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Abstract

A computational approach is taken to studying a range of light-matter interactions

which are interesting in terms of their potential applications as well as from a fun-

damental point of view.

Two different types of polariton, part-light, part-matter quasiparticles, namely

exciton-polaritons and Tamm plasmon-polaritons (a type of surface plasmon-polariton)

are considered. The conditions required for the strong coupling of optical whispering-

gallery modes and bulk excitons in submicron spheres are ascertained for the ma-

terials gallium arsenide, gallium nitride and zinc oxide. It is shown that the strong

coupling regime may be accessed by optical modes with a low decay constant, typi-

cally exhibited by those modes with higher angular momentum quantum numbers.

Tamm plasmon-polaritons have previously been shown to exist at the boundary

between a metal and a planar Bragg reflector structure. The conditions required

for the formation of Tamm plasmon-polaritons in cylindrical multilayer structures

with a metal core, cladding or metal in both of these locations are determined. The

cylindrical Tamm plasmon-polaritons are shown to have low effective masses and

low group velocities. It is also shown that it is possible to obtain split polariton

modes in structures containing metal in both the core and the cladding.

The effect of disorder on a two-dimensional photonic crystal structure consisting

of air holes in a slab of dielectric material is studied. It is shown that the defined

threshold disorder is not significantly affected by the different relative band widths

of the ideal crystal structures considered.
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2.2 A Fabry-Pérot, one dimensional cavity formed by an mλ/2 dielectric

layer sandwiched between two dielectric Bragg mirrors consisting of

alternate λ/4 layers with different dielectric constants. . . . . . . . . 14

2.3 An example mode spectrum for a microcavity. The Q-factor of the

cavity for the resonance at ω = ωc is given by Q = ωc/δωc while the

finesse is given by F = ∆ωc/δωc. . . . . . . . . . . . . . . . . . . . . . 15

2.4 A typical polariton dispersion curve (solid lines) and the dispersion

of the uncoupled photon and exciton modes (dashed lines). (Taken

from [1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 The Whispering Gallery at St. Paul’s Cathedral, London. . . . . . . . 19

2.6 Spherical Bessel functions of the first kind jl(kr) (top) and spherical

Neumann functions, nl(kr) (bottom), for l = 0, 1, 2 shown in black,

red and green respectively. . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



2.7 Dependence of the power reflection coefficient on the radius of a GaAs

sphere (refractive index n= 3.7) in vacuum at a frequency correspond-

ing to the exciton resonance, h̄ω = 1.515 eV. The red lines show TE

modes with l = 1, 2 and 3 from left to right while the black lines show

TM modes, again with l = 1, 2 and 3 from left to right. . . . . . . . . 28

2.8 The minimum sphere radius below which a mode of quantum number

l cannot be supported at a frequency of h̄ω = 1.515 eV. The dashed

lines give the predictions of Equations 2.48 and 2.49 for a GaAs sphere

(refractive index n = 3.7) in vacuum. The solid symbols give the

actual radius of appearance of modes. The TE-polarisation is shown

in black and the TM-polarisation in red. . . . . . . . . . . . . . . . . 30

2.9 Three TE modes with increasing quantum number l = 1, 2 and 3 and

m = 0. The radius of the sphere, marked in black, increases from

left to right as l increases as a bigger sphere is needed to support the

mode. Blue represents areas of low field intensity while red shows

areas of high field intensity. . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 The decay constant, γ for modes with different l in a GaAs sphere

in vacuum. The dashed lines represent the approximation given by

Equation 2.54 while the symbols show the actual values given by the

iterative computer program. The TE-polarisation is shown in black

and the TM-polarisation in red. . . . . . . . . . . . . . . . . . . . . . 33

2.11 Decay constant as a function of radius for bare cavity modes in a

GaAs sphere in vacuum. The real part of the frequency is equal to

the exciton resonance frequency for excitons in GaAs, h̄ωex = 1.515

eV. The TE(TM)-polarised modes are shown in black (red) and are

labelled lN . The horizontal line indicates the estimated polariton

splitting value calculated by Equation 2.59. . . . . . . . . . . . . . . . 35

viii



2.12 Decay constant as a function of radius for bare cavity modes in a

GaN sphere in vacuum. The real part of the frequency is equal to

the exciton resonance frequency for excitons in GaN, h̄ωex = 3.502

eV. The TE(TM)-polarised modes are shown in black (red) and are

labelled lN . The horizontal line indicates the estimated polariton

splitting value calculated by Equation 2.59. . . . . . . . . . . . . . . . 36

2.13 Decay constant as a function of radius for bare cavity modes in a

ZnO sphere in vacuum. The real part of the frequency is equal to

the exciton resonance frequency for excitons in ZnO, h̄ωex = 3.386

eV. The TE(TM)-polarised modes are shown in black (red) and are

labelled lN . The horizontal line indicates the estimated polariton

splitting value calculated by Equation 2.59. . . . . . . . . . . . . . . . 37

2.14 Exciton-polariton modes of GaAs. The TM20 mode is shown in red

and the TE30 mode is shown in green. The square points show the

real part of the exciton-polariton eigenfrequency for each mode while

the vertical bars give the decay constant of the mode at each radius.

The black lines mark the real part of the bare cavity modes and the

exciton energy (horizontal line) for comparison. . . . . . . . . . . . . 39

2.15 Exciton-polariton modes of GaN. The TM20 mode is shown in red

and the TE30 mode is shown in green. The square points show the

real part of the exciton-polariton eigenfrequency for each mode while

the vertical bars give the decay constant of the mode at each radius.

The black lines mark the real part of the bare cavity modes and the

exciton energy (horizontal line) for comparison. . . . . . . . . . . . . 40

2.16 Exciton-polariton modes of ZnO. The TM20 mode is shown in red

and the TE30 mode is shown in green. The square points show the

real part of the exciton-polariton eigenfrequency for each mode while

the vertical bars give the decay constant of the mode at each radius.

The black lines mark the real part of the bare cavity modes and the

exciton energy (horizontal line) for comparison. . . . . . . . . . . . . 41

ix



3.1 Surface plasmons may propagate along the interface between a di-

electric and a metal in the x-direction. . . . . . . . . . . . . . . . . . 47

3.2 The dispersion relations for a photon (black) and a surface plasmon-

polariton (red) at an interface between gold and SiO2. The SPP

dispersion lies outside the light cone of bulk SiO2. . . . . . . . . . . . 50

3.3 A planar structure to support a Tamm plasmon-polariton. The yel-

low represents the metal layer, the two shades of blue represent the

periodic layers of the dielectric Bragg reflector. The TPP is formed

at the interface between the metal and the first Bragg reflector layer. 52

3.4 The reflection spectra for planar Bragg reflectors with alternating

layers of refractive index nA = 2.37, nB = 1.47. The black line shows

the spectrum for a structure with 12 pairs of layers; red is for 8 pairs

of layers and green is for 4 pairs of layers. The thickness of each layer

of the Bragg reflector was chosen to give maximum reflection, and to

centre the photonic stop band, at a frequency of 1.0 eV. . . . . . . . . 53

3.5 Two virtual interfaces, left (L) and right (R) in a homogeneous medium

a distance x apart with fields incident upon each boundary (AR and

AL) and the fields reflected from each boundary where rR and rL are

the amplitude reflection coefficients from the right and left respectively. 54

3.6 In the cylindrical coordinate system ρ is the radial vector, φ is a

vector giving the azimuthal angle and z is parallel to the cylinder axis. 59

3.7 Function Jm(x) for m = 0 (black line) and m = 1 (red line). . . . . . 60

3.8 Function Nm(x) for m = 0 (black line) and m = 1 (red line). . . . . . 60

3.9 Function Im(x) for m = 0 (black line) and m = 1 (red line). . . . . . 64

3.10 Function Km(x) for m = 0 (black line) and m = 1 (red line). . . . . . 64

3.11 Dispersion curves for cylindrical surface plasmons on the inside of

gold tubes (ωp = 8.9 eV) with various radii and filled with air. The

black line shows the dispersion curve for the similar planar system.

Red indicates a tube radius of 1000 nm, green = 400 nm, blue =

80nm, cyan = 50 nm, magenta = 30 nm and orange = 10 nm. The

dashed line marks the cut off at ω = cβ. . . . . . . . . . . . . . . . . 67

x



3.12 Colladon’s light fountain demonstration, published in La Nature, 1884.

Light focused by a lens onto an aperture in a container of water causes

the light to be confined to the stream by total internal reflection. . . 69

3.13 The Eρ field component for a structure with a 100 nm radius metal

core surrounded by a 50 nm thick layer of silica, a 200 nm thick layer

of silicon and air. The vertical dashed lines indicate the boundary

between each of the layers. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.14 Dispersion relation for the fundamental mode in a structure with

a 200 nm core of refractive index n = 2.37 surrounded by a layer

of refractive index n = 1.47 and infinite metal cladding. Colours

indicate the thickness of the middle, low refractive index layer: solid

black = 0 nm (no low refractive index layer), red = 25 nm, green =

50 nm, blue = 100 nm, cyan = 200 nm and magneta = 400nm. The

dashed black line is for the case with an infinite low refractive index

layer and no metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.15 A cylindrical fibre aligned along the z-axis with a core region sur-

rounded by layers of different refractive index, shown in blue and

white. The dotted region represents repetition of the alternative re-

fractive index layers. ρc and ρf indicate the radii of the core and the

final layer of the structure respectively. . . . . . . . . . . . . . . . . . 73

3.16 The round trip phase difference in a dielectric layer (blue) adjacent

to a metal core (orange) is given by the phase change on reflection

from the Bragg reflector (r1), the phase change on reflection from the

metal (r2) and twice the phase change of a wave travelling across the

dielectric layer marked x. The dots represent repeated layers of the

Bragg reflector. Key radii are marked: ρc is the core radius, ρ1 is the

outer radius of the first dielectric layer and ρf is the outer radius of

the final layer of the structure. . . . . . . . . . . . . . . . . . . . . . . 75

xi



3.17 The round trip phase difference in a dielectric layer (blue) adjacent

to essentially infinite metal cladding outside (orange) is given by the

phase change on reflection from the Bragg reflector (r3), the phase

change on reflection from the metal (r4) and twice the phase change

of a wave travelling across the dielectric layer marked x. The dots

represent repeating layers of the Bragg reflector. . . . . . . . . . . . . 76

3.18 Bessel function of the first kind in a medium of refractive index n =

2.37 with frequency 1.0 eV. The first node occurs at a radius 200 nm. 85

3.19 a) TE mode: the Eφ (black line) and cBz (red line) fields for a BR

structure with TiO2 core with radius 200 nm surrounded by 8 pairs

of SiO2/TiO2 layers at a frequency 0.9792 eV. b) TM mode: the Ez

(black line) and cBφ (red line) fields for a BR structure with TiO2

core with radius 200 nm surrounded by 8 pairs of TiO2/SiO2 layers

at a frequency 0.9942 eV. . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.20 The reflection spectrum (black, magnitude and red, phase) for a cylin-

drical DBR with a core refractive index nc = 2.37 and 8 pairs of

surrounding layers with refractive indicies n1 = 1.47 and n2 = 2.37.

The thicknesses of each layer of the DBR were chosen to be λ/4 giv-

ing effective reflection, and centreing the photonic stop band, at a

frequency of 1.0 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.21 Solid lines represent the dispersion curves for a TE (green) and TM

(blue) mode whose field profiles for β = 0 are shown in Figure 3.19.

For comparison, the dispersion curves of modes in a simple optical

fibre structure with a TiO2 core (n = 2.37) and SiO2 (n = 1.47)

cladding are shown as dashed lines: TE, m = 0 mode (green) and

TM m = 0 (blue). All confined modes in this simple optical fibre

have dispersion curves that lie between the dashed black lines. . . . . 89

3.22 The phase of the reflection coefficient calculated from the outside of

the Bragg reflector structure for a TM mode in a structure with a

150nm TiO2 core and 9 pairs of SiO2/ TiO2 layers shows a sharp

feature at frequency 0.9234 eV. . . . . . . . . . . . . . . . . . . . . . 91

xii



3.23 Phase of the reflection coefficient, r1, from the inside of a Bragg re-

flector varying with frequency across the photonic band gap for the

TE polarisation as calculated from Equation 3.74. . . . . . . . . . . . 92

3.24 The Eφ (black) and cBz (red) fields components for a TE mode with

m = 0, β = 0 in a Bragg reflector structure with a 30 nm metal

core, a 201 nm thick TiO2 layer and 8 pairs of SiO2/TiO2 layers. The

vertical dashed line indicates the edge of the metal core. The mode

frequency is 0.9792 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.25 a) TE mode with β = 0 and frequency 1 eV in a multilayer structure

with a metal core of radius 30 nm and TiO2 layer adjacent to the

metal with thickness of 426 nm. The black line shows the Eφ field

component while the red line shows the cBz field component. b) TM

mode with β = 0 and frequency 1 eV for the same structure but with

an adjacent TiO2 layer thickness of 346 nm. The black line shows the

Ez field component while the red line shows the cBφ field component.

All boundaries are marked with vertical dashed lines. . . . . . . . . . 94

3.26 The solid lines show the dispersion curves for m = 0, TE (black) and

TM (red) modes for the structures required to give a mode frequency

at β = 0 of 1 eV. The dashed lines show the dispersion curves for the

same structures with the metal core removed and replaced by TiO2. . 95

3.27 a) TE mode with β = 0 and frequency 0.9976 eV in a multilayer

structure with a TiO2 core of radius 456 nm surrounded by 8 pairs of

SiO2/TiO2 layers. The black line shows the Eφ field component while

the red line shows the cBz field component. b) TM mode with β = 0

and frequency 0.9200 eV for the same structure but with a TiO2 core

of radius 376 nm. The black line shows the Ez field component while

the red line shows the cBφ field component. All interfaces are marked

with vertical dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . 97

3.28 Variation of mode frequency with varying thickness of the TiO2 layer

adjacent to the metal core for m = 0 and m = 1. . . . . . . . . . . . . 98

xiii



3.29 The Ez (black) and cBφ (red) field components of a TM mode of

frequency 1.0 eV in a cylindrical structure with 150 nm TiO2 core,

14 pairs of TiO2/ SiO2 Bragg reflector layers (of thickness 131 nm

and 211 nm respectively), a SiO2 cavity layer of thickness 400 nm all

surrounded by essentially infinite metal. . . . . . . . . . . . . . . . . 99

3.30 The cBz (red) and Eφ field components of a TE mode with frequency

1 eV and β = 0 in a structure with a TiO2 core of radius 150 nm

surrounded by 14 pairs of SiO2/TiO2 layers, where the SiO2 layers

have thickness 211 nm and the TiO2 layers have thickness 131 nm.

The TiO2 cavity layer adjacent to the metal surrounding the structure

has a thickness of 130 nm. Vertical dashed lines mark the dielectric

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.31 The Ez field component for two split modes, one with frequency

1.00406 eV (black line) and the other 1.00589 eV (red). Both were

calculated for m = 1, β = 0 in a structure consisting of: a metal core

of radius 30 nm; a SiO2 cavity layer adjacent to the core of thick-

ness 483 nm; 14 pairs of layers alternating TiO2/SiO2 with respective

thickness 131 nm/ 211 nm; a final TiO2 cavity layer of thickness 370

nm adjacent to the semi-infinite metal cladding outside. . . . . . . . . 101

3.32 The split dispersion curves for a structure with a metal core and a

metal cladding as described in Figure 3.31. The black line is the

dispersion curve for the symmetric mode and the higher frequency,

red line is for the antisymmetric mode. This structure has only 10

pairs of layers in the Bragg reflector rather than the 14 pairs in Figure

3.31 to enhance the splitting and hence show it more clearly. . . . . . 103

4.1 Representations of one-, two- and three-dimensional photonic struc-

tures (left to right). Different colours represent homogeneous blocks

of material with different values of dielectric constant, ε. . . . . . . . 107

4.2 The power transmission coefficient for a planar Bragg reflector struc-

ture with a cavity defect at its centre. The defect mode can be seen

as a peak in the transmission spectrum dip. . . . . . . . . . . . . . . 110

xiv



4.3 An x-z plane view of the structure of a hexagonal array of cylindrical

air holes (dark blue) in a slab of semiconductor (light blue) showing

the lattice parameter, a. The y-direction is out of the page. . . . . . . 115

4.4 The colours in the grid represent the different refractive indices that

are assigned to each square. Squares completely inside the circle

have one refractive index, squares completely outside the circle have

another. The grid on the right has twice as many squares as that on

the left and the circle is more clearly defined. . . . . . . . . . . . . . . 116

4.5 Screen shot of the ideal structure as it appears in OmniSim. The

radius of each air cylinder is 0.4a where a is the lattice parameter.

The light blue background represents the substrate material. The

photonic crystal has varying dielectric constant in the x-z plane and

is homogeneous in the y-direction. The excitor (yellow) and the two

sensors (red) are indicated. . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 The band structure for TM (black) and TE (red) polarised light in

a GaN slab (refractive index n = 2.43) with a hexagonal array of

cylindrical air holes each with radius 0.4a. The inset shows the first

Brillouin zone of the ideal crystal and marks the wavevector directions

within the crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Relative transmission of a TM pulse across an ideal photonic crystal

structure such as that shown in Figure 4.5 with GaN as the back-

ground material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.8 The distribution of cylinder radii depending on the disorder parame-

ter, δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.9 An example disordered structure as it appears in OmniSim. The

radius of each cylinder is randomly attributed from a distribution

about r0 = 0.4a where a is the lattice parameter, as shown in Figure

4.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xv



4.10 Relative transmitted flux as a function of frequency for the ideal struc-

ture (thick black line) with background refractive index n = 2.7, a

randomly disordered structure with δ = 0.18 (thin black line) and

the mean relative transmitted flux for 10 random configurations of

disorder parameter δ = 0.18 (red). . . . . . . . . . . . . . . . . . . . . 125

4.11 The mean (solid black) and standard deviation (red) of transmitted

flux in the mid 1/20th of the photonic band gap for structures with

background refractive index a) n = 1.8, b) n = 2.0, c) n = 2.2, d)

n = 2.43, e) n = 2.7. The dotted black line shows the one standard

deviation error bound on the mean. The green construction lines

show the threshold disorder, δFth (right) and the lower error bound

(left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.12 Threshold disorder parameter δFth, defined as the point at which the

standard deviation of the relative transmitted flux becomes greater

than the mean, as a function of the relative band width ∆ω/ω0. . . . 128

4.13 The Fourier transformed Hy field component at sensor 2 for a 2D

hexagonal photonic crystal. . . . . . . . . . . . . . . . . . . . . . . . 132

4.14 Energy flow per unit frequency into scattering angle θ for the ideal

structure (black) and one configuration each of four levels of disorder:

δ = 0.05 (red), δ = 0.10 (green), δ = 0.15 (blue) and δ = 0.20 (cyan). 134

4.15 Total energy in the ballistic (solid symbols) and scattered (open sym-

bols) light passing through sensor 2 for structures with background

refractive index: n = 1.8 (black), n = 2.0 (red), n = 2.2 (green),

n = 2.43 (blue), n = 2.7 (cyan) and n = 3.0 (magenta). The vertical

dashed lines indicate the disorder parameter at which the energy in

the scattered light exceeds that in the ballistic light. . . . . . . . . . . 135

4.16 Threshold disorder, δEth defined as the point at which the energy in

the scattered light becomes greater than the energy in the ballistic

light, as a function of relative band width with a trend line fit. . . . . 136

4.17 Threshold disorder, δFth as a function of mean refractive index with a

trend line fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvi



4.18 Threshold disorder parameter, defined as the point at which the en-

ergy in the scattered light becomes greater than the energy in the

ballistic light, as a function of mean refractive index. The red trend-

line shows the fit given by Equation 4.38 and the green line shows the

fit given by Equation 4.39. . . . . . . . . . . . . . . . . . . . . . . . . 139

4.19 Upper and lower band edges for the complete band gap of an ideal

photonic crystal structure with all the air holes having radius r. Black

represents a structure with background refractive index n = 1.8, red

represents n = 2.2 and green represents n = 2.7. The horizontal

dashed lines indicate the frequency at the centre of the band gap for

the case of air holes with radius r = 0.4 µm. . . . . . . . . . . . . . . 140

xvii



Chapter 1

Introduction

1.1 Light-matter interactions

Techniques for controlling electromagnetic radiation are currently of great interest.

In particular, this thesis considers light-matter interactions which are interesting

both from a fundamental point of view and in terms of their applications. The

interaction of light with matter allows for direct control of the properties of light.

For example, group velocity, dispersion characteristics and the formation of part-

light, part-matter quasiparticles may be controlled. Mathematically, a quasiparticle

is an eigenstate of the Hamiltonian describing the relevant many-body problem.

Physically, the excitation may be considered as a particle with its own effective mass

and properties distinct from those of its constituent parts. One topical example is the

Bose-Einstein condensation of quasiparticles formed from the interaction between

excitons and photons, known as exciton-polaritons.

Photonics is the study, design and fabrication of materials and structures with

particular optical properties, for example: frequency stop-band filters; waveguiding;

confinement of light; resonant cavities or specific dispersion characteristics. These

desirable effects are produced by selecting the structure of materials so that light

interacts with areas of differing refractive index, or with features such as excitations,

within the material. Photonics has found application in many different areas of tech-

nology, including (but not limited to) telecommunications, medicine, security and

defence, with new applications being proposed all the time. There is currently great
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interest in creating optical analogues of electronic chip components such as switches

and logic gates. Just as fibre optic cables revolutionised the telecommunications

industry, photonics more generally has the potential to replace electronic systems

with faster, smaller, more efficient components with wide bandwidths. A major

challenge is to be able to produce such optical components that are both technically

and economically competitive with current electronic devices and systems.

In order for optical components to carry out the same role as electronic integrated

circuit features, they need to be able to operate on a nanometer scale. Nanopho-

tonics involves the control and manipulation of light in a subwavelength regime as

the wavelength of visible light is around 400 - 700 nm. Nanoscale light-matter in-

teractions generally require either the light to be confined to the nanoscale or the

material to have dimensions of this order of magnitude [2]. In this thesis we are

mainly concerned with restricting the size of the matter component. Nanoscale

materials include quantum wells, wires and dots. In semiconductor materials, this

quantum confinement causes changes to the electronic band structure and hence to

the optical properties of the material. Nanoparticles also exhibit different optical

properties to their bulk counterparts due to their small size and high surface area

to volume ratio. Another example of material confined to nanometer dimensions is

the photonic crystal which is discussed later in this chapter.

It is interesting to note that for the majority of papers cited in this thesis, the

phenomena being studied have been proposed theoretically before being studied in

experiments. This shows that theoretical studies, both introducing new phenomena

and looking at established phenomena in new ways, are crucial for driving forward

our optoelectronic industries. The work reported in this thesis uses computations

to model light-matter interactions. We investigate the effects of using matter to

confine light in different ways. Chapters 2 and 3 focus on part-light, part-matter

quasiparticles and the structures required for their formation. Chapter 4 focuses on

photonic crystal structures and how deviation from the perfect crystal affects their

ability to control light.
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1.2 Photonic crystals and the Bragg reflector

To control the light-matter interaction we need to be able to control light. One

way to do this is with photonic crystals. Photonic crystals are structured materials,

with a periodic variation in dielectric properties. The period of the variation is of

the order of the wavelength of light and this gives rise to the interesting optical

properties that the photonic crystals possess. Currently, one of the most widely

used photonic structures for controlling light is the dielectric mirror, known as a

Bragg reflector.

1.2.1 The Bragg reflector

A Bragg reflector is a periodic structure, consisting of layers of material with alter-

nating refractive index n1 and n2, a one-dimensional photonic crystal, as illustrated

in Figure 1.1. When light is incident on one of the dielectric boundaries, such as

z

x
y

d1

... ...

n1 n2

d2

Figure 1.1: A structure consisting of alternating layers of different refractive index

acts as a near-perfect mirror for light of certain wavelength. The greater the number

of layers the more effective the mirror.

between layers of refractive index n1 and n2, the beam is partially reflected and par-
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tially transmitted in accordance with the Fresnel equations. For the case of multiple

boundaries in the same structure, the many reflected and refracted waves interfere

with each other. Typically, each layer in a Bragg reflector structure has the same

optical thickness:

n1d1 = n2d2 (1.1)

where d1 and d2 are the physical thicknesses of layers with refractive index n1 and

n2 respectively. For a particular frequency of light, if the optical thickness of each

layer is equal to one quarter of the free space wavelength, then the many reflected

beams of light are in-phase and therefore interfere constructively with one another.

For Bragg reflector structures with a sufficient number of layers, this constructive

interference results in a reflectivity close to unity, at and around the given frequency.

Bragg reflectors are therefore highly effective mirrors for a certain frequency range.

The frequency range that is reflected by the Bragg reflector is called the photonic

band gap. In a planar structure, such as that illustrated in Figure 1.1, the photonic

band gap prevents light (of the appropriate frequency) from propagating through

the structure in the x–z plane.

Bragg mirrors are generally preferred over traditional metal mirrors in photonics

as they have significantly lower losses. Two Bragg reflectors on either side of a cavity

layer create a Fabry-Pérot cavity in which light, of an appropriate frequency, may

be confined due to repeated reflection. This device is used, for example, in the gain

medium of solid state lasers.

It is also possible to have cylindrical and spherical Bragg reflectors by arranging

the layers of material with alternating properties in these geometries. In these cases

the basic physics is similar to the planar case but the detailed description is more

challenging. A description of the cylindrical Bragg reflector may be found in [3]

and the spherical case in [4]. In this thesis, an application of the cylindrical Bragg

reflector will be considered.

1.2.2 Photonic crystals

Although the Bragg reflector was a well established optical component at the time,

the term photonic crystal was not introduced until the works of Yablonovitch [5]
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Figure 1.2: Example cross section of a photonic crystal fibre (from RP-

photonics.com). Grey and white represent areas of different refractive index.

and John [6] in 1987 that referred to photonic crystals in two- and three-dimensions.

Photonic band gaps, such as those occurring in one-dimensional structures, are also

exhibited by some higher-dimensional photonic crystals. An advantage of photonic

crystals with a peroidic variation in refractive index in two or three-dimensions is

that their band gap exists for light travelling in more than one direction in the

material. The theory of band gaps in photonic crystals is now well established and

an introductory treatment may be found in Joannopoulous et al. [7]. A further,

more detailed, photonic crystals text is that by Lourtioz et al. [8]

Two-dimensional photonic crystal slabs containing features such as channels or

cavities make use of localised modes within the photonic band gap to guide or

confine light within the material [9]. This has led to the production of devices

such as waveguides, resonant cavities and optical filters. Lasers have been produced

making use of cavity modes related to isolated defects in photonic crystals [10] [11].

Photonic crystal fibres consist of a periodic lattice, for example, of dielectric

cylinders with capillary air holes at their centres, drawn together into a fibre. Some

photonic crystal fibres have a core region in which light may be confined due to

the photonic band gap created by the pattern of alternating dielectric, air regions

surrounding the core [12]. A photonic crystal fibre cross section is illustrated in

Figure 1.2. Photonic crystal fibres guide light using a photonic band gap, while

traditional step-index fibres use total internal reflection. The advantages of photonic
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crystal fibres include lower levels of loss when the fibre is bent and better confinement

of light to the core [13].

More recently photonic crystals have been designed in order to control the dis-

persion of light, leading to novel effects such as ‘slow light’ and negative refraction

[14]. One interesting application of negative refraction is imaging, where certain

materials may be used to image objects below the classical diffraction limit [15].

Another development concerns photonic crystals containing metal, for example an

array of metal cylinders in air. These have been shown to exhibit photonic band

gaps in much the same way as their all-dielectric counterparts [16]. The metallic

photonic crystals can suffer from high absorption losses due to the metal but on

the other hand allow for smaller devices due to the much smaller lattice constant

required to produce a band gap at the same frequency.

The photonic band gap is an important feature of photonic crystal structures and

is utilized in many applications. It is well known that disorder causes degradation of

the photonic band gap by causing states to appear in the gap. These states lead to

the photonic band gap narrowing and eventually, for high enough disorder, closing.

Disorder can take the form of any random deviation from the perfect, or ideal,

crystal structure and may be the result of manufacturing processes. For example,

a one-dimensional photonic crystal may have disorder in the thickness of its layers.

