth. . . . . . . . . . . . . . . . . 82

xiii



List of Figures xiv

4.4 Time series of erosion and deposition. . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Sketch of model space geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Sketch of model operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Behaviour of single flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Summary plots for base run E38. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Controls on fan slope in fan evolution model. . . . . . . . . . . . . . . . . . . . 108

5.6 Influence of bed saturation on fan slope and runout distance. . . . . . . . . . . . 110

5.7 Fan evolution and flow volume magnitude–frequency relationships. . . . . . . . 113

5.8 Relative jump distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Cumulative probability distribution of relative jump distance for contrasting model

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.10 Influence of α and ε on relative jump distance. . . . . . . . . . . . . . . . . . . . 120

5.11 Roughness measures and RJD for run E25 and run E40 for all modeled events. . 121

5.12 Influence of a rock avalanche on fan morphology. . . . . . . . . . . . . . . . . . 123

A.1 Illgraben, looking upstream: on the left the deposit of the 1961 rock avalanche,

right side rock slope of the Gorwetsch Grat. . . . . . . . . . . . . . . . . . . . . 160

A.2 Illgraben, looking upstream, standing on CD1: mound of soft sediments in central

part of photograph is the deposit of the 1961 rock avalanche. . . . . . . . . . . . 160

A.3 Illgraben, looking downstream from top of CD1. . . . . . . . . . . . . . . . . . 161

A.4 The sediment retention dam (CD1) seen from downstream, total height is 40 m.

Note abrasion of concrete structure by debris flows. . . . . . . . . . . . . . . . . 161

A.5 Sample sites for wood embeded in valley fill (S1 and S2, Figure 2.3). . . . . . . . 162

A.6 The Illgraben channel looking downstream from sample sites for wood (S1 to S3). 162

A.7 The upper Illgraben catchment seen from the Güetji terrace, note CD1 marked by
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Chapter 1

Introduction

1.1 Definition of debris flows

Debris flows are fast, avalanche-like, moving mixtures of water, air, and variable fractions of

sediment: silt, sand, gravel, stones and boulders, or even wood (Varnes, 1978). Debris flows

initiate from landslides, from entrainment of bed material at times of high discharge or from

direct failure of water-saturated sediment in headwater channels (Takahashi, 2007). Debris flows

show a behaviour intermediate between shallow landsliding and hyper-concentrated flows, and

the flow properties vary with water and sediment content, and sediment size and sorting (Costa

and Fleisher, 1984). Although inhabitants of mountain areas were aware of the phenomenona

for a long time and had named it in a variety of ways, such as Ja-nuke (The run off of king

snake, Japan), Rüfe, Mure or Murgang (Germany, Switzerland, Austria), it was only in the second

half of the 20th century that the first photographs and films of debris flows were captured (Costa

and Garnett, 1984; Okuda et al., 1977). Only thereafter did formal scientific investigation of the

phenomena commence.

1.2 Motivation

Debris flows are a common phenomena and a major hazard in mountainous regions around the

world (Bezzola et al., 2008; Jakob and Hungr, 2005; Rickenmann and Chen, 2003; Takahashi,

2007). Devastating events with hundreds of casualities and severe damage to infrastructure in the

19th and 20th century have promoted debris-flow research mainly in Japan, Europa and North

1
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America. As a result, research has often been driven by the necessity to mitigate against this

natural hazard.

Research on debris flow mitigation strategies can be grouped into three broad themes.

• How can debris-flow inititation be inhibited, or what measures can be taken to limit event

magnitude (e.g. Remaitre et al., 2008; Takahashi, 2007)?

• How can debris flows be retained before they reach vulnerable elements (e.g. Wu and Chang,

2003)?

• How can debris flows be routed safely past vulnerable structures (e.g. Jakob et al., 2004)?

In pursuing these aims, much research effort has been spent on mapping debris flow hazard

(e.g. Berti and Simoni, 2007; Griswold and Iverson, 2008), predicting run-out distance (e.g. Can-

non, 1989; Rickenmann, 1999, 2005), determining magnitude-frequency relationships (e.g. Hungr

et al., 2008; Innes, 1985; van Steijn, 1996; Zimmermann et al., 1997) or debris-flow behaviour

modeling (e.g. Arattano and Savage, 1994; Iverson, 1997; Iverson and Denlinger, 2001; Patra

et al., 2005; Pudasaini et al., 2005; Takahashi, 2007).

Debris flows are capable of eroding bedrock (Hsu et al., 2008; Stock and Dietrich, 2006) and

are therefore regarded as important agents of landscape evolution, leaving a distinct fingerprint

in catchments and on alluvial fans (Benda and Dunne, 1997b; Stock and Dietrich, 2003; Whip-

ple and Dunne, 1992). The sedimentary record of debris-flow fans has attained growing interest

because of the potential to yield information about temporal changes in the nature and rates of

geomorphic processes, past climate and tectonics (Densmore et al., 2007; Dühnforth et al., 2008,

2007; Hornung et al., 2010).

Advances depend on how good understanding is of the fundamental processes of erosion and

deposition during debris flows; both, at the local scale of a single channel, and at the scale of

a debris-flow fan. Erosion and deposition affect the channel system locally but also control the

behaviour of the flow as it continues to travel across topography, due to changes in flow volume

(Iverson et al., 2011). The effects of erosion and deposition resulting from a succession of debris

flows of varying magnitudes across such spatially and temporally variable topography constitute

a complicated and still poorly understood feedback mechanism (Chapter 4).

With this thesis I aim at providing the scientific basis for a better understanding of two key

issues: First, the controls on debris flow erosion and deposition, and second, the implications of

these findings for debris flow fan evolution over time spans of decades to tens of thousands of

years.
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Debris flows occuring in mountain areas are often of described as ‘granular’ because they carry

substantial amounts of coarse discrete particles (Berti and Simoni, 2007). In steep tributary valleys

and over short distances of only a few kilometers debris flows may entrain large volumes of sed-

iment, which usually leads to overbank deposition when joining the main valley and possibly the

devastation of infrastructure or loss of life (Arattano et al., 2010; Scheuner et al., 2009). I focus on

these mature and fully established debris flows (Takahashi, 2007) defined by high concentrations

of coarse-grained particles that are dominated by Coulomb friction stress (Iverson, 1997) and on

the associated landforms such as debris-flow fans, levee-bound channels and depositional lobes

(Blair and McPherson, 1998; Major and Iverson, 1999; Whipple and Dunne, 1992). In the next

section I review the broader debris-flow literature in the context of the processes of deposition and

erosion.

1.3 Current understanding of debris-flow erosion and deposition

Erosion and deposition during a debris flow affect the volume of the current flow and hence the

hazard it poses downstream. Alongside this, the channel geometry undergoes change, which

changes the boundary conditions for the next flow or flow surge in the same channel. To capture

the breadth of the problem, a consideration of a broad range of scales is necessary. I first consider

ways to classify debris flows according to their mechanical properties. From there I move on to

an overview of work specific to erosion and deposition, followed by a assessment of the lessons

from debris-flow models regarding erosion and deposition. Finally, I take a broader perspective

and review work relating to the evolution of debris-flow fans.

1.3.1 Classification of debris flows

Debris flows are a process intermediate between a river at high flow (mostly water) and a landslide

(mostly sediment). It is useful to define the phenomena of interest in a mechanical sense separating

it from these endmembers. Two examples of such a classification are detailed in Iverson (1997)

and Takahashi (2007), which I summarize below.

Iverson (1997) identified three key dimensionless parameters to discriminate debris flows from

similar related phenomena: the Savage number NSav, the Bagnold number NBag and the Darcy

number NDar. The Savage number describes the ratio between inertial shear stress resulting from
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Figure 1.1: Classification scheme for debris flows based on the Darcy number, NDar, the Savage number,
NSav, and the Bagnold number, NBag. The debris-flow domain occupies an imprecisely defined region where
the three parameters take intermediate values. The relation between debris flows and other mass movements
such as earthflows, rock avalanches and mudflows is also indicated. Figure taken from Iverson (1997).

grain collisions and the quasi-static shear stress arising from the weight and friction of the granular

mass (Coulomb friction):

NSav =
γ̇2ρsδ

N(ρs−ρ f )g tanφ
(1.1)

where γ is shear strain rate, ρs and ρ f are solid and fluid density, δ is representative grain diameter,

N is number of grains above channel bed, g is gravitational acceleration and φ is angle of internal

friction (see also p. 142). In debris flows the Savage number is suggested to be at most ≈ 0.2

(attained from flume experiments in the USGS debris-flow flume), or significantly smaller for

larger events (Iverson, 1997), with friction stresses becoming dominant when NSav ≤ 0.1. The

Bagnold number is defined as the ratio between inertial grain stress and viscous shear stress:

NBag =
C

1−C
ρsδ

2γ̇

µ
(1.2)

where C is bulk sediment concentration and µ is dynamic viscosity of pore fluid with suspended

fine sediment. For debris flows Iverson (1997) reports values of NBag = 0.2 . . .400. The Darcy

number describes to what extent pore fluid pressure buffers grain interactions:

NDar =
µ

Cρsγ̇k
(1.3)

Realistic values for debris flows are & 5000 (Iverson, 1997). The domain of debris-flow occurrence

can be understood as an imprecisely defined region (Figure 1.1) where the three parameters NDar,

NSav and NBag take intermediate values. Figure 1.1 also highlights the distinction between debris

flows and related mass-movement phenomena.
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The classification proposed by Takahashi (2007) is similar to that of Iverson (1997) in the

sense that it is based on an evaluation of three stresses (turbulent mixing stress, collision stress

and viscous shear stress) used in the definition of the Savage, Bagnold and Darcy number and

their relative importance. As a fourth component, the coarse sediment concentration is consid-

ered. According to this classification a debris flow requires at least a volume fraction of coarse

sediment of & 0.2. Takahashi (2007) distinguished between viscous, stony and muddy debris flows

which are characterized by a high relative importance of viscous shear stress, collision stress and

turbulent mixing stress respectively. At a coarse particle concentration of 0.2, the denominator

of the Savage number (Equation 1.1), the Coulomb friction stress, still plays a negligible role in

the total stress. Only when the concentration of coarse particles exceeds 0.5 does a debris flow of

quasi-static motion develop (Takahashi, 2007) which is comparable to the flows with NSav� 0.1

as described by Iverson (1997). Many observations have confirmed that debris flows develop steep

granular fronts (e.g. Costa and Fleisher, 1984; Iverson, 1997; Major and Iverson, 1999; McArdell

et al., 2007; McCoy et al., 2010) because large particles on the flow surface travel faster than the

body of the flow (Suwa, 1988), and accumulate at the flow front. Beside the difference in coarse

sediment concentration between flow front and flow tail, the overall sediment concentration de-

clines towards the flow tail also (McArdell et al., 2007). Iverson (1997) and McArdell et al. (2007)

measured low hydrostatic pressures in the flow front compared to the tail. It is therefore evident

that values of NSav, NBag and NDar in a debris flow must vary between flow front and tail.

In this work I focus on debris flows with granular fronts containing large clasts and bulk sedi-

ment concentrations of more than 0.2. These flows are common in mountain areas such as the Alps

(Berti and Simoni, 2007) and they are responsible for building debris-flow fans with characteristic

levee-bound channels and depositional lobes. This type of debris flows is very destructive because

of the large clasts carried, the steep and high front and the high momentum. These flows fulfill

the criteria defined by Iverson (1997) and those defined by Takahashi (2007) for dynamic debris

flows with high importance of collisional stress (‘stony type’), and for debris flows of quasi-static

motion.

1.3.2 Erosion and deposition processes

A debris flow in motion undergoes a two-way exchange of material with its channel in the form of

entrainment and deposition, often at the same time. This volume exchange per unit downstream

distance (dV/dx) is termed the ‘lag rate’ (Cannon, 1989). There is overwhelming evidence that
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debris flows may grow by several orders of magnitude after initiation as they erode material along

the flow path (e.g. Fannin and Wise, 2001; Hungr et al., 2005; Rickenmann and Zimmermann,

1993; Scheuner et al., 2009), before they start to deposit their load. In order to understand sedi-

ment transfer in debris-flow systems and the hazard potential of a debris flow prone channel, it is

important to investigate controls on lag rate.

Major advances with respect to erosion of bedrock by debris flows have been made by Stock

and Dietrich (2006) and Hsu et al. (2008) who recognized that the properties of the granular debris-

flow front are crucial in understanding this process. Stock and Dietrich (2006) proposed a bedrock

incision law for debris flows based on the inertial stress on the bed by grain–bed impacts. The

model predicts debris flows with long and coarse fronts and high shear rates (surface velocity /

flow depth) to be most erosive. Hsu et al. (2008), using drum experiments, found a dependence of

bedrock incision on grain diameter and to a lesser extent on shear rate of the flow, suggesting that

most of wear occurs at the coarse granular flow front. Both suggested that the intensity of grain-

bed impacts drive incision. Key parameters identified are grain size and shear rate. Recent spot

measurements of entrainment from a bed of unconsolidated sediment have confirmed that erosion

primarily takes place during passage of the flow front (Berger, McArdell, Fritschi and Schlunegger,

2010; Berger et al., 2011; Iverson et al., 2011). Results shown in Iverson et al. (2011) suggest that

entrainment of unconsolidated sediment is driven by sharp rises in pore water pressure in the

bed due to undrained loading induced by the advancing flow front. Where bed saturation is low,

this process is shown to be less effective. Results presented in Berger et al. (2011) indicate that

erosion starts before pore water pressure rises, but continues until about 20 s after passage of the

flow front. The importance of grain-bed impacts for entrainment of unconsolidated bed sediment

remains therefore unclear.

The rates of deposition in a debris flow are closely linked to the total travel distance. De-

position becomes progressively more important as channel gradients decrease, leading to a net

loss of flow volume (Cannon, 1989; Fannin and Wise, 2001; Hürlimann et al., 2003; Rickenmann,

2005). As long as debris flows remain confined within channels and hence experience small net

loss in volume, momentum is conserved and motion sustained at very low slopes (Whipple and

Dunne, 1992). The rate of deposition increases dramatically when levee deposition is replaced by

lobe formation upon inundating unconfined terrain such as open fan surfaces (Blair and McPher-

son, 1998). The limits of debris flow deposits are usually well defined since grain segregation
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concentrates coarse grains at the deposit margins (Major and Iverson, 1999; Suwa, 1988) where

Coulomb friction dominates (Iverson and Vallance, 2001). Several researchers have suggested

that, beside the topographic boundary conditions, mobility and hence location of deposits is also

influenced by properties of the flow itself such as granular temperature (defined as the mean square

of particle velocity fluctuations, see Equation 1.13, Iverson, 1997; Iverson and Vallance, 2001), ex-

cess pore fluid pressure (McCoy et al., 2010) and sediment concentration (Takahashi, 2007). The

time-dependent prediction of these state variables is suggested to be essential in understanding

deposition, but poses a major challenge (Iverson and Vallance, 2001).

An important outcome from this review is that composition and shape of the flow front are

critical for erosion and deposition. This is important for the analysis in Chapter 4 and the model

development in Chapter 5.

1.3.3 Modeling debris flows

Flow depth, shear stress, granular temperature, sediment concentration and pore fluid pressure

are important in understanding erosion and deposition. As debris flows are fluid-solid mixtures,

a physically based derivation of these parameters is not simple; recently developed debris-flow

models provide some guidance. These models fall in one of the following three broad categories:

continuum constituent, discrete particle and empirical models. Continuum constituent models

describe the debris mixture as a continuum using Eulerian forms of the continuity and momentum

equations (e.g. Iverson, 1997; Iverson and Denlinger, 2001; Pudasaini et al., 2005). These models

can be used to make predictions about shear stress at the flow base and within the flow body, pore

fluid pressure and flow depth. The description of individual particles of granular flows allows

detailed insights into the flow dynamics (Hill et al., 2003). Discrete particle models (e.g. Gray and

Kokelaar, 2010) adopt this Lagrangian view and are capable of reproducing the naturally observed

grain seggregation during debris-flow motion and observed grading patterns in the deposits (Costa

and Fleisher, 1984; Major, 1997; Suwa, 1988) by solving the segregation equation first introduced

by Savage and Lun (1988). Although these models give very detailed insight at a small scale,

they require long computing times (Dalbey et al., 2008; Takahashi, 2007), which makes debris-

flow modelling over large domains (e.g. a debris-flow fan) and over multiple events difficult. In

addition to these approaches, a great variety of empirical and semi-empirical debris-flow models

have been published (e.g. Berti and Simoni, 2007; Griswold and Iverson, 2008; Iverson et al.,
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1998; Rickenmann, 1999, 2005) to predict bulk debris flow behaviour, such as peak discharge,

runout or front velocity.

In the following sections, I introduce the mass and momentum conservation equations for

debris flows, which form the physical basis of many debris-flow models. I assess which models are

useful in predicting sediment concentration, shear stress, granular temperature, pore fluid pressure

and flow depth.

Mass and momentum conservation equations for debris flows

The equations for mass and momentum conservation are the basis of many debris flow models

(Arattano and Savage, 1994; Iverson, 1997; Iverson and Denlinger, 2001; Patra et al., 2005; Pu-

dasaini et al., 2005). Depending on the specific application they are formulated for a single- or

two-phase continuum. As an example, I show the equations formulated for a two-phase constituent

model for general reference (Iverson, 1997). In this case the equations are formulated for a unit

volume. Indices s and f stand for the solid and fluid phase respectively.

Mass conservation

∂(ρsC)

∂t
+∇ · (ρsCus) = ms (1.4)

∂(ρ f (1−C))

∂t
+∇ · (ρ f (1−C)u f ) = m f (1.5)

where ms and m f are the rates of solid or fluid mass addition per unit volume, us and u f are the

solid and fluid velocities and t is time (see also p. 142). Equations 1.4 and 1.5 are coupled by the

sediment concentration C and can be added to gain a formula for the mixture. Incompressibility

of the solid and fluid can usually be assumed, therefore the first term in Equations 1.4 and 1.5 can

be neglected.

Momentum conservation

ρsC(
∂us

∂t
+us ·∇us) = ∇ ·Ts +ρsCg+Fi (1.6)

ρ f (1−C)(
∂u f

∂t
+u f ·∇u f ) = ∇ ·Tf +ρ f (1−C)Cg−Fi (1.7)

where Ts and Tf are the solid and liquid phase stress tensors, and Fi is the interaction force between

solid and fluid constituents.
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Sediment concentration

Bagnold (1954) made fundamental observations for our understanding of granular flows and Taka-

hashi (2007) investigated the controls on sediment concentration of debris flows in flume experi-

ments. Debris flows with considerable fractions of coarse particles often show high mobility and

run over slopes as gentle as 4◦ before stopping. The reason for this behaviour has been identi-

fied as the separation of the coarse particles by a supporting mechanism (Takahashi, 2007). At

high concentrations of coarse particles (> 0.5), excess pressures in the interstitial fluid cause this

effect. However, at lower concentrations of coarse particles only the repulsive forces of grain-

to-grain collisions and turbulence within the flow appear capable of supporting grains in such a

manner. Bagnold (1954) was the first to describe and measure the particle collision stress pc in

an experiment with neutrally buoyant spheres (ρs = ρ f ) within a liquid. He found that the shear

stress, τc, was proportional to the square of the shearing rate λ if a uniform grain distribution was

assumed (see p. 142 for notation):

pc = αi cosαiρsλ
2d2

p(
du
dz

)2 (1.8)

where αi is the collision angle of grains, and du
dz the velocity gradient perpendicular to the bed.

Bagnold (1954) repeated his experiments for a range of grain concentrations between 13.5% and

62.3% and found consistently that:

τc

pc
≈ tanαi ≈ 0.32 (1.9)

However, Iverson and Vallance (2001) emphasized that experiments by Bagnold (1954) do

not prove that τc ∝ (du
dz )

2 when grains are not neutrally buoyant (e.g. in a debris flow). Never-

theless one important outcome of this view of granular flows was the dilatant fluid model and a

definition of the maximum sustainable coarse particle concentration (equilibrium concentration)

C∞ as a function of bed slope S and angle of internal friction φ, which has also been confirmed by

experimental results (Takahashi, 2007):

C∞ ≡
ρ f S

(ρs−ρ f )(tanφ−S)
(1.10)

This is an interesting result because it predicts that the equilibrium concentration decreases
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with slope, and it implies that debris flows have to deposit coarse material (e.g. in the form of

levees) when they reach lower slopes. Many field observations are compatible with this prediction

(e.g. Blair and McPherson, 1998; Kim and Lowe, 2004; Whipple and Dunne, 1992). I will use the

concept of maximum sustainable sediment concentration in the modelling (Chapter 5).

Shear stress

The shear stress in the flow can be investigated using Equations 1.6 and 1.7. Addition of these

equations yields a momentum conservation equation for the bulk mixture and eliminates the com-

plex interaction forces. In the simpler case of a steady uniform flow where the relative velocity

between solids and fluids is neglected, the stress-balance equation becomes (Takahashi, 2007, and

references therein)(notation see p. 142):

Ts +Tf = gsinθ

∫ h

z
ρbdz (1.11)

where Ts and Tf are the shear stresses in the solid and liquid phases and ρb = (ρs−ρ f )C+ρ f is

the bulk density of the bulk mixture. By integrating over the flow depth h the total shear stress at

the base of the flow becomes simply:

τb = Ts +Tf = ρbghsinθ (1.12)

where h is measured perpendicular to the bed. Debris-flow monitoring at Illgraben, Switzer-

land over several events, showed that basal shear and normal stresses maintain a constant ratio of

τb/σ≈ 0.1 in a straight channel section with a slope of S = sin(5◦)≈ 0.1 (e.g. Berger et al., 2011;

McArdell et al., 2007). This result is a strong support for Equation 1.12.

For large mass movements (Volume > 107 m3) Dade and Huppert (1998) suggest that upon

failure the initial resisting stress (which leads to failure of the mass) drops approximately to the

yield strength (i.e. the final resisting stress after deposition) which can be estimated after deposi-

tion in the field (Costa and Fleisher, 1984; Whipple and Dunne, 1992). This implies that the debris

mass deforms in a purely plastic manner with a near constant shear stress in the proposed range of

10-100 kPa (Dade and Huppert, 1998).

Because I am considering smaller total volumes I will use Equation 1.12 to estimate basal

shear stress in the interpretation of monitoring results in Chapter 4 and in the formulation of a

debris-flow model in Chapter 5.
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Granular temperature

Iverson (1997) explained granular temperature as a measure of grain agitation that results from

bulk deformation of the flowing mass. The total velocity of grains in a debris flow can be de-

scribed as the sum of the mean velocity and a fluctuating component: v = v̄+ v′. When granular

temperature is defined as twice the kinetic energy due to velocity fluctuations (in analogy to gases)

per unit mass of granular solids, it can be written as:

T =
〈
v′2
〉
=
〈
(v− v̄)2〉 (1.13)

where the angle brackets stand for a limited spatial and temporal average. Higher granular temper-

ature results in a reduction in bulk density and enhanced mobility whereas a reduction would have

the opposite effect (Iverson, 1997). For a uniform granular flow in an experimental flume with

an erodible bed, Armanini et al. (2008) showed that granular temperature is largest at the flow

surface, where the flow is in the collisional regime. Under the assumption that locally produced

kinetic energy is locally dissipated by particle collisions, granular temperature is proportional to

the square of the shear rate (Armanini et al., 2008). It remains unclear how granular temperature

can be estimated from measurable quantities in a natural debris flow.

Pore fluid pressure

Many researchers have found that pore fluid pressure in debris flows is higher than hydrostatic

pressure (Iverson, 1997; McArdell et al., 2007; McCoy et al., 2010). This excess fluid pressure

results from the interaction of granular solids and the fluid. The total fluid pressure can be written

as:

pt = ph + pe = ρ f ghcosθ+ pe (1.14)

where pe is the excess fluid pressure and ph the hydrostatic pressure. So far no straight-forward

method of estimating pe has been found. For the calculation of ph usually a fluid density ρ f > 1000

kg/m3 is used due to the suspended load increasing the fluid density. However, pe can be inferred

through simultaneous measurement of flow depth and basal total fluid pressure pt . McArdell et al.

(2007) estimated values for pe of up to 6 kPa under the assumption of ρ f = 1100 kg/m3 or up to

3 kPa for ρ f = 1300 kg/m3 and a maxium flow depth of ≈1 m. Excess pore fluid pressure arises
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when a flow is in the grain-inertial regime dominated by grain collisions, which is the case when

the Savage number (see Equation 1.1) is small (Nsav < 0.1) (McArdell et al., 2007).

Flow depth

To predict flow depth (or more generally the flow hydrograph) for different locations along a

debris flow path, empirical, semi-empirical and numerical models have been employed. Some of

the methods used for modelling debris flows today have originaly been developed for volcanic

mass flows (lahars). The semi-empirical model proposed by Iverson et al. (1998) provides a quick

way of estimating the cross sectional area of the flow A from the total volume V . It is based on a

dimensional analysis which requires that A ∝ V 2/3. It is further assumed that the hydrographs of

lahars (or debris flows) can be approximated by a triangular shape, that mass and density remain

constant and that the propagation velocity follows u ≈
√

ghr, where hr is the hydraulic radius.

From this Iverson et al. (1998) showed that a power-law relationship exists between flow cross

sectional area and flow volume:

A = εV 2/3 (1.15)

ε is assumed to be constant and can be calibrated for data sets of total flow volumes and cross sec-

tional areas (Berti and Simoni, 2007; Griswold and Iverson, 2008; Iverson et al., 1998). However,

it is important to remember that Equation 1.15 does not account for downstream attenuation of the

hydrograph and hence provides a conservatively large estimate of the cross sectional area of the

flow front. Values calculated with Equation 1.15 can then be used to estimate the flow depth in a

given channel cross section. To estimate flow depth, a flow surface geometry has to be assumed

– the simplest choice would be a horizontal flow surface (see Chapter 5). Then flow surface and

channel cross section can be intersected so they enclose the flow cross section area estimated with

Equation 1.15.

Alternatively the evolution of the flow hydrograph can be assessed with numerical or analyt-

ical models that solve the mass and momentum balance equations (Section 1.3.3). These meth-

ods become progressively more computationaly intensive as fewer simplifications are made. The

kinematic wave approximation (Arattano and Savage, 1994) provides a 1D analytical solution for

debris flows traveling in steep channels with an initial triangular shape (vertical front followed by

a tail of defined length). It can be used to predict the evolution of the flow hydrograph as a function
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of travel distance. The model explicitly does not account for changes in bed slope, erosion or depo-

sition. Because of the underlying assumptions this model also does not predict travel distance. An

alternative implementation of the kinematic wave approximation (Takahashi, 2007) accounts for

temporal storage of debris flow material in a stagnation area near the channel. Arattano and Franzi

(2010) extended the kinematic model to include diffusive effects in the momentum equation. For

cases where the assumption of no erosion nor deposition is justified, predicted and observed hy-

drographs are in reasonable agreement (Arattano and Franzi, 2010; Arattano and Savage, 1994;

Takahashi, 2007).

A much improved prediction of flow depth (and velocity) is possible when solving the mass

and momentum conservation equation and when modeling is performed over natural, 3D terrain

(Christen et al., 2010; Iverson and Denlinger, 2001; Patra et al., 2005; Pudasaini et al., 2005).

These approaches however, rely on computer-intensive numerical solutions to Equations 1.4 to 1.7.

1.3.4 Evolution and morphology of debris-flow fans

In this section I discuss the current understanding of evolution and morphology of debris-flow fans.

Little has been published on physical or numerical modeling of debris-flow fans. Nevertheless,

insights gained from numerical modeling of alluvial fans may be valuable to identify common

problems and potential differences between debris-flow and alluvial fans. Generally speaking the

sudden change in flow confinement triggers deposition and hence fan formation, where tributary

streams join higher-order valleys or when reaching the front of a mountain range (Bull, 1977).

The boundary conditions for these two settings, tributary junction and mountain range front, are

different. Fans evolving at tributary junctions are limited in their growth by the width of the

higher-order valley. Upon reaching its maximum size, the fan toe will start to be eroded by the

higher-order stream, which in flume experiments and in numerical models results in incision on

the fan (Clarke et al., 2010; Nicholas and Quine, 2007a). At this point the further evolution is not

only a function of the catchment delivering sediment and water to the fan, but also of the transport

capacity of the higher-order stream (e.g. Schlunegger et al., 2009). The radial growth of fans

evolving at mountain range fronts is not usually limited by space constraints. Over time scales

of millions of years generation of accommodation due to subsidence inhibits radial fan growth

(e.g. Densmore et al., 2007). Subsidence may result from a combination of tectonic deformation

along the mountain front and isostatic and flexural adjustment of the crust due to loading. Fans
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formed in alpine valleys since the beginning of the quaternary have short life spans due to frequent

glaciations, and therefore the subsidence can be neglected. For the rest of this section I focus

mainly on results from studies that neglect the generation of accommodation. I now consider three

aspects of fan morphology: fan slope, avulsion frequency and fan head incision.

Environmental controls on fan slope

Many researchers have been curious about the links between fan slope and properties of the catch-

ment, climate and transport processes (Bull, 1962, 1977; Clarke et al., 2010; Densmore et al.,

2007; Harvey, 2002; Milana and Ruzycki, 1999; Schumm et al., 1987; Stock et al., 2008; Whipple

et al., 1998). Fan slope is a common morphologic measure reported for fans in different settings

and from flume experiments. Fan slope is easily measured in the field, from topographic maps or

digital elevation models (DEMs). Average fan slopes are measured between a point close to the

fan apex and the toe. However, fan long profiles are often not straight (Bull, 1977; Stock et al.,

2008; Whipple et al., 1998). For many natural and experimental fans, long profiles are concave-

up (Kim and Lowe, 2004; Stock et al., 2008; Whipple et al., 1998), which implies a downslope

decline in slope. Whipple et al. (1998) found in long profiles of experimental fans a difference

between bedload- and suspension-dominated fans. For suspension-dominated fans long profiles

were convex-up in the upper part of the fan, and concave-up in the lower part of the fan.

The controls on fan slope have been studied in several experiments, which consistently showed

that average fan slope increases with increasing sediment concentration of the input flux (Schumm

et al., 1987; Whipple et al., 1998). In three experiments by Clarke et al. (2010) sediment to water

ratio was held constant but the total discharge of the sediment-water mixture was doubled in each

experiment. They found a decreasing fan slope with increasing discharge. In all experiments fan

slope was either measured when sediment input equalled sediment output (Clarke et al., 2010)

or when fan slope reached steady state under conditions of raising base level (Whipple et al.,

1998). In a numerical model by Densmore et al. (2007) sensitivity of fan slope to perturbations in

precipitation and uplift rate in the catchment was explored. The catchment was transport limited

and the fan slope was assumed to be uniform, but accommodating all sediment efflux from the

catchment. Densmore et al. (2007) found that fan slope decreased with increasing precipitation

rate and increased with increasing uplift rate of the catchment relative to the basin. All of these

experiments focused on fluvial sediment transport.
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Milana and Ruzycki (1999) found that fans in arid regions are generally steeper than fans

in humid regions for any given catchment area. If flood discharge in arid regions has generally

higher sediment concentrations because sediment accumulated in the catchment is removed less

frequently, then results shown by Milana and Ruzycki (1999) would be compatible with the find-

ings of Schumm et al. (1987) and Whipple et al. (1998). Bull (1962) and Harvey (2002) show

that fan slope decreases with increasing catchment area and suggest a relationship of the form

S = aA−b
c , where S is slope, Ac is drainage area and a, b regression coefficients. There is some

debate whether this observation is an artefact resulting from concave-up long profiles (Stock et al.,

2008). If drainage area Ac can be considered as a proxy for discharge, then this result would sup-

port the findings of Clarke et al. (2010) (decreasing fan slope with increasing discharge at constant

sediment concentration, see above). As a whole, experimental and field evidence suggests that

alluvial fan slope increases with increasing sediment concentration and decreasing total discharge.

I am unaware of any studies considering specifically debris-flow fan slope. Tsai (2006) performed

small flume experiments of debris flows with volumes of up to 50,000 cm3 to investigate deposit

geometry of single events. Unfortunately the authors do not report resulting fan slopes, and be-

cause only single flows were investigated an extrapolation to the fan scale is difficult.

Avulsion frequency

On fans the direction of the main flow and hence the location of deposition changes frequently,

compared with the active lifespan of the fan. This process is called (channel) avulsion. On alluvial

fans there is evidence from natural examples (Törnqvist, 1994) and experiments (Bryant et al.,

1995; Reitz et al., 2010) that avulsion frequency increases with sedimentation rate. In alluvial sys-

tems in- and near-channel sedimentation leads to increasing superelevation of the channel above

the neighboring fan surface, which promotes switching of flow into new (or previously-abandoned)

channels (Bryant et al., 1995; Jerolmack and Paola, 2007). Field (2001) also recognized the role of

small depositional flood events in setting the stage for a major avulsion. He proposes a mechanism

by which channels gradually fill so that at some point only a minor fluctuation in sedimentation

results in breeching of channel levees and establishment of a new flow path (see also examples in:

Bryant et al., 1995; Clarke et al., 2010). Reitz et al. (2010) suggest that a characteristic avulsion

period (i.e. the time between avulsion events) can be estimated as the time needed to fill a typical
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channel of depth h, length r(t) and width B at a given sediment input flux Qs:

TA(t) = hBr(t)/Qs (1.16)

While experimental results cited above described the mechanics of avulsion in systems under

constant sediment feed, case studies highlight also the importance of the sequencing of events

in increasing or reducing the probability of avulsion in the near future by systematically chang-

ing channel morphology (Field, 2001). On debris-flow fans sedimentation is a more stochastic,

spatially concentrated process. Debris flows may come to a sudden halt and form elongated in-

channel, plug-like deposits (Dühnforth et al., 2007; McCoy et al., 2010; Whipple and Dunne,

1992). Sudden in-channel deposition may then lead to abandonment of this flow path before the

channel is filled from fan toe to apex (Whipple and Dunne, 1992). Therefore the frequency of

avulsion events on debris flow fans might be more related to the probability of sudden stopping

of flows, which probably depends on the time-dependent values of state variables such as gran-

ular temperature and pore fluid pressure (see section 1.3.2; Iverson, 1997; McCoy et al., 2010),

as well as sediment concentration (Takahashi, 2007). Triggers of avulsion and their frequency of

occurrence are important for the resurfacing of the fan, the age of fan lobes (Chapter 2), and for

the hazard assessment on debris flow fans (Chapter 5).

Fan head incision

Fan head incision is a well documented feature of alluvial and debris-flow fans (Davies and Korup,

2007; Dühnforth et al., 2008; Harvey, 1984, 2002, and references therein) resulting in a cessation

in deposition over large fractions of the fan surface (Dühnforth et al., 2007). Fan head incision on

natural fans has been linked to external forcing in the form of changing base level (Harvey, 2002),

changes in sediment supply (Dühnforth et al., 2008; Harvey, 1984), tectonic uplift at normal faults

(Bull, 1977) or infrequent extreme events such as rock avalanches or landslides (Davies and Korup,

2007; Korup, 2004). However, case studies as described above, often provide only a snapshot of

the morphology of a fan at a point in time. The picture is therefore always incomplete and it is

impossible to say how a particular fan would have evolved in the absence of the described external

forcing.
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Physical modeling of alluvial fans shows that the patterns of inundation and deposition change

in a systematic way over the lifespan of the fan (Jerolmack and Paola, 2007; Reitz et al., 2010).

Kim and Jerolmack (2008) observed in flume experiments of fan deltas under constant sediment

flux cycles of sheet flow with widespread deposition and times of channelization and incision.

Whilst sheet flow resulted in a steeper fan slope, this was compensated by channelization and

transfer of sediment from the fan to the fan margin, and hereby lowering of fan slope. Clarke

et al. (2010) found a consistent sequence of four stages of fan development described as sheetflow

dominated (stage 1), unstable channelised (stage 2), lateral channel migration (stage 3) and single

channel (stage 4) in absence of changes in sediment or water input or change in base level. By the

time stage 4 was reached, the fan toe had grown to the maximum possible lateral extent defined

by a circular drainage channel marking the downstream model boundary. In a similar experiment

Reitz et al. (2010) reported repeated cycles of fan channelization, channel backfilling from fan

toe to fan head followed by an avulsion and widespread flooding and deposition on the fan in

absence of external forcing. Clarke et al. (2010) propose that these cycles are controlled by a self-

regulating feedback between incision and entrainment at steeper slopes resulting in a decrease in

channel slope and channel backfilling resulting again in steepening.

Autogenic processes, as described above, can produce similar morphologies to external forcing

such as changes in precipitation rate or rock uplift rate. But the response of an alluvial fan to

external forcing is thought to be much slower than the frequency of autogenic fluctuations when

assuming reasonable rates of change in external forcing (Densmore et al., 2007; Kim et al., 2006).

Jerolmack and Paola (2010) propose that sedimentary systems only transmit variations in the input

signal to the output signal under certain conditions defined by a minimum duration and event

magnitude scale. Disturbances of shorter duration and smaller magnitude are obliterated by the

autogenic variation. This means that only because a signal is detected in the stratigraphic record it

does not mean that it is due to external forcing, and vice versa external forcing might not always

be recorded by the sedimentary record.

Understanding the controls on and time scales of fan head incision has practical implications

for the hazard on debris flow fans, because the more pronounced the incision, the less likely a

catastrophic avulsion becomes (Chapter 2 and 5; Davies and Korup, 2007; Scheuner et al., 2009).

Fan head incision has also implications for the role of fans as storage elements in a sediment

routing system (Chapter 2, 4 and 5), because fan head incision promotes down-fan routing of

sediment (Clarke et al., 2010; Kim and Jerolmack, 2008).
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1.4 Research questions and road map

The main aim of this thesis is to enhance the understanding of erosion and deposition in debris

flows at different spatial and temporal scales. In pursuing this aim I address the following specific

areas of research:

Q1: How can the dynamics of debris-flow erosion and deposition be documented at the scale of

an alluvial fan; what can be learned from the pattern of deposits and channels on a debris-

flow fan with regard to the evolution of the fan?

