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ABSTRACT

In this paper, we are interested in restoring blurred muoftipo-

nent images corrupted by an additive Gaussian noise. The nov

elty of the proposed approach is two-fold. Firstly, we shawho
combineM-band Wavelet Transforms (WT) with Fourier analysis
to restore multicomponent images. Secondly, we point attttie
multichannel deconvolution procedure takes advantagemibi-
ing multivariate regression rules. Simulations experitaerarried
out on multispectral satellite images indicate the goodioperance

of our method.

1. INTRODUCTION

Satellite imaging systems tend to have increasing spatthkpec-
tral resolutions. Operating in different spectral rangbgse in-
struments provide several spectral components. Thereforilti-
channel image is delivered for a single sensed area. Fanicetfor
the SPOTS5 satellite, the High Resolution Visible imagingbaard
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e Firstly, the deconvolution problem is formulated using api-a
trary M-band WT instead of the conventional two-band Meyer
case in order to gain more flexibility in the multiresolutianal-
ysis.

e Secondly, we extend the Waved method to the multichannel cas
and propose a multicomponent statistical estimation tigcien

e Besides, the calculations are performed for an arbitravaico
ance matrix between the multispectral noise components.

The paper is organized as follows. In Section 2, the problem i

stated and our notation is introduced. The main properfigeio-

odized Meyer wavelets arid-band decompositions are briefly re-
called in Section 3. In Section 4, we present the Waved egtitma

In Section 5, we compute explicit expressions of the stesisif

the Waved estimator. In Section 6, we describe an extengitreo

Waved method to the case of multicomponent data. In Section 7

some experimental results are provided to evaluate thenpeahce

achieved by our multivariate estimation approach and, scome
cluding remarks are also given in Section 8. Throughout gpep

systems acquire 4 spectral images XS1, ..., XS4. However, ththe following notation will be used: |é¥l be an integer greater than

image sensing stage generally suffers from various typeegfa-
dations. The satellite motion coupled with the optics infipetions
yield blurred images. Furthermore, these images are deaupy
an additive noise produced by the electronics of the devitese
artifacts should be removed prior to fully exploiting thetaldor
further remote sensing tasks. Much attention was paid t that
denoising and the deconvolution problems. It is worth pombut
that two alternatives have been envisaged for multispeichage
denoising/restoration. The first one consists sbparateprocess-
ing of the spectral components whereas the second one eaptu
their mutual correlations throughraultichannelprocedure. Con-
cerning the denoising problem, the two alternatives haveadly
been studied. Monochannel methods are often based onldjatia
ters such as the well-known Wiener filter or order statistiers [1].
Besides, thanks to the good energy compaction and dediorela
properties of the Wavelet Transform (WT), simple shrinkager-
ation in the wavelet domain were developped [2]. In the fraor&

of multichannel denoising, we have recently proposed a eéfiy
cient and robust method that jointly reduces the noise ofvéheelet
coefficients of the spectral components [3].

In a similar way, much works have been dedicated to monochan-

nel deconvolution [4, 5, 6]. The multichannel restoratioolpem
have been also extensively studied. Pioneering works ptesthio
design appropriate filters in the frequency domain [7, 8, Jhe
WT domain was successfully investigated but mainly in theeca
of monochannetleconvolution [10, 11, 12, 13, 14]. A recent at-
tention was recently paid to combine the Meyer two-band WA an
the Fourier transform for deconvolution purposes througtele-
gant and efficient wavelet image deblurring method calledata
However, to the best of our knowledge, few papers were regort
concerning wavelet-based restoration methods for mulimment
images. In this paper, we aim at designing a new multivastde
tistical deconvolution technique. The contributions a$ theper are
the following.

f

or equal to 2Ny ={0,...,M —1} andNy, = {1,...,M —1}.

2. PROBLEM STATEMENT

Lets(x) denote an unknowB-component image at spatial position
x e R2:

560 2 (Y (x),..., 8B )T (1)
At each sensds, the spectral component is degraded by the imaging
system with impulse respons& (x) and, itis also corrupted by an

additive noisen®) (x), which is assumed to be independent of the
random process(x). The noise

(M (x),....n®x)T. 2

is a multivariate random field which is assumed to be Gaus-
sian, spatially white, with zero-mean and spectrum demagyrix

(Y1 y<p. This means that inter-band correlations may exist.
Therefore, the observations can be expressed as follows:

vbe{1,....B}, r®(x)=h®x«sP)x)+n®(x). (3)

For the sake of simplicity, only intra-channel blurring @nsidered
in the previous equation. A deblurring method aims at edtiga

s(x) based on the observed vecteix) = (r (x), ...,r® (x))T.

