
On Representing Dependency Relations –
Insights from Converting the German TiGerDB

Adriane Boyd
Ohio State University
Dept. of Linguistics

Markus Dickinson
Indiana University

Dept. of Linguistics

Detmar Meurers
Ohio State University
Dept. of Linguistics

Abstract

Research in parser evaluation has led to the creation of dependency resources
such as the TiGer Dependency Bank, a semi-automatic conversion of a subset
of the TIGER Treebank. We explore the relationship between the TiGerDB
representation and a more surface-oriented dependency analysis of German
and describe how we mapped and recoded the TiGerDB into a format more
closely linked to the original treebank data.

1 Introduction

Current research on parser evaluation across corpus annotation schemes has faced
significant difficulties in finding comparable data (cf, e.g., Rehbein and van Gen-
abith 2007, and references therein). The TiGer Dependency Bank (TiGerDB, Forst
et al. 2004) is a valuable step in addressing this issue, in that it provides a depen-
dency analysis based on sentences drawn from the newspaper corpus used in the
TIGER Treebank, itself a combination of phrase structure and functional annota-
tion. More than that, the goal of the TiGerDB is to be a theory-neutral dependency-
based gold standard for evaluating German parsers. While it is related to the func-
tional annotation in the TIGER Treebank, extensive manual and automatic conver-
sion steps, such as disambiguating intermediate LFG f-structure representations
using a broad-coverage LFG parser (Dipper 2003), were involved in developing
a dependency annotation with that goal in mind. In sum, the TiGerDB as a de-
pendency annotation of the TIGER sentences clearly is attractive both for serving
as a target for evaluating parsers trained on a range of corpus annotation schemes
and as a dependency representation in its own right, given the increased interest in
dependency grammar and direct dependency parsing.

At the same time, there are aspects of the TiGerDB which arguably need to be
revisited if it is to serve as a gold standard dependency resource. Its annotation
is not directly aligned with the actual corpus tokens; it includes abstract nodes for
analyzing coordination; and it introduces sublexical nodes for compounds, com-
paratives and superlatives, and contractions. Such nodes are not utilized in most

De Smedt, K., Hajič, J. and Kübler, S. (Eds.)
Proceedings of the Sixth International Workshop
on Treebanks and Linguistic Theories (2007)

31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14473862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


dependency parsers (e.g., McDonald and Pereira 2006; Nivre and Hall 2005) or
previous dependency banks. Finally, the TiGerDB includes dependencies with
multiple heads, which most dependency encoding schemes do not allow.

This paper explores the relationship between the TiGerDB representation of
German and a more traditional lexical dependency analysis and describes how
we mapped and recoded the TiGerDB into a format which preserves the origi-
nal distinctions, but more readily provides access to the key lexical information for
data-driven parsing approaches. This also makes the dependency annotation more
directly comparable to other dependency analyses of German, such as that of Foth
(2006).

To support this process on the technical side, we define a treebank format in
the form of an XML Schema Definition that supports the full range of dependency
representations. On the one hand, this format is motivated by the need to repre-
sent the TiGerDB and all stages of the conversion process; on the other, we hope
that it proves useful as a basis for representing and comparing a wider range of
dependency representations.

2 TiGerDB and the desiderata to be addressed

The TiGerDB was developed based on the TIGER Treebank (Brants et al. 2002),
a corpus text taken from the national German newspaper Frankfurter Rundschau.
Its dependency annotation is based on the annotation scheme developed for the
English PARC 700 Dependency Bank (King et al. 2003) and is designed to encode
the “distinctions current deep parsers of German make” (Forst et al. 2004).

The dependency annotation scheme, aiming at a theory-neutral gold standard,
differs significantly from the grammatical relations encoded in the original TIGER
Treebank. Of the 53 types of dependency relations used, 11 are completely new,
and 5 more have slightly different definitions. For example, the TIGER label MO
(modifier) is split into mo (optional modifier) and pd (predicative argument) since
these are distinctions often made by German parsers. In addition, the TIGER label
AMS (measure argument/adjunct) is merged into the TiGerDB label mo.

Consequently, there is no direct mapping from TIGER to the TiGerDB. Cre-
ating the TiGerDB required significant manual work, aimed at obtaining a high-
quality annotation reflecting the relevant distinctions for a gold standard parsing
evaluation resource. At the same time, the current TiGerDB arguably is not in a
format that can be readily used (cf., also Versley and Zinsmeister 2006). TiGerDB
does not directly encode the original lexical items, using lemmas or abstract forms
instead. For uses where the surface string is needed, the TiGerDB token numbers
have to be used to align each dependency from TiGerDB with the surface string
from the original TIGER Treebank. This alignment is complicated in several ways.

