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Abstract

The commonly held view of the tumor suppressor p53 as a regulator of cell proliferation, apoptosis and 
senescence has expanded greatly in recent years to cover many biological processes as well as external and 
internal stress responses. Since the discovery over 30 years ago of p53 as a cellular protein that co-precipitates 
with the large T antigen of Simian Virus SV40, there has been an intertwining of p53 activities with immune-
related processes, especially as relates to cancer. A variety of interactions between the p53 and the immune stress 
systems are currently being addressed that suggest opportunities to utilize p53 in modulating immunological 
activities.  Here, we discuss those interactions along with implications for human disease.

p53 in the immune response:  the ace up 
the sleeve

The tumor suppressor p53 is a sequence-specific 
transcription factor that is activated in response to various 
cellular stresses such as DNA damage, oncogene over-
expression and associated uncontrolled cell proliferation. 
p53 functions mainly as a transcription factor and is a key 
component in preventing cancer development through 
regulation of apoptosis, cell cycle and senescence genes 
thereby helping to maintain genome stability within an 
organism. Alterations of p53 function through mutation 
or misregulation in the p53 network are common features 
in human cancers with over 80-90% of tumors having 
an altered p53 pathway [1, 2]. However, in recent years 
this “guardian of the genome” has been established as 
central to many additional biological processes including 

autophagy, fertility, “stemness,” nutritional responses, 
development of cell motility/migration and cell-cell 
communication [3-5]. Recent studies have emphasized 
the role of p53 in modulating the human immune system, 
one of the most important defenses against external as 
well as internal threats including tumorigenesis.

In this review we explore the interactions between 
p53 and the immune system. The focus is mainly on the 
role that wild type (WT) p53 plays in immune-related 
processes such as inflammation, innate and adaptive 
responses as well as functional interactions of p53 with 
NF-kB, which is considered a key regulator in immune 
responses. Emphasis is placed on p53 as a transcription 
factor in modulating expression of target genes involved 
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Figure 1. Interactions of p53 with the immune system.

in immunity pathways (see Figure 1).
The immune system is a collection of biological 

processes whose tasks in preventing disease include 
identification and destruction of pathogens and tumor cells. 
Given the broad diversity in p53 controls and functions, 
it is not surprising that p53 touches multiple aspects of 
immunity. For example, DNA damage can trigger p53 
responses that help orchestrate clearance of damaged cells 
via the innate immune system [6, 7], which can influence 
tumor suppression. In addition p53 is up-regulated at sites 
of inflammation [8, 9], likely due to the appearance of 
reactive oxygen species (ROS) that might damage DNA 
and proteins.  The seminal work of Xue and colleagues 
[10] demonstrated the functional relationship between 
p53 and the immune system in a mouse liver carcinoma 
model containing a “switchable” p53. In this study they 
showed that p53 and the immune system can cooperate to 
promote tumor clearance. They found that p53-dependent 
tumor regression was related to induction of a tumor 
cell-senescence program, associated differentiation, up-
regulation of pro-inflammatory cytokines and activation 
of innate immune response.  

p53 also appears to be involved during the generation 
of immune cells. In agreement with its role as a modulator 
in stem cell appearance, p53 can limit expansion of 
hematopoietic stem cells (HSC) [11, 12]. The HSC 
are multipotent, self-renewing progenitor cells for all 
differentiated blood cells in the lymphoid and myeloid 
lineages. Some responses during the interplay of p53 with 
the inflammatory and innate immune response appear also 
to be evolutionarily conserved across species. Recently, 
Fuhrman and collaborators [13] found that in the worm 
Caenorhabditis  elegans the nucleolar proteins and p53 

transcriptional activity play a role in defense responses 
against bacterial infections. They observed that activation 
of innate immunity through inhibition of nucleolar 
proteins requires potential immune effectors whose 
expression in worms in response to stress is regulated by 
the p53 homologue CEP-1 .