In two-dimensions photonic crystals formed from an array of air holes in a slab of

dielectric material may have disorder in the size or shape of the holes. It is important

to understand the effects of disorder on the band gap so that device manufacturers

know how much disorder is acceptable before their photonic crystals will no longer

operate effectively.

An empirical relationship exists between the relative band width for ideal pho-

tonic crystals and the ‘amount’ of disorder required to close the photonic band gap

[17]. Due to the increased complexities in the two-dimensional system, as yet, no

quantitative relationship, applicable to a range of photonic crystals, has been found.

Chapter 4 of this thesis investigates the effect of disorder of the relative band width

of two-dimensional photonic crystals.
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1.3 Polaritons

Polaritonics is an emerging branch of photonics. Polaritons are part-light, part-

matter quasiparticles that are formed when an electromagnetic field interacts reso-

nantly with a particle carrying charge or a dipole. There are many different types

of polariton with different matter contributions. In this thesis we specifically con-

sider exciton-polaritons and Tamm plasmon-polaritons, a type of surface plasmon-

polariton. The formation of these polaritons and, in particular, the structures in

which each of the two types of polariton may exist are investigated.

1.3.1 Exciton-polaritons

Exciton-polaritons were first observed in planar semiconductor microcavities in 1992

by Weisbuch et al. [18]. Since then the study of exciton-polariton phenomena has

captivated the attention of many research groups and the number of papers pub-

lished on the topic has grown exponentially. Many interesting effects have been

shown to occur with exciton-polaritons, including, for example, Bose-Einstein con-

densation [19] [20] and polariton lasing [21] [22]. Prototype devices using exciton-

polaritons have been proposed and demonstrated, for example optical switches [23]

[24], polarisation-controlled logic gates [25] [26] and integrated circuits [27]. Much

of the work carried out on exciton-polaritons has been done in planar microcavi-

ties but recent advances in fabrication technology have allowed for increasingly high

quality microcavities in other geometries. Higher-dimensional microcavities have

obvious advantages over the planar system as they can confine light in more than

one direction. In particular, studies have been carried out on pillar microcavities

[28], and related cylindrical geometries [29]. In this thesis a theoretical description

of a method of producing exciton-polaritons in submicron spheres is presented.

1.3.2 Surface plasmon-polaritons and Tamm plasmon-

polaritons

Surface plasmon-polaritons can exist at the surface of a metal in vacuum or at a

metal dielectric interface. In this case the matter component is the coherent oscilla-
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tion of the electrons in the metal against the fixed background of the positive metal

ions. Surface plasmons were first studied by Ritchie in the 1950s [30] and have found

numerous applications in a wide range of areas; for example, their use is well estab-

lished in commercial sensors for molecular biological systems [31]. A comprehensive

review of surface plasmon-polaritons is given by Pitarke et al. [32]. More recently

the study of surface plasmon-polaritons in nanostructured materials has resulted

in plasmonics becoming a highly topical branch of photonics. In such structures,

the confinement length of surface plasmon-polaritons is less than their wavelength

[33] leading to some interesting phenomena. For example, it has been shown that

surface plasmon-polaritons play a role in the enhancement of transmission of light

through an array of subwavelength holes in a metal film [34]. A comprehensive

review of work on light passing through subwavelength apertures is given in [35].

Surface plasmon-polaritons in metal nanoparticles have been demonstrated for use

as biosensing tags [36]. Surface plasmon-polaritons have also been used in subwave-

length imaging [37], optical switching [38] and are promising candidates for use in

photonic circuits [33] [39] [40].

Tamm plasmon-polaritons are a relatively new concept having been proposed in

a planar system in 2007 by Kaliteevski et al. [41] and subsequently demonstrated

experimentally by Sasin et al. in 2008 [42]. They are a type of surface plasmon-

polariton that exist at the interface between a Bragg reflector structure and a metal.

Since being demonstrated they have been considered for use in polariton lasers

[43], polariton integrated circuits [44], all-optical diodes [45], optical absorbers [46]

and optical switches [47]. The fundamental properties and interactions of Tamm

plasmon-polaritons have also been studied by various groups. For example, they

have been shown to exhibit strong coupling with quantum well excitons [48] and

exciton-polaritons [49]. The inclusion of metal in a step-index optical fibre, either

in the core, as a thin layer between the core and the cladding or as an additional

cladding layer, has been shown to allow surface plasmon-polaritons to exist at the

metal dielectric interface in cylindrical structures [50] [51]. In this thesis, the use

of Tamm plasmon-polaritons in cylindrical structures is investigated. Instead of a

traditional optical fibre, we consider multilayer cylindrical Bragg reflector structures
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with metallic features either in the core or cladding or both of these locations.

1.4 Theoretical framework

The four Maxwell equations fundamentally describe the propagation of electromag-

netic fields in time and space. They are given below in SI units which are used

throughout this thesis.

∇ · E =
ρ

ε0

(1.2)

∇ ·B = 0 (1.3)

∇× E = −∂B

∂t
(1.4)

∇×B = µ0J + µ0ε0
∂E

∂t
(1.5)

Here E is the electric field vector, B is the magnetic field vector, ρ is the total charge

density, J is the total current density, µ0 is the permeability of free space, ε0 is the

permittivity of free space and t is time. The permittivity and permeability of free

space are related to the speed of light in vacuum, c by the relation:

c =
1

√
ε0µ0

. (1.6)

Two other quantities that are routinely referred to in electromagnetism are the

electric displacement field, D and the magnetic field strength, H. These are related

to the electric and magnetic field by the relations:

D = εε0E (1.7)

B = µµ0H (1.8)

where ε and µ are the relative permittivity and relative permeability respectively.

Throughout this thesis the materials under consideration are non-magnetic and so we

take µ to be unity. We consider dielectric materials where the relative permittivity

does not vary appreciably with frequency within the range of frequencies considered,

and hence, we may write the refractive index, n as:

n =
√
εµ (1.9)

which reduces to n =
√
ε for the case of interest, µ = 1.
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1.5 Outline of the thesis

This thesis presents work focusing on two different types of polariton, each in a

particular dielectric system and geometry. Chapter 2 investigates the conditions

required for the formation of exciton-polaritons in spherical microcavities with sub-

micron diameters. Spheres made of three different materials are considered: gallium

arsenide, gallium nitride and zinc oxide. The results for each case are compared

and discussed. The work carried out on gallium arsenide has been published in

‘Whispering-Gallery Exciton Polaritons in Submicron Spheres’ under the authors

maiden name [52].

Chapter 3 introduces Tamm plasmon-polaritons and the formalism put forward

by Kaliteevski et al. [41] which hypothesises their existence in planar structures.

To allow for the prediction of Tamm plasmon-polaritons in cylindrical multilayer

structures the method has been extended to the cylindrical coordinate system. Par-

ticular consideration is given to the effect of the position of the required metallic

features in the structures.

In Chapter 4 we turn our attention to photonic crystal structures. The effect

of disorder in two-dimensional photonic crystal structures is considered, specifically

the effect of hole radius in a photonic crystal consisting of air holes in a slab of

dielectric material.

The thesis is concluded in Chapter 5 with a summary of the work undertaken

and suggestions for further avenues of research that have not been considered.
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Chapter 2

Exciton-polaritons in sub-micron

spheres

In this chapter spherical microcavities are considered as a medium for supporting

exciton-polariton quasiparticles. We first briefly consider work done on exciton-

polaritons in planar and cylindrical geometries then go on to present a formalism

for spherical microcavities. Specifically, the eigenfrequencies of whispering-gallery

photon modes are considered along with their coupling to excitons in the materials

gallium arsenide (GaAs), gallium nitride (GaN) and zinc oxide (ZnO). Evidence for

the formation of exciton-polaritons in sub-micron spheres is presented.

2.1 Excitons

An exciton is an electron-hole pair that can be formed in a semiconductor by the

absorption of a photon with sufficient energy to excite an electron from the valence

to the conduction band. The amount of energy required is known as the exciton

energy. Another quantity, the exciton binding energy is defined as the amount of

energy required to separate the bound electron-hole pair to form ‘free’ carriers. The

exciton binding energy gives an idea of the stability of the exciton. There are two

main theoretical models for excitons: Frenkel excitons and Wannier-Mott excitons.

Frenkel excitons are highly localised, tightly bound and are typically found in ionic

and molecular materials. In contrast Wannier-Mott excitons are weakly bound and
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have an electron-hole separation much larger than the lattice parameter of their

host material. They are characteristic of materials with relatively high dielectric

constant and low electron effective mass, such as GaAs and many other inorganic

semiconductors [53]. The typical radius of a Wannier-Mott type exciton is 1-10nm

and they have binding energies of around 0.1-10 meV [54]. Excitons are charge

neutral and have integer spin and so obey Bose-Einstein statistics.

2.2 Exciton-polaritons

Exciton-polaritons are quasiparticles formed from the strong coupling between ex-

citons and photons. They were first described in the pioneering works of Pekar [55],

Agranovich [56] and Hopfield [57] in the 1950s. Excitons have a dipole moment due

to their separated charges and upon application of an electromagnetic field at an

appropriate frequency the dipole will oscillate. Both the exciton and the photon

may be thought of as individual oscillators that may be joined together in analogy

with the well known coupled pendula experiment. Exciton-polaritons are the result

of the splitting between strongly coupled hybrid modes with both excitonic and

photonic character. This splitting can be clearly seen in the solutions to the elec-

tromagnetic wave equation. In a bulk semiconductor with no excitonic contribution

the wavevector, k, may be written:

k2 =
εbω

2

c2
(2.1)

where ω is the angular frequency and εb is the background dielectric constant (that of

the material when no exciton is present). With the excitonic contribution included,

the dielectric constant of a semiconductor, ε may be written as [58]:

ε = εb +
εbωLT

ωex − ω − iΓ
(2.2)

where ωex is the exciton resonant frequency, Γ is the non-radiative decay rate of

the exciton and ωLT is the bulk value of the longitudinal-transverse splitting. For

simplicity Γ is set to zero and the variation of exciton resonance frequency, ωex with

wavevector is neglected giving:

k2 =
εbω

2

c2

(
ω − ωex − ωLT

ω − ωex

)
(2.3)
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For k → 0 there are two solutions for the frequency: ω → 0 or ω → ωex + ωLT.

For k → ∞ there are also two solutions: ω → ωex or ω → ck/
√
εb. Also for ωex <

ω < ωex +ωLT the numerator inside the parentheses of Equation 2.3 is negative and

hence there can be no real solutions for k. The resulting ω–k dispersion is illustrated

in Figure 2.1. This anticrossing is characteristic of strong coupling between an

exciton and a photon and results in upper and lower exciton-polariton branches.

The splitting of the modes at the anticrossing is analogous to Rabi splitting in

0 . 0 1 0 0 . 0 1 2

1 . 5 1 4

1 . 5 1 6
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qu
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 ω 
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)

W a v e v e c t o r ,  k  ( n m - 1 )

Figure 2.1: Frequency as a function of wavevector for an exciton-polariton mode in

bulk GaAs showing an anticrossing at the exciton resonance frequency, ωex = 1.515

eV (the horizontal dashed line). The vertical dashed line shows the wavevector of

the optical photon. This anticrossing is characteristic of the strong coupling regime.

atomic physics (where the modes of the coupled photon – interatomic transition

system are split due to strong coupling) and is discussed further in Section 2.2.1.

In fact, it is difficult to study or to make use of exciton-polaritons in bulk systems

because they are effectively buried in the host material. In 1992, Weisbuch et al.

observed exciton-polaritons in a semiconductor microcavity [18]. Low-dimensional

structures allow for greater control over the position of the exciton and photon than

bulk systems and furthermore the microcavity design may be altered in order to give

maximum control over the exciton - photon interaction [1]. Since the work of Weis-
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Figure 2.2: A Fabry-Pérot, one dimensional cavity formed by an mλ/2 dielectric

layer sandwiched between two dielectric Bragg mirrors consisting of alternate λ/4

layers with different dielectric constants.

buch the number of published papers referring to exciton-polaritons has increased

year on year and the majority of this work has been done in planar microcavities

such as the Fabry-Pérot system illustrated in Figure 2.2. The thick layer in the

middle of the structure, labelled mλ/2 represents a semiconductor microcavity with

thickness equal to an integer number, m, of half wavelengths, λ/2, of the light in

the structure. In many cases the cavity is formed in the material with the higher

refractive index and m is chosen to be 2 which gives a λ thickness layer. This means

that the electric field of the cavity mode has an antinode in the centre of the cavity

[1]. Photons may be confined perpendicular to the plane of the layers, either in the

microcavity itself or in a quantum well within the cavity, due to the quarter-wave

Bragg reflector mirrors on either side. The thickness and dielectric constant of each

of the layers in the stack are chosen such that reflections from the multiple interfaces

are in-phase, giving an effective reflectivity close to unity [59].

Well confined photons have a long lifetime and so have a better opportunity to

interact with excitons to form exciton-polaritons. The Q-factor of a cavity may be
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defined as the ratio of the resonant frequency to the line width:

Q =
ωc
δω

(2.4)

where ωc is the resonant frequency of the cavity and δω is the linewidth of the

mode as depicted in Figure 2.3. As the polariton lifetime is dictated by those of

the photon and the exciton, a high Q-factor indicates a greater potential polariton

lifetime. Another quantity describing the cavity modes is the finesse, F , given by

Figure 2.3: An example mode spectrum for a microcavity. The Q-factor of the

cavity for the resonance at ω = ωc is given by Q = ωc/δωc while the finesse is given

by F = ∆ωc/δωc.

the ratio of mode separation to linewidth:

F =
∆ωc
δω

(2.5)

where ∆ωc is the separation between cavity modes. A high finesse is desirable for

forming polaritons because the mode that is coupling to an exciton will then be

isolated creating distinct polariton states rather than suffering from interference

from other cavity modes.

As the optical modes are confined only in one direction in a Fabry-Pérot struc-

ture, the photons have an in-plane dispersion. A coupled oscillator model can be

used to calculate the in-plane dispersion, for example, Figure 2.4 shows a typical

polariton dispersion curve for a planar Fabry-Pérot microcavity. The solid lines

represent the dispersion of the coupled modes of the system while the dashed lines
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Figure 2.4: A typical polariton dispersion curve (solid lines) and the dispersion of

the uncoupled photon and exciton modes (dashed lines). (Taken from [1])

indicate the dispersion of the bare photon and exciton modes. The two solid lines

are conventionally labelled the upper and lower polariton branches and are due to

symmetric and antisymmetric combinations of the bare exciton and photon modes.

For values of the in-plane wavevector close to zero the dispersion is parabolic giving

rise to the low effective mass of exciton-polaritons. At large in-plane wavevector

the lower polariton branch shows mainly exciton-like characteristics while the upper

polariton branch becomes photon-like.

2.2.1 Rabi splitting

The signature of the strong coupling regime is an anticrossing in the polariton dis-

persion. The energy separation of the two modes at the anticrossing point is known

as the Rabi splitting. In the strong coupling regime the Rabi splitting is greater

than the widths of both the bare exciton and the optical cavity mode. The case

where the Rabi splitting is less than the widths of the two individual oscillators is

know as the weak coupling regime where there is no splitting into distinct polariton
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modes of the system. For a Fabry-Pérot structure with a cavity thickness d, an

estimate of the Rabi splitting, Ω, is given by [60]

Ω =

√
2ω0ωLTd

LDBR + d
(2.6)

where ω0 is the frequency at the centre of the stop band for the Fabry-Pérot struc-

ture, ωLT is the exciton longitudinal-transverse splitting and LDBR, the effective

length of the Fabry-Pérot cavity is given by: LDBR = nAnBλ0/2(nB − nA) where

nA,B are the refractive indices of the layers in the Fabry-Pérot structure and λ0 is

the wavelength at the centre of the stop band for the structure.

2.2.2 Exciton-polariton phenomena

The exciton - photon interaction for forming exciton-polaritons may be controlled

in a number of ways. For example, planar microcavities can be grown in a wedge

shape allowing for varying cavity mode wavelength across the structure; changing

the temperature can also alter the cavity mode [61] and the application of external

electric or magnetic fields may be used to tune the exciton mode [62]. This de-

gree of control over the system leads to a wealth of fundamental physics associated

with exciton-polaritons that, as well as being studied for its own sake, is setting

the groundwork for novel devices. Reviews of work done on exciton-polaritons in

semiconductor microcavities are given in [1] and [63]. In this section, some high-

lights of the work carried out in this field are discussed with an emphasis on their

applications.

Bose-Einstein condensates and polariton lasers

In 1996 Imamoḡlu and Ram [64] proposed that because exciton-polaritons retain

the bosonic nature of the exciton, they could form condensates and spontaneously

emit coherent photons creating a polariton laser. Furthermore, it was proposed that,

due to their very light effective mass, of the order 10−5me, exciton-polaritons would

be able to form Bose-Einstein condensates at room temperature and above, unlike

more traditional cold atom condensates. In 1998 polariton lasing was reported un-

der optical pumping in planar microcavities at low temperature by Le Si Dang et
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al. [21] and by 2007 at room temperature by Christopoulous et al. [22]. Polari-

ton emission from similar electrically pumped devices has also been achieved [65]

[66]. However, polariton lasing itself is insufficient to demonstrate Bose-Einstein

condensation [63] and further works by Kasprzak et al. [19] and Balili et al. [67]

subsequently showed that forming exciton-polariton condensates was possible. A

great advantage of polariton lasers over conventional lasers is that they do not re-

quire a population inversion and so have a very low pumping threshold and hence

require little power. For polariton lasing or to achieve Bose-Einstein condensation

the exciton-polaritons must be ‘cooled’ to the ground state. One way in which this

can be achieved is by interactions with phonons. However, contrary to the steep

dispersion in the lower polariton branch in the planar case, phonons have a shallow

dispersion which means many interactions with phonons of small momentum are re-

quired for polariton relaxation. Polaritons accumulate in the region of the spectrum

where the character changes from exciton-like to photon-like, the point of inflection

in the lower polariton branch as seen in Figure 2.4, causing a ‘bottleneck’ effect [68].

There is currently great interest in phenomena linked to the Bose-Einstein con-

densation of exciton-polaritons including superfluidity and superconductivity [20].

However, considering the Bose-Einstein condensation of exciton-polaritons is beyond

the scope of the work presented in this chapter.

Optical integrated circuits

Other exciton-polariton effects making use of spin and polarisation properties have

been proposed for use in optical integrated circuits. ‘Spinoptronics’ is an emerging,

multidisciplinary field designing and fabricating novel devices using the polariton

pseudospin. The pseudospin is a vector used to represent and visualise the state

of a two-level quantum system and is dependent on the spin of the exciton and

the polarisation of the cavity photon [69]. For example, bistable optical switching

requiring very low power was demonstrated experimentally by Baas et al. in 2004

[23] and polarisation-controlled optical logic gates were proposed and demonstrated

in 2007 by Leyder et al. [25]. In 2008 several optical logic gates were integrated

to form a circuit in a single microcavity [27]. Despite these extremely promising
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advances, at the current time, optical integrated circuits using exciton-polaritons

can in no way compete economically with more traditional electronic components.

2.3 Cylindrical and spherical microcavities

2.3.1 Whispering-gallery modes

Another way to confine photons, rather than using a Fabry-Pérot type cavity, is

to take advantage of whispering-gallery modes found in cylindrical and spherical

structures. Whispering-gallery modes are known to possess both high Q-factor and

Figure 2.5: The Whispering Gallery at St. Paul’s Cathedral, London.

high finesse suggesting they would be suitable for producing polaritons. St Paul’s

Cathedral in London contains a renowned example of a whispering-gallery. Inside

the dome a smooth cylinder stone wall causes the effect which gives the whispering-

gallery its name. A person who whispers into the wall on one side of the dome can be

clearly heard by a second person standing on the opposite side despite the diameter

of the gallery being over 30 meters. The effect is due to the constructive interference

of sound waves bouncing off the smooth stone walls. The same effect can be obtained
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with light in dielectric microcavities of cylindrical or spherical geometry. Any mode

where an integer number of wavelengths fits into the circumference is amplified by

constructive interference and confined to the cavity by total internal reflection.

2.3.2 Exciton-polaritons in cylindrical and spherical cavities

Cylindrical and spherical microcavities are promising structures for exciton-polariton

devices as they have distinct advantages over the more traditional planar cavities.

Cylinders and spheres provide localisation of photons in two and three dimensions

and, as introduced in the previous section, the whispering-gallery modes in such

structures are particularly well confined. Non planar microcavities also do not suffer

from the bottleneck effect caused by the momentum condition on polariton-phonon

scattering in the planar case. Relieving the bottleneck effect allows for more efficient

relaxation of exciton-polaritons to the ground state as required for polariton lasing

and Bose-Einstein condensation.

Over the past few decades there has been increasing interest in exciton-polaritons

in cylindrical and spherical microcavities due to the advancing technologies which

have made their fabrication possible. In 1999 Panzarini and Andreani [29] predicted,

using a quantum formalism, the strong coupling between exciton and photon modes

with angular momentum quantum number, l equal to unity in AlAs/GaAs cylin-

drical stacked Bragg reflector structures containing a quantum well. Kaliteevski et

al. [70] made a study of whispering-gallery modes for forming exciton-polaritons in

cylindrical cavities of GaAs in 2007. They investigated the conditions required for

strong coupling, looking for modes with a long lifetime and high finesse that are best

suited for strong coupling. It was found that the first modes (radial quantum num-

ber, N equal to zero) for each azimuthal quantum number had the highest finesse

and modes with low azimuthal quantum number had the longest lifetimes. In 2008

Bajoni et al. [28] demonstrated polariton lasing in a single GaAs/GaAlAs micropil-

lar cavity. They found that the micropillar cavity allowed for a more well-defined,

discrete energy spectrum than in planar cavities.

In 2001 Kaliteevski et al. [71] presented a theoretical study of semiconductor

quantum dots in spherical Bragg reflector structures and the conditions for the weak
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to strong coupling threshold were found for photon modes with quantum number

l which characterises the relevant spherical harmonic equal to unity. In 2004 Bi-

genwald et al. [72] studied cadmium telluride (CdTe) spheres as candidates for

polariton lasers at low temperatures. The spheres that were studied in [72] were

supermicron in size and of low finesse leading to exciton coupling with a number of

photon modes simultaneously and a resultant complicated polariton spectrum with

no ground state suitable for Bose-Einstein condensation. Studies of the weak cou-

pling of excitons with photon modes in spherical quantum dots have been presented

by Ajik et al. [73] [74]. Nikolaev, Smith and Ivanov [75] have investigated the weak

to strong coupling threshold in semiconductor spheres with radii of the order of the

wavelength of the photon modes, however this study was restricted to modes with

quantum number l = 1.

Advances in crystal growth technology over the past two decades have made the

fabrication of layered dielectric systems, such as the Fabry-Pérot etalon, possible.

Nevertheless, the structures must be of high quality for use in experiments and the

growth of multilayered structures is easier with some materials, for example CdTe,

than it is with others [63]. Further advances in growth technology will undoubtedly

allow for better planar cavities for experiments and devices as well as multilayer

structures in other geometries. However, here we propose a much simpler system,

the sub-micron sphere, for supporting exciton-polaritons.

The work presented in this thesis provides a systematic study of the lifetimes of

the cavity modes in GaAs, GaN and ZnO spheres as a function of their quantum

number and the radius of the sphere which ultimately allows for the prediction

of reliable criteria for the weak - strong coupling threshold. The cavities under

consideration are spheres of a material with given refractive index surrounded by

vacuum. The radii of the cavities are sub-micron ensuring suitably high finesse.

2.4 Electromagnetic waves in spherical cavities

Maxwell’s equations are given by Equations 1.2 – 1.5. In spherical polar coordinates

there are three component equations for the electric, E-field and three for the mag-
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netic, B-field. Assuming a time dependence of the form exp (−iωt) the six equations

take the form:

1

r sin θ

[
∂

∂θ
(sin θEφ)− ∂Eθ

∂φ

]
= iωBr

1

r sin θ

∂Er
∂φ
− 1

r

∂

∂r
(rEφ) = iωBθ

1

r

[
∂

∂r
(rEθ)−

∂Er
∂θ

]
= iωBφ

1

r sin θ

[
∂

∂θ
(sin θBφ)− ∂Bθ

∂φ

]
= −i ω

c2
Er

1

r sin θ

∂Br

∂φ
− 1

r

∂

∂r
(rBφ) = −i ω

c2
Eθ

1

r

[
∂

∂r
(rBθ)−

∂Br

∂θ

]
= −i ω

c2
Eφ (2.7)

where c−2 = µ0ε0. Spherical waves may be split into two distinct polarisations,

conventionally labelled TE and TM. For the TE-polarisation there is no radial com-

ponent to the electric field (Er = 0) and hence the TE-polarised field can be com-

pletely described by five equations each containing at least two of the components

Br, Bθ, Bφ, Eθ and Eφ. Similarly the TM-polarisation is completely described by

five equations each containing at least two of the components Er, Eθ, Eφ, Bθ and

Bφ.

From Maxwell’s equations the vector Helmholtz equation may be derived giving:

∇2Ψ + k2Ψ = 0 (2.8)

where Ψ = E or B. Using the identity

∇2 (r ·Ψ) = r ·
(
∇2Ψ

)
+ 2∇ ·Ψ (2.9)

it can be shown that the scalar quantity (r · E) where r = rr̂ and r̂ is the radial unit

vector satisfies the Helmholtz equation. Using ∇ · E = 0 we obtain:

∇2 (r · E) + k2 (r · E) = r ·
[
∇2E + k2E

]
= 0 (2.10)

The quantity (r · E) can also be written as rEr, hence we can write a scalar Helmholtz

equation for the radial components of the field. For the TM-polarisation (where

Br = 0) the equation is

∇2(rEr) + k2rEr = 0 (2.11)
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In spherical polars the scalar Helmholtz equation is

1

r2 sin θ

[
sin θ

∂

∂r

(
r2∂ψ

∂r

)
+

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin θ

∂2ψ

∂φ2

]
+ k2ψ = 0 (2.12)

where ψ = rEr.

Using the technique of separation of variables, two quantum numbers are intro-

duced: l, the orbital angular momentum number can take positive integer values

and the projection of the orbital angular momentum number, m, takes integer values

from −l to l. This gives the components of the TM-polarised field as:

Br = 0 (2.13)

Bθ =
ω

c2

m

sin θ
zl(kr)P

|m|
l (cos θ) exp(imφ) (2.14)

Bφ = i
ω

c2
zl(kr)

d

dθ

[
P
|m|
l (cos θ)

]
exp(imφ) (2.15)

Er =
l(l + 1)

r
zl(kr)P

|m|
l (cos θ) exp(imφ) (2.16)

Eθ =
1

r

d

dr
(rzl(kr))

d

dθ

[
P
|m|
l (cos θ)

]
exp(imφ) (2.17)

Eφ =
im

sin θ

1

r

d

dr
(rzl(kr))P

|m|
l (cos θ) exp(imφ) (2.18)

where P
|m|
l (cos θ) is an associated Legendre function and zl(kr) is some combination

of the spherical Hankel functions h
(1)
l (kr) and h

(2)
l (kr) with k = ω/c. Similarly for

the TE-polarised field we have:

Er = 0 (2.19)

Eθ = − ωm

sin θ
zl(kr)P

|m|
l (cos θ) exp(imφ) (2.20)

Eφ = −iωzl(kr)
d

dθ

[
P
|m|
l (cos θ)

]
exp(imφ) (2.21)

Br =
l(l + 1)

r
zl(kr)P

|m|
l (cos θ) exp(imφ) (2.22)

Bθ =
1

r

d

dr
(rzl(kr))

d

dθ

[
P
|m|
l (cos θ)

]
exp(imφ) (2.23)

Bφ =
im

sin θ

1

r

d

dr
(rzl(kr))P

|m|
l (cos θ) exp(imφ) (2.24)

It should be noted that no field exists for the case l = 0. The associated Legendre

polynomial, P
|m|
l for l = 0, m = 0 is P 0

0 (cos θ) = 1, and its derivative is zero.

