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Abstract

∗ Most text categorization methods use the
vector space model in combination with
a representation of documents based on
bags of words. As its name indicates, bags
of words ignore possible structures in the
text and only take into account isolated,
unrelated words. Although this limitation
is widely acknowledged, most previous at-
tempts to extend the bag-of-words model
with more advanced approaches failed to
produce conclusive improvements.

We propose a novel method that ex-
tends the word-level representation to
automatically extracted semantic and
syntactic features. We investigated three
extensions: word-sense information,
subject–verb–object triples, and role-
semantic predicate–argument tuples, all
fitting within the vector space model.
We computed their contribution to the
categorization results on the Reuters
corpus of newswires (RCV1). We show
that these three extensions, either taken
individually or in combination, result in
statistically significant improvements of
the microaverage F1 over a baseline using
bags of words. We found that our best
extended model that uses a combination
of syntactic and semantic features reduces
the error of the word-level baseline by up
to 10 percent for the categories having
more than 1,000 documents in the training
corpus.

∗Research done while at Lund University.

1 Introduction

Text categorization or classification corresponds
to the automatic assignment of a document to
one or more predefined categories. To carry out
this task, techniques using the vector space model
(Salton et al., 1974) in combination with a rep-
resentation based on words – the bag-of-words
model – are considered to be standard both in
practice and for evaluation purposes (Lewis et al.,
2004). The bag-of-words model is both simple to
implement and enables classifiers to achieve state-
of-the-art results.

However as its name indicates, the bag-of-
words model ignores possible structures in the
text as it only takes into account isolated, unre-
lated words present in a document. These lim-
its are widely acknowledged and there has been
many attempts to break them with more advanced
approaches. Approaches include the detection
and indexing of proper nouns, complex nominals,
phrases, or the identification of word-senses. To
date, they have not resulted in any conclusive im-
provements (Moschitti and Basili, 2004).

In this paper, we describe novel features based
on the output of syntactic and semantic parsers –
subject–verb–object (SVO) triples and predicate–
argument structures – to enrich the document rep-
resentation. As for the words, these features are
automatically extracted from raw text. We use
them in the vector space model to extend the word-
level representation with syntactic and semantic
dimensions.

We evaluated the contribution of the syntactic
and semantic representation on the Reuters cor-
pus volume I of newswire articles (RCV1) with a
standardized benchmark (Lewis et al., 2004). We
used a classifier based on support vector machines
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(SVM), where we compared the new representa-
tion against the bag-of-words baseline. We could
obtain an error reduction ranging from 1 to 10 per-
cent for categories having more than 1,000 docu-
ments in the training corpus.

2 Representing Text for Automatic
Classification

2.1 The Vector Space Model

In statistical classification, the vector space model
is the standard way to represent data (Salton et
al., 1974). This model uses all features that are
extracted from a document collection to build a
space, where each feature corresponds to a dimen-
sion of this space. A single document is then rep-
resented by a vector, where each coordinate indi-
cates the presence of a specific feature and weights
it. The document vectors can then be placed in the
space and their location can be used to compute
their similarity.

2.2 Using a Word-level Representation

The standard features in the vector space model
are simply the words in the text. Let us assume that
we have a document collection that only contains
two documents, whose content is:

D1: Chrysler plans new investment in Latin
America.

D2: Chrysler plans major investments in Mexico.

The application of the bag-of-words model on
the collection uses all the words in the documents
as features and results in the document vectors
shown in Table 1. The words are stemmed and the
most common ones – the stop words – are not used
as features, because they usually appear in all the
documents. For each feature, the vector indicates
how many times it appeared in the document. This
value is known as the term frequency, tf .