A supervised approach assumes that both the blurring leernel
{h®)(x)}1<p<p and the constant§(y\*"))}1py<p are known.
This is currently a realistic assumption in remote sendiagks to
appropriate calibration procedures [11]. If this assuoiptioes not
hold, unsupervised approaches have to estimate the bluncisd
parameters from the observed images [15]. Very often, therde-
lution operates in a transform domain, the transform bexpgeted

to make the problem easier to model. To this respect, theletave
domain is considered as a very versatile tool.

n(x)
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3. M-BAND WAVELET TRANSFORM
3.1 Definition

An M-band multiresolution analysis of2(R) is characterized by
one scaling functionp € L?(R) and(M — 1) mother waveletgm €

4. COMBINING WAVELET AND FOURIER
TRANSFORMS FOR DECONVOLUTION

The approach developed in [13, 18] judiciously combinesrieou
analysis with a dyadic Meyer wavelet expansion. In whaofed,
we will generalize this approach by considering multicomgat

L2(R), me Nj;. In the Fourier domain, these functions are definedimages analyzed through &fir-band decomposition. Each spectral

by the so-called scaling equations:

vmeNy,  VM@in(Mw) = Hm(w) Jio(w)

4)

where (Hm)men,, are 2rperiodic functions. An orthonorma¥-

band wavelet basis ofA(R) is built when para-unitarity conditions
hold:

M-1
Ymm) €Ny, 3 Hn(p+ (P ) = Mo (9
IJ:

It is worth noting that the filter associatedHg is low-pass whereas
the filters with frequency responbg, ... ,Hy _» are band-pass and,
the filter related tdHy—1 is high-pass. In this case, cascadiig
band para-unitary analysis and synthesis filter banks altonde-
compose and to perfectly recover any 1D signal &fR).

componens® is viewed as a periodic function ir?(]0, 1]2) whose
Fourier coefficient§®) (p) are given by:

ST
vpez?, SY(p)2 / / s®) (x) exp(—2mxTp)dx.  (11)
o Jo
In the frequency domain, Eq. (3) becomes:

Vbe{1,...,B},

where

RP(p)=u®(p)+NP(p), (12

U®) (p) 2H®) (p)S)(p), (13)

and the Fourier coefficieng& (p) andN(?) (p) are obtained by ex-
pressions similar to Eq. (11). It must be pointed out that @)
actually corresponds to an approximation of the 2D coniaruin
Eq. (3) by a periodic convolution (this problem can be soltgd
making use of zero-padding techniques). Besides, Plaekhéor-

Tensor products of such 1D wavelet system yield the 2D sgalinmula reduces to:

function Yo o(x) andM? — 1 wavelet functionspm v (x) obtained
as follows:

ll—’o,o(X)éllfo(Xl)lﬂo(Xz) (6)
¥m = (m ) € Nu2\ {(0,0)},  Wn ()2 Wm(x0) Yy (2). (7)

Vx = (x1,%) € R?,

In this way, the family{(j x m }jez kez2 iS an orthonormal basis
of of L?(R?) wherem € Ny?\ {(0,0)} and

VxERZ,  Piaom() EM 2P (Mix—k).  (8)

3.2 M-band Meyer wavelets

In the sequel, we will make use df-band Meyer wavelet decom-
positions. They involve wavelets of compact support in te f
guency domain that have closed-form expressions in thisagtom
In the dyadic caseM = 2), the scaling functionyg is a func-
tion whose Fourier transform is limited in the frequency @im
to [0, (1+ €)/2] wheree € (0,1/3]. The corresponding wavelgt

has a a Fourier transform which is smooth and with compact su

port within [(1—¢€)/2,1+ €] [16]. While the dyadic case is well

1 1 R
/0 /0 S(b)(x)wj-,k,m(x)dx:gs(m(p) T,k,m(p)v (14)

whereW; . ., (p) is a Fourier coefficient o y ,,,(x), which is
also equal to the Fourier transform ¢f , .., (x) at frequencyp.
By combining Equations (10) and (14), the wavelet coeffiti@an
be obtained as follows:

s (k) = > SO ()P 4 (P). (15)
pe(q,m

where s m 2 {(pez?: lT—’j‘k,m(p) # 0}. It is worth pointing out
that%j,m does not depend dx. This is equivalent to:

U () (p) W*

(b
Sim(k) = ¥ km(P):
PEG m HO (p) "

], m

(16)

provided that, for allp € €j.m, H® (p) # 0. At this point, it is
important to note that it appears preferable to use frequbao-
dlimited wavelets such dd-band Meyer wavelets. Indeed, in this

Pease, the cardinality o) ,, is drastically reduced and the above

known, the design ok-band Meyer decompositions has been re-condition is not fulfilled only by the zeros of(® belonging to the

cently reported in [17].