Substitution of these results into Equations 2.13 – 2.18 and 2.19 – 2.24 gives zero

for all field components.
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2.4.1 Eigenfrequencies of the spherical cavity

The electromagnetic fields inside and outside a dielectric sphere can be constructed

from the field solutions for a uniform dielectric medium. Consider waves with the

TE-polarisation, radiating from a sphere of radius ρ and refractive index n1, into a

medium of refractive index n2. Outside the sphere the waves only propagate out-

wardly, hence the radial component, zl(k2r) is given by a spherical Hankel function

of the first kind: h
(1)
l (k2r) = jl(k2r) + inl(k2r) where we have introduced the no-

tation ki = niω/c. The components of the spherical Hankel function, the spherical

Bessel function, jl(kr), and the spherical Neumann function, nl(kr), are shown in

Figure 2.6. Inside the sphere there are both outgoing and incoming waves (due

to reflection at the boundary) hence the radial part is given by a sum of spherical

Hankel functions of the first and second kind. Also, the field at the origin must be

finite so the two spherical Hankel functions must be added in equal parts:

zl(kr) =
1

2
h

(1)
l (k1r) +

1

2
h

(2)
l (k1r) = jl(k1r). (2.25)

Therefore, inside the sphere, the electric field is given by:

E(in) = Almω

[
m

sin θ
P
|m|
l (cos θ)θ̂ + i

d

dθ

(
P
|m|
l (cos θ)

)
φ̂

]
jl(k1r) exp(imφ) (2.26)

and outside the sphere by:

E(out) = Blmω

[
m

sin θ
P
|m|
l (cos θ)θ̂ + i

d

dθ

(
P
|m|
l (cos θ)

)
φ̂

]
h

(1)
l (k2r) exp(imφ) (2.27)

where Alm and Blm are constants depending on the quantum numbers l and m and

θ̂ and φ̂ are unit vectors in the θ and φ directions. The corresponding magnetic

field components, calculated using Equation set 2.7 are:

B(in) =Alm

[
l(l + 1)

r
jl(k1r)P

|m|
l (cos θ)r̂ +(

d

dθ
P
|m|
l (cos θ)θ̂ +

im

sin θ
P
|m|
l (cos θ)φ̂

)
1

r

d

dr
(rjl(k1r))

]
exp(imφ)

(2.28)

B(out) =Blm

[
l(l + 1)

r
h

(1)
l (k2r)P

|m|
l (cos θ)r̂ +(

d

dθ
P
|m|
l (cos θ)θ̂ +

im

sin θ
P
|m|
l (cos θ)φ̂

)
1

r

d

dr
(rh

(1)
l (k2r))

]
exp(imφ)

(2.29)
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Figure 2.6: Spherical Bessel functions of the first kind jl(kr) (top) and spherical

Neumann functions, nl(kr) (bottom), for l = 0, 1, 2 shown in black, red and green

respectively.

where r̂ is also a unit vector, in the r-direction. The tangential components of the

fields inside and outside the sphere must be continuous across the boundary at r = ρ.

For the electric field components we have

Blmjl(k1ρ) = Almh
(1)
l (k2ρ). (2.30)

The magnetic field components give the relation

Blm [jl(k1ρ) + ρk1j
′
l(k1ρ)] = Alm

[
h

(1)
l (k2ρ) + ρk2h

(1)′
l (k2ρ)

]
. (2.31)

Eliminating Alm/Blm from Equations 2.30 and 2.31 gives

jl(k1ρ)
[
h

(1)
l (k2ρ) + ρk2h

(1)′
l (k2ρ)

]
− h(1)

l (k2ρ) [jl(k1ρ) + ρk1j
′
l(k1ρ)] = 0 (2.32)
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noting that d/dr(rh
(1)
l (kr)) = h

(1)
l (kr) + krh

(1)′
l (kr).

Similarly, for the TM-polarisation the fields inside and outside the sphere are

given by:

E(in) =Clm

[
l(l + 1)

r
jl(k1r)P

|m|
l (cos θ)r̂ +(

d

dθ
P
|m|
l (cos θ)θ̂ +

im

sin θ
P
|m|
l (cos θ)φ̂

)
1

r

d

dr
(rjl(kr))

]
exp(imφ)

(2.33)

E(out) =Dlm

[
l(l + 1)

r
h

(1)
l (k2r)P

|m|
l (cos θ)r̂ +(

d

dθ
P
|m|
l (cos θ)θ̂ +

im

sin θ
P
|m|
l (cos θ)φ̂

)
1

r

d

dr
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(1)
l (k2r))
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exp(imφ)

(2.34)

B(in) = Clm
ω

c2

[
m

sin θ
P
|m|
l (cos θ)θ̂ + i

d

dθ

(
P
|m|
l (cos θ)

)
φ̂

]
jl(k1r) exp(imφ) (2.35)

B(out) = Dlm
ω

c2

[
m

sin θ
P
|m|
l (cos θ)θ̂ + i

d

dθ

(
P
|m|
l (cos θ)

)
φ̂

]
h

(1)
l (k2r) exp(imφ).

(2.36)

Again the tangential field components must be continuous across the boundary at

r = ρ which gives two equations:

Clm [jl(k1ρ) + ρk1j
′
l(k1ρ)] = Dlm

[
h

(1)
l (k2ρ) + ρk2h

(1)′
l (k2ρ)

]
(2.37)

Clmjl(k1ρ) = Dlmh
(1)
l (k2ρ) (2.38)

and eliminating Clm/Dlm from Equations 2.37 and 2.38 gives

ε1jl(k1ρ)
[
h

(1)
l (k2ρ) + k2ρh

(1)′
l (k2ρ)

]
− ε2h

(1)
l (k2ρ) [jl(k1ρ) + k1ρj

′
l(k1ρ)] = 0. (2.39)

Solving Equations 2.32 and 2.39 gives the generally complex eigenfrequencies of

the spherical cavity. The electric or magnetic fields inside and outside a sphere

may be calculated by matching field components across the boundary and choosing

appropriate coefficients for Alm, Blm, Clm and Dlm.

2.4.2 Reflection from the spherical boundary

The eigenvalue Equations 2.32 and 2.39 may also be derived from consideration of

the amplitude of the wave being reflected from the spherical interface. Recall that

the interface marks the boundary between materials of refractive index n1 and n2 at
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radius ρ. Consider a spherical wave originating inside the cavity, propagating until

it reaches the boundary and then being partially reflected. The amplitude of the

reflected wave must be equal to the product of the outgoing wave and the amplitude

reflection coefficient of the cavity, RTE(TM) (where we define RTE as the ratio of the

tangential components of the electric field for ingoing and outgoing waves and RTM

as the ratio of the tangential components of the magnetic field.) The outgoing and

incoming waves inside the sphere are described by spherical Hankel functions of the

first and second kind respectively. As in Section 2.4.1, these Hankel functions must

be of equal magnitude to avoid a divergence at the centre of the sphere. It follows

that the equation for the TE(TM) modes of the sphere may be written in the form:

h
(2)
l (k1ρ) = RTE(TM)h

(1)
l (k1ρ). (2.40)

The amplitude reflection coefficient is a function of the sphere radius and the quan-

tum number l and can be found, for example, in [4]:

RTE =
D

(1)
l2 −D

(1)
l1

D
(2)
l1 −D

(1)
l2

(2.41)

RTM =
−(1/ε1)D

(1)
l1 + (1/ε2)D

(1)
l2

(1/ε2)D
(1)
l2 + (1/ε1)D

(2)
l1

(2.42)

where

D
(1,2)
l =

−1

k0ρ

∂/∂r
(
rh

(1,2)
l (kρ)

)
h

(1,2)
l (kρ)

and ε1,2 = n2
1,2. Substitution of Equation 2.41 into Equation 2.40 gives the same

result as Equation 2.32. Similarly, substitution of Equation 2.42 into Equation 2.40

gives Equation 2.39. Figure 2.7 shows how the power reflection coefficient, |RTE,TM|2,

varies with increasing sphere radius for a GaAs sphere (refractive index n = 3.7) in

vacuum. For the TE-polarisation the power reflection coefficient is close to unity at

small radii and decreases asymptotically to the equivalent value for a planar system

at large radius. For the TM-polarisation the power reflection coefficient is also close

to unity at small radii, then there is a dip in the spectrum that can be associated

with a Brewster angle type effect before tending to the corresponding planar system

value from below.
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Figure 2.7: Dependence of the power reflection coefficient on the radius of a GaAs

sphere (refractive index n = 3.7) in vacuum at a frequency corresponding to the

exciton resonance, h̄ω = 1.515 eV. The red lines show TE modes with l = 1, 2 and

3 from left to right while the black lines show TM modes, again with l = 1, 2 and

3 from left to right.
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2.5 Mode decay in spherical cavities

In order to find numerical solutions to the eigenfrequency equations it is helpful

to first find an approximate solution as an initial guess for iterative computational

routines.

Consider a sphere of large radius, such that the waves arriving at the boundary

can be considered as plane waves and the approximations to the spherical Hankel

functions of large argument may be used:

h
(1,2)
l (kr)→ − i

kr
exp

(
±i
[
kr − πl

2

])
(2.43)

Equation 2.40 becomes

RTE(TM) exp

[
i

(
k1ρ−

πl

2

)]
= exp

[
−i
(
k1ρ−

πl

2

)]
(2.44)

which can be used to give a simplified expression for the real part of the eigenmode

frequency by taking the argument:

arg(RTE,TM) + arg

(
exp

[
2i

(
k1ρ−

πl

2

)])
= 2πN (2.45)

where N is an integer or zero. For the TE-polarisation we calculate using Equa-

tion 2.41 that arg(RTE) ≈ 0. Using k1 = n1ω/c and rearranging we obtain an

approximation to the eigenfrequency:

n1ω
(TE)ρ

c
≈ π

[
N +

l

2

]
ω(TE) ≈ πc

n1ρ

1

2
(2N + l) . (2.46)

Conversely, for the TM-polarisation we calculate using Equation 2.42 that arg(RTM) ≈

π and Equation 2.45 becomes

n1ω
(TM)ρ

c
≈ π

2
(2N + 1) +

πl

2

ω(TM) ≈ πc

n1ρ

1

2
(2N + l + 1) . (2.47)

There is a minimum sphere radius below which a mode of quantum number

l cannot be supported at a given frequency. This minimum radius, ρ0 may be
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estimated by setting N = 0 in Equations 2.46 and 2.47. These rearrange to give,

for the TE-polarisation

ρ
(TE)
0 ≈ πcl

2n1ω(TE)
(2.48)

and for the TM-polarisation

ρ
(TM)
0 ≈ πc

2n1ω(TM)
(l + 1) . (2.49)

Figure 2.8 shows the dependences of the minimum radius on the given quantum
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Figure 2.8: The minimum sphere radius below which a mode of quantum number

l cannot be supported at a frequency of h̄ω = 1.515 eV. The dashed lines give the

predictions of Equations 2.48 and 2.49 for a GaAs sphere (refractive index n = 3.7)

in vacuum. The solid symbols give the actual radius of appearance of modes. The

TE-polarisation is shown in black and the TM-polarisation in red.

number, l. The calculations were carried out for a GaAs sphere (refractive index

n = 3.7) in vacuum (refractive index n = 1.0) and modes with eigenfrequency at

the corresponding exciton resonance, h̄ω = 1.515 eV. The dashed lines show the

prediction of the approximate formulae in Equations 2.48 and 2.49 while the solid
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symbols give the minimum sphere radii for the support of modes found using an

iterative computer code. It can be seen for both polarisations that the necessary

minimum radius increases with increasing angular momentum quantum number,

l. It is apparent that the values given by Equations 2.48 and 2.49 are not good

approximations. This is because the frequency under consideration, h̄ω = 1.515 eV,

corresponds to a wavelength of around 220 nm in GaAs. This is comparable to the

size of the sphere, contrary to the initial assumptions of the approximation. Better

approximations were obtained by a colleague, I.Iorsh [76]: if the refractive index of

the sphere is greater than that of the surrounding medium, as it is for all spheres

considered here, then the electric field should have an antinode at the boundary of

the sphere. For the TE-polarisation the form of the electric field given in Equations

2.19–2.21 shows that jl(k1ρ) should have a maximum at the sphere boundary, hence

its derivative should have a root. According to a theorem of Siegel [77] the first root

of j
′

l(x) lies between the values
√

(l + 1/2)(l + 5/2) and
√

2(l + 1/2)(l + 3/2). So,

for N = 0, taking an average between these bounds as the approximation, we have

that the argument of the Bessel function at the boundary is given by

n1ω
(TE)ρ̃

(TE)
0

c
≈ 1

2

(√
(l + 1/2)(l + 5/2) +

√
2(l + 1/2)(l + 3/2)

)
(2.50)

where ρ̃0 is the new approximation to the minimum radius. This has an approx-

imately linear variation with l which can be fitted numerically to the function

1.3l + 1.3. Hence, a better approximation for the minimum radius at which a TE-

polarised mode with quantum number l can be supported is given by

ρ̃
(TE)
0 ≈ 1.3c(l + 1)

n1ω(TE)
. (2.51)

A similar analysis for the TM mode gives

ρ̃
(TM)
0 ≈ 1.3c(l + 2)

n1ω(TM)
. (2.52)

Figure 2.9 shows a cross section of the electric field intensity, |E|2 for the TE

modes of a GaAs sphere in vacuum. The plots show the variation of the fields with

θ at φ = 0. For each value of l (l = 1, 2, 3), the radius of the sphere is the minimum

sphere radius, ρ0, calculated using the iterative computer code. The black lines
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Figure 2.9: Three TE modes with increasing quantum number l = 1, 2 and 3 and

m = 0. The radius of the sphere, marked in black, increases from left to right as l

increases as a bigger sphere is needed to support the mode. Blue represents areas

of low field intensity while red shows areas of high field intensity.

mark the radii of the spheres. It can be seen for each of the values of l that there

is some leakage of the field into the surrounding vacuum. However the greater the

value of l, the greater the confinement of the mode to the sphere.

We now consider the complex form of the eigenfrequencies, ω − iγ, that result

from solving Equation 2.40 by using the spherical Hankel function approximations

of Equation 2.43:

1

RTE(TM)

= exp

[
2i

(
n1(ω − iγ)ρ

c
− πl

2

)]
1

RTE(TM)

= exp

[
i

(
2n1ωρ

c
− πl

)]
exp

[
2n1γρ

c

]
. (2.53)

After taking the magnitude of both sides we can rearrange to obtain an approximate

expression for the decay constant, γ, given by the imaginary part of the eigenfre-

quency:

1

|RTE(TM)|
= exp

[
2n1γTE(TM)ρ

c

]
γTE(TM) =

c

2n1ρ
ln

∣∣∣∣ 1

RTE(TM)

∣∣∣∣ . (2.54)

The decay constant is the inverse of the lifetime of the photon mode so, for a mode

with a long lifetime, a small decay constant is required. These very approximate

values were used as an initial guess for an iterative computer program to find the

roots of Equations 2.32 and 2.39. The dashed lines in Figure 2.5 show the approx-
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Figure 2.10: The decay constant, γ for modes with different l in a GaAs sphere

in vacuum. The dashed lines represent the approximation given by Equation 2.54

while the symbols show the actual values given by the iterative computer program.

The TE-polarisation is shown in black and the TM-polarisation in red.

imate values of the decay constant, γ in electron volts, for different values of l, for

cavity modes in a GaAs sphere. The TE-polarisation is shown in black and the TM-

polarisation in red. The decay constant exhibits a nearly exponential decrease with

increasing l. The solid symbols show the values given by the root-finding computer

program: black squares for the TE-polarisation and red for the TM-polarisation.

2.5.1 Estimate of the polariton splitting

An analytical estimate of the polariton splitting can be obtained by considering the

effect that the excitonic contribution to the dielectric constant has on an optical

mode that would be at frequency ωex in the absence of excitonic effects. We know

from Equations 2.48 and 2.49 that the minimum radius of sphere required to support
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a mode at frequency ωex can be written as

εbρ
2
0ω

2
ex = f(l) (2.55)

where f(l) is the appropriate function of l for either the TE or TM-polarisation.

Including the excitonic contribution using Equation 2.2 and neglecting any non

radiative exciton decay gives

εb

(
1 +

ωLT
ωex − ω

)
ρ2

0ω
2 = f(l). (2.56)

Combining Equations 2.55 and 2.56 and rearranging yields:

(ωex − ω)(ωex + ω)− ω2ωLT
ωex − ω

= 0

(ω − ωex)(ω + ωex)− ω2ωLT
ω − ωex

= 0. (2.57)

Assuming that the frequency in Equation 2.56 is close to the exciton resonance

frequency, (ω − ωex)� ωex → ω ≈ ωex, we obtain:

(ω − ωex)2 ≈ ωexωLT
2

(2.58)

which gives the splitting of the polariton modes as:

∆ = 2(ω − ωex)

∆ =
√

2ωexωLT . (2.59)

This result is not exclusive to the case of spherical symmetry but it is worth noting

that the splitting for the sphere is generally larger than for planar microcavities with

Bragg mirrors. This is because the electric field of the cavity mode is mostly localised

inside the sphere and thus its overlap integral with the exciton wavefunction of the

corresponding symmetry approaches unity. On the other hand, in planar cavities

the overlap integral is strongly reduced due to the penetration of the cavity mode

into the dielectric Bragg mirrors.

2.5.2 Optical mode analysis

Figures 2.11, 2.12 and 2.13 show the decay constant as a function of radius for

spheres of GaAs, GaN and ZnO respectively. The spheres are all in vacuum with
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the real part of their eigenfrequencies set to their respective exciton resonances

(h̄ωex = 1.515 eV in GaAs, h̄ωex = 3.502 eV in GaN and h̄ωex = 3.386 eV in ZnO).

The horizontal lines in the figures represent the weak to strong coupling threshold

as discussed in Section 2.6.1.
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Figure 2.11: Decay constant as a function of radius for bare cavity modes in a GaAs

sphere in vacuum. The real part of the frequency is equal to the exciton resonance

frequency for excitons in GaAs, h̄ωex = 1.515 eV. The TE(TM)-polarised modes are

shown in black (red) and are labelled lN . The horizontal line indicates the estimated

polariton splitting value calculated by Equation 2.59.

As apparent from the results for GaAs in Figure 2.11, the number of modes that

can exist for a sphere of given radius increases as the radius increases. Above the

minimum radius required to support a mode with given quantum number l, increas-

ing the radius further makes possible modes with the same l value but increasing

radial quantum number N . We label the modes lN such that the first mode with

l = 1 has the label 10 and the second mode with l = 2 has the label 21.

As the computer program has to find the roots of an equation in the complex
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Figure 2.12: Decay constant as a function of radius for bare cavity modes in a GaN

sphere in vacuum. The real part of the frequency is equal to the exciton resonance

frequency for excitons in GaN, h̄ωex = 3.502 eV. The TE(TM)-polarised modes are

shown in black (red) and are labelled lN . The horizontal line indicates the estimated

polariton splitting value calculated by Equation 2.59.

plane, the initial guess needs to be more and more accurate as l increases (in order for

the calculation to converge.) The results that are displayed all satisfy Equations 2.32

for the TE-polarisation and 2.39 for the TM-polarisation to within a convergence

tolerance of ±1× 10−5.

Equation 2.54 states that the decay constant γ depends explicitly on the sphere

radius ρ and also implicitly on it through the reflection coefficient R (as given in

Equations 2.41 and 2.42). Consider increasing the sphere radius from an initial

very small value: for a mode with specific l, the initial increase in radius and the

corresponding rapid decrease in reflection coefficient shown in Figure 2.7 lead to an

increase in γ. Further increase in radius causes the reflection coefficient to tend to

a nearly constant value. At this point the radius itself has more bearing on the
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Figure 2.13: Decay constant as a function of radius for bare cavity modes in a ZnO

sphere in vacuum. The real part of the frequency is equal to the exciton resonance

frequency for excitons in ZnO, h̄ωex = 3.386 eV. The TE(TM)-polarised modes are

shown in black (red) and are labelled lN . The horizontal line indicates the estimated

polariton splitting value calculated by Equation 2.59.

variation of γ than the reflection coefficient and, due to the inverse dependence

of γ on ρ, γ slowly decreases. To obtain the highest Q-factor whilst holding the

cavity frequency at the exciton resonance, the decay constant must be as small as

possible. To satisfy the requirement of a large Q-factor, necessary for the production

of polaritons with a long lifetime, this suggests that a mode with large l would be

most suitable. However, in the limit of large radius (required to increase l) the

density of modes becomes so large that even though the Q-factor is high, the finesse

of the modes becomes too low to produce distinct polariton states. The mode with

the highest Q-factor shown in Figure 2.11 is that labelled 50 in the TE-polarisation

with a Q-factor of over 17,000. By comparison, the modes with the highest decay

constants have Q-factors of around just 25.
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2.6 Exciton-polariton calculations

The eigenfrequencies of the exciton-polariton modes of the spherical microcavity can

be found from the same equations as for the bare cavity modes (Equations 2.32 and

2.39) by including the excitonic contribution to the refractive index using Equation

2.2. Numerical computations were carried out to find the complex eigenmodes using

a Fortran program already available in Durham. The spheres under consideration

are at least an order of magnitude larger than the exciton radius therefore a bulk

model of the exciton and its dielectric response, given by Equation 2.2, is expected

to be satisfactory. For GaAs, the effective Bohr radius of the exciton, aB, is 15 nm

and in GaN and ZnO aB is 2 – 4 times smaller [60]. Table 2.1 gives the parameter

values used in the calculations for the different semiconductor materials under con-

sideration. Note that ωLT is an order of magnitude larger in GaN and ZnO than it

Semiconductor εb h̄ωex(eV) h̄ωLT (meV) h̄Γ (meV)

GaAs at 4K [70] 13.69 1.515 0.08 1

GaN at 2K [78] 7.29 3.502 1.45 1

ZnO at 5K [79] 2.11 3.384 5 1

Table 2.1: Parameters used for calculating the excitonic contribution to the refrac-

tive index for different semiconductor materials.

is in GaAs as it is inversely proportional to the dielectric constant εb.

2.6.1 Results

The frequency of the exciton-polariton modes as a function of sphere radius are

shown in Figures 2.14, 2.15 and 2.16 for GaAs, GaN and ZnO respectively. The real

parts of the bare cavity optical eigenfrequencies and the exciton energy are shown

in black for comparison. The approximations given by Equations 2.48 and 2.49 of

the minimum radius required to support a mode with mode number l and N = 0

predict that the TMl0 and the TE(l+1)0 modes will be degenerate, but Figures

2.14 – 2.16 show that this is not the case. However, the difference is less than 5%

in GaAs, around 10% in GaN and 15% in ZnO. The TE30 modes in all three cases
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Figure 2.14: Exciton-polariton modes of GaAs. The TM20 mode is shown in red

and the TE30 mode is shown in green. The square points show the real part of

the exciton-polariton eigenfrequency for each mode while the vertical bars give the

decay constant of the mode at each radius. The black lines mark the real part of

the bare cavity modes and the exciton energy (horizontal line) for comparison.

exhibit a distinct anticrossing showing them to be strongly coupled. Conversely

the TM20 modes in all three cases do not anticross and therefore are in the weak

coupling regime. Table 2.2 gives the polariton splitting, calculated both from the

approximate Equation 2.59 and the values found from Figures 2.14 – 2.16, and also

the values of the imaginary part of the mode energies (the decay constant, γ) at

the anticrossing. We recall that the decay constant is the inverse of the photon

lifetime so the smaller the decay constant, the longer the lifetime of the mode. The

estimated polariton splitting values are shown by horizontal black lines in Figures

2.11 – 2.13 (showing the decay constant of the bare optical modes as a function

of sphere radius) and it is clear in all three cases that the decay constant of the

TM20 mode is greater and the decay constant of the TE30 mode is less than their

respective splitting values.
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Figure 2.15: Exciton-polariton modes of GaN. The TM20 mode is shown in red

and the TE30 mode is shown in green. The square points show the real part of

the exciton-polariton eigenfrequency for each mode while the vertical bars give the

decay constant of the mode at each radius. The black lines mark the real part of

the bare cavity modes and the exciton energy (horizontal line) for comparison.
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Figure 2.16: Exciton-polariton modes of ZnO. The TM20 mode is shown in red

and the TE30 mode is shown in green. The square points show the real part of

the exciton-polariton eigenfrequency for each mode while the vertical bars give the

decay constant of the mode at each radius. The black lines mark the real part of

the bare cavity modes and the exciton energy (horizontal line) for comparison.

41



Feature GaAs (meV) GaN (meV) ZnO (meV)

bulk polariton splitting* 15.6 101 184

microsphere polariton splitting 11.9 94.4 142

decay constant for TM20 18.3 191 386

decay constant for TE30 2.6 37.0 103

Table 2.2: Values of polariton splitting and decay constants as shown in Figures

2.14 – 2.16.

* from Equation 2.59.

For the TM20 modes, the decay constant, γ exceeds the splitting, ∆ given by

Equation 2.59, which is characteristic of the weak coupling regime. In contrast for

the TE30 modes the decay constant is smaller than the splitting so that the strong

coupling is realised and the expected anticrossing is apparent.

It can be seen that the polariton splitting of the TE30 mode in GaN is over seven

times greater than that in GaAs and the splitting of the TE30 mode in ZnO is one

and a half times greater again. However, the decay constants in GaN are an order

of magnitude greater than those in GaAs which is partly due to the lower refractive

index of GaN. Equation 2.54 shows that the decay constant γ has an explicit inverse

dependence on the refractive index. The widths of the modes in ZnO are over twice

as great as those in GaN, again by virtue of the lower refractive index in ZnO.

2.7 Discussion

In this chapter we have considered the exciton-polariton modes for semiconductor

sub-micron spheres of GaAs, GaN and ZnO. The specific conditions for the threshold

of weak to strong coupling of excitons to photon modes have been found. It has

been shown that optical modes with a decay constant greater than the polariton

splitting are weakly coupled and those with decay constant less than the polariton

splitting are strongly coupled, in accordance with accepted theory. An estimate of

the polariton splitting in the spherical geometry is provided. It is also shown that

modes with higher l values are more likely to have sufficiently small decay constant
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for strong coupling to occur. However, as l increases the finesse of the optical

cavity decreases making these modes less desirable for exciton-polariton formation.

Estimates of the minimum sphere radius required to support modes of different l

and of the decay constant for modes of different l are given for TE and TM modes.

The weak to strong coupling threshold of the topical material, ZnO is shown to

be comparable to those of other semiconductor materials in the sub-micron sphere

system.

GaAs has a low binding energy of around just 4 meV, whereas GaN and ZnO

are well known ‘wide band-gap’ semiconductors and have exciton binding energies

of around 24 meV and 60 meV respectively. Materials with exciton binding energy

much greater than the thermal energy, kBT , in a given environment (kBT = 25 meV

at room temperature) will be much more stable than excitons with binding energies

below kBT . This suggests that of the three materials considered, with all other

things being equal, ZnO is the best choice for room temperature polariton devices.

ZnO has been proposed as a material that would be very suitable for polariton lasing,

in the visible spectrum, using a planar microcavity at room temperature [80]. This

proposal is based on the stability of ZnO excitons at room temperature, the strong

light-matter coupling with a very large Rabi splitting (around 120 meV) and the

fact that ZnO emits in the relevant region of the electromagnetic spectrum.

However, the confinement of the photon mode must also be taken into account.

The lower the dielectric constant difference between the spherical microcavity and

the medium outside the sphere (vacuum, n = 1.0) the less well the photon mode

will be confined to the sphere. The better the confinement, the longer the lifetime

of the mode. As shown in Table 2.1, ZnO has a low dielectric constant, εb = 2.11

and so the photon modes in ZnO are less well confined to the sphere than those in

GaN (εb = 7.29) or GaAs (εb = 13.69).

Finally, we must consider the strength of the exciton-polariton coupling. The

greater the Rabi splitting between the polariton modes, the stronger the coupling.

The calculated splitting for GaAs was 11.9 meV, for GaN 94.4 meV and 142 meV

for ZnO. This shows that, of the materials considered, the strongest coupling was

found in ZnO.
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In the case of sub-micron spheres it seems that to choose a material to support

exciton-polaritons one must balance the need for a high exciton binding energy and

strong coupling against the need for strong confinement of the optical mode and

lifetime of the polariton. Decisions may then be made that are appropriate for the

application.

