
Named Entity Recognition Using the Web

Audun Rømcke

CoreTrek Application
Sandnes, Norway

audun@coretrek.no

Christer Johansson
Computational Linguistics

University of Bergen
Bergen, Norway

christer.johansson@uib.no

Abstract

Entity Cruncher (EC) is an experimental Web-
as-corpus approach to NER (Named Entity
Recognition). The task is to identify and clas-
sify names of persons, locations, and organisa-
tions, and possibly even more detailed classes.
EC looks for frequencies of names in prespec-
ified lexical contexts (thought to be excellent
determiners of the class and identity of the can-
didate word) on the web, using the MSN Live
API (msdn2.microsoft.com).

The document frequencies of the candidate
words in the prespecified contexts are the ba-
sis for deciding the classification of each Named
Entity candidate. The system was tested on the
evaluation data used for Dutch in the CoNLL
(Conference for Computational Natural Lan-
guage Learning) 2002 competition. Among
other things, Dutch has a significant number
of surnames that are names of places. Simi-
larly, many organizations are named after per-
sons (such as Heineken). This makes the task
slightly different from using English, where the
common names for places are more separated
from names of people. EC got an F-score of
63.20 using little more than 30 lexical context
patterns and a tiny selection of less than 400
finite state lexical phrase patterns. The results
obtained with this rather simplistic, small scale,
approach give grounds for optimism regarding
both the use of corpus lookup for categorisation
of names and words, and for the use of the web
as a high coverage backdown alternative.

1 Introduction

1.1 Task description

Named Enitity Recognition (NER) is the task of
extracting names for people, organisations, lo-
cations etc. from text. Successful NER is a pre-
requisite for many other tasks in Natural Lan-
guage Processing and Information Extraction.
The following is a sentence containing three

Named Entities of category Organisation, Lo-
cation and Person (example taken from Tjong
Kim Sang (Tjong Kim Sang and De Meulder,
2003)):

[ORG U.N] official [PER Ekeus]
heads for [LOC Baghdad].

There are several problems for successful NER:

• Approaches using lists and databases of
names and name elements are very precise,
but fail to generalise beyond the domain
and language they were tailored for.

• Statistical and computational approaches
have much broader coverage, but often lack
the level of precision needed.

• Training of statistical models requires large
amounts of annotated data.

The named entity task was first intro-
duced for the MUC conferences in the
1990s (Grishman and Sundheim, 1996), which
also established the basic 4-way classifica-
tion of NEs into PER(SON), LOC(ATION),
ORG(ANISATION) and MISC(ELLANEOUS).

Early systems utilised gazetteers (lists or
databases containing names for people and
places etc.) and rules that described the inter-
nal structure of names consisting of more than
one word/token. This technique yields a high
level of precision, but any list or database, how-
ever carefully compiled and maintained, will be
incomplete. Especially when moving to other
languages or domains, this incompleteness will
result in low recall for such systems.

Lately, several machine learning experiments
have been performed for the NER task. The
CoNLL 2002 (Tjong Kim Sang, 2002) and 2003
(Tjong Kim Sang and De Meulder, 2003) shared
tasks consisted in building models for NE clas-
sification using machine learning algorithms on
annotated data sets provided by the conference

83Johansson, C. (Ed.)
Proceedings of the Second Workshop
on Anaphora Resolution (2008)



(Dutch and Spanish in 2002, and English and
German in 2003).

NEs and NE subparts were marked for fea-
tures such as case, whether or not they con-
tained digits, hyphens etc. Lexical context was
also encoded in different ways. The best re-
sults achieved for the four different languages
are shown in table 1 (see Carreras et al. (Car-
reras et al., 2003) and Florian (Florian et al.,
2003)).

1.2 Related work
Markert et al. (Markert et al., 2003) use the
Google API for automatic nominal anaphora
resolution, reporting an 11.4 percentage point
increase in their classifier’s performance when
adding information obtained from web searches
to the standard morphosyntactic features used
for machine learning.

Yatsuo et al. (Matsuo et al., 2006) demon-
strate a social network extraction system bas-
ing its decisions on web frequency counts.
Their system, POLYPHONET, represents an
improvement over earlier systems.

Keller et al. (Keller, 2002) report that us-
ing web data for corpus methods can overcome
the notorious data sparseness associated with
experiments using traditional corpora.