Q2: How can debris-flow erosion and deposition be measured in sufficient spatial and temporal

resolution to allow for a meaningful analysis of the underlying processes? What are the

optimal field procedures to measure geomorphic change in debris-flow channels?

Q3: Can a robust proxy for the prediction of erosion and deposition in debris flows be estab-

lished?

Q4: Can this proxy be used to formulate a model for debris-flow fan evolution? How can ob-

servations on the behaviour of single flows be implemented to simulate thousands of debris

flows?

Q5: What are the implications for fan evolution under the assumptions of the proposed model?

How can the interaction of individual flows with the fan environment be understood as the

result of repeated erosion and deposition in thousands of flows?

The chapters of this thesis are structured as research papers. I briefly outline the logical con-

nections between and the content of each paper. In Chapter 2 I introduce the field site at Illgraben,

Switzerland, which provides a unique natural laboratory for debris-flow research because of fre-

quent debris flows, an extraordinary set-up of monitoring devices (Badoux et al., 2008; McArdell

et al., 2007) and a large fan which retains traces of past debris flows. The chapter documents the

geomorphology of the Illgraben catchment and debris-flow fan, provides temporal constraints on

channel bed fluctuations in the catchment and on debris-flow deposition on the fan, and closes

with a conceptual model for fan evolution over the last three millenia, addressing research ques-

tion Q1. The Illgraben debris-flow fan as the example investigated in this thesis, is the result of

thousands of debris flows dynamically interacting with their environment through deposition and
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erosion. Understanding a debris-flow fan requires an understanding of the underlying process in

the form of the individual flow event. Investigation has to be undertaken at a scale small enough

to be meaningful for the fundamental processes of deposition and erosion but also large enough

to be meaningful at the scale of a debris-flow fan, otherwise the connection between the two is

impossible.

In Chapter 3 I develop the methodology to monitor debris-flow erosion and deposition with

high resolution at the scale of a channel reach of 300 m length using terrestrial laser scanning

(TLS) (Q2). It is monitoring at this scale that is necessary to see variation in flow behaviour

with changing channel geometry, which can then be linked to data at the fan scale. The focus

in Chapter 3 lies on field procedures, handling of point cloud data, sources of error in TLS and

error propagation. Special attention is paid to issues arising from complex topography and when

dense point cloud data are used to generate digital elevation models (DEM) for detection of surface

change. Measurement of surface change is a fundamental task in geomorphology, and the devel-

opment of surveying techniques such as terrestrial laser scanning also require the development of

new methods for error analysis. Therefore I conclude Chapter 3 with a widely applicable model

to estimate volumetric uncertainty in change detection.

In Chapter 4 I address Q3 by investigating erosion and deposition at the level of single debris

flows, and interpret two complementary data sets on erosion and deposition in debris flows from

Illgraben. The first data set consists of high-resolution data on erosion and deposition acquired

following the procedures outlined in Chapter 3 from the 300 m study reach at Illgraben of four

debris flows. Second I present a comparison of debris-flow volumes calculated from stage mea-

surements near the fan apex and at the toe of the fan for a sequence of 14 events. This second data

set allows estimation of total volume change of flows as they traverse the fan. The two data sets,

because collected at two complementary spatial scales covering multiple events, are then used to

formulate a conceptual model of the evolution of debris-flow channels and fans over sequences of

multiple flows. From the data a proxy for debris-flow erosion and deposition is suggested that is

used in Chapter 5 to inform a numerical fan evolution model.

In Chapter 5 I outline the conceptual basis for a debris-flow fan evolution model that extrap-

olates observations from single flows such as data shown in Chapter 4 but also empirical obser-

vations from other researchers to the scale of a debris-flow fan (Q4). I then validate the model

against independent data on fan evolution. Possible answers to Q5 are explored in Chapter 5 in
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applications of the fan evolution model. I demonstrate how my model may be used to learn from

the behaviour of thousands of flows about the characteristics of different stages of debris-flow fan

evolution, and how the behaviour of single flows may be described in a probabilistic sense. In

Chapter 6 I summarize the findings of this thesis, and I conclude with an assessment of potential

avenues for future research following on from my own findings.



Chapter 2

Post-glacial fan evolution and sediment

storage in an alpine debris-flow

catchment

Abstract

1 Over the Holocene, Alpine sediment routing systems have experienced dramatic changes in

sediment availability in response to climate fluctuations and stochastic sediment input by land-

slides and rock avalanches. External forcing mechanisms operate in parallel to autogenic cycles

of sediment storage and release. Whilst in flume experiments autogenic forcing can be studied by

controlling external forcing, in field studies the accurate description of external forcing is crucial

to assess the long-term system behaviour. In this chapter I document the post-glacial evolution of

a debris-flow catchment and fan system at Illgraben, Switzerland, perturbed by rock avalanches.

Rock avalanches exert a significant geomorphic impact on the landscape by inducing changes in

base level, setting sediment supply, and regrading stream profiles. With the application of terrain

analysis, radiocarbon dating of wood, cosmogenic 10Be and 36Cl exposure dating of deposits, I

constrain the temporal evolution of the sediment routing system in the catchment and on the fan

during the past 3,000 yr. I identify a rock-avalanche deposit near the fan apex and demonstrate

how sediment was impounded upstream. I illustrate the downstream shift of the fan apex posi-

tion upon breaching of the rock-avalanche dam and the subsequently altered pattern of deposition

across the fan surface.

1This chapter is in preparation for submission to the Swiss Journal of Geosciences
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2.1 Introduction

Landslides and rock avalanches are significant sources of sediment in mountain belts (Davies and

Korup, 2007; Hovius et al., 1997; Korup et al., 2007, 2010; Malamud et al., 2004), and can have

both an instant and longlasting impact on landscape and society (e.g. Dunning et al., 2007; Heim,

1882, 1932). More specifically landslides and rock avalanches exert strong external forcing on

channel networks and alluvial fans through sediment retention upstream of landslide deposits and

release to downstream portions of the sediment routing system (Davies and Korup, 2007; Korup,

2004; Lee et al., 2009; Pratt-Sitaula et al., 2004; Schürch et al., 2006). From flume experiments

it is known that autogenic forcing on alluvial fans complicates the analysis of external forcing

(Jerolmack and Paola, 2010; Kim and Jerolmack, 2008; Kim et al., 2006; Nicholas and Quine,

2007b; Whipple and Dunne, 1992). It is therefore clear that advances in understanding the role

of autogenic forcing is only possible by thorough documentation of external forcing in order to

separate respective responses from each other. In this chapter I contribute to this by presenting a

case study of a debris-flow catchment and fan, where I constrain the response to external forcing

over the last three millenia.

At Illgraben, Switzerland (Figure 2.1A), a rock avalanche blocked the outlet of the debris-flow

prone catchment. The focus of this chapter is neither the mechanics nor the trigger of the rock

avalanche; instead I document the temporal evolution of the sediment routing system in response

to this rock avalanche in the context of continuous debris-flow activity. I employ geomorphic field

mapping of the catchment and the fan, detailed terrain analysis aided by a high-resolution digital

elevation model derived from airborne LiDAR, reconstruct fan apex migration, and apply various

dating techniques to constrain terrace, rock avalanche and debris-flow deposition ages.

In the rest of the introduction I discuss published work regarding the geomorphic impact of

rock avalanches, work on sediment storage and evacuation behind rock avalanche dams and in

debris-flow catchments as well as depositional patterns on debris-flow fans. I conclude this with a

review of the local geology, geomorphology and time frame of deglaciation of the study site.

2.1.1 Geomorphic impact of rock avalanches

Korup et al. (2010) and Hewitt et al. (2008) grouped the geomorphic effect of rock avalanches

and landslides into impact on catchment size and shape, valley-floor morphology and sediment

delivery or retention. For time scales of a few millenia, the second and third types of impact are
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the west of Küferalp (see text). Dashed box outlines extent of Figure 2.3. Digital elevation model DTM-
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most relevant. Landslide or rock avalanche deposits are responsible for damming streams or rivers

and storing sediment (e.g. Bonnard, 2004; Dunning et al., 2007; Hewitt et al., 2008; Lee et al.,

2009; von Poschinger, 2005). Depending on the porosity, seepage, size and erodibility of the

deposits, and the discharge of the dammed river, these dams and associated lakes can be transient

features with lifetimes that span from days or months (e.g. Buzza di Biasca, southern Swizerland;

Hattian Bala, Pakistan; Wenchuan earthquake, Sichuan Province, China; Bonnard, 2004; Dunning

et al., 2007; Xu et al., 2009) to millenia (e.g. Flims, Eastern Switzerland, von Poschinger, 2005).

The pulverization of the rock mass in the initial phase of failure and compaction when the rock

avalanche stops, often results in deposits of low permeability (Hewitt et al., 2008). The failure of

the debris dam is often catastrophic and may lead to loss of human lives (e.g. Buzza di Biasca,

breached 20 months after emplacement on 20 May 1515, with 600 fatalities; Bonnard, 2004),

widespread rapid downstream aggradation in valley floors (Korup, 2004; von Poschinger, 2005),

channel avulsion (Korup, 2004) and deposition of distinctive sediment layers in distant lakes (e.g.
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deposits in Lake Constance from the Flims rock slide, von Poschinger, 2005; Wessels, 1998). In

regions where rock avalanches occur frequently, the disturbance of sediment transport and storage

becomes a permanent feature of the system (Hewitt et al., 2008). On a smaller scale fluctuations

in sediment storage and release due to rock avalanches and landslides have been linked to fan

head trenching at the catchment outlet. Davies and Korup (2007) showed in flume experiments

that infrequent sediment input caused aggradation and steepening of the fan head, followed by

fan head incision when sediment flux declined subsequently. Fan head trenching may also result

from other mechanisms such as autogenic processes (Clarke et al., 2010; Kim and Jerolmack,

2008; Kim and Muto, 2007; Kim et al., 2006; Nicholas and Quine, 2007b; Whipple et al., 1998)

or sediment trapping due to glacial overdeepening during glaciations (Dühnforth et al., 2008).

2.1.2 Sediment storage and evacuation by debris flows

Many studies have found that debris flows are efficient at entraining sediment from low-order chan-

nels and conveying it farther downstream (Chapter 4; Benda and Dunne, 1997a; Berger, McArdell

and Schlunegger, 2010; Berger et al., 2011; Fannin and Wise, 2001; Hungr et al., 2005; Lancaster

and Casebeer, 2007; Schürch et al., 2011; Stock and Dietrich, 2003). These short- to medium-

term observations are supported by evidence that catchments with frequent debris flows exhibit

slope-area relationships that differ from predictions of fluvial-incision models. Stock and Diet-

rich (2003) found that at slopes of ≈ 0.03–0.1 and higher, inverse power laws of fluvial incision

overpredict slope. This means that on the long-term debris-flow incision, and hence removal of

sediment, is more efficient than fluvial erosion and incision in these settings. At the scale of indi-

vidual debris flows, entrainment has been studied in flume experiments and field investigations. It

has been argued that debris-flow entrainment is a function of impacts of boulders on the channel

bed (Berger et al., 2011; Hsu et al., 2008; Stock and Dietrich, 2006), of peak discharge and chan-

nel geometry (Chapter 4), of sediment concentration in the flow and channel bed slope (Takahashi,

2007), and of bed saturation (Iverson et al., 2011). It remains unclear how these factors interact

and a coherent view of the entrainment mechanism is still lacking. Nevertheless entrainment along

the flow path may result in a volume increase of debris flows by several orders of magnitude within

travel lengths of only a few kilometers (Berger, McArdell and Schlunegger, 2010; Coe et al., 2011;

Fannin and Wise, 2001; Hungr et al., 1984).
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It is clear that both large and infrequent events (e.g., large rock falls), and a low-magnitude

high-frequency supply of sediment, contribute to replenishing the sediment reservoirs in low-order

channels (Benda and Dunne, 1997a; Berger, McArdell and Schlunegger, 2010). The attempt to in-

fer the nature and rate of the processes replenishing the sediment storage in the headwaters from

debris flow volumes measured at catchment outlets (Bardou and Jaboyedoff, 2008) is inherently

difficult, without considering the properties of the storage elements. Therefore two opposing views

of how these storage elements operate exist: Lancaster and Casebeer (2007) proposed a linear

reservoir model where likelihood of entrainment decreases linearly with storage size, while Naka-

mura and Kikuchi (1996) suggested that the likelihood of re-entrainment decreases with deposit

age. Reported residence times of sediment for debris-flow dominated channel reaches range from

years (Berger, McArdell and Schlunegger, 2010) to centuries (Lancaster and Casebeer, 2007), and

storage in first and second order channels is often found to be out of phase. Berger, McArdell

and Schlunegger (2010) and Benda and Dunne (1997b) reported that for example whilst first or-

der channels are recharged, the second order channels are scoured by debris flows and vice versa.

Whether a specific debris flow or landslide stops in a first- or second-order channel (and thereby

replenishes the storage) or continues traveling downstream (and removes material from storage) is

difficult to predict and depends on the properties of the channel network and properties of the flow

(Chapter 4; Benda and Cundy, 1990; Benda and Dunne, 1997a; Major, 1997; Major and Iverson,

1999; McCoy et al., 2010; Takahashi, 2007).

2.1.3 Patterns of debris-flow deposition on fans

The large-scale patterns of deposition on debris-flow fans are similar to those observed on alluvial

fans. The processes of inundation, sedimentation and flow path selection have been extensively

studied in flume models of alluvial fans, in numerical models and models of fan deltas (Clarke

et al., 2010; Field, 2001; Jerolmack and Paola, 2007; Reitz et al., 2010; Sun et al., 2002; Törnqvist,

1994). The general consensus is that the flow follows the steepest path, of which there can be sev-

eral active at any one time. Deposition in the ‘active’ part of a fan leads to building of topography,

and infilling of channels (Reitz et al., 2010). At some point the active flow path becomes less

favourable due to a reduction in slope, the system avulses and adopts a new steepest flow path.

Debris-flow fans operate in a very similar style, with the main difference being that sedi-

ment transport is very episodic in time (Benda and Dunne, 1997b; Blair and McPherson, 1998;

Dühnforth et al., 2007; Jakob and Friele, 2010; Suwa and Okuda, 1983). During debris flows
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deposition and erosion can take place at high rates (Chapter 4; Scheuner et al., 2009), and may

lead to sudden changes in flow path and channel geometry due to in-channel flow front deposition

(Arattano et al., 2010; Blair and McPherson, 1998; Suwa et al., 2009; Whipple and Dunne, 1992).

The surface morphology at scales of meters to 10s of meters of debris-flow fans is dominated by

levee-bound channels and depositional lobes (Blair and McPherson, 1998; Kim and Lowe, 2004;

Whipple and Dunne, 1992). Levees form due to increased friction along the margins of debris

flows occupying unconfined slopes (Major and Iverson, 1999) and consist of an inversely graded

assemblage of large boulders (Blair and McPherson, 1998; Kim and Lowe, 2004) that travelled

on the flow surface to the front, at which point they were pushed aside and deposited (Gray and

Kokelaar, 2010; Suwa, 1988). Pairs of levees left behind by a flow form single-event channels

that might be incised by subsequent flow as a result of feedback mechanisms arising from partic-

ular combinations of channel geometry and peak discharge (Chapter 4). These incised channels

are important in routing flows down-fan and may lead to long-term abandonment of significant

portions of the fan (Dühnforth et al., 2007; Whipple and Dunne, 1992).

Lobe deposition occurs as a result of declining momentum, pore pressure and grain agitation,

as well as an increase in sediment concentration (Iverson, 1997; Iverson et al., 2010; McCoy

et al., 2010; Takahashi, 2007). It has been shown that with careful mapping and description of

fan surface morphologies, a relative chronology of lobe deposition can be established (Blair and

McPherson, 1998; Dühnforth et al., 2007). This mapping is the necessary basis for subsequent

surface exposure dating of boulders to obtain absolute fan depositional ages (Dühnforth et al.,

2007).

2.1.4 Field site

The Illgraben in south-western Switzerland (E 7.6334◦, N 46.2938◦) is a steep debris-flow catch-

ment on the southern flank of the Rhone Valley (Figure 2.1). The catchment covers an area of

≈9.5 km2 which connects to a debris-flow fan of ≈2 km radius built in the base of the Rhone Val-

ley (Appendix A.1). The Illgraben catchment consists of two sub-catchments, the Illbach (southern

branch) and the Illgraben (SW-branch). Almost all of the recent sediment discharge is generated

from the Illgraben sub-catchment, where incision rates are suggested to be considerably higher, as

the Illbach joins the Illgraben as a hanging valley (Berger, McArdell and Schlunegger, 2010). The

Illgraben climate is temperate-humid, with mean annual precipitation varying between 700 mm in
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the lower parts of the catchment to 1,700 mm in the summit region of the Illhorn (Berger, McArdell

and Schlunegger, 2010). Two bedrock lithologies, which are both highly fractured, dominate the

catchment (Gabus et al., 2008): the north west (left) bank of the Illgraben is underlain by Upper

Triassic dolomites and marbles, steeply dipping to the south east, whilst the south east (right) bank

is mainly underlain by Lower Triassic quartzites (Figure 2.1). The quarzites come in two varieties,

a white quarzite and a light-green sericitic quarzite, both of which also dip steeply to the south-

east. In large parts of the Illgraben sub-catchment bedrock is exposed, although a few patches of

till deposits of uncertain age are found on the right valley flank at Küferalp (Figure 2.1, Gabus

et al., 2008). The lowermost bedrock exposure along the Illgraben channel can be found just

downstream of check dam 1 at 1,000 m a.s.l. (Figure 2.1). One kilometer downstream, at check

dam 15, bedrock has been found in boreholes at an elevation of ≈790 m a.s.l. (or ≈80 m below

the channel bed) and a paleosoil level is reported at ≈860 m a.s.l. The fan apex is at ≈800 m a.s.l.

Badoux et al. (2008) estimated the fan volume2 to be ≈ 500 ·106 m3. Boreholes at the toe of the

fan, in the village of Susten, did not reach bedrock in an end-depth of≈610 m a.s.l., or 50 m below

the surface (Gabus et al., 2008), but bedrock is exposed in the right bank of the Rhone River at the

fan toe opposite the junction of the Illgraben. The currently active channel follows the approxi-

mate centre line of the fan and separates the western forested half from pasture land on the eastern

half.

According to Ivy-Ochs et al. (2008) it is unlikely there was a glacier in this part of the Rhone

Valley after the Gschnitz Stadial around 15.4±1.4 kyr. Therfore the Illgraben fan should be

younger. It seems reasonable to assume that the Rhone Glacier removed and reworked most of any

older fan from the last inter glacial, and that the fan visible today started to accumulate sediment

after retreat of the Rhone Glacier from this area.

Historical reports of rock fall activity in the Illgraben catchment start in the 20th century. Re-

mains of earlier undated events, one of which blocked the catchment outlet, are shown on the

geologic map of the area (Gabus et al., 2008). Major rock fall activity was reported for 1920,

1928, 1934 and 1961 in Gabus et al. (2008) and Lichtenhahn (1971). In the Illgraben catchment

two large rock avalanche deposits ( 106 m3) are documented. The first is is ≈ 3.5 · 106 m3 in

volume, and occurred in 1961 with an initiation zone on the flank of the Gorwetsch Grat3 (Fig-

2V = π

6 r2h = π

6 (2,000 m)2 ·250 m≈ 500 ·106m3

3Grat = Ridge
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ure 2.1, Lichtenhahn, 1971, ; Appendix A.1), referred to herein as the rock avalanche in the upper

Illgraben. The second rock avalanche deposit is located near the fan apex – its investigation is

part of the objectives of this study. Berger, McArdell and Schlunegger (2010) documented eight

rock fall events and two landslides from aerial imagery in 2008 and 2009 ranging in volume from

300–4,400 m3.

Reports about debris flows in the Illgraben catchment resulting in disruption of the important

trade route along the Rhone Valley date back to the 16th century and are recorded in the archives of

the Canton Wallis in Sitten (see references in Gabus et al., 2008). Marchand (1871) reported on the

violent nature, the speed and noise of the debris flows at Illgraben and early efforts of debris-flow

hazard mitigation. The author also mentioned an incident in 1868 when a debris flow blocked the

Rhone river for about one hour, which must be attributed to a major debris flow that was routed in

an established channel to the toe of the fan. A dendrogeomorphic analysis of trees affected (but

not removed) by debris flows (Stoffel et al., 2008) reported six events that affected areas alongside

the recently active channel between 1793 and 1931, but not the one event mentioned by Marchand

(1871) in 1868. An unpublished report by a consulting firm (Zimmermann, 2000) documented a

total of 42 debris flows between 1932 and 2000, with a noticeable gap after construction of a sedi-

ment retention dam (check dam 1 in Figure 2.1, Appendix A.1) during the early 1970s in response

to the 1961 rock avalanche in the upper Illgraben catchment (Lichtenhahn, 1971). For this period

the dendrogemorphic analysis (Stoffel et al., 2008) reports nine events, three of which are also

identified in the analysis by Zimmermann (2000). Regular debris-flow activity resumed in 1982

when debris flows started to over-top the sediment retention dam (check dam 1). For the period up

to the year 2000 estimates of debris flow volumes are vague; the largest reported event occurred on

3 June 1961 in response to the rock avalanche earlier in the same year and was estimated to have

a volume of between 2.5–5.0·105 m3 (Badoux et al., 2008; Zimmermann, 2000). Since 2000 the

Federal Institute for Forest, Snow and Landscape Research (WSL) has maintained a debris flow

observation station (Hürlimann et al., 2003) at the toe of the fan (Figure 2.1) where debris-flow

volumes are recorded (Berger et al., 2011; McArdell et al., 2007; Schlunegger et al., 2009), with

a median total annual discharge of ≈ 105 m3 (35 events between 2000 and 2009, McArdell and

Berger, 2010). Since 2007 a debris-flow warning system has been installed, triggering an alarm

when debris flows pass instrumentation installed at check dams 1 or 10 (Badoux et al., 2008). It is

clear that the record of debris flow events is incomplete, in particular for the period before 2000.
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But also after the year 2000 only debris flows were recorded that either triggered the observation

station at the toe of the fan (Hürlimann et al., 2003) or the debris flow alarm system at check dams

1 and 10 (Figure 2.1, Badoux et al., 2008). Events depositing in the upper catchment above check

dam 1 remain unacounted for. Seasonal debris flow activity peaks between May and October in

response to convective storms (Badoux et al., 2008; McArdell et al., 2007; Schlunegger et al.,

2009). The review of all reported debris-flow events above and an assessment of old topographic

maps of the area since 1845 published as the ‘Doufourkarte’, sheet XVII, (Dufour, 1845) and since

1886 published as the ‘Siegfriedkarte’, sheet 482, by Siegfried (1886, 1907, 1915, 1924 and 1933)

indicate that since 1793 no major avulsion has occured and that the present flow path down the

centre line of the fan was established before the earliest documented debris flow.

From aerial imagery Berger, McArdell and Schlunegger (2010) quantified rock fall volumes

and in-channel sediment storage change between 2007 and 2009 for the Illgraben catchment up-

stream of check dam 1. The authors found that rock fall activity recharged the channel network

draining the valley walls. This rock fall debris was subsequently transported to the main Illgraben

channel within less than 1 year. For the Illgraben channel Berger, McArdell and Schlunegger

(2010) observed channel filling during winter and spring followed by net erosion between summer

and autumn. On an annual basis the authors found that rock fall volumes and sediment volumes

removed from the reach upstream of check dam 1 are orders of magnitude smaller than debris

flow volumes recorded at the fan toe, which indicates the importance of storage in the Illgraben

channel between the fan apex and check dam 1 (Chapter 4; Berger, McArdell and Schlunegger,

2010). Preliminary results at Illgraben from an analysis by Bennett et al. (2011) between 1963 and

2009 suggest that these fluctuations averaged out over time scales of decades.

Sedimentation rates on the fan are poorly constrained. Bardou et al. (2003) and Gabus et al.

(2008) report the same results from carbon-14 dating of buried soils from the ‘lower part of the

cone’ in outcrops along the present-day channel; exact sample locations are unfortunately not

reported. These data suggest sedimentation of 5 m over 1,231±70 yr and 2 m over 1,354±60 yr

at these locations, but cannot be extrapolated to the fan as a whole. Whether these buried soils

correspond to those found in boreholes near check dam 15 (Figure 2.1) remains unclear.
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2.2 Methods

2.2.1 Terrain analysis

In this section I describe the methods employed for gemorphic field mapping, terrain analysis of

the digital elevation model, reconstruction of fan apex migration and surface exposure dating. The

first task was to understand the inventory of and the spatial relationship between different com-

ponents of the fan system. In the field I mapped terraces in the catchment, the extent of the rock

avalanche deposit and depositional lobes on the debris-flow fan. This mapping was cross checked

against the LiDAR-derived ‘DTM-AV’, a 2-m-resolution digital elevation model (DEM) with an

elevation uncertainty of 1σ =± 0.5 m, based on a raw point density of 1 point per 2 m2 (Bunde-

samt für Landestopographie, 2005). Subsequently I refer to these data as the DEM. To map the

depositional lobes on the fan I detrended the DEM of the fan area (Figure 2.1): first by fitting a 2nd-

order polynomial surface to the DEM outlined as the fan area in Figure 2.1. Second I subtracted

the resultant 2nd order polynomial surface from the DEM yielding detrended surface topography,

which I show as shaded relief in the background of Figure 2.2. The detrending procedure enhanced

the visibility of the boundaries of depositional lobes substantially (compare Figure 2.1 with 2.2).

To distinguish between depositional lobes (Figure 2.2) I recorded a qualitative description of the

surface morphology (e.g. Dühnforth et al., 2007), including roughness, dimensions of channels

and levees and the occurrence and size of boulders. The relative chronology and the boundaries

of fan lobes were established on the basis of cross-cutting relationships between channels, and

downlapping of depositional lobes creating traceable topographic steps. Distinction of lobes in

the distal parts of the fan became increasingly difficult and speculative (see also Dühnforth et al.,

2007), so my mapping is limited at a radial distance of approximately 1.2 km from the fan apex.

To estimate sediment storage in the catchment behind the rock avalanche deposit near the fan

apex (RA in Figure 2.3) I performed a series of steps: In the catchment I mapped terraces between

the rock avalanche deposit and check dam 1 on both channel banks (Figure 2.1). I manually picked

elevation samples from the DEM to represent these terraces and fan lobe L9, and interpolated them

with a 3rd-order polynomial surface (Figure 2.3) to reconstruct a terrace surface aligned with the

present-day fan surface. This surface was then shifted vertically upwards by 24 m to match the top

of the rock avalanche deposit (purple band in Figure 2.3). I assume that channel bed slope is more

or less constant over time and hence the purple surface simulates the potential maximum elevation

of sediment stored behind the rock avalanche deposit.
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Figure 2.2: Results from geomorphic mapping, radiocarbon dating of wood samples and exposure dating
of boulders. Letter ‘C’ (e.g. 19C) denotes dolomite samples; other samples are quarzite samples. A: Rock
and wood samples on vertical axis, see Tables 2.1 and 2.2 for details on sampled boulders. Horizontal axis
age in years, errors are indicated with horizontal bar. Radiocarbon samples S1–S3 are in yr BP (see text for
details). Colour bands correspond to colour of lobes in Figure 2.2B. B: Geomorphic map of depositional
lobes based on cross cutting relationships of channels and deposits. Lobe L1 is suggested to be older than
the rock avalanche (RA). Age of L2, L3 and L4 is unknown. Cross cutting relationships indicate that lobe
L2 may be older than the rock avalanche (RA). B1: pathway of first breaching of rock avalanche dam across
lobe L5. B2: secondary breaching of rock avalanche dam followed by resurfacing of the fan. Exposure ages
of boulders are indicated where available. Star: north west corner of RA deposit; used as base elevation
for volume calculation of RA deposit.

I calculated a minimum volume for the rock avalanche deposit from the DEM based on the

mapped outline of the deposit (Figure 2.2), a minimum thickness calculated from the lowest out-

crop (at the north west corner, marked with a star in Figure 2.2) of the rock avalanche deposit at

747.8 m a. s. l., and an assumed horizontal, planar base. I estimated the storage volume created by

blocking the catchment outlet with the rock avalanche deposit as the difference between the DEM

and the purple surface and a downstream limit as indicated in Figure 2.3. I chose the downstream
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limit of my calculation where the valley shape is still well defined, because downstream of this

limit I do not know the exact extent and shape of the rock avalanche deposit. The storage volume

calculated is therefore a conservative estimate.

In order to understand the effects of the rock avalanche on sediment transport pathways and

deposition on the fan surface I examined the channel network on the fan surface. I reconstructed

apex positions by visualizing the intersection pattern of channel fragments on the fan surface

(Figure 2.4). For 75 channel fragments mapped on the fan surface I calculated the linear trend by

connecting the start and end point of the mapped channel segments. I projected those trend lines to

a search area for apex reconstruction (Figure 2.4) that was centered at coordinates 46.165703◦N,

7.628309◦E and had a size of 1.3 km (east–west) by 1.8 km (north–south). Within this area I

defined a regular raster with a grid node every 10 m, and counted the number of channel trend lines

that intersect with a circle of 150 m radius around each node. A radius of 150 m approximately

matches the width of the catchment outlet, and allows to visualize the larger scale shifts in apex

position.

2.2.2 Dating

Selection and sampling of boulders for cosmogenic exposure dating

To determine the absolute depositional chronology on the Illgraben fan and catchment I employed

radiocarbon dating of wood fragments found in terrace deposits and cosmogenic exposure dating

of boulders on the fan surface. Based on the relative fan lobe chronology I chose quarzite boulders

for 10Be and dolomite boulders for 36Cl exposure dating. I identified a total of 47 potential can-

didate boulders for dating. The boulders consisted of sericitic quartzites, white quartzites and a

few marbles and dolomites. From these I selected 16 boulders (Table 2.1 and 2.2) that were large

in diameter (1.5–6.0 m), appeared to be situated in their original undisturbed geomorphic context,

had a high quartz content based on visual inspection, had boulder upper surface slope of ≤ 25◦ to

minimize shielding (Dunne et al., 1999), and were clearly part of a debris flow deposit (as opposed

to, for example, derived from rock fall from the north flank of the Gorwetsch Grat; Figure 2.1).

Two sampled boulders (samples 46 and 60) are located on the rock avalanche deposit (Figure 2.2).

At each location I took a sample of a maximum thickness of 4 cm as far from the boulder edges

as possible, with a minimum weight of 0.5 kg. Elevations were obtained from the DEM. Posi-
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tions were surveyed with a hand-held GPS reciever, then verified and adjusted against the DEM

and the topographic map (Bundesamt für Landestopographie, 2006b). Locations near channels or

prominent topographic features are accurate to about ±2 m while locations in unstructured terrain

were more difficult to verify and are less accurate (±10 m). At each location I measured the angle

to the local horizon of a number of azimuths (> 10) with a hand-held compass and clinometer to

calculate the shielding correction (Table 2.1 and 2.2).

Laboratory proceedures for 10Be and 36Cl exposure age measurements

Here I give a brief overview over the laboratory procedures required for the cosmogenic exposure

dating. Susan Ivy-Ochs, Florian Kober and Peter W. Kubik carried out sample preparation, quartz

separation and Beryllium purification at the Department of Earth Sciences and the Laboratory

of Ion Beam Physics, both of ETH Zurich (Switzerland). For silicate lithologies 10Be was used

and for calcareous lithologies 36Cl. Standard procedures were followed to separate pure quartz

from the bulk rock samples (0.2–0.8 mm grain size), and for the purification of Be (Ivy-Ochs,

1996; Kohl and Nishiizumi, 1992; Ochs and Ivy-Ochs, 1997; von Blanckenburg et al., 1996).

Measurements of 10Be/9Be were made relative to in-house standards fixed to the 07KNSTD of

Nishiizumi et al. (2007) and Balco (2009 and updates) at the accelerator mass spectrometry facility

of the Laboratory Ion Beam Physics at ETH Zurich (Kubik and Christl, 2010). The weighted

average 10Be/9Be long-term, full process blank ratio of (2.60±0.43)·10−15 was subtracted from

the measured sample ratios. Exposure ages were calculated with the Cronus-Earth Be-10–Al-26

exposure age calculator (Balco, 2009 and updates) using a half-life of 1.39 Myr for 10Be (Chmeleff

et al., 2010; Korschinek et al., 2010). A production rate due to spallation of 10Be (P10sp) of

4.41±0.51 atoms g−1 yr−1 was adopted, valid at sea level and high latitude with muon contribution

(Balco, 2009 and updates; Desilets et al., 2006).

Cl was extracted from the < 0.4 mm fraction of the crushed whole rock carbonates using sam-

ple preparation procedures described in Ivy-Ochs et al. (2004), which is based on the method of

Stone et al. (1996). Samples were prepared at Ion Beam Physics using isotope dilution with a car-

rier of 99.9% pure 35Cl (Desilets et al., 2006; Elmore et al., 1997; Ivy-Ochs et al., 2004). Cl ratios

are measured with AMS at the Laboratory of Ion Beam Physics at ETH Zurich; 36Cl/35Cl sample

ratios are normalized to the ETH internal standard K381/4 with a value of 36Cl/Cl= 15.6 ·10−12,

while the stable 37Cl/35Cl ratios were normalized to the natural ratio 37Cl/35Cl= 31.98% of the
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K381/4 standard and machine blank. Measured sample 36Cl/35Cl ratios were corrected for a pro-

cedure blank of 5.6 ·10−15, which amounted to a correction of less than 13% for the four samples.

A SLHL (sea level – high latitude [> 60◦]) production rate of 48.8±1.7 atoms 36Cl·g(Ca)−1·yr−1

for was used for Ca spallation and of 5.3±0.5 atoms 36Cl·g(Ca)−1·yr−1 production due to muon

capture on Ca (Stone et al., 1996, 1998). Low energy capture of thermal and epithermal neutrons

is calculated following Liu et al. (1994) and Phillips et al. (2001) using a production constant of

700± 400 neutrons·(g air)−1·yr−1 scaled with spallogenic scaling (see Alfimov and Ivy-Ochs,

2009, and references therein). Low natural Cl concentrations indicate that the contribution of non-

cosmogenic subsurface production of 36Cl is negligible (Fabryka-Martin, 1988). Shielding cor-

rections for all samples were done following Dunne et al. (1999), and due to the expected young

exposure ages (late Holocene) an erosion rate of zero was assumed for the sampled boulders. A

rock density of 2.4 g/cm3 was used for the carbonates and 2.65 g/cm3 for the quartzites.

Radiocarbon dating of wood samples

To constrain the timing of sediment infilling behind the rock avalanche deposit at the catchment

outlet, I searched for wood embedded in the terraces along the Illgraben channel between check

dam 1 and 10. I sampled three slivers of wood (samples S1, S2 and S3, Appendix A.1) from whole

sub-horizontally bedded logs, which were incorporated within a crudely-bedded boulder diamict

on the right bank of the Illgraben channel. The sample locations were above the green surface

and the terrace on the opposite (left) side of the channel but below the purple surface (Figure 2.3

and 2.5). The samples were prepared and dated in the Radiocarbon Lab of the Physical Institute

of the University of Bern, Switzerland (lab numbers S1: B-9629, S2: B-9630 and S3: B-9631,

Appendix A.2).

2.3 Results

2.3.1 Geomorphic mapping and terrain analysis

The surface of the Illgraben fan can be divided in the field into eleven distinct depositional lobes

(L1–L11) and the rock avalanche deposit (RA, Figure 2.2). Cross-cutting relationships from field

mapping and terrain analysis of the DEM suggest a decreasing age from L1 to L11. I place the

occurrence of the rock avalanche after deposition of lobe L1 and before the onset of deposition on
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lobes L5, L6 and L8 (Figure 2.2). The relative chronology of lobes L2, L3 and L4, and whether

they predate the rock avalanche, could not be determined with certainty from mapping alone.

Likewise the relative chronology of lobes on the east and west sides of the active channel (denoted

lobe L11 in Figure 2.2) is uncertain due to a lack of cross-cutting relationships.

I now give a morphological description in chronological order of each lobe and of the rock

avalanche deposit. Lobe L1 consists of one distinct channel of 15–20 m width and 1–2 m depth

and many scattered boulders with diameters of up to 4 m on the unchannelized surface. The

channel is clearly truncated by channels and levees of lobe L6 at its downstream end, and by the

rock avalanche deposit at its upstream end. The rock avalanche deposit is downlapping onto the

lobe L1 and the contact is marked by a distinct concave break in slope. Several debris-flow snouts

are scattered across this lobe.

Lobe L2 consists of a series of short, sub-parallel channels (width ≈10 m, depth 1–2 m) with

well-defined levees. Boulders in the levees are 1–2 m in diameter (largest: 4 m). At the upstream

end, the channels are blocked by snouts of lobe L6.

Lobe L3 consists of one long channel of ≈15 m width and 1–3 m depth with broad and rela-

tively smooth levees with no large boulders. The upstream end of this channel is clearly cut off by

lobe L7. Two shorter channel fragments, which are possibly part of the same channel, are found

to the east and are cut off by lobe L10.

Lobe L4 is only exposed in a small window surrounded by deposits of the younger lobe L8.

It consists of a single poorly-defined, wide and shallow channel, which is truncated by deposits

of lobe L8. There are no boulders exposed and the surface morphology outside the channel is

smooth.

The surface of the rock avalanche deposit exhibits high roughness due to undulations of the

deposit itself but also as a result of the abundance of very large boulders of &10 m in diameter;

the largest boulder found measured ≈20 m along its longest axis. The boulders on the surface of

the rock avalanche are mostly unorganized. In a few places I found ridges of 1–3 m width ex-

tending north from the southern limit of the deposit, but these can only rarely be traced across the

whole deposit (Figure 2.2) (Dufresne and Davies, 2009). Where these structures can be followed

across the deposit, they are truncated by levees and channels of lobe L6. The western, southern

and eastern margins of the rock avalanche deposit have been eroded by debris flows and are very

steep (Figure 2.3 and profile 5 in Figure 2.5). The northern margin has a shallower surface slope
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and probably represents the original depositional surface of the rock avalanche (profile 5 in Fig-

ure 2.5). The inner structure of the rock avalanche deposit is well exposed along the southern

margin (Appendix A.1). The clasts found within and on top of the rock avalanche deposit are

generally more angular than those found in the active channel and on the fan surface. They consist

mainly of white and sericitic quarzite (Gabus et al., 2008) and are embedded in a matrix of silty

sand with gravel. The rock avalanche deposit shows a clear inverse grading over the height of the

erosion scar of ≈30 m with the largest clasts on the carapace. The lower parts of the exposed rock

avalanche appear to be more stable than the upper, coarser layer.