In Table 1, the document vectors used the raw
term frequency for each word and therefore as-
signing all words equal importance. However,
rare features are often more important than fea-
tures present in many documents of the collec-
tion. The spread of a feature is measured using
the document frequency, which is defined as the
number of documents in which a feature can be
found. To give rare features more importance, the
term frequency is weighted with the inverted doc-
ument frequency, idf (1). This weighting scheme

is called tf × idf and there exist many variants of
it. For a list of possible weighting schemes and
a comparative study of their influence, see Salton
and Buckley (1987) and Joachims (2002).

idf = log

(
collection size

document frequency

)
(1)

2.3 Extending the Word-based
Representation with Complex Semantic
Features

Word-based representations are simple and robust,
but this comes at a cost. Using bags of words to
represent a document misses the phrase and sen-
tence organization as well as their logical struc-
ture. Intuitively, the semantics of sentences in
a document should help categorize it more accu-
rately. To account for it, we extracted semantic
features from each corpus sentence – predicate–
argument tuples, subject–verb–object triples, and
word-sense information – and we extended the
document vectors with them.

Predicate–argument structures are core con-
structs in most formalisms dealing with knowl-
edge representation. They are equally prominent
in linguistic theories of compositional semantic
representation. In the simplest case, predicate–
argument tuples can be approximated by subject–
verb–object triples or subject–verb pairs and ex-
tracted from surface-syntactic dependency trees.

SVO representations have been used in vector-
space approaches to a number of tasks (Lin, 1998;
Padó and Lapata, 2007). In the widely publicized
semantic web initiative, Berners-Lee et al. (2001)
advocated their use as a natural way to describe
the vast majority of the data processed by ma-
chines. They also correspond to binary relations
in relation algebra on which we can apply a large
number of mathematical properties. Nonetheless,
as far as we know, strict SVO representations have
never been used in automatic text categorization.
Fürnkranz et al. (1998) proposed an approximated
SVO representation that could increase the pre-
cision of some categorization experiments when
combined with a low recall ranging from 10 to
40. However, they could not show any decisive,
consistent improvement across a variety of exper-
imental settings.

Although they are sometimes equivalent, syn-
tactic parse trees and semantic structures are gen-
erally not isomorphic. Tuples directly extracted
from dependency trees are susceptible to para-

Text Categorization Using Predicate–Argument Structures

143



D#\ Words chrysler plan new major investment latin america mexico
1 1 1 1 0 1 1 1 0
2 1 1 0 1 1 0 0 1

Table 1: Document vectors based on the bag-of-words model.

phrasing caused by linguistic processes such as
voice alternation, Chrysler planned investments /
investments were planned by Chrysler, and diathe-
sis alternations such as dative shifts, We sold him
the car / We sold the car to him.

Chrysler plans new investment in Latin America

plan.01

LOC
PMOD

NMODNMOD
OBJ

A0

investment.01

A1
A0

A2

SBJ

ROOT

Figure 1: Example sentence with dependency syn-
tax and role semantics annotation. Upper arrows
correspond to the dependency relations and the
lower ones to the semantic roles.

Role semantics (Fillmore, 1968) is a formalism
that abstracts over the bare syntactic representa-
tion by means of semantic roles like AGENT and
PATIENT rather than grammatical functions such
as subject and object.

Figure 1 shows the first example sentence in
Sect. 2.2 annotated with syntactic dependencies
and role-semantic information according to the
PropBank (Palmer et al., 2005) and NomBank
(Meyers et al., 2004) standard. The verb plan is a
predicate defined in the PropBank lexicon, which
lists its four possible core arguments: A0, plan-
ner, A1, the thing planned, A2, grounds for plan-
ning, and A3, beneficiary. Similarly, the noun
investment is a NomBank predicate whose three
possible core arguments are: A0, investor, A1,
theme, and A2 purpose. In addition to the core ar-
guments, predicates also accept optional adjuncts
such as locations or times.

For each predicate, PropBank and NomBank
define a number of word senses, such as plan.01
and investment.01 in the example sentence. Fea-
tures based on word sense information, typically
employing WordNet senses, have been used in text
classification, but have not resulted in any conclu-
sive improvements. For a review of previous stud-
ies and results, see Mansuy and Hilderman (2006).

3 Automatic Semantic Role Labeling

Role-semantic structures can be automatically ex-
tracted from free text – this task is referred to as
semantic role labeling (SRL). Although early SRL
systems (Hirst, 1983) used symbolic rules, modern
systems to a large extent rely on statistical tech-
niques (Gildea and Jurafsky, 2002). This has been
made possible by the availability of training data,
first from FrameNet (Ruppenhofer et al., 2006)
and then PropBank and NomBank. Semantic role
labelers can now be applied to unrestricted text, at
least business text, with a satisfying level of qual-
ity.