2 Materials and Method

2.1 The data

The task uses data for Dutch from the CoNLL
2002 shared task. This consists of three files:
ned.train, ned.testa and ned.testb. The
first two files were used during the development
process, and ned.testb was used for the fi-
nal evaluation, and was therefore not reviewed
while building the program. The files consisted
of articles from the Belgian newspaper De Mor-
gen. It can be argued that Dutch makes for a
different task than using English. First, Dutch
has many many person names that are also
names of places. Organizations are often named
after person. So the confusion of named cate-
gories are likely larger than for English. Sec-
ond, many Dutch first and last names are spe-
cific to Dutch (or Afrikaans, which stems from
Dutch). The number of Dutch documents on
the net is far smaller than the number of En-
glish documents, though in some cases we are
able to use mentions in English documents as
well. Dutch names may also include various
prepositions and determiners, which is rarely
the case in English. However, the data set that

we have worked on has been used by many re-
search groups, and form a good starting point
for evaluation of the potential for using the
web, even under conditions where we can ex-
pect lower coverage than for the more dominant
language on the internet, English.

2.2 Evaluation

Evaluation of the program was done using the
F-score (Van Rijsbergen, 1979), which is the
weighted harmonic mean of Precision and Re-
call. Precision and Recall are defined in terms
of the correct and incorrect decisions made by
the program, the quantities of True Positives,
False Positives and False negatives.

Precision is defined as:

Precision =
TP

TP + FP
· 100 (1)

Recall is defined as:

Recall =
TP

TP + FN
· 100 (2)

Precision measures how many correct cate-
gory predicitions the system makes, and Recall
measures how many of the total amount of items
to be categorised were actually extracted and
categorised correctly.

F-score is defined as:

F = 2 · precision · recall

precision + recall
· 100 (3)

2.3 The patterns

The basic idea is that we might gleen the correct
category for a name by checking whether that
name occurs frequently in lexical contexts asso-
ciated with a particular category. We might for
example expect person names to appear more
frequently after the sequence “his name is...”
or “her name is...”.

The patterns consist of a variable and a se-
quence of preceding, succeeding or surrounding
words, like “his name is X”. The program in-
stantiates the variable with an NE candidate
and sends the resulting string as a query to
the web API, which returns the number of hits
found on the web.

The patterns to be used were arrived at by
testing their performance against two data sets
containing Named Entities (NEs) of the four ba-
sic categories of PER, LOC, ORG and MISC,
as well as non-name words. These data sets
were constructed on the basis of the training

84 ISSN 1736-6305 Vol. 2
http://dspace.utlib.ee/dspace

/handle/10062/7129



Table 1: Best results achieved for the CoNLL 2002/2003 shared tasks

Dutch Spanish English German
F-score 77.05 81.39 88.76 72.41

data. Data set A contained NEs of all cate-
gories and complexity along with several non-
name words, and data set B contained only one-
word NEs and the same non-name words. The
reason for this division was that some internal
analysis of the NEs was sometimes required to
determine the correct category. Some patterns
would work better for single words, whereas oth-
ers worked well for both single words and se-
quences of words, like e.g. full person-names.

Both Dutch and English patterns were put to
use. Some words, like person names and some
organisation names are “international”, and us-
ing English patterns tends to increase recall,
since there is much more English text on the
web. Dutch patterns were however better for
typically Dutch versions of place names (Duits-
land, Frankrijk, Noorwegen etc.), and of course
for corresponding NAT-ADJ and NAT-NOUN
words, since they also tend to be specific to one
language (Duits, Frans, Noors etc.)

Complex person names, for example Rudy De
Brandt, most typically result in low (or no) hits
on either of the patterns, because the string as a
whole is not represented that frequently on the
web. It is however fairly easily established that
Rudy is a person-name in and of itself and that
De Brandt is also a person-name, so word-level
analysis was useful.

The evaluation used four categories of PER,
LOC, ORG and MISC for top-level analysis. At
the word level, the same categories plus NON-
NAME, NAT-NOUN and NAT-ADJ were used.

The reason why nationality adjectives and na-
tionality nouns were distinguished from other
non-names, was that they had been marked
up as Named Entities of category MISC in the
CoNLL data. To insure fair comparison to other
NER systems evaluated using these data, it was
necessary to extract these words and treat them
as MISC. If this could be done successfully, then
that would be equal to extracting these words
and marking them as non-names when evaluat-
ing against a correct data set, where these had
not been marked up as NEs.