Lobe L5 occupies a narrow strip between the rock avalanche deposit and L1 and the talus

slopes beneath the Gorwetsch Grat (Figure 2.1). One steep channel with levees on both sides can

be followed over parts of the lobe. The levees are built of rounded quarzite boulders of up to≈4 m

in diameter, while there are also scattered, more angular boulders of dolomite and marble (up to

3 m in diameter) that originate from rockfall from the Gorwetsch Grat. At its downstream end this

lobe is truncated by levees and channels of lobe L6.

Lobe L6 is poorly channelized in the proximal part and almost free from channels in the distal

part. Numerous lobate deposits and snouts create a highly undulating surface with only few large

boulders; many boulders are smaller than 0.5 m in diameter. This lobe truncates structures in L1,

L2 and L5.

Lobe L7 is well channelized with typical channel widths of ≈16 m and depths of 1–3 m and

boulders of moderate size of up to 2 m. Channels in this lobe are truncated by deposits of L10.

Lobe L8 occupies most of the eastern half of the fan. Despite intensive agricultural land

use, dry stone walls and irrigation channels, many channel fragments can still be traced over

distances of ≈100 m. However, the surface morphology is smooth, boulders are scarce and the

lobe boundaries with L4, L9 and L11 were difficult to determine precisely. This lobe is older than

lobe L9, which shows a clear downlap contact onto L8. Lobe L9 is, apart from a distinct feeder

channel at the top, unchannelized, with a few boulders (up to 3 m in diameter) towards the lower

end .

Lobe L10 consists mainly of stacked lobate deposits and snouts, with a few boulders of up to

2 m in diameter but a generally smooth morphology. Its deposits truncate channels in lobes L2,

L3 and L7.
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Figure 2.3: Terrace reconstruction between check dam 1 and the rock avalanche deposit (RA). Topographic
cross profiles (orange lines) are shown in Figure 2.5. Gray dots: Elevation samples for interpolation of the
lower surface from the lower-most set of terraces and from fan lobe L9 (see text for details). Position of
lower (green) and upper (purple) surface is indicated as the intersection of the surface, including a buffer,
with present-day topography. The lower surface (green) is a 3rd-order polynomial interpolation of the
elevation samples (gray dots) and represents an equilibrium valley fill aligned with the present-day fan
surface (lobe L8/L9). The upper (purple) surface lies 24 m above the lower surface, and represents the
maximum valley floor elevation of sediment stored behind the rock avalanche deposit at the fan apex (black
dotted area). L1, L5, L6, L8–L11: distinct depositional lobes (see Figure 2.2). Location of wood samples
and resulting radiocarbon ages in yrs BP are shown. A conservative estimate of sediment volume stored
behind the rock avalanche deposit (RA) is shown in the text. The downstream limit of the area considered
is indicated by the black dashed line. Digital elevation model DTM-AV©2011 published with permission
from Swisstopo No: 5704 000 000.

Lobe L11 forms the central part of the fan and also contains the currently active channel. East

of the active channel a few distinct channels were found with widths of ≈10 m and depths of

≈4 m. Scattered large boulders are up to 3 m in diameter. The boundary with lobe L8 is however

uncertain due to buildings and earthworks on this part of the fan. The active channel consists of

two generations of inset terraces below the present-day fan surface. Its width decreases downfan

from ≈70 m to ≈30 m, and its depth varies between ≈20 m near the fan apex and ≈10 m near the

fan toe. To the west of the present channel, on the same lobe, one prominent channel of 35–45 m

width and a maximum depth of 10 m stands out, and is lined by some scattered boulders. The

dimensions are comparable to those of the active channel. The boundary with L10 is a distinct

downlap relationship.
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I show the terrace mapping in the catchment between the rock avalanche and check dam 1 in

Figure 2.3. The channel in this section of the Illgraben is lined with fragments of terraces that lie

between 5 m (upstream end) and 20 m (near downstream end) above the presently active channel.

The 3rd-order polynomial interpolation from 42 elevations picked from these terraces (gray dots in

Figure 2.3) yields a standard deviation of the residuals between known and interpolated elevations

of σr = 3 m. This value is comparable to the expected variation in elevation due to channels,

levees and boulders on such terrain depicted at this resolution. The purple surface in Figure 2.3

lies 24 m above the green surface, which equals the difference between the mean elevation of lobe

L9 and the maximum elevation of the rock avalanche deposit in profile 5 (Figure 2.5). I found that

this purple surface then passes through the downslope limit of the Güetji terrace (profile 2 and 3 in

Figure 2.5) and lies above the sampled and dated wood embedded in terrace deposits on the right

bank of the Illgraben farther upstream (profile 1 in Figure 2.5).

In Figure 2.4 I show the results of the apex reconstruction. The colour shading represents the

number of intersections of channel trends within a 150 m search radius around each 10x10 m grid

node. The area of highest intersection density has an elongated shape and is NNW–SSE oriented.

Whilst the intersection density is highest at the present day apex, just north of the rock avalanche

deposit, the colour shading indicates also that a considerable number of channel trends intersect in

an area ≈ 500 m farther south. This secondary area lies just south of and partly beneath the rock

avalanche deposit (Figure 2.4).

2.3.2 Depositional chronology and exposure ages from 10Be and 36Cl and 14C dat-

ing of wood

In Table 2.1 and 2.2 and Figure 2.2 I show the results of exposure dating. Of the 16 boulders

sampled, six did not yield enough pure quartz for successful dating, but exposure ages were de-

termined for the remaining six quartzite and all four dolomite samples. Calculated exposure ages

of these boulders range from 3,080±410 yr (sample 60) to 470±140 yr (sample 18). The oldest

dated surface on the Illgraben fan is the rock avalanche deposit (sample 60). All other dated boul-

ders show exposure ages that are ≈ 1,400 years younger than the rock avalanche. Unfortunately I

was unable to find suitable boulders for exposure dating on L3 and L4 and the samples taken from

L1 and L2 did not yield enough quartz for reliable exposure dating.



2.3. Results 39

L8

L11

L10

L9L6

L7

RA

L2

L1

L3

L5

L4

Shift in apex position

600 m

800 m

1 6 13 21 29 41

Number of intersections

0 750 m

ºContours every 50 m

Channel fragment

4
6

°
1

8
'N

7°38'30"E

Figure 2.4: Map of the Illgraben fan showing the apex reconstruction for mapped channel fragments (red
lines). The colour shading indicates the number of intersections (termed ‘intersection density’) of channel
trends within a 150 m search radius around grid nodes spaced 10 m. Mapped lobe boundaries are shown in
orange and lobes are labeled in black. Digital elevation model DTM-AV©2011 published with permission
from Swisstopo No: 5704 000 000.

I determined the age of the rock avalanche (sample 60) as 3,080±410 yrs ago and estimated

the remaining volume of the deposit as≈ 6 ·106 m3. The emplacement of the rock avalanche at the

catchment outlet undoubtedly led to creation of accommodation in the catchment and subsequent

storage of sediment. Wood embedded in sediment, which I interpret as debris flow deposits due

to high matrix content, poor sorting and chaotic structure, indicates a formerly higher channel bed

elevation (Figure 2.3). The uncalibrated C-14 ages obtained for the wood samples S1, S2 and

S3 are 1,950± 20 yrs BP, 1,970± 20 yrs BP and 1,990± 20 yrs BP, and are about 1,000 years

younger than the rock avalanche deposit.

The cross cutting relationship between lobe L5 and lobe L6 suggests that lobe L5 is the first

active (and preserved) lobe after the rock avalanche. Exposure ages from lobes L6, L7 and L9

(samples 19C, 26C, 29C, 39 and 39C) show that major resurfacing of the fan occurred around

1,500 yrs ago. Although L8 is undated, its morphologic relationships with lobe L9 and the rock

avalanche deposit suggests depositional activity earlier than activity on L9, but after the rock
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Table 2.1: AMS-measured concentrations of 10Be, surface exposure ages calculated with shielding correc-
tion, topography and dip. n/a: sample did not yield enough pure quartz for dating.

Sample Diameter Latitude Longitude Elevation Shielding correction 10Be 10Be exposure
[m] [◦ N] [◦ E] [m a. s. l.] atoms/g rock age [yr]

18 3.0 46.3014 7.6318 727 0.975 3,459±957 470±140
26 4.0 46.2993 7.6229 693 n/a
29 4.0 46.2980 7.6211 689 n/a
34 5.0 46.2946 7.6272 752 n/a
37 1.5 46.2958 7.6253 726 n/a
39 2.0 46.3010 7.6242 691 0.982 7,096±110 980±190
42 1.5 46.2997 7.6316 740 0.979 4,898±109 660±160
43 1.8 46.2974 7.6324 767 0.980 5,727±945 750±150
44 3.0 46.2966 7.6291 750 n/a
45 3.0 46.2975 7.6276 733 n/a
46 6.0 46.2946 7.6324 824 n/a
60 6.0 46.2946 7.6324 824 0.974 24,800±1,538 3,080±410

avalanche. Taking into account the uncertainties on the exposure dates, it seems reasonable to

postulate that deposition on lobe L6 occurred first followed by activity on lobe L9 and L7.

Lobe L10 is the second youngest lobe on the fan, dated from two boulders (42 and 43) yielding

similar deposition ages between around 500 and 900 yrs ago. On lobe L11, which includes the

recently active channel, depositional activity started at least by 470± 140 yrs ago (boulder 18,

Figure 2.2).

2.4 Discussion

In this section I discuss the findings of my analysis of the post-glacial evolution of the Illgraben

sediment routing system. I first consider the results from exposure dating, and my interpretation

with regard to the depositional chronology. Next I consider the effects of the earlier rock avalanche

from 3,080 years ago on the fan morphology, sediment storage and release from the catchment,

and the associated time scales. Finally, I discuss three possible mechanisms for the recent phase

of incision of the Illgraben fan.

I established the chronology of lobe activity on the Illgraben fan mainly based on the cross-

cutting relationships I found between different lobes, variations in surface morphology and the ge-

ometric relationship of these lobes with the rock avalanche deposit, following closely the method-

ology outlined in Dühnforth et al. (2007). Exposure dating confirmed my relative chronology and

allowed, to my knowledge, the first absolute dating of debris-flow fan surfaces in the Alps by

cosmogenic exposure dating. The ages presented have to be interpreted as a minimal age range

of depositional activity on the different lobes, as I cannot assume that I have sampled the oldest
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nor the youngest boulder on each lobe (Dühnforth et al., 2007). The boundaries of the different

lobes are based on geomorphic mapping only (Figure 2.2B). However, when considering the er-

rors on the ages (Figure 2.2A, Tables 2.1 and 2.2), the distinction between the different lobes is

less obvious. Lobe ages overlap due to measurement error, but also because deposition might have

switched back and forth between two adjacent lobes before a definite abandonment of the older

lobe. Inheritance of 10Be or 36Cl in the sampled boulders from previous exposure to comsogenic

radiation could also be responsible for large age ranges within depositional lobes, and would lead

to ages older than the true age of deposition (Ivy-Ochs et al., 2009; Ivy-Ochs and Schaller, 2009;

Stock and Uhrhammer, 2010). Inheritance may arise from long residence times in the catchment

or from reworking on the fan itself (Dühnforth et al., 2007). But on an annual basis sediment

delivered to the main channel by small debris flows and rock fall in the upper Illgraben catch-

ment (Figure 2.1) is evacuated to the fan by larger debris flows as shown by Berger, McArdell and

Schlunegger (2010) from the analysis of aerial images. We therefore regard inheritance arising

from long residence times of boulders in the catchment as insignificant. Abrasion of the boulders

during transport in debris flows works towards resetting the exposure age clock, because 10Be ac-

cumulated near the rock surface is removed, but abrasion of boulders in debris flows is difficult to

quantify and I am unaware of any studies adressing this problem.

On the rock avalanche only one sample (sample 60) was dated. On one hand deposition can be

assumed to have occurred instantaneously (Ivy-Ochs et al., 2009; Stock and Uhrhammer, 2010),

on the other hand inherited 10Be from previous exposure could have biased the age calculation

yielding older ages than the true age of the rock avalanche. This is because boulders that were ex-

posed on the rock face prior to the failure have been found to remain on top of the moving debris

Ivy-Ochs et al. (2009); Ivy-Ochs and Schaller (2009); Stock and Uhrhammer (2010). Only addi-

tional dates from different boulders from the surface of the rock avalanche deposit can overcome

this uncertainty.

The samples from lobes L6, L7, L9, L10 and L11 are all substantially younger than the rock

avalanche deposit near the fan apex, and I conclude that most of the present day fan surface has

been deposited by debris flows since this deposit was emplaced. With regard to the chronology of

lobe deposition on the eastern half of the fan geomorphic evidence remains sparse. Centuries of

agricultural land use and construction of dry-stone walls, roads, houses and irrigation ditches have

destroyed important geomorphic evidence contained in relatively fragile landforms such as levees
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that might exhibit local relief of as little as 1 m. The low number of channel fragments mapped

on the eastern half of the fan is a reflection of these effects (Figure 2.4). The outline of lobe L9

is relatively well defined and sample 19C suggests depositional activity until at least ≈ 1,500 yrs

after the rock avalanche. I suggest that at least parts of L8 are younger than the rock avalanche,

but farther downfan or close to the mountain front there could be surfaces that predate the rock

avalanche.

The rock avalanche deposit consists of quartzites that crop out only on the north face of the

Illhorn down to an elevation of about 1,000 m a.s.l. and below Ober Meschler down to an elevation

of about 1,300 m a.s.l. (Figure 2.1, Gabus et al., 2008). The erosion scars on the southern and

eastern side of the rock avalanche deposit suggest that the total volume must have been somewhat

larger than my estimate of the present day volume of 6 ·106 m3. The cliffs below Ober Meschler

are still within the marbles, and can therefore be ruled out as source area. This leaves only a few

options for the source area of the rock avalanche: either somewhere along the break in slope to

the west of Ober Meschler but above the contact with the marbles (Figure 2.1), or farther south

in the catchment on the north face of the Illhorn. The latter option appears more feasible because

this allows for a reasonable ratio between runout and drop of 2–3:1. Dade and Huppert (1998)

suggested such a ratio as a minimum for rock avalanches with a total volume on the order of

107 m3 or above. For any source area closer to the catchment outlet I would have expected the

maximum runout farther down-fan than observed. The south to north orientation of the ridges on

top of the deposit indicate a similar flow direction (Dufresne and Davies, 2009), which would be

incompatible with a source area beneath Ober Meschler.

The emplacement of the rock avalanche near the fan apex left a distinct fingerprint on the

morphology of the fan as a whole. I interpret the cross-cutting relationships between lobes L1,

L6 and the rock avalanche to indicate that L1 predates the rock avalanche. The preservation of

lobe L1 is a direct result of the rock avalanche and of the pattern of subsequent incision: although

early bypassing of the rock avalanche deposit occurred on its western side (lobe L5 in Figure 2.2),

this period must have been short as it did not lead to a significant build-up of fan deposits in this

area. Otherwise debris flows building lobe L6 could not have formed the strongly oriented pattern

of levees and channels that indicate a dominant post avalanche flow direction from east to west

(Figure 2.2). The presence of the rock avalanche deposit also sheltered the preserved part of lobe

L1 from inundation from the west.
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The apex reconstruction reported in Figure 2.4 suggests that some channel fragments mapped

on the fan are associated with an apex location ≈ 500 m south of the present day apex, and thus

would be projected to run underneath the rock avalanche deposit. The simplest interpretation is

that these channel fragments thus predate the rock avalanche (e.g. on lobe L2). The apex location

indicated by these channel fragments (Figure 2.4) corresponds to the position of the mountain

front to the east and west of the Illgraben catchment outlet. Unfortunately, I could not confirm the

hypothesis that lobe L2 predates the rock avalanche by exposure dating due to a lack of suitable

sample material.
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Figure 2.5: Topographic profiles across the Illgraben channel in several locations illustrating the relation-
ship between active channel, Güetji terrace, rock avalanche (RA) and present day fan surface (lobes L5
and L9). Approximate minimal cross-valley extent of rock avalanche deposit (RA) is indicated in profile 5
by black dots. See Figure 2.3 for location of profiles. S1–S3: wood samples for radiocarbon dating, ages
in yrs BP. Lower surface (green) is interpolated from terraces in the catchment between check dam 1 and
15, upper surface indicates an estimate of maximum elevation of sediment ponded behind rock avalanche
deposit (RA) at the fan apex (Figure 2.3). Profiles were extracted from the DEM and profile locations are
marked on Figure 2.3.
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The rock avalanche deposit near the fan apex temporarily raised the base level for the catch-

ment and created additional accommodation. If I assume that the green surface in Figure 2.3

represents an approximately stable long-term channel long-profile for the Illgraben, then a rise in

base level to an elevation matching the paleo-top surface of the rock avalanche deposit (profile 5

in Figure 2.5) would yield a channel bed similar to the purple surface in Figure 2.3 and 2.5. The

difference between this purple surface and the DEM yields a conservative estimate of the accom-

modation generated by the rock avalanche of 3 · 106 m3. I interpret the Güetji terrace and the

deposits containing the wood sampled for C-14 dating as remainders of the sediment stored in the

catchment in response to damming by the rock avalanche, because the elevation of the toe of the

Güetji terrace matches the purple surface, and also because the elevations of the sampled wood fall

between the two surfaces (Figure 2.3 and 2.5). My interpretation is further supported by the dates

obtained for the wood samples S1, S2 and S3, which yield a depositional age younger than the

rock avalanche but older than the oldest exposure ages on the fan from lobe L6 (sample 26C and

29C) that clearly post-date the rock avalanche. Schlunegger et al. (accepted) offered an alternative

explanation for the formation of the Güetji terrace and the deposits containing the wood samples.

In agreement with my argumentation, the authors came to the conclusion that these deposits are

related to a time when sediment transport capacity in the Illgraben catchment was low in compar-

ison to the hillslope derived sediment input and that subsequently the relative dominance between

the two fluxes has changed. In disagreement to my interpretation Schlunegger et al. (accepted)

attributed this change in the relative importance of the hillslope and channel sediment flux to a re-

gional trend observed across the Alps during the Holocene (Norton et al., 2008), while I attribute

this to the rise and subsequent fall in local base level due to the rock avalanche emplacement.

Following this period of sediment accumulation in the Illgraben catchment, the system entered

the recent phase of incision in the catchment, leading first to a resurfacing of the fan and second

to the development of an incised channel that is visible on the fan surface today (Figure 2.1).

Breaching of the rock avalanche dam occurred first in a narrow corridor to the North-West (lobe

L5, Figure 2.2). This phase was followed by breaching in a northern direction and gradual removal

of the sediment stored in the catchment. During this time debris flows lowered the bed elevation

along the entire reach starting near check dam 1 and incised into the rock avalanche deposit.

The data suggest that this incision was gradual, reaching an accumulated incision of ≈ 15 m by

≈ 1,500 yrs ago using the oldest exposure ages from directly after the rock avalanche (sample
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19C, 26C and 29C), and ≈ 32 m by today as measured at profile 5 (Figure 2.5). My interpretation

is in strong contrast to a dendrogeomorphic analysis of growth disturbances in Pinus sylvestris,

Larix decidua and Picea abies related to debris flows (Stoffel et al., 2008). In this study the

authors attributed growth disturbances to debris flows impacting trees in vicinity of sample 60 for

several years in the 19th and 20th century and as late as 1957. This would have required at least a

temporary channel bed elevation at profile 5 (Figure 2.5) of almost 838 m a.s.l., or 15 m above the

surface of lobe L9, followed by widespread and rapid incision over an area of several 10,000 m2.

However, such significant change of the channel bed in this area in such a short time cannot be

confirmed either from the relevant topographic maps of the area between 1845 and 1933 (Dufour,

1845; Siegfried, 1886, 1907, 1915, 1924 and 1933) or from the 1:25,000 topographic map from

1966 (sheet Sierre 1287, Bundesamt für Landestopographie, 1954) and is also in disagreement

with exposure dating of lobe L9 presented herein. It remains therefore unclear what has caused

the documented growth disturbances in the trees analyzed by Stoffel et al. (2008).

The data and the inventory of debris flows at Illgraben lead me to conclude that depositional

activity in the last 500 years was concentrated on lobe L11, and since 1845 was concentrated

in or near the present-day channel based on an analysis of old maps (Dufour, 1845; Siegfried,

1886, 1907, 1915, 1924 and 1933) that do not show any significant changes in the course of the

Illgraben-stream on the fan. This downstream shift in depositional activity is the result of fan

head incision on the Illgraben fan. I identify three mechanisms, one autogenic and two external

forcings, that may have been operating simultaneously, potentially re-enforcing each other: First,

temporary development of incised channels on alluvial fans occurs naturally and periodically as

has been shown in flume experiments (Clarke et al., 2010; Jerolmack and Paola, 2010; Kim and

Jerolmack, 2008; Kim et al., 2006; Nicholas and Quine, 2007b; Reitz et al., 2010). For fans

where radial growth is limited, Clarke et al. (2010) found that fans tend to develop an incised

channel, with a significantly reduced avulsion frequency, once the fan toe has grown to the model

boundaries, where sediment is constantly removed. These boundary conditions are similar to the

situation of the Illgraben fan, where the Rhone River removes any sediment transported to the fan

toe (Schlunegger et al., 2009). Apart from this clear field evidence for autogenic forcing is still

lacking, and characteristic time scales for natural alluvial fans are unknown.
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Second, a natural decline in sediment flux, while water discharge remains unchanged, may

result in incision of the fan surface. At Illgraben, sediment discharge appears to have increased

almost instantly after large rock fall events (e.g. 1961, Badoux et al., 2008; Lichtenhahn, 1971) and

then gradually declined over a period of time. It seems reasonable that the Illgraben catchment

is still responding to the rock avalanche deposit near the fan apex and to the one in the upper

Illgraben catchment, and that the sudden increase and subsequent decline in sediment discharge is

partly responsible for the observed incision on the fan (Davies and Korup, 2007).

Third, construction of check dam 1 (Figure 2.1 and 2.6) in response to the 1961 rock avalanche

has led to a further, although short-lived, decrease in sediment delivery and subsequent incision

(Lichtenhahn, 1971). Subsequent construction of the check dams on the fan enforced a relatively

narrow channel cross profile that efficiently routes debris flows by maintaining a high flow depth

(Chapter 4 and 5).

At century scale the Illgraben catchment is undergoing rapid incision and degradation of

4 mm/yr (Berger, McArdell and Schlunegger, 2010; Schlunegger et al., 2009). The two pho-

tographs (Figure 2.6) taken from identical positions in 1921 and 2009 give further support for this

trend, and show a decrease in channel width in the lower catchment below check dam 10 (black

arrow in Figure 2.6), which I interpret as a sign of incision into the valley fill.

ba

IIlgraben 1921 (Leo Wehrli, Zurich; ETH-Bibliothek Zurich, Image Archive) IIlgraben 2009 (Ernst Schürch)

CD 1CD 1

Figure 2.6: Photographs taken from Plaine Madelaine (Figure 2.1) looking north east down the Illgraben
channel. a) Illgraben in 1921. b) Illgraben in 2009. Forest cover in 2009 in the foreground is reduced
compared to 1921. The rock avalanche deposit from 1961 is visible in the central part of the picture
(marked by dashed line). Note decrease in active channel width between 1921 and 2009 (black arrows),
which is interpreted as incision into the valley fill, and subsequent re-vegetation of the emerging terraces
on both sides of the active channel. CD 1: location of check dam 1, the sediment retention dam built to
stabilize to the 1961 rock avalanche deposit.
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2.5 Conclusions

In this chapter I reconstructed fan evolution and sediment storage in the Illgraben sediment rout-

ing system over the past 3,080 years. This reconstruction includes a detailed chronology of lobe

deposition on the debris-flow fan by means of cosmogenic exposure dating of ten quartzite and

dolomite boulders. A rock avalanche deposit of at least 6 ·106 m3 volume dated to 3,080±410 yrs

occupies an area near the fan apex. I identified a likely source area of the rock avalanche on the

north face of the Illhorn. The mapping and dating shows that the fan has been almost completely

resurfaced by debris flows since emplacement of the rock avalanche at the fan apex. The rock

avalanche left a distinct fingerprint on the fan and catchment which persists today. This fingerprint

consists of a characteristic channel cross-cutting pattern that allowed approximate reconstruction

of the pre-rock avalanche apex position. In the catchment I identified terrace deposits perched

above the present-day channel, probably representing a valley fill in response to the damming of

the catchment outlet by the rock avalanche deposit. The data and a review of reports on debris flow

activity suggest that debris-flow activity during the last 500 years was concentrated on lobe L11

and since 1845 was concentrated in or near the present-day channel. This downstream focusing of

deposition in combination with fan head incision is likely to be the result of three simultaneously

operating mechanisms: autogenic fluctuations in sediment storage and release on the fan, a natural

decline in sediment delivery as the rock avalanche deposit and retained sediment are gradually

removed, and a man-made reduction in sediment delivery resulting from the construction of check

dams in the catchment, which also led to a more efficient channel. The latter two mechanisms

operate on very different time scales but also act to reinforce each other in this particular example;

the relevant time scale for the first mechanism remains unknown. Whilst at Illgraben the effect of

external forcing by rock avalanches and human activity of the alluvial fan has been demonstrated

in this case study, it remains unclear how geomorphic features such as channels could be unam-

biguously attributed to autogenic forcing, without monitoring or reconstructing sediment fluxes in

and out of the fan over prolonged periods of time.



Chapter 3

Detection of surface change in complex

topography using terrestrial laser

scanning: application to the Illgraben

debris-flow channel

Abstract

1 Detection of surface change is a fundamental task in geomorphology. Terrestrial laser scanners

are increasingly used for monitoring surface change resulting from a variety of geomorphic pro-

cesses, as they allow the rapid generation of high resolution digital elevation models. Irrespective

of instrument specifics, survey design or data processing, such data are subject to a finite level of

ambiguity in position measurement, a consideration of which must be taken into account when

deriving change. The propagation of errors is crucial in change detection because even very small

uncertainties in elevation can produce large uncertainties in volume when extrapolated over an

area of interest. In this study we propose a methodology to detect surface change and to quantify

the resultant volumetric errors in areas of complex topography such as channels, where data from

multiple scan stations must be combined. We find that a commonly proposed source of error, laser

1Schürch P., Densmore A.L., Rosser N.J., Lim M., and Mc Ardell B.W. (2011). Detection of surface change in
complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel, Earth Surface
Processes and Landforms, doi: 10.1002/esp.2206
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point elongation at low incidence angles, has a negligible effect on the quality of the final regis-

tered point cloud. Instead, ambiguities in elevation inherent to registered data sets have a strong

effect on our ability to detect and measure surface change. Similarly we find that changes in sur-

face roughness between surveys also reduce our ability to detect change. Explicit consideration

of these ambiguities, when propagated through to volume calculations, allows us to detect volume

change of 87±5 m3, over an area of ≈ 4,900 m2, due to passage of a debris flow down a 300 m

reach of the Illgraben channel in Switzerland.

3.1 Introduction

Precise volumetric measurement of Earth surface change is a key component of many geomor-

phic investigations that aim to quantify sediment transport processes. Terrestrial laser scanning

(TLS) is capable of deriving topographic data with resolutions of ≤1 m over large areas (104 m2),

making the detailed comparison of surface topography over discrete time intervals possible for the

first time. Common to most published applications of change detection using TLS is a generally

planar object geometry (e.g. braid plains, rock cliffs) with low relief in the scanner look direc-

tion compared to the lateral dimensions of the object (Brasington et al., 2003; Lim et al., 2005;

Milan et al., 2007; Rosser et al., 2007). In such environments, measurement point density can

be near-uniform when stations are well placed and occlusion from roughness elements is small,

facilitating registration of multiple point clouds into coherent data sets. However, issues arising

from complex surface geometry, as for example in a river or debris flow channel (Figure 3.1)

with abrupt changes in slope, aspect, local surface roughness and high local relief, have not been

fully addressed. In complex topography, point density need not be uniform and occlusion may be

commonplace, leading to an increased chance of ambiguous point cloud matching (Figure 3.2).

For the purpose of change detection, inhomogeneous point clouds from TLS are often gridded

(e.g Hodge et al., 2009; Milan et al., 2007; O’Neal and Pizzuto, 2011). When, depending on

the specific application, surface roughness is of the same order of magnitude as the desired grid

resolution, this gridding becomes a non-trivial task. A difficult choice must be made over how

to best represent the elevation of a grid cell when multiple data points fall into a single cell.

Although the absolute differences in elevation between different options for this choice might be

small (≈ 0.01–0.1 m), the effect of this difference can be significant in terms of volume change
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see Fig. 3.3, 3.4C and 3.6
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Figure 3.1: (A) Location of Illgraben in south-western Switzerland. (B) Hillshaded DEM of the study reach
surveyed on 30 and 31 July 2008 (survey 1). Elevations are given in meters above sea level according
to vertical datum LHN02 (Bundesamt für Landestopographie, 2006a), contours are 5 m apart. Triangles
denote benchmarks surveyed with differential GPS and used as scan stations and target positions (see text).
Black arrow indicates flow direction of debris flows in the channel. Cross section markers are located at
intervals of 50 m along the talweg. Dashed boxes outline the extent of the Figures 3.3, 3.4 and 3.6. (C)
Photograph of the study reach downstream from benchmark 2C two days after the debris flow on 31 August
2008.

when comparing digital elevation models (DEM) over large areas. Thus, the effects of these

uncertainties on the calculation of volumetric change need to be accounted for in a rigorous and

consistent manner. This paper presents a methodology to quantify the effect of elevation ambiguity

on change detection.

Previous work that is relevant to uncertainty analysis can be grouped into two themes: 1)

analysis of errors related to data acquisition with terrestrial laser scanners, and 2) analysis of er-

rors in DEMs generated from point observation data. For time-of-flight based laser scanners the

range measurement error is caused by errors in the pulse flight-time measurement (Petrie and Toth,

2008). When using a survey-grade instrument of adequate precision and at typical scanning ranges

of ≈50 m, this error is negligible (e.g. σ = 1.4 mm, Trimble, 2005). Some work has been un-

dertaken to identify and quantify other sources of error in TLS data (Abellán et al., 2009; Buckley

et al., 2008; Hodge et al., 2009; Kaasalainen et al., 2008). These studies have suggested that in-
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Figure 3.2: (A) Cross section through a hypothetical point cloud matched from three scan stations (light
gray, dark gray and black). Misalignment of data from individual scan stations results in a finite thickness
of the point cloud. Point density varies as a function of incidence angle and occlusion. The solid black
line represents the gridded topography (grid spacing l) after application of a lowest return filter to the raw
data. ∆z is the total range in elevation in a grid cell and ∆e the expected variation over that cell due to
topography. (B) Definition of incidence angle ε as the minimal angle between the surface and the vector~b
connecting the surface point with the laser scanner. ~n is the surface normal as a function of surface slope θ

and surface azimuth α.

creased laser footprint size at low incidence angles (Figure 3.2), variations in surface reflectance,

variable point density and multiple reflections across sharp topographic edges cause erroneous

points in the raw data. However, most studies have focused on small areas (Hodge et al., 2009),

on artificial objects, or on data acquired from a single scan station (Abellán et al., 2009). The

results of these studies can therefore not easily be generalized to a situation with multiple scan

stations and complex topography, and it is unclear what the dominant sources of error are in such

a situation.

Much work has also been undertaken in quantifying elevation errors in DEMs generated from

point clouds and how these can be propagated into volume calculations. The classic approach in

DEM validation is to compare the DEM to a finite number of check points surveyed by a total

station or differential GPS (Brasington et al., 2003; Lane et al., 2003; Stojic et al., 1998). The

difficulty in doing so is to collect a representative number and distribution of checkpoints (see full

discussion in Brasington et al., 2003).

Many studies (Brasington et al., 2003; Fuller et al., 2003; Lane et al., 2003; Schürch et al.,

2009) have adopted an approach for error propagation introduced by Bevington (1969) and Taylor

(1982) to propagate uncertainties in DEMs into calculations involving multiple DEMs (e.g. dif-

ferencing) or derivatives of DEMs (e.g. slope). A major drawback of these approaches is that they

typically assume a normal distribution of, and sometimes independence of, errors in elevation, as-

sumptions which may not necessarily be valid in all cases. A different approach to quantify DEM
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uncertainty is based on a fuzzy inference system calibrated for different surface types (Wheaton

et al., 2010). Uncertainties are assigned to the DEM based on local slope, point density and GPS

quality. All of these approaches have been developed to analyse uncertainty of DEMs where the

raw data density is lower than the DEM resolution (e.g. 0.3 points/m2 for a grid resolution of 1 m

in Wheaton et al., 2010), a condition not typically met in TLS studies. Also, none of these studies

address issues particular to data consisting of multiple merged point clouds.

This study has three objectives: first, we define a novel spatial measure of point cloud quality

that quantifies elevation ambiguity; second, we investigate the generation of elevation ambiguity

in point clouds; and third, we quantify the volumetric error arising from this elevation ambiguity

when differencing successive DEMs derived from point clouds. To demonstrate these concepts,

we use a test data set from the Illgraben debris-flow channel in Switzerland.

3.2 Accquisition of test data

3.2.1 Field site

The Illgraben in south-western Switzerland (E 7.6334◦, N 46.2938◦) is a steep catchment with a

drainage area of ≈9.5 km2 that experiences regular seasonal debris-flow activity (McArdell et al.,

2007; Schlunegger et al., 2009). Debris flows are triggered during convective storms from May

to October (McArdell et al., 2007). We have monitored changes to the channel shape resulting

from the transit of debris flows through a ≈300 m long study reach (Figure 3.1) just downstream

of the fan apex. The study reach is located between two check dams and is cut into older debris-

flow deposits. The channel is 10–20 m wide and about 2–4 m deep, and the surface roughness is

dominated by grain sizes between sand and cobbles, and to a lesser extent by boulders of up to

2 m in diameter. The channel slope in the study reach is 4.5◦–5.5◦.

3.2.2 Terrestrial laser scanning procedure and survey layout for the test data set

We surveyed the channel (Figure 3.1) using a Trimble GS200 laser scanner on three occasions in

2008 (survey 1 on 30/31 July, survey 2 on 25/26 August and survey 3 on 30 September/1 October)

in the aftermath of debris flows, yielding point clouds of≈107 vertices each. Each survey consisted

of 10 scan stations. Scan station positioning was constrained by a number of factors. Locations

in the channel were considered too dangerous and transient to occupy repeatedly. The choice
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Table 3.1: (a) ID of control and check points, (b) 3D point quality from differential GPS, (c) residual 3D
error from georeferencing the matched point cloud of survey 1 and (d) difference between elevation from
differential GPS and elevations in gridded TLS data. n/a: check point not surveyed with differential GPS
(2H) or used for georeferencing in survey 1 (1A, 2C, 2F, 1R). Stdev: Standard deviation of differences
between GPS elevation and elevation in gridded TLS data.

(a) (b) (c) (d)

Point ID GPS Quality [m]

Georef.
residual
3D error

[m]

GPS Elevation - DEM Elevation [m]

Survey 1 Survey 2 Survey 3
1A 0.0116 0.024 n/a -0.07 -0.01
1H 0.0160 -0.04 -0.01 -0.03
1K 0.0144 -0.05 -0.07 -0.11
1P 0.0165 0.05 0.07 0.05
1R 0.0133 0.095 n/a -0.14 -0.07
2C 0.0150 0.079 n/a 0.09 0.05
2D 0.0155 -0.02 0.01 -0.01
2E 0.0150 0.02 0.02 0.07
2F 0.0156 0.059 n/a -0.07 -0.09
2G 0.0101 0.04 0.03 0.01
2H 0.0165 n/a -0.04 n/a

ILL2 0.0162 0.07 -0.09 0.11
Median 0.023 -0.025 -0.009

Mean 0.011 -0.022 -0.003
Stdev 0.046 0.069 0.069

of locations on the channel banks was limited due to vegetation or steep and unstable terrain.

We chose locations that were as high as possible above the channel bed (to maximise incidence

angle), that were not more than ≈ 50 m apart (Figure 3.1), and that had a good view of other

stations. Some additional positions (1P, ILL2, 2A, 2F and 1A in Figure 3.1) were identified as

target locations for point cloud registration. Target and scan station locations were marked on the

ground with survey markers. All locations were surveyed with a differential GPS (Table 3.1).

For our survey we specified a scan grid spacing of 50 mm at a range of 50–70 m from the

scanner. To register the point clouds we used flat high-reflectivity Trimble targets (15 cm x 15 cm)

mounted vertically on standard surveying tripods, and scanned at least five targets from each scan

station (Table 3.2).

3.2.3 Point cloud registration

The survey was designed to allow for a target-based registration procedure of the ten scan stations.

In the process of registering the data we encountered a series of challenges using the target-based

registration. In this section we will discuss these issues and justify why we choose to employ

iterative closest point (ICP) registration first introduced by Besl and McKay (1992) and Chen and
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Table 3.2: Target based registration errors for survey 1. (a) Scan stations from which the target was
scanned. (b) Mean distance between the scanned target and the averaged target position (from all scans of
one specific target). (c) Maximum distance between the averaged target position and the scanned target, in
brackets the scan station from which this target scan was performed.