3.3 Periodized wavelets

A periodized version within the sé, 1)2 of anM-band multireso-
lution analysis system corresponds to the followpegiodicscaling
and wavelet function®; y 1, (x):

JAN
qu,k,m(X) = Z wj,k,m(x +q).
qeZ?

©)

,,,,,

{¥jkm}i>jo.ke{0...Mi—1)2,m~0 IS @n orthonormal basis of the

space of periodic functions ib?([0,1]%). Hence, the wavelet co-
efficientsg;j , of any periodic functiorg in L2([0,1]?) are given
by:

1l
G (k) = [ [ 600%,1em (x)0x. (10

frequency support o¥; y o, ().
The detail coefficients cannot be recovered by the latteatmu

since the sequents(® (p) is not observable. In [13], it is proposed

to useR"®) (p) as an unbiased estimatordf® (p). As a result, the
(b)

so-called Waved estimatefitl(k) of s; ,, (k) is obtained:
(b)
b RY(p) gy
b PE%|m H®)(p) " 1%

Then, it remains to improve the performance of such a coase e
timatorsﬁ-‘l)n(k) through an additional denoising. In [13], for an
appropriate set of target functions, an asymptoticallyr+ogdimal
estimator (in the sense of the mean square es@;)(k) is derived
through hard-thresholding by level-dependent threshbjgs:

log(L)
2V/L

1/2
Ajm =2 (V(b’b’l‘fj,ml ; IH(m(p)z) , (18)
PE%|m



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

whereL is the whole number of pixels in each spectral component, 6. PROPOSED MULTICHANNEL WAVED ESTIMATOR

|€j,m| denotes the cardinality & ,,, andA is a constant factor.
It is worth pointing out that the wavelet shrinkage is opedarom
the coarsest scalg up to a finest scal¢;. The latter is related to
the degree of ill-posedness of the blurring keddé? (p) [13]. The
main contribution of our work consists in proposing an inyaa

}b_ by adopting

method for denoising all the coeff|C|er{L§(
amultivariateapproach.

5. STATISTICS OF THE WAVED ESTIMATOR

In order to denmseﬁm (k), itis useful to derive the statistics of this
estimator. First of all, the Gaussianity of the noise anditiearity

(k) -

k) is an unbiased

Agb)

of the estimator ensures the Gaus&amtyeﬁn §m

P (k). Besides, it is easy to show ttﬁﬁ);l(

j,m

estimator since:

) (p)] ~
ik~ o E.LTT&”W?k.m(p)
H(b) (p)E[S(b)(pH .
- pe%m T RO ikm(®)
—~ E[s (k)

_ ENN® p 2 j,k,m(p)
p%m INP®)IT| =) o)
~ 2
¥j.0m(p)
—yb.b) J10m\b)
v p%m H®)(p)

(bt

The cross correlatioprj "n> of the estimation errors for any pair of
componentgb,b’) at the same locatiok can be calculated in a

similar way:

It is also worth pointing out thaxﬁbm € m
lated since:
b b) b
E[Sjom ()8 ()] = E[8]3, (6)?)
Indeed, the calculation (E[sﬁbl)n(k)é(]bm( )] yields to
(b) 1+ alb - E[S® (p)RP (p')"]
Els|"), (k)8 (k)] =

P e (P)Pj s (D)
= Y ESps?p)]
P.PE€C|m

P e (P) P km (D)
=E[s ()2,

(19)

(20)

(21)

(k) and (o) (k) are decorre-

(22)

(23)

6.1 Motivation
The multivariate approach consists in estimatjpmtly all the
B wavelet coefficientss(jbfn(k) from all the B waved esti-
mators sﬁn(k). To this purpose, we define the following
. . . AL B