It has been shown that sub-micron spheres are capable of supporting exciton-

polariton modes. A semiconductor sphere is a simple structure and there are es-

tablished techniques for their fabrication. For example, they may be chemically

synthesised using colloidal chemistry techniques (spheres of inorganic oxides with

diameters of the order nanometers to micrometers can be routinely produced in this

way [81]). Alternatively, silica microspheres may be produced as molten droplets

under their own surface tension [82]. The required whispering-gallery optical modes

might be excited using a tangential fibre taper waveguide to couple into the res-

onator. Such a method has been shown to work in silica microspheres [83][84]. In

pillar microcavities formed using Bragg mirrors, the whispering-gallery modes may

be excited by a laser [85].

It should also be recognised that it is difficult to grow high quality Bragg mirrors

using GaN and ZnO. The spherical geometry considered in this chapter does not

require Bragg mirrors for the confinement of photons and so may be a more accessible

way of fabricating exciton-polariton devices with these materials with higher binding

energies.
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Chapter 3

Tamm plasmon-polaritons in

cylindrical fibres

In this chapter Tamm plasmon-polaritons (TPPs), a type of surface plasmon-polariton

(SPP), are introduced and the requirements for their formation explained. A brief

review of SPP properties is given and work done on SPPs in cylindrical fibres is con-

sidered. The existing framework for predicting TPPs in planar systems is presented

and followed by an investigation into TPPs in cylindrical structures. A transfer

matrix model is used to predict the parameters of cylindrical structures that could

support TPPs and a discussion is given as to how such structures may be realised.

3.1 Surface plasmon-polaritons

SPPs are localized interface states that can exist at the boundary between a metal

and a dielectric material. An electromagnetic field may couple to electrons near

the metal surface resulting in a state with a discrete frequency at a given in-plane

wavevector and a resonance in the optical response. The electromagnetic field com-

ponents perpendicular to the interface decay in both the metal and the dielectric.

Consider the dielectric constant of the metal, εM to be given by the Drude model

[86]:

εM = εb

(
1−

ω2
p

ω(ω + iΓ)

)
(3.1)
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where εb is the background dielectric constant, ωp is the plasma frequency and Γ is

the plasma collision rate. For a good metal, the plasma frequency is large compared

with the frequencies of interest and for the simple case, Γ = 0 the dielectric constant

is negative. Consider the wavevector components parallel (k‖) and normal (k⊥) to

the interface. In the metal we may write:

k2
⊥ + k2

‖ = εM
ω2

c2
(3.2)

and a state with these wavevectors may be supported in a system that allows the

boundary conditions for the electric and magnetic fields to be satisfied. If k‖ is real

then

k2
⊥ = −k2

‖ + εM
ω2

c2
(3.3)

and for εM real and negative, k2
⊥ is negative and k⊥ is imaginary. A propagating

wave may be written in the form

A = A0 exp [i(k · r− ωt)] . (3.4)

An imaginary wavevector indicates an evenescent wave that decays rather than

propagates into the material. Hence, the decay of the electromagnetic field in the

metal is due to the negative real part of the dielectric constant. The decay of the

field in the dielectric material is due to total internal reflection. Similar to Equation

3.3 for the metal, for the dielectric material we have

k2
⊥ = −k2

‖ + ε
ω2

c2
(3.5)

where ε is the positive, real dielectric constant and k2
⊥ is negative for sufficiently

large values of k‖.

Consider a TM wave propagating along a planar interface, in the x-direction,

between a dielectric (which we will call medium 1) with dielectric constant ε1 and

a metal (which we will call medium 2) with dielectric constant ε2 which is real and

negative (both materials are non-magnetic and so have µ = 1), as illustrated in

Figure 3.1. For a simple incident plane wave in the dielectric, a TM polarised wave

has only a magnetic field normal to the plane of incidence and its non-zero field

components are Ex, Ez and By. In the case of a surface wave, in the dielectric these
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Figure 3.1: Surface plasmons may propagate along the interface between a dielectric

and a metal in the x-direction.

three field components take the form:

E1
x = E1

x0 exp [i(kxx− ωt)− αz]

E1
z = E1

z0 exp [i(kxx− ωt)− αz]

B1
y = B1

y0 exp [i(kxx− ωt)− αz] (3.6)

where kx is the wavevector in the direction of propagation, α is a constant describing

the decay of the field in the dielectric normal to the interface, ω is the angular

frequency, t is time and the superscript 1 denotes fields in medium 1. In the metal

the fields are

E2
x = E2

x0 exp [i(kxx− ωt) + γz]

E2
z = E2

z0 exp [i(kxx− ωt) + γz]

B2
y = B2

y0 exp [i(kxx− ωt) + γz] (3.7)

where γ is a different constant describing the decay of the field in the metal and the

superscript 2 denotes fields in medium 2. The substitution of Equations 3.6 into
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Maxwell’s Equations 1.4 and 1.5 gives three equations:

−(ikxE
1
z0 + αE1

x0) = iωB1
y0

αB1
y0 = −iωε1

c2
E1
x0

ikxB
1
y0 = −iωε1

c2
E1
z0. (3.8)

By the same argument, substituting Equations 3.7 for material 2 into Equations 1.4

and 1.5 we have:

−(ikxE
2
z0 − γE2

x0) = iωB2
y0

−γB2
y0 = −iωε2

c2
E2
x0

ikxB
2
y0 = −iωε2

c2
E2
z0. (3.9)

Applying the conditions that the tangential components of the electric and magnetic

fields must be continuous across the boundary at z = 0 gives the relation

ε1

ε2

= −α
γ

(3.10)

The wave equation in medium 1(2) may be written:

∇2E1(2) =
ε1(2)

c2

∂2E1(2)

∂t2
(3.11)

where c is the speed of light in vacuum. Substitution of the fields given in Equations

3.6 and 3.7 into Equation 3.11 for materials 1 and 2 gives

α2 = k2
x −

ω2

c2
ε1 (3.12)

and

γ2 = k2
x −

ω2

c2
ε2 (3.13)

respectively. A SPP requires the z-component of the wavevector to be imaginary.

This may be achieved when ω2ε1,2/c
2 < k2

x. Substitution of Equations 3.12 and 3.13

into 3.10 gives the dispersion relation

kx =
ω

c

√(
ε1ε2

ε1 + ε2

)
. (3.14)
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For the TE polarision the non-zero field components should be Bx, Bz and Ey

and for a wave travelling in the x-direction in medium 1 and medium 2 we should

seek solutions of the form:

B1
x = B1

x0 exp [i(kxx− ωt)− αz]

B1
z = B1

z0 exp [i(kxx− ωt)− αz]

E1
y = E1

y0 exp [i(kxx− ωt)− αz]

B2
x = B2

x0 exp [i(kxx− ωt) + γz]

B2
z = B2

z0 exp [i(kxx− ωt) + γz]

E2
y = E2

y0 exp [i(kxx− ωt) + γz] . (3.15)

Substituting the field components from Equations 3.15 into Maxwell’s equations and

applying the tangential boundary conditions gives

α = −γ. (3.16)

The wave equation for the magnetic field with the fields given in Equations 3.15 gives

the same relations as those in Equations 3.12 and 3.13. However, the excitation can

not be localized at the interface if Equation 3.16 holds since the field would not decay

away from the interface in one direction. Hence TE surface plasmon-polaritons can

not exist.

The dispersion relation illustrated in Figure 3.2 is for TM-polarised SPPs at an

interface between a lossless metal (medium 2) with plasma frequency ωp = 8.9 eV,

corresponding to gold, and SiO2 (medium 1 with ε1 = 5.617). The dispersion lies

outside the light cone for photons in medium 1 given by ω = ck/
√
ε1. This means

that photons incident on the metal layer from medium 1 do not have sufficiently large

in-plane wavevector, kx to excite a surface plasmon-polariton mode at any frequency.

To overcome this, a diffraction grating may be used at the metal-dielectric interface.

The periodic patterning of the metal surface allows the in-plane wavevector to be

increased by integer multiples of 2π/a where a is the distance between lines in the

grating [87]. An alternative to the use of a diffraction grating is to include a thin

spacer layer with refractive index lower than that of the dielectric material 1 at

the dielectric - metal interface. If the thickness of the spacer layer is of the order
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Figure 3.2: The dispersion relations for a photon (black) and a surface plasmon-

polariton (red) at an interface between gold and SiO2. The SPP dispersion lies

outside the light cone of bulk SiO2.

of the wavelength of light in that medium then the evanescent wave from medium

1 has an in-plane wavevector proportional to the higher refractive index and so is

able to excite a surface plasmon at the spacer layer - metal interface. This is called

frustrated total internal reflection due to the energy not being totally reflected but

tunnelling through the low refractive index layer to excite the SPP [88].
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3.1.1 Uses of surface plasmon-polaritons

Surface plasmon-polaritons (SPPs) are of multidisciplinary interest and have been

used in and proposed for many different applications. Their use is well established

in commercial sensors for molecular biological systems due to their great sensitiv-

ity to small changes in refractive index [31]. In 2005 Fang et al. demonstrated

subwavelength imaging with a silver superlens that makes use of SPPs to enhance

evanescent waves and produce an image with resolution below the diffraction limit

[37]. Also in that year, Krasavi et al. demonstrated optical switching using the fact

that the propagation of SPPs depends strongly on properties of the metal at the

interface [38]. Furthermore, the growing field of plasmonics, using SPPs to control

light on nanometer scales, promises technological developments such as computer

chips able to transfer data very quickly on small length scales [33][89]. In 1998

Ebbesen et al. [34] showed that transmission of light through a submicon array of

holes in a metal is enhanced by orders of magnitude due to the coupling of light to

surface plasmons on the surface of the metal. Plasmonics is not restricted to planar

systems. Nanorods, nanoparticles and other nanoscale structures have been shown

to exhibit novel effects due to the presence of surface plasmons [2]. For example,

metal nanoparticles that exhibit plasmon resonance can be used as bright tags for

biosensing [36]. A comprehensive review of surface plasmon-polaritons is given by

Pitarke et al. [32].

3.2 Tamm plasmon-polaritons

Tamm plasmon-polaritons (TPPs) are another type of state that can occur at a metal

surface, this time at an interface between a metal and a dielectric Bragg mirror as

illustrated in Figure 3.3. The Bragg reflector strucutre is that introduced in Section

1.2. The existence of TPPs at a metal – Bragg reflector interface was proposed

theoretically in 2007 by Kaliteevski et al. [41] following the work of Kavokin et

al. on Tamm states at the interface between two periodic dielectric structures [90].

They were subsequently demonstrated experimentally by Sasin et al. [42]. As for

conventional surface plasmons, the decay of the field in the metal is due to the
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negative dielectric constant. However, the decay of the field in the Bragg mirror

is not due to total internal reflection but to the photonic band gap arising from

the dielectric layered structure. The name Tamm plasmon-polariton comes from

the analogy with electronic surface states proposed by Tamm in 1932 [91]. These

electronic surface states are the result of the overlapping orbitals of dangling bonds

where a periodic lattice has been truncated and they have a wavefunction that

decays exponentially away from the interface. Electronic Tamm states were first

experimentally observed by Ohno et al. in 1990 [92].

Figure 3.3: A planar structure to support a Tamm plasmon-polariton. The yellow

represents the metal layer, the two shades of blue represent the periodic layers of

the dielectric Bragg reflector. The TPP is formed at the interface between the metal

and the first Bragg reflector layer.

Reflection spectra for an example of a planar Bragg reflector are shown in Figure

3.4. The three spectra are for structures with different numbers of pairs of layers.

The plateau region with a reflection coefficient of magnitude equal to unity for the

case of 12 pairs of layers (black line) indicates the photonic band gap. It is clear that

the more layers there are in the structure, the closer the magnitude of the reflection

coefficient is to unity in the band gap.

Contrary to the case for surface plasmons, TPPs can exist in both the TE and

TM polarisations. This is because both the Bragg reflector and the metal layer are

essentially mirrors acting to confine the light.

Kaliteevski et al. [41] showed the requirements for TPPs to exist with zero

wavevector parallel to the metal – Bragg reflector interface. Consider an arbitrary
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Figure 3.4: The reflection spectra for planar Bragg reflectors with alternating layers

of refractive index nA = 2.37, nB = 1.47. The black line shows the spectrum for

a structure with 12 pairs of layers; red is for 8 pairs of layers and green is for 4

pairs of layers. The thickness of each layer of the Bragg reflector was chosen to give

maximum reflection, and to centre the photonic stop band, at a frequency of 1.0 eV.
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Figure 3.5: Two virtual interfaces, left (L) and right (R) in a homogeneous medium

a distance x apart with fields incident upon each boundary (AR and AL) and the

fields reflected from each boundary where rR and rL are the amplitude reflection

coefficients from the right and left respectively.

homogeneous layer of thickness x, with virtual boundaries as shown in Figure 3.5

(this may for example be placed within the first dielectric layer of the Bragg reflector

structure adjacent to the metal). L and R mark the left and right hand boundaries

respectively. The electric field incident upon the right (left) hand boundary is de-

noted AR(L) and the field reflected from that right (left) hand boundary is then

AR(L)rR(L) where rR(L) is the amplitude reflection coefficient from boundary R(L).

On making a transit from left to right across the cavity, radiation accumulates phase

Φ = nxω/c where n is the refractive index of the layer, x is the layer thickness and

ω is the frequency and we can write the transfer matrix equation exp(iΦ) 0

0 exp(−iΦ)

 ALrL

AL

 =

 AR

ARrR

 (3.17)

in the basis of left and right propagating waves, or exp(iΦ) 0

0 exp(−iΦ)

 rL

1

 = A

 1

rR

 (3.18)

where A = AR/AL. Eliminating A from the two equations represented by Equation
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3.18 gives

rLrR exp(2iΦ) = 1. (3.19)

Recalling that the boundaries L and R created a virtual cavity we may eliminate

their separation by taking x to zero leaving

rLrR = 1. (3.20)

This means that at any given point, the product of the amplitude reflection coeffi-

cients for left and right propagating waves should be equal to unity for a mode to

exist. Alternatively, without reducing x to zero, we may consider any cavity within

the structure and require the round trip phase difference to be an integer multiple of

2π. In a planar system, it is apparent that Equation 3.20 can be satisfied at a metal

– Bragg reflector interface (rMrBR = 1). The amplitude reflection coefficient for a

metal rM is close to -1 for frequencies that are much less than the plasma frequency

of the metal (see Section 3.2.1). Also the amplitude reflection coefficient for a Bragg

reflector, rBR, is close to -1 if the Bragg reflector structure has each layer with an

optical thickness of λ/4 where λ is the wavelength of light in the particular layer,

the refractive index of the first layer of the Bragg reflector (adjacent to the metal) is

greater than that of the next layer (see Section 3.2.2) and there are sufficient layers

in the Bragg reflector for the magnitude of the reflection coefficient to be close to

unity at frequencies close to the Bragg frequency.

3.2.1 Reflection from the metal

The reflection coefficient from the metal, rM may be calculated using the Fresnel

formula:

rM =
(nA − nM)

(nA + nM)
(3.21)

where nM =
√
εM is the refractive index of the metal, nA is the refractive index of

the dielectric layer adjacent to the metal. The Drude model given in Equation 3.1

may be used to calculate nM . If we consider frequencies well below the metal plasma

frequency such that ω � ωp and consider loss as being negligible we can write

n2
M ≈ εb

(
1−

ω2
p

ω2

)
(3.22)
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where ω2
p/ω

2 � 1 hence

nM ≈ i
√
εb
ωp
ω
. (3.23)

Substituting Equation 3.23 into Equation 3.21 and neglecting terms in ω2/ω2
p which

are small gives

rM ≈ −1− 2iωnA√
εbωp

(3.24)

≈ − exp

(
2iωnA√
εbωp

)
(3.25)

or we can write

rM ≈ exp

[
i

(
π +

2ωnA√
εbωp

)]
. (3.26)

3.2.2 Reflection from the Bragg reflector

The reflection coefficient from a multilayer planar structure may be calculated using

a transfer matrix method [93]. As described in the appendix we consider an N layer

Bragg reflector with alternating layers of refractive index nA and nB with thicknesses

a and b respectively such that the optical thickness of each layer is:

nAa = nBb =
πc

2ω0

(3.27)

where ω0 is the Bragg frequency. It then follows that for a frequency close to the

Bragg frequency, ω = ω0 + δω and a sufficiently large value of N , the expressions

for the reflection coefficient are:

rBR|nA>nB
= − exp

[
iπ

nA
nA − nB

δω

ω0

]
rBR|nB>nA

= exp

[
iπ

nB
nB − nA

δω

ω0

]
(3.28)

and we can see that reversing the order of the layers in the Bragg reflector causes a

phase change of π in the reflection coefficient.

In order to satisfy the equation rMrBR = 1 with rM ≈ −1 we require rBR ≈ −1

also which can only be achieved for small δω if nA > nB. However, the condition

rMrBR = 1 may be satisfied for nB > nA if we are prepared to vary the thickness of

the first (A) layer of the Bragg reflector from λ/4.
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Kaliteevski et al. [41] considered the effect on the eigenfrequency of the thickness

of the dielectric layer adjacent to the metal. They reported numerical calculations

of a TPP structure for non-zero as well as zero in-plane wavevector. The energy for

TE and TM modes were found to be dengenerate at zero in-plane wavevector and

to increase parabolically with increasing in-plane wavevector, k, with the TM mode

having slightly higher energy than the TE mode. The in-plane effective mass, m∗ of

the TPP was calculated from the ω(k) dispersion curve:

m∗ = h̄2

(
∂2ω

∂k2

)−1

(3.29)

and was reported as 1.7 × 10−5me for the TE mode where me is the mass of an

electron. The effective mass was slightly smaller for the TM mode.

Brand et al. [94] have reported calculations in which the energy of TPPs may be

altered by changing the layer order and the thickness of layers in planar structures.

3.2.3 Other work on TPPs

In 2008 TPPs were first demonstrated experimentally by Sasin et al. [42]. They

investigated Bragg reflector structures made of GaAs/Ga0.1Al0.9As capped with gold

films of thickness 30 and 50 nm. Reflectivity and transmission measurements were

made and evidence of TPPs was provided by features in the respective spectra.

TPPs have been shown experimentally to exhibit strong coupling with quantum

well excitons producing a polaritonic emission that has the potential to be used

in polariton lasers [43]. Strong coupling between TPPs and quantum well exci-

tons has also been demonstrated using angular resolved reflectivity measurements

in extremely compact structures with just five layers [48]. A large refractive index

contrast between the layers makes possible high reflectivity for such a small Bragg

structure which potentially could be used in integrated devices.

It has been predicited that planar Bragg reflectors containing a quantum well in

a microcavity layer with metal deposited on the surface can be designed to exhibit

strong coupling between a TPP and an exciton-polariton [49]. Furthermore it has

been proposed that metal patterning on the surface of the structure could be used

to create a channel in which the energy of the hybrid mode is lower than that
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of the bare exciton-polariton mode, resulting in confinement and the potential for

polariton integrated circuits which might find use in ultrafast information processing

[44]. Tamm plasmon-polaritons have also been proposed for use in optical absorbers

[46] and switches [47].

3.3 Cylindrical structures

This section describes the transfer matrix which allows for the calculation of elec-

tromagnetic fields in cylindrical multilayer structures. In Section 3.4 the transfer

matrix method is used to describe the fields in simpler structures, such as step-index

fibres, by reducing the transfer matrix to the identity matrix. The results of calcula-

tions for Tamm plasmon-polaritons obtained for this thesis and reported in Sections

3.4 and 3.6 were obtained using this method.

3.3.1 Transfer matrix method

A method of calculating the mode structure of multilayer optical fibres and similar

structures using the transfer matrix method was derived by Al-Bader and Imtaar

[50] and independently by Kaliteevski et al. [95] and is summarised here.

Consider modes with electric and magnetic fields of the form:

E = E(ρ) exp [i(βz +mφ)]

cB = cB(ρ) exp [i(βz +mφ)] (3.30)

where the cylindrical coordinate directions ρ, φ and z are shown in Figure 3.6, β is

the propagation constant and m is the quantum number describing the azimuthal

variation of the fields. Taking two of Maxwell’s Equations, 1.4 and 1.5, with an

assumed time dependence of the form exp(−iωt) we have:

∇× E = iωB

∇×B = −iωn
2

c2
E (3.31)

Substituting Equation set 3.30 into Equation set 3.31 the φ and ρ field compo-
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z

z

ρ

ϕ

Figure 3.6: In the cylindrical coordinate system ρ is the radial vector, φ is a vector

giving the azimuthal angle and z is parallel to the cylinder axis.

nents may be expressed in terms of Ez and cBz fields:

Eρ =
1

k2

(
iβ
∂Ez
∂ρ
− k0m

ρ
cBz

)
Eφ = − 1

k2

(
βm

ρ
Ez + ik0

∂cBz

∂ρ

)
cBρ =

1

k2

(
n2k0m

ρ
Ez + iβ

∂cBz

∂ρ

)
cBφ =

1

k2

(
ik0n

2∂Ez
∂ρ
− βm

ρ
cBz

)
(3.32)

where the radial wavevector k is given by k2 = (n2k2
0)− β2 with k0 = ω/c.

The cylindrical form of the scalar wave equation for the component Ez is[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+
(
k2 − β2

)]
Ez(ρ, φ) = 0 (3.33)

which, after separating the variables, may be rewritten in the form of the Bessel

equation [96]:
∂2Ez
∂ρ2

+
1

ρ

∂Ez
∂ρ

+

(
k2 − β2 − m2

ρ2

)
Ez(ρ) = 0 (3.34)

with solutions of the form

Ez = A1Jm(kρ) +B1Nm(kρ) (3.35)
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where Jm(x) and Nm(x) are Bessel and Neumann functions respectively and A1 and

B1 are constants. The forms of the Bessel and Neumann functions for orders m =

0 and 1 are shown in Figures 3.7 and 3.8
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Figure 3.7: Function Jm(x) for m = 0

(black line) and m = 1 (red line).
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Figure 3.8: Function Nm(x) for m = 0

(black line) and m = 1 (red line).

A similar analysis for the cBz-component gives solutions of the form

cBz = A2Jm(kρ) +B2Nm(kρ) (3.36)

where A2 and B2 are constants. Substituting Equations 3.35 and 3.36 into the Eφ

and cBφ components (Equations 3.32) gives:

Eφ = −βm
k2ρ

[A1Jm(kρ) +B1Nm(kρ)]

−ik0

k

[
A2J

′

m(kρ) +B2N
′

m(kρ)
]

(3.37)

cBφ =
ik0n

2

k

[
A1J

′

m(kρ) +B1N
′

m(kρ)
]

−βm
k2ρ

[A2Jm(kρ) +B2Nm(kρ)] (3.38)

where the prime denotes the derivative with respect to the whole argument of the

function: J
′
m(kρ) = d/d(kρ)[Jm(kρ)].

The transfer matrix method in a cylindrical system facilitates the calculation

of an electromagnetic field at a radius ρ given that the field at another radius, ρ0,

is already known and where ρ0 and ρ are points within a layer of the structure.
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Specifically, we can write
Ez(ρ)

cBφ(ρ)

cBz(ρ)

Eφ(ρ)

 = M̂(ρ0, ρ)


Ez(ρ0)

cBφ(ρ0)

cBz(ρ0)

Eφ(ρ0)

 (3.39)

where M̂(ρ0, ρ) is the 4×4 transfer matrix between the points ρ0 and ρ and we choose

to represent the magnetic field component in terms of cB in order to maintain

consistent units with the electric field components (Vm−1 or m kg s−3 A−1 in SI

base units). The field components that make up the vectors in Equation 3.39 are

parallel to the interfaces in a multilayer fibre. At the interface between two layers

with different refractive indices these components must be continuous. The transfer

matrix across a multi-layer structure is the product of the transfer matrices for the

individual layers correctly ordered to propagate the fields from the selected start

point to the selected end point. For example, for a structure with three layers

around a core with the inner most layer having an individual transfer matrix M̂1,

the middle layer having transfer matrix M̂2 and the outermost layer having transfer

matrix M̂3 we may calculate the fields at the outer edge of the structure by applying

the transfer matrix M̂tot to the known field at the outside edge of the core where

M̂tot = M̂3 · M̂2 · M̂1. (3.40)

Similarly to calculate the field at the edge of the core we should apply the transfer

matrix M̂
′
tot to the known field at the edge of the structure where

M̂
′

tot = M̂1 · M̂2 · M̂3. (3.41)

Media with continually varying refractive index can be approximated by a multilayer

structure with suitably thin layers.

Once the vector on the left hand side of Equation 3.39 has been determined,

the radial field components may be calculated using Equations 3.32. By setting the
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right hand vector in Equation 3.39 consecutively to be:
Ez(ρ0)

cBφ(ρ0)

cBz(ρ0)

Eφ(ρ0)

 =


1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1

 (3.42)

expressions may be calculated for the constants A1, A2, B1 and B2 in Equations 3.35

and 3.36 and hence the elements of the transfer matrix M̂ may be found. Writing

M̂ as

M̂ =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 (3.43)

the matrix elements are found to be:

M11 = kρ0
π

2

[
N

′

m(kρ0)Jm(kρ)− J ′

m(kρ0)Nm(kρ)
]

M21 = in2k0ρ0
π

2

[
N

′

m(kρ0)J
′

m(kρ)− J ′

m(kρ0)N
′

m(kρ)
]

+
iβ2m2

k2k0ρ

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

M31 = −iβm
k0

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

M41 = −βm
k

ρ0

ρ

π

2

[
N

′

m(kρ0)Jm(kρ)− J ′

m(kρ0)Nm(kρ)
]

+
βm

k

π

2

[
N

′

m(kρ)Jm(kρ0)− J ′

m(kρ)Nm(kρ0)
]
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M12 =
ik2ρ0

n2k0

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

M22 = kρ0
π

2

[
N

′

m(kρ)Jm(kρ0)− J ′

m(kρ)Nm(kρ0)
]

M32 = 0

M42 =
−iβm
n2k0

ρ0

ρ

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

M13 =
iβm

n2k0

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

M23 = −βm
k

π

2

[
Nm(kρ0)J

′

m(kρ)− Jm(kρ0)N
′

m(kρ)
]

−βm
k

π

2

ρ0

ρ

[
N

′

m(kρ0)Jm(kρ)− J ′

m(kρ0)Nm(kρ)
]

M33 = kρ0
π

2

[
N

′

m(kρ0)Jm(kρ)− J ′

m(kρ0)Nm(kρ)
]

M43 = − iβ2m2

n2k2k0ρ

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

−ik0ρ0
π

2

[
N

′

m(kρ0)J
′

m(kρ)− J ′

m(kρ0)N
′

m(kρ)
]

M14 = 0

M24 =
iβm

k0

ρ0

ρ

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

M34 = −ik
2ρ0

k0

π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)]

M44 = kρ0
π

2

[
N

′

m(kρ)Jm(kρ0)− J ′

m(kρ)Nm(kρ0)
]
. (3.44)

The field at the centre of the core, ρ = 0, must be finite hence the constants B1

and B2 in Equations 3.35 and 3.36 in the core are necessarily zero giving:

Ez|core = A1cJm(kcρ)

cBz|core = A2cJm(kcρ) (3.45)

where the subscript c denotes parameter values for the core region. Outside the

fibre at radius greater than ρ = ρf if a decaying solution is possible and is sought,

A1 and A2 in Equations 3.35 and 3.36 will be zero and we can write:

Ez|f = B1fKm(kfρ)

cBz|f = B2fKm(kfρ) (3.46)
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where the subscript f denotes parameter values outside the final layer of the struc-

ture and Km(x) is the modified Bessel function of the second kind. Modified Bessel

functions grow or decay exponentially and their behaviour for m = 0 and m = 1 is

shown in Figures 3.9 and 3.10.
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Figure 3.9: Function Im(x) for m = 0

(black line) and m = 1 (red line).
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Figure 3.10: Function Km(x) for m = 0

(black line) and m = 1 (red line).