Target (a) Scanned from stations (b) Mean residual error [m] (c) Max residual error [m]
(scanned from)

1A 2E, 2G 0.013 0.013 (2E, 2G)
1H 2B, 2C, 2D, 2E, 1K, 1R 0.020 0.034 (2C)
1K 2B, 2C, 2D, 1H, 1L, 1R, 0.037 0.093 (1L)
1L 2B, 2C, 1H, 1K, 1S 0.019 0.033 (1H)
1R 2C, 2D, 2E, 1H 0.050 0.097 (2C)
2A 2B, 2C, 1K, 1L, 1S 0.048 0.111 (1L)
2C 2B, 1H, 1R 0.028 0.041 (1R)
2D 2E, 2G, 1H, 1R 0.008 0.011 (1R)
2E 1R, 2D, 2G 0.011 0.012 (1R)
2F 2D, 2E, 2G 0.004 0.005 (2D)

ILL2 2B, 1K, 1L, 1S 0.015 0.023 (1L)
1P 1K, 1L, 1S 0.044 0.059 (1L)

Medioni (1992), and since tested for point cloud registration by Dalley and Flynn (2002) and

von Hansen (2007). Target-based registration is very popular (e.g. Buckley et al., 2008; Hodge

et al., 2009; Lim et al., 2009; Milan et al., 2007). This method of registration is implemented in

software packages for point cloud manipulation and is relatively quick. We used the target-based

registration tool provided in the RealWorks 6.0 (Trimble, 2006) software package to register the

point clouds from the ten scan stations (Figure 3.1B). We report the target registration errors for

survey 1 in Table 3.2. The performance of the target-based registration in the first survey was

unsatisfactory, with mean residual errors (distance between scanned target and averaged target

position) ranging from 0.004–0.050 m; the maximum residual error was 0.111 m (Table 3.2). An

inspection of the point cloud revealed that the misalignment between point clouds scanned from

different scan stations was even larger along the channel banks and in the channel. We found

that the more target scans were matched together, the larger the mean residual errors. Only a

few of our targets were located in the overlap zone between scan stations because we mainly

used adjacent scan station locations as target locations. We suspect that target registration errors

could be reduced by substantially increasing the number of targets located in the zone of overlap

between adjacent scan stations, but this would require additional survey tripods and personnel

and would result in a longer survey duration. Although the use of targets might be expected to

achieve superior registration, providing control surfaces of calibrated reflectance, it seems that

for this application the required number of targets to achieve a good result renders this approach

unfeasible.
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Table 3.3: Root mean square (RMS) error of ICP matching of point clouds from individual scan stations
(St) to adjacent scan stations for survey 1 (base line survey). The reported RMS errors refer to the matching
of the combined point cloud of all previously matched stations with the next station. Matching started
with station 1S and 1L. The last station to be incorporated was station 2G. Station locations are shown in
Figure 3.1.

St 1S St 1L St 1K St 2B St 2C St 1H St 1R St 2D St 2E St 2G
0.040 m

0.036 m
0.049 m

0.047 m
0.031 m

0.029 m
0.040 m

0.061 m
0.055 m

As an alternative we applied an iterative closest point (ICP) algorithm implemented in the Re-

alWorks 6.0 software package (Trimble, 2006). The ICP algorithm calculates a root mean square

(RMS) error based on the separation of the two populations of points in both point clouds and

seeks to minimize this RMS error over a series of iterative rigid transformations. The registration

process is initialized by a manual selection of three tie points in both point clouds. We found that

the initialization and subsequent refinement is greatly helped when some prominent features are

scanned at high resolution. An automated algorithm excludes all non-overlapping parts of the two

point clouds prior to the ICP registration. This minimizes the deteriorating effects of differing

view angles on the registration (personal communication David Hadden, Trimble, 2009). We find

that after 5–8 iterations the RMS error stabilizes. In Table 3.3 we report these RMS errors of the

ICP matching of survey 1 (baseline survey). We also looked at the competing effects of incidence

angle of the laser beam on the surface and angular separation (of two adjacent scan stations) in de-

termining quality of the ICP based registration but see no consistent correlation – we interpret this

as being due to the complex nature of the overall point cloud, meaning that the different factors

interact in ways that are not necessarily intuitive or predictable.

The procedure followed for the ICP matching of survey 1 is shown in Table 3.3. We started

at the upstream limit of the study reach by matching the point clouds from station 1S and station

1L; subsequent stations were then matched to the combined point cloud of previous steps. The

maximum RMS error of 0.061 m arises from matching station 2E to all upstream scan stations. As

can be seen from Figure 3.1 this match relies mainly on the overlap with the data from station 2D

on the gently sloping right channel bank. This area suffered from relatively different view angles
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Table 3.4: Root mean square (RMS) error of ICP matching between the reference point cloud of previous
survey and the point clouds from individual scan stations from the subsequent survey. See Figure 3.1 for
scan station locations.

Scan station RMS error [m] RMS error [m]
Survey 1 – Survey 2 Survey 2 – Survey 3

Station 1S 0.022 0.029
Station 1L 0.025 0.032
Station 1K 0.025 0.021
Station 2B 0.031 0.031
Station 2C 0.030 0.023
Station 1H 0.030 0.031
Station 1R 0.032 0.033
Station 2D 0.031 0.038
Station 2E 0.026 0.033
Station 2G 0.019 0.022

and low incidence angles (low point density) from both stations, leading to a poorer performance

of the ICP algorithm. In Table 3.4 we show the RMS errors for surveys 2 and 3 (subsequent

surveys) where we matched point clouds from individual scan stations to a reference point cloud

(of unchanged areas) selected from the previous survey (survey 1 and survey 2 respectively). The

errors range from 0.019–0.038 m, and are mostly smaller than the mean residual errors from the

target-based matching (Table 3.2).

We choose to match subsequent surveys to the previous (rather than the first) survey because

we are interested in relative differences between subsequent surveys. Therefore we can sacrifice

absolute accuracy in elevation to gain higher relative precision in elevation change detection. Our

approach of using ICP registration for baseline and subsequent surveys achieves this. It ensures

consistency across subsequent surveys because a systematic error between the true topography and

the first survey is automatically included in subsequent surveys. This means that absolute errors in

elevation are not propagated into any difference model calculated across successive surveys. We

wish to emphasize that the registration procedure used here is optimized for change detection. If

the aim was absolute elevation accuracy, the optimal registration procedure might well be different,

but this question is beyond the scope of this paper.

3.2.4 Georeferencing, gridding and quality check of DEMs

We georeferenced the registered point cloud using five control points (1A, 1R, 2A, 2C and 2F in

Table 3.1) and the locations of the respective ground control points in the registered point cloud.

We removed laser reflections from vegetation both manually and with a grid-based minimum
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height filter. We opted to use kriging without further testing of other algorithms for DEM inter-

polation since survey strategy appears to be more important in error generation than the choice of

the interpolation algorithm (Bater and Coops, 2009; Heritage et al., 2009), particularly when point

density is high enough to yield at least one data point for most of the grid cells. The point clouds

were gridded at 0.2 m resolution.

We have deliberately not used GPS position data during point cloud registration in order to use

these data as an independent check of the DEM quality. In Table 3.1 we provide a quality check

of the resulting DEMs where we compare GPS elevations of check points visible to the scanner

with the (gridded) DEM elevation. The residuals range from 0.01 m to 0.14 m. The maximum is

found in the second survey at 1R. This highlights a general problem discussed by Brasington et al.

(2003): The check point elevation is only an arbitrary point measurement. It is highly unlikely

that the check point elevation will match the gridded surface elevation when there is substantial

within-grid-cell surface roughness present (see our discussion of elevation ambiguity below). It is

important to note that the errors do not increase from the first to the third survey (Table 3.1). This

is in stark contrast to our experience with target-based registration, which gave inconsistent results

in different surveys.

3.3 Elevation ambiguity of point cloud data

In this section we tackle our first objective: to define a spatial measure of point cloud quality. Ele-

vation ambiguity of point cloud data emerges from erroneous points in the primary data, imperfect

point cloud matching and high surface roughness. The distinction between erroneous points and

surface roughness is only possible in special cases, so we develop a method to visualize this spa-

tial ambiguity. Where the matching is imperfect the registered point cloud separates into distinct

layered traces of points, with each layer containing data from one particular scan station, as shown

for a hypothetical example in Figure 3.2A. Clearly, the smaller this layer separation, the better the

matching at this particular location. However, matching is never perfect. Therefore, measuring

this separation, or point cloud thickness, across the whole data set requires careful consideration.

As Figure 3.2A illustrates, point cloud thickness is not just the difference between the maximum

and minimum elevation (∆z) (Figure 3.3A), or the standard deviation of elevation σelv , within a

given search window (l): these values are biased by 1) local slope, and 2) roughness elements that
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Figure 3.3: Maps showing derived parameters of elevation ambiguity of the raw data from survey 2. See
Figure 3.4C for the corresponding map of point density. Contours are 4 m apart. (A) Map of ∆z, which is the
range in elevation of the raw data that falls into each grid cell of 0.2 m x 0.2 m. (B) Map of topographically
corrected range in elevation R=∆z−∆e (Equation 3.1 and 3.2). (C) Map of standard deviation in elevation
σelv in each grid cell. (D) Map of standard deviation in elevation corrected for topography σelv,cor =
σelv/σelv,exp (Equation 3.5).

fall within the search window. They can easily be corrected for the effect of local slope by simply

subtracting the expected change in elevation (∆e) over the distance l as result of local surface slope

θ. Although we do not know the true topography, we can grid the point cloud to obtain a slope and

an aspect map. Slope and aspect are spatially averaged because they are calculated on a moving

window of 3 by 3 cells from the gridded data. We therefore expect uncertainties in elevation in

individual cells of the order of < 0.01–0.05 m to have little effect on the values of surface slope

and aspect, given typical grid cell sizes of ≈0.1–1 m.
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We can calculate the expected range in elevation (∆e) as:

∆e = l tanθ ; when surface aspect is parallel to the grid axes

∆e = l
√

2tanθ ; when surface aspect is 45◦ to the grid axes
(3.1)

The range of elevation corrected for surface slope then becomes:

R = ∆z−∆e (3.2)

In Figure 3.3B we show the effect of correcting the range in elevation for topography for our

sample data from Illgraben.

In a similar way we can define the standard deviation of elevation corrected for topography,

σelv,cor, measured within a given search window l. As a measure of point cloud thickness this will

be less sensitive than R to individual erroneous points lying above or beneath the main point cloud.

To correct for surface slope we estimate the expected standard deviation in elevation σelv,exp using

the difference between a hypothetically highest (zmax) and lowest (zmin) point in every grid cell

based on the gridded data (Figure 3.2A) and assuming linear variation of elevation between them.

We derive the equation for σelv,exp by calculating the standard deviation of two hypothetical data

points (zmin and zmax, details in Apendix B). By substituting z̄ = zmax−zmin
2 and after rearranging we

find:

σelv,exp =

√
1
2
((zmax− z̄)2 +(zmin− z̄)2)

=
1
2
(zmax− zmin)

(3.3)

Then we substitute zmax − zmin, the theoretical elevation range for a DEM grid cell ∆e, in

Equation 3.3 with Equation 3.1 to obtain a worst-case estimate of the expected standard deviation

of elevation for a surface with zero within-cell roughness or misalignment and linear variation in

elevation within the cell. Again we distinguish between two cases: a) aspect parallel to the grid

axes, and b) aspect parallel to grid diagonals:

σelv,exp ≤


1
2 l tanθ ; aspect parallel to grid

1√
2
l tanθ ; aspect 45◦ to grid

(3.4)

where l is the search window, θ the slope of each grid cell. We now define the topographically
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corrected standard deviation of elevation as:

σelv,cor ≡
σelv

σelv,exp
(3.5)

σelv,cor is the topographically corrected standard deviation of elevation. It is dimensionless due

to the normalisation with the expected standard deviation of elevation σelv,exp. Figure 3.3C shows

the standard deviation in elevation σelv over our test area, and Figure 3.3D the corrected value

σelv,cor. The advantage of both measures, σelv,cor and R, is that the calculation can be automated and

performed across the whole data set. A thorough investigation of σelv,cor or R for point clouds from

individual scan stations could be used to develop algorithms to improve the quality assessment of

ICP registration.

A drawback of calculating σelv,cor and R for the matched point cloud is that we cannot dis-

tinguish easily between surface roughness and misalignment, since both will result in a higher

value of these metrics. However, areas of poor point cloud matching will show up as either sudden

changes or trends in maps of the respective parameter. Take for example a case of three matched

point clouds where two overlap across 100% of their extent, and the third overlaps only 50% with

the other two. Let us further assume that the third point cloud is slightly rotated around a horizon-

tal axis relative to the others. Both of our measures of point cloud quality will visualize the nature

and the spatial extent of the problem, with higher values of σelv,cor or R where all three point clouds

overlap. We would also notice an increase in the values away from the rotation axis of the third

point cloud. Figure 3.3B and D can be read as maps of elevation ambiguity in the raw data and are

helpful in identifying areas of poor point cloud matching, occurrence of erroneous points or areas

of increased surface roughness. For example note areas of high ambiguity associated with surface

roughness (e.g. in the channel) and with poor filtering of vegetation (10 m to the west of 1R).

3.4 Uncertainty in TLS-derived DEMs

3.4.1 Introduction

In this section we investigate the nature and relevance of processes that may introduce elevation

ambiguity into point clouds matched from multiple scan stations (our second objective) and how

this elevation ambiguity translates into volumetric uncertainty in change detection (third objec-
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tive). Every measurement of a physical quantity is subject to error (Taylor, 1982). In order to

deal with this fact we need to 1) understand where errors originate, 2) minimize errors where

possible, and 3) quantify how they affect our end result. In our case the desired end result is a

net elevation and volume change due to erosion or deposition within the study reach. This num-

ber is the product of an often lengthy work flow. During this work flow a number of decisions

are required concerning scan resolution, survey layout, point cloud registration, data filtering and

gridding. Yet we do not know a priori how the known uncertainties associated with individual

aspects of the above list contribute to the combined error in the end product (Buckley et al., 2008).

Therefore we tackle this question in a slightly different manner. The foremost problem is that

we generally lack higher-quality check data to compare to TLS data. This means that we cannot

quantify the absolute error in elevation of a TLS-generated point cloud (or any derivatives from it)

in a spatially detailed way. A possible solution to this is to measure the ambiguity (see above) of

the matched point cloud data in representing a natural surface and compare it with metrics of the

error-generating processes. First we examine how choices of scan grid resolution affect the point

density in complex topography. Next we look at the role of laser foot-print elongation as one of

the most widely reported sources of error in TLS data (Abellán et al., 2009; Buckley et al., 2008;

Hodge et al., 2009; Kaasalainen et al., 2008). Finally we propose a method to put meaningful

boundaries of uncertainty on the elevation difference calculated from DEMs which are generated

from two successive sets of TLS data. This final step is essential because surface roughness alone

introduces elevation ambiguity, irrespective of whether we use matched or single-point-cloud data

to generate a DEM.

3.4.2 Relationship between incidence angle and point density

Point density on the ground is controlled by angular scan resolution, distance to the object and

incidence angle of the laser beam on the ground (Figure 3.2B). In complex topography, survey

planning is essential to avoid data gaps due to occlusion and low point density due to low incidence

angles. A good survey layout requires both carefully selected scan stations that provide a large

field of view and a good overlap with adjacent scan stations, within the constraints of access and

time in the field (Lim et al., 2009).

The maximal scan resolution is limited by the minimal angle at which the laser beam can be

rotated between shots. In scanner control software the resolution is often expressed as the point

spacing (scan grid) on a sphere with a chosen diameter around the scanner optical centre. This
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Figure 3.4: (A) Predicted incidence angle ε from Equation 3.6 (see Figure 3.2B for definition) from scan
station 1H (optical centre of instrument 1.6 m above ground) based on a DEM with 2 m grid resolution. The
DEM was re-sampled from survey 2. White areas are not visible from the position of the instrument. (B)
The expected point density on the surface that can be achieved with different settings of scan grid spacing
at the distance of the point in question from the scanner. The calculation is based on Equation 3.8 and 3.9.
(C) Map of point density for area marked with dashed box in (A). The map incorporates data from six scan
stations: 2D, 1H, 1K, 1R and 2C, 2E outside of the test area.

value can be misleading in terms of achievable point spacing if the laser beam is not normal to

the object surface (Figure 3.4B), notably if sub-horizontal surfaces are surveyed. We calculate

the incidence angle as a function of the vector between the surface and the laser scanner and the

surface normal-vector (Figure 3.2B):

ε = arcsin
~n ·~b
|n| |b|

(3.6)

~n =


sinθ · sinα

sinθ · cosα

cosθ

 (3.7)

where ε is the incidence angle, ~n is the surface normal vector, ~b is the vector pointing from the

surface to the laser scanner optical centre, θ is the dip of the surface and α is the direction of

surface dip. Figure 3.4 shows how scanner position, topography and chosen scan grid spacing
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translate into point density. We base the incidence angle prediction (Figure 3.4A) on a coarse

2 m DEM of the debris flow channel to illustrate how coarse elevation information (e.g. from

airborne LiDAR) could be used to plan a TLS survey. This figure shows that incidence angles of

more than 30◦ only rarely occur on sub-horizontal surfaces. Larger incidence angles mainly occur

on surfaces sloping steeply towards the scanner. The maximum point spacing on the surface, d,

depends on the chosen scan grid spacing, G, as:

d =
G

sinε
(3.8)

Equation 3.8 is a worst case estimate for the maximum point spacing along dip or strike if the

projection of the scan grid on the surface is parallel to the strike and dip of the object surface. The

minimum point spacing on the object equals the chosen scan grid spacing either along strike or

dip and is minimal when ε = 90◦. The point density on the surface P is calculated as:

P =
1

dG
(3.9)

In Figure 3.4B we combine Equation 3.8 and 3.9 to calculate the point density as a function of

the incidence angle for a range of scan grid settings. Figure 3.4 highlights an important problem:

while only a small fraction of sub-horizontal areas are surveyed at incidence angles of > 30◦

(Figure 3.4A), the achievable point density with a given scan grid spacing drops by about 50%

when the incidence angle is decreased from 30◦ to 15◦ (Figure 3.4B). This implies that stations

should be placed close enough to maximise coverage at incidence angles of more than ≈ 15◦.

This recommendation potentially leads to a very high number of scan stations, depending on the

complexity of the survey area. There are other reasons for minimizing the number of scan stations,

such as complexity of the registration process or acquisition time, which we will discuss later.

3.4.3 Influence of laser footprint size on elevation ambiguity

Multiple reflections at sharp edges or at low incidence angles arising from increased laser footprint

size result in erroneous points (Hodge et al., 2009). The laser footprint size grows as a function

of distance due to beam divergence (Lichti et al., 2002), but also depends on the beam incidence

angle. For scanners where the laser beam can be approximated as a cone with an opening angle β

(e.g. the Trimble GS200 laser scanner), the laser footprint on a surface inclined to the laser beam
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is an ellipse, with the length of the long axis F = u+ v dependent on the incidence angle ε.

F = u+ v =

∣∣∣~b∣∣∣sin(β/2)

sin(ε−β/2)
+

∣∣∣~b∣∣∣sin(β/2)

sin(π− ε−β/2)

=
∣∣∣~b∣∣∣sin(β/2)

(
1

sin(ε−β/2)
+

1
sin(ε+β/2)

) (3.10)

where~b is the vector pointing from the object to the scanner. In Figure 3.5 we use the beam diver-

gence of the GS200 laser scanner (6 · 10−5 rad, Trimble, 2005) to show the relationship between

incidence angle ε and footprint size F . Figure 3.5 shows that footprint size only increases dra-

matically at low incidence angles and at large ranges. Equation 3.10 allows us to retrospectively

calculate grids of laser footprint size for our surveys, and to compare the laser footprint size in

every grid cell with the corrected standard deviation of elevation, to see whether areas with large

laser footprint size coincide with areas of high corrected standard deviation of elevation. Because

we are interested in the effect on matched data from multiple scan stations, we consider the area

outlined in Figure 3.1 that contains data collected from six scan stations (2D, 1H, 1K, 1R, 2C

and 2E). We calculated the laser footprint size grid for each scan station and created a combined

grid (Figure 3.6A) using the maximum value of footprint size Fmax from each scan station as the

grid value. We used the maximum value rather than the average to consider the worst possible

case. We found no relationship between Fmax and σelv,cor (Figure 3.6B), except that for small Fmax

(< 0.05 m) there was a slight tendency to lower values of σelv,cor. A similar pattern is seen for

average rather than maximum footprint size over the six scan stations. The lack of a dramatic
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increase in σelv,cor for larger laser footprint sizes indicates that laser footprint elongation at this

level of survey complexity (multiple scan stations, high surface roughness and complex topogra-

phy) has no significant effect on the quality of the primary scan data and also has no effect on our

ability to match these point clouds. Although there might be more erroneous points in areas of

large laser footprint size than in other parts of the point cloud, these areas are also likely to be less

significant in the ICP matching as a result of low point densities due to the low incidence angle

(Figure 3.4B). This is beneficial, as laser footprint size is something the user has very little control

over. With regard to elevation ambiguities in point clouds merged from multiple scan stations, we

conclude that they arise mainly from the complexity of the problem of registering the data rather

than from variations in the quality of the raw data of individual scans itself.
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3.4.4 Mitigation of gridding error

The elevation ambiguity we described in previous sections has important implications for the

post-processing of TLS data. These data are collected in the field with high point densities (102 to

104 points/m2), which may be higher than required for the application. The point density is com-

monly spatially highly variable (Figure 3.4C). The heterogeneous and ambiguous (in elevation)

point cloud that results is difficult to interpret. Gridding is one way of reducing the point cloud

to a spatially homogenous format, but high point densities cause an over-defined problem because
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every grid cell may contain tens to hundreds of points. Picking an elevation in such a grid cell is

not trivial because of the elevation ambiguity: For example the application of a minimum eleva-

tion or ‘lowest return’ filter may not be appropriate because it ignores volume elements extending

above this elevation (e.g. sediment grains sitting on the surface). It might also be a bad choice

because it is affected by a potential misalignment of the point clouds or by erroneous points of

other sources. We therefore identify a need to quantify how much any reasonable choice (given

the observed data) for the elevation in each grid cell influences the outcome of a change analysis

across two DEMs.

We can describe the elevation in the ith cell of DEM E as:

Ei = E ′i +ρi = E ′i +[0;Ri] (3.11)

where the correction factor ρi is a value in the interval [0;Ri] and E ′i denotes the elevation that

would be calculated using a lowest return filter (Figure 3.2A). Ri is the topographically corrected

range in elevation of the raw data points that fall into this particular grid cell (Equation 3.2). Our

subsequent analysis of the effect of the elevation ambiguity on change detection uses R instead of

σelv,cor because it takes the dimenson of length and therefore allows calculation of a volumetric

error (in m3). We assume that the true elevation is given by Equation 3.11 but we have no means

of obtaining its precise value. Consequently we define the difference model value D in grid cell i

as the difference between two DEMs (E1, E2) as follows:

Di = E2,i−E1,i

= E ′2,i +ρ2,i− (E ′1,i +ρ1,i)

= E ′2,i−E ′1,i +ρ2,i−ρ1,i

= D′i +ρ2,i−ρ1,i

(3.12)

where ρ1,i ∈ [0;R1,i], ρ2,i ∈ [0;R2,i] and D′i is the difference model based on just differencing the

lowest return DEMs. The value of the difference model and hence our ability to detect change

now depends not only on the absolute differences in elevation but also on the difference in the

correction factors applied. For example, if R1,i is larger than D′i we cannot be sure whether this

grid cell has experienced deposition or erosion, because the outcome depends strongly on the

particular combination of ρ1,i and ρ2,i. In order to quantify the value of the difference model at
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a given location we need to consider the distribution of all possible combinations of ρ2,i− ρ1,i.

In Figure 3.7A we show an example for R1,i = 0.15 m and R2,i = 0.10 m. Each cell represents

a possible combination of ρ1,i and ρ2,i. The cells in the top left corner represent outcomes with

a net positive effect on the value of the difference model while those in the bottom right corner

represent outcomes with a net negative effect. The relative proportions of positive and negative

cells are controlled by the relative magnitudes of R1,i and R2,i. This raster will be different for

each grid cell in a difference model. In Figure 3.7B we show the frequency distribution of the cell

values. For practical purposes we need to think about the probability of one particular combination

of ρ2,i−ρ1,i occurring, which is related to the issue of ambiguity in point cloud elevation. In every

grid cell of each DEM we have recorded a number of points with the laser scanner. We do not

know:

1. whether the distribution of elevation values recorded reflects the true distribution of eleva-

tion in nature; and

2. how much of R is due to misalignment in the point cloud or erroneous points and how much

is due to surface roughness.

Because of this uncertainty, we make the conservative assumption of a uniform distribution

to describe the probabilities of each outcome of ρ2,i− ρ1,i. This choice puts a high weight on

the extreme outcomes (top left and bottom right) in Figure 3.7A, but justification of a different

probability distribution would require a fundamentally better understanding of the data. By using a

uniform probability distribution we also remove any bias towards our initial choice of E ′ generated

using a lowest return filter. In other words, using a ‘first return surface’ and subtracting (instead

of adding) R would yield the same result.

In this framework, the volume change across n grid cells in the difference model is simply:

∆V =
n

∑
i=1

Di (3.13)

For each Di we have a range of equally possible values (Equation 3.13). To investigate the

effect of this on the total volume change we perform multiple simulations where we randomly

pick a value from the respective ρ2,i−ρ1,i distribution for each Di value. Here we assume that the

uncertainty in adjacent cells is independent. The procedure described accounts for the fact that
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the effects of the elevation ambiguity may to some degree cancel each other out over a larger area.

We interpret the range in volumes resulting from this calculation as the aggregated error over the

whole work flow. It is important to note that this error is specific to the quality of the raw data, the

surface roughness, the work flow and this specific application of change detection.
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3.5 Application to surface change calculation

In this section we apply the methodology for quantifying the volumetric error in change detection

to two subsequent DEMs of the debris flow channel at Illgraben. We quantified the surface change

due to the debris flow on 31 August 2008 using survey 2 and 3. The debris flow had a total volume

of ≈11,000 m3 and a peak discharge of ≈58 m3/s (measured 500 m upstream of the study reach).

To understand how a debris flow evolves whilst travelling down a channel, it is useful to

quantify gain (=erosion) and loss (=deposition) of material as function of down-stream distance.

We therefore integrated the difference model along the flow path by dividing the channel into bands

of 1 m width oriented perpendicular to the flow path and subsequently calculating the volume

change in each band (Figure 3.8A). Note that positive values indicate entrainment (volume gain of

the debris flow) and negative values indicate deposition (volume loss of the debris flow). From the

DEMs of survey 2 and 3 we calculated maps of aspect and slope with a grid resolution of l = 0.2 m.

From this we calculated maps of ∆e (Equation 3.1) for both surveys. In Matlab we calculated

maps of ∆z also with a grid resolution of l = 0.2 m. Using Equation 3.2 we then calculated maps

of corrected range in elevation (R1, R2) for both surveys. With this we were able to estimate the

volumetric error as outlined in the previous section. We performed 100 simulations in which we

picked a random value from the ρ2,i−ρ1,i raster for each grid cell and used it in Equations 3.12 and

3.13. The volumetric error on this local volume change per cross section is shown in Figure 3.8B.

The errors are largest where the channel has sub-vertical banks (Figure 3.1) near the top end of

the study reach (between 0 and 50 m downstream distance). The width of the gray band reflects

the range of deviation from the mean outcome shown in Figure 3.8A. It is worth noting that this

deviation is not symmetric because the mean outcome (Figure 3.8A) is calculated based on the

mean of all cell values in each ρ2,i− ρ1,i matrix. This mean is different from zero if R1,i and

R2,i are different (which is most likely), hence the asymmetry. This has important implications

for the cumulative volume change along the study reach, which is summed over a total area of

4,947 m2 (Figure 3.8C). The dashed line in Figure 3.8C is the result of the uncorrected calculation

based on D′, the difference model based on two ‘lowest return’ DEMs, while the solid line within

the gray band is the calculation based on D and takes into account the ambiguity in elevation

(Equation 3.12). This yields a total likely entrained volume of between 81 m3 and 92 m3 based on

100 random simulations, with a mean outcome of 87 m3 of entrainment. The asymmetry of the
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volumetric error causes the shift towards lower net entrainment in the cumulative volume change

plot. This means that on average R1,i < R2,i. Surprisingly, the actual differences in the means are

very small: R̄1 = 0.10 m and R̄2 = 0.11 m. These differences reflect slight changes in surface

roughness, changes in data quality or both from one survey to the next. These differences have a

significant effect – the difference between dashed and solid line in Figure 8C – on the result of a

volume calculation and cannot be ignored.
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Figure 3.8: Analysis of surface change as a result of the debris flow that occurred on 31 August 2008,
based on the difference model between surveys 2 and 3. The change calculation is limited to the channel
area indicated by cross section markers in Figure 3.1. (A) Local volume change in cross sections of 1 m
width starting at the upstream end of the study reach. Positive values are entrainment (volume gain of the
debris flow) and negative values are deposition (volume loss of debris flow). (B) Volumetric error on local
volume change per 1 m downstream distance (A) from 100 random simulations. (C) Cumulative volume
change for the uncorrected difference model (dashed black line), for 100 random simulations (gray) and
for mean correction (solid black line).
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3.6 Discussion

Our results have some important but perhaps unexpected implications for surveying complex to-

pography with a terrestrial laser scanner. Multiple surface reflections due to laser footprint elon-

gation do not have a significant negative effect on the quality of a matched point cloud at this scale

and in a multiple-station survey of this complexity. Also the relative positioning of scan stations

has no consistent effect on the ability to register the data using ICP as long as sufficient over-

lap between both scan stations is provided. However, for any application that makes quantitative

use of TLS data, the point cloud quality must be assessed in a spatially consistent manner. This

is particularly true for matched point clouds from multiple scan stations. Point cloud quality is

controlled by two factors, point density and elevation ambiguity, which we consider here in turn.

The choice of a certain scan grid spacing at a given distance can be very misleading in terms

of actual point density on the ground. When scanning sub-horizontal surfaces, incidence angles

are likely to be as low as 15◦ in parts of the scan. In order to collect an average of 100 points/m2

on such areas (that is, on average one point every 100 mm) the scan grid spacing needs to be

50 mm or less at any given distance between scanner and object. In other words the choice of

scan grid spacing should be based on the desired final point density, accounting for the expected

incidence angle on the area of interest. Particularly at low incidence angles (< 40◦), small changes

in scan grid spacing have very large effects on point density. While point density far away from the

scanner can be increased by decreasing the scan grid spacing, the problems of occlusion remain.

Only additional scan stations from different directions with higher incidence angles can address

this issue. This is particularly important in complex terrain, because high point densities help the

ICP algorithm to converge when matching point clouds from different scan stations.

The second factor in point cloud quality is the elevation ambiguity at a given point. As in-

dicators of point cloud quality we have proposed two measures of point cloud thickness; both

include a correction factor for topography that is estimated from the data on a grid basis. The

first is standard deviation of elevation σelv,cor (Equation 3.5), a dimensionless measure of average

relative point cloud thickness. The second is range in elevation R (Equation 3.2), which is much

more sensitive to the extreme points contained in the data set. This use of R relies on two assump-

tions: firstly that the true surface elevation is somewhere within the range spanned by the data and

secondly that the surface variability (that is, the highest and lowest points within a given search

window) has been captured completely.
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DEMs are a common and convenient way to represent topography, but their construction from

point cloud data presents special challenges. Point density in TLS data is always highly variable.

This means there will always be empty cells and conversely cells with multiple data points. Areas

where there are no data can only be filled by interpolation and there is no way of constraining the

uncertainty of the resulting DEM. If we have a number of data points in one grid cell, we can use

their elevation information to make a more informed choice for the elevation of this particular grid

cell. We have demonstrated one way of doing this in this paper, but there is certainly scope for

other solutions. Quite apart from how we tackle the elevation ambiguity in TLS data, however,

the choice of grid spacing is important. Clearly, more research is needed into how many data

points should ideally be used to assess the elevation in one grid cell, particularly when there are

large roughness elements (e.g. sediment grains) within single cells. The answer to this question

depends on the surface roughness, the maximum achievable point density in the field and the level

of detail we want to represent. However, a tricky problem remains: while the point density is

highly variable, the grid spacing is a constant and will never be optimal for the whole data set.

One way of dealing with this is the use of triangular irregular networks (Tucker et al., 2001) or

other irregular grids, although these may raise other challenges in terms of their wider use and

comparability with other data sets.

We have also demonstrated that lowest return filters are problematic for the application of

change detection. In change detection it is important to use a volumetrically correct surface – that

is, a surface where the positive and negative deviations of the natural surface arising from uncer-

tainty in the point cloud or real roughness elements cancel each other out as much as possible.

Otherwise volumes calculated from the comparison of two DEMs will be biased in an undeter-

minable manner (Figure 3.8C). It is of great importance to determine the value of this volumetric

bias – the difference between dashed and solid black line in Figure 3.8C – as it is characteristic of

each pair of point cloud data used in a specific change detection study.

However, the danger of using a lowest return filter (or indeed any filter) is that we remove

essential information that might tell us where this volumetrically correct surface might be. Rather

than trying to construct a volumetrically correct surface (by applying complicated filters) we have

proposed a method to assess how our choice for the elevation of one particular grid cell in both

surveys affects our ability to detect change (Figure 3.8B). The calculation of this volumetric error

is possible because we used a relatively coarse grid spacing compared to the point spacing in the
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raw data. With a grid spacing of 0.2 m, using our test data, 10% of cells are empty, another 10%

contain only one data point, and 70% of cells contain six or more data points. It could be argued

that an even larger grid spacing should be used in our example to reduce the number of empty

or sparsely populated grid cells. However, without further investigations into how different grid

spacing affects the range of simulation results in Figure 3.8B, it is hard to quantitatively determine

the most appropriate grid spacing.

It is important to note that volumetric bias and error are partly dependent on the method of

point cloud registration employed but they will never be zero. This is firstly because point cloud

matching is never perfect and secondly because changes in surface roughness between surveys are

highly likely in many geomorphic environments.

3.7 Conclusions

We have developed a method to quantify volumetric uncertainty in change detection specific to

data from terrestrial laser scanning. This method is based on the ambiguity in elevation in the point

cloud arising from surface roughness elements, erroneous points and misalignment of multiple

point clouds. By deliberately choosing a relatively large grid spacing for the DEMs, we can use

the range in elevation of all raw data points that fall into one grid cell to constrain uncertainty

in elevation. We estimate the volumetric uncertainty by randomly varying the surface elevation

within a reasonable range obtained from the raw data. We have measured an entrained volume of

between 81 m3 and 92 m3 over an area of 4,947 m2. This volumetric error is almost completely

independent of the measurement error of the instrument, but is strongly affected by survey and

processing parameters such as surface roughness, overall complexity of the survey layout, actual

point density and DEM grid spacing.

The elevation ambiguity in data from surveys of complex topography, incorporating multi-

ple scan stations, appears to arise primarily from imperfect point cloud registration and surface

roughness. Previously-documented effects such as multiple surface reflections due to laser foot-

print elongation on meter-scale objects (Hodge et al., 2009) appear to have no significant effect on

point cloud quality at the level of survey complexity and size presented in this study.

The main difficulty in TLS surveying is to ensure a minimum point density in all areas of

interest. Point density is very sensitive to the incidence angle and to the user-defined scan grid
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spacing. The minimum point density required should be informed by the surface roughness and

the desired grid spacing of the DEM. Areas of higher surface roughness should be scanned at

higher resolutions to ensure capture of the full range in elevation of a surface. Point density

should be high enough for most DEM cells to contain multiple data points. Locations for scan

stations should therefore be chosen in order to maximise incidence angle (at least 15◦ for most

of the scanned area). With regard to point cloud registration we recommend to ensure significant

overlap between scan stations; the specific scan station positioning is of minor importance.



Chapter 4

Dynamic controls on erosion and

deposition on debris-flow fans

Abstract

1 Debris flows are amongst the most hazardous and unpredictable of surface processes in moun-

tainous areas. This is partly because debris-flow erosion and deposition are poorly understood,

resulting in major uncertainties in flow behavior, channel stability and sequential effects of mul-

tiple flows. Here we apply terrestrial laser scanning and flow hydrograph analysis to quantify

erosion and deposition in a series of debris flows at Illgraben, Switzerland. We identify flow depth

as an important control on the pattern and magnitude of erosion, whereas deposition is governed

more by the geometry of flow margins. The relationship between flow depth and erosion is vis-

ible both at the reach scale and at the scale of the entire fan. Maximum flow depth is a function

of debris flow front discharge and pre-flow channel cross section geometry, and this dual control

gives rise to complex interactions with implications for long-term channel stability, the use of fan

stratigraphy for reconstruction of past debris flow regimes, and the predictability of debris flow

hazards.

1Schürch P., Densmore A.L., Rosser N.J. and Mc Ardell B.W. (2011). Dynamic controls on erosion and deposition
on debris-flow fans,Geology, doi: 10.1130/G32103.1
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4.1 Introduction

Debris flows are a ubiquitous hazard in mountain areas, not least because of their ability to avulse

from an existing channel and inundate adjacent areas on debris-flow fans (Jakob and Hungr, 2005;

Rickenmann and Chen, 2003). The avulsion probability is controlled mainly by the ratio of flow

peak discharge and channel conveyance capacity. While the latter can be estimated from field

measurements (Whipple and Dunne, 1992), both parameters can change rapidly during a flow

due to erosion and deposition along the flow path (Fannin and Wise, 2001). This not only makes

it difficult to predict the temporal evolution of an individual flow, but also changes the boundary

conditions for the next flow in that channel. There results a critical need to understand the dynamic

relationships and feedbacks between debris flow volume and the changes in channel topography

due to erosion and deposition as the flows traverse a fan.