B-dimensional vectors:sj m (k)= (sﬂ 1)11(k)‘ e =52,111(k))T

Sjm(k)= ("(lll)n(k) ..... "(B) > (k))T. By defining the noise vector
ejm(k) as:

and,

8jm(k) =sjm(k) +ejm(k), (24)

we get an additive noise observation model. From Section 5, i
appears that the unknown vectqry, (k) is embedded in the zero-

meanmultivariateGaussian noisej , (k) with yj(ti’g) as the(b, 1)

generic element of its autocovariance maifiﬁn. Therefore, it

is possible to apply a robust estimator of the whadetorsj 1, (k)

that can exploit the intercomponent correlations. In amteerk
[3], we have envisaged two multivariate denoising methaddAP
estimation and a more robust one built on Stein’s principlerating
on dyadic decompositions. In the sequel, we will extend tteethe
M-band wavelet restoration problem.

6.2 Multivariate MAP

Concerning the MAP method, a prior Bernouilli-Gaussian BG
distribution p;j ., is considered so as to reflect the sparseness of
sj.m (k) as well as the statistical dependencies existing between th
B components:

Vu € RB, (25)

Pjm(u) = (1—&j.m)0(u)+ £j7mgo7rgs> (u),

whered is the Dirac distributiong0 e, is the multivariate Gaus-

sian.#(0, I‘( 9 ) Probability density and;j ,, € [0,1] is the mix-

ture parameter In tandem with this mixed distribution we as
independent binary random (hidden) varialdgg, (k) such that:

P(sjm(k)/dj.m(k) =0) 3(sjm(k))
P(sj,m(k)/dj,m(k) =1) gorﬁm sj,m(k

(26)

Only whengj (k) = 1, the associated wavelet coefficient vector
carries useful information. Besides, the Gaussianity efrthise
allows to express the conditional probabilities:

{ P(8j.m (k)/0j.m (k) = 0) Oo, 9, (B (K))

Yo.0f5, rfs, (F1m ()

(27)
Consequently, the denoising problem reduces to a clagsinblem
in estimation theory. However, because of the singularitthe a
posteriori distributionps; . (u/8j m(k)) due to the Dirac distribu-
tion, the MAP estimate takes a degenerate form. This is why th
0j,m (k) are estimated before the computation of the MAP estimate
é(j'j"‘ﬁp) (k). More precisely, the Bayesian estimatg,, (k) = 1 of
0j,m (k) satisfies:

P(8j.m(k)/0jm(k) =1)

. 1 ifSimKk)™™MimSim > Xim,

Q.o () = { 0 othjervv(lsge mSim{l) > X (28)
where M| = (T\%,) "1 — T\, +T%,)~* and, the threshold
Xi,m IS given by:

(9 _ ple
—_ & 7 +1T
Xj,m=2|n(7l ?"“‘)Hn (7| b ‘|“‘) (29)

€j,m
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The corresponding MAP estimator is easily deduced:

5(MAP) (1 QjmSjm(k) fQjmk)=1
Sjm (k) = { 0 bmEm othgr]\aNise ’ (30)
Whel’er_’méI‘(jsm(ngm +I‘§i)n)*1 [3].

6.3 Stein’s estimator

tein)

It is possible to build another es’[lmatsﬁS that takes into ac-

For a fair comparison, we have also made comparisons with up-
to-date wavelet-based restoration methods. All of themsam
arately applied to each spectral component, employing thven
setup. The Waved, the Stein and the MAP estimators are derive
from anon redundantwo-band Meyer's WTK = 2). The Forward
method uses Daubechies WT. Thanks to the “cycle-spinnitigt-s
egy, the resulting representation is spatially invariauttibis also
redundant. The Forward estimator has been applied with d fixe
value of the regularization parameter. The number of réisoiu
levels is set td = 2. We have also tested the Wiener filter (with the

count the BG model mismatch. More precisely, we replace theversion provided in [12]). Table 1 provides theNRachieved by

MAP estimator byE[s| i /8] m] which is the optimal Bayesian es-
timator for a quadratic cost:

Eimo rs 4o

+(1-¢.m)9, re

m

wherey, . 2 (32)

EimO rs ipie

We propose to use an estlmaﬂﬁte'”) whose structure is given by
Egs. (31) (32). But, instead of deduciny;, m andej i, from the
BG prior, the latter are adjusted so as to minimize the quiachiak

& = E[[|sjm — é‘fﬁi“)ﬂz}. A closed form expression @R m

can be derived thanks to Stein’s formula yielding the costfion:
5 -1
éaj.m = 7tr(Bj.m (A]m)

Bim) (33)