Chrysler plans new investment in Latin America

plan.?? investment.??

Chrysler plans new investment in Latin America

Predicate
identification

disambig.
Sense

Argument
identification

Argument
labeling

plan.01 investment.01

Chrysler plans new investment in Latin America

plan.01 investment.01

Chrysler plans new investment in Latin America

plan.01 investment.01

Chrysler plans new investment in Latin America

A0 A0 A1 A2

Figure 3: Example processed by the semantic
pipeline.

We used a freely available SRL system (Johans-
son and Nugues, 2008) to extract the predicate–
argument structures1. The system relies on a syn-
tactic and a semantic subcomponent. The syntac-
tic model is a bottom-up dependency parser and
the semantic model uses global inference mecha-
nisms on top of a pipeline of classifiers. The com-

1Download site: nlp.cs.lth.se.
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Predicate
identification

Sense
disambig.

Argument
identification

Argument
labeling

Semantic pipeline

reranking
Pred−argLinguistic

constraints

dependency
Syntactic

parsing

Global semantic model

Syntactic−semantic
reranking

Figure 2: The architecture of the semantic role labeling system.

plete syntactic–semantic output is selected from a
candidate pool generated by the subsystems. Fig-
ure 2 shows the overall architecture and Figure 3
shows how the example sentence is processed by
the semantic subcomponent. The system achieved
the top score in the closed challenge of the CoNLL
2008 Shared Task (Surdeanu et al., 2008): a la-
beled syntactic accuracy of 89.32%, a labeled se-
mantic F1 of 81.65, and a labeled macro F1 of
85.49.

4 Experimental Setup

We carried out a series of experiments to de-
termine the contribution of the three sets of
syntactic–semantic features: word-sense infor-
mation, subject–verb–object triples, and role-
semantic predicate–argument tuples. They all
come as an extension to the baseline word-level
representation in the vector space model. We first
describe the data sets, then the experimental pa-
rameters, and finally the figures we obtained for
different combinations of features.

4.1 Corpora

We conducted our experiments on the RCV1-
v2 (Lewis et al., 2004) corpus, which is a cor-
rected version of RCV1 (Reuters Corpus Volume
1). We used the LYRL2004 split, which puts ar-
ticles published between August 20, 1996 to Au-
gust 31, 1996 in the training set and articles be-
tween September 1, 1996 to August 19, 1997 into
the test set. We performed the split on the orig-
inal RCV1-v1 collection which results in 23,307
training documents and 783,484 test documents.
RCV1 has three sets of categories called: region
code, topic code, and industry code. The region
code contains the geographical locations that an
article covers. The topic codes try to capture the
subjects of an article, and industry codes describe
the industry fields mentioned in an article.

4.2 Classification Method

We reproduced the conditions of the SVM.1 clas-
sification method described in Lewis et al. (2004).

We used the SVMlight(Joachims, 1999) classifier
with the standard parameters and the SCutFBR.1
algorithm (Yang, 2001) to choose the optimal
threshold.

SCutFBR.1 replaces SVMlight’s own method for
selecting a partitioning threshold. For each cat-
egory, SVMlight computes a ranking of the docu-
ments in the form of a scoring number assigned to
each document. This number determines the doc-
ument rank in the category. The goal is to find a
threshold from the ranked training documents that
maximizes the number of correct classifications.

The purpose of SCutFBR.1 is to handle cases
when there are few training documents for a cat-
egory. There is then a risk of overfitting, which
may lead to too high or too low thresholds. A
high threshold results in many misses, which have
a negative impact on the macroaverage F1 while a
low threshold results in a potentially large number
of documents assigned to a wrong category, which
has a negative impact on both the micro and the
macroaverage F1. To avoid this, the F1 score is
calculated for each category in the training set. If
the score is too low, the highest ranking is chosen
as the threshold for that category.

4.3 Corpus Tagging and Parsing

We annotated the RCV1 corpus with POS tags, de-
pendency relations, and predicate argument struc-
tures using the SRL system mentioned in Sect. 3.
The POS tagger uses techniques that are similar to
those described by Collins (2002).