Previous studies have focused more on debris-flow deposition than on the mechanics of ero-

sion, and published work on erosion is partly contradictory. Takahashi (2007) found that the

concentration of coarse particles in a debris flow increases with bed slope, and that erosion is only

possible when the flow is undersaturated in coarse particles. But field observations, however, in-

dicate that erosion occurs mostly during passage of the granular flow front (Berger et al., 2011),

and is likely associated with impacts of coarse sediment on the bed. Iverson et al. (2011) explored

the role of bed properties and found a positive correlation between erosional scour depth and bed

water content. Debris-flow deposition has been related to channel gradient (Cannon, 1989; Fan-

nin and Wise, 2001; Hungr et al., 2005; Hürlimann et al., 2003), downstream channel widening

(Cannon, 1989; Fannin and Wise, 2001), or flow volume, based on an observed power-law re-

lationship between flow volume and total inundated area (Griswold and Iverson, 2008). More

generally, detailed monitoring of experimental flows (Major and Iverson, 1999) and physically-

based description of fluid-solid mixtures (Iverson, 1997) have related flow mobility to granular

temperature, defined as the mean square of particle velocity fluctuations, and excess pore-fluid

pressure (McCoy et al., 2010). These effects are counteracted by friction at the dry coarse-grained

flow margins (Major and Iverson, 1999).

The objective of this study is to understand the interaction between a debris flow and the

channel bed by systematically measuring erosion and deposition in a series of natural flows at

both the reach and fan scales. We hypothesize, based on the results of Berger et al. (2011), that
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Figure 4.1: Overview of the Illgraben catchment and fan in southeastern Switzerland. Tributary joining
downstream of check dam (CD10) is inactive due to hydro-power dam in headwaters. Geophones are
mounted on CDs 1, 9, 10, 28 and 29. Flow stage measurements are taken at CD10 (radar) and 29 (laser
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m for altitudes above 800 m a.s.l. Digital elevation model DTM-AV©2011 published with permission from
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local bed elevation change is related to basal shear stress (and thus to maximum flow depth) and

flow volume. We use a terrestrial laser scanner (TLS) to determine high-resolution reach-scale

measurements of erosion and deposition in a natural channel caused by four debris flows. We

then relate these data both to flow depth and to fan-scale flow volume changes estimated from

debris-flow hydrographs.

4.2 Study area

The Illgraben debris flow fan is situated in the Rhone valley, Switzerland (Figure 4.1) and has a

long history of debris flows (Lichtenhahn, 1971; Marchand, 1871). The fan has an area of 6.6 km2

with a radius of 2 km and a gradient that decreases from 10% to 8% down-fan (Schlunegger

et al., 2009). The bedrock geology in the catchment is dominated by schist, dolomite breccia and

quarzite (Gabus et al., 2008). The lowermost bedrock along the Illgraben channel outcrops just

below a sediment retention dam (check dam 1, Figure 4.1); downstream the channel bed consists

of unconsolidated sediments. Convective storms from May to September trigger three to five

debris flows per year (McArdell et al., 2007). In the 1970s a series of concrete check dams (CD)

were constructed to limit erosion and control the channel position on the fan (Lichtenhahn, 1971).

Flow hydrograph and onset data are available from two gauging stations at CD10 near the fan apex
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(Figure 4.1 Badoux et al., 2008) and CD29 at the fan toe (McArdell et al., 2007). Since 2007 we

have monitored the channel bed using TLS in an unconfined 300 m study reach between CD16

and 19 (Figure 4.1).

4.3 Methods

We surveyed the study reach before and after debris flows using a Trimble GS200 terrestrial laser

scanner yielding point clouds of ≈ 107 vertices per survey. Data from individual scan positions

and subsequent surveys were merged into one coordinate system using an iterative closest point

matching algorithm (Besl and McKay, 1992). We gridded the data to a 0.2 m resolution DEM

and calculated difference models (Figure 4.2) from subsequent surveys; this yields a conservative

estimate for erosion because it includes deposition in the falling limb of the flow hydrograph

(Berger et al., 2011). For each flow, we mapped maximum inundation limits from levees and

mudlines along the channel, and interpolated these to a 0.2 m resolution maximum flow stage

surface. Our estimated uncertainty on this surface is±0.25 m, given the difficulties in identifying

the mudline in the field due to splashing and poor preservation. The maximum flow stage surface

is a lower estimate as the flow surface is generally convex up in cross section. Flow depth was

taken as the difference between the maximum flow stage surface and the pre-event DEM. We

analyzed the relationship between flow depth and channel change via a cell-by-cell comparison of

flow depth with the difference model (Fig. 3A).

To understand how fan-scale flow volume change relates to flow properties, we estimated vol-

umes and debris flow front heights from the first surge for 14 debris flows in 2007–2009 (Table C.1

in Appendix C) from flow hydrographs measured at the CD10 and CD29 gauging stations. From

measurement of the front velocity of each flow, we calibrated a Manning-type friction relation

(Schlunegger et al., 2009) to estimate mean flow velocity as a function of flow stage (Appendix C).

The friction relation is then used to integrate the hydrograph over the event duration to obtain the

total flow volumes at both the apex (CD10) and toe (CD29) of the fan.

4.4 Results

The difference DEMs for events 11 and 14 (Figure 4.2) show that both events caused net erosion

within the study reach, leading to increases in flow volume of 87 ± 6 m3 and 2,039 ±4 m3,

respectively, but that the spatial patterns of erosion and deposition are very different. Event 11
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shows alternating regions of erosion and deposition, with erosion along the deepest parts of the

channel and on the outside of bends, and discontinuous levee deposits along the flow margins and

on shallow terraces (Figure 4.2A). The maximum discharge in this event was 60 m3/s calculated

at CD10. In event 14, the deepest parts of the channel were eroded continuously throughout

the reach; zones of deposition correspond to localized over-bank spill and several large boulders

(Diameter 2 m) have been emplaced along the flow margins (Figure 4.2B). The average flow depth

in the channel was substantially larger than in event 11 and we estimate a maximum discharge of

630 m3/s at CD10.
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By combining estimated maximum flow depth in each grid cell with the measured elevation

change in that cell for events 9, 11, 12 and 14, we can evaluate the effect of flow depth on the

probability of erosion or deposition (Figure 4.3A). The data illustrate two important observations:

that substantial erosion is more likely with increased flow depth, but also that a broad range of

outcomes is possible at any given flow depth.

Flow depth also appears to control debris-flow behavior at the fan scale. Of the 14 events in

Figure 4.3B, 11 led to net deposition on the fan and three (5, 9, 13) to net erosion when comparing

flow volumes at CD10 and CD29. All erosive events had front heights greater than 2.3 m, and

all depositional events (except 14) had front heights less than 2.7 m. Event 14 consisted of two

surges within the first 17 s with front heights of 2.3 m and 5.2 m respectively. By CD29, only

a single surge was discernable, with a front height of 2.5 m. At the fan scale this event was

clearly depositional (Figure 4.3A). However, visual inspection of the channel showed that it was

highly erosive on the upper part of the fan (between CD10 and 19), including the study reach

(Figure 4.2B), while downstream of CD19 we observed widespread deposition on inset terraces.



4.5. Discussion and conclusions 83

4.5 Discussion and conclusions

We have established a unique record showing correlation between flow depth and erosion or depo-

sition in debris flows (Figure 4.3A). At flow depths of less than 1.5 m the probability distribution

function (PDF) of bed elevation change approaches symmetry around zero: erosion and deposi-

tion are equally likely. As flow depth increases, the PDF widens to include the possibility of high

erosion values, while the probability of deposition decreases moderately. At a flow depth of 1–2

m the probability of deposition is up to 50%, while at a depth of 3 m the probability of deposi-

tion is less than 25%. Flow depth exerts a much stronger influence in the erosional domain: the

10%, 25% and 50% quantiles of erosion all show an increase at flow depths greater than ≈ 2 m.

Furthermore, between 2 and 3 m flow depth, the likely amount of erosion at any given probability

level approximately doubles.

Flow depth is largest at the debris flow front (Iverson, 1997; McArdell et al., 2007) and the

majority of erosion takes place during its passage (Berger et al., 2011). The flow depth at the

front influences the forces acting on the channel bed via three mechanisms: higher basal shear

stress, the impact stresses of coarse particles recirculating in the flow front (Hsu et al., 2008;

Stock and Dietrich, 2006; Suwa, 1988), and hydraulic pressure at the flow front that may cause

rapid undrained loading (Hungr et al., 2005) and liquefaction of the channel bed (Sassa and Wang,

2005). Although all three processes may be relevant here, we lack data on the second and third

mechanisms. We can evaluate the first by converting flow depth to basal shear stress (Figure 4.3A),

defined as τb = ρbghS where ρb is density, g is gravity, h is flow depth and S is channel slope.

Taking an observed median density of debris flow fronts at Illgraben of 1,800 kg/m3 (35 events)

and slopes of 8%–10%, we find that substantial erosion takes place when a basal shear stress of

3–4 kPa is exceeded, which is consistent with erosion monitoring near CD29 (Berger et al., 2011).

Whether this shear stress reflects an effective strength of bed material, or is instead analogous to a

threshold shear stress for fluvial entrainment, is not clear from our data. Other effects such as grain

impact (Berger et al., 2011) or antecedent moisture conditions of the bed (Iverson et al., 2011) are

relevant as well.

In contrast, debris-flow deposition occurs dominantly along the flow margins and where the

flows spread over low-relief areas adjacent to the channel (Figure 4.2). As has been argued else-

where (e.g. Cannon, 1989; Fannin and Wise, 2001; Major and Iverson, 1999) this pattern is consis-
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tent with the triggering of deposition by increased friction along the flow margins, and by changes

in local channel geometry. This is illustrated in Figure 4.2 by substantial deposition in the lower,

wider cross-sections rather than the narrow upstream section of the reach.
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Figure 4.4: Time series of erosional (negative) or depositional (positive) volume change per event, cal-
culated as the difference between volumes at CD10 and 29 (gray bars) with event numbers (Appendix,
Table C.1) and cumulative volume change (black line).

If debris-flow front height is a key variable in determining flow behavior, then what are its pri-

mary controls? Front height is proportional to discharge but is dynamically adjusted as the channel

cross-section geometry changes along the flow path. Sudden changes in channel geometry can re-

duce the maximum flow depth and cause both over-bank deposition and, critically, a decrease

in basal shear stress within the channel, potentially leading to the onset of in-channel deposition

(Cannon, 1989). Front height is also likely to vary with the proportion of the coarse sediment

fraction. Coarse debris flow fronts have very low fluid pressures (Iverson, 1997; McArdell et al.,

2007), leading to the analogy of these steep and dry flow fronts as mobile dams (Major and Iver-

son, 1999). As a thought experiment, consider such a mobile dam with a triangular cross-section

in a channel ∼ 4 m deep and 10 m wide, implying a total of ∼ 160 m3 of material to build. Be-

cause coarse particles are recirculated in the flow front (Iverson, 1997; Suwa, 1988) a debris flow

probably requires a multiple of this volume to sustain the mobile dam, but even this is a small

amount of material compared to typical Illgraben flow volumes (Appendix, Table C.1). Thus, the

loss of even moderate volumes of coarse debris to levee deposition may lead to a fundamental

downstream change in behavior as flow height decreases. Event 14, which showed a rapid down-

stream transition from dominantly erosional to dominantly depositional behavior, may represent

an example of this process.
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Our findings also have implications for the channel evolution over the course of sequential

events. Figure 4.4 shows per-event and cumulative fan-scale changes in flow volume, indicating

three phases of aggradation each followed by an erosive event. The state of the channel changes as

a result of these events: in events with a very high front we expect deposition on the channel banks

and erosion along the center-line (e.g., Figure 4.2B); a medium front height in the same channel

might only erode along the center line; and events with even smaller flow fronts might gradually fill

the channel by deposition of lobes and inset levees. As a result, similar consecutive events entering

the apex of the fan will experience a different channel cross-section than their predecessors and

will undergo different downfan changes in volume increase or loss. The cycles of filling and

evacuating the channel observed here are evocative of larger-scale autocyclic storage and release

of sediment on alluvial fans (Kim and Muto, 2007; Kim et al., 2006) and have major implications

for the preservation of debris-flow fan stratigraphy, even in the absence of temporal variations

in external controls such as climate, tectonics or changes in sediment supply. In addition, the

lack of correlation (R2 = 0.0004) between flow volume and front height (Figure 4.3B) means that

(perhaps counter-intuitively) flows with larger total volumes may not necessarily pose the greatest

hazard of avulsion. The dependence of flow volume change on the local channel characteristics

and the history of previous flows are likely to complicate efforts to define hazard by establishing

magnitude-frequency distributions for particular catchments (Hungr et al., 2008; Jakob, 2010;

Jakob and Friele, 2010; Zimmermann et al., 1997) without a better understanding of downstream

flow evolution.



Chapter 5

Debris-flow fan evolution modeling

using a reduced-complexity model

Abstract

1 Debris-flow fan evolution on time scales of decades to tens of thousands of years is poorly un-

derstood because the cumulative effects of erosion and deposition in successive events are rarely

well documented, and numerical models which attempt to simulate this are lacking. Enhancing

this understanding is crucial to assess the role of both autogenic (internal) and allogenic (exter-

nal) forcing mechanisms on building debris-flow fans. Over short time scales understanding fan

evolution is intimately linked to debris-flow hazard assessment. In this paper I propose a new 2D

reduced-complexity model to assess debris-flow fan evolution. The model builds on a broad range

of qualitative and empirical observations on debris-flow behaviour, as well as on direct monitoring

data from active debris-flow channels. I formulate a framework of rules that govern debris-flow

behaviour, that allows efficient implementation in a numerical simulation of fan construction. I

demonstrate that my model replicates the general behaviour of alluvial fans in both nature and in

flume experiments. Using three applications of the model I demonstrate how fan evolution model-

ing improves understanding and interpretation of inundation patterns, fan surface age distribution

and fan surface morphology.

1This chapter is in preparation for submission to Journal of Geophysical Research – Earth Surface, but the concep-
tual framework of the model is already published in: Schürch P., Densmore A.L., Rosser N.J., Mc Ardell B.W. (2011).
A novel debris flow fan evolution model based on debris flow monitoring and LIDAR topography, in R. Genevois,
D. Hamilton and A. Prestininzi (eds), 5th International conference on debris-flow hazards – mitigation, mechanics,
prediction and assessment; Padua, Italy 14–17 June 2011, Casa Editrice Universita La Sapienza. p.263–272
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5.1 Introduction

Debris-flow fan evolution on time scales of decades to millenia is poorly understood, but un-

derstanding behaviour at this time-scale is crucial to assess the role of external forcing such as

catchment processes, climate, changes in base level or tectonics. A large number of researchers

have investigated the morphology of debris-flow deposits at both the scale of individual flows

(Blair and McPherson, 2008; Costa and Fleisher, 1984; Kim and Lowe, 2004; Major, 1997; Ma-

jor and Iverson, 1999) or at fan-scale (Dühnforth et al., 2007; Frankel and Dolan, 2007; Helsen

et al., 2002; Jakob and Friele, 2010; Stock et al., 2008; Volker et al., 2007). Interpretation of fan

morphology is hindered by a lack of understanding how debris-flow properties, such as input flow

volumes, deposit geometry, bed saturation or sediment concentration affect fan morphology over

time.

The role of autogenic processes acting on debris-flow fans is poorly understood (Chapter 4;

Dühnforth et al., 2008; Whipple and Dunne, 1992). For alluvial fans it has been shown convinc-

ingly that the separation of autogenic and allogenic processes is important, but not always possible,

to understand fan stratigraphy and morphology (Bryant et al., 1995; Clarke et al., 2010; Jerolmack

and Paola, 2010; Kim and Muto, 2007; Kim et al., 2006).

Debris-flow properties such as volume, sediment concentration and boulder concentration in

natural debris flows are highly variable and originate from poorly understood mechanisms op-

erating in the catchment-fan system (Hürlimann et al., 2003; Marchi et al., 2002; McArdell and

Berger, 2010; Okuda et al., 1977; Schlunegger et al., 2009; Suwa, 1988; Suwa et al., 2009; Suwa

and Okuda, 1988; Whipple and Dunne, 1992). Whilst these parameters are difficult and expensive

to measure in the field, numerical flow modeling and systematic observation of flows suggests that

this variability exerts a strong control on the flow velocity, peak discharge, pore-fluid pressure,

flow mobility and deposit geometry (Chapter 4; Griswold and Iverson, 2008; Iverson, 1997; Iver-

son et al., 2010; Julien and Paris, 2010; Major and Pierson, 1992; McCoy et al., 2010; Whipple

and Dunne, 1992).

By implication there is an urgent need to incorporate such observations on debris-flow be-

haviour at the level of individual flows into a numerical fan evolution model. Such a model will

then allow investigation of the interactions between process and developing form on debris-flow

fans over multiple events, and it will increase understanding of the controls on some of the most
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simple measurable features of fan morphology such as slope, roughness, and presence or absence

of channels. In this chapter I propose such a model, where I formulate rules for debris flows based

on monitoring data (Chapter 4; Berger et al., 2011) and more general observed behaviour (Berti

and Simoni, 2007; Blair and McPherson, 1998; Cannon, 1989; Fannin and Wise, 2001; Griswold

and Iverson, 2008; Iverson et al., 1998; Takahashi, 2007).

First, I review existing work on numerical modeling of alluvial fans and debris flows, which I

use to justify the modelling approach chosen. Next I consider what is known about the relationship

between fan morphology and characteristics of the input flux of water and sediment to a fan system.

This is important to assess the validity of the proposed model in absence of actual direct calibration

data. A detailed review on the mechanics of erosion and deposition at the level of single debris

flows together with my own observations at Illgraben are given in Chapter 4.

5.1.1 Numerical modeling of alluvial fans

A first class of models has been developed to examine the filling of accommodation over geo-

logical time scales by sediment which is transported by fluvial processes. Such alluvial fan or

fan-delta models were commonly based on general formulations of sediment transport and flow

resistance that average deposition in space and time (De Chant et al., 1999; Parker et al., 1998).

For example, in the model of Hardy and Gawthorpe (1998) sediment was transported at a constant

rate by a random walk algorithm from the source to the shore line.

These models had no actual representation of channels in the topography, although a more

recent model by Sun et al. (2002) was based on a cellular approach capable of representing chan-

nelized flow. Many of these models have operated on a rectangular grid (e.g. Coulthard et al.,

2000; Sun et al., 2002), but model behaviour can be very sensitive to the grid orientation and

spacing (Nicholas and Quine, 2007a). Nicholas and Quine (2007a) proposed a numerical fan evo-

lution model with a radial grid focused at the fan apex to represent the fan surface and a channel

network represented by node positions, and explicitly included a process-form feedback at the

channel scale in order to regulate the system response to erosion and deposition. The approach

followed by Nicholas and Quine (2007a) seems to be an interesting starting point for a debris-flow

fan evolution model because of the use of a radial grid and explicit inclusion of channels.

However these alluvial fan models cannot be used to model debris flows because of a range of

reasons: Fluvial processes operate more continuously in time, changes to the surface morphology
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take place gradually and the sediment flux and maximum transportable grain size are typically

limited by the flow velocity or the available stream power. In contrast debris flows are events with

a finite duration and a well defined spatial extent. Debris flows self-channelize by thalweg erosion

and deposition of levees (Blair and McPherson, 2008) but may be subject to abrupt avulsion,

whereby relatively small sediment volumes deposited in critical places along the channel can force

subsequent flows or flow surges in new directions (Blair and McPherson, 2008; Whipple, 1992).

In a single debris flow all available grain sizes are transported such that debris flow deposits show

limited or no down-fan fining (Blair and McPherson, 2008; Kim and Lowe, 2004). Observations

imply that erosion in debris flows may be largely a function of the inertial stresses induced by

coarse particles carried in the flow front and impacting on the bed (Chapter 4; Hsu et al., 2008;

Stock and Dietrich, 2006). None of the first class of models includes these effects explicitly.

5.1.2 Modeling debris flows

The second class of models was designed to model sediment transport by single debris flows in a

physically correct manner (Chapter 1; Christen et al., 2010; Denlinger and Iverson, 2001; Iverson,

1997; Patra et al., 2005; Pudasaini et al., 2005; Scheuner et al., 2009; Takahashi, 2007). They

are based on grain-fluid mixture theory and yield depth-averaged equations for momentum and

mass conservation. At the moment they assume constant mass. A major finding from simulations

based on these models was that the total flow resistance depended more on boundary geometry

than on boundary shear stress (Denlinger and Iverson, 2001). This is important for understanding

how channel geometry affects flow behaviour. These models are not suitable for simulating fan

development over long time scales because of their numerical complexity and long run times.

Individual model runs can take from several minutes up to several hours depending on size and

resolution of the model space. This problem was discussed in detail in Dalbey et al. (2008) with

the application of hazard assessment in mind, where due to the uncertainty of input parameters

hundreds of runs are necessary to explore the range of possible outcomes.

Empirical and semi-empirical approaches (e.g. Berti and Simoni, 2007; Gamma, 1999; Gris-

wold and Iverson, 2008; Iverson et al., 1998; Rickenmann, 1999, 2005; Scheidl and Rickenmann,

2011) were often written with an application in regional hazard assessment in mind. These models

run much faster, but make compromises with regard to the representation of the physics of debris

flows.



5.1. Introduction 90

For some applications the main interest lies in predicting only the inundation area of a flow

of given volume over given terrain. This can be achieved at lower computational costs using

empirical or semi-empirical relationships. Griswold and Iverson (2008); Iverson et al. (1998)

and Berti and Simoni (2007) found a power-law relationship between total flow volume V and

inundated planimetric area B:

B = αV 2/3 (5.1)

where α is a site-specific coefficient determined by regression. The smallest values of α = 6–7

were reported by Crosta et al. (2003) for 138 granular debris flows with volumes of 2 to 105 m3

(Central Italian Alps). A value of α = 20 was reported by Griswold and Iverson (2008) from a

worldwide data set of 44 non-volcanic debris flows ranging in volume from 10 to 107 m3. Berti

and Simoni (2007) suggested α = 33 based on a data set of 24 granular debris flows with volumes

of 500 to 5·105 m3 in the Italian Alps.

The rate of deposition or erosion is a key parameter for understanding how debris flows interact

with their bed and banks, and thus build topography. This two-way exchange of material between

the debris flow in motion and the channel bed is called the lag or yield rate (Cannon, 1989; Hungr

et al., 1984). The lag rate is defined as a volume per unit downstream distance that is lost (dV/dx<

0) or gained (dV/dx > 0) by the flow. Most difficult to predict is the erosion depth for transport-

limited conditions (Abanco and Hürlimann, 2011; Gertsch, 2009; Hungr et al., 2005, 1984), and it

is highly variable in different settings (Hungr et al., 2005). Material can be incorporated into the

flow by lateral erosion of the banks, bank collapse or entrainment of material from the channel bed,

and only repeat monitoring of debris flow channels before and after flows provides the necessary

data to understand and quantify these processes (Chapter 4; Berger et al., 2011; Iverson et al.,

2011; Jakob, 2010). More details on the mechanism of entrainment are discussed in Chapter 4.

The rates of deposition in a debris flow are closely linked to the runout length (Cannon, 1989;

Fannin and Wise, 2001; Rickenmann, 2005). As a debris flow enters channel reaches with lower

gradients, deposition becomes progressively more important, and eventually comes to dominate

over erosion, leading to a net loss of flow volume (Cannon, 1989; Fannin and Wise, 2001; Hungr

et al., 2005; Hürlimann et al., 2003; Rickenmann, 2005). The rate of deposition may increase dra-

matically on the lower parts of a fan where levee deposition is replaced by lobe formation (Blair
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and McPherson, 2008). Despite these general observations, there remains no simple rule for the

onset of deposition. Fannin and Wise (2001) have shown that channel confinement plays a major

role in triggering deposition. Cannon (1989) showed for one particular debris flow that channel

geometry (triangular vs. rectangular section), channel width and strength or rheology of the flow-

ing debris influence the rate of deposition. Other researchers have proposed that deposition starts

at a particular bed slope angle, ranging from 3.5◦ to 40◦ Hungr et al. (2005). These data are de-

rived from a great variety of debris flows, comprising ranges in for example volume, composition,

channel geometry, and show that slope alone is not a good predictor for the onset of deposition.

Work by Iverson (1997) suggested that flow behaviour is best described by the granular tempera-

ture (Chapter 1 and 4) in the sense that material with a high granular temperature is more likely to

keep moving, whilst declining granular temperature inhibits flow.

All these observations are important for understanding the controls on debris flow deposition

but they provide little guidance on how to predict the lag rate for a specific flow. I am only aware

of one relationship that can be adapted to estimate the lag rate. Iverson et al. (1998) and Griswold

and Iverson (2008) proposed an empirical relationship between total flow volume V of a debris

flow and the cross sectional area of the flow A:

A = εV 2/3 (5.2)

where ε = 0.1 (regression based on 50 non-volcanic debris flows, worldwide). For granular debris

flows in the Italian Alps (19 events) Berti and Simoni (2007) suggested ε = 0.03. This relationship

can be interpreted as an upper limit on the rate of deposition, i.e. according to Equation 5.2 a

debris flow cannot deposit more than A m3 of sediment per 1 m channel length. Where only levees

are deposited, the lag rate will necessarily be less because most of the flow cross section is made

up by the channel. Note, too, that Equation 5.2 does not allow for dependence on the channel

geometry or gradient.

From field evidence it is known that debris flows can stop suddenly in a channel, forming a

snout of coarse particles (e.g. McCoy et al., 2010; Whipple and Dunne, 1992). This can cause

the next flow to avulse into a new channel and leads to fundamental changes in the locus of

sedimentation (Bryant et al., 1995; Dühnforth et al., 2008; Field, 2001; Reitz et al., 2010; Whipple,

1992). Bryant et al. (1995) found an increase in avulsion frequency with increased sedimentation
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rates in a laboratory experiment of an alluvial fan. For understanding avulsion on debris-flow fans

it is crucial to think about the conditions required to stop debris flows in a channel. McCoy et al.

(2010) suggested that excess pore pressures in the flow causes high mobility and long runout.

Nevertheless the process of debris flow deposition is not understood well enough to make precise

predictions of the location of the depositional snout along a particular flow path.

Flow routing over sequences of multiple flows is a function of the very distinctive surface mor-

phology of debris-flow fans consisting of amalgamated levees and lobes (e.g. Blair and McPher-

son, 2008; Cannon, 1989; Kim and Lowe, 2004; Whipple, 1992). Whilst the large-scale landform

of a fan is convex and promotes flow spreading, small-scale elements such as levees and chan-

nels produce local concavities which act as flow attractors (Field, 2001; Reitz et al., 2010). It is

these two divergent behaviours enforced by the landform that make modeling of debris-flow fans

a challenge, but both need to be considered to fully represent the system behaviour.

5.1.3 Specifications of a debris-flow fan evolution model

To conclude the introduction I will now briefly outline the requirements of a new debris-flow fan

evolution model. The model must operate on a radial grid which is the most appropriate represen-

tation of a conical fan and allows for more realistic flow routing, as opposed to a rectangular grid.

The model must run fast so that the sequential effects of thousands of flows can be investigated.

For this reason the two empirical relationships Equation 5.1 and 5.2 are appealing. Erosion and

deposition rules should be explicitly modeled. This necessitates a realistic description of deposit

geometry, based upon findings on the geometry of debris-flow deposits (Chapters 2 and 4). The

model should allow for variable debris-flow input volumes, an initial sediment concentration, bed

saturation and characteristic flow behaviour. The ability to track the evolution of single flows

and of the whole fan in response to these variable input parameters is necessary. This includes

capture of resulting topography and fan surface age in pre-defined time steps, and detailed event

specific data such as evolution of flow volume, sediment concentration and modification of flow

path geometry as flows traverse the fan. I expect such a model to conform to widely observed data

regarding the controls on fan geometry in response to variations in sediment flux, sediment con-

centration and bed saturation (Iverson et al., 2011; Leeder and Mack, 2001; Milana and Ruzycki,

1999; Schumm et al., 1987; Whipple et al., 1998). I also expect the model to evolve and behave in

a familiar pattern in flume experiments (Clarke et al., 2010; Kim et al., 2006; Reitz et al., 2010).
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The rest of the chapter is structured as follows. I start with a detailed description of the pro-

posed model and the parameter space. Next I experimentally demonstrate that the model replicates

fundamental features of a debris-flow fan systems observed both in nature and in flume studies. I

then use the model to investigate a range of questions related to the evolution of a fan over multiple

events or to a quasi-stable state. These questions are important for both landscape evolution and

debris-flow hazard as I will demonstrate with three specific applications of the model.

Each application consists of a short introduction, a description of the experiments and a pre-

sentation of the results and a discussion. First I will consider the temporal and spatial modulation

of defined input flow-volume distributions as flows sampled from these distributions are routed

across a debris-flow fan. Second I investigate the relationship between avulsion behaviour and

final fan deposit geometry. Third I demonstrate system response to an external disturbance of the

fan apex by a rock avalanche. This last experiment is motivated by findings presented in Chapter 2.

In the discussion I critically assess the proposed model and outline how representation of processes

could be further improved and noting how the model may be used to formulate hypotheses of fan

evolution that are testable by either fieldwork, or by the use of more sophisticated models.

5.2 Model description

5.2.1 General framework

I start the model description with a brief overview before I explain the different components in

detail. I route debris flows through consecutive topographic cross sections. The geometry of these

cross sections is such that they are approximately perpendicular to the expected flow direction.

This means that they take the shape of concentric semi-circles for a fan resulting in a radial grid

centered at the fan apex (Nicholas and Quine, 2007a). A flow routing algorithm determines a

steepest flow path through all cross sections, and a set of rules govern erosion and deposition in

each cross section. The flow properties (volume and sediment concentration) are updated before

assessing the next cross section. I draw initial debris-flow volumes and sediment concentrations

from a user-defined distribution. The model space topography is updated after every flow before

the flow-routing algorithm determines the flow path for the next event. Output data consist of

downstream changes in individual flow volume, sediment concentration and bed elevation, as

well as 2D flow tracks. In addition fan topography and surface age are captured at user-defined

intervals.
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5.2.2 Model space geometry

Figure 5.1 shows the model space geometry. It consists of an input chute of defined initial slope

and length followed by the fan area. The chute simulates the feeder channel within the mountain

front, and is divided into equally spaced straight cross sections. It ensures that the apex elevation is

free to vary in response to elevation changes of the channel bed in the chute (‘the catchment’) and

not as a result of boundary effects due to flow initiation. In the unconfined areas the grid takes the

shape of semi-circles (subsequently termed arcs) with the same separation downslope separation

as in the chute. Node spacing is equal along all arcs and can be chosen independently from arc

spacing. To optimize computing time, arc spacing can be chosen to be larger than node spacing.

This is defendable because because debris-flow channels and depositional lobes are elongated

features arranged in a radial fashion, and hence topographic variability is larger across the fan

(along the arcs) than in the downfan direction. The chute width is equal to the radius of the first

arc, which equals twice the arc spacing (Figure 5.1).

5.2.3 Data management and storage

Data management and storage in this framework are more complicated than for a simple regular

rectangular grid. I adapted a scheme proposed by Tucker et al. (2001). For the purposes of modi-

fication during a model run, the node elevations along each arc are stored in columns of a matrix

(termed the radial grid matrix RG). The node positions are triangulated as a Delaunay network.

In addition to RG the model maintains a database that contains for each node information on the

parent arc, position within the arc, cartesian x-y coordinates, elevation (z), IDs of neighbouring

nodes and area of the Voronoi polygon associated with the node, termed TIN. Node positions are

kept fixed and only the node elevation changes as the model evolves. Node elevations in TIN

are updated when necessary from the values in RG. The cartesian xyz coordinates in TIN can be

extracted on demand to produce a digital elevation model at a desired resolution.

5.2.4 Flow routing

The flow routing algorithm always finds the steepest path between a start node in arc i and a node in

arc i+1 within a defined downslope search angle ζ = 90◦ (Figure 5.1) aligned symmetrical around

the steepest path on the fan surface. All selected nodes form the talweg of the next debris flow.
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Figure 5.1: Sketch of model space geometry. A model space consists of a chute with straight cross sections
and a fan area with semi-circular cross sections (termed arcs). Dotted gray lines: boundaries of Voronoi
polygons associated with each node. Open circles indicate nodes with an initial elevation of 9,999 m that
serve as hard model boundaries (never occupied). Gray circles indicate nodes that are never occupied
because area of Voronoi polygons is not defined; these are taken to represent base level. Filled circles
are nodes that can be occupied by flows, their horizontal position is fixed. Arc 10 is a permeable model
boundary (see text). A sample flow path is shown with a search angle ζ for flow routing indicated at arc 6.
Debris flows are initiated in arc 2. Fan azimuth is 30◦ and coordinates of apex (star) are x = 1000 m and
y = 100 m. Model space size (i.e. number of arcs), arc and noce spacing may be varied depending on the
specific application.

The slopes between the start node in arc i and candidate nodes in arc i+ 1 are calculated based

on elevation difference and horizontal separation. If there are no nodes with a lower elevation

in arc i+ 1 (because the flow has reached a pit) the algorithm selects the node with the lowest

upward slope. Successive nodes along a flow path are never part of the same arc, forcing flows to

always move radialy away from the fan apex (Figure 5.1), even if the surface is horizontal. The

predicted path is searched for topographic pits and locates for each talweg node the minimum fill

elevation that is required to overcome the next topographic threshold. The last operation on the

pit-filled flow path is the calculation of along-track slope for node i as the slope between node i

and i+1. With this I ensure that flows behave consistently with the topography ahead of them (i.e.

no erosion when entering a flat reach or pit).
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5.2.5 Governing equations and principles

I now describe the governing equations and principles that control the models behaviour. These

operations are performed in the same order as described. This procedure is repeated for every arc

until the flow has either deposited its complete volume or until the flow has reached the model

boundary at the last downslope arc.

At each arc (Figure 5.1) I need to estimate two key parameters: flow depth as a function of

cross sectional geometry and average deposit thickness dc (Figure 5.2). To predict flow depth for

different positions along a debris flow path empirical, semi-empirical and numerical models have

been employed. For this purpose I need a computationally efficient approach and hence chose a

semi-empirical model. Consequently I ignore dynamic effects, and do not solve the momentum

conservation equation as for example in Iverson (1997). Instead, the semi-empirical LAHARZ

model presented by Iverson et al. (1998), originally developed for lahars, then refined for debris

flows in Griswold and Iverson (2008), provides a quick way of estimating the cross sectional area

of the flow A from the total volume V (Equation 5.2). Once the flow cross sectional area is known,

the flow depth can be calculated as a function of the cross sectional geometry (see below). The

semi-empirical model in Equation 5.2 is based on a dimensional analysis which requires that A ∝

V 2/3. It is further assumed that the hydrographs of lahars (or debris flows) can be approximated by

a triangular shape, that mass and density remain constant and that the propagation velocity follows

u ≈
√

ghr. From this Iverson et al. (1998) showed that a power-law relationship should exist

between flow cross sectional area and flow volume. ε in Equation 5.2 is assumed to be constant

and can be calibrated for data pairs of total flow volume and cross sectional area (Berti and Simoni,

2007; Griswold and Iverson, 2008; Iverson et al., 1998). However, it is important to remember

that Equation 5.2 does not account for downstream attenuation of the debris-flow front and hence

provides a conservatively large estimate of the flow cross sectional area. Values calculated with

Equation 5.2 can then be used to estimate the flow depth in a given channel cross section under

the assumption of a (e.g. horizontal) flow surface. Typical values for ε [dimensionless] are < 0.1

as reported by Griswold and Iverson (2008) and Berti and Simoni (2007). Unlike the LAHARZ

model (Iverson et al., 1998) I recalculate A as the flow progresses at every arc, because in my

model flow volume itself changes due to deposition or erosion. This approach results from the

observation that debris flows can erode substantial volumes while traversing a fan (Chapter 4;

Scheuner et al., 2009).
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The minimum deposit thickness dc determines the amount of deposition occurring when the

debris-flow discharge exceeds channel capacity and the flow inundates adjacent over-bank areas

(Figure 5.2). I use a relationship also used in the LAHARZ model proposed by Iverson et al.

(1998), between flow volume V and inundation area B (Equation 5.1). This relationship follows

from the same dimensional analysis as in Equation 5.2 and is subject to the same simplifications

and assumptions. Berti and Simoni (2007) proposed a slightly modified version where they sub-

stituted inundation area B by minimum deposit thickness (B =V/dc):

dc = 1/αV 1/3 (5.3)

where α [dimensonless] is an empirical coefficient with a typical range of 6–33 for natural debris

flows (Berti and Simoni, 2007; Crosta et al., 2003; Griswold and Iverson, 2008). The value of

dc controls two things: first it determines the thickness of the deposits when the flow can spread

laterally and second it defines the flow depth below which no erosion occurs. If the flow depth at a

node is larger than dc the rules for erosion (see below) are invoked (Figure 5.2). After calculation

of these key values the model checks whether the current talweg node is in a pit. If this is the case

the model searches for all laterally adjacent nodes that have an elevation lower than the minimum

fill elevation as determined by the flow routing. All selected nodes are inundated and sediment is

deposited to this minimum fill level.

Next I determine the inundation limits based on the predicted flow cross section A (Equa-

tion 5.2), minimum deposit thickness dc (Equation 5.3) and cross section topography A. Starting

from the talweg node, the cross section is inundated by stepwise filling in small increments (0.1 m)

in flow stage. The input topography is read from RG. After each incremental rise in flow stage,

flow cross sectional area is calculated and compared with A. To simulate the lateral spreading with

thickness dc I buffer the topography with dc and require the flow stage to reach at least a level of

the node elevation +dc before the flow is allowed to spread laterally over bank (Figure 5.2). This

procedure yields lateral limits of inundation and the flow depth for each inundated node.