One of the main heuristics of the program
was to include (almost) only uppercase words as

parts of NEs. This approach is associated with
two problems: Some NEs contain words that are
not uppercase, and every sentence-initial word
is always uppercase. The first problem leads
to incorrect exclusions of words that should be
part of an NE. The program included some of
the lowercase words correctly, like short parti-
cles in person-name constructions (like de, van
etc.). A large majority of NEs also consist of
only uppercase words.

The second problem means that we have
to establish, for every sentence-initial word,
whether or not that word constitutes a name.
Patterns for the word-level category NON-
NAME were therefore also tested. Some of them
performed very well, but since there was no fur-
ther subcategorisation into POS categories like
verb, adjective etc., rules based on such finer
categorisation could not be utilised.

Each pattern is associated with one of the rel-
evant categories, and a certain number of hits on
the web with a query containing a Named En-
tity candidate in the lexical context represented
by the pattern should ideally mean that the can-
didate in question belongs to (or could belong
to) the category associated with that pattern.

The patterns, like the resulting program it-
self, could be evaluated in terms of Preci-
sion/Recall and F-score. The F-score for any
given pattern should be interpreted as that pat-
tern’s ability to distinguish between NEs (or
words) of its own category from those of all
other categories.

Given a certain threshold, we compute the
quantities of True Positives etc. by seeing how
many times the queries with NEs of the pat-
tern’s category return values above and under
that threshold. We repeat this computation for
thresholds between 0.1 and 10 (using the nat-
ural logarithm of the number of hits from the
web API to keep the values within a convenient
range), giving us an F-score distribution for that
pattern. This way we can see what kind of
Precision/Recall and F-score can be obtained
at each threshold, and know how confident we
can be at any threshold when interpreting the
value as an indication of whether or not a word

85Johansson, C. (Ed.)
Proceedings of the Second Workshop
on Anaphora Resolution (2008)



 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Threshold

Precision
Recall

F-score

Figure 1: F-score distribution for “in X wonen”

belongs to that category. Figure 1 shows the F-
score distribution for the pattern “in X wonen”
(English: “live in X”), with associated category
LOC.

2.4 The program

The program Entity Cruncher and the pattern-
testing system were both developed in PHP
(Achour et al., 2005). I used MySQL for
database handling (Widenius and Axmark, ).

The program analysed each sentence in the
input data using a tiny lexical grammar with
common words like determiners, quantifiers,
prepositions, common adverbs etc. Context
words were also checked against regular expres-
sions for common keywords that could give clues
as to a word or name’s category. Person names
often occur after titles, such as English Mr, Mrs
or descriptive words such as manager, musician,
minister. Organisations are often likewise asso-
ciated with descriptive words such as manufac-
turer, competitor, firm etc. Such rudimentary
context analysis was the only kind of ambigu-
ity resolution present in the program, which is
the greatest shortcoming of the program in its
present state. In all other situations, the pro-
gram used a majority vote based on scores ob-
tained when checking the NE candidate against
the different patterns. All NEs would therefore
(almost) always receive the same category for
every run of the program, a gross simplification
in terms of ambiguity, since e.g. person names
can stand for persons (Bill Clinton) organisa-
tions (Philip Morris) and other (MISC) entities,
such as the movie Austin Powers.

Uppercase words were then classified into the
categories PER, LOC, ORG, MISC, NAT-ADJ,
NAT-NOUN, (i.e. adjectives and nouns de-
noting national, regional or local association,

like Nederlandse, Antwerpse etc.) and NON-
NAME. NON-NAMES are words that do not
constitute NEs in and of themselves, like com-
mon nouns, verbs, adjectives etc. All other
words were marked UNKNOWN.

After all single words had been categorised in
this manner, the program extracted the Named
Entities by using a finite state routine.

The NEs that consisted of one word would be
categorised using the classification arrived at in
the first step just described. NAT-ADJ would
map to MISC, PER to PER, LOC to LOC etc.

If an NE consisted of more words, it was
tested as a whole against another set of web
searches. If no confident categorisation was ar-
rived at using these frequencies for the candi-
date as a whole, the distribution of categories
for each of the words it consisted of would de-
termine the overall category.