4.4 Feature Sets

We conducted our experiments with three main
sets of features. The first feature set is the base-
line bag of words. The second one uses the triples
consisting of the verb, subject, and object (VSO)
for given predicates. The third set corresponds
to predicates, their sense, and their most frequent
core arguments: A0 and A1. We exemplify the
features with the sentence Chrysler plans new in-
vestment in Latin America, whose syntactic and
semantic graphs are shown in Figure 1.
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As first feature set, we used the bags of words
corresponding to the pretokenized version of the
RCV1-v2 released together with Lewis et al.
(2004) without any further processing. Examples
of bag-of-words features are shown in Table 1.

For the second feature set, the VSO triples, we
considered the verbs corresponding to the Penn
Treebank tags: VB, VBD, VBG, VBN, VBP,
and VBZ. In each sentence of the corpus and for
each verb, we extracted their subject and object
heads from the dependency parser output. These
dependencies can have other types of grammat-
ical function. We selected the subject and ob-
ject because they typically match core seman-
tic roles. We created the feature symbols by
concatenating each verb to its subject and ob-
ject dependents whenever they exist. Verbs with-
out any subject and object relations were ignored.
The feature created from the example sentence is:
plan#Chrysler#investment.

The third feature set considers the predicates of
the corpus and their most frequent arguments. We
used the semantic output of the SRL system to
identify all the verbs and nouns described in the
PropBank and NomBank databases as well as their
arguments 0 and 1. We combined them to form
four different subsets of semantic features. The
first subset simply contains the predicate senses.
We created them by suffixing the predicate words
with their sense number as for instance plan.01.
The three other subsets corresponds to combina-
tions of the predicate and one or two of their core
arguments, argument 0 and argument 1. As with
the VSO triples, we created the feature symbols
using a concatenation of the predicate and the ar-
guments. The three different combinations we
used are:

1. The predicate and its first argument, argu-
ment 0. In the example, plan.01#Chrysler

2. The predicate and its second argument, argu-
ment 1. In the example, plan.01#investment

3. The predicate and its first and second argu-
ment, arguments 0 and 1. In the example,
plan.01#Chrysler#investment

We applied the log(tf)× idf weighting scheme
to all the feature sets in all the representations. We
used the raw frequencies for the tf component.

5 Results

5.1 Evaluation Framework

Since the articles in RCV1 can be labeled with
multiple categories, we carried out a multilabel
classification. This is done by applying a classi-
fier for each category and then merging the results
from them. For a classification of a single cate-
gory i, the results can be represented in a contin-
gency table (Table 2) and from this table, we can
calculate the standard measures Precision and
Recall. We summarized the results with the har-
monic mean F1 of Precision and Recall.

+ example - example
+ classified ai bi

- classified ci di

Table 2: The results of a classification represented
in a contingency table.

To measure the performance over all the cate-
gories, we use microaveraged F1 and macroaver-
aged F1. Macroaverage is obtained by calculat-
ing the F1 score for each category and then taking
the average over all the categories (4), whereas mi-
croaverage is calculated by summing all the binary
decisions together (2) and calculating F1 from that
(3).

µPrecision =

Pn
i=1 aiPn

i=1 ai + bi

µRecall =

Pn
i=1 aiPn

i=1 ai + ci

(2)

µF1 =
2× µPrecision× µRecall

µPrecision + µRecall
(3)

maF1 =
1

n

nX

i=1

F i
1 (4)

5.2 Results

The six feature sets create 64 possible representa-
tions of our data. We assigned a code to the rep-
resentations using a six-character string where a 1
at the first location indicates that the bag-of-words
set is included and so forth as shown in Table 3.

To get an approximation of the performance
of the representations, we conducted tests on the
training set. We then ran full tests on the topics
categories on the representations that showed the
highest effectiveness. We measured and optimized
for micro and macroaverage F1. Table 4 shows the
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Feature set Code
Bag of words 100000
Predicates 010000
VSO triples 001000
Argument 0 000100
Argument 1 000010
Arguments 0 and 1 000001

Table 3: Codes for the features sets. A code for
a representation is the result of a bitwise-and be-
tween the codes of the included feature sets.

representations we selected from the initial tests
and their results with the full test. The represen-
tations that include bag-of-words, predicates, and
one or more of the argument sets or the VSO set
achieved the best performance.