I then classify the inundated nodes in those with flow depth h ≤ dc and those where h > dc

(Figure 5.2). In the former case I deposit the full flow depth. In the latter case elevation change

is sampled from a probability distribution function of elevation change versus flow depth (PDF,

Chapter 4) acquired from topographic monitoring of a debris-flow channel using a terrestrial laser
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Figure 5.2: Sketch of model operations to determine erosion and deposition. A: Probability density func-
tion (PDF) of basal shear stress versus bed elevation change, derived from data presented in Chapter 4.
The PDF informs erosion and deposition in the model where flow depth is larger than dcrit (see text, Equa-
tion 5.3). B: Example of a debris flow contained within the channel. C: Example of a debris flow with peak
discharge exceeding channel conveyance capacity and depositing over-bank.

scanner (Chapter 3). I convert flow depth at each node to basal shear stress (τ = ρbghS; Iverson,

1997; Takahashi, 2007, see also a review in Section 1.3.3) using a bulk density ρb of 1,800 kg/m3,

which is the median density from 35 debris flows observed at the Illgraben debris-flow observation

station (McArdell et al., 2007; McArdell and Berger, 2010). Figure 4.3 in Chapter 4 shows that the

shape of the PDF is dependent on flow depth. I therefore divide the data into 1-m bins and calculate

separate PDFs for each bin. Because in the model slope will vary and will be different from the

slope in the study reach (S = 0.09) as reported in Chapter 4, I transform the bin boundaries to basal

shear stress using the above values for S and ρb. The bin boundaries become then: 0, 1,487, 2,974,

4,461 and 5,949 Pa. To determine erosion or deposition for the nodes where h > dc I sample a

random value of elevation change for each band of basal shear stress from the corresponding PDF.

Flows are released into the model space with an initial random sediment concentration sampled

with uniform probability across a range of possible concentrations: {Cmin...Cmax}. Bed material



5.2. Model description 99

has a user-defined porosity s. Entrainment of bed material results in a change in sediment concen-

tration Cold →Cnew, depending on the water content of the bed material w, which is set uniformly

for each flow. The probability of the bed being wet for a particular flow is defined by setting pwet

to a value between 0 and 1. The new sediment concentration Cnew as a function of change in flow

volume ∆Vi and flow volume Vi at arc i becomes then:

Cnew =
ViCold +∆Vi(1− s)
Vi +∆Vi(1− s+w)

(5.4)

Equation 5.4 accounts for volume contraction when entraining unsaturated sediment (pore space

vanishes). Deposition does not affect the sediment concentration, because the fresh deposit mate-

rial is assumed to have the same concentration as the local flow. As the flow travels down-slope

its sediment concentration is likely to increase due to entrainment. Takahashi (2007) found that

debris flows tend to deposit when an equilibrium concentration C∞ of coarse particles is reached.

He suggested that this equilibrium concentration is dependent on rock and fluid density, angle of

internal friction and channel slope. This model does not treat coarse and fine particles separately,

hence Takahashi’s (2007) relationship is not directly applicable. He suggested a maximum value

for C∞ of 0.5, but this value is lower than bulk maximum sediment concentrations observed in

debris flows for example at Illgraben, Switzerland (Brian Mc Ardell, pers. comm., 2010). I apply

Takahashi’s (2007) concept in a simplified way and define a slope-independent critical concentra-

tion Ccrit higher (e.g. 0.8) than the value reported by Takahashi (2007).

When C >Ccrit force the flow to deposit at higher rates to form depositional lobes. I implement

this by simply depositing at every subsequent arc a volume equivalent to the flow depth of each

inundated node multiplied by the total area of the Voronoi polygons involved. This switch in

behaviour is irreversible. When the total remaining volume drops below 1 m3 the flow has reached

the final runout distance and is stopped. I correct the deposition depth hdep for the escape of water

and assume that bed porosity s is re-established to the original value:

hdep =
hC

1− s
(5.5)

where h is flow depth. After applying all erosion and deposition to the inundated nodes in RG I

reduce or increase the remaining flow volume accordingly taking advantage of the Voronoi areas

(stored in TIN) of the involved nodes. Finally the elevations in TIN are updated using the modified

values in RG.
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5.3 Model validation

In this section I validate the debris-flow model presented in the previous sections of this chapter

and introduce the reader to a range of model outputs. I do this in three steps: First I show how the

model handles single flows and assess whether resulting deposit geometry is reasonable. Second

I introduce the model geometry that is adopted for the rest of the chapter and perform a base run

to show the general properties of an experiment with 30,000 debris flows. Third I define and show

results of a series of experiments to validate the model against field and laboratory observations

of fan behaviour in response to variations in sediment flux, sediment concentration and bed water

content. For the model runs presented subsequently in the validation and application I used a

model space with a fan of 500 m radius with a 100 m long chute feeding the fan and an initially

flat topography. To adequately represent channels and levees I chose a node spacing of 3 m. To

represent relief in a down-fan direction I decided that an arc spacing of 9 m was sufficient, because

from my own observations on natural fans down-fan profile roughness is smaller than across fan,

and because lobes and channels are mostly oriented in a radial fashion.

This resulted in 10 straight cross sections in the chute and 55 arcs on the fan. The total number

of nodes in each run was 15,019 with 7 nodes per cross section in the chute, 17 nodes in the first

fan arc and 526 nodes in the last fan arc. All model runs I present in the subsequent analysis are

summarized in the appendix (Appendix: Table D.1).

5.3.1 Behaviour of single flows

Before considering multiple events I need to assess the performance of the model in reproducing

individual flows. I used a base topography consisting of a smooth fan with a chute of 100 m, a

radius of 200 m, an initial slope of 5% and a channel. The channel is 1 m deep and 15 m wide

for the first 100 m from the apex; between 100 m and 150 m it is 0.5 m deep and 20 m wide; and

beyond 150 m until the toe of fan at 200 m from the apex there is no channel (Figure 5.3A–D).

The chute is not shown in Figure 5.3 and the origin of the length scale is at the fan apex. The four

model runs of one debris flow each shown in Figure 5.3A–D were designed to show the interaction

of debris flows with topography, and the effect of entrainment on sediment concentration and flow

behaviour. Flow volumes were chosen so that the two smaller flows (1,200 m3, Figure 5.3A and

B) would be contained in the channel while the two larger flows (7,000 m3, Figure 5.3C and D)
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would exceed the channel capacity. Initial flow cross section areas A were 11 m2 and 36 m2 (with

ε = 0.1). Initial sediment concentrations C0 = 0.5 for flows A and C were chosen so that large

volumes of sediment could be entrained without reaching the critical sediment concentration of

Ccrit = 0.8. For flows B and D in Figure 5.3 initial sediment concentration was chosen so that

critical sediment concentration of Ccrit = 0.8 would be reached with only limited entrainment

(C0 = 0.79).

Flow A traveled the first 70 m with almost no net volume change, indicated by a lag rate

of almost zero (Figure 5.3F). No over-bank deposition occurred as the flow was contained in

the channel. At 70 m the channel becomes wider and as a result the flow depth dropped below

dcrit = 0.7 m estimated from Equation 5.3 and the flow became net depositional although still

contained within the channel. This transition is indicated by a drop in lag rate to ≈-10 m3/m.

Between 140 m and the fan toe the flow was no longer contained by the channel and spread

laterally, depositing an elongated lobe. The resulting channel in the upper part of the fan has

undergone only small modifications but in the lower part was filled completely.

Flow B in Figure 5.3 started with an initial sediment concentration much closer to Ccrit . En-

trainment of dry bed material along the chute (not shown) allowed the flow to reach the threshold

sediment concentration Ccrit already at the fan apex. As a result the flow switched to deposition

at the maximum possible lag rate calculated with Equation 5.2. Consequently the flow volume

decreased continually in down fan direction (Figure 5.3E) causing a decline in deposition (Fig-

ure 5.3F). In the upper third of the fan this flow almost completely filled the channel with sedi-

ment. The lobe in the lowermost part of the fan is narrower than in flow A because at that point

the flow volume was already smaller due to a higher rate of deposition upstream (Figure 5.3A and

B). Where the channel is preserved it is shallower than prior to the flow.

Flow C and D were not contained in the channel (Figure 5.3C and D) and deposited levees

along the flow margins. At 70 m where the channel widened, flow C was almost completely

contained in the channel, leading to a sharp rise in lag rate to positive values and indicating net

volume growth of the flow due to entrainment. This net growth in volume in combination with

a channel shallowing around 100 m triggered renewed levee deposition, indicated by a drop in

lag rate (Figure 5.3F). The resulting channel in Figure 5.3C is deeper than prior to the flow due to

in-channel entrainment and lateral levee deposition. Despite simultaneous deposition of levees, in-

channel entrainment caused flow D (Figure 5.3D) to reach the threshold sediment concentration.
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This resulted in deposition at maximum lag rate from 60 m onwards indicated by a sharp drop in

lag rate to nearly -40 m3/m. The total volume declined much faster after this transition than in flow

C (Figure 5.3D), which continued to entrain material along the centerline of the channel. Flow

D preserved only a short stretch of channel near the fan head, and further downstream deposition

caused topographic inversion (Figure 5.3D).

In summary I find that the model fulfills my expectations in reproducing the main features

of debris-flow erosion and deposition as observed in the field (Chapter 4; Blair and McPherson,

1998; Kim and Lowe, 2004). The dynamic interaction between flows and topography gives rise

to changes in channel geometry that over multiple events will lead to the feedback mechanisms

hypothesised in Chapter 4. What I have shown here for four single flows is repeated thousands

of times in the experiments that follow, where I explore whether model behaviour over multiple

flows still complies with the understanding of the behaviour of fans.

Figure 5.3: Next page: Illustration of single-flow behaviour on a fan of 200 m radius, 3 m arc and node
spacing, with a chute of 100 m (not shown) for flow volumes of 1,200 and 7,000 m3, for initial sediment
concentrations C0 of 0.50 and 0.79 (Ccrit = 0.8), α of 15 and ε of 0.1. Initial topography for all four
simulations was identical and is shown by black solid contour lines spaced at 1 m. Dotted, black contour
lines and the shaded topography with lighting from top right represent the surface modified by the debris
flow. A–D: Model runs for four single events with initial volume and initial sediment concentration C0 as
indicated next to sub-figure labels. Flow direction from by arrow. Coloured line identifies these model runs
in sub-figures E and F. E: Down-fan volume evolution from fan apex onwards for four events shown in sub-
figures A–D. F: Down-fan evolution of lag rate from fan apex onwards for four events shown in sub-figures
A–D.
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5.3.2 Analysis of model output and base run

When running the model over thousands of events, large amounts of data are generated and tools

are required to visualize the temporal and spatial performance of the model. I introduce these

tools in Figure 5.4 and refer back to them later in the chapter. In Figure 5.4A I trace the flow

direction through time: I derive the radial position of the intersection of each flow path with the

last arc, where flows that flow in a northerly direction from the apex plot at the top of the diagram.

Figure 5.4B shows the resulting fan topography after 30,000 events. From the model output I also

retrieve the temporal evolution of fan slope (Figure 5.4C). I calculate the fan slope for a total of

102 corresponding pairs of nodes in arc 21 and arc 66, and the standard deviation of fan slope.

The calculation is repeated every 100 events on the current topography. Also shown is surface

roughness calculated as the standard deviation of slope, where slope is measured over a moving

window of 3x3 cells (Frankel and Dolan, 2007) (Figure 5.4C). In Figure 5.4D, left axis, I plot the

cumulative volume of the fan. On the right axis in Figure 5.4D I show the temporal evolution of

fan surface age calculated every 100 events. To visualize the erosional or depositional behaviour

of flows, I calculate the relative volume change between fan apex and fan toe (Figure 5.4E) as

the difference in volume normalized by input volume for each event (gray dots). For bins of 100

events I calculate the relative volume change at percentile levels of 25%, 50% and 75% (dashed

and solid lines). When the solid line plots on the zero-volume-change level, this means that per

100 events, 50 flows were erosional and 50 depositional (Figure 5.4D).

I illustrate the general model features using run E38 as a base run; an animation of this model

run is provided in Appendix D. The parameters were: α = 20, ε = 0.06, Cmin = 0.3, Cmax =

Ccrit = 0.8 and pwet = 0.5 and a log-normal volume input distribution with a mean volume of

3,000 m3 and a standard deviation of 1,500 m3 (Figure 5.4). Most model runs show a division

into three phases of fan development. Phase I, which in model run E38 took approximately 7,500

events, is characterized by a frequent shifting in flow direction. The frequent resurfacing of the

fan surface kept the median age of the emerging surface low (Figure 5.4D). In this phase the fan

grew to the margin of the model space at a radial distance of 500 m from the apex and rapidly

steepened (Figure 5.4C). Most flows were depositional (Figure 5.4E) and the fan grew at high

rates (Figure 5.4D) to reach about 2/3 of its final volume.



5.3. Model validation 105

Phase II started at 7.5k events and continued until about 20,000 events. In this phase the de-

pocenter swept several times back and forth across the fan. This resulted in a distinctively different

pattern of surface aging (Figure 5.4D). Median surface age increased faster than previously, in-

dicating that only small areas of the fan surface were active at any one time. Major avulsion are

marked by a sharp drop in median surface age (e.g. at 25k events) and indicate substantial resur-

facing of the fan. Fan slope (Figure 5.4C) and volume (Figure 5.4D) grew at much lower rates,

due to an increasing number of erosive flows or flows that were routed without much erosion or

deposition (Figure 5.4E) due to the emergence of channels on the fan surface.

Phase III covers the last 10,000 events. Here avulsions led to unpredictable jumps in depocen-

ter location (Figure 5.4A). The final topography in Figure 5.4B shows a resulting fan of about 5%

slope with the apex 25 m above base level. This is a relatively gentle fan, which is a result of the

low sediment concentration that varied uniformly between 0.3 and 0.8 (mean of 0.55), as I will

assess in more detail in Section 5.3.3. Over the model run a number of channels formed that were

re-occupied by flows repeatedly. One example is the channel with an azimuth of ≈ 105◦ (ESE)

which was also active at the end of the model run (Figure 5.4B). The establishment of channels

and the increase in fan slope increased the efficiency of flow routing, which meant less sediment

was deposited per event, and hence the non-linear growth in fan volume. In phases II and III the

solid black line in Figure 5.4E plots on the line of zero relative volume change, which indicates

that similar numbers of flows are erosional and depositional. Figure 5.4E shows also that most

erosive flows grew in volume by 25% or less.

Figure 5.4: Next page: Model results for run E38 with 30,000 events, a log-normal flow volume distribution
with mean volume (water + sediment) of 3,000 m3 and a standard deviation of 1,500 m3, α = 20, ε = 0.06,
Cmin = 0.3, Cmax =Ccrit = 0.8 and pwet = 0.5. A: Variation of flow path direction from north to south (from
top to bottom on vertical axis), number of events on horizontal axis. B: Fan topography at end of model run,
contours are shown every 4 m, north is up. Maximum fan elevation is 25 m above base level. C: Average fan
slope, standard deviation of fan slope, surface roughness and relative jump distance at 99% non-exceedence
probability (RJD99) over time. RJD99 is the relative change in flow direction between successive events at
99% non-exceedence probability. It can be understood as the width of the active corridor on the fan. A
detailed explanation and rational for this measure is given in Section 5.4.2. D, left axis: Total fan volume
over time (solid line). D, right axis: fan surface median age (solid line) and median age plus 1 standard
deviation (dashed line). E: Relative volume change of each event between fan apex and toe (gray dots).
Erosive debris flows plot above the line of zero volume change and depositional flows below. The solid
black line represents the median (50th percentile) outcome per 100 events. The dashed lines are the 25th

and 75th percentiles.
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5.3.3 Validation experiments

I validated the model against field and laboratory observations of fan behaviour. For this purpose

I first defined a series of experiments, which I briefly describe below. Initial sediment concentra-

tion was varied between Cmin and Cmax according to a uniform random distribution. The critical

sediment concentration was kept constant at 0.8 throughout all experiments. The runtime reported

in the appendix (Appendix: Table D.1) depends on the computer used, but on average each 10,000

events required about 1.2 hours.

In the first set of experiments I primarily focused on fan slope as a function of model param-

eters. Specifically I wanted to test whether the model replicates fundamental behaviour observed

in flume experiments and on natural fans.

In run E1 to E4 I wanted to assess whether fan slope decreases with increasing sediment flux as

suggested by Clarke et al. (2010), Bull (1962) and Harvey (2002). For this reason I kept sediment

concentration constant at 0.6 and performed four model runs of 10,000 events each with constant

flow volumes of 1,000, 2,000, 4,000 and 8,000 m3 respectively (Appendix: Table D.1).

In run E5 to E10, E11 to E14 and E11 to E22 I wanted to test whether the model would repro-

duce the findings of Milana and Ruzycki (1999), Schumm et al. (1987) and Whipple et al. (1998)

that indicate that fan slope should increase with increasing sediment concentration independent of

any changes in sediment flux. For each event in run E5 to E10 I set the initial sediment concen-

tration constant at 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 respectively and used a ratio of α/ε = 100. In

order to keep the sediment flux constant at ≈ 4,000 m3 per event I varied the mean flow volume

per model run. The flow volumes were sampled from a log-normal distribution with a standard

deviation of half the mean (Appendix: Table D.1).

In run E11 to E14 I allowed the initial sediment concentration to vary uniformly over a range

of ±0.1 around 0.2, 0.4, 0.6 and 0.7 with α/ε = 100 (Appendix: Table D.1). The mean flow

volumes of the log-normal distribution for each model run were chosen to yield the same sediment

flux of≈ 4,000 m3. The standard deviation was again set to half the mean (Appendix: Table D.1).

In run E11 to E22 I introduced more variability in the initial sediment concentration. I allowed

the initial sediment concentration to vary between a minimum value (0.1, 0.3, 0.5, 0.7) and the

maximum value of 0.8 which was identical with the critical sediment concentration. I also used

this group of experiments to test the influence of the ratio of α/ε on fan slope with run E11 to
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Figure 5.5: Controls on fan slope. See Appendix D.3 for tabulated values of mean radial slope and standard
deviation of radial slope at end of each model run. A: Fan slope after 10,000 events for model run E1–E4.
Volume per event in each run was kept fixed at 1,000, 2,000, 4,000 and 8,000 m3 respectively. B: Fan slope
as a function of mean sediment concentration (large symbols) and range (horizontal bars). Run numbers
increase from left to right in the plot for each symbol category; e.g. left most white square is run E5, next
to the right is run E6.

E18 using α/ε = 67 and run E19 to E22 using α/ε = 133. I used a log-normal distribution for

flow volumes with a mean of 5,714 m3 and a standard deviation of half the mean. In the previous

groups of experiments I had varied either sediment flux or sediment concentration, but by using

the same volume distribution for all experiments in this group the mean sediment flux increased

from 2,571 m3 to 4,285 m3 with increasing mean sediment concentration (Appendix: Table D.1).

As increasing sediment flux and increasing sediment concentration are believed to have opposite

effects on fan slope (Bull, 1962; Clarke et al., 2010; Harvey, 2002; Milana and Ruzycki, 1999;

Schumm et al., 1987; Whipple et al., 1998), these experiments should give indication on the rela-

tive importance of the two competing processes.

In run E35, E37 to E39 and E57 to E63 I examined the effect of varying the probability of

the channel bed being saturated (pwet) at a water content of 0.1 to assess the influence on runout

distance (Iverson et al., 2011). All runs were identical apart from varying pwet in increments of

0.1 between 0 and 1 (Appendix: Table D.1).
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5.3.4 Validation results

In Figure 5.5A I show the resulting fan slope for runs with different debris flow volumes. For

identical sediment concentrations in all runs and all events encouragingly I find a decrease in

fan slope with increasing debris-flow volume. In Figure 5.5B I show fan slope as a function

of mean sediment concentration. The main difference between the four groups of model runs

shown in this figure is the range over which initial sediment concentration was varied: For run

E5 to E10 I allowed no variation of initial sediment concentration and it was always smaller than

the critical sediment concentration. I find an almost linear increase in resulting fan slope for

increasing sediment concentration, but the final fan slope remains below 2◦. It is important to note

that in these runs I kept the sediment flux constant at 4,000 m3 by varying the mean flow volume

(Appendix: Table D.1). The observed increase in fan slope is therefore only related to the increase

in sediment concentration.

For run E11 to E14, I also find an increase in fan slope with increasing sediment concentration

although the initial sediment concentration in each run was allowed to vary over a range of ±0.1

around the mean (Figure 5.5B). Run E14 stands out with a final fan slope of ≈ 5.5◦ because the

range of initial sediment concentration of 0.7± 0.1 for the first time allowed flows to start with

values equal to or very close to the critical sediment concentration. The result was that flows either

immediately (or after entraining only very small amounts of sediment) entered lobe deposition

mode (Section 5.2.5). This behaviour leads to a faster build-up of material near the fan head and

consequently results in a steeper fan slope.

In run E15 to E18 and E19 to E22, I allowed the sediment concentration to vary over larger

ranges, with the maximum possible sediment concentration always identical to the critical sedi-

ment concentration. The general finding is that fan slope increases faster with increasing sediment

concentration than in the previous runs (Figure 5.5B). It is also important to notice that fan slope

increases with increasing sediment concentration despite a simultaneous increase in sediment flux

(compare with Figure 5.5A). The difference between the first (run E15–E18) and the second group

(run E19–E22) was that I doubled α from 20 to 40. α determines the minimum deposit thickness

(Equation 5.3). Higher values of α result in thinner but wider deposits and in a smoother, less

channelized fan surface. As a result flows are routed less efficiently and hence deposit more mate-

rial closer to the fan apex. This results in an increase in fan slope with increasing α, but the effect

is not very strong (Figure 5.5B).
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Figure 5.6: Fan slope and percentage of flows stopping on the fan for runs E35, E37–E39 and E57–E63
(Appendix: Table D.1). See Appendix D.3 for tabulated values of mean radial slope and standard deviation
of radial slope at the end of each model run. Model parameters were identical apart from pwet , which I
varied between 0 and 1 in increments of 0.1. A: Fan slope measured between arcs 21 and 66 (distance of
405 m) for 102 different directions down-fan (see Section 5.3.2) after 30,000 events as a function of pwet .
B: Percentage of flows stopped on fan as function of pwet .

In Figure 5.6 I show the effect of varying the probability of a saturated bed with a water

content of 0.1. First I find a small decrease of fan slope with increasing pwet (Figure 5.6A). This

is essentially equivalent with decreasing the average sediment concentration of the flows and is

compatible with findings from earlier runs (Figure 5.5). If I consider the percentage of flows

that stop on the fan (i.e. all material deposited on the fan), I find that this metric decreases with

increasing probability of a saturated bed, which indicates an average increase in flow mobility

(Figure 5.6B).

I conclude the model validation here, and note that the model reproduces field and laboratory

observations in a qualitatively correct manner. An increase in sediment flux causes a decrease in

fan slope (Bull, 1962; Clarke et al., 2010; Harvey, 2002), and an increase in sediment concentration

leads to an increase in fan slope (Milana and Ruzycki, 1999; Schumm et al., 1987; Whipple et al.,

1998). Varying the probability of a saturated bed also influences the sediment concentration, and

the reduced fan slope at higher values of pwet is therefore reassuring. Iverson et al. (2011) found

that increased bed saturation enhanced debris-flow runout distance. This effect is also reproduced

by this model. In phase II of fan development, (e.g. run E38, Figure 5.4) channels emerge from the

fan surface in response to the boundary condition at the fan toe. This boundary condition imitates

a non-incising river keeping the fan toe in a fixed lateral and vertical position whilst aggradation
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continues on the fan leading to a slow but continuous steepening of the surface. This behaviour

is compatible with field evidence (Leeder and Mack, 2001) from alluvial fans that are laterally

limited by axial rivers. I also briefly investigated the influence of α and ε on fan slope, but I did

not find a strong effect (Appendix D.4). Unfortunately I did not find any validation data in the

literature that link these two parameters to overall fan geometry, and therefore I cannot comment

on this aspect of the model behaviour with confidence.

5.4 Model applications

In the previous section I have demonstrated that the model presented uniquely reproduces debris-

flow deposition and erosion at the level of single flows, and over thousands of events compatible

with field observations and laboratory experiments. This allows one to use the model to address

questions that require detailed model output from single flow behaviour for thousands of flows.

Here I focus on three specific applications, but other applications are inevitably possible.

Whilst debris-flow hazard assessment is conducted by professional consultants on a regular

basis, work on the long-term evolution of debris-flow fans is mostly an academic concern, and

there is little exchange of concepts and results between the two communities. With the first two of

the following experiments I want to explore what the implications of a better understanding of the

long-term behaviour of debris-flow fans are for hazard on debris-flow fans. The last experiment is

motivated by findings in chapter 2 where the effects of a rock avalanche blocking the fan apex on

fan morphology are discussed. However, in everything that follows it is important to remember

that the model is not calibrated to reproduce the behaviour of a specific debris-flow fan, but the

experiments are meant to stimulate the formulation of hypotheses testable through fieldwork.

5.4.1 Fan evolution and influence on debris-flow magnitude-frequency relationship

Natural hazards, for example rock fall and debris flows are often quantified by magnitude–frequency

or magnitude–cumulative frequency distributions (Grossi et al., 2005; Helsen et al., 2002; Hungr

et al., 2008; Jakob and Friele, 2010; Lim et al., 2010; Malamud et al., 2004). Debris flow mag-

nitude at the level of a single event, is not only a function of the size of the initial failure but

is also strongly controlled by the amount of along-flowpath entrainment and deposition, and by

network topology (Benda and Cundy, 1990; Coe et al., 2011; Fannin and Wise, 2001; Hungr
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et al., 2005, 2008; Jakob et al., 2005; Scheuner et al., 2009). Therefore building a magnitude–

frequency distribution from initial failures of debris flows over a catchment or a region will not

yield an accurate picture of the debris-flow magnitudes to be expected at a particular point along

the channel network. It can be expected that the shape of the magnitude–frequency distribution

is strongly modified by process-form feedback along the flow path (Chapter 4). For this reason

regional debris-flow magnitude–frequency relationships are hard to interpret and of little practical

use locally (Innes, 1985; van Steijn, 1996; Zimmermann et al., 1997). For hazard assessment at a

particular point along the flow path, for example on a debris-flow fan, one needs to constrain the

magnitude–frequency distribution locally. Only detailed and long-term monitoring of debris-flow

channels (Kean and Staley, 2011; Marchi et al., 2002; McArdell et al., 2007; McArdell and Berger,

2010; Suwa et al., 2009) and detailed mapping and dating of fan surfaces (Dühnforth et al., 2007;

Helsen et al., 2002; Jakob and Friele, 2010) can yield the necessary data to understand specific sys-

tems. In the first model application I demonstrate how a given, theoretical magnitude–frequency

distribution of debris flow volumes released onto a fan, is modified by the emergent fan topogra-

phy over time and across space. Specifically, I am interested whether there are systematic changes

in mean and standard deviation of flow volumes compared to the input distribution when measured

at the fan toe.

I considered four model runs (E25, E40, E71 and E89, see Appendix: Table D.1 and Figure 5.7

for details on parameters). The model runs were performed on the standard model space defined

in Section 5.3 and over a duration of 30,000 events. I divided the model run into two phases based

on the temporal evolution of flow behaviour shown in Figure 5.4D and E. The model evolution is

clearly separated into phase I when a large percentage of flows is depositional and the fan growth

is rapid, and phase II when fan growth is slower and equal numbers of flows are net erosive and

depositional. I define the transition between phase I and phase II as the moment when the line

of median flow behaviour (50th-percentile line in Figure 5.4E) reaches zero-volume change. In

the base run E38 this transition occurred after around 7,500 events (Figure 5.4E). For both phases

I calculated the magnitude–frequency distribution, the mean and the standard deviation of flow

volumes from the model output at the fan toe. I also derived the mean and standard deviation of

flow volumes as a function of radial distance downstream.

In Figure 5.7 and Table 5.1 I show the results of four experiments where I varied α and ε (run

E25 vs. run E40), the standard deviation of the log-normal input distribution (run E89 vs. run
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Figure 5.7: Modification of magnitude–frequency distributions of flow volumes by emerging fan topography
in space and time. Panels on left side (A, C, E and G): comparison between input at top of chute and output
at toe of fan for phase I and phase II (see text). Important model parameters are indicated in the figure,
full details are shown in Appendix, Table D.1. Panels on right side (B, D, F and H): down-fan variation
in mean and standard deviation of flow volumes over total model run (30,000 events); vertical dashed line
denotes boundary between the chute and the fan.
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E40) and the input distribution (run E40 vs. run E71). Generally I find that in phase I the mean

volume measured at the fan toe is only between 62% and 79% of the input at the top of the chute

(Table 5.1). With respect to standard deviation of flow volumes measured in phase I the picture

is less clear, with output magnitude–frequency distribution similar to that of the input. In phase

II the mean flow volumes at the fan toe increased and were between 89% and 94% of the input

mean volume. The standard deviation of flow volumes measured at the fan toe in phase II were

consistently larger than in that of the input with ratios ranging from 104% (run E25) to 110% (run

E71) (Table 5.1). The spatial pattern of mean and standard deviation of flow volumes is shown in

Figure 5.7B, D, F and H. I find that in all runs the mean volume decreased down-fan. However,

the standard deviation of input volumes only increased in runs E25, E40 and E71 whilst it slightly

decreased in run E89 in the down-fan direction.

Table 5.1: Mean and standard deviation of flow volumes for phase I and II measured at fan toe and in
comparison to input distributions.

Location Mean Relative Relative Standard Relative Relative
to input to phase I deviation to input to phase II

[m3] [%] [%] [m3] [%] [%]
run E25

Top of chute 3,006 – 162 1,501 – 94
Toe phase I 1,851 62 – 1,605 107 –
Toe phase II 2,665 89 144 1,667 111 104

run E40
Top of chute 3,005 – 138 1,506 – 101
Toe phase I 2,176 72 – 1,486 98 –
Toe phase II 2,832 94 130 1,579 105 106

run E71
Top of chute 2,898 – 138 1,791 – 105
Toe phase I 2,105 73 – 1,706 95 –
Toe phase II 2,610 90 124 1,875 104 110

run E89
Top of chute 3,026 – 127 3,013 – 112
Toe phase I 2,387 79 – 2,696 89 –
Toe phase II 2,807 93 118 2,918 97 108

Using run E25 and E40 I can investigate the specific effects of deposit geometry by considering

two opposing combinations of α and ε. A low ratio of α/ε = 50 in run E25 (Figure 5.7A and B)

gives rise to thick deposits and flows that deposit at high lag rates, similar to behaviour documented

for flows with high concentrations of coarse clasts (Berti and Simoni, 2007). A ratio of α/ε = 667

as in run E40 (Figure 5.7C and D) results in thinner deposits and flows depositing at lower lag

rates that tend towards ‘lahar-type’ behaviour with a lower concentration in coarse clasts (Iverson

et al., 1998). For run E25 I find that mean volumes measured at the fan toe for phases I and II are

smaller than in run E40.
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A comparison of run E40, E71 and E89 shows the effect of changing the input volume distri-

bution on the output volume distribution measured at the fan toe. When comparing run E40 and

E89, where I doubled the standard deviation (at identical mean) of input volumes, I find that higher

standard deviation led to a higher proportion of flows not reaching the fan toe (compare solid red

line in Figure 5.7C and G). Considering the difference between a log-normal and a double-pareto

distribution (run E40 vs. E71, Figure 5.7, Table 5.1) I find no striking differences.

Model experiments had a down-stream boundary condition that is very common in mountain

valleys: the lateral growth of the model fans was radially limited by the model boundaries (Sec-

tion 5.3). When the fan reaches this radial limit (i.e. the transition between phase I and II), it can

only grow further in volume or height by becoming steeper. The emergence of channels in this

phase (see also Section 5.3) leads to an increase in flow depth, and as a result entrainment along

channels on the fan becomes more likely. Therefore mean volumes measured in phase II at the fan

toe approached the mean flow volume of the input and were between 118% and 144% of the vol-

umes measured in phase I (Table 5.1). This means that when fans go through the transition from

phase I to II the channel system that developed in phase I for comparatively smaller flows might

temporarily have a conveyance capacity insufficient to accommodate the increasing flow volumes

during the transition to phase II. Whilst this process probably operates on most natural fans over

timescales too long to be of relevance for hazard consideration, the spatial trends in mean and

standard deviation of flow volumes might be more relevant.

Conveyance capacity has been reported to decrease down-fan (Whipple and Dunne, 1992),

probably in response to a downstream decrease in mean flow volume. The decrease in mean flow

volume is reproduced reliably by this model (Figure 5.7B, D, F and H). But results also suggest

that there is a possibility for the standard deviation of volumes to increase in the down-fan direction

(run E25, E40 and E71). This raises an interesting hypothesis that should be tested in the field:

If channel conveyance capacity scales with mean flow volume, and standard deviation of flow

volumes increases downstream, then channel capacity is more likely to be exceeded near the fan

toe than near the fan head once fans have reached phase II of their life cycle.

Interestingly, when raising the standard deviation to the same value as the mean (run E89)

as opposed to half the mean (run E40), the standard deviation of flow volumes shows almost no

down-fan variation and the decline in mean flow volumes is less pronounced. This indicates that

the behaviour of natural fan systems might be sensitive to the shape of the magnitude–frequency
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distribution, and underlines first the need to better understand and characterize the magnitude–

frequency distributions on natural fans, and second the need to verify these results in the field or

with flume experiments.

5.4.2 The influence of fan morphology on inundation patterns

The temporal evolution of inundation patterns and depocenter location on alluvial fans controls

the distribution of surface age and location of areas prone to inundation (Dühnforth et al., 2007;

Helsen et al., 2002; Jakob and Friele, 2010). For debris-flow hazard assessment the prediction of

future flow paths and inundation area is crucial (Gamma, 1999; Iverson et al., 1998; Scheidl and

Rickenmann, 2011; Scheuner et al., 2011), but it is inherently difficult due to the convex topogra-

phy of fans and their divergent channel network. Further uncertainties that deteriorate the ability

to predict flow behaviour are related to the event properties such as total volume, peak discharge

and velocity. In order to tackle the uncertainty related to flow paths many models include a ran-

dom algorithm to generate a set of likely flow paths (Favalli et al., 2009; Gamma, 1999; Scheidl

and Rickenmann, 2011) which are then used to inform the spreading behaviour of flows. The

second major unknown in debris-flow hazard assessment is the magnitude-frequency distribution

of flow volumes at a particular location. Therefore the analysis is often limited to a few scenarios

that seem reasonable based on past events, or on an assessment of sediment availability in the

catchment or comparison with comparable locations (Scheidl and Rickenmann, 2011; Scheuner

et al., 2011). The assessment of sediment availability is a very difficult task in itself, yielding large

uncertainties (Abanco and Hürlimann, 2011; Gertsch, 2009; Jakob et al., 2005) partly because the

controls on debris-flow erosion are still poorly understood with many questions remain unsolved

(Chapter 4; Berger et al., 2011; Iverson et al., 2011).

In this application I propose a different approach to tackle the issues of flow-path and inundation-

area uncertainty. Rather than limiting the assessment to predefined scenarios with unknown un-

certainties, I explore the statistical properties of flow path switching over thousands of events and

for a broad range of flow types, varying in volume, sediment concentration and deposit geome-

try. Flow path switching results from channel avulsion (Field, 2001; Reitz et al., 2010; Whipple

and Dunne, 1992). For the purpose of hazard assessment the question arises, once avulsion has

occurred, how different will the likely new flow path will be from the previous flow path, as this

determines the at-risk area to both sides of active channels on fans. The degree of change in flow



5.4. Model applications 117

direction in such a scenario is likely to depend on the micro-topography in vicinity of the active

channel, e.g. the presence of an abandoned channel nearby could be crucial in capturing the flow

(Jerolmack and Paola, 2007). I therefore hypothesize that over many events, the change in flow

direction should, to some degree, be a function of fan surface morphology, or more specifically a

function of the presence or absence of local relief in the form of relic channels and lobes.

In order to pursue this idea, I need to define a measure to quantify the change in flow direction

that can be calculated from the model output. In Figure 5.4A I have introduced a visualization

of flow direction over time. Now I take this further, and quantify the changes in flow direction

between successive events. I define the relative jump distance RJD as:

RJD =
j
J

(5.6)

where j is the distance between the intersection points of two successive flows with an arbitrary

arc, and J is the length of this arc (Figure 5.8).

Figure 5.8: Definition of relative jump distance (RJD) between sucessive events. i is the event number, j
is the distance between the intersection points of two successive flows with an arbitrary arc, and J is the
length of this arc.

RJD varies between 0 and 1; a value of RJD = 0.5 would indicate a change in flow direc-

tion by 90◦. For a single pair of subsequent flows this is not a very useful piece of information,

but when calculated over a larger number of events or over all events in a model run, I can make

probabilistic statements about the system behaviour. A useful visualization is the cumulative prob-

ability distribution of a number of measurements of RJD (Figure 5.9), as this measure quantifies

the probability of a switch in flow direction of a certain magnitude between successive events. I

calculate RJD only for arc 50, which is at 2/3 of the distance between fan apex and toe, as the
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cumulative probability distribution of RJD does not vary significantly by distance from the fan

apex. From the cumulative probability distribution I can read the relative jump distance RJD for

a given non-exceedance probability. In the subsequent analysis I will always quote the relative

jump distance at a 99% non-exceedance probability, RJD99, as a measure of likely maximum flow

direction change between successive events. In the model deposit geometry and local relief are

primarily controlled by the parameter α and to a lesser extent by ε. α determines the critical flow

depth or minimal deposit thickness when flows are spreading over-bank (Equation 5.3). ε deter-

mines the maximum lag rate (Equation 5.2) and width of depositional lobes. In the next step of the

analysis I show how variations in α and ε influence RJD99 (Figure 5.10). Lastly I use the model

to generate fan topography at intervals of 100 events, calculate RJD99 for the same intervals, and

compare the RJD99 data to two measures of fan surface roughness to explore their potential value

as predictors of RJD99:

1. local roughness (Frankel and Dolan, 2007): defined as the standard deviation of slope, where

slope is calculated across a 3x3 cell moving window across the fan surface.

2. standard deviation of radial slope (Section 5.3.2)

For two model runs (E25 and E40) I calculate the linear regression of RJD99 against local rough-

ness and standard deviation of radial slope.