Inflammation and p53: maintaining 
homeostasis

Inflammation, a common immune response, is a protective 
first-responder attempt to remove injurious stimuli and to 
initiate healing. It is a complex signal-mediated reaction 
by vascular tissues to cellular insults such as pathogens 
and infectious agents, toxins, physical stress or damaged 
cells. Acute inflammation is an important mode of 
immune response, while chronic inflammation can cause 
tissue destruction or even autoimmunity. 

p53 has several roles in inflammation including 
modifying cell growth and cellular behavior in response 
to DNA and inflammatory stressors. p53 is activated by 
DNA damage that is induced by both ROS and reactive 
nitrogen species (NOS) that are produced during 
inflammation [5, 14]. Also, the regulation of cellular 
ROS levels has been suggested to involve interaction of 
WT p53 with its D40-p53 and D133-p53 isoforms [14]. 
Mice that constitutively express an analogue of human 
D133-p53 (D122-p53) develop an autoimmune phenotype 
characterized by increased production of autoantibodies 
and pro-inflammatory cytokines [15]. p53 is also 
responsive to other inflammatory stressors such as TNFα 
[16].

As a transcription factor, p53 can modulate expression 
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of several genes encoding enzymes involved in both 
production or elimination of reactive species contributing 
to inflammation including, for example, up-regulation 
of the antioxidant glutathione peroxidase (GPX1) 
[17], aldehyde dehydrogenase 4 (ALDH1) [18] and 
cyclooxygenase 2 (COX2) [19]. p53 also transactivates 
genes encoding pro-oxidant or redox active proteins, 
including the ROS generating enzyme proline oxidase 
(POX) [20] and NCF2/p67hox [21]. NCF2 is the cytosolic 
subunit of the NADPH oxidase enzyme complex 
involved in production of NADP+ and superoxide from 
molecular oxygen. Also, p53 can mediate repression of 
genes affecting ROS repression including the inducible 
nitric oxide synthase NOS2 genes and the mitochondrial 
superoxide dismutase SOD2 [22]. 

Thus, p53 can play a significant role in modulating 
intracellular ROS/NOS levels to aid in appropriate 
balance of the inflammatory responses. In addition, since 
p53 is subject to modifications in the presence of reactive 
compounds, it can be considered a cellular sensor of redox 
changes [23]. Modulations of the p53 redox state can 
affect cell signaling as well as influence cell and tissue 
integrity [24]. 

The relationship between p53 and pathogenesis 
of inflammation-associated cancer and other immune 
related diseases extends beyond induction/restriction of 
inflammatory responses, all of which can be affected by 
p53 expression, mutation or alterations in its regulatory 
pathway. For example, there is greater invasion of 
inflammatory and fibroblast cells into IR damaged 
tissues in p53-null compared to WT mice [25]. Several 
autoimmune disorders characterized by increased 
or deregulated inflammation including rheumatoid 
arthritis, ulcerative colitis and lupus (systemic lupus 
erythematosus-SLE) exhibit elevated p53 protein or 
defective p53 functions [26-31], tying p53 dysfunction 
to autoimmunity. Furthermore, increased p53 protein 
expression within inflamed tissues has been associated 
with the appearance of somatic dominant-negative p53 
mutations [29, 32, 33]. 

Innate and adaptive immune responses in p53 null 
mice can be skewed toward pro-inflammation, suggesting 
p53 may act as a negative regulator of inflammation 
(34-40). Additionally, p53 null mice are susceptible 
to autoimmune diseases including collagen-induced 
arthritis [31] and experimentally induced autoimmune 
encephalitis [34]. Also, p53 can directly repress IL-4 [35], 
IL-6 [36] and IL-12 [37] promoter activities in murine 
cells, consistent with the view that p53 may inhibit 
autoimmune inflammation by suppressing the expression 
of inflammatory cytokine encoding genes.  Moreover, as 
discussed below, p53 may inhibit inflammation through 
suppressing the mostly pro-inflammatory NF-kappa B 
transcription factor [38, 39].

p53, viral infections and immune 
responses

Up-regulation of p53 in response to viral infections is a 
part of host cell defenses. For example, increased p53-
dependent apoptosis can reduce viral replication [40]. 
Furthermore, “super p53 mice” that carry an extra p53 
gene have slightly increased immune response over that 
in mice with 2 copies, and they are more resistant to viral 
infections than p53 null mice, which is due in part to the 
absence of a p53 apoptotic response in null mice [41].   