Using Equations 3.37, 3.38 and 3.45, the field at the inner edge of the core, ρc

can be written in matrix form:
Ez(kcρc)

cBφ(kcρc)

cBz(kcρc)

Eφ(kcρc)

 =


Jm(kcρc) 0

ik0n2
c

kc
J

′
m(kcρc) − βm

k2cρc
Jm(kcρc)

0 Jm(kcρc)

− βm
k2cρc

Jm(kcρc) − ik0
kc
J

′
m(kcρc)


 A1c

A2c



= Ω̂c

 A1c

A2c

 . (3.47)

In a similar way Equations 3.32 and 3.46 give the field at the outside edge of the
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fibre at radius ρf as:
Ez(kfρf )

cBφ(kfρf )

cBz(kfρf )

Eφ(kfρf )

 =


Km(kfρf ) 0

ik0n2
f

kf
K

′
m(kfρf ) − βm

k2fρf
Km(kfρf )

0 Km(kfρf )

− βm
k2fρf

Km(kfρf ) − ik0
kf
K

′
m(kfρf )


 B1f

B2f



= Ω̂f

 B1f

B2f

 . (3.48)

The field at the outside edge of the fibre may also be found by applying the

appropriate transfer matrix, M̂ to the field at the edge of the core. Using Equation

3.39 with ρ0 = ρc and ρ = ρf and Equations 3.47 and 3.48 for the fields at the edge

of the core and the edge of the fibre we have:

M̂ × Ω̂c

 A1c

A2c

− Ω̂f

 B1f

B2f

 =

 0

0



(
M̂ × Ω̂c| − Ω̂f

)


A1c

A2c

B1f

B2f

 =


0

0

0

0

 (3.49)

where (M̂ × Ω̂c| − Ω̂f ) is a 4× 4 matrix where the first two columns are given by

M̂ × Ω̂c and the second two columns are given by −Ω̂f . Equation 3.49 has non-zero

solutions for A1c, A2c, B1f and B2f when the determinant of (M̂× Ω̂c|− Ω̂f ) is equal

to zero.

Modes of the multilayer fibre can be found numerically by initially specifying the

physical parameters of the structure under consideration, allowing the frequency to

vary and searching for the roots of the determinant. The coefficients A1c, A2c, B1f

and B2f can then be found for the given frequency by solving the simultaneous

equations in Equation 3.49.
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3.4 Cylindrical structures with metallic features

3.4.1 Cylindrical surface plasmon-polaritons

Surface plasmon-polaritons can exist at cylindrical metal/dielectric interfaces as

well as in planar structures. A study of SPPs occurring on the outside of a solid

metal cylinder including derivation of the dispersion relations was carried out by

Pfeiffer et al. in 1974 [97]. Schröter and Dereux studied SPPs in a thin cylindrical

tube noting that there are two surface plasmon branches relating to symmetric and

antisymmetric plasma distribution between the inner and outer metal/dielectric

interfaces. [98]. The dispersion relation for SPPs on the inside of an essentially

infinite metal tube is simple to find (e.g. [99]) and it is instructive to look at that

case here.

Consider a structure consisting of a metal tube of radius ρm and relative permit-

tivity εm filled with a dielectric material of permittivity ε. The axial component of

the electric field of a TM mode in the dielectric has the form:

Ez = AI0(αρ) exp [i(βz − ωt)] (3.50)

where the modified Bessel function has been chosen to ensure that the field is finite

on the axis, α = (β2 − εω2/c2)1/2 where β is the propagation constant and A is a

constant. The cBφ field component is given by:

cBφ = − 1

α2

iωε

c

∂Ez
∂ρ

= −Aiωε
αc

I
′

0(αρ) exp [i(βz − ωt)] . (3.51)

In the metal the field has the form:

Ez = DK0(γρ) exp [i(βz − ωt)] (3.52)

cBφ = −Diωεm
γc

K
′

0(γρ) exp [i(βz − ωt)] (3.53)

where the modified Bessel function describes decay into the metal, γ = (β2 −

εmω
2/c2)1/2 and D is a constant. Continuity of the tangential fields at ρ = ρm

66



0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9
0

1

2

3

4

5

6

7

8

Fre
qu

en
cy,

 ω 
(eV

)

β ( n m - 1 )

Figure 3.11: Dispersion curves for cylindrical surface plasmons on the inside of gold

tubes (ωp = 8.9 eV) with various radii and filled with air. The black line shows the

dispersion curve for the similar planar system. Red indicates a tube radius of 1000

nm, green = 400 nm, blue = 80nm, cyan = 50 nm, magenta = 30 nm and orange

= 10 nm. The dashed line marks the cut off at ω = cβ.

gives:

AI0(αρm) = DK0(γρm) (3.54)

A
ε

α
I

′

0(αρm) = D
εm
γ
K

′

0(γρm). (3.55)

Dividing Equation 3.55 by Equation 3.54 gives:

ε

α

I
′
0(αρm)

I0(αρm)
=
εm
γ

K
′
0(γρm)

K0(γρm)
(3.56)

which may be written in a similar form to Equation 3.10, for planar surface plasmons:

ε

εm
= −α

γ

RK

RI

(3.57)

where RI = I
′
0(αρm)/I0(αρm) and RK = −K ′

0(γρm)/K0(γρm).

Figure 3.11 shows the dispersion curves for cylindrical surface plasmons on the

inside of metal tubes with various radii as given by Equation 3.56. The permittivity
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of the metal was modelled as εm = 1−(ωp/ω)2 with ωp = 8.9 eV. The dielectric inside

the metal tube was taken to be air (ε = 1.0). The black line shows the dispersion

curve for a planar system of the same materials and it can be seen that there is no

cut-off value in this case. The coloured lines refer to tubes of different radii: red for

1000 nm, green for 400 nm, blue for 80nm, cyan for 50 nm, magenta for 30 nm and

orange for 10 nm. The dashed line marks the cut-off at ω = cβ. This cut-off occurs

because there are no solutions to Equation 3.56 to the left of this line. Interestingly

there appears to be a change in sign of the group velocity for tubes with radii less

than 50 nm. The negative slope of the dispersion curve tells us that for tube radii

less than 50 nm the modes have negative group velocity whereas the positive slope

of the curve for tube radii greater than 50 nm tells us that the modes have positive

group velocity. For 50 nm the mode has a nearly constant frequency irrespective of

β and hence has essentially zero group velocity.

3.4.2 Surface plasmon-polaritons in optical fibres

Daniel Colladon’s 19th century demonstration of light being guided by a falling

stream of water (Figure 3.12) was an early demonstration of total internal reflection,

used in ubiquitous fibre optics today [100] facilitating global telephone calls, ethernet

cabling, fibre-optic sensing, medical imaging and many other applications. The

optics of step-index cylindrical optical fibres consisting of a dielectric core of high

refractive index, n1 and a dielectric cladding material with lower refractive index n2

is well understood and the theory of propagating modes in such fibres may be found

in many optical electronics texts, for example [101][102][103].

The inclusion of a metal core, layer or cladding in an optical fibre structure allows

SPP and hybrid SPP-waveguide modes to be included in the mode spectrum of the

fibre. For example the dispersion of modes in optical fibre structures with a thin

metal layer between the core and cladding was investigated in 1993 by Al-Bader

and Imtaar [50] while a comprehensive study of step-index fibres where the core or

cladding has negative dielectric constant was carried out in 1994 by Prade and Vinet

[51].

More recently there has been interest in hybrid waveguides combining the advan-
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Figure 3.12: Colladon’s light fountain demonstration, published in La Nature, 1884.

Light focused by a lens onto an aperture in a container of water causes the light to

be confined to the stream by total internal reflection.

tages of well localized surface plasmon polaritons at metal dielectric interfaces and

the long propagation lengths obtainable in traditional optical fibre type structures

[104][105]. Our transfer matrix method was used to reproduce an example result

from the paper by Chen [105]. Chen proposed a structure composed of a metal core

with refractive index 0.1453 + 11.3587i surrounded by a thin layer of silica with

refractive index n = 1.445 and then a silicon layer with refractive index n = 3.455

in air for obtaining tight confinement of light in the silica layer. This is clearly a

theoretical material as the real part of the refractive index is less than unity, hence,

the speed of light in the material would be greater than that of light in vacuum.

Figure 3.13 shows the radial component of the electric field for the fundamental

mode at a frequency of 0.7 eV in a structure consisting of a 100 nm radius metal

core surrounded by a 50 nm thick layer of silica and a 200 nm thick layer of silicon.

The field is discontinuous at each of the boundaries and is enhanced at the metal –

silica layer boundary.

Figure 3.14 shows the dispersion relation for the fundamental mode (m = 1)

for a structure with a 200 nm core of refractive index n1 = 2.37 surrounded by

a layer of refractive index n2 = 1.47 and essentially infinite metal cladding. The

thickness of the n2 layer was varied and the dispersion relations are shown in the

figure in different colours: the solid black line indicates zero thickness of the low
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refractive index layer and the metal surrounds the 200 nm core of refractive index

n1, red corresponds to an n2 layer of thickness of 25 nm, green 50 nm, blue 100

nm, cyan 200 nm and magenta 400 nm. The dashed black line corresponds to the

case of an infinite middle layer and the computations were carried out for a 200 nm

core of refractive index n = 2.37 surrounded by an essentially infinite cladding of

refractive index n = 1.47 with no metal. This particular case is a simple optical fibre

structure in which, in order for the mode to be confined to the fibre, the allowed

values of β are constrained between the values n1k0 and n2k0. With the inclusion

of the metal cladding the restriction on the values of β is removed because the light

is now confined to the structure by reflection from the metal. It can be seen in the

dispersion curves for structures that have the metal cladding that as the thickness of

the middle, low refractive index layer is increased the dispersion curve tends to the

no metal case. This is to be expected as for a very thick low refractive index layer the

field will have decayed away before it reaches the metal cladding and therefore not

be affected by it. The decay length in the low refractive index layer at a frequency

of 0.9886 eV was calculated to be 355 nm.
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Figure 3.13: The Eρ field component for a structure with a 100 nm radius metal

core surrounded by a 50 nm thick layer of silica, a 200 nm thick layer of silicon and

air. The vertical dashed lines indicate the boundary between each of the layers.
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Figure 3.14: Dispersion relation for the fundamental mode in a structure with a

200 nm core of refractive index n = 2.37 surrounded by a layer of refractive index

n = 1.47 and infinite metal cladding. Colours indicate the thickness of the middle,

low refractive index layer: solid black = 0 nm (no low refractive index layer), red

= 25 nm, green = 50 nm, blue = 100 nm, cyan = 200 nm and magneta = 400nm.

The dashed black line is for the case with an infinite low refractive index layer and

no metal.
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Figure 3.15: A cylindrical fibre aligned along the z-axis with a core region surrounded

by layers of different refractive index, shown in blue and white. The dotted region

represents repetition of the alternative refractive index layers. ρc and ρf indicate

the radii of the core and the final layer of the structure respectively.

3.5 Multilayer cylindrical structures with metal-

lic features

In this section the parameters of cylindrical Bragg reflector structures such as that

illustrated in Figure 3.15 are discussed with a view to enabling them to support

Tamm plamon-polaritons (TPPs). The required metallic element can be included

in the structure as either the core or as an outer cladding or in both locations. It

is of fundamental interest to study TPPs in cylindrical fibres as a natural exten-

sion to work already carried out on planar systems and simpler forms of cylindrical

structures. However, the other driving force behind such a study is the prospect

of devices and new technology that may come about as a result of the work. As

discussed in Section 3.1 surface plasmons are already widely used in various appli-

cations and the field of plasmonics is still growing, driven by industrial, analytical
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and medical applications. TPPs in planar structures have been shown to have the

advantage of existing in both the TE and TM-polarisations and that they may be

excited without the need for diffraction gratings of prisms. The cylindrical fibre

is an obvious geometry to put forward for the task of delivering TPPs with high

resolution to specific points in space or on a surface. This suggests that cylindrical

TPPs may also exhibit such benefits over traditional surface plasmon-polaritons and

have something to add to the field of plasmonics.

3.5.1 Cylindrical Bragg reflector structures

To obtain optimum reflectivity in a Bragg reflector, the reflected waves from all

the dielectric interfaces should be in phase. In a planar Bragg reflector the layer

thicknesses for optimum reflectivity are constant for each refractive index. However,

in a cylindrical Bragg reflector, the phase of a reflected wave depends on the position

(radius ρ) of the interface and hence the optimal thickness of each layer is different

and dependent on position. A numerical method for calculating the layer thicknesses

for the optimum cylindrical Bragg reflector is given in [106] but this is non-trivial.

Hence for the work in this thesis, for simplicity we use constant, quarter wavelength

thicknesses which have been generally accepted to provide effective reflection of

cylindrical waves in most circumstances [107].

3.5.2 Cylindrical structures for Tamm plasmon-polaritons

Following the theory set out in Section 3.2, for a TPP to exist there should be a

phase difference equal to an integer multiple of 2π or zero in a ‘round trip’ of the

radiation in the dielectric layer adjacent to the metal as illustrated in Figure 3.16 for

a metal core and in Figure 3.17 for metal cladding outside the structure. There are

three components to the round trip phase difference: the phase change on reflection

from the metal, the phase change on reflection from the Bragg reflector and the

phase change of the wave on travelling from the inner to the outer radius of the

dielectric layer and back again. We note that for cylindrical waves the initial and

final radii are significant for calculating the phase change on propagation and not
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Figure 3.16: The round trip phase difference in a dielectric layer (blue) adjacent

to a metal core (orange) is given by the phase change on reflection from the Bragg

reflector (r1), the phase change on reflection from the metal (r2) and twice the phase

change of a wave travelling across the dielectric layer marked x. The dots represent

repeated layers of the Bragg reflector. Key radii are marked: ρc is the core radius,

ρ1 is the outer radius of the first dielectric layer and ρf is the outer radius of the

final layer of the structure.

75



......

x

r3

r4

ρc

ρf
Layer i

ρi-1

Figure 3.17: The round trip phase difference in a dielectric layer (blue) adjacent

to essentially infinite metal cladding outside (orange) is given by the phase change

on reflection from the Bragg reflector (r3), the phase change on reflection from the

metal (r4) and twice the phase change of a wave travelling across the dielectric layer

marked x. The dots represent repeating layers of the Bragg reflector.

just the layer thickness as is the case for plane waves.

Metal core

A method for calculating the reflection coefficient from the inside of a cylindrical

Bragg reflector, the reflection marked r1 in Figure 3.16, is presented in [107] for the

case of TE and TM-polarised waves (β = 0). The results given in that paper were

used in the calculations presented here and the method was also used to obtain the

reflection coefficients marked r2 in Figure 3.16 and r3 and r4 in Figure 3.17. Hence

the formalism is presented here in notation consistent with this thesis.

The field components in a multilayered cylindrical structure may be written as

a sum of diverging and converging waves. For the TM-mode the transverse fields of
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the outgoing waves are:

E+
z = AH(1)

m (kρ) exp(imφ)

cB+
φ = inAH(1)′

m (kρ) exp(imφ) (3.58)

while for the converging waves they are:

E−z = BH(2)
m (kρ) exp(imφ)

cB−φ = inBH(2)′

m (kρ) exp(imφ) (3.59)

and k = nk0 as β = 0. Hence the total fields are written:

Ez = E+
z + E−z (3.60)

cBφ = cB+
φ + cB−φ

= in

[
E+
z

H
(1)′
m (kρ)

H
(1)
m (kρ)

+ E−z
H

(2)′
m (kρ)

H
(2)
m (kρ)

]
. (3.61)

Let

C
(1,2)
mi =

H
(1,2)′
m (kiρ)

H
(1,2)
m (kiρ)

(3.62)

where i denotes the layer. Then we can write:

cBφ = in
[
E+
z C

(1)
m + E−z C

(2)
m

]
. (3.63)

Now consider a diverging wave in the dielectric layer adjacent to the metal core

with Ez having a value equal to unity at the outer radius of the layer ρ1. Any

converging Ez wave in layer 1 is due to the combined reflections from the many

interfaces in the multilayer Bragg structure. Letting the reflection coefficient r1

describe the effective reflected field amplitude from the Bragg reflector at the outer

radius of the the first layer ρ1 we can write the total fields at ρ1 as:

Ez(ρ1) = 1 + r1 (3.64)

cBφ(ρ1) = in1C
(1)
m1 + in1C

(2)
m1r1 (3.65)

where n1 is the refractive index of the first dielectric layer and the cBφ diverging

and converging components have been calculated using the formula:

cBφ =
i

k0

∂Ez
∂ρ

(3.66)
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a simplification of Equation 3.38. Outside the multilayered structure there are no

converging waves and the amplitude of field component Ez is given by the transmis-

sion coefficient t:

Ez(ρf ) = t (3.67)

cBφ(ρf ) = infC
(1)
mf t (3.68)

where nf is the refractive index outside the structure. The field amplitudes at radii,

ρ1 and ρf are linked by the transfer matrix, T̂ :

T̂

 Ez(ρ1)

cBφ(ρ1)

 =

 Ez(ρf )

cBφ(ρf )

 (3.69)

T̂

 1 + r1

in1C
(1)
m1 + in1C

(2)
m1r1

 =

 t

infC
(1)
mf t

 . (3.70)

The components of the transfer matrix across a single layer of refractive index n

bounded by radii ρ0 and ρ for a TM-mode are given by Equations 3.97 – 3.100 and

T̂ is the result of multiplying the matrices for each layer from the outermost to the

innermost consecutively. Multiplying out Equation 3.70 gives:

T11(1 + r1) + T12in1(C
(1)
m1 + C

(2)
m1r1) = t (3.71)

T21(1 + r1) + T22inc(C
(1)
m1 + C

(2)
m1r1) = infC

(1)
mf t. (3.72)

Substituting Equation 3.71 into Equation 3.72 gives

r1 =
infC

(1)
mf

(
T11 + in1C

(1)
m1T12

)
− T21 − in1C

(1)
m1T22

T21 + in1C
(2)
m1T22 − infC(1)

mf

(
T11 + in1C

(2)
m1T12

) . (3.73)

For the TE-mode the same method can be followed resulting in the reflection

coefficient:

rTE1 =
− i
nf
C

(1)
mf

(
T TE11 − i

n1
C

(1)
m1T

TE
12

)
− T TE21 + i

n1
C

(1)
m1T

TE
22

T TE21 − i
n1
C

(2)
m1T

TE
22 + i

nf
C

(1)
mf

(
T TE11 − i

n1
C

(2)
m1T

TE
12

) (3.74)

where T TEij denotes the transfer matrix elements obtained by the multiplication of

matrices T̂ with elements given by Equations 3.92 – 3.95 for consecutive layers.
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Next we calculate the the reflection coefficient marked r2 in Figure 3.16, for

light incident on a cylindrical metal core, with refractive index nM = iα, from a

dielectric material with refractive index n1. For the TM-mode take the total Ez

and cBφ fields for converging and diverging waves given by Equations 3.60 and 3.63.

Consider a converging wave in the first dielectric layer (refractive index n1) and let

the Ez amplitude at the inner radius of that layer, ρc be unity. The reflection from

the metal core at ρc has amplitude given by the reflection coefficient r2 hence the

fields at ρc are given by:

Ez(ρc) = 1 + r2 (3.75)

cBφ(ρc) = in1

(
C

(2)
m1 + C

(1)
m1r2

)
. (3.76)

In the metal core the fields must be decaying and also finite at the centre of the

core. Therefore they may be written in terms of the modified Bessel function of the

first kind, Im(x):

Ez|core = DIm(αk0ρ)

cBφ|core =
i

k0

∂Ez
∂ρ

= iαDI
′

m(αk0ρ) (3.77)

where D is a constant. Equating the tangential field components across the core

boundary, ρc gives:

1 + r2 = DIm(αk0ρc)

in1

(
C

(2)
m1 + C

(1)
m1r2

)
= iαDI

′

m(αk0ρc). (3.78)

Eliminating the constantD from the two equations and writing I
′
m(αk0ρc)/Im(αk0ρc) =

dm gives

r2 = −

(
1− (n1C

(2)
m1/αdm)

1− (n1C
(1)
m1/αdm)

)
. (3.79)

The similar argument for the TE-polarisation gives

rTE2 = −

(
1 + (αC

(2)
m1/n1dm)

1 + (αC
(1)
m1/n1dm)

)
. (3.80)

The final contribution to the phase change for a round trip of radiation in a

dielectric layer is due to the phase change of the Hankel function describing the

cylindrical wave at different radii and can be calculated directly.

79



Metal cladding

The reflection coefficient marked r3 in Figure 3.17, for light incident on the outside

of a cylindrical Bragg reflector from dielectric layer i, may be calculated using the

same method as the previous cases. In this case, for the TM mode, we take the Ez

field amplitude at the inner radius of the ith layer to be unity and the fields at ρi−1

can be written:

Ez(ρi−1) = 1 + r3 (3.81)

cBφ(ρi−1) = ini

(
C

(2)
mi + C

(1)
mi r3

)
. (3.82)

Recalling that the field in the core of the Bragg reflector should take the form of a

Bessel function of the first kind to ensure a finite field at the origin, for the TM-mode

we have:

r3 =
infC

(2)
mfP −Q

Q− infC(1)
mfP

(3.83)

where P = T11Jm(kcρc) + T12incJ
′
m(kcρc), Q = T21Jm(kcρc) + T22incJ

′
m(kcρc) and

the transfer matrix elements have been calculated to describe the field as it evolves

from core to exterior. The magnitude of the reflection coefficient, r3 is unity for all

frequencies. Given that k is real in the outermost dielectric layer, it can be seen from

Equation set 3.100 that T11 and T22 are real while T21 and T12 are imaginary. This

means that the constant P is real and Q is imaginary. Writing Q as iQmag where

Qmag is the magnitude of Q and recognising that C
(1)
mf = a + ib and C

(2)
mf = a − ib

are complex conjugates of each other we have:

r3 = −Qmag − nfaP + infbP

Qmag − nfaP − infbP
(3.84)

which clearly has unit magnitude hence the only difference in the reflection coefficient

with changing frequency will be in the phase.

For the TE-polarisation we have:

rTE3 = −
q + (iC

(2)
mfp)/nf

q + (iC
(1)
mfp)/nf

(3.85)

where p = T11Jm(kcρc)− T12iJ
′
m(kcρc)/nf and q = T21Jm(kcρc)− T22iJ

′
m(kcρc)/nf .
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For a Bragg reflector structure with metal cladding on the outside the reflection

coefficient r4 in Figure 3.17 may be calculated using a similar method to that pre-

sented in [107]. Again, ignoring losses, the magnitude of the reflection coefficient is

unity and we are interested in the phase. For the TM-mode let the amplitude of the

diverging Ez wave at the outside edge of the Bragg reflector, ρf be unity and the

amplitude of the Ez wave reflected from the metal is given by r4. Hence we have:

Ez(ρf ) = 1 + r4 (3.86)

cBφ(ρf ) = ini

(
C

(1)
mi + C

(2)
mi r4

)
. (3.87)

Recognising that the field in the metal outside the structure must be decaying we

have:

Ez|outside = DKm(αk0ρ)

cBφ|outside = iαDK
′

m(αk0ρ). (3.88)

Again we match the tangential field components across the boundary to obtain the

reflection coefficient and writing K
′
m(αk0ρf )/Km(αk0ρf ) = gm we have:

r4 = −

1−
(
niC

(1)
mi /αgm

)
1−

(
niC

(2)
mi /αgm

)
 . (3.89)

Similarly for the TE-mode we have:

rTE4 = −

1−
(
αC

(1)
mi /nigm

)
1−

(
αC

(2)
mi /nigm

)
 . (3.90)

The phase change of the wave on propagation across the the ith layer is calculated

in the same way as detailed for the case of a metal core.

3.5.3 A simplification of the transfer matrix problem

As described in Section 3.3.1 the modes of a multilayer fibre may be found by solving

Equation 3.49. For the special cases of either the azimuthal number, m = 0 or the

propagation constant, β = 0 the 4 × 4 matrix reduces to two more easily solvable

2×2 matrix problems. It can be seen in Equation set 3.32 that the field components
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Eφ, Eρ, cBφ and cBρ each depend on both Ez and cBz. Setting m = 0 or β = 0

decouples the equations in set 3.32. The case β = 0 corresponds to no propagation

of the mode along the fibre axis and we have two distinct modes: that with Eφ

and Eρ dependent only on cBz and only these three components non-zero (the TE-

mode) or that with cBφ and cBρ dependent only on Ez (the TM-mode). Similarly

for the case m = 0 the components Eφ and cBρ depend only on cBz and Eρ and

cBφ depend only on Ez. This means for m = 0 there are modes with only Eφ, cBρ

and cBz non-zero (a TE-like mode) or only Eρ, cBφ and cEz non-zero (a TM-like

mode).

The 2 × 2 transfer matrix, T̂ for a TE-mode (β = 0, m 6= 0) in a cylindrical

layered structure is defined by: cBz(ρ)

Eφ(ρ)

 = T̂

 cBz(ρ0)

Eφ(ρ0)

 (3.91)

and has the matrix elements:

T11 = kρ0
π

2

[
N

′

m(kρ0)Jm(kρ)− J ′

m(kρ0)Nm(kρ)
]

(3.92)

T21 = −ik0ρ0
π

2

[
N

′

m(kρ0)J
′

m(kρ)− J ′

m(kρ0)N
′

m(kρ)
]

(3.93)

T12 = −in2k0ρ0
π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)] (3.94)

T22 = kρ0
π

2

[
N

′

m(kρ)Jm(kρ0)− J ′

m(kρ)Nm(kρ0)
]

(3.95)

where the radial wavevector has reduced to k = nk0 with k0 = ω/c. Comparison

with the complete 4×4 transfer matrix shows that the TE-polarisation is represented

in the lower block diagonal of the complete matrix M̂ .

Similarly the transfer matrix, T̂ for a TM-mode in a cylindrical layered structure

is defined by:  Ez(ρ)

cBφ(ρ)

 = T̂

 Ez(ρ0)

cBφ(ρ0)

 (3.96)
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with matrix elements corresponding to the upper block diagonal of M̂ :

T11 = kρ0
π

2

[
N

′

m(kρ0)Jm(kρ)− J ′

m(kρ0)Nm(kρ)
]

(3.97)

T21 = inkρ0
π

2

[
N

′

m(kρ0)J
′

m(kρ)− J ′

m(kρ0)N
′

m(kρ)
]

(3.98)

T12 = ik0ρ0
π

2
[Nm(kρ0)Jm(kρ)− Jm(kρ0)Nm(kρ)] (3.99)

T22 = kρ0
π

2

[
N

′

m(kρ)Jm(kρ0)− J ′

m(kρ)Nm(kρ0)
]
. (3.100)

For the TE-like and TM-like modes with m = 0, β 6= 0, the form of Equations

3.91 and 3.96 is still valid as it is only the ρ field component that changes for m = 0

or β = 0. However, the transfer matrices T̂ are different and are given, for the

TE-like mode by:

T11 = kρ0
π

2

[
N

′

0(kρ0)J0(kρ)− J ′

0(kρ0)N0(kρ)
]

(3.101)

T21 = ik0ρ0n
2π

2

[
N

′

0(kρ0)J
′

0(kρ)− J ′

0(kρ0)N
′

0(kρ)
]

(3.102)

T12 =
ik2ρ0

k0n2

π

2
[N0(kρ0)J0(kρ)− J0(kρ0)N0(kρ)] (3.103)

T22 = kρ0
π

2

[
N

′

0(kρ)J0(kρ0)− J ′

0(kρ)N0(kρ0)
]

(3.104)

and for the TM-like mode by:

T11 = kρ0
π

2

[
N

′

0(kρ0)J0(kρ)− J ′

0(kρ0)N0(kρ)
]

(3.105)

T21 = −ik0ρ0
π

2

[
N

′

0(kρ0)J
′

0(kρ)− J ′

0(kρ0)N
′

0(kρ)
]

(3.106)

T12 =
−ik2ρ0

k0

π

2
[N0(kρ0)J0(kρ)− J0(kρ0)N0(kρ)] (3.107)

T22 = kρ0
π

2

[
N

′

0(kρ)J0(kρ0)− J ′

0(kρ)N0(kρ0)
]

(3.108)

where the radial wavevector k depends on β.