The program went through a file of patterns
selected on the basis of their F-scores obtained
when testing against the pre-compiled data set.
Each pattern was associated with one category
and two thresholds. The first threshold was a
higher threshold, associated with high or per-
fect Precision on the data set. A hit above this
threshold would result in a certain score for the
pattern’s category. The second threshold would
be lower, allowing for more candidate words
to be included, but a hit above this threshold
would not only result in a lower score for the
pattern’s category, but also in scores for the cat-
egories that were most often included as False
Positives. These categories were established by
looking at confusion overviews that were auto-
matically generated for each threshold.

Each pattern was given a set of
scores to deal out to each NE category
(PER/LOC/ORG/MISC) The frequency count
(or rather, as mentioned earlier, the natural
logarithm of it) would be compared to the
two thresholds, and points would be given
to the categories involved for each pattern.
The category with the highest accumulated
scores after checking the NE candidate with
all patterns in the file would be chosen as
the system’s prediction for that candidate’s
category.

2.5 Machine learning on pattern
frequencies

A PHP script extracts all NEs from the CoNLL
files, and creates a data set for machine learning
where the frequencies of occurrence in the con-

86 ISSN 1736-6305 Vol. 2
http://dspace.utlib.ee/dspace

/handle/10062/7129



text, represented by the patterns, are encoded
as features of each NE.

The data set created this way contains a vec-
tor for each NE, with values for 25 patterns and
a few orthographic features (whether or not the
NE contained hyphens, digits etc.).

Different algorithms in the machine learning
environment WEKA (Witten and Frank, 2005)
were used to create and evaluate models over
these features. The models were trained on the
data set extracted from ned.testa, and evalu-
ated against the data set from ned.testb.

3 Results

3.1 Results for the patterns
Finding contexts that would reliably single out
only one (or as few as possible) of the differ-
ent NE categories was difficult. More than 160
contexts were tested against the data sets. The
data sets consisted of more than 3000 and more
than 4000 words/names respectively, and only a
few patterns could be checked using the 10,000
daily searches allowed by MSN. Searches that
had already been performed were stored in a lo-
cal database for quicker retrieval, and to make
as much as possible of the daily search quota
when repeating runs of the program or when
developing and debugging.

There was a marked difference in how easy or
difficult it was to find good patterns for the dif-
ferent categories. Patterns for LOC were easy to
think up and they more often than not turned
out to have good performance. PER patterns
were also quite easy to find, but finding pat-
terns for first names only or last names only
was very difficult, because a lot of first names
are last names, and because there are different
(but equivalent) ways of referring to people, us-
ing first name only, last name only or the full
name. At the word level, therefore, both first
and middle and last names were simply cate-
gorised as PER - because it was easier to estab-
lish that something is (can be) a person name
than to determine whether it was somebody’s
first or last name.

Figure 2 shows the F-score distribution for
the pattern “mr X is” OR “mr X has” OR “mrs
X is” OR “mrs X has” on data set B (single
words).

ORG patterns were very hard to find, and
they never had more than poor to fair perfor-
mance. In the scoring process, such patterns
were given less points to deal out, so that they
only win through when there is little PER/ORG

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Threshold

Precision
Recall

F-score

Figure 2: F-score distribution for “mr X is” OR
“mr X has” OR “mrs X is” OR “mrs X has”

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Threshold

Precision
Recall

F-score

Figure 3: “career at X in” OR “career at X as”
OR “career at X and” OR “career at X began”

ambiguity. Figure 3 shows the F-score distribu-
tion for the pattern “career at X in” OR “career
at X as” OR “career at X and” OR “career at
X began” on data set A.

MISC patterns were seemingly impossible to
find. The MISC category is a catch-all category
for any entity that does not belong in the three
other categories. This goes for works of art
(books, movies), conferences, festivals, champi-
onships, products, technologies and many more.
Finding lexical contexts that encompass all of
these and how they are talked (written) about
was not possible. Trying to develop patterns
that would single out subcategories was diffi-
cult, since the data sets contained relatively few
examples of each subcategory. The MISC cate-
gory was used as a fallback category in the clas-
sification.