Since the discovery over 30 years ago of p53 as a 
binding partner of SV40 LTag [42], its interaction with 
viral proteins provided early insights into p53 function 
[43-47]. Over the years, infections by several viruses, 
including Epstein-Barr, adenovirus, influenza A and HIV-
1, were shown to activate the p53 pathway.  The induction 
of p53 can lead to cell cycle arrest and apoptosis of the 
infected cells, which can result in control or elimination 
of the infection in human cells [48-50]. (Also, see recent 
reviews by Lazo and Santos [51] and Sato [52] for 
extensive descriptions of p53-virus interactions as well as 
mechanisms of inactivation.)

The ability of viruses to alter p53 functions and 
pathways is an important step in their establishment 
and pathogenesis in animal hosts. Described in Table 
1 are examples of viral proteins that interact with p53. 
Viruses can disrupt p53 functions either directly or 
through cellular factors involved in downstream activities 
so as to override cell-cycle checkpoints or protect cells 
from p53-dependent apoptosis. p53 can be sequestered 
and/or inactivated by posttranslational modifications 
(phosphorylation, ubiquitination) induced by viral 
proteins or by modulation of host enzymes such as 
Mdm2 that promote proteasome degradation of p53 (see 
review by Lazo and Santos [51]). Soria and colleagues 
[53] recently reported that in addition to degradation 
of p53, which can be induced by adenovirus E1B-55k 
protein, another adenoviral protein E4-ORF3 promotes de 
novo H3K9me3 heterochromatin silencing at p53 target 
promoters, blocking p53–DNA binding. p53 can also 
positively regulate viral replication as found for HIV-1 
viral infectivity factor (VIF) that interacts with p53 and 
promotes cell cycle arrest to facilitate HIV-1 replication 
[54]. 

In response to viral infections, one of the most efficient 
and rapid responses triggered by the immune system 
is induction of type I interferon mediated signaling. 
This response involves activation of the STAT (signal 
transducer and activator of transcription) signaling 
pathway and subsequent expression of antiviral genes. 
Several years ago, the seminal discovery of Takaoka et al. 
[40] revealed the existence of crosstalk between p53 and 
the IFN pathway when an interferon-sensitive response 
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Table 1.  Examples of viral proteins that interact with p53.

Virus Viral protein Reference

DNA viruses

Simian Virus 40 T large antigen [137]

Adenovirus E1B55K, E4-ORF3 [53, 138]

Epstein -Barr virus EBNA-3C, BZLF1 [139, 140]

Human Papillovirus E6 [141]

Kaposi’s Sarcoma -Associated Herpes Virus LANA [142]

Hepatitis B HBV-X [143]

RNA viruses

Hepatitis C  virus NS5A, NS3 [144, 145]

Human immunodeficiency virus 1 Tat [146]

Influenza A NS1 [147]

Human T-lymphotropic virus Type I Tax [148]

Parainfluenza virus 5 V protein [149]

element (ISRE) was found in the promoter of the p53 
gene. p53 was identified as one of the transcriptional 
targets of a type I IFN response following stimulation 
of cells with interferon-alpha/beta. Later, other studies 
revealed that p53 can also be activated indirectly by other 
IFN-inducible proteins such as STAT-1 or promyelocytic 
leukemia protein [55, 56]. In addition, IFN-β can activate 
p53 in a dose-dependent manner in human peripheral 
blood mononuclear cells. This activation leads to 
altered expression of several genes involved in the p53 
signal pathway, including p53 itself, which regulate cell 
proliferation and cell death following stimulation with 
IFN-β [57]. 

Alternatively, p53 can influence both IFN production 
and signaling, enhancing the antiviral response through 
direct transcriptional up-regulation of several IFN-
inducible genes. Included are transcriptional activators 
such as interferon regulatory factor 9 (IRF9) [58] and IRF5 
[59], the toll-like receptor 3 (TLR3) whose gene product is 
involved in recognition of virus infection through sensing 
of double-stranded RNA [60] and activated protein kinase 
R (PKR) [61].  Interestingly, PKR is able to phosphorylate 
p53 in vitro [61-62], suggesting a possible functional loop. 
p53 also induces expression of IFN-stimulated gene 15 
(ISG15) that encodes a ubiquitin homologue capable of 
modifying several antiviral proteins, protecting them from 
degradation [63, 64]. The ubiquitin E3 ligase TRIM22 is 
another IFN inducible protein that is also a p53 target 
gene [65]. It co-localizes with the centrosome in primary 
human mononuclear cells where it appears that both viral 
replication and protein degradation may occur [66]. 