For the general case where m 6= 0 and β 6= 0 there is no decoupling of the fields

which results in hybrid modes containing all six field components. These modes

may be envisaged as skew rays in the ray picture that spiral about the axis as

they propagate along the length of the fibre mixing the TE and TM components

[101][108].
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3.6 Results

In this section the results of numerical calculations of the electromagnetic fields

in cylindrical multilayer structures, using the transfer matrix method introduced in

Section 3.3.1, are presented. The purpose of this work was to ascertain the structural

parameters required to support cylindrical Tamm plasmon-polaritons. The results

given are for an example structure with dielectric layers of titanium dioxide, TiO2

(n = 2.37) and silica, SiO2 (n = 1.47). The refractive index values were taken from

Lee et al. [109] and are appropriate for a free space wavelength of 900 nm but don’t

change too quickly for longer wavelengths. These materials were chosen because

they allow for a large refractive index contrast ratio. The electronic band gap of

TiO2 is around 3.8 eV [110] and for SiO2 it is 8.9 eV [111], these are both high

compared to the energy corresponding to optical wavelengths: typical optical fibres

carry wavelengths around 1550 nm which is equivalent to approximately 0.7 eV.

This means that TiO2 and SiO2 will absorb very little in the frequency range we are

interested in and so treating them as lossless materials is a reasonable approximation.

TiO2 and SiO2 are both common, robust materials that would be unlikely to suffer

great degradation over time were they to be used in devices. The metal considered

was gold (ωp = 8.9 eV) as this is commonly used in optoelectronic devices.

3.6.1 Bragg reflector

We consider a cylindrical multilayer structure with a titanium dioxide, TiO2, core,

taken to have refractive index n = 2.37. The core is surrounded by 8 pairs of

layers, alternately silica, SiO2, with refractive index n = 1.47 and TiO2. The optical

thickness of each layer is a quarter wavelength; for a free space wavelength of 1240 nm

this gives layer thicknesses of 211 nm and 131 nm for the SiO2 and TiO2 respectively.

An infinite, planar structure with these parameters would have its photonic stop

band centred at 1 eV.

The reflection coefficient of an outgoing wave in the core with m = 0, β = 0,

taken at the core boundary, may be calculated using Equation 3.73 for a TM mode

and Equation 3.74 for a TE mode. For the case where there is no metal included
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Figure 3.18: Bessel function of the first kind in a medium of refractive index n =

2.37 with frequency 1.0 eV. The first node occurs at a radius 200 nm.

in the structure, we take n1 to be the refractive index of the dielectric core. For

a TM mode to exist in the core there should be a non-zero Ez field at the core

boundary. We require that the electric field component tangential to the boundary

should have a phase change of zero on reflection so that its reflection coefficient is

+1 and the outgoing and incoming waves add together to give an antinode in the

field at the boundary. On the other hand, for a TE mode to exist in the core, the Eφ

field component should have an antinode at the core boundary. In the homogeneous

core medium, an antinode in the Eφ field component corresponds to a node in the

cBz field component. Figure 3.18 shows that for m = 0, β = 0 the Bessel function

of the first kind has a node at around 200 nm. Using this core radius a TE mode

was found to exist at a frequency of 0.9792 - 1×10−9i eV. The fields for this mode

can be seen in Figure 3.19 a): the black line shows the Eφ field component while

the red line shows the cBz field component. The vertical dashed lines indicate the

edge of each layer in the structure. It can be seen that there is a node in the cBz

field at 200 nm. We note that the Eφ field component varies smoothly across all

of the interfaces while the cBz field component, though continuous in value, has a

discontinuous gradient at each interface. This is consistent with the second equation
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Figure 3.19: a) TE mode: the Eφ (black line) and cBz (red line) fields for a BR

structure with TiO2 core with radius 200 nm surrounded by 8 pairs of SiO2/TiO2

layers at a frequency 0.9792 eV. b) TM mode: the Ez (black line) and cBφ (red line)

fields for a BR structure with TiO2 core with radius 200 nm surrounded by 8 pairs

of TiO2/SiO2 layers at a frequency 0.9942 eV.
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in the set 3.32; when m = 0 and β = 0 it may be rearranged to give:

∂cBz

∂ρ
= in2Eφ (3.109)

and as n is discontinuous across the boundary so also is ∂cBz/∂ρ. Figure 3.19 b)

shows the Ez (black) and cBφ (red) fields for a TM mode in a structure also with a

TiO2 core of radius 200 nm. However, in this case the layers of the Bragg reflector

structure have been reversed: TiO2/SiO2 in order to accommodate the mode. The

mode frequency is 0.9942 - 1×10−9i eV. Just as in the planar case, as discussed in

Section 3.2.2, reversing the order of the Bragg reflector layers changes the phase

change on reflection from the core boundary to π and means that the mode with a

node in the Ez component is supported.

In both the TE and the TM cases, the modes can be seen to decay essentially to

zero through the layers of the Bragg reflector. This and the very small imaginary

component of the frequencies shows that the Bragg reflector is sufficiently opaque

that there is very little radiative loss through a structure with 8 pairs of layers

(or more). It is therefore reasonable to neglect the imaginary component of the

frequency in most calculations. Figure 3.20 shows the magnitude and phase of

the reflection coefficient for the SiO2/TiO2 structure whose fields are illustrated in

Figure 3.19 a). Note that the TE mode frequency of 0.9892 eV sits comfortably

within the photonic stop band that is apparent in the magnitude of the reflection

spectrum as a wide plateau region with reflection coefficient of magnitude close to

unity. The photonic band gap is centred around the Bragg frequency, ω0 = 1 eV and

has width, ∆ω = 0.3773 eV. However, as shown previously in Figure 3.4 the band

width and quality of the band gap depends on the number of layers in the Bragg

reflector structure. The width of the photonic band gap in an infinite planar Bragg

reflector may be approximated by the formula [93]:

∆ω ≈ ω0
4

π

|n1 − n2|
n1 + n2

. (3.110)

Using this approximation, a planar Bragg reflector structure with SiO2 and TiO2

layers of refractive index n = 1.47 and n = 2.37 respectively with its band gap

centred around ω0 = 1 eV would have a band width ∆ω = 0.2984 eV. Increasing the

number of layers in a cylindrical Bragg reflector with quarter wavelength thickness
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Figure 3.20: The reflection spectrum (black, magnitude and red, phase) for a cylin-

drical DBR with a core refractive index nc = 2.37 and 8 pairs of surrounding layers

with refractive indicies n1 = 1.47 and n2 = 2.37. The thicknesses of each layer of the

DBR were chosen to be λ/4 giving effective reflection, and centreing the photonic

stop band, at a frequency of 1.0 eV.
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Figure 3.21: Solid lines represent the dispersion curves for a TE (green) and TM

(blue) mode whose field profiles for β = 0 are shown in Figure 3.19. For comparison,

the dispersion curves of modes in a simple optical fibre structure with a TiO2 core

(n = 2.37) and SiO2 (n = 1.47) cladding are shown as dashed lines: TE, m = 0

mode (green) and TM m = 0 (blue). All confined modes in this simple optical fibre

have dispersion curves that lie between the dashed black lines.

layers causes the band width to tend to the value obtained for the infinite planar

structure. It is clear from Equation 3.110 that the width of the band gap in a Bragg

reflector will be larger the greater the difference in the refractive index of the two

materials.

The solid lines in Figure 3.21 illustrate the dispersion curves for the TE (green)

and TM (blue) modes for Bragg reflector structures containing no metal, whose

instantaneous fields for β = 0 are shown in Figure 3.19. The structures that support

these modes have been described in the caption to Figure 3.19 and the surrounding

text. The dashed black lines indicate the limits on the mode dispersion curves for

any mode in a simple optical fibre structure made of the same materials (TiO2 core

of refractive index 2.37 and SiO2 cladding of refractive index 1.47). For comparison,

the coloured dashed lines illustrate the modes of this optical fibre with core radius

200 nm: red shows the fundamental, m = 1 mode, green shows the TE, m = 0 mode
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and blue shows the TM, m = 0 mode. The Bragg reflector mode dispersions are

parabolic and lie to the left of the light cone for modes in a simple optical fibre. The

range of β shown for the Bragg reflector structure is smaller than that shown for

the simple optical fibre. This is because, for large values of β, the structure required

for a bound mode would be different to that for the case β = 0. By retaining the

structure that supports the β = 0 mode the calculations fail to find solutions for

large values of β.

3.6.2 Indication of modes in a Bragg reflector structure

For some cylindrical Bragg reflector structures, it appeared that there was an indi-

cation of the frequency of a mode in the core in the phase of the reflection spectrum

calculated from the outside of the structure (Equations 3.83 and 3.85). Figure 3.22

shows the phase of the reflection coefficient as a function of frequency, calculated

for a TM mode with m = 0, for a structure with a TiO2 core surrounded by 9 pairs

of SiO2/TiO2 Bragg reflector layers. The feature in the phase of the reflection coef-

ficient occurs at a frequency 0.9234 eV. There was no indication of this mode in the

magnitude of the reflection coefficient which was consistently unity at and around

this frequency. This is an example of a case where a change in phase is clearly visi-

ble as a signature of a state which gives no apparent change in reflection coefficient.

The same phenomenon has been reported in planar Bragg reflector structures e.g.

[112]. Experimentally, this could be useful in that reflection spectroscopy could be

used to detect bound modes in cylindrical Bragg reflector structures.

Note that the mode indicated in Figure 3.22 is not the same TM mode, or the

same structure, as that illustrated in part b of Figure 3.19. The indication of mode

frequency discussed here did not appear consistently in all the calculations carried

out and so this was not used, for the results presented in this thesis, as a method of

finding modes.
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Figure 3.22: The phase of the reflection coefficient calculated from the outside of

the Bragg reflector structure for a TM mode in a structure with a 150nm TiO2 core

and 9 pairs of SiO2/ TiO2 layers shows a sharp feature at frequency 0.9234 eV.

3.6.3 Metal core

For a Tamm plasmon-polariton to exist we require an interface between a metal

and a Bragg reflector structure. In Section 3.6.1 we showed that a Bragg reflector

structure containing no metal and a TiO2 core supported a TE mode at a frequency

of 0.9792 eV. We now investigate the changes required to the structure in order to

support a mode at the same frequency when a thin metal core is included in the

structure. The Bragg reflector structure with a metal core is illustrated in Figure

3.16. The core is assumed to be a lossless metal with plasma frequency ωp = 8.9 eV

and radius 30 nm. The layer adjacent to the metal is TiO2 and this is surrounded by

8 pairs of SiO2/TiO2 layers. It is necessary to calculate the required thickness of the

TiO2 layer adjacent to the metal in order to support the mode. The phase change

on reflection from the Bragg reflector (r1 in Figure 3.16) varies with frequency and

may be calculated from Equation 3.74 for the TE polarisation, this is shown in

Figure 3.23. At the TE mode frequency for the metal free structure, 0.9792 eV, the
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Figure 3.23: Phase of the reflection coefficient, r1, from the inside of a Bragg reflector

varying with frequency across the photonic band gap for the TE polarisation as

calculated from Equation 3.74.

phase is -3.03487 radians. Equation 3.80 is used to calculate the phase change on

reflection from a metal cylinder of radius 30 nm in TiO2. At the TE mode frequency

the value is -1.278510 radians. The total phase change for a round trip in the TiO2

layer surrounding the metal should be an integer multiple of 2π or zero. The total

from these two components is -4.31338 radians and therefore we require

−4.31338 + 2Φ = 0

Φ = 2.15669 (3.111)

where Φ is the necessary phase change for a wave travelling from the edge of the

metal core across the TiO2 layer to the first boundary with SiO2. By considering the

ratio of the Hankel function of the first kind for argument kρ (where k is the radial

wavevector in the TiO2 layer and ρ is the radius) to the Hankel function of the first

kind for argument kρc where ρc is the radius of the metal core, the required radius

to obtain a phase change of 2.15669 is calculated to be 201 nm. Hence we propose

that in order to support a TPP TE mode at a frequency of 0.9792 eV the structure

should consist of: a 30 nm metal core surrounded by a 201 nm thick layer of TiO2
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Figure 3.24: The Eφ (black) and cBz (red) fields components for a TE mode with

m = 0, β = 0 in a Bragg reflector structure with a 30 nm metal core, a 201 nm thick

TiO2 layer and 8 pairs of SiO2/TiO2 layers. The vertical dashed line indicates the

edge of the metal core. The mode frequency is 0.9792 eV.

followed by a Bragg reflector structure with alternating quarter wavelength thickness

layers of SiO2 and TiO2. The instantaneous Eφ (black line) and cBz (red line) field

components for this structure can be seen in Figure 3.24. The vertical dashed lines

indicate the dielectric boundaries and it is clear that the field components have

the characteristic decay of a TPP state in both the metal and the Bragg reflector

where the decay of the field is faster in the metal than it is in the Bragg reflector.

This shows that, as for the planar case, TPPs can exist in the TE polarisation in

cylindrical multilayer structures.

It is possible to tune the mode frequency of the multilayer fibre by altering the

thickness of the layer adjacent to the metal. Figure 3.25 shows the instantaneous

fields of a) a TM and b) a TE mode both with frequency 1 eV for the case m = 0,

β = 0. The structures both consist of a 30 nm metal core surrounded by a TiO2

layer and then 8 pairs of SiO2/TiO2 Bragg reflector layers. The only difference in

the structures is in the thickness of the TiO2 layer adjacent to the metal; in the case

of the TM mode the thickness is 426 nm and for the TE mode, 346 nm.
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Figure 3.25: a) TE mode with β = 0 and frequency 1 eV in a multilayer structure

with a metal core of radius 30 nm and TiO2 layer adjacent to the metal with thickness

of 426 nm. The black line shows the Eφ field component while the red line shows

the cBz field component. b) TM mode with β = 0 and frequency 1 eV for the

same structure but with an adjacent TiO2 layer thickness of 346 nm. The black line

shows the Ez field component while the red line shows the cBφ field component. All

boundaries are marked with vertical dashed lines.
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Figure 3.26: The solid lines show the dispersion curves for m = 0, TE (black) and

TM (red) modes for the structures required to give a mode frequency at β = 0 of

1 eV. The dashed lines show the dispersion curves for the same structures with the

metal core removed and replaced by TiO2.

Increasing the propagation constant β and finding the corresponding mode fre-

quencies gives the dispersion curve shown in Figure 3.26. The TE mode dispersion is

shown as a solid black line and the TM mode as a solid red line. The dashed curves

indicate the dispersion for the same structures but with the metal core removed and

replaced by TiO2 (again black for the TE and red for the TM mode). The blue solid

line is the dispersion curve for a hybrid mode with m = 1, β = 0 in a structure

consisting of a 30 nm metal core surrounded by a SiO2 cavity layer of thickness 483

nm and 8 pairs of TiO2/SiO2 layers. The curves have been obtained using a curve

fitting algorithm in OriginPro 8.1 and are found to be parabolic with adjusted R2

values greater than 0.999. This parabolic dispersion is characteristic of TPPs in the

planar geometry. The effective mass m∗ of the TPPs may be calculated using the

relation

m∗ = h̄2

[
d2ω

dβ2

]−1

. (3.112)

For the TM-polarisation the curve fit is given by ω = 0.9995 + 4914.3 β2. The
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standard error on the coefficient of β2 is ±28.4 which gives an effective mass of

(1.240 ± 0.018)×10−6me. For the TE-polarisation the curve fit is given by ω =

1.0001 + 4214.9 β2. The standard error on the coefficient of β2 is ±24.0 which gives

an effective mass of (1.434 ± 0.003)×10−6me. The TE – TM splitting increases

quadratically with β in agreement with results obtained for the planar case [41]. For

m = 1 the dispersion curve fit is given by ω = 1.0031 + 7343.1 β2. The standard

error on the coefficient of β2 is ±24.3 which gives an effective mass of (8.297 ±

0.027)×10−7me. The group velocity vg may also be found from the dispersion curve

using the relation:

vg =
∂ω

∂β
(3.113)

The TPPs have zero group velocity at β = 0. At very small values of β, for example

β = 1× 10−9 nm−1 the group velocity for the TM mode is found to be 9.8286×104

ms−1, for the TE mode vg = 8.4298×104 ms−1 and for the m = 1 mode vg =

1.4686×104 ms−1 . These values are several orders of magnitude lower than the

speed of light in vacuum and the speed of light in TiO2 (1.27×106 ms−1) earning

TPPs the term ‘slow light’. As the value of β increases, the group velocity also

increases. Above β values of approximately 1×10−5 nm−1 the light in this structure

has a velocity comparable to, or greater than, the speed of light in TiO2.

Figure 3.27 shows the instantaneous field components for the TE and TM modes

that exist for β = 0 for the same structures as the fields in Figure 3.25 but without

the metal core. In each case the 30 nm metal core has been replaced by TiO2.

Comparing Figure 3.27 to Figure 3.25 it is clear that the metal has made very little

difference to the field components of the TE mode. However, for the TM mode, to

accommodate the metal, the field in the adjacent TiO2 layer changes significantly.

There is a corresponding change in frequency of the TM mode from 0.92 eV without

the metal to 1.0 eV with the metal core.

Figure 3.28 shows the variation of mode frequency with the thickness of the TiO2

layer adjacent to the metal core for m = 1 and m = 0 (TM and TE modes) all for

β = 0. As discussed in Section 3.5.2 changing the thickness of a layer changes the

phase accumulated in crossing it, therefore it is possible to select a particular mode

frequency by picking the appropriate layer thickness.
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Figure 3.27: a) TE mode with β = 0 and frequency 0.9976 eV in a multilayer

structure with a TiO2 core of radius 456 nm surrounded by 8 pairs of SiO2/TiO2

layers. The black line shows the Eφ field component while the red line shows the

cBz field component. b) TM mode with β = 0 and frequency 0.9200 eV for the

same structure but with a TiO2 core of radius 376 nm. The black line shows the

Ez field component while the red line shows the cBφ field component. All interfaces

are marked with vertical dashed lines.
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Figure 3.28: Variation of mode frequency with varying thickness of the TiO2 layer

adjacent to the metal core for m = 0 and m = 1.
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Figure 3.29: The Ez (black) and cBφ (red) field components of a TM mode of

frequency 1.0 eV in a cylindrical structure with 150 nm TiO2 core, 14 pairs of

TiO2/ SiO2 Bragg reflector layers (of thickness 131 nm and 211 nm respectively), a

SiO2 cavity layer of thickness 400 nm all surrounded by essentially infinite metal.

3.6.4 Metal cladding

Next we consider a structure such as that illustrated in Figure 3.17, a cylindrical

Bragg reflector with an infinite metal cladding around the outside. Figures 3.29 and

3.30 show the instantaneous field components of a TM and TE mode respectively,

each with frequency 1 eV.

Figure 3.29 shows the instantaneous, real Ez (black) and cBφ (red) field com-

ponents for a TM mode with m = 0, β = 0 and frequency 1 eV, for a structure

with a TiO2 core of radius 150 nm surrounded by 14 pairs of TiO2/SiO2 layers. The

thickness of the SiO2 layers is 211 nm and the TiO2 layers have thickness 131 nm.

There is a SiO2 cavity layer of thickness 400 nm surrounding the Bragg reflector

structure and an essentially infinite, lossless metal with plasma frequency 8.9 eV

around the outside. The radius of the core was chosen so that it would not support

a mode at the centre of the structure. The thickness of the cavity layer was chosen

to support a round trip phase change of 2π. The fields can be seen to decay both
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Figure 3.30: The cBz (red) and Eφ field components of a TE mode with frequency

1 eV and β = 0 in a structure with a TiO2 core of radius 150 nm surrounded by

14 pairs of SiO2/TiO2 layers, where the SiO2 layers have thickness 211 nm and the

TiO2 layers have thickness 131 nm. The TiO2 cavity layer adjacent to the metal

surrounding the structure has a thickness of 130 nm. Vertical dashed lines mark the

dielectric boundaries.

into the metal (to the right of the final boundary line) and into the Bragg reflector

(to the left of the final boundary line). We note that the field value at the centre of

the core in the Bragg reflectors is not zero. This is because the field in the core has

been chosen to be the m = 0 Bessel function of the first kind, as it must be to avoid

a divergence at the origin. The magnitude of this function at the origin is unity.

However, by considering the field values at the core relative to that at the edge of

the metal the field can be seen to have decayed substantially.

As another example, Figure 3.30 shows the real cBz (red) and Eφ (black) fields

for the TE, m = 0, β = 0 mode at frequency 1 eV in a multilayer cylindrical structure

with a TiO2 core of radius 150 nm surrounded by 14 pairs of SiO2/TiO2 layers and

a TiO2 cavity layer of thickness 130 nm all enclosed in a lossless metal with plasma

frequency 8.9 eV. It can be seen that the field is greatest inside the cavity layer
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Figure 3.31: The Ez field component for two split modes, one with frequency 1.00406

eV (black line) and the other 1.00589 eV (red). Both were calculated for m = 1, β

= 0 in a structure consisting of: a metal core of radius 30 nm; a SiO2 cavity layer

adjacent to the core of thickness 483 nm; 14 pairs of layers alternating TiO2/SiO2

with respective thickness 131 nm/ 211 nm; a final TiO2 cavity layer of thickness 370

nm adjacent to the semi-infinite metal cladding outside.

adjacent to the metal and decays very rapidly into the metal and more slowly into

the Bragg reflector structure.

In both these examples the frequency at the centre of the photonic band gap of

the Bragg reflector was chosen to be 1 eV and the structure was designed accordingly.

Note that the order of the layers in the Bragg reflector to support a TE mode is the

opposite of that required to support a TM mode.

3.6.5 Metal core and metal cladding

Figure 3.31 shows the instantaneous, real, Ez field components for the split modes

of a coupled multilayered system with m = 1 and β = 0. The structure has a 30

nm metal core and semi-infinite metal cladding outside. There is a SiO2 cavity

layer adjacent to the metal core with a thickness of 483 nm and a TiO2 cavity layer
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adjacent to the metal cladding with a thickness of 370 nm. The interim Bragg

reflector structure has 14 pairs of alternating TiO2/SiO2 layers of thickness 131 nm

/ 211 nm respectively. Close to the core this structure is the same as that considered

for supporting the m = 1, β = 0 mode for the case with metal in the core only.

The fields of the two modes in Figure 3.31 can be seen to follow exactly the same

pattern close to the core but progressively become out of phase in the Bragg reflector

layers and are in antiphase at the outer edge. As such they represent symmetric

and antisymmetric modes. The frequency splitting between the modes is just 1.83

meV or 0.44 THz.

The frequency splitting varies with the number of layers in the Bragg reflector

as it depends on the overlap of the electromagnetic fields of the inner and outer

modes in the Bragg reflector layers. Figure 3.32 shows the frequency difference in

the dispersion curves for the two coupled modes in a structure with 10 pairs of Bragg

reflector layers. The black line is the dispersion curve for the symmetric mode and

the higher frequency, red line is for the antisymmetric mode. Using Equation 3.113

the group velocities of the two split modes may be calculated. They were found to

be 1.6008× 104 ms−1 and 1.6866× 104 ms−1 for the symmetric and antisymmetric

modes respectively. These group velocities are slightly higher than that calculated

for the same mode, for the case with metal included only in the core of the structure.

3.7 Discussion

In this chapter it has been shown theoretically that cylindrical Bragg reflector struc-

tures are capable of supporting Tamm plasmon-polaritons by having a metal core,

metal cladding around the outside of the structure or metal in both of these loca-

tions. The cylindrical TPPs can exist in both the TE and TM polarisations for the

special cases m = 0 or β = 0 and can also be formed from hybrid cylindrical modes

when m 6= 0 and β 6= 0. In the case of metal both in the core and around the

outside of the fibre it has been shown that two split modes can be supported with

a frequency difference which, for the specific example considered here, was in the

terahertz regime. If a transition between these two excitations could be induced, it
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Figure 3.32: The split dispersion curves for a structure with a metal core and a

metal cladding as described in Figure 3.31. The black line is the dispersion curve

for the symmetric mode and the higher frequency, red line is for the antisymmetric

mode. This structure has only 10 pairs of layers in the Bragg reflector rather than

the 14 pairs in Figure 3.31 to enhance the splitting and hence show it more clearly.
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may be possible to use this splitting as a means of emission or detection of terahertz

radiation.

It has been shown that TPPs in cylindrical structures have low group velocities,

as is the case for planar TPPs, earning them the term ‘slow light’. Slow light has

a compressed spatial pulse length which may give a longer interaction time and

an enhancement of light-matter interactions compared with light travelling at more

conventional speeds [113]. Slow light has also been proposed as a useful tool in

information processing [14]: some logic elements require a time delay in processing,

current attempts to achieve this in photonics use long optical fibres which means

that the scale of the components is necessarily large. Slow light may be a way around

this.

The materials in the Bragg reflector structures considered in this chapter, TiO2

and SiO2, were chosen due to their large refractive index contrast. Without using

semiconductor materials or resorting to using refractive indices that do not corre-

spond to real materials it would be difficult to find materials that allowed for a

significantly larger contrast. As discussed in Section 3.6.1 the greater the contrast

in the refractive indices of materials in a Bragg reflector, the greater the width of

the photonic band gap. SiO2 and TiO2 are both common materials. SiO2 is rou-

tinely used in the fabrication of optical fibres and so the techniques for drawing SiO2

fibres are widely known. It may then be possible to evaporate or sputter further

layers around the initial core fibre to produce a multilayer structure. However the

accuracy required in the thickness of each layer would need to be of the order of a

few nanometers and this would prove challenging using current techniques. Coating

a fibre with metal could be achieved by evaporation. Producing a cylindrical struc-

ture with a metal core could perhaps be achieved by etching a hole in a cylindrical

dielectric and then adding the metal or by deposition on the metal or a fibre pulling

technique.

Despite the current difficulties facing the fabrication of cylindrical multilayer

structures there is a lot of interest in the field of plasmonics with an emphasis on

the nanoscale and it seems to the author that this will drive forwards the technologies

required to make the components if useful effects can be theoretically demonstrated.
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The materials have been modelled as lossless for calculational simplicity. In

some cases the neglect of losses in the materials as well as leakage through the

Bragg reflectors is a good approximation as extinction coefficients of less than 10−6

are achievable. The electronic band gaps of both SiO2 and TiO2 are large enough

to avoid absorption at the frequencies of interest and in Section 3.6.1 it was shown

that radiative loss in the cylindrical Bragg reflector structures was small and could

reasonably be ignored. Loss in the metal could be included by introducing a non-

zero value for Γ in Equation 3.1, which would make the dielectric constant of the

metal complex. Including losses in the calculations would then involve finding zeros

in the determinant of the matrix in Equation 3.49 in the complex plane. Brand et

al. [114] have shown for planar systems that there may be an indication of the TPP

state if losses are included in the calculations. They showed that, for a 50 nm metal

layer, a large field enhancement lead to large losses in the metal which in turn gave

a large dip in the reflectivity spectrum.

Research on Tamm plasmon-polaritons has grown over the last few years and

papers have been published that increase our fundamental understanding of these

interface states and the structures that may support them as well as proposing

applications. For example, it has been shown that optical Tamm states can exist

above the bulk plasma frequency for structures designed using certain materials, for

example indium tin oxide [115]. Optical Tamm states have also been shown to exist

at an interface between a photonic crystal and a magnetophotonic crysal [116] or a

magnetic metal [117]. The enhancement of Faraday rotation and sharp transmission

peaks are suggested as useful characteristics for magnetotunable filters. Highly

efficient unidirectional transmission in an all-optical diode has been demonstrated

using the interface states between a one-dimensional photonic crystal structure of

SiO2 and TiO2 and a thick layer of silver [45] and strong optical absorbers using

TPPs at a thick metal, truncated photonic crystal interface have been proposed and

demonstrated [46].

It seems that there are many potential applications for TPPs and that others may

now take cylindrical TPPs forward and include these in proposals for new devices.
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Chapter 4

Disorder in Two-Dimensional

Photonic Crystals

In this chapter the effects of disorder on a 2D photonic crystal formed by a hexagonal

array of air holes in a dielectric slab are considered and an attempt is made to

quantify the effects of disorder in the radius of the air holes. Other work on disorder

in photonic crystals is briefly reviewed.

4.1 Introduction

The Bragg reflector structure introduced in Section 1.2 is a type of one-dimensional

photonic crystal, a structure with a periodic modulation in dielectric constant, ε.