I carried out 50 model runs to constrain the model response with respect to RJD99 to variations

in α and ε. In model run E24 to E36, E40 to E56 and E64 to E88 I varied α and ε to cover the ranges

reported in the literature for debris flows (Berti and Simoni, 2007; Crosta et al., 2003; Griswold

and Iverson, 2008; Iverson et al., 1998). Input sediment concentration was always allowed to vary

between 0.3 and 0.8, and the latter was also taken as the critical sediment concentration. Half of

the runs used a log-normal input volume distribution and the other half used a double-pareto input

volume distribution (Appendix:z Table D.1) due to a fundamental difference between a log-normal

and a double-pareto distribution; The mean of an increasing number of values sampled form a

log-normal distribution converges at large sample sizes, while the mean of an increasing number

of values sampled from a double-pareto distribution is non-stationary (Schumer and Jerolmack,

2009).

I use model runs E25 and E40 to test the hypothesis that measures of surface roughness are

potential predictors of relative jump distance. In Figure 5.9 I show the cumulative probability
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distribution of RJD of all 30,000 events in two contrasting model runs. In run E25 I set α = 5 and

ε = 0.1 (run E40 α = 20 and ε = 0.03) and find that at any given probability level RJD is smaller

than in run E40. At 99% non-exceedence probability I find that RJD99 is 0.26 for run E25 and

0.57 for run E40 (Figure 5.9).
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Figure 5.9: Cumulative probability distribution of relative jump distance (RJD) for run E25 (dashed line,
with α = 5 and ε = 0.1) and run E40 (solid line, with α = 20 and ε = 0.03) measured at arc 50. RJD99 for
run E25 and E40 is indicated by dashed arrows.

In Figure 5.10 I have aggregated all results from the 50 model runs into a plot of RJD99 as a

function of α and ε. I find a similar pattern for the log-normal (Figure 5.10A) and double Pareto

input volume distribution (Figure 5.10B). RJD99 increases from a minimum of 0.1 for α = 5 to a

maximum of 0.6 for α = 40. With respect to ε the dependence is not as strong, but RJD99 seems

to be smallest when ε≈ 0.1.

In Figure 5.11 I show the results from the next step in the analysis, the comparison of RJD99

with fan surface roughness, again for run E25 and run E40 (see Figure 5.9 for the cumulative

probability distribution). Fan slope, roughness, standard deviation of radial slope and RJD99 are

shown for time slices of 100 debris flows over the model duration of 30,000 events in both runs.

First I find that run E25 with a low ratio of α/ε= 5/0.1= 50 yielded a rough fan surface compared

to run E40, where the ratio of α/ε = 20/0.03 = 667 was much higher (Appendix D). Resulting

fan slopes for both runs (E25 and E40) are comparable (Figure 5.11). Fan surface roughness

increased in both cases rapidly during the first 10,000 events, which reflects the fan evolution in

phase I (Section 5.4.1), and then stabilized for the remainder of the model run. Standard deviation

of radial slope reached a stable level much earlier and showed only minor fluctuations through

time, but there were prolonged periods where standard deviation of slope was higher or lower

than the average (e.g. between 18,000 and 26,000 events in run E40). RJD99 in run E25 decayed

rapidly from a maximum of 1 up to 10,000 events to a maximum of 0.5 between 10,000 and 30,000
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Figure 5.10: Influence of α and ε on relative jump distance. White dots represent the combinations of α

and ε used in the model runs. The map in gray-shades is the linear interpolation of the resulting RJD99
values. A: Log-normal input volume distribution, runs E24–E30, E40–E56 . B: Double Pareto input volume
distribution, runs E64–E88.

events (Figure 5.11A). In run E40 periods of RJD99 close to 1 occurred throughout the run, but

became less frequent as time progressed (Figure 5.11B). Note the period in the last third of this

model run when RJD99 was zero, coinciding with a relatively high standard deviation in radial

slope and indicating the presence and influence of a stable channel.

In Table 5.2 I show the results of the regression analysis of RJD99 against local surface rough-

ness (x1) and standard deviation of radial slope (x2). I find that in run E25 surface roughness x1

measured at 100 event time intervals, explains 55% (61% for run E40) of the variability in RJD99

during the 100 events following the roughness measurement. Standard deviation of radial slope

is a worse predictor of RJD99, but in run E25 still accounts for 43% of the variability in RJD99

during the 100 events following the measurement (28% for run E40).
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Table 5.2: R2 values of linear regression between relative jump distance at 99% non-exceedence probability
RJD99 for time slices of 100 events and surface roughness x1 or standard deviation of radial slope x2
calculated from fan topography just before first event in a time slice.

Run E25 Run E40
Regression model: Surface roughness ˆRJD99 = a+b · x1

R2 0.55 0.61
Regression model: Standard deviation of radial slope ˆRJD99 = a+b · x2

R2 0.43 0.28
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5.4.3 The influence of apex disturbance on fan surface age and debris-flow magni-

tudes

In the last application I want to consider the effect of sediment input by a rock avalanche on fan

morphology. Rock avalanche deposits emplaced on the fan head disturb the pattern of debris-flow

inundation and depostion on fans (e.g. at Illgraben, Chapter 2; Blair and McPherson, 2008). In

both cases the rock avalanche blocked the catchment outlet, which resulted in a down-fan shift in

apex position and abandonment of the peripheral fan segments near the mountain front. Davies

and Korup (2007) found that large and infrequent sediment input by rock avalanches caused fan

head aggradation due to increased sediment flux and subsequent incision as sediment flux returned

to background levels. With this application I want to investigate how suitable this model is to

investigate such a scenario by making a qualitative comparison between model output and these

case studies. Specifically I am interested in the emerging patterns of surface age on the fan, and in

sediment output measured at the fan toe compared with the sediment input.

I performed a standard model run of 10,000 events with a log-normal input volume distribution

(mean volume of 3,000 m3 and standard deviation of 1,500 m3), α = 10, ε = 0.1, Cmin = 0.3,

Cmax =Ccrit = 0.8 and pwet = 0 (Run E23 in Appendix, Table D.1). After 10,000 events I placed a

rock avalanche deposit at the fan apex. It covered a semi-circular area with a radius of 50 m around

the fan apex (Figure 5.12F) and had a thickness of 20 m. I then filled the accommodation upstream

of the rock avalanche dam to form a horizontal surface. This procedure yielded a total added

volume of 230,000 m3, which was equivalent to about 5% of the total fan volume ≈ 4 ·106 m3 at

that time. I then restarted the model for another 10,000 events with unchanged model parameters.

In addition to the data analysis and visualizations shown before (Section 5.3.2, Figure 5.4A and

D) I show statistics on sediment flux at the fan toe, long profile evolution in the first 100 events

following the rock avalanche (Figure 5.12D) and visualizations of surface age after 10,000 and

20,000 events (Figure 5.12E, F and G). In Figure 5.12A I show the sediment flux measured at the

fan toe normalized by the input over a moving window of 50 event. An animation of topographic

and surface age evolution of this experiment is archived on the data CD (Appendix D).

In Figure 5.12A I show a comparison of input flow volumes with flow volumes that reach

the fan toe. I averaged output volumes over a moving window of 20 events and normalized this

by the average input volume over the same moving window. The time window of 20 events is
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approximately one third of the response time needed for the channel to adjust to an equilibrium

profile after the rock avalanche (see discussion below, Figure 5.12D). I normalized the output

by the input to enhance the visualization of the relative difference between the two, otherwise

fluctuations in sediment flux are dominated by the noise generated by the log-normal input dis-

tribution. Initially only 20% of input volume reached the fan toe, but after about 5,000 events

output volumes stabilised at ≈ 80% of input and fluctuated by ±10%. With regard to the standard

deviation of output volumes normalized by the input standard deviation I find that during the first

1,000 events standard deviation in the output was smaller than in the input, but afterwards was

mostly larger, eventually stabilising at ≈ 110%. The rock avalanche at 10,000 events and sub-

sequent incision did not significantly impact the output distribution, as indicated by a mean and

standard deviation of normalized flow volumes that does not change significantly before and after

10,000 events (Figure 5.12A). Incision into the rock avalanche deposit was completed after only

≈ 60 events (Figure 5.12D) resulting in a slightly steeper but more or less uniformly sloping fan

(Figure 5.12F), and a very narrow (9 m) and deep (26 m) gorge cut into the rock avalanche de-

posit. The net volume removed from the deposit calculated as the difference between topography

at 20,000 events and at 10,000 events was ≈ 20,000m3.

However, I found significant changes in the debris-flow inundation patterns. After emplace-

ment of the rock avalanche deposit, debris-flow activity was focused on the central segment of the

fan (Figure 5.12C). The abandonment of the peripheral west and east segments of the fan resulted

in a rapid increase in median fan surface age after 10,000 events (Figure 5.12B). At the end of the

model run at 20,000 events, I find that the peripheral fan segments have been completely sheltered

from subsequent debris flows due to the down-fan shift in apex position (Figure 5.12E and F)

leading to a bi-modal age surface distribution (Figure 5.12G).

Figure 5.12: Next page: Summary of results from apex disturbance by rock avalanche. A: Temporal evolu-
tion of mean and standard deviation of output volume distribution averaged over 20 events and normalized
by corresponding mean and standard deviation of input volumes. B: Median fan surface age every 100
events. C: Temporal variation of flow path direction from west to east (from left to right). D: Temporal
evolution of talweg elevation at apex, rock avalanche at 10,000 events resulted in 17 m elevation increase,
decline to pre-rock avalanche level within the next ≈ 60 events as indicated by arrow. E: Map of fan sur-
face age with contours every 4 m immediately after rock avalanche (RA) at 10,000 events. F: Map of fan
surface age at end of model run with contours every 4 m. G: Frequency distributions of fan surface age for
situations in E and F, RA: rock avalanche.
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In this application I have shown how this model could be used to investigate external forcing

and how output data could be visualized, but I also note some model limitations that warrant

further attention. The external forcing incurred by the rock avalanche surprisingly did not impact

on the sediment volume output at the fan toe. There are two possible explanations for this; first,

the disturbance was too small in comparison to the system inherent noise introduced by the input

volume distribution and subsequent erosion and deposition on the fan (Humphrey and Heller,

1995; Jerolmack and Paola, 2010; Kim et al., 2006; Nicholas and Quine, 2007b). Second, and

perhaps more relevant explanation, relates to a current limitation of the model. Figure 5.12D and

F show that incision into the deposit was extremely rapid and localized, resulting in only limited

removal of the rock avalanche deposit. This is in disagreement with field examples such as the

Illgraben fan (Chapter 2) or Rose Creek Fan (Nevada, USA, Blair and McPherson, 2008), where

incision by debris flows into the rock avalanche deposit resulted in a breach of several 100 meter

width. But because the model does not allow for lateral erosion and bank collapse when channel

side walls become too steep, the resulting channel was very narrow. Both mechanisms, lateral

erosion and bank collapse are clearly relevant on fans (Chapter 4, Appendix A.1 Figure A.12) and

could be included in future models. Nonetheless, this application demonstrates that a down-fan

shift in apex position leads to the abandonment of peripheral fan segments (Blair and McPherson,

2008, Chapter 2). Because these fan segments are sheltered from further inundation, their surface

age will be on average older than the surface age of active fan segments. Surface age distributions

of fans, obtained by mapping and dating of fan surfaces (e.g. Chapter 2, Dühnforth et al., 2007),

contain interesting information on the history of the fan. A bi-modal age distribution might be the

result of drastic changes in inundation patterns in the past, and the age difference of the two modes

(at zero and 10,000 events in Figure 5.12) should match the time passed since the disturbance.
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5.5 Discussion

In the discussion I want to consider three areas: the underlying principles and the general frame-

work of the model, the model validation, and lessons learnt from the applications shown previ-

ously.

5.5.1 Model principles

To my knowledge I have presented the first numerical debris-flow fan evolution model. It consists

of seven components that determine its capabilities and limitations:

• Model space geometry

• Flow routing

• Relationship between flow volume and shape of hydrograph

• Relationship between flow volume and deposit geometry

• Lateral inundation algorithm

• Erosion and deposition rule

• Rule for transition from levee- to lobe-deposition mode

Unlike other models that operate over large spatial extents (Berti and Simoni, 2007; Gamma,

1999; Iverson et al., 1998; Scheidl and Rickenmann, 2011), I opted for a grid consisting of a series

of cross sections, inspired by Nicholas and Quine (2007a), and handling of topographic data and

network topology inspired by Tucker et al. (2001). This has a number of advantages with regard to

the remaining six components, but most importantly provides a very efficient and flexible way of

parameterising topography. In this chapter the model space consisted of a series of straight cross

sections along the chute followed by semi-circular cross sections, termed arcs, for the fan area

(Figure 5.1). Within the model framework there is only one constraint on the shape of these cross

sections: The trace of the cross sections should be approximately perpendicular to the expected

flow direction. Therefore the parameterization of a sinuous valley would not be a problem. Cross

section and node spacing are independent and a relatively fine node spacing compared to the arc

spacing can be used to account for the larger cross-flow variability in topography. Whilst it is

clear that the shape of the cross sections predetermines the overall shape of the resulting landform

over the long-term, the shape of the cross sections could be adapted repeatedly to minimize this

geometric effect.
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The proposed flow routing follows the true steepest slope, always moving outwards from one

to the next arc, but the algorithm only considers nodes in the next arc that fall within the search

angle ζ (Figure 5.1). Larger values for ζ allow for more abrupt changes in flow direction between

arcs. The flow routing proposes one single flow path along the talweg that forms the starting point

for the inundation algorithm. This is an important difference to some fluvial fan models that allow

for flow splitting (e.g. Nicholas and Quine, 2007a; Pelletier et al., 2005), which is also observed

in surging debris flows (Blair and McPherson, 1998). But unlike Scheidl and Rickenmann (2011)

or Gamma (1999), the flow routing in this model does not contain any random components and

flow paths do not stop when reaching a pit, instead pits are filled and flows continue when the

remaining volume is sufficiently large.

The actual flow behaviour is inspired by the LAHARZ model and its derivatives (Berti and

Simoni, 2007; Griswold and Iverson, 2008; Iverson et al., 1998), with an important difference

beeing that erosion and deposition along the flow path are allowed, which in turn alters the total

flow volume. The underlying assumptions are that debris-flow hydrographs can be approximated

by a triangular shape and that the propagation velocity is independent of slope but follows u ≈
√

g ·hr, where g is gravitational acceleration and hr is hydraulic radius. Under these assumptions

Iverson et al. (1998) showed that a power-law relationship exists that links total flow volume to

flow cross section area and total inundation area. In essence this means that runout distance in

the LAHARZ model and in this model is therefore only controlled by mass-conservation and the

empirical parameters α and ε in Equations 5.2 and 5.3, and that flow hydrographs do not attenuate

when the flow volume remains constant, which may lead to an over-prediction of inundation width.

The lateral inundation algorithm in combination with the erosion and deposition rules is a

novel aspect of this model as it provides a mechanism for the deposition of levees. So far only

more sophisticated two-phase models have achieved this, but only for very small model-domains

of single channels (e.g. Pudasaini et al., 2005). Levees are important topographic features because

they guide subsequent flows, make inundation of inter-channel areas much less likely (Chapter 4;

Blair and McPherson, 1998; Dühnforth et al., 2007; Whipple and Dunne, 1992). The crucial

component of the inundation algorithm is the value of dc that determines the thickness of deposits

when flows spread over-bank. In the current implementation dc scales with flow volume to the

power 1/3 (Equation 5.3), following Berti and Simoni (2007). This is one of many options. An

alternative approach would be to link dc to the size of coarse boulders in the flow as detailed field
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studies of debris-flow deposits suggest that deposit dimensions might be related to the size of the

most coarse clasts (Blair and McPherson, 1998); however, to date no simple formulations have

been proposed that could be easily adapted. I suggest that a substantial improvement with respect

to deposit thickness should include the introduction and tracking of a coarse particle concentration

in the model framework.

With regard to erosion and deposition when flow depth exceeds dc I assume that they are

a function of basal shear stress. I further assume that I can estimate basal shear stress beneath

the debris flow by calculating the Coulomb friction (τb = ρbgh; Iverson, 1997; Takahashi, 2007).

This approximation is valid for debris flows where friction forces dominate over collision forces

(Savage number NSav < 0.1). As long as mixtures of water and rock (i.e. with a strong density

contrast) are considered this assumption only breaks down at very low bulk internal friction angles

(φ� 30◦) of the granular material or at very high shear rates (γ̇� 100 1/s) (Iverson, 1997). I use

the basal shear stress to determine the amount of erosion or deposition by sampling from a data set

of 565,344 paired observations of maximum flow depth and associated bed elevation change from

the Illgraben channel (Chapter 4). This procedure assumes that I can use τb = ρbgh to convert the

flow-depth in the field data to basal shear stress, which then becomes independent of the slope of

the study reach where the data was obtained. It is important to note that my approach to erosion

does not favor any particular entrainment or erosion mechanism (e.g.: Berger et al., 2011; Hsu

et al., 2008; Hungr et al., 2005; Papa et al., 2004; Sassa and Wang, 2005; Stock and Dietrich,

2006) so long as that mechanism shows a monotonic functional dependence on basal shear stress.

The last model component is the rule that controls the levee-lobe transition. The decision to

link this transition to a critical sediment concentration is based on Takahashi (2007) and Ricken-

mann et al. (2003) who found that entrainment in debris flows decreases with increasing sediment

concentration. In essence I make the assumption that once entrainment becomes difficult, because

of high sediment concentration, lobe deposition starts. However, Blair and McPherson (1998) sug-

gested that the transition between levee and lobe deposition might also be related to a depletion

in coarse clasts that are left behind in levees, supported by observations of a distinct decrease in

maximum clast size from levees to lobes. This finding could, in addition to the potential role of

coarse clasts in setting the minimum deposit thickness, motivate a more sophisticated treatment of

grain size in the model.
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5.5.2 Model validation

The validation of a debris-flow fan model poses a major challenge due to a lack of good long-term

records of the evolution of for example slope or volume on debris-flow fans. For the moment I

can only confirm that the proposed model produced reasonable debris-flow deposits at the level of

single flows (Figure 5.3), and that over thousands of events general expectations on the interplay

between fan slope on one hand and sediment flux or sediment concentration on the other hand

were fulfilled. Model fan slope increased with increasing sediment flux (Bull, 1962; Clarke et al.,

2010; Harvey, 2002), and with increasing sediment concentration at nearly constant sediment flux

(Milana and Ruzycki, 1999; Schumm et al., 1987; Whipple et al., 1998) (Figure 5.5). During

the validation experiments I found that fan slope was very sensitive to the proportion of flows

entering lobe-deposition mode high up on the fan, which is a function of the difference between

the initial sediment concentration and the critical sediment concentration. Model runs with a mean

initial sediment concentration close to the critical sediment concentration produced the steeper

fans than those runs where the difference between the two was larger. This confirmed a hypothesis

formulated by Whipple and Dunne (1992) suggesting that catchments producing a high proportion

of flows with a high sediment concentration should build steep fans, while catchments producing

more low-concentration flows should build gentle fans.

In this chapter I have run the model with only one type of boundary condition imitating an

axial, non-incising river that limited the radial fan growth and maintained a constant base level.

This is a typical boundary conditions for mountain valleys, and is similar to the boundary condition

in (Clarke et al., 2010), and I found that the model underwent the same phases of fan building as

their flume experiments. Based on these comparisons I am confident that the model, although it

is strictly speaking not calibrated, provides a reasonable platform to investigate debris-flow fan

evolution.

One important pattern that was seen in all validation experiments is the non-linear growth in

volume and slope despite constant sediment flux (Figure 5.4C and D). The main reason for this

is not that the fan becomes larger, but that with increasing slope the fan becomes more efficient

in routing sediment from fan apex to toe (Figure 5.4E). In other words, after a while debris-flow

fans start to behave more like hillslopes that convey sediment rather than storing it, and can be

described as being in a state of ‘dynamic equilibrium’ (Davies and Korup, 2007). This is an



5.5. Discussion 130

important finding for the temporal evolution of connectivity of headwater catchments with the

higher-order fluvial stream network in mountain belts, because alluvial fans are the bottleneck

between the two process domains. It suggests that over time, e.g. following the deglaciation of

a mountain valley, connectivity increases as fans prograde out into the valley floor and approach

their state of dynamic equilibrium.

The model should not be used to reproduce the behaviour of a specific debris-flow catchment

and fan system, and model results should not be applied to a specific location. However, I used the

model to perform three experiments to enhance the understanding of basic process–form feedback

that rely on the capability to model thousands of flows and that require flows to erode and deposit.

5.5.3 Model application

With the first two applications I demonstrated why fan evolution over thousands of debris-flows

is relevant for debris-flow hazard. If one can read fan surface morphology in a quantitative way

with respect to the underlying process, we have a useful tool at hand to learn about the behaviour

of a debris-flow fan system. After all, fan surface morphology (e.g. location of channels or

geometry of depositional lobes) is the only record of past debris-flow activity, increasingly so with

the wide availability of high-resolution topography. Because the focus in hazard assessment lies

on the formulation of ‘reasonable scenarios’ with defined recurrence intervals and flow volumes

(e.g. Petrascheck and Kienholz, 2003), there is a tendency to undervalue the long-term information

recorded on the fan surface in the form of deposits and channels about the behaviour of past events.

However, formulation of scenarios is the crucial step for the outcome of the hazard assessment and

the same time it is also the most uncertain step in the work flow unless there is a good event archive.

With the model presented here I have shown examples how I can model a debris-flow fan system

to gain a probabilistic insight into the behaviour without limiting the analysis to specific scenarios

of flow volume and properties, but by drawing flows from a broad population of possible flows.

Fan evolution and influence on debris-flow magnitude–frequency relationship

In the first application I have shown how the magnitude–frequency distribution may change be-

tween fan apex and fan toe when debris flows are allowed to dynamically interact with the emerg-

ing topography involving entrainment and deposition. The model results suggest that the standard

deviation of flow volumes may increase from fan apex to fan toe while the mean flow volumes
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decrease (Figure 5.7), causing a down-fan decrease in channel conveyance capacity (Whipple and

Dunne, 1992). This finding highlights the need to better understand those debris flows that are ero-

sional on the fan (Chapter 4; Berger et al., 2011; Scheuner et al., 2009), increase the conveyance

capacity of the channel in the upper part of the fan and thereby are less likely to avulse near the

apex. However, when these flows reach the lower part of the fan, their peak discharge is likely to

exceed channel conveyance capacity leading to avulsion near the fan toe (Arattano et al., 2010;

Badoux et al., 2008; Scheuner et al., 2009). Very specifically, the implication is that it is danger-

ous to assume in debris-flow models used in hazard assessment that flows have to deposit once

reaching the fan (Gamma, 1999; Scheidl and Rickenmann, 2011).

The influence of fan morphology on inundation patterns

In the second application I have shown that there may be an important link between fan surface

morphology and hazard zonation that has been overlooked in the past. Beside the formulation

of relevant scenarios with respect to event magnitude, hazard zonation on debris-flow fans also

requires a prediction of future flow paths, which allows a prediction of likely inundation areas

(Gamma, 1999; Iverson et al., 1998; Scheidl and Rickenmann, 2011; Scheuner et al., 2011). How-

ever, flow path prediction on fans is inherently difficult due to the overall convex topography, the

divergent channel network Pelletier et al. (2005) and uncertainties related to the event properties

such as total volume, entrainment along the flow path (see above), peak discharge and velocity.

The flow path uncertainty has been approached in the past by a random generation of likely flow

tracks (Favalli et al., 2009; Gamma, 1999; Scheidl and Rickenmann, 2011). Geomorphic mapping

has been used widely and reliably to identify the signature of past debris-flow activity in the land-

scape, and as such is systematically used in hazard mapping (e.g. Kienholz and Krummenacher,

1995). However, little effort has been spent on making quantitative use of topographic information

now widely available, to improve understanding of likely flow behaviour.

With the relative jump distance at 99% non-exceedence probability (RJD99) I introduced a

measure of the ‘volatility’ of a debris flow fan system. RJD99 can be utilised as a measure of the

width to both sides of an active channel that is likely (with 99% probability) to be inundated by

debris flows. I have shown that RJD99 is most strongly related to fan surface roughness, which

is controlled by deposit geometry and presence or absence of channels. In my model deposit

geometry and channel scaling are a function of the two parameters α and ε. In experiments where
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channels were formed frequently and where debris-flow deposits were thick (low α) the volatility

RJD99 was found to be smaller than in systems where channels were rare and deposits were thin

and wide (large α). This second point confirms my initial hypothesis that changes in flow direction

should be a function of fan surface morphology and this has practical implications for hazard

mapping. I therefore explored the potential of two measures of fan surface morphology, surface

roughness and standard deviation of radial slope, to act as predictors of future RJD99. I found that

two simple measures of fan morphology, local surface roughness and standard deviation of radial

slope, explained between 28% and 61% of the observed volatility in RJD99 in events following the

surface morphology measurements. But it is important to note that the quality of the prediction of

RJD99 is based on a snapshot of fan morphology, and that it must decay over time as the surface

is modified by subsequent flows. Another process that is currently not implemented in the model,

but is likely to influence the system volatility on the long term, is post-depositional modifications

to the surface such as weathering, bank collapse and development of fluvial drainage networks on

abandoned fan surfaces (Dühnforth et al., 2007; Frankel and Dolan, 2007; Pelletier et al., 2005).

From the results of this application it is clear that other measures of surface morphology could

and should be tested to see whether the correlation between fan morphology and system volatility

(RJD99) can be improved, and verification of this proposed correlation should be undertaken in

the field.

If the finding that fan surface morphology contains statistical information about future flow

behaviour also holds true in natural environments, then this has interesting implications for the

interpretation of fan surface morphology. A smooth fan, with only a few channels and a vague

debris-flow signature, traditionally interpreted as having experienced little debris-flow activity

and being dominated by fluvial processes, might counter-intuitively indicate two things. First,

debris flows from this catchment might exhibit a different flow behaviour favouring thin and wide

deposits, and second, wide-spread inundation might be the rule rather than the exception. An

example how the temporal evolution of such an ‘unpredictable’ fan might look with regard to

RJD99 is shown in Figure 5.11B. This figure shows a system where the active channel remains

in the same place for a long time (RJD99 ≈ 0) and then suddenly becomes extremely volatile

(RJD99 ≈ 1). In such a system there is also no decay over time in the maximum value of RJD99.

The contrary example of a fan with closely spaced channels and thin and elongated lobes might

indicate a much more predictable behaviour, because flows that avulse from the active channel are
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much more likely to be captured by pre-existing channels (Jerolmack and Paola, 2007) or other

roughness elements. The evolution of such a system is shown in Figure 5.11A. Compared to the

previous example there is a clear difference between phase I (until≈ 10,000 events) where RJD99

decays rapidly and phase II where RJD99 remains low with a maximum of ≈ 0.5.

Clearly this finding should not be over interpreted, but rather highlights the need for future

research in two specific areas: First, one needs to understand what controls deposit geometry in

nature. In the current implementation of the model, deposit geometry is controlled mainly by α

and ε. However, published values of α and ε are the result of regression analysis from multiple

events, from multiple catchments (Berti and Simoni, 2007; Crosta et al., 2003; Griswold and Iver-

son, 2008). For practical purposes it would be preferable if deposit geometry could be understood

in the framework of more physically based parameters that could be established for specific catch-

ments. Possible starting points would be the relationship between debris-flow hydrographs and

grain size distribution in the flow front (Chapter 4), the relationship between deposit geometry and

grain size distribution of the flow, and discrete particle modeling considering the effect of grain

size distribution on the flow hydrograph (Hill et al., 2011; Martinez et al., 2011). Second, fan

evolution should be investigated using calibrated debris-flow models that conserve both mass and

momentum such as the RAMMS model (Christen et al., 2010; Scheuner et al., 2009) or two-phase

models (Iverson and Denlinger, 2001; Pudasaini et al., 2005), and they should be run over multiple

events and over real topography, preferably in places where the magnitude–frequency distribution

of flow volumes is well known.

The influence of apex disturbance on fan surface age and debris-flow magnitudes

In the last application I investigated the effect of an external disturbance to the apex position, on

sediment discharge, long-profile response and surface age distribution on the fan. In this scenario

I placed a rock avalanche deposit near the fan apex, blocking the catchment outlet. Large and

infrequent sediment input into catchments has been reported to significantly influence sediment

discharge downstream (Davies and Korup, 2007; Hewitt et al., 2008; Korup, 2004). I wanted to

see how such a scenario would impact on the magnitude–frequency distribution of debris-flow

volumes measured at the fan toe. Surprisingly it did not have a discernable impact, which is most

likely attributed to a current limitation of the model. The model in its current form does not allow

for lateral channel erosion or bank failure. This meant that debris flows in this experiment rapidly
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incised an unrealistically narrow and deep gorge into the deposit without removing significant

amounts of the actual deposit. The wide breach in the rock avalanche deposit at Illgraben (Chap-

ter 2, Figure 2.5) or on the Rose Creek fan (Blair and McPherson, 2008) demonstrate that lateral

migration of debris-flow channels by undercutting and subsequent collapse (Chapter 4, Figure 4.2)

are important processes that should be included in a fan evolution model. Inclusion of these pro-

cesses might exacerbate the modification of magnitude–frequency distributions of flow volumes,

as shown in the first application, or reduce surface roughness, which would have an influence on

the results of the second application. Despite the unrealistic incision behaviour, this experiment

confirmed a hypothesis formulated in Chapter 2, that a shift in apex position should result in the

preservation of old fan surfaces near the fan apex and along the mountain front (Figure 5.12F).

In Chapter 2 (Figure 2.2) I hypothesized based on relative chronology that lobe L1 should be

older than the rock avalanche. The resulting map of fan surface age from modeling (Figure 5.12F)

looks similar in the sense that two peripheral fan segments developed that are older than the rock

avalanche induced at 10,000 events. The resulting surface age distribution from modeling (Fig-

ure 5.12G) shows a bi-modal pattern where the separation between the two modes broadly matches

the time passed since the rock avalanche.

5.6 Conclusions

In this chapter I present a debris-flow fan evolution model that is based on an attempt to integrate

qualitative observations of debris-flow deposit geometry on the fan, semi-empirical relationships

of flow behaviour, and monitoring data on the relationship between flow depth and bed elevation

change. I have included a mechanism for entrainment along the flow path, which makes this ap-

proach different from most other approaches of modeling debris flows. Flow mobility is mainly

controlled by lag rate2 which is a function of cross section geometry, flow cross-sectional area

and sediment concentration. The model fulfills general expectations on the relationship between

sediment concentration, sediment flux and fan slope, and fan evolution is compatible with obser-

vations made during flume experiments of alluvial fans. Channels emerge and disappear from the

fan surface over time in absence of external forcing, entirely as a result of process–form feedback,

and act as efficient sediment routing pathways. I find a general increase in sediment routing ef-

2volume change of the debris flow per unit downstream distance (Cannon, 1989)
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ficiency of the fans over time, which means that over time the connectivity between headwater

catchments and the higher-order fluvial network in mountain belts should increase. In model ap-

plications I show how understanding of debris-flow hazard can be improved by considering the

mechanics of long-term fan evolution. I show that contrary trends of declining mean flow volumes

and increasing standard deviation of flow volume in the down-fan direction may explain channel

avulsion near the fan toe documented in case studies elsewhere. A novel probabilistic measure

for the ‘volatility’ of debris-flow fans is proposed on the basis of the relative change in flow path

direction between successive flows termed relative jump distance. I found that the relative jump

distance is controlled by surface morphology with smoother fans being more likely to experience

substantial changes in flow path direction between successive events than comparatively rough

fans. I suggest that my probabilistic modeling approach may be used in conjunction with more

physically based, but computationally expensive, models, where flow properties and magnitude–

frequency relationships of flow volumes are poorly constrained.



Chapter 6

Conclusions

6.1 General findings

With this thesis I have investigated debris-flow erosion and deposition dynamics on spatial scales

ranging from single channels to a catchment-fan system, and on temporal scales covering single

events and millennia. Fieldwork was conducted at the Illgraben, Switzerland, and data used to

build a numerical fan evolution model.

Understanding erosion and deposition in debris flows requires tools to map, measure and quan-

tify these processes in the field. Accurate measurement of debris-flow erosion and deposition at

channel scale is often hindered by a lack of information about the pre-event topography, hence

improved understanding of controls on debris-flow erosion at the field-scale is impossible. I have

shown that at reach scale (300 m) terrestrial laser scanning is a viable technique to gather high-

resolution topographic data to quantify geomorphic change in debris-flow channels. However,

challenges arise from unfavorable scan geometries and accessibility issues that dictate scan station

positioning, and result in point clouds with highly variable point densities and ambiguous ele-

vation information. Ambiguous elevation information arises from three sources: imperfect point

cloud matching, surface roughness and erroneous measurements. I have shown that when such

data is used for change detection by pair-wise comparison of subsequent surveys, results may be

substantially biased by the process of point cloud processing. When two inhomogeneous and am-

biguous point clouds are to be compared against each other, some transformation is necessary to

make them comparable. For this work I opted for the popular approach of gridding the data to

a rectangular raster of constant resolution. Traditionally this would have involved choosing an

136
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elevation from a range of options for each grid cell, e.g. by applying a filter to the raw data. I have

demonstrated first, that this choice introduces unexpected bias in the result of the change detection

and hereby obliterates the true geomorphic change, and second how this gridding error can be

mitigated and quantified.

Debris flows interact with their bed through often simultaneous erosion and deposition. As

debris-flow models improve to a stage where they are increasingly able to reproduce the obser-

vations from real debris flows with respect to the combined behaviour of solids and fluid, the

depositional morphology and stresses, high resolution data on channel change with known uncer-

tainties becomes an invaluable resource for model building and validation. In a combined analysis

of data on bed elevation change from terrestrial laser scanning and maximum per-event flow depth

from field mapping of mudlines, I have compiled a probabilistic relationship between the two.

Main features of this relationship include an equal likelihood of erosion and deposition for low

flow depths of up to ≈ 1.5 m, and a dramatic increase in the likelihood of erosion of 75% and

more, for flow depths of ≈ 2.5 m and above. These findings are corroborated by observations at

the fan-scale where I found debris flows with high flow fronts to be more erosive than those with

average or low front heights. My results also show that at the Illgraben field site debris-flow front

height is uncorrelated with total flow volume. This means that the total expected flow volume

should not be used as a universal proxy for flow magnitude in hazard assessments for two reasons:

Low-volume flows with high flow fronts might unexpectedly exceed channel conveyance capacity

and cause damage through over-bank sedimentation. In a situation where erosion is the main con-

cern, hazard might be better assessed by formulating ‘peak discharge scenarios’ that would give

indications of the flow depth in a given channel geometry.

Still many questions remain open with regard to the mechanics of debris flow erosion and it

would be misleading to conclude that flow depth controls erosion, however, flow depth can serve

as a proxy for three processes that are likely to operate more efficiently provided a higher flow

front. Basal shear stress exerts a drag force to the bed and is proportional to the flow depth. The

stress state of the bed is further influenced by grain agitation and recirculation of grains within the

flow front creating an inertial stress, and also by the hydrostatic pressure underneath the saturated

body of the flow. If flow depth is influencing the efficiency of these processes, then a process form

feedback must exist, because maximum flow depth is partly controlled by peak discharge but also

by cross section geometry with flow depth decreasing towards the flow margins. My observations
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of the spatial pattern of debris flow erosion and deposition support the postulated feedback with

simultaneous erosion along the center line of the flow and deposition along the flow margins

leading to a better confined channel over time, unless channel geometry is reset by a major event.

I hypothesized that over cycles of multiple flows, feedback between patterns of bed eleva-

tion change, channel geometry and flow depth may be crucial for the emergence of autogenic

behaviour, channel incision and for inundation patterns of debris-flow fans. I explored this idea by

implementation of a 2D reduced complexity model that is based on semi-empirical relationships

between flow volume and flow cross section area and inundation area, qualitative observations on

debris-flow deposit geometry and my own data on the relationship between flow depth and bed

elevation change. I showed that the model fulfills general expectations on the behaviour of allu-

vial fans detailed in case studies and flume experiments by a range of researchers. In particular

I showed that model fan slope increases with decreasing sediment flux and increasing sediment

concentration, and I showed that distinct phases of fan building observed in flume experiments

appear in my model in the same order. These distinct phases are characterized by a high frequency

of channel avulsions, a rapid lateral shifting of the depocenter and rapid fan volume growth at

the beginning of fan development, followed by the emergence of channels on the fan surface, a

lower avulsion frequency, a lower rate of fan volume growth and an overall increased efficiency in

sediment routing across the fan domain. These results suggest that with a set of simple rules the

characteristic behaviour of debris-flow fans could be captured.

Hazard on debris-flow fans is often described in terms of inundation extent under given scenar-

ios. The fan evolution model presented in this thesis can be used as a tool to look at the statistical

properties of the outcomes of many thousands of flows. I considered two aspects relevant for haz-

ard: down-fan modification of flow volume distributions and lateral flow direction change between

successive events. Not surprisingly, deposition on the fan lead to a reduction in the mean flow vol-

ume measured at the fan toe but in some cases an increase in standard deviation of flow volume

was noted. The increase in standard deviation of flow volumes was partly due to flows that grew

in volume whilst crossing the fan and partly due to flows that deposited all or almost all of their

load. In practical terms these results indicate that knowledge about the flow magnitude-frequency

distribution at the fan head is one important part in hazard assessment, but understanding how this

distribution is modified when filtered by a particular debris-flow fan could help to define strategies

of channel maintenance and design.
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Major changes in flow path direction on fans (or the constriction of flows) often poses the

greatest challenge for managing authorities. Model results showed a statistical correlation between

deposit geometry, defined by lateral extent and thickness, and maximum likely change in flow

direction between successive events. Fan surfaces built by narrow but thick deposits, creating

high local roughness and numerous channels, experienced smaller maximum likely changes in

flow path direction than fans with a smooth surface built by thin and extended deposits. This

finding suggests a link between fan surface morphology and likely flow behaviour could be used

to inform novel techniques of hazard mapping. As a result of differences in maximum likely flow

direction change between successive events, differences in modeled fan surface age distributions

arose. Smooth fans were of uniform age and had relatively young median ages due to the frequent

resurfacing, whilst rough fan surfaces exhibited large age differences and relatively older median

ages due to slow resurfacing. This result highlights that understanding fan surface morphology

with respect to the geometry and extent of individual deposits, the cross cutting relationships

between different deposits and constraining absolute age not only serves fan reconstruction but

should also yield meaningful information about likely future inundation and deposition dynamics.