Overall, these findings have established important 
roles for p53 transcriptional activities in host defense 
against viral infection and support the relevance of p53 in 
antiviral innate immunity.

p53 general influence on immune 
response pathways

While there is substantial evidence that p53 protects 
against inflammation (mostly under chronic conditions), 
recent studies in mouse and human cells reveal that p53 
may promote acute inflammation and immune responses 
([67]; Lowe, Menendez and Resnick, unpublished), 
suggesting a delicate balance in the influence of p53 on 
immunity pathways. Nearly 25% of p53 null mice die 
before tumor development due to unresolved infections 
[68], suggesting a defective innate immune system. 
p53 knockout mice are also more severely affected by 
influenza A virus due in part to reduction in cytokine 
and interferon production [69]. Below, we provide an 
overview of p53 modulation and enhancement of innate 
and adaptive immune responses.

p53 can influence several innate and adaptive immune 
pathways through regulation of genes involved in signaling 
(chemokines, interleukins), pathogen recognition (TLRs) 
and activation of specific subsets of immune cells such 
as T and B lymphocytes, NK cells and macrophages. 
Interleukins and chemokines are signaling molecules that 
affect a variety of cellular functions and are stimulated 
when tissue homeostasis is altered. Both are mediators 
of inflammation and play critical roles in host defense 



BioDiscovery | www.biodiscoveryjournal.co.uk May 2013 | Issue 8 | 25

Interaction of p53 with the immune response

by attracting and activating specific subsets of effector 
leukocytes, cells from the monocyte/macrophage lineage 
as well as natural killer (NK) cells. 

Expression of chemokines and cytokines are subject 
to p53, depending on stimulus and cell type. p53 can 
increase transcription of several cytokines involved in 
innate immunity including colony-stimulating factor 
1 (CSF1) and monocyte chemotactic protein (MCP1), 
chemokine CXC motif ligand (CXCL1) and interleukin 
15 (IL-15) that attract macrophages, neutrophils, and 
natural killer cells, contributing to immune elimination 
of senescent cells [10, 70]. Activation of p53 also results 
in expression of fractalkine, a CX3C chemotactic factor 
for monocytes, NK cells, and T lymphocytes [71]. p53 is 
also able to repress directly or indirectly the expression 
of chemokines since loss of p53 has been found to result 
in overexpression of proinflammatory chemokines such 
as CXCL2, -3, -5 and -8, CCL20, CCL28  and CXR4 in 
breast, ovarian and lung human cancer cells [72-75]. 

Chemokines also can influence p53 activities. For 
example, the macrophage migration inhibitory factor 
(MIF), a product of activated macrophages, sustains 
macrophage survival and pro-inflammatory function by 
inhibiting p53 [76], while MCP-1 can induce endothelial 
cell apoptosis in vitro through a p53-dependent 
mitochondrial pathway [77]. In addition, ROS production 
and subsequent premature senescence in response to 
CXCR2 activation is partially dependent on p53 [78]. 
Expression of the RANTES chemokine receptor CCR5 
increases p53 transcriptional activity in breast cancer cells 
through activated protein kinase–dependent mechanisms 
by pertussis toxin, JAK2, and p38 mitogen. Importantly, 
this signaling circuit between p53 and CCR5 is involved 
in regulating proliferation of breast tumor cells in vivo 
[79].