Figure 4.1 illustrates different photonic crystal structures classified as one-, two- or

three-dimensional depending on how many directions in which the dielectric con-

stant varies. Examples of such periodic structures are found to occur naturally, for

example, in the gemstone opal, the wings of the Lycaenid butterfly and the cases

of many tropical beetles, each of which exhibits iridescent colouring due to their

internal structure. Photonic crystal structures may also be engineered using tech-

niques such as evaporation growth or etching. An electromagnetic wave propagating

through a photonic crystal is partially reflected and partially transmitted at each

interface and the multiply reflected and refracted rays interfere with one another. It

was first shown by Lord Rayleigh in 1888, for one-dimensional periodic structures,
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Figure 4.1: Representations of one-, two- and three-dimensional photonic structures

(left to right). Different colours represent homogeneous blocks of material with

different values of dielectric constant, ε.

that there is a frequency gap where complete destructive interference occurs and

no electromagnetic waves can propagate [118]. One dimensional photonic crystal

structures, such as the Bragg reflector, have been discussed in chapter 1. Bragg re-

flectors are highly efficient dielectric mirrors and tunable Bragg reflectors can have

the range of frequencies at which they operate changed using compression to alter

the refractive index of the layers in the structure. One-dimensional photonic crystals

may also be structured to produce anti-reflection coatings by choosing layer thick-

nesses that align the reflected waves for destructive interference. These are used,

for example, in telescopes and in spectacles. However, it was not until 1987 with

the works of Yablonovitch [5] and John [6] that uses for higher-dimensional, periodic

structures were proposed and the term photonic crystal was first used. Yablonovitch

[5] proposed that spontaneous emission from atoms would be completely inhibited

when the atoms were contained within a three-dimensional photonic crystal struc-

ture with a photonic band gap that overlapped the electric band edge. Any photon

that would result from an electron-hole recombination having a frequency forbid-

den to propagate in the surrounding medium due to the photonic band gap, would

be unable to be emitted from the atom. This effective suppression of spontaneous

emission can be implemented in order to increase the efficiency of many devices,

for example, LEDs and semiconductor lasers [119]. Around the same time John [6]

proposed that defects in a three-dimensional photonic crystal structure would lead

to strong localization of photons at the defect site.

Photonic crystal devices can also be used as highly effective waveguides by uti-
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lizing a band gap that does not allow light to propagate outside of a waveguide

channel [9]. This is most advantageous when attempting to channel light around a

sharp corner. An optical fibre waveguide relying on total internal reflection requires

a radius of curvature of no less than approximately 103 µm to bend light round a 90◦

corner without unacceptable losses. A photonic crystal can perform the same oper-

ation on a scale of the order 1 µm [120]. These phenomena have led to the design

and fabrication of optical integrated circuits based on photonic crystals [121].

4.1.1 Electromagnetic waves in photonic crystals

The electromagnetic modes that are able to propagate through a photonic crystal

must satisfy Maxwell’s equations and the relevant boundary conditions. For good

dielectric materials, such as those considered here, we have no currents or charges

and can write ρ = 0 and J = 0. Hence Equations 1.2 – 1.5 may be simplified to:

∇ ·D = 0 (4.1)

∇ ·B = 0 (4.2)

∇× E = −∂B

∂t
(4.3)

∇×H =
∂D

∂t
. (4.4)

The magnetic field may take the form:

H = a exp (ik · r) (4.5)

where a is the amplitude of the magnetic field strength, k is the wavevector and in

order to satisfy Equations 4.1 and 4.2 we require that a · k = 0 to give a transverse

wave. Assuming a time dependence of the form exp(−iωt), Equations 4.3 and 4.4

give:

∇× E = iωµ0H (4.6)

∇×H = −iωεε0E (4.7)

and by eliminating E we obtain an eigenvalue equation where the eigenvectors give

the field patterns of the harmonic modes:

∇×
[

1

ε (r)
∇×H (r)

]
=
ω2

c2
H (r) . (4.8)
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The solutions of Equation 4.8, energy as a function of wavevector, give the band

structure of the photonic crystal. Any range of frequencies at which electromagnetic

radiation cannot propagate through a photonic crystal is termed a photonic band

gap.

In two- and three-dimensional photonic crystals the photonic band gap exists

independent of the angle of incident light. Also in two- and three-dimensional struc-

tures there exist two distinct polarisations of light, commonly referred to as TE-

and TM-polarisations: TE-polarised light has no electric field component in the di-

rection of propagation and therefore has non-zero components Hx, Hz and Ey and

TM-polarisation light has no magnetic field component in the direction of propaga-

tion and therefore has non-zero components Ex, Ez and Hy. Each polarisation has

its own band structure independent from the other and the two may exhibit quite

different behaviors as we discuss later. With current growth techniques, two- and

three-dimensional photonic crystals are less simple to fabricate than one-dimensional

structures and are are more likely to suffer from imperfections and disorder however

their increased complexities may give greater technological value.

4.2 Disorder in photonic crystals

Some form of disorder - any deviation from a perfect structure - is inherent in any

photonic crystal. In order to assess their device potential and to make effective

use of the optical properties of photonic crystals it is necessary to understand how

disorder affects them. Of particular interest is the question of how disorder affects

the photonic band gap.

Changes to the photonic band gap caused by well defined defects in photonic

crystals are well known. For example a cavity defect, such as a double thickness

layer in a one-dimensional photonic crystal or a missing feature in a two-dimensional

photonic crystal, can create a localized mode at a frequency within the photonic

band gap [122] [123]. Figure 4.2 shows the power transmission coefficient for a

planar Bragg reflector structure with a cavity defect at its centre. The defect mode

appears as a peak in the transmission spectrum dip. Defects giving rise to localized
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Figure 4.2: The power transmission coefficient for a planar Bragg reflector structure

with a cavity defect at its centre. The defect mode can be seen as a peak in the

transmission spectrum dip.

modes, such as that illustrated in Figure 4.2, have found application as resonant

cavities, optical filters and lasers e.g. [10]. However, here we are concerned with

more random disorder that is likely to be the result of the manufacturing process.

The two-dimensional photonic crystal that is considered in this thesis is formed by an

array of cylindrical holes in a slab of dielectric material. Disorder in such a structure

may be due to variation in the size or shape of the holes, including roughness of the

hole edge, or to the position of the axis of each hole.

4.2.1 Disorder in two-dimensional photonic crystals

Early work on disorder in two-dimensional photonic crystals presented qualitative

results for the effect of disorder on the photonic band gap. For example, Sigalas et

al. [124] [125] used a transfer matrix method to study hexagonal and square arrays

of cylinders of one dielectric constant in a slab of material of a different dielectric

constant. The disorder imposed on the system took the form of variation in the

cylinder radii, the position of the cylinder axes and the dielectric constant of the
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cylinders. The disorder was measured as a filling ratio between the area covered by

the cylinders and the background material in the plane perpendicular to the cylinder

axes. The calculations were run at microwave frequencies so they could be compared

to experimental results and the method was shown to give excellent agreement. They

found that for wide photonic band gaps a greater amount of disorder was required

to form localized states to close up the band gap. Band gaps occurring at higher

frequencies were found to generally be narrower than gaps at lower frequencies and

hence required less disorder to close them.

Ryu et al. [126] also investigated hexagonal and square arrays of cylinders of one

dielectric constant in a slab of material of a different dielectric constant with either

the cylinders or the background having a dielectric constant corresponding to air.

They focused on disorder in the radii of the cylinders and introduced a Gaussian

distribution or radii with mean r0 and standard deviation δr. Their results were also

qualitative observations of the effect of disorder on the band gap. They found that

for small fluctuations in the standard deviation of the distribution of radii there was

little effect on the band gap whereas for large fluctuations in the standard deviation

states appeared in the band gap causing it to narrow and close. They also found

that increasing the mean radius caused the width of the band gap of the structures

with air holes to increase and the width of the band gap of the structures with

dielectric rods to decrease.

Much of the more recent work carried out on disorder in photonic crystals in-

troduces a ‘disorder parameter’ to describe the amount of deviation from the ideal

structure. In the early 2000s, Kaliteevski et al. investigated two-dimensional pho-

tonic crystals formed by an array of cylindrical air holes in a slab of GaAs with

refractive index n = 3.6 [127] [128]. They defined a disorder parameter δ to de-

scribe the change in cylinder radius from that of the ideal crystal, r0 such that

the disordered radii are uniformly distributed in the interval r0(1− δ) to r0(1 + δ).

Two different polarisations of light were considered, each having a different photonic

band structure. The so called TE-polarisation, having no electric field component

in the direction of propagation, has an incomplete band gap while the so called TM-

polarisation, with no magnetic field component in the direction of propagation has
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a complete band gap. An incomplete band gap means that the range of frequencies

that is forbidden to propagate is only restricted in certain reciprocal space directions

whereas a complete band gap occurs for all wavevectors simultaneously. Kaliteevski

et al. used a transfer matrix to model the transmission spectra of light though the

photonic crystal. For both polarisations, the transmission spectra for the disordered

photonic crystal structures were compared with that for the ideal, non-disordered

structure. The transmission of light through the photonic crystal was modelled for

both ‘ballistic’ light, that emerging from the far side of the structure parallel to

the input beam, and ‘scattered’ light, light emerging at all other angles. For the

case of the incomplete band gap, the transmission coefficients were averaged over

many different configurations of the same disorder parameter. It was found that

for light traveling ballistically through the disordered crystal, small peaks appear in

the transmission dip due to localized photonic states. An increase in disorder led to

more peaks appearing in the transmission dip, the amplitude of the peaks increased

and the transmission dip became broader. For the case of a complete band gap

it was asserted that for the ideal structure the frequency of the minimum of the

transmission coefficient corresponds to the frequency at the centre of the photonic

band gap. It was found for light traveling ballistically through a disordered struc-

ture peaks appeared in the transmission spectra causing an increase in the average

transmission of light at the frequency of the centre of the photonic band gap. The

increase in transmission coefficient over all frequencies was such that the frequency

of the minimum of the transmission coefficient did not change. It was found that a

critical value of disorder was required in order that localized states would appear at

the frequency of the centre of the band gap and hence increase light transmission at

this frequency.

In 2005 Beggs et al. considered the same hexagonal array of air holes in a

dielectric structure with background refractive index n = 3.6 for the polarisation

with a complete band gap. In this study the disorder was in the shift of position of

the cylinder axes from their ideal lattice position [129]. Reflection and transmission

spectra were modelled for the ideal structure and structures with different disorder

parameters. For small amounts of disorder there was little change from the ideal
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case. For increasing amounts of disorder, the transmission dip narrows as localized

states appear at the edges of the photonic band gap. For large amounts of disorder,

states appear across all of the former photonic band gap causing an overall increase

in transmission. This was confirmed by analysis of the density of states; it was shown

using a plane wave method that for small disorder localized states were confined to

the edges of the photonic band gap and that there was an extremely low probability

of a localized state being found at the centre of the band gap. At some threshold

value of disorder the probability of localized states being introduced at the centre

of the band gap increased to a significant value.

Although studies have been carried out on disorder in two-dimensional photonic

crystals, no quantitative relationship to relate the disorder parameter to the relative

width of the photonic band gap has been proposed. Such a relationship has however

been found in the simpler one-dimensional photonic crystals: Kaliteevski et al. [17]

studied disorder in the thickness and refractive index of layers in a one-dimensional

photonic crystal and also combined the two to look at disorder in optical thickness.

They used a transfer matrix method to investigate the effect of disorder on the band

gap. This led to the formulation of an empirical relationship for a threshold disor-

der parameter defined as the ‘amount’ of disorder that a one-dimensional photonic

structure can withstand before the photonic band gap becomes degraded beyond an

acceptable density of states at its centre. This acceptable level was defined by the

ratio, Sth, of the density of states at the centre to that at the edge of the photonic

band gap. The dependence found was expressed as

δth =
5

2
√
− lnSth

√
∆ω

ω0

(4.9)

where ∆ω/ω0 is the relative band width of the photonic band gap. It was found that

the dependence of the threshold disorder parameter, δth was only weakly dependent

on the ratio Sth. Hence the threshold disorder parameter could be approximated for

nearly all cases by the relation

δth ≈

√
1

3

(
∆ω

ω0

)
(4.10)

For ensembles of 106 configurations of structures with the same disorder parameter,

the mean transmission coefficient and its standard deviation were calculated. These
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quantities were plotted as a function of disorder parameter and it was found that

the point at which the standard deviation becomes larger than the mean value was

well described by the threshold disorder parameter, δth given by Equation 4.10. As

δ increases, localized modes appear in the photonic band gap. For δ < δth these

modes appear at the edges of the photonic band gap and cause a slight increase in

transmission coefficient. For δ > δth localized modes may, for some configurations,

appear close to the centre of the photonic band gap, increasing the transmission

coefficient by a much greater amount. The crossing of the mean and standard

deviation is identified as being due to the wide range of values (0 to 1) that the

transmission coefficient for the frequency at the centre of the band gap may take

when δ > δth. This occurs for any individual structure in the ensemble and hence

the standard deviation is greater than the mean value.

The work presented in this chapter considers the same two-dimensional photonic

crystal structure as in [128] and [129] for the case of a complete photonic band

gap and for a range of values of the background refractive index in an attempt to

find a unifying relationship between the disorder parameter and the relative band

width, ∆ω/ω0. The analysis is inspired by the relationship found for one-dimensional

photonic crystals in [17].

4.3 Introduction to OmniSim

The results in this section were obtained by running simulations using the commer-

cially available software package, OmniSim. OmniSim uses Finite Difference Time

Domain (FDTD) calculations to simulate electromagnetic fields propagating through

areas of different refractive index which may be designed within the software. The

FDTD method is a way of computationally calculating electric and magnetic fields

at different points in time and space. It was first proposed in 1966 by K. Yee [130]

and is outlined here.

Maxwell’s equations, given in Equations 1.2 – 1.5, may be discretised in time

and space. It can be seen that the change in electric field with time depends on the

change in magnetic field in space and that the change in magnetic field with time
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depends on the change in electric field in space. For propagation of the field only

in the x-direction, the finite steps in time and space for the electric and magnetic

fields are given by the formulae [131]:

∂f

∂t
≡ lim

∆t→0

f(x, t2)− f(x, t1)

∆t
≈ f(x, t2)− f(x, t1)

∆t
∂f

∂x
≡ lim

∆x→0

f(x2, t)− f(x1, t)

∆x
≈ f(x2, t)− f(x1, t)

∆x
(4.11)

where f may represent either the electric or magnetic field. Hence for each step

forward in time the electric and magnetic fields may be calculated alternately, in a

‘leap-frog’ manner.

The structure under consideration is a slab of semiconductor material contain-

ing a hexagonal array of cylindrical air holes as shown in Figure 4.3. The lattice

parameter a is defined as the distance between the centres of adjacent cylinders and

the angle between each of the outer cylinders is 60◦. To use the FDTD method

a 

x 

z 

y 

Figure 4.3: An x-z plane view of the structure of a hexagonal array of cylindrical

air holes (dark blue) in a slab of semiconductor (light blue) showing the lattice

parameter, a. The y-direction is out of the page.

the structure must be split into a grid of points at which the electric and magnetic

fields can be calculated. As the lattice dimension in the x-direction is an irrational

number (
√

3a/2) the lattice as it stands cannot be split into an integer number of

grid points. Nevertheless it is important for the calculation that the grid sampling
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Figure 4.4: The colours in the grid represent the different refractive indices that are

assigned to each square. Squares completely inside the circle have one refractive

index, squares completely outside the circle have another. The grid on the right has

twice as many squares as that on the left and the circle is more clearly defined.

points occur at the same place within each of the cylinders. To achieve this a ratio

of integers is chosen to approximate the irrational lattice length.
√

3/2 ≈ 0.866.

The ratios 6/7 ≈ 0.857 and 7/8 ≈ 0.875 are equally different from the ratio required

and the 1 by 6/7 grid was chosen. The smaller the grid spacing, the more accurately

the array of cylinders is represented.

Figure 4.4 shows how the computer program interprets the device in terms of the

grid spacing. The 2D device is pixelated into squares. Squares that fall completely

inside the cylinders are assigned refractive index i.e. dark blue colour, squares

that fall completely outside the cylinders are assigned another refractive index i.e.

dark green. Squares that overlap the boundaries (shown light blue, light green

and turquoise in the figure) are assigned an average refractive index by area of

cylinder/background that they cover.

The time interval, δt used by OmniSim is calculated automatically by the FDTD

engine, so that it is just small enough to meet the Courant stability condition, using

the formula [132]

δt = 0.99

√
1

3

grid spacing

c
(4.12)

where c is the speed of light in a vacuum. However, the number of time steps can be

chosen. OmniSim simulates light entering the structure as a pulse and it is impor-

tant to choose a number of time steps large enough that the pulse has completely

traversed the structure and that any reflections have had time to decay away. The

number of time steps used was chosen by running several initial calculations with
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increasing numbers of time steps until the output did not change. As with all com-

putational methods, the accuracy of the calculation becomes limited by the length

of time available.

Using a pulsed input gives a whole range of frequency responses with just one

calculation. A sinusoidal pulse may be written as a function of time:

f(t) = sinω0t (4.13)

for |t| < τ/2. The Fourier transform of this function is

F (ω) =

∫ ∞
−∞

f(t) exp (iωt) dt =

∫ τ/2

−τ/2
sinω0t exp (iωt) dt

=
1

2i

∫ τ/2

−τ/2
exp (i(ω + ω0)t)− exp (i(ω − ω0)t) dt

F (ω) = −i
(

sin [(ω + ω0)τ/2]

ω + ω0

− sin [(ω − ω0)τ/2]

ω − ω0

)
. (4.14)

Function 4.14 has zeros where (ω ± ω0)τ/2 = nπ and n is an integer value. This

means that frequencies given by Equation 4.15:

ω =
2nπ

τ
± ω0 (4.15)

are not represented by the sinusoidal pulse. The longer the pulse duration, the fewer

frequencies are missed. As explained later, the frequency we are most interested in

is that corresponding to the centre of the band gap for each of the photonic crystals

under consideration. Therefore it was necessary to choose a pulse time such that

the centre of band gap frequency, and those close to it, were not missing from the

calculations.
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4.4 The photonic crystal structure

4.4.1 The ideal structure

The ideal structure is that of a perfect photonic crystal with the radius, r0 of every

air cylinder being the same: r0 = 0.4a. The ideal structure as it appears in OmniSim

is shown in Figure 4.5. The program models light propagating through the structure.

Light is ‘emitted’ from the excitor, shown in yellow at the bottom of Figure 4.5 and

‘detected’ by the two sensors, shown in shades of red. The bright red line is sensor

1 and the darker red line at the top of the figure is sensor 2. For this investigation

the light is TM-polarised so that the photonic crystal under consideration has a

complete band gap, the non-zero field components are Ex, Ez and Hy. The device

dimensions are 15 µm in the z-direction by 15.5 µm in the x-direction where the

extra 0.5 µm in the x-direction allows for the placement of the excitor and sensors.

The ideal photonic crystal should also be infinite in order to avoid the effects of any

edges therefore boundary conditions were applied at the edges of the device, in the

x-y plane at z = ± 7.5 µm to simulate periodic repetition of the device. The lattice

parameter, a = 1.0 µm.

In our investigations several different refractive indices are considered for the

substrate. GaN has a refractive index n = 2.43, other refractive indices were then

chosen without specific reference to any named material. The lowest refractive

index considered was n = 1.8, below this value the photonic band gap for the TM-

polarisation is very small due to the low contrast between the holes and the substrate.

Above a substrate refractive index of n = 3.0 the results from the OmniSim program

were not consistent, with instabilities possibly being due to the large refractive index

contrast. Therefore data collected for n ≥ 3.0 has been excluded and the highest

refractive index considered in the analysis was n = 2.7.

The band structure for a photonic crystal consisting of a slab of GaN with

cylindrical air holes in a hexagonal array is illustrated in Figure 4.6. The black lines

give the band structure for the TM-polarisation while the red dashed lines give the

band structure for the TE-polarisation. It can be seen that there is a complete band

gap for the TM-polarisation between the first and second bands that exists in all
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sensor 2

x

z
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Figure 4.5: Screen shot of the ideal structure as it appears in OmniSim. The

radius of each air cylinder is 0.4a where a is the lattice parameter. The light blue

background represents the substrate material. The photonic crystal has varying

dielectric constant in the x-z plane and is homogeneous in the y-direction. The

excitor (yellow) and the two sensors (red) are indicated.
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M K

Figure 4.6: The band structure for TM (black) and TE (red) polarised light in a

GaN slab (refractive index n = 2.43) with a hexagonal array of cylindrical air holes

each with radius 0.4a. The inset shows the first Brillouin zone of the ideal crystal

and marks the wavevector directions within the crystal.

wavevector directions simultaneously. The TE-polarisation has an incomplete band

gap and is not considered in the work presented in this thesis. The relative band

width is defined as ∆ω/ω0 where ∆ω is the frequency difference between the upper

and lower bands either side of the band gap and ω0 is the frequency at the centre

of the band gap.

The band gap of the ideal crystal structure may also be shown as a dip in the

relative transmission of a TM-polarised light pulse across the crystal. Figure 4.7

shows the amount of light at different frequencies recorded at sensor 2 relative to

that passing though sensor 1 (see Figure 4.5). The large dip in the transmission

corresponds to frequencies for which propagating states do not exist in an infinite

crystal - the photonic band gap. The dip in the curve is not perfectly smooth and

this is an artifact of the simulation process and the fact that the crystal under

consideration is not infinite.
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Figure 4.7: Relative transmission of a TM pulse across an ideal photonic crystal

structure such as that shown in Figure 4.5 with GaN as the background material.

4.4.2 The disordered structure

For the disordered structures, the level of disorder is defined by the same parameter

δ as used in [128]. The radius of each of the cylinders in the array is randomly

attributed a value in the range r0 (1− δ) to r0 (1 + δ) such that the distribution of

radii is that shown in Figure 4.8.

Figure 4.8: The distribution of cylinder radii depending on the disorder parameter,

δ.

The maximum disorder parameter that can be considered before the cylindrical

air holes start merging into larger, non-uniform areas of refractive index n = 1.0 is
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Figure 4.9: An example disordered structure as it appears in OmniSim. The radius

of each cylinder is randomly attributed from a distribution about r0 = 0.4a where

a is the lattice parameter, as shown in Figure 4.8.

given by

0.5a = rmax = r0(1 + δmax) (4.16)

where a is the lattice parameter. We have r0 = 0.4a and therefore the maximum

disorder parameter that may be considered is δmax = 0.25.
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4.5 Analysis

The following sections describe two different ways of analysing the data given by the

simulations. An analysis of the flux transmitted through the photonic crystal gives

an interpretation of the threshold disorder parameter δFth and a directional analysis of

the energy flow through the structure gives an interpretation of a differently defined

threshold disorder parameter δEth.

Flux analysis

For this analysis, the total flux transmitted through sensor 2, relative to the total

flux transmitted through sensor 1, as a function of frequency was recorded from the

OmniSim simulations. For each value of the disorder parameter δ, the simulation

was run with ten different random configurations of the cylinders with disordered

radii. In each case the flux was recorded and a threshold disorder, δFth was defined

to be the disorder value at which the standard deviation of the fluxes for different

configurations became greater that the mean value. The reference for this analysis

is the flux through sensor 1.

Energy analysis

In the next analysis, the real and imaginary parts of the Hy field component were

recorded from the simulation as a function of position along sensor 2 for the fre-

quency at the centre of the photonic band gap. This was used to calculate the

energy flow through sensor 2 as a function of scattering angle. Following [128] and

[129] we consider ‘ballistic’ and ‘scattered’ light separately. Light passing through

sensor 2 with scattering angle close to zero is defined as ‘ballistic’, whereas light

passing through sensor 2 with all other scattering angles is defined as ‘scattered’. It

may be the case that some light undergoes multiple scattering events before passing

through sensor 2 with scattering angle close to zero and is designated as ballistic

light. In this analysis the threshold disorder, δEth is defined as the disorder value for

which the energy in the scattered light becomes greater than that in the ballistic

light. The reference for this analysis is the total energy flow through sensor 2.
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We present empirical formulae relating the different threshold disorder parameters to

the relative band width and separately to the mean refractive index of the photonic

crystals. The frequency limits of the band gap for photonic crystals with different

substrate refractive indices are also considered.

4.5.1 Flux analysis

It is known that disorder in a photonic crystal causes degradation of the photonic

band gap e.g. [17]. For small values of disorder this affects only the edges of the

band gap but for larger values of disorder, states may appear towards the centre

of the band gap. To investigate the quality of the centre of the photonic band

gap, simulations to calculate the relative flux transmitted through the crystal were

carried out. The total flux transmitted through sensor 2 was recorded as a function

of frequency relative to the total flux transmitted through sensor 1. The thick black

line in Figure 4.10 shows the relative transmitted flux as a function of frequency

for the ideal photonic crystal with background refractive index n = 2.7. Similar

simulations were carried out for photonic crystals with a degree of disorder in the

radii of the air cylinders. The thin dotted black line in Figure 4.10 shows the

relative transmitted flux in the case of one random configuration of disordered radii

with disorder parameter δ = 0.18. As discussed in Section 4.2, defects in photonic

crystals cause states to appear in the photonic band gap. In this investigation

we are interested in the effect of disorder applied to the whole crystal rather than

individual defects. Therefore, in order to smooth artifacts arising from any particular

distribution of the range of radii, the simulation was run for ten different random

configurations for each disorder parameter. The thick red line in Figure 4.10 shows

the mean relative transmitted flux for 10 random configurations of disorder with

δ = 0.18. We note that ten is not a very large number of configurations from which

to calculate statistics however the number of simulations was restricted by the time

taken to run each one.

For each value of disorder we were interested in the effect on the transmission
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Figure 4.10: Relative transmitted flux as a function of frequency for the ideal struc-

ture (thick black line) with background refractive index n = 2.7, a randomly disor-

dered structure with δ = 0.18 (thin black line) and the mean relative transmitted

flux for 10 random configurations of disorder parameter δ = 0.18 (red).

at the frequency at the centre of the band gap, ω0. In order to take into account

any peaks close to the centre, the arithmetic mean and standard deviation of the

relative transmitted flux values for frequencies in the mid-1/20th of the band gap

were calculated. The mid-1/20th of the band gap was chosen following the works of

Kaliteevski et al. [128] – [17]. Preliminary calculations showed that the mean taken

over the mid-1/10th or mid-1/40th differed from the mid-1/20th by less than 4 % at

disorder parameter δ = 0.18.

Figure 4.11 shows the mean and standard deviation of the relative transmitted

flux, in the relevant frequency range, as a function of disorder parameter δ, for

photonic crystals with different background refractive indices: a) n = 1.8, b) n = 2.0,

c) n = 2.2, d) n = 2.43, e) n = 2.7. The thick black line is a b-spline fit to the mean

relative transmitted flux for frequencies in the mid 1/20th of the band gap. The

thick red line is a b-spline fit to the standard deviation of the same set of values.

All cases in Figure 4.11 show an increasing amount of light transmitted at the
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central frequency of their respective photonic band gaps with increasing disorder

except for graph b) which exhibits a decrease in transmission for the highest level

of disorder considered. This may be an artifact of the random configurations of

disorder considered.

Kaliteevski et al. [17] found that, for the case of one dimensional photonic crys-

tals with disorder imposed on the thickness of the layers, the threshold disorder

parameter could be approximated by the relation given in Equation 4.10. For en-

sembles of many structures with the same disorder parameter, differing from each

other only by the random fluctuations in layer thickness, the mean transmission co-

efficient and its standard deviation were calculated. These quantities were plotted

as a function of disorder parameter and it was found that the point at which the

standard deviation became larger than the mean value was well described by the

threshold disorder parameter, δth given by Equation 4.10. Defining the threshold

disorder for the two-dimensional case in a similar manner we have that δFth is the

disorder parameter for which the standard deviation of the relative transmitted flux

for frequencies in the mid 1/20th of the photonic band gap becomes greater than

the mean. This threshold is indicated in a) to e) in Figure 4.11 by the right hand

dotted green construction lines . The dotted black lines in Figure 4.11 indicate the

mean relative transmitted flux plus one standard deviation and the horizontal green

construction line intersects to give an estimate of the one standard deviation error

on δFth.

Figure 4.12 shows the threshold disorder parameter δFth as a function of the

relative band width ∆ω/ω0 for the complete band gap measured in the M direction

of the crystal (illustrated in Figure 4.6).