NON-NAME patterns were also easy to find,
but I did not attempt to create patterns that
would subcategorise non-names in terms of POS
etc., again because of the time frame of the

87Johansson, C. (Ed.)
Proceedings of the Second Workshop
on Anaphora Resolution (2008)



 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Threshold

Precision
Recall

F-score

Figure 4: “het X volk” OR “de X bevolking”

Table 2: Results for Entity Cruncher

train test a test b
Precision 61.66 64.85 61.60
Recall 65.60 68.12 64.88
F-score 63.57 66.44 63.20

project, and because the data sets were so lim-
ited. The patterns allow for items from many
subcategories (similar to the situation with per-
son names), so keeping names and non-names
apart was easier than to subcategorise.

The patterns for NAT-ADJ and NAT-NOUN
were also useful and easy to find, since there
would be little interference with anything other
than other non-names, especially quantifiers,
determiners etc. that were handled by the lex-
ical grammar anyway. Figure 4 shows the F-
score distribution for the pattern “het X volk”
OR “de X bevolking” (English: “the X people”
OR “the X population”) on data set B.

3.2 Results for the system
The overall F-score on the final evaluation
against the ned.testb-file was 63.20. We see
that this is markedly below the best scores from
the CoNLL 2002 competition, but it is well
above the baseline result for that same compe-
tition, which was 58.28.

NER consists of two main phases: Extraction
of NE candidates, and classification of these ex-
tracted candidates. Both phases introduce er-
rors. I also evaluated Entity Cruncher’s perfor-
mance on the classification task alone, feeding
the program’s classifier with all the correctly ex-
tracted NEs in the data set one by one. Table 3
shows the relevant results, in terms of the per-
centage of correctly classified entities.

Table 3: Results for Entity Cruncher (Classifi-
cation only)

train test a test b
% correct 72.85 75.00 73.97

Table 4: Results from WEKA

Classifier Type % correctly
classified

PART Rules 71.18
REPTree Tree 71.10
IBk Lazy 70.33
J48 Tree 70.27
NNge Rules 69.58
JRip Rules 69.10

3.3 Machine learning results

The machine learning algorithms achieved a
percentage of correctly classified NEs close to,
but never surpassing, that of Entity Cruncher’s
own classifier. These algorithms had however
less information to work on (no context infor-
mation, little orthographic information, no in-
ternal analysis of complex NEs). This suggests
that machine-induced rule sets for classification
would probably yield better results than the
hand-crafted classifier given the same informa-
tion. Table 4 sums up some of the better results.

4 Discussion

Although the overall performance of the pro-
gram is fair at best, this is likely due to the fact
that it does not take full advantage of all the
information available. Several possible improve-
ments would most likely produce better results.
However, it is impressing how little is needed
to get a fair result. The selection of the deter-
minant patterns for classification is a task that
would currently have to be done using some lin-
guistic knowledge. Human generation of can-
didate patterns is fairly easy, but the patterns
need to be evaluated for coverage and precision.

4.1 Improvements

4.1.1 Better and more patterns
The exploratory nature of the research meant
that suitable patterns were few and far be-
tween. An automated approach to pattern de-
velopment based on statistical methods could

88 ISSN 1736-6305 Vol. 2
http://dspace.utlib.ee/dspace

/handle/10062/7129



perhaps be used to discover context with strong
discriminating power.
4.1.2 Better modelling of the problem
Entity Cruncher is a very simple program, with
almost no ambiguity representation. Proper
ambiguity handling and ambiguity resolution
with a deeper analysis of sentences and NE con-
text would probably yield much better results.
Combining the web frequencies with the fea-
tures used to build successful NER systems for
the CoNLL competitions, would give classifiers
a greater range of evidence upon which to base
their decisions.
4.1.3 A dedicated linguistic search

system
Using the MSN Live Search API (or any publi-
cally available commercial search API) means
that we as researchers have no control over
the implementation of the search system or the
representation of linguistic units. Systems like
Google, MSN, AltaVista etc. may arbitrarily
change overnight without warning, and the sys-
tems are not designed for statistical linguistic
purposes.

Several problems are evident:

• The search systems strip queries of relevant
information like case, punctuation etc.

• The systems return document frequencies
rather than occurrences (there may be
many occurrences per document)

• There is no syntactical or POS parse avail-
able for the text

• There is little room for operators, wildcards
and complex queries using linguistic nota-
tion

• There are only a limited number of searches
available per day

A linguistically motivated search system
would allow researchers to overcome these se-
vere limitations and gain a higher level of pre-
cision when viewing the web as a corpus.