The expression of several surface markers on cells 
involved in immune responses is subject to p53 regulation. 
Genotoxic activation of p53 leads to up-regulation of 
intracellular-adhesion molecule-1 (ICAM-1) mRNA and 
protein [80]. ICAM-1 (also known as CD54) is a member of 
the immunoglobulin gene superfamily and binds to several 
surface molecules that participate in cell-cell interactions. 
It can contribute to initiation of immune responses and 
is a co-stimulatory molecule for T-cell activation. The 
p53/ICAM-1 relationship may be important for immune 
surveillance since activation of ICAM-1 by p53 has 
been implicated in leukocyte infiltration during tumor-
targeted inflammation, suggesting intercellular as well 
as intracellular guardian roles for p53 [81]. Other genes 
encoding surface cell markers targeted by p53 include 
CD200 that is regulated during apoptosis and provides 
immune tolerance in murine dendritic cells (DCs) [82] 
and CD59 (or MIRL, membrane inhibitor of reactive 
lysis) involved in complement signaling regulation [83]. 

Another surface marker  CD43/leukosialin is repressed 
by p53. CD43 is an important contributor to immune 
homeostasis and is expressed on most hematopoietic cells.  
It regulates immune cell adhesion and proliferation [84]. 
Also, overexpression of CD43 activates the ARF-p53 
tumor-suppressor pathway, which can lead to cell death 
[85].

Boosting innate and adaptive immune 
responses with p53

Recently, employing a genome-wide in silico search we 
found that most members of the human Toll Like Receptor 
(TLR) gene family contain potential p53 targets [86]. 
The TLR genes (10 in humans) mediate innate immunity, 
providing front-line protection against pathogens through 
recognition of common features referred to as PAMPs 
(pathogen-associated molecular patterns). Many of the 
targets did not match the consensus sequence that contains 
two decamers of RRRCWWGYYY (where R = G,A; Y= 
C,T; W = A,T). Instead the p53 targets contained only a 
½-site (single decamer) or a ¾-site, which we discovered 
earlier could support p53-mediated transactivation 
directly or in cooperation with other transcription factors 
such as estrogen receptor [87-90]. 

Using primary lymphocytes and alveolar macrophages 
from healthy subjects [86] as well as various cancer cell 
lines [91], we established that chromosomal damage can 
affect the innate immune system by altering expression 
of most TLRs.  Furthermore, common anti-tumor agents 
led to p53-dependent regulation of expression of most 
TLR genes, resulting in modulation of downstream 
responses to cognate ligands. These results suggest 
new chemotherapeutic strategies based on agonists or 
antagonists targeting the TLR pathway [92]. Using an 
established tumor-bearing human p53 knock-in (Hupki) 
mouse model, Ishizaki et al. [93] demonstrated that 
treatment with the TLR ligands polyinsosinic:polycytidylic 
acid (TLR3) and CpG-oligodeoxynucleotide (TLR9) 
in combination with heterologous p53 immunization  
enhances tumor regression. 

p53 also has transcriptional  targets in antigen cell-
signaling pathways of T and B lymphocytes. The TAP1 
protein (transporter associated with antigen processing) is 
required for the major histocompatibility complex (MHC) 
class I antigen presentation pathway that plays a key role 
in host tumor surveillance. In response to DNA damage, 
TAP1 expression is induced by p53 in cooperation with its 
family member protein p73. This up-regulation enhances 
transport of MHC class I peptides, expression of surface 
MHC-peptide complexes and activation of the MHC class 
I pathway [94]. On the other hand, it has been reported 
that p53 reduces expression of RGS13 [95], which inhibits 
G protein-coupled receptor signaling in B cells and mast 
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cells (MCs).
Regulation of the NK cells activities provides another 

example of p53 influence on the host immune system. 
These cells are specialized immune cells that eliminate 
foreign, stressed, transformed and senescent cells through 
specialized surface receptors, such as NKG2D [96, 97]. 
p53 can activate an antitumor immune response via direct 
transcriptional regulation of NK ligands ULBP1 and 
ULBP2 in cancer cells, which enhances NK cell activation 
[97, 98].