Feature set Microaverage Macroaverage
Baseline 81.76 62.31
c110000 81.99 62.09
c111000 82.27 62.57
c110100 82.12 62.16
c110010 82.16 62.77
c110001 81.81 62.24
c111100 82.17 62.44

Table 4: Effectiveness of microaverage and
macroaverage F1 on the most promising represen-
tations. Parameters were set to optimize respec-
tively microaverage and macroaverage F1. The
baseline figure corresponds to the bag of words.

The effectiveness of the individual categories
can be seen in Figures 4 and 5. The categories
are sorted by training set frequency. The graphs
have been smoothed with a local linear regression
within a [-200, +200] range.

As scores are close in Figures 4 and 5, we show
the relative error reduction in Figures 6 and 7.

We applied the McNemar test to measure the
significance of the error reduction. In Table 5,
we list how many categories showed a significance
under 0.95 out of 103 categories in total.

We also measured the significance by apply-
ing a paired t-test on the categories with more
than 1000 training documents, where the popula-
tion consisted of the F1 scores. The tests showed
p-values lower than 0.02 on all representations
for both micro and macroaverage optimized F1

scores.
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Figure 6: The relative error reduction per category
for microaverage optimized classifications.
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Figure 7: The relative error reduction per category
for macroaverage optimized classifications.

Feature set Microaverage Macroaverage
c110000 27 23
c111000 23 20
c110100 23 21
c110010 26 25
c110001 25 25
c111100 25 22

Table 5: Number of categories that had an signifi-
cance under 0.95 when parameters were set to op-
timize microaverage and macroaverage F1.

5.3 Conclusion

We have demonstrated that complex semantic fea-
tures can be used to achieve significant improve-
ments in text classification over a baseline bag-
of-words representation. The three extensions
we proposed: word-sense disambiguation, SVO

Text Categorization Using Predicate–Argument Structures

147



 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1000  2000  4000  8000

F
1 

sc
or

e

Number of training documents

baseline
c110000
c111000
c110100
c110010
c110001
c111100

Figure 4: F1 effectiveness per category on microaverage optimized classifications where there exists
more than 1000 training documents.
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Figure 5: F1 effectiveness per category on macroaverage optimized classifications where there exists
more than 1000 training documents.

triples, and predicate–argument structures, either
taken individually or in combination, result in sta-
tistically significant improvements of the microav-
erage F1. The best results on average are produced
by extending the vector space model with dimen-
sions representing disambiguated verb predicates
and SVO triples. For classes having more than
2500 training documents, the addition of argument
0 yields the best results.

All results show an improvement over the top

microaveraged F1 result of 81.6 in Lewis et al.
(2004) which corresponds to the baseline in our
experiment.

Contrary to previous studies (Mansuy and Hil-
derman, 2006), the sense disambiguation step
shows improved figures over the baseline. The
possible explanation may be that:

• The PropBank/NomBank databases have
simpler sense inventories than WordNet, for
example plan has four senses in WordNet
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and only one in PropBank; investment has six
senses in WordNet, one in NomBank.

• The Penn Treebank corpus on which the
semantic parser is trained is larger than
SemCor, the corpus that is commonly used
to train word-sense disambiguation systems.
This means that the classifier we used is pos-
sibly more accurate.

We designed our experiments with English text
for which high-performance semantic parsers are
available. The results we obtained show that using
SVO triples is also an efficient way to approximate
predicate–argument structures. This may be good
news for other languages where semantic parsers
have not yet been developed and that only have de-
pendency parsers. We plan to carry out similar ex-
periments with SVO triples in other languages of
the Reuters corpus and see whether they improve
the categorization accuracy.

Moreover, we believe that our approach can
be improved by introducing yet more abstraction.
For instance, frame semantics from FrameNet
(Ruppenhofer et al., 2006) could possibly be
used to generalize across predicates as with
buy/acquisition. Similarly, structured dictionaries
such as WordNet or ontologies such as Cyc could
allow generalization across arguments.
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