With A | ZE[2

j.m

)']-
( [VEJ m (

(34)

m) L

(8j,m)3jm(Bjm

©

A ~ ~ ~
Bjm= E[Vej_m (Sj,m)sj,m(sj.m)T] - P
+E[O¥e; 1 (8),m) (8j,m)])

So, the minimization oR; ,, amounts to the optimization of a func-
tion of the single variable; ,, € [0,1] since it is easy to check that
the corresponding optim& , is Bj m(A, m -1

A further improvement con5|sts in envnsaglng a hybrid sahem
that allows to handle unreliable values of the risk espbcialvery
noisy environments. For instance, the dsgf_%;are considered as
too noisy if the power level of the “clean” data falls below igem

threshold)\< b) and, then, they are discarded from the estimation of

the risk as descrlbed in [2]. In this case, the SURE compaviset
estimator is applied.

7. EXPERIMENTAL RESULTS

In our experiments, we have used SPOT multispectral imafes o
size 512x 512. These images have been degraded by consider-

ing several blurring kernels and, adding realizations afraanean
Gaussian noise. Our preliminary simulations were concewith
spectrally and spatially white noise. The additive noisgavece

yP) is chosen so that the averaged blurred signal to noise ratio

BSNRreaches a target value:
B
BSNRE z BSNRY

(35)
sb) _ E[h(b> *s<b)] 12
L/Bb) . (36)

The involved filters of theM-band Meyer's wavelet are imple-
mented according to the procedure described in [17]. MQ@#deo
simulations have been conducted, the performance of a delcen
tion method being assessed by the averaged ImprovemergnalSi
to Noise RatidSNR

(b)
with BSNR) £ 10l0gy, ( I h

isnr2 L S 1000 37)
Bb; ho| g

the different considered techniques for several valuekeBENR
As expected, by taking into account the intercomponentlaiini
ties, our two methods almost always outperform the benckedar

ones. By avoiding a prior model mismatcﬂi,ssi“) exhibits better

performance thas(jMn/;\P). It is worthwile noticing that if we use a

redundant translation invariant version of the WT (like thievard
method), higher values of tH&NRshould be achieved by our es-
timators. Table 2 gives the resultih§N Rfor different sizes of the
blurring kernel when th&SNRis equal to 25 dB. It indicates that

the behavior of the considered techniques remains the SR
produces the best results whatever the support of the iumask
is. For instance, it yields a gain of 0.63 dB in termd 8NRover
the Forward method for the “Tunis” image.

Figure 1 displays the degraded component XS3 of the “Kaitbua
image that depicts a rural arda=€ 3). Figure 2 shows the restored

component using(5t" . The overall visual quality is good even
around the edges of the objects in the scene. Fine detalisssube
roads are clearly visible.

8. CONCLUSIONS

We have proposed a restoration method that exploits crasseh
similarities in multicomponent images. This approach wass
to be very competitive w.r.t. existing wavelet-based mdshdSev-
eral directions can be investigated to extend this work aiigular,
it would be interesting to take into account interscale dejpecies
between spectral components in addition to intrascale. gxesn-
proved structure of the waved estimator is also under ifyeson.
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Table 1: ResultindSNR(in dB) of the tested restoration methods.
The size of the blurring kernel is respectively<% for the image
“Tunis” and, 9x 9 for the image “Kairouan”.
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Figure 1: “Kairouan”: third channel XS3 degraded by a bhugri

(@) Tunis e~ kernel of size 9 9, BSNR® = 25 dB.
S.

BSNR| Waved | Wiener | Forward ég'f"rﬁp) im
15 5.2141 | 3.6922 | 8.4673 | 8.6445 | 9.0877

25 8.9609 | 12.3754| 14.6004 | 14.6835| 15.1998
35 16.5929| 22.2259| 23.1091 | 22.8219| 23.2760
45 7.3894 | 32.2219| 32.5455 | 32.0887| 32.4703

(b) Kairouan
BSNR| Waved | Wiener | Forward ég'}”nAlP) im
15 4.6771 | 47174 | 8.2187 | 8.5040 | 9.0409
25 12.7939] 17.7246| 18.8378 | 18.4001| 19.2918
35 21.5830| 27.6886 | 27.8075 | 27.1757| 27.9595
45 33.3587] 37.6893| 37.7210 | 37.4699| 37.7191

S(stemn)
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Figure 2: “Kairouan™: third channel XS3 restored Is{P®in,
ISNR=19.2918 dB.