Innate and adaptive immunity are also connected to 
p53 through transcriptional regulation of microRNAs 
(miRNAs), which are small non-coding endogenous 
RNAs that bind complementary sequences of target 
mRNAs and regulate translation of specific genes. 
miRNAs affect inflammation and cancer [99] and are 
required for differentiation of immune cells [100]. Many 
miRNAs have been validated as p53 targets in immune 
cells including miR15a, miR16-1, miR34 a,b,c, let-7 
miRNA and several members of the miR-17–92 cluster. 
Included in the miRNA targets are genes involved in 
immune related activities such as Myb, BCL2 and ULBP2 
[96, 101]. Furthermore, dysregulation of these miRNAs is 
generally associated with poor clinical outcomes in several 
lymphoid malignancies. (See [102] for a description of 
the functional and clinical importance of microRNAs 
regulated by p53 in human lymphocytes.)

p53 as a direct target in cancer 
immunotherapy 

Since the immune system must distinguish between 
self and non-self antigens, p53 has been considered a 
target for immunotherapy. First identified in the sera of 
cancer patients more than 30 years ago [103, 104], the 
appearance of circulating antibodies against p53 has led 
to an alternative p53 antigen approach to cancer therapy.  
In addition to alteration of the p53 regulatory network 
in most human cancers, the overexpression of mutated 
p53 protein in several human tumors [105] suggests it 
could be a potential antigen in cancer immunotherapy 
since mutated p53 has features of non-self antigen [106]. 
One strategy is based on the observation that most p53 
mutants are due to single amino acid changes that extend 
protein half-life, leading to accumulation in tumor cells 
[105, 107, 108]. Degradation of overexpressed mutant 
p53 in tumor cells might result in generation of peptide 
fragments specific for tumor cells. However, the large 
number of hotspot mutations in the DNA binding domain 
could limit development of vaccines against mutant p53 
for use in “personalized medicine” [109]. In addition, the 
p53-specific T-cell repertoire may be restricted due to 
the ubiquitous expression of WT p53 in normal somatic 
tissues [110]. A variety of p53-based vaccines have proved 

effective in animal models and have led to several clinical 
trials using immunization with p53 derived peptides [111-
115]. Overall, immune responses to both WT and mutant 
p53 have provided opportunities in treating cancer patients 
including diagnosis, prognosis and immunotherapy [116, 
117]. 

p53 and NF-kB cross-talk in immune 
responses

As described above, roles for p53 in immunity are 
continually emerging.  However, these must be considered 
in light of the other well-established modulators of 
immunity and inflammation especially NF-kB, a master 
regulator of immune responses . 

Most discussions of p53 and NF-kB interactions have 
focused on their roles in cancer. While p53 and NF-kB 
are generally considered to be opposing factors where 
p53 promotes apoptosis while NF-kB enhances survival 
(reviewed in [118, 119]).  They are capable of directly 
inhibiting each other resulting in opposing functional 
consequences.  However, there are also positive 
interactions between these two transcription factors in a 
manner that is often context dependent (see below).   

The complicated relationship between p53 and NF-
kB is also seen in the context of immune responses. 
p53 can play an inhibitory role in NF-kB signaling and 
consequently the inflammatory response.  For example, 
p53 inhibits IKK β and NF-kB mediated transactivation in 
IgE-mediated degranulation of mast cells and anaphylaxis 
[120]. Additionally, glucocorticoid inhibition of NF-
kB activation and inflammation is dependent on p53 
since p53 loss enhances NF-kB activation and impairs 
glucocorticoid rescue of death in an LPS shock mouse 
model [121]. Recently, Madenspacher and colleagues 
[122] showed up-regulation of several pro-inflammatory 
genes in the lungs of naïve  p53 deficient mice compared 
to the WT counterparts, which appeared to be through 
enhanced NF-kB activation since the promoter region of 
nearly all of these genes contained a NF-kB DNA binding 
motif sequence.

Positive p53/NF-kB relationships in the immune 
response have also been described.  p53 stabilization 
by treatment of cells with Nutlin-3 was able to enhance 
retrovirus-induced apoptosis of host cells in part through 
augmented activation of NF-kB [123]. p53 is also important 
in Helicobacter pylori infection;  however, truncated p53 
isoforms rather than WT p53 are implicated. Although 
H. pylori infection results in p53 degradation [124], the 
D133p53 and D160p53 isoforms are transcriptionally 
up-regulated through enhanced alternative P2 promoter 
activity within the p53 gene in a manner dependent on the 
H. pylori type IV secretion system (the syringe-like pilus 
structure whereby bacterial components are transferred 
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Figure 2. p53 and NF-kB signaling in senescence and SASP.