Kilgariff and others (see Kilgariff and Grefen-
stette (Kilgarriff and Grefenstette, 2003) and
Kilgariff (Kilgarriff, 2007) and the references
therein) discuss the problems associated with
the use of commercial APIs for linguistic re-
search, and demonstrate how proper linguistic
corpora can be created from web data. It is
argued that reliance on commercial search sys-
tems is a hindrance for proper scientific research

using web data, and that the linguistic commu-
nity should pool research to create tools suited
to their needs.

5 Conclusion

Entity Cruncher demonstrates how even a sim-
plistic program utilising “web as corpus”-data
may accomplish fair results. A minimal amount
of information is used besides the web frequen-
cies (i.e. the lexical grammar of less than 400
elements and some regular expressions).

Considering the potential for improving the
decisions of the program and the heterogene-
ity of the items to be classified, an F-score of
approximately 63 is an indication that the pro-
cedure is useful.

We feel confident that future research
utilising and incorporating this approach to
automatic NER, or similar tasks, will yield
very good results, because there are plenty of
avenues for improvement using information in
the texts to be categorized as well as combining
that information with searches in very large
data collections. We have so far only had
access to raw data from the net. In the future,
we might have access to larger collections of
categorized data, and this would allow other
methods using for example supervised machine
learning.

Acknowledgement

This work is based on the first author’s masters
thesis. We thank the organizers of the CoNLL
workshops for making all material for the shared
tasks available. We also thank MSN for allowing
an adequate amount of automatic search queries
to complete this task.

89Johansson, C. (Ed.)
Proceedings of the Second Workshop
on Anaphora Resolution (2008)



References

M. Achour, F. Betz, A. Dovgal, N. Lopes, P. Ol-
son, G. Richter, D. Seguy, and J. Vrana.
2005. PHP Manual, Language and Function
Reference. The PHP Documentation Group.

X. Carreras, L. Màrquez, and L. Padro. 2003.
Learning a Perceptron-Based Named Entity
Chunker via Online Recognition Feedback. In
W. Daelemans and M. Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 156–159, Ed-
monton, Canada.

R. Florian, A. Ittycheriah, H. Jing, and
T. Zhang. 2003. Named Entity Recognition
through Classifier Combination. In W. Daele-
mans and M. Osborne, editors, Proceedings
of CoNLL-2003, pages 168–171, Edmonton,
Canada.

R. Grishman and B. Sundheim. 1996. Mes-
sage Understanding Conference-6: a brief his-
tory. In Proceedings of the 16th conference
on Computational linguistics, pages 466–471,
Copenhagen, Denmark.

Lapata M. Ourioupina O. Keller, F. 2002. Us-
ing the web to overcome data sparseness. In
Proceedings of EMNLP-02, pages 230–237.

A. Kilgarriff and G. Grefenstette. 2003. In-
troduction to the special issue on the web
as introduction to the special issue on the
web as corpus. Computational Linguistics,
29(3):333–347.

A. Kilgarriff. 2007. Googleology is bad science.
Computational Linguistics, pages 147–151.

K. Markert, N. Modjeska, and M. Nissim. 2003.
Using the web for nominal anaphora resolu-
tion. In EACL Workshop on the Computa-
tional Treatment of Anaphora, pages 39–46.

Y. Matsuo, J. Mori, and M. Hamasaki. 2006.
POLYPHONET: an advanced social network
extraction system from the web. In WWW
’06: Proceedings of the 15th international
conference on World Wide Web, pages 397–
406. ACM Press.

E.F. Tjong Kim Sang and F. De Meulder. 2003.
Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity
Recognition. In W. Daelemans and M. Os-
borne, editors, Proceedings of CoNLL-2003,
pages 142–147, Edmonton, Canada.

E.F. Tjong Kim Sang. 2002. Introduction to
the CoNLL-2002 Shared Task: Language-
Independent Named Entity Recognition. In
D. Roth and A. van den Bosch, editors,
Proceedings of CoNLL-2002, pages 155–158,

Taipei, Taiwan.
C. J. Van Rijsbergen. 1979. Information Re-

trieval. Dept. of Computer Science, Univer-
sity of Glasgow, 2 edition.

M. Widenius and D. Axmark. Mysql Refer-
ence Manual. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA.

I.H. Witten and E. Frank. 2005. Data Mining:
Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco,
CA, USA, 2 edition.

90 ISSN 1736-6305 Vol. 2
http://dspace.utlib.ee/dspace

/handle/10062/7129