Although there is a slight decrease in threshold disorder with increasing relative

band width, the horizontal red line shows that a constant δFth of 0.2048 ± 0.0012 fits

the data within the estimated error bounds and the variation of δFth with relative

band width is negligble.
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Figure 4.11: The mean (solid black) and standard deviation (red) of transmitted

flux in the mid 1/20th of the photonic band gap for structures with background

refractive index a) n = 1.8, b) n = 2.0, c) n = 2.2, d) n = 2.43, e) n = 2.7. The

dotted black line shows the one standard deviation error bound on the mean. The

green construction lines show the threshold disorder, δFth (right) and the lower error

bound (left).
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Figure 4.12: Threshold disorder parameter δFth, defined as the point at which the

standard deviation of the relative transmitted flux becomes greater than the mean,

as a function of the relative band width ∆ω/ω0.
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4.5.2 Directional energy analysis

We now consider the energy flow through sensor 2 as a function of the scattering

angle θ. The wavevector of the input pulse, kin, is in the x-direction, perpendicular

to the sensor. Its magnitude is given by

kin =
2πn

λ
= nk0 (4.17)

where n is the background refractive index of the photonic crystal slab and λ is

the free space wavelength chosen to be that corresponding to the frequency at the

centre of the photonic band gap. The background refractive index is used because

the excitor and both of the sensors are placed in the background material and not in

contact with any of the air holes. Any scattered wave with a component, kz parallel

to the sensor has scattering angle given by

θ = sin−1

(
kz
nk0

)
. (4.18)

We can also calculate the wavevector component in the x-direction:

kx =
√
k2

in − k2
z . (4.19)

To calculate the energy flow, Parseval’s thereom may be used for both space and

time:∫ ∞
−∞

∫ ∞
−∞

f(z, t)g∗(z, t)dz dt =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

F (kz, ω)G∗(kz, ω)dkz dω (4.20)

where F (kz, ω) and G(kz, ω) are the Fourier transforms of f(z, t) and g(z, t) respec-

tively. We have that:∫ ∞
−∞

∫ ∞
−∞

Hy(z, t)E(z, t)dz dt =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

Hy(kz, ω)E(−kz,−ω)dkz dω

=
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

Hy(kz, ω)E∗(kz, ω)dkz dω(4.21)

where, for the TM-polarisation used in this investigation, the non-zero field com-

ponents are Ex, Ez and Hy and it is assumed that there is only an Hy component

to the magnetic field even in the presence of scattering. Poynting’s vector may be
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calculated as:

E×H =

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

Ex 0 Ez

0 Hy 0

∣∣∣∣∣∣∣∣∣ (4.22)

= (−EzHy) x̂+ (ExHy) ẑ (4.23)

We know that Ex,z(kz, ω) is perpendicular to Hy(kz, ω) and that it must be ori-

entated such that the energy flow is along the direction of the scattered wavevector,

ks which is defined by the scattering angle θ given in Equation 4.18. The magnitude

of Ex,z(kz, ω) can be calculated using

Ex,z(kz, ω) = ZHy(kz, ω)

=
cµ0

n
Hy(kz, ω) (4.24)

where c is the velocity of light, n is the refractive index, µ0 is the permeability of

free space and Z is the wave impedance. The electric field components obtained in

this way are consistent with the output from OmniSim.

The integral, Equation 4.20 tells us that the fields at ±ω and ±kz contribute to

the energy flow per unit frequency per unit wavevector:

S =
1

2π
[Hy (kz, ν)E∗x,z (kz, ν) +Hy (−kz,−ν)E∗x,z (−kz,−ν)

+Hy (kz,−ν)E∗x,z (kz,−ν) +Hy (−kz, ν)E∗x,z (−kz, ν)] (4.25)

where we have converted from ω to the frequency in terms ν = ω/2π. The first two

terms give the energy flow in the direction +θ and the second two terms give the

energy flow in the direction −θ. Using

Hy (−kz,−ν)E∗x,z (−kz,−ν) = H∗y (kz, ν)Ex,z (kz, ν) (4.26)

we have that the energy flow per unit frequency (ν) per unit wavevector (kz) is equal

to twice the real part of Equation 4.25:

S =
1

π
Re
[
Hy (kz, ν)E∗x,z (kz, ν)

]
(4.27)
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n λ/ µm kin / µm−1

1.8 2.2161 5.1034

2.0 2.3202 5.4161

2.2 2.4213 5.7089

2.43 2.5349 6.0232

2.7 2.6667 6.3616

3.0 2.8121 6.7030

Table 4.1: Values for the incident wavevector, kin for structures with different back-

ground refractive indices, n and wavelength λ at the centre of their photonic band

gap.

Sometimes a more useful quantity is energy flow per unit frequency per unit scat-

tering angle. Writing:

kz = nk0 sin θ

dkz = nk0 cos θ dθ

dkz = kx dθ =
√
k2

in − k2
z dθ (4.28)

the energy flow per unit frequency per unit scattering angle is given by:

S =
kx
π

Re
[
Hy (kz, ν)E∗x,z (kz, ν)

]
S =

√
k2

in − k2
z

π
Re
[
Hy (kz, ν)E∗x,z (kz, ν)

]
. (4.29)

In cases where kz > kin the wavevector kx is imaginary indicating an evanescent

wave, and there is no real energy flow across the sensor. The values for kin for the

structures under consideration are given in Table 4.1.

In the calcualtions carried out the OmniSim simulations give the real and imag-

inary parts of the field component Hy at discrete points along the second sensor for

a specific frequency. The grid spacing used was 0.07143 µm and the simulations

were set up so that in each case the frequency corresponded to the centre of the

band gap. The real and imaginary parts of Hy(z) were Fourier transformed to give

Hy(kz) using a Fast Fourier Transform algorithm in the analysis software OriginPro

8.1.
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With Hy(kz) = a+ ib it follows that:

Re
[
Hy (kz, ν)E∗x,z (kz, ν)

]
= Z(a2 + b2) (4.30)

where Z is the wave impedance. As an example, the Fourier transform of the Hy

component of the field at sensor 2, for an ideal photonic crystal with background

refractive index 2.7, is shown in Figure 4.13. The field contribution with kz close to

Figure 4.13: The Fourier transformed Hy field component at sensor 2 for a 2D

hexagonal photonic crystal.

zero, the central peak, corresponds to light emerging from the structure in the x-

direction and essentially parallel to the incident pulse. The other main contributions

to the field at kz values in multiples of ±2π occur due to light scattering from the

lattice of air holes.

Following [128] and [129], we consider separately the ‘ballistic’ and ‘scattered’

light. In these papers, ballistic light is defined to be that which emerges from

the photonic structure with a wavevector parallel to that of the input wave and

scattered light is that with all other wavevectors. For this thesis, in order to work

with the output from the simulations, we consider the scattering angle: the smallest

difference in scattering angle that can be considered is defined by the finite size of
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the structure shown in Figure 4.5, in the z-direction which we denote by L. We note

that the simulation applies periodic boundary conditions on the structure in the

z-direction. This ensures that there are no reflections from edges in the structure

but does not allow for L to be considered infinite for the purposes of calculating the

finite increments in scattering angle. The smallest interval that can be resolved in

reciprocal space is given by

∆k =
2π

L
(4.31)

which, in these simulations with L = 15 µm, gives ∆k = 0.4189 µm−1. It follows

that the smallest increment in scattering angle is given by

∆θ = sin−1

(
∆k

nk0

)
(4.32)

and hence the angular resolution depends on the material under consideration. We

define ballistic light to be that emerging from the photonic structure at an angle less

or equal to than ±∆θ. Any waves with a greater scattering angle are considered as

scattered light.

In the analysis of Equation 4.29 we may consider any contribution to the energy

flow per unit frequency per unit scattering angle for the ideal crystal outside of

the ballistic range, to be subtractable from the corresponding results for disordered

systems as a background correction. Figure 4.14 is obtained from Equation 4.29

for the ideal structure (black) with background refractive index n = 2.7 and for

one configuration of each of four levels of disorder (shown in colour). The black

line, excluding the central peak at θ = 0 can be subtracted from the coloured lines

leaving the energy flow per unit frequency per unit scattering angle that results from

the disorder. In a few cases making this background correction returns a negative

value for the energy, which is unphysical but arises due to the imperfect nature of

simulations. The negative values are very small (less than 0.05% of the positive

peak values) and so are simply set to zero.

It can be seen in Figure 4.14 that as the disorder parameter increases the amount

of energy per unit frequency across all scattering angles increases significantly. At

large scattering angles there is roughly a 2 order of magnitude increase in the trans-

mitted energy between δ = 0.05 and δ = 0.2. Disorder creates localized states in the
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Figure 4.14: Energy flow per unit frequency into scattering angle θ for the ideal

structure (black) and one configuration each of four levels of disorder: δ = 0.05

(red), δ = 0.10 (green), δ = 0.15 (blue) and δ = 0.20 (cyan).

photonic band gap and as the amount of disorder increases, the number of localized

states increases. The transmission coefficient at frequencies across the band gap is

increased due to the additional states and therefore the transmission coefficient and

the energy flow through the structure also increases.

The background-corrected energy flows as a function of scattering angle are in-

tegrated over all angles and also between ±∆θ. The ballistic light contribution is

given by the second integral and the scattered light contribution is the difference

between the two integrals. Figure 4.15 shows the results of considering ten disorder

configurations to obtain the mean (solid symbols) and standard deviation (open

symbols) for each value of disorder parameter. The data points are fitted with a

b-spline curve. There is roughly a two order of magnitude difference in the energy

flows, both ballistic and scattered, between each of the background refractive indices

considered. The greater the refractive index difference between the background and

the holes, the greater the width of the photonic band gap. A wider photonic band
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Figure 4.15: Total energy in the ballistic (solid symbols) and scattered (open sym-

bols) light passing through sensor 2 for structures with background refractive index:

n = 1.8 (black), n = 2.0 (red), n = 2.2 (green), n = 2.43 (blue), n = 2.7 (cyan)

and n = 3.0 (magenta). The vertical dashed lines indicate the disorder parameter

at which the energy in the scattered light exceeds that in the ballistic light.
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gap means that the energy transmitted through the crystal per unit frequency will

be lower. For each value of background refractive index there is a point where the

energy flow in the scattered light becomes greater than the energy flow in the bal-

listic light. This crossover point is defined as the threshold disorder, δEth, for this

analysis and is indicated in the figure by the vertical dashed lines. As we are inter-

ested in the energy in the ballistic light compared to that in the scattered light, the

actual energy value is not important. An estimate of the error was calculated in a

similar manner to that in Section 4.5.1 by considering the value of the mean plus

one standard deviation at the same value of total energy flow for which the cross

over occurs (this is not represented in the figure). It should be noted that Figure

4.15 displays a logarithmic scale indicating a vast change in behaviour of the system

with the increase in disorder.
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Figure 4.16: Threshold disorder, δEth defined as the point at which the energy in the

scattered light becomes greater than the energy in the ballistic light, as a function

of relative band width with a trend line fit.

Figure 4.16 shows the threshold disorder, as described by the energy flow in the

scattered light becoming greater than the energy in the ballistic light, as a function

of relative band width. Threshold disorder decreases with increasing relative band
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width and the trendline fit (red) is given by

δEth = (0.223± 0.001)− (0.123± 0.005)∆ω/ω0 (4.33)

with an R2 value of 0.9941. This shows a very weak dependence of the threshold

disorder on relative band width.

4.5.3 Mean refractive index

Instead of the relative band width, the mean refractive index may also be used as

a parameter to describe variation in the threshold disorder parameter. The mean

refractive index of the photonic crystal may be calculated by weighting the substrate

and the air holes refractive index by area. The total area of one unit cell is given by

Atotal =

√
3

2
a2 (4.34)

where a is the lattice parameter. The area covered by air holes in one unit cell is

equal to the area of one circle with radius r=0.4a:

Acircle = π(0.4)2. (4.35)

The remaining area has the refractive index of the substrate and is given by

Abg = a2

(√
3

2
− 0.16π

)
. (4.36)

The weighted mean gives the mean refractive index:

n0 =
(Acirclenair) + (Abgnbg)

Atotal

. (4.37)

For the flux analysis, Figure 4.17 shows that changing the dependent variable

has no effect on the constant trendline: δFth = 0.2048 ± 0.0012. The threshold

disorder parameter for the directional energy analysis, δEth may be fitted to the mean

refractive index as:

δEth = (0.294± 0.005)− (0.0670± 0.003)n0 (4.38)

with an R2 value of 0.9894. Figure 4.18 shows the threshold disorder parameter as

a function of mean refractive index as calculated by the directional analysis (black
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Figure 4.17: Threshold disorder, δFth as a function of mean refractive index with a

trend line fit.

points). The red trendline shows the fit given by Equation 4.38 and the green line

shows a numerical fit given by the equation

δEth = 0.12 +
(ω0 −∆ω)n0

6
. (4.39)

Equation 4.39 fits the data within the given error bars, however this is not a phys-

ically meaningful interpretation and so it would not be applied to other systems

without great caution.

4.5.4 Frequency limits

Figure 4.19 shows how the band edges of the photonic band gap of an ideal crystal

vary as the radius r of the air holes is altered for different background refractive

indices n. The dashed lines indicate the centre of band gap frequency for the case

r = 0.4 µm. The range of values of r for which the centre of band gap for r = 0.4 µm

remains in the new band gap is very similar for all three background refractive

indices considered, roughly 0.33 µm – 0.45 µm. This suggests that if the radii of the

cylindrical air holes in the photonic crystal were uniformly increased or decreased
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Figure 4.18: Threshold disorder parameter, defined as the point at which the energy

in the scattered light becomes greater than the energy in the ballistic light, as a

function of mean refractive index. The red trendline shows the fit given by Equation

4.38 and the green line shows the fit given by Equation 4.39.
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Figure 4.19: Upper and lower band edges for the complete band gap of an ideal

photonic crystal structure with all the air holes having radius r. Black represents

a structure with background refractive index n = 1.8, red represents n = 2.2 and

green represents n = 2.7. The horizontal dashed lines indicate the frequency at the

centre of the band gap for the case of air holes with radius r = 0.4 µm.
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by 7% or more the band gap of the new structure would not contain the frequency

corresponding to the centre of the photonic band gap for a structure with air holes

of radius r = 0.4 µm. Although this analysis of the frequency limits of the photonic

band gap corresponds to ideal photonic crystals with the radii of all the cylinders

being the same, we may still gain some insight into the behaviour of disordered

photonic crystals using the same ideas. When disorder is imposed on the radii of

the air cylinders it is reasonable to assume that the band gap of the disordered

photonic crystal varies locally in a manner similar to that for an ideal structure

with the same cylinder radius. For example, a randomly disordered configuration

may have a small area in which the cylinder radii are consistently smaller than the

ideal r = 0.4 µm and in this locality the band gap will be shifted to a slightly

lower frequency range. Similarly, for a small area in which the cylinder radii were

all greater than the ideal r = 0.4 µm the local band gap would be shifted to a

higher frequency range. It should be noted that a photonic band gap is not a local

phenomena and occurs due to periodicity in a photonic crystal structure and so this

brief look at the frequency limits of the band gap of structures with consistently

lower or higher background refractive index can not be used as a reliable model for

a disordered system. However, it does provide a physical picture of the effects of

disorder on the band gap.

4.6 Discussion

The effect of disorder, in a two-dimensional photonic crystal, on the transmission

of light through the structure, including the transmission of ballistic and scattered

light separately, has been studied. The photonic crystal under consideration was a

dielectric slab with a hexagonal array of cylindrical air holes. Disorder was imposed

on the radii of the air holes using random configurations of a uniform distribution

over a range r0(1− δ) to r0(1 + δ) where the ideal hole radius, r0 was 0.4 µm and δ

was the disorder parameter. Dielectric substrates with refractive indices in the range

1.8 to 2.7 were considered. The investigation was carried out with TM-polarised

light in order that the ideal photonic crystal structure should have a complete band
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gap. For substrates with refractive indices below n = 1.8 the photonic band gap

was considered too small due to the low contrast in refractive index between the

substrate and the holes. For substrates with refractive index above n = 2.7 the

contrast was too great for the simulation, leading to instabilities in the results.

The effect of disorder on the total transmission of light at frequencies close to

that of the centre of the photonic band gap for an ideal crystal was found to have

a threshold value close to δ = 0.2 for all substrates considered. This means that for

values of disorder below δ = 0.2 we expect the standard deviation of the transmitted

flux in an ensemble of structures to remain below the mean value. This indicates

that, for most configurations of disorder, any peaks in the transmission minimum

associated with the band gap do not occur at the centre of the band gap and so do

not have a significant effect on the transmission at that frequency. Above δ = 0.2 the

standard deviation becomes greater than the mean, indicating that for a significant

number of configurations of disorder there are peaks in the transmission spectrum

dip towards the centre of the band gap. We would then expect transmission through

the photonic crystal to increase significantly.

The effect of disorder on the energy flow of ballistic and scattered light was

found to be characterised by a threshold disorder parameter that decreased linearly

with relative band width or with mean refractive index. The threshold disorder in

this case marked a change of behaviour in the system such that the energy in the

scattered light exceeded that in the ballistic light. Two equations were proposed

that provide a fit to the simulated data to describe the relationship. The intent was

to numerically match up the coefficients in the trendline using known parameters of

the system. However, this has not been wholly successful and the narrow range of

available data makes it difficult to drawn any substantial conclusions.

Recalling that the definitions of threshold disorder parameter in the two analyses

are different it does not make sense to compare the two directly. The two analyses of

results from the simulation were undertaken on physical grounds rather than strictly

quantitative reasoning. This is because the study of disorder in two-dimensional

photonic crystals is more complex than that for their one-dimensional counterparts.

A study by Ryu et al. [126] that gave quantitative results of the effect of disorder
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in the radii of holes in a photonic crystal structure, suggested that manufacturing

techniques in 1999 were capable of producing holes of a given radius with accuracy

better than 0.01a where a is the lattice parameter of the photonic crystal. This

corresponds to a disorder parameter of δ = 0.05 which is well below the empirical

threshold disorder parameters that have been calculated here. This suggests that

disorder in the radius of holes in photonic crystals due to manufacturing processes

(with this accuracy) would, in reality, have very little effect on the transmission of

light at the frequency corresponding to the centre of the photonic band gap.

Beggs et al. [129] studied the same photonic crystal structure as that considered

in this chapter, but with GaAs as the substrate material, with refractive index

n = 3.7 (greater than the refractive indices considered here). The transmission of

ballistic and scattered light through the structure were modelled separately. As

the disorder parameter increased from δ = 0.1 to δ = 0.2 they found there was

a significant increase in the amount of light transmitted through the structure.

The same trend was found in the photonic crystal structures with lower substrate

refractive indices considered in the work carried out for this thesis.

A study carried out by Zhu et al. [133] considered the effect of radius and

positional disorder on the properties of a photonic crystal microcavity formed by a

missing dielectric rod in a square array of rods in air. They found that disorder in the

radius of the rods had little effect on either the Q-factor or the resonant frequency

of the microcavity, whereas the positional disorder had a significant effect on the

latter. They suggested that altering the position of the centre of the rods has greater

disruptive effect on the periodicity of the lattice than altering the radii. This implies

that positional disorder has a greater effect on the properties of photonic crystals

and it would be interesting to extend this study to include positional disorder.

In conclusion, insufficient data has been obtained in this study to provide a con-

vincing, quantitative relationship between the threshold disorder parameter and the

relative band width of photonic crystals formed from a hexagonal array of holes in a

substrate material with disorder imposed on the radius of the holes. However, as far

as the author is aware, this is a unique attempt to analyse the effect of disorder on

materials with different relative band widths and the method used could be extended
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to consider other forms of disorder or other geometries of photonic crystal. In ac-

cordance with other published results, we have demonstrated qualitatively that low

levels of disorder in the radius of the air holes have little effect on the transmission

of light with frequency close to the centre of the photonic band gap.
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Chapter 5

Summary and future work

Techniques for controlling light and its interactions with matter are currently of

great interest to research communities worldwide. Light-matter interactions exhibit

many interesting fundamental effects as well as the promise of new technology. This

thesis has presented work on different light-matter interactions. Firstly, two types

of polariton have been considered. We have also considered the affect of disorder on

the band gap of photonic crystals.

Exciton-polaritons have a wealth of fundamental physics associated with them

and are promising candidates for many varied applications. The formation of exciton-

polaritons from optical whispering-gallery modes in submicron spheres, also contain-

ing an exciton, have been studied in the materials GaAs, GaN and ZnO. It has been

found that optical modes with a decay constant greater than the polariton splitting

form weakly coupled exciton-polaritons and those with decay constant less than the

polariton splitting form exciton-polaritons in the strong coupling regime. The min-

imum radii of spheres required to support optical modes with various l values have

also been found.

There is currently much interest in exciton-polaritons in ZnO due to their high

binding energy, making possible stable strong coupling at room temperature. We

have shown that, in submicron spheres, the requirement for strong coupling and a

high binding energy must be balanced against the need for strong confinement and

long lifetime of the optical mode. Previous studies of exciton-polaritons in spherical

cavities focused on spheres with larger radius than those with the submicron di-
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mensions considered here, or have been restricted to the case with quantum number

l equal to unity. The studies of exciton-polaritons in spherical cavities have hith-

erto been theoretical while experimental work has focused on planar and cylindrical

microcavities. This is possibly due to the difficulties involved in fabricating suit-

able spherical microcavities. A discussion has been given in Chapter 2 as to how

spherical microcavities have been fabricated for other applications. Further work

on exciton-polaritons in submicron spheres might consider the specific conditions

required for Bose-Einsitein condensation.

Tamm plasmon-polaritons have been shown to be supported by cylindrical Bragg

reflector structures containing a metal core, metal cladding around the outside of

the structure or metal in both of these locations. Cylindrical TPPs can exist in

both the TE and TM polarisations and can also be formed from hybrid cylindrical

modes which do not occur in the planar case. In the case of metal both in the core

and around the outside of the fibre it has been shown that two split modes can be

supported with a frequency difference in the terahertz regime. Cylindrical TPPs

have been shown to have low effective masses and those with values of β close to

zero have been shown to have low group velocities. The calculations presented in

this thesis are for a lossless metal. Also, for the cases with metal on the outside

of the structure, the metal was ‘infinite’ so there was no transmission loss. While

these simplifications are not expected to have significant implications for the pre-

diction of the modes of the system, further work to include loss in the model will be

important for predicting the detailed results of spectroscopy experiments. It would

be interesting to extend the analysis of Tamm plasmon-polaritons to the spherical

geometry. However, it is likely to be even more difficult to fabricate a spherical

Bragg reflector than a cylindrical one. Further work on Tamm plasmon-polaritons

in cylindrical structures might also include changing the distribution of metal, for

example, it may be possible to generate light with high orbital angular momentum

by including metal in stripes on the outside of the structure parallel to the fibre

axis. In the planar case, it has been shown that Tamm plasmon-polaritons may be

coupled to exciton-polaritons - this could also be investigated in the cylindrical case.

Both aspects of the work on polaritons presented here would now benefit from
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experimental work being carried out to verify the theoretical calculations presented

and to explore related physical effects.

Finally in this thesis another type of light-matter interaction has been considered.

The effect of disorder in a two-dimensional photonic crystal on the total transmission

of light and on the energy flow in ballistic and scattered light has been studied. The

photonic crystal under consideration was a dielectric slab with a hexagonal array

of cylindrical air holes, with disorder taking the form of a random distribution of

hole radii over a range defined by a disorder parameter. Dielectric substrates with

refractive indices in the range 1.8 to 2.7 were considered. Empirical, numerical

relationships between relative band width, the ratio of the width of the photonic

band gap to the frequency at the centre of the band gap for the ideal photonic crystal,

and the threshold disorder, defined in two different ways, have been proposed. These

show that there is little dependence of the threshold disorder parameter on relative

band width. Further study may allow this to be presented more analytically. As it

seems that disorder in the hole radii does not have a great effect on the photonic

crystal properties it would be interesting to run a similar investigation for another

type of disorder, for example disorder in the position of each cylinder axis. Other

groups have already studied the effects of positional disorder on the photonic band

gap but these investigations have been restricted to one type of substrate and do not

attempt to provide a general relationship between relative band width and threshold

disorder.
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[91] I. Tamm. Über eine mögliche art der elektronenbindung an kristalloberflächen.
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Appendix: Reflection from a

Bragg reflector

Consider an N layer Bragg reflector with alternating layers of refractive index nA

and nB with thicknesses a and b respectively such that the optical thickness of each

layer is:

nAa = nBb =
πc

2ω0

(1)

where ω0 is the Bragg frequency. The transfer matrix, T̂N relating the fields on

either side of the N layers in given in [93] as

T̂N =

 AUN−1 − UN−2 BUN−1

CUN−1 DUN−1 − UN−2

N

(2)

where A, B, C and D are constants, UN = sin[(N + 1)qd]/ sin[qd], d = a + b the

thickness of one period and q is found from the dispersion relation:

cos(qd) = cos(kAa) cos(kBb)−
1

2

(
kB
kA

+
kA
kB

)
sin(kAa) sin(kBb). (3)

The reflection coefficient is given by

rBR =
CUN−1

AUN−1 − UN−2

=
C

A− sin[(N − 1)qd]/ sin[Nqd]
. (4)

Considering a frequency close to the Bragg frequency, ω = ω0 + δω and using

Equation 1 we have

kAa =
n1a

c
(ω0 + δω) =

π

2
+ nAaκ

kBb =
n2b

c
(ω0 + δω) =

π

2
+ nBbκ (5)
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where κ = δω/c. For the case δω is small such that we can use the small angle

approximations for sin and cos and neglect second order and higher terms in κ, the

dispersion relation in Equation 3 simplifies to

cos(qd) = −1

2

(
nB
nA

+
nA
nB

)
. (6)

Looking for solutions of the form qd = π + ix and using the relation cos(ix) =

cosh(x) = (ex + e−x)/2 we have

ex + e−x =
nB
nA

+
nA
nB

(7)

and ex may be given by either nA/nB or nB/nA. Substituting qd = π + ix into the

sin term in the denominator of Equation 4 we have

sin[(N − 1)qd]

sin[Nqd]
= −sinh[(N − 1)x]

sinh[Nx]

= −eNxe−x − e−Nxex

eNx − e−Nx

≈ −e−x (8)

for a large number of layers, N in the Bragg reflector. For a wave that decays into

the Bragg reflector we require that

eiqd = eiπe−x = −e−x (9)

and we should choose e−x = nB/nA.

Using values for the constants A and C as given in [93] in Equation 4 we obtain

for the TE polarisation:

rBR =
e−ikAa

[
i
2

(
kB
kA
− kA

kB

)
sin(kBb)

]
e−ikAa

[
cos(kBb)− i

2

(
kB
kA

+ kA
kB

)
sin(kBb)

]
+ nB

nA

. (10)

Using equation set 5 and the small angle approximations, neglecting second order

or higher terms in κ:

sin
(π

2
+ nBbκ

)
= cos(nBbκ) ≈ 1

cos
(π

2
+ nBbκ

)
= − sin(nBbκ) ≈ −nBbκ. (11)
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Hence we have

rBR =

(
nB

nA
− nA

nB

)
2inBbκ−

(
nB

nA
+ nA

nB

)
− 2inB

nA
eikAa

. (12)

After some rearranging and writing Equation 12 as a Taylor series we can write

rBR = exp

[
iπ

nB
nA − nB

δω

ω0

]
(13)

for the case nA > nB. It should be noted that this expression was derived using

the constants A and C in Equation 4 for the TE-polarisation however using the

analogous TM-polarisation constants eventually gives the same solution. Similarly

for the case nB > nA the reflection coefficient is found to be:

rBR = − exp

[
iπ

nA
nB − nA

δω

ω0

]
. (14)

The expressions for the reflection coefficient given in Kaliteevski et al.’s paper

[41] are different as they are measured a distance a from the first interface which

results in an additional phase difference:

2akA = 2
(π

2
+ nAaκ

)
= π

(
1 +

δω

ω0

)
(15)

and then we have

r̃BR|nA>nB
= − exp

[
iπ

nA
nA − nB

δω

ω0

]
r̃BR|nB>nA

= exp

[
iπ

nB
nB − nA

δω

ω0

]
(16)

where the tilde denotes the reflection coefficients as they appear in [41].
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