6.2 Findings relevant for Illgraben

To understand erosion and deposition dynamics of debris flows at fan-scale I performed a geomor-

phic analysis of the Illgraben fan in the form of a case study. I found that the combined approach

of analysis of de-trended high-resolution digital topography and field mapping proved useful for

the identification of coherent low relief depositional lobes. Depositional lobes at Illgraben con-

sist of several amalgamated individual debris-flow deposits conveyed in the same feeder system

over a defined period of time. By mapping cross cutting relationships of these depositional lobes

and associated channels I identified the chronological order in which these feeder systems were

active. With cosmogenic exposure dating I constrained absolute surface ages, which are in good

agreement with the relative chronology derived from mapping. I also mapped and dated a rock

avalanche deposit near the fan head to an age of 3,080± 410 yr. The rock avalanche enforced a

down-fan shift in apex position, which I documented trough an analysis of linear trends of channel

fragments preserved on the fan surface. Mapping and exposure dating indicate that the Illgraben

fan was almost completely resurfaced within the past≈ 1,600 yr. However, for a few depositional



6.3. Future work 140

lobes the cross cutting relationship with adjacent depositional lobes suggest an age older than the

rock avalanche; due to a lack of suitable material, dating has not been successful so far. The pres-

ence of patches of fan surface predating the rock avalanche is reasonable given my model results

predicting preservation of old fan surfaces near the mountain front.

The lower boundary condition of the Illgraben fan (toe cutting by the Rhone river) is similar to

the boundary conditions I used in the model experiments. My model fans went through a phase of

rapid volume growth followed by volume growth at lower rates due to the emergence of channels

increasing the routing efficiency of the fan surface. Currently the Illgraben fan is efficient at

routing sediment to the fan toe and sediment accumulation is limited to the incised active channel

and inset terraces. This behaviour is partly the result of human attempts of controlling the channel

position on the fan since at least one century. Because the fan has grown to the opposite valley

wall, and is being eroded by the Rhone river at the fan toe, it is suggested that the fan has probably

reached the second phase of its development. This second phase by implication should encompass

stable channel configurations over prolonged periods of time.

6.3 Future work

My thesis highlights two distinct areas for potential further research with regard to erosion and

deposition dynamics of debris flows. First the lack of correlation between total flow volume and

front height or peak discharge and the lack of explanation why this might be, demonstrates that

there is a gap between idealized models of debris flows (discrete element and continuum con-

stituent models), and their extremely complex natural counterparts. As of yet we do not even have

established procedures to monitor the temporal and spatial evolution of flow fronts at a meaningful

scale, let alone linking their evolution to catchment or channel parameters. In particular the role

of coarse clasts and their size distribution in flow front formation has not been clarified beyond the

general observation that coarse clasts accumulate at the flow front and are forming a high-friction

mobile dam. Flow front formation is closely related to grain segregation (Iverson, 1997; Zanuttigh

and Lamberti, 2007). Complete grain segregation requires a minimal travel distance (Zanuttigh

and Lamberti, 2007), therefore static flumes might be too short to yield reasonable results. Davies

(1990) experimented with a 2 m long and 50 mm wide conveyor belt apparatus and a mixture of

water and PVC particles. As a first step a similar but larger apparatus could be built from indus-
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trial conveyor belts, where larger quantities and realistic material mixtures could be tested. In a

series of experiments I would vary the concentration and grain size distribution of coarse clasts

within a slurry of water, sand and clay, comparable to the liquid phase of debris flows. Observ-

able variables should include flow front height, distribution and concentration of coarse grains in

the flow, and travel distance until complete grain segregation. This experimental work could be

combined with discrete particle modelling (Hill et al., 2011, 2003). In a second step a suitable

field site should be identified to monitor flow front formation in natural debris flows. The first

question to answer would be how flow fronts of different height differ with respect to the content

and distribution of coarse clasts. Photogrammetric monitoring as in Berger et al. (2011) would

be one option, high-frequency repeat laser scanning of the progressing flow front an other option.

Ideally this data should be combined with information on entrainment, amount and size of coarse

clasts in the channel upstream of the monitoring site.

Second, controls on debris-flow erosion at channel-reach scale are still poorly constrained.

Although my research has yielded some data at channel-reach scale, and revealed some control by

flow depth, there is clearly scope to take my analysis further to cover different flow types, channel

substrates, and geometries. Because many researchers have highlighted the importance of the flow

front for erosion, channel bed monitoring should also be combined with flow front monitoring at

the same spatial scales. My modeling suggests that in confined settings lateral debris flow erosion

over multiple events can not be ignored. This is a related field where little research has been

done so far, but would deserve further attention, particularly when including debris flows within

landscape evolution models.

The results from the investigations described above should then be used to improve the model

I presented in Chapter 5. The direct link between flow volume and flow cross sectional area could

be replaced by direct empirical data on flow front behaviour. A grain size component could be

introduced, which could potentially be a very powerful way of calibrating the model with field

data, as grain sizes available for debris flow transport can be measured manually in the field or

from aerial imagery (e.g. Carbonneau et al., 2005).



Notation

Note: [1] means that a quantity is dimensionless, otherwise its dimension is given in suitable units.

A flow cross sectional area [m2]

Ac catchment area [m2]

B channel width [m]

C bulk sediment concentration [1]

C∞ equilibrium coarse particle concentration [1]

Ccrit critical sediment concentration for onset of deposition [1]

D difference model, grid value: elevation change [m]

Ei DEM, grid value of cell i: true elevation [m]

E ′i DEM, grid value of cell i: elevation from last return filter [m]

F long axis of the laser beam footprint [m]

N number of grains above slip surface [1]

NSav Savage number [1]

NBag Bagnold number [1]

NDar Darcy number [1]

Qs input sediment flux [m3/s]

R radius [m]

Ri topographically corrected range in elevation in grid cell i [m]

S channel slope S = tanθ [1]

T granular temperature [(m/s)2]

TA avulsion period [s]

Ts,Tf shear stress in solid and fluid phase [Pa]

dV volume change [m3]

V flow volume [m3]

~b vector connecting laser scanner and object [m]

dc critical flow depth or averave deposit thickness [m]
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g gravity [m/s2]

h flow depth or channel depth [m]

hr hydraulic radius [m]

k hydraulic permeability [1/m2]

l grid resolution [m]

m number of slices across the channel [1]

m f rate of added fluid mass to unit volume [kg/s]

ms rate of added solid mass to unit volume [kg/s]

n number of grid cells in a slice of width dx across the channel [1]

pc particle collision stress [Pa]

pt total fluid pressure [Pa]

ph hydrostatic fluid pressure [Pa]

pe excess fluid pressure [Pa]

r fan radius [m]

s bed porosity [1]

t time [s]

u velocity [m/s]

~u,~v components of the long axis of laser beam footprint [m]

u f fluid velocity [m/s]

us solid velocity [m/s]

ū mean fluid velocity [m/s]

w water content of bed material [1]

wc channel width [m]

dx width of slice across channel, unit downstream length [m]

x1 local surface roughness [◦]

x2 standard deviation of radial slope [◦]

α inundation area coefficient [1]

α dip direction of surface (only in Chapter 3) [radians]

αi collision angle [radians]

β opening angle of laser beam (only in Chapter 3) [radians]

δ representative grain diameter [m]

η viscosity of the Bingham fluid [Pa s]

γ shear strain rate [1/s]

µ dynamic viscosity of pore fluid with suspended fine sediment [kg/m s]

λ linear grain concentration [1]
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ρb bulk density = (ρs−ρ f )C+ρ f [kg/m3]

ρ f density of fluid [kg/m3]

ρs density of solids [kg/m3]

ρi a value on the interval [0;Ri], [m]

φ bulk internal friction angle [radians]

σ normal stress [Pa]

τ shear stress [Pa]

τb basal shear stress [Pa]

τc shear stress due to grain collisions [Pa]

τy yield strength [Pa]

θ slope angle [radians]

ε lag rate or flow cross section coefficient [1]

ε incidence angle of laser beam (only in Chapter 3) [radians]
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000, number 111 in Notice explicative, Office federal de topographie, Wabern.

Gamma, P. (1999). dfwalk – Ein Murgang-Simulationsprogramm zur Gefahrenzonierung, PhD, Universität
Bern, Bern.

Gertsch, E. (2009). Geschiebelieferung alpiner Wildbachsysteme bei Grossereignissen - Ereignisanalysen
und Entwicklung eines Abschätzverfahrens, PhD thesis, Universität Bern, Bern.

Gray, J. and Kokelaar, B. (2010). Large particle segregation, transport and accumulation in granular free-
surface flows, Journal of Fluid Mechanics 652: 105–137.

Griswold, J. and Iverson, R. (2008). Mobility statistics and automated hazard mapping for debris flows and
rock avalanches, U.S. Geological Survey Scientific Investigations Report 2007–5276, USGS.



BIBLIOGRAPHY 150

Grossi, P., Kunreuther, H. and Patel, C. C. (2005). Catastrophe modeling: a new approach to managing risk,
Huebner international series on risk, insurance, and economic security, 25, Springer Science+Business
Media, New York.

Hardy, S. and Gawthorpe, R. (1998). Effects of variations in fault slip rate on sequence stratigraphy in fan
deltas: Insights from numerical modeling, Geology 26(10): 911–914.

Harvey, A. (1984). Aggradation and dissection sequences on spanish alluvial fans: Influence on morpho-
logical development, Catena 11(4): 289 – 304.

Harvey, A. M. (2002). The role of base-level change in the dissection of alluvial fans: case studies from
southeast Spain and Nevada, Geomorphology 45(1): 67.

Heim, A. (1882). Der Bergsturz von Elm, Zeitschrift der Deutschen Geologischen Gesellschaft
34(1): 74–115.

Heim, A. (1932). Bergsturz und Menschenleben, Beiblatt zur Vierteljahresschrift der Naturforschenden
Gesellschaft Zürich 20: 1–214.
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Appendix A

Supplementary material for Chapter 2

A.1 Photo documentation of the Illgraben fan and catchment

Figure A.1: Illgraben, looking upstream: on the left
the deposit of the 1961 rock avalanche, right side rock
slope of the Gorwetsch Grat.

Figure A.2: Illgraben, looking upstream, standing on
CD1: mound of soft sediments in central part of pho-
tograph is the deposit of the 1961 rock avalanche.
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Figure A.3: Illgraben, looking downstream from top of CD1.

Figure A.4: The sediment retention dam (CD1) seen from downstream, total height is 40 m. Note abrasion
of concrete structure by debris flows.
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Figure A.5: Sample sites for wood embeded in valley fill (S1 and S2, Figure 2.3).

Figure A.6: The Illgraben channel looking downstream from sample sites for wood (S1 to S3).
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Figure A.7: The upper Illgraben catchment seen from the Güetji terrace, note CD1 marked by arrow.

Figure A.8: Illgraben channel upstream of CD10 (Figure 4.1).
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Figure A.9: View downstream from the catchment outlet. Rock avalanche deposit from 3,080 years ago
(arrow).

Figure A.10: Exposed inner structure of the rock avalanche deposit from 3,080 years ago. Note highly
compacted lower part with preserved rock mass structure (arrow) and coarse top layer.
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Figure A.11: Downstream view of study reach between CD16 and CD19 (Chapter 4). Levee deposits from
event 14 (Appendix, Table C.1) indicated by arrows.

Figure A.12: Deeply incised active channel on the Illgraben fan. Stabilization and protection of damaged
check dam due to lateral erosion and bank collapse with ring net barriers.
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Figure A.13: Illgraben fan: Snout with boulder C26 (Figure 2.2) behind person for scale in shallow channel
(≈ 15 m wide and 2 m deep).

Figure A.14: Illgraben fan seen from opposite valley side. The houses of Susten (Figure 2.1) and confluence
of the Illgraben with the Rhone can be seen on the left side. Rock avalanche deposit from 3,080 years ago
indicated by arrow.



A.2. Laboratory report for radiocarbon dating of wood samples 167

A.2 Laboratory report for radiocarbon dating of wood samples

20.05.11 UNI Bern / Geologisches Institut
Fritz Schlunegger
Baltzerstr. 1 
3012 Bern 

Betrifft: Radiocarbondatierung Ihrer Holz-Proben 

Sehr geehrter Herr Schlunegger

Wir freuen uns, Ihnen nachstehende Resultate unserer Analysen mitteilen zu können. Diese 
enthalten unsere Labornummer, Ihre Probenbezeichnungen, das konventionelle Radiocarbonalter 
sowie D14C und δ13C-Angaben.

B-9629 Holz S1 Illgraben VS (CH) 1950 ± 20 Jahre BP
D14C = (-215,9± 2,2)‰ δ13C = (-23,6 ± 0,2)‰
Fundort: Illgraben, in der rechten Zuflussrinne 8m oberhalb der Sperre 4; aus dem westlichen
Anriss dieser Rinne (CH-Koordinaten: 614124/125848, 982 m ü.M., in ca. 20m Tiefe) April 2009

B-9630 Holz S2 Illgraben VS (CH) 1970 ± 20 Jahre BP
D14C = (-217,8 ± 2,3)‰ δ13C = (-23,8 ± 0,2)‰
Fundort: Illgraben, in der rechten Zuflussrinne 8m oberhalb der Sperre 4; aus der östlichen 
Flanke, April 2009

B-9631 Holz S3 Illgraben VS (CH) 1990 ± 20 Jahre BP
D14C = (-219,3 ± 2,2)‰ δ13C = (-24,9 ± 0,2)‰
Fundort: Illgraben, aus einer Seitenrinne ( 2 Rinnen flussabwärts der Rinne aus welcher S1 uns 
S2 entnommen wurden) ca. 12,2 m oberhalb der Sperre 4

Als zusätzliche Information legen wir ein Merkblatt mit technischen Erklärungen bei. 

Bemerkung: 
Wir bitten Sie, uns im Falle einer Veröffentlichung des obigen 14C Alters ein Exemplar der Publi-
kation oder ein Separatum des Artikels zu überlassen. Bei Publikationen ist folgender Absatz an 
geeigneter Stelle im Text einzufügen: "Die für Altersbestimmung erforderliche Präparation, die 
Aufbereitung und Datierung des Probenmaterials erfolgten im Radiocarbonlabor des Physikali -
schen Institutes der Universität Bern". Wir danken Ihnen für Ihr Verstä ndnis.
Es würde uns freuen, Ihre eventuellen Fragen beantworten, bzw. die Resultate mit Ihnen 
besprechen zu dürfen. Bitte nehmen Sie Kontakt auf mit

T. Stocker oder R. Fischer 
Tel. 031 631 44 62 Tel. 031 631 44 78

Mit freundlichen Grüssen

T. Stocker

University Bern
Physics Institute  
Prof. T. Stocker
CH-3012 Bern, Sidlerstrasse 5
ph +41-31- 631 44 62, fx +41-31- 631 87 42
rfischer@climate.unibe.ch
http://www.climate.unibe.ch
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Radiocarbon-Labor
Physikalisches Institut-Universität Bern

Sidlerstrasse. 5 , CH-3012 Bern
Tel. 031- 631 44 64   Labor:  031- 631 44 78

FAX: 031- 631 87 42
rfischer@climate.unibe.ch

R.Fischer, 20.5.2011

Altersbestimmung nach der 14C-Methode

Holz-, Holzkohle-, Torf-, Laubproben, etc. werden nach einer Vorbehandlung, die probenfremdes 
Material nach Möglichkeit entfernt, unter Luftabschluss im O 2-Strom zu CO2 verbrannt.
Diesem CO2 werden ca. 15 cm3 STP entnommen und massenspektrometrisch auf den Gehalt an 
13C untersucht. Der gemessene δ13C-Wert gibt an, wie weit es in der Natur und/oder im Labor zu 
einer Verschiebung in der isotopenmässigen Zusammensetzung des Kohlenstoffes, d.h. zu einer 
Fraktionierung gekommen ist. Dieser 13C-Wert ist repräsentativ für das Zählgas und gibt nicht 
unbedingt die isotopenmässige Zusammensetzung der ursprünglichen Probe wieder.
Der Hauptteil des aus der Probe gewonnenen CO2 wird katalytisch unter Zugabe von H2 zu CH4
reduziert, dem Füllgas der Proportionalzähler zur Bestimmung der 14C-Aktivität der Probe. Die mit 
dem Zähler gemessene 14C-Aktivität wird mit der Aktivität eines Eichgases verglichen. Die Ab-
reicherung an 14C der Probe verglichen mit diesem Standard wird in Promill ausgedrückt und als
D14C bezeichnet. Bei der Berechnung von D14C werden durch Normierung auf  δ13C = -25 ‰ 
mögliche Fraktionierungen berücksichtigt.
Aus dem 14C-Gehalt der Probe kann unter Annahme gewisser Voraussetzungen (wie etwa der 
Konstanz des atmosphärischen 14C-Gehaltes), welche von Stuiver und Polach in der Zeitschrift 
RADIOCARBON, Vol. 19, No. 3, 1977, S. 355-363, beschrieben sind, das konventionelle Radio-
carbon- oder 14C-Alter der Probe berechnet werden. Das konventionelle Radiocarbon-Alter wird 
mit der Libby-Halbwertszeit (5568 Jahre) berechnet und gerundet in Jahren vor 1950 (Jahren BP 
(before present)) ausgedrückt.
Da die oben erwähnten Annahmen nur unter gewissen Umständen berechtigt sind, stimmt das 
Radiocarbon-Alter nicht unbedingt mit dem wahren ("Kalender"-) Alter der Probe überein. Das 
Radiocarbon-Alter kann aber mittels Kalibrierungskurven, die aus hochpräzisen Messungen an 
absolut datierten Baumringen und anderen Probenmaterialien gewonnen wurden, in Kalender-
alter umgerechnet werden. Allerdings muss bei der Umrechnung z.T. mit Mehrdeutigkeiten ge -
rechnet werden.
Kalibrationskurven werden u.a. in RADIOCARBON, Vol. 35, No. 1, 1993, S.215-230, in 
RADIOCARBON, Vol. 46, No.3, 2004, S.1029-1058 (INTCAL04 RADIOCARBON AGE 
CALIBRATION, 26'000-0 cal BP) und in RADIOCARBON, Vol.51, Nr.4, 2009, S. 1111-1150
(INTCAL09, Calibration Curves, 0-50'000 Years cal BP) beschrieben. Das Kalibrationsprogramm 
kann direkt genutzt oder heruntergeladen werden (www.calib.org).

Randbemerkung für die Angabe von Resultaten in Publikationen:

Da die Umrechnung auf das wirkliche Alter (Kalibration) künftig noch verfeinert werden könnte, 
darf in Publikationen die Angabe des konventionellen Alters nie fehlen.

Ebenfalls nicht fehlen sollte die Probenummer des Messlabors (B-……  für die Uni Bern). Gemäss 
einer internationalen Abmachung werden jedem Labor andere Buchstaben zugeteilt. In 
Publikationen sind unsere B-Nummern jeweils aufzuführen. Sie erschliessen den Weg zu den 
Originalproben im Archiv sowie zu den ausführlichen Probenakten (Koordinaten des Fundortes 
etc.) 



Appendix B

Supplementary material for Chapter 3

Derivation of the equation for expected standard deviation of elevation (Equation 3.3).

σelv,exp =

√
1
2
((zmax− z̄)2 +(zmin− z̄)2)

=

√
1
2
(z2

max−2zmaxz̄+ z̄2 + z2
min−2zminz̄+ z̄2) (B.1)

with substitution z̄ = zmax+zmin
2 Equation B.1 can be writen as:

σelv,exp =

√
1
2
(

1
2

z2
max− zmaxzmin +

1
2

z2
min)

=

√
1
4
(zmax− zmin)2

=
1
2
(zmax− zmin)

(B.2)
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Appendix C

Supplementary material for Chapter 4

C.1 Calculation of debris flow volumes from hydrographs

Figure C.1: Upper gauging station at CD9 and CD10. The distance between CD9, where the geophone is
mounted, and CD10, where the radar is mounted, is 39 m (purple arrow). Channel slope is 10%.

I estimate debris flow volumes from flow hydrographs of individual events, using the method in (Schluneg-

ger et al., 2009) to calibrate a simple Manning-type friction relation (Barnes, 1967). Estimates are made

at two gauging stations, one in the catchment at check dam (CD) 9 and 10, and the second at the fan toe

at CD28 and 29. At the upstream station, a geophone at CD9 (Figure C.1) records the passage of the flow

front and triggers a radar sensor ≈ 39 m downstream at CD10, which records the debris flow hydrograph.

I estimate front velocity using the time difference between detection of the flow front at both stations and
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calibrate the Manning equation according to the procedure described below. At the downstream station

(CD29), a laser and a radar unit record debris flow hydrographs. I estimate front velocity from the front

arrival times at geophones mounted on CD28 and CD29, and calibrate the Manning equation as below.

To quantify the uncertainty in the velocity estimate, average debris flow velocities are calculated for the

channel reaches CD1 to 9 and CD9 to 29 and the resulting flow volumes. Results for all flows are shown

in Table C.1. Below the volume calculations using data from the upper station at CD9/10 for event 9 on 1

July 2008 is illustrated (Table C.1). The necessary calculation steps in detail are:

1. Estimate front velocity from travel time between CD9 and CD10:

ulocal =
∆l
∆t

=
39m
8s

= 4.9m/s (C.1)

2. Measure front height from radar recordings (Figure C.2): h f = 4.5m.

3. Estimate the hydraulic radius for the passage of the flow front based on a channel cross profile
surveyed with a hand level on 25 May 2009: hr(h f = 4.5m)≈ 2.1.

4. Calculate the coefficient for the Manning friction relation using front velocity, hydraulic radius and
channel slope:

k =
ulocal

h2/3
r ·S1/3

=
4.9m/s

(2.1m)2/3 ·0.11/3 = 6.5m1/3/s (C.2)

5. Integrate along the hydrograph (Figure C.2) to obtain the total flow volume.

Figure C.2: Hydrograph of event 9 at CD10. Front height (see data tip) is 4.5 m measured 5 s after
recording of the front at CD9.
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At every recording of flow depth, h(t), I calculate the corresponding hydraulic radius, hr(t), and then

calculate the mean velocity, u(t), for each time step. I multiply the velocity with the flow cross section area,

A(t), which is a function of flow stage, h(t), and the channel cross-sectional profile, to obtain discharge.

The flow volume is the sum of the discharge time series, Q(t), over the duration of the event.

V =
t=tmax

∑
t=0

Q(t) =
t=tmax

∑
t=0

A(t) ·u(t) =
t=tmax

∑
t=0

A(t)khr(t)2/3S1/3 ≈ 27,000m3 (C.3)

In Table C.1 I show the calculated volumes at CD10 and at CD29 for all 14 events. For the analysis

in Chapter 4 I use the volumes calculated according to the workflow detailed above. As a check I have

also calculated the average velocities between CD1 and CD9 and between CD9 and CD29 from front

arrival times at CD1 and CD29 respectively. Then I calculated the friction coefficient (step 4 above) using

these velocities and then integrated along the hydrograph to obtain flow volume (step 5 above, using same

cross section geometry as in step 3). For five events (flows 2, 4, 8, 11 and 12) the average velocities are

significantly lower and would, if used for the volume calculation, lead to substantially smaller volumes at

CD10 (Table C.1). These events would change from being dominantly depositional to having no net volume

change whilst traversing the fan. For all other events the dominant behaviour would not change. Therefore

I conclude that the uncertainties in the local velocity estimate are small enough to warrant our analysis in

the paper.
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C.2 Quantitative comparison of elevation change and flow depth

Here, I briefly explain the processing that lead to the visualization of our data in Figure 4.3A. First maps of

elevation change were created (termed difference models) with a cell size of 0.2 x 0.2 m from subsequent

surveys and the models of maximum flow depth for each event (as explained in the main text). Crucial here

is that for each grid cell in the difference model there is a corresponding grid cell in the flow-depth model. I

then produced a scatter plot of flow depth vs. elevation change combining all four events into one data set.

Because of the large number of data points – as illustrated by the density plot (Figure 4.3A and Figure C.3)

– the structure of the data is not immediately obvious. Therefore I subdivided the data in bins with a width

of 0.5 m along the flow-depth axis (i.e. [0m−0.5m[ ; [0.5m−1.0m[ · · · [3.0m−3.5m]). I choose a bin width

of 0.5 m, because this reflects the estimated uncertainty on the maximum flow depth. Any bin width smaller

than 0.5 m would yield a percentile plot that over interprets the data. Next I calculated the corresponding

elevation change value for the 1, 10, 25, 50, 75, 90 and 99 percentile based on the data in each bin. This

gave the vertical position of the respective percentile line at the centre of each bin (0.25 m, 0.75 m, 1.25 m

. . . 3.25 m) in Figure 4.3A.

Figure C.3: Percentile and density plot of cell by cell (0.2 x 0.2 m) comparison of elevation change (erosion
or deposition) from TLS vs. maximum flow depth as mapped in the field for individual events 9, 11, 12 and
14). The percentiles are calculated based on a bin width of 0.5 m of flow depth.



Appendix D

Supplementary material for Chapter 5

D.1 Technical documentation

D.1.1 Model execution

Synopsis for the model on the MATLAB command prompt is:

dfmodel2d v4 2(’params.txt’,’Fan.mat’,OutputOption,BreakOption)

where params.txt is the file name of the parameter file and Fan.mat is the file name of the *.mat file

containing the model space. OutputOption can be ’each’ (DEM and AGE are saved at each interval

specified in params.txt) or ’onlysummary’ (only summary output file is written). BreakOption can be

’nogrowth’ (model is stopped when fan growth rate is zero for the first time) or ’none’ (model stoppes when

the specified number of iterations is accomplished).

A standalone executable can be compiled by typing

>> mcc -mv dfmodel2d v4.m -R -nojvm -d path for output

on the Matlab command prompt. The resulting executable can be run on any windows machine. Follow the

instructions in the readme file that is generated by the mcc command. Command line syntax on the windows

command prompt is:

dfmodel2d v4.exe parameterfile.txt fanfile.mat OutputOption BreakOption
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D.1.2 List of matlab routines

This is the list of functions called by dfmodel2d v4 2, which is the main model routine. A short explanation

and synopsis of each function can be found in the header of the source code on the data CD (Appendix E).

• dfmodel2d v4 2

• tin2grid ps

• curvature along arcs v2

• tin flow path v3

• FindMinFillElevation

• slope alongpath v2

• flowprops ps

• modifytopo 2d v3 ps

• update elevation

• FindInChannel

• FillPits

• fillchannel2d ps

• simdiscr

• grd2array no nan ps

• depositflowcrosssec 2d ps

D.1.3 Definition of the model space

A custom model space can be defined with the file template radialgrid.m. A sample model space is on

the data CD. All units are in meter or degrees (fan azimuth) or dimensionless (fan and chute slope). In the

first 13 lines of the file the geometry of the model space is defined. Specify name of output file on line 25.

The output file contains five variables which I briefly explain below:

RGREF is a 1 x 4 array that defines the basic geometry of the model space with: X-, Y-coordinates of
apex, node spacing along arc, arc spacing, fan azimuth.

ApexArc is the number of the last chute arc, counted from the top of the chute.

TINbkp is a data base (structured array) containing for each node information on parent arc, position
within arc, cartesian x-y coordinates, elevation, IDs of neighboring nodes and area of the voronoi
polygon associated with the node.

RGbkp is a matrix with as many columns as there are arcs in the model space. The cell values contain the
node elevation.

TRI is the triangulation database in MATLABs own format.
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It is important that the variables have exactly the names as above, otherwise subroutines will not work!

template radialgrid.m calls the following functions, the source code contains some comments for fur-

ther reference.:

• make model space

• makeradialgrid

• make chute

• create tin ps

• make cone

• make axes from dem

The model can be restarted based on the output of a former model run. Variables have to be renamed

as follows: RGnew to RGbkp, and TINnew to TINbkp. This is done by calling

OutToInFile(DumpFile,NewFanFile), which will gather the relevant variables from the summary output

file, rename and save them to a NewFanFile for the next model run. This function will also transfer the fan

age from the previous run, so the new run starts with actual surface age from when the previous model run

stopped. It is possible to sample elevations from an existing DEM. The procedure for this is as follows:

1. create a model space with the appropriate geometry using template radialgrid.m.

2. use function [RGsamp, TINsamp] = sample grid at nodes(DEM,VREF,TIN,RG) to sample ele-
vations from DEM at nodes defined in TIN and RG. VREF is the reference vector for DEM defined
as [Grid spacing, Xmin, Ymin].

D.1.4 Description of output variables

Below is a list and description of the variables in the output summary file, MaxEvents stands for the maxi-

mum number of events specified in the parameter file. NoArcs stands for the number of arcs in the model

space. Remember, first and last arc are not occupied by flows:

ApexArc arc number of last arc in chute.

BedEvol MaxEvents x 1 array of bed water content.

BedPorosity porosity of sediment in the model. This variable appears again in the output summary file
because it is needed by some of the analysis tools described below.

CsedEvol NoArcs x MaxEvents matrix. Sediment concentration of flow at each arc (rows) for each event
(columns).

Interval each Interval time steps a DEM and AGE matrix are written to disk. This variable appears again
in the output summary file because it is needed by some of the analysis tools described below.

PathEvol NoArcs x MaxEvents matrix. IDs of the talweg nodes of each event (events in columns). IDs
refer to lines in TIN1,1.
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ProfEvol NoArcs x 2*MaxEvents matrix. Elevations of talweg nodes before and after debris flow. The
first MaxEvents columns contain the pre-event talweg elevations and the second MaxEvents columns
the post-event talweg elevations.

RGREF see above.

RGbkp input radial grid matrix, see above.

RGnew output radial grid matrix at end of model run, see above.

RunTime model run time in hours.

StopEvol NoArcs x MaxEvents matrix. With flow status for each arc and each event. Flow status is coded
as: -1 node not occupied by flow (stoped further upstream), 0 occupied but not stopped, 1 sediment
concentration Crit was reached and now depositing full flow cross sectional area at each arc, 2 flow
ended at this node.

TINbkp output TIN database at end of moedl run.

TNInew input TIN database.

TRI triangulation of TIN in MATLABs own format.

VolEvol NoArcs x MaxEvents matrix. Volume change in each arc. positive=deposition, negative=erosion.
Volumes are water+sediment!

VolumeLast Volume in last arc. Zero when flow stopped on fan.

VolumeTop Volume as drawn from input volume distribution.

AGE surface age (in time steps) at end of model run.
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D.1.5 Sample parameter file

% model run specific
%%%%%%%%%%%%%%%%%%%%
dt = 1 ; % time step, only relevant if including e.g. diffusion
df_pbb= 1 ; % probability of debris flow ocurring in time step
NoIt = 5 ; % total number of time steps
SAng = 90 ; % downstream search angle (degrees) for flow routing
Interval = 10 ; % interval at which DEM and AGE matrix are written to disk

% output is written to directory ./output as
% *dem.mat or *age.mat where * stands for the time step

% environmental parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%
BedPorosity = 0.1 ; % porosity of fan deposits
Pwet = 0 ; % probability of bed beeing 100% saturated

% next three lines are examples how to specify the input distribution
% uncomment one of them or change as needed
%VolumeGenerator = ’lognrnd_ps(5714,2857,NoIt)’ ;
%VolumeGenerator = ’doubleparetovol_ps(1.8,9,1200,100,50000,NoIt)’ ;
VolumeGenerator = ’ones(NoIt,1)*5000’ ;

% path to flow depth - erosion PDF
EroPDF = ’load z:\flowdepth_vs_change\pdf_fd_vs_change\ProbDFstruct.mat’ ;

% debris flow parameters
%%%%%%%%%%%%%%%%%%%%%%%%
% Power law coefficient for flow cross section area,
% for debris flows ˜0.03 to 0.11
% see Iverson et al., 1998; Griswold & Iverson, 2008;
% Berti & Simoni, 2007; Crosta et al.,2003
EpsilonGenerator = ’ones(NoIt,1)*0.03’ ;
% Power law coefficient for planimetric inundation area
% for debris flow ˜6 to 40, 200 for lahars
AlphaGenerator = ’ones(NoIt,1)*20’ ;
MinConc = 0.6 ; % minimum initial sediment concentration
MaxConc = 0.6 ; % maximum initial sediment concentration
Crit = 0.8 ; % critical sediment concentration, to trigger lobe deposition mode

% What to do with output
%%%%%%%%%%%%%%%%%%%%%%%%
DumpFile = ’dumpresults.mat’ ; % file name for summary output, will be written

% to directory from where model function is called
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D.2 Table of model experiments and parameters

See next page.
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D.3 Results from validation experiments

Mean radial fan slope Msl and standard deviation of radial fan slope Ssl for model validation experiments

(Section 5.3). Events: Time when slope measurement was taken, usually when fan volume growth rate,

averaged over 100 events, reached zero for the first time. * In these runs average fan volume growth did not

reach zero. ** Slope measurement after 30,000 events.

Run ID Msl Ssl NoIt Run ID Msl Ssl NoIt

[◦] [◦] [◦] [◦]

E1 2.36 0.03 4,400 E18* 5.70 0.07 40,000

E2 2.19 0.10 2,800 E19 1.70 0.03 7,662

E3 2.00 0.07 3,300 E20 2.40 0.06 11,146

E4 1.73 0.07 3,500 E21 2.85 0.04 10,992

E5 0.46 0.13 11,900 E22* 6.49 0.13 40,000

E6 0.64 0.18 16,100 E35** 2.96 0.12 30,000

E7 0.84 0.11 7,195 E37** 2.97 0.17 30,000

E8 1.07 0.13 10,749 E38** 2.67 0.14 30,000

E9 1.27 0.12 11,421 E39** 2.40 0.11 30,000

E10 1.69 0.10 13,081 E57** 2.51 0.15 30,000

E11 0.32 0.12 2,908 E58** 2.53 0.11 30,000

E12 0.99 0.12 6,848 E59** 2.47 0.14 30,000

E13 1.36 0.08 8,546 E60** 2.69 0.18 30,000

E14* 5.41 0.34 20,000 E61** 2.81 0.16 30,000

E15 1.74 0.05 9,443 E62** 2.85 0.17 30,000

E16 2.03 0.06 8,807 E63** 2.86 0.13 30,000

E17 2.58 0.06 11,141

D.4 Influence of α and ε on fan slope

In Appendix Figure D.1 I show the relationship between fan slope after 30,000 events and different settings

for α and ε (Appendix Table D.1). In each of the sub-panels I show results from 10 experiments were I kept

α constant and varied ε (Appendix Figure D.1A) and vice versa (Appendix Figure D.1B). ε sets the flow

cross section area and the maximum rate at which a flow can deposit material as it travels across the fan,

flows with high ε can be thought of having a high flow front (Equation 5.2). α is the parameter responsible

for the spreading of the flow and hence the average deposit thickness, where larger values of α result in

wider spreading and thiner deposits (Equation 5.3).
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Figure D.1: Influence of α and ε on fan slope ± one standard deviation. Labels in italics next to symbols
indicate model run (Appendix, Table D.1). A: Fan slope as function of ε for fixed α. B: Fan slope as function
of α for fixed ε.

For fixed α I find a small increase in fan slope of about 1◦ when increasing ε from 0.03 to 0.2, and for

higher α values the resulting fan slope is also between 0.5◦ and 1◦ higher (Appendix Figure D.1A). It is

important to note that the reported range of ε in the literature only spans the interval 0.03 to 0.11 (Berti and

Simoni, 2007), and over this range the influence of ε is less clear. For fixed ε I find no consistent change

in resulting fan slope when varying α between 5 and 40 (Appendix Figure D.1B). When keeping ε = 0.03

fixed, marking the lower end of reported values for this parameter (Berti and Simoni, 2007), I find a weak

trend to lower fan slopes with increasing α; for ε = 0.1, at the upper end of the reported range (Berti and

Simoni, 2007), I find the opposite. In summary I note that the influence of α and ε on fan slope on its

own is weak with a trend to higher slopes for combinations high α and ε, but partly inconsistent (run E24,

Figure D.1).
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The DVD contains data and program code for Chapters 2, 4 and 5, which I describe below. The path to

each directory is given, followed by an itemized list of the content.

/SCHUERCH2011

/Chapter2

ReportCosmoSamplingIllgraben.pdf ... Description of sample locations,
shielding and block geometry;
photographs of each sampled boulder
are included.

/BoulderLocations

boulder.shp ... ESRI shape file with locations of all candidate boulders.

samp locations.csv ... Text file with coordinates of sample locations
in swiss national coordinates.

samp loactions wgs1984.csv ... Text file with coordinates of
sample locations in WGS1984 lat-lon
coordinates.

samploc elv.shp ... ESRI shape file with sample locations and
elevations from the DEM see text for details.

/LobeFieldmap

lobe fieldmap.shp ... ESRI shape file with mapped lobe boundaries.

/Chapter4

README.txt ... text file with information about file format and elevation
datum of DEMs obtained from terrestrial laser scanning.
Information on which DEMs relate to which debris flow
events listed in Appendix C, Table C.1 is included.

e0* asc.grd ... six DEMs in Surfer ASCII grid format, see README.txt.

/Chapter5

ProbDFstruct.mat ... MATLAB data file containing the probability
distribution function of elevation change vs. flow
depth (based on data from Chapter 4) read by the
model to inform erosion and deposition behaviour.

dfmodel2d v4 3.exe ... Windows executable of the model, command line
syntax see Appendix D.1.1.

fan.mat ... Standard model space as described in main text.

/MatlabRoutines ... 20 MATLAB routines, description and synopsis in file
header of each *.m file.

/ModelRuns

/E01

...

/E89

params.txt ... Parameter file for model run E89.

dumpresults.mat ... Summary outputfile for model run E89.

*age.mat ... Final map of surface age.

*dem.mat ... Final topography.

*.avi ... Animations of topographic and surface age evolution,
only for model runs E23, E25, E38 and E40.