to host cells). The isoforms then enhance NF-kB 
transcriptional activity, but inhibit WT p53- and p73- pro-
apoptotic and cell cycle arrest effects, which may provide 
a mechanism of adaptation of H. pylori in host gastric 
cells [125]. In another example of a p53/ NF-kB positive 
relationship in the immune response, p53 containing the 
P72 codon 72 polymorphism, but not the R72 variant, 
was able to bind to the p65 NF-kB subunit in the mouse 
thymus and cooperatively induced caspase 4/11 as well 
as some inflammatory-related genes including Gdf-15 in 
response to DNA damage [67]. Thus, although signaling 
interactions between p53 and NF-kB in the immune 
response are generally negative, there are clear examples 
of positive interactions.  

p53 and NF-kB in senescence

In recent years, both p53 and NF-kB have been shown 
to play a role in senescence (irreversible cell cycle 
arrest) based on a strong link with inflammation [126].  
After a limited number of divisions in somatic cells, 
senescence can be triggered by excessive DNA damage 
and by oncogenic stress to prevent transformation to a 
cancerous phenotype.  The senescence process involves 
cell cycle arrest, which requires p53.  On the other hand 
the senescence-associated secretory phenotype (SASP), 
and the production and secretion of cytokines and 
chemokines, require NF-kB [126-128].  All these factors 
appear to be linked through IL-6 signaling [128, 129]. 
In murine fibroblasts, activation of NF-kB by ATM in 
the DDR pathway directly induces the expression of the 
senescence regulator IL-6, which then causes further p53 

and CPEB (cytoplasmic polyadenylation element binding 
protein) dependent signal transduction, ultimately leading 
to senescence (Figure 2) [128, 129].  In addition to the 
SASP requirement for senescence, an opposing SASP 
function can trigger immune system responses including 
recruitment of immune cells that destroy senescent cells. 
Interestingly, reactivation of p53 in tumor cells led to 
tumor regression in a mouse model through triggering 
senescence, expression of inflammatory genes and 
infiltration of immune cells that destroyed the senescent 
tumor cells [10]. While there is no evidence yet that p53 
and NF-kB directly regulate each other during senescence, 
both factors have independent but positive roles in 
regulating senescence and the associated inflammatory 
phenotype, as summarized in Figure 2.

The connection between p53 and 
immunity: concluding remarks

p53 has an important role in innate and adaptive immune 
responses where activation of p53 can be both beneficial 
and detrimental.  In addition to cancer, there are many 
infectious disease implications, as we had proposed for a 
loop between pathogen detection by TLRs, inflammation 
and p53 induction [4, 86, 92]. Typical of p53 functions, 
the overall picture of interactions between the tumor 
suppressor p53 and immune system is complex and 
subject to specific scenarios including activating stimuli, 
cell type and even species. 

The p53/immune interaction is especially relevant 
to cancer as indicated in a recent review of “hallmarks 
of cancer” by Hanahan and Weinberg [130], revisiting a 
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concept they developed a decade earlier [131]. Included 
in the hallmarks were avoidance of the immune response 
and tumor inflammation, highlighting the importance of 
the immune system. p53 is intimately related with these as 
well as other hallmarks [132]. Alteration of p53 expression 
can affect growth and death of cells that are directly 
responsible for tumors, modify immune surveillance and 
enhance inflammation.  Thus, new opportunities in cancer/
disease diagnosis and in chemotherapeutic strategies are 
expected to develop with further understanding of the 
interactions between p53 and the immune system. 

Although there are nearly 30 immune-related genes 
(including miRNAs) targeted by p53, many new targets 
are expected to be identified in the near future through 
genome-wide methods. The combination of chromatin 
immunoprecipitation (ChIP) with high throughput 
sequencing (ChIP-seq) and expression analysis has already 

been used to map sites of p53 binding among the hundreds 
of thousands of potential target sequences in the human 
genome and to identify candidate p53 target genes [133-
135].  The next-gen sequencing approaches when applied 
to primary cells of the immune system (Menendez and 
Resnick, unpublished), along with “rules” for recognizing 
p53 bindings sites [88, 136] will provide powerful tools in 
determining direct roles for p53 regulation in immunity.
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