First, and most prominently, a clear mapping between the nodes in the TiGerDB
and the words in TIGER does not always exist. On the one hand, in the TiGerDB,
lemmas and abstract nodes with or without lexical counterparts are the elements

32 ISSN 1736-6305 Vol. 1 
http://dspace.utlib.ee/dspace 

/handle/10062/4476 



involved in dependency relations. Instead of annotating conjuncts, coordination is
annotated through the use of abstract coordination nodes, and subword nodes are
used to annotate non-head elements of compounds, comparative and superlative
adjectives, and contractions. On the other hand, some surface string tokens are
not annotated as part of word-word dependencies at all: auxiliary verbs are anno-
tated as tense and mood features and are thus left out of the dependency graph,
and separable prefixes and the right parts of circumpositions also receive no anno-
tation. Additionally, some multiword expressions are tokenized differently in the
two resources.

Second, it can be difficult to align nodes with tokens due to simple inconsis-
tencies. The TiGerDB token IDs pointing to the corresponding forms in TIGER
contains errors, and thus one has to manually check and align cases.

Let us take a look at an example annotation from the TiGerDB to illustrate the
basic setup and the features described above. The annotation of sentence (1) is
shown right below it.

(1) Das
that

gehört
belongs

offenbar
apparently

zum
to the

Spiel.
game

‘That apparently belongs to the game.’

mo(gehören~0, offenbar~3)
mood(gehören~0, ind)
op(gehören~0, zu~4)
sb(gehören~0, pro~1)
tense(gehören~0, pres)
tiger_id(gehören~0, 2)
case(pro~1, nom)
gend(pro~1, neut)
num(pro~1, sg)

pers(pro~1, 3)
pron_type(pro~1, demon)
degree(offenbar~3, pos)
obj(zu~4, Spiel~5)
case(Spiel~5, dat)
det(Spiel~5, die~1012597)
gend(Spiel~5, neut)
num(Spiel~5, sg)
det_type(die~1012597, def)

The annotation consists of two types of expressions: dependency relations such
as the first term establishing a mo relation between gehören (‘to belong’) and
offenbar (‘apparently’), and features specifications, such as the second to last
term declaring the num of Spiel (‘game’) to be sg. Each of the terms of the
TiGerDB annotation refers to a lemma or abstract node. For example, the term for
the word gehört (‘belongs’) from the surface string refers to the lemma gehören,
and the pronominal subject das (‘that’) appears as the special lemma pro, with
pron_type, case, num, and gend specifying which kind of pronoun it is. The root
gehört is given the ID 0 (notated after the ∼), and the position of the token is en-
coded by the tiger_id feature, whereas usually the ID corresponds to the word’s
position in the sentence. Lastly, the definite article in the contraction zum (zu dem,
‘to the’) is annotated using the element die that does not have a one-to-one corre-
spondence with any terminal in the sentence.

De Smedt, K., Hajič, J. and Kübler, S. (Eds.)
Proceedings of the Sixth International Workshop
on Treebanks and Linguistic Theories (2007)

33



3 Representing dependencies: Malt-XML to Decca-XML

Before we can turn to the conversion process itself, we need to define a repre-
sentation format that is flexible enough to encode the TiGerDB as well as a more
traditional lexical dependency representation. Fortunately, an XML representa-
tion that satisfies many of the requirements has already been developed by Joakim
Nivre and colleagues in the MALT project. We thus take the Malt-XML for-
mat (http://w3.msi.vxu.se/~nivre/research/MaltXML.html) as the start-
ing point and focus on the necessary modifications.

One of the tenets of traditional dependency approaches that is relaxed in the
TiGerDB is the single-head constraint (cf, e.g., Mel’čuk 1988, ch. 1). The TiGerDB
annotation scheme in certain cases identifies a word as the dependent of two sep-
arate heads, for example, to explicitly encode all dependencies in control con-
structions. Sentence (2), translating as ‘But who shall function as the referee?’,
illustrates this situation.

(2)
sb mo det oa oc_inf

Wer aber soll den Schiedsrichter spielen ?
Who but shall the referee play ?

sb

In this sentence, the subject wer (‘who’) is analyzed as being dependent upon both
the modal verb soll (‘shall’), for which it is the syntactic subject, and the main verb
spielen (‘play’), for which it is a semantic argument. Thus, in order to represent
the TiGerDB and, more generally, any dependency bank rejecting the single-head
constraint, our encoding format must be flexible enough to encode multiple heads.

In the Malt-XML format, one can encode most of example (2), as in Figure 1.

<sentence id="8017">
<word id="1" form="Wer" postag="PWS" head="6" deprel="sb" />
<word id="2" form="aber" postag="ADV" head="1" deprel="mo" />
<word id="3" form="soll" postag="VMFIN" head="0" deprel="root" />
<word id="4" form="den" postag="ART" head="5" deprel="det"/>
<word id="5" form="Schiedsrichter" postag="NN" head="6"

deprel="oa" />
<word id="6" form="spielen" postag="VVINF" head="3"

deprel="oc_inf" />
<word id="7" form="?" postag="$." />

</sentence>

Figure 1: Malt-XML encoding of most of example (2)

Each word is encoded as an element within a <sentence> structure. The depen-
dencies are encoded in each dependent word using a head attribute that refers to

34 ISSN 1736-6305 Vol. 1 
http://dspace.utlib.ee/dspace 

/handle/10062/4476 



the head via a unique ID introduced for each word. The deprel attribute encodes
the nature of the dependency relation for each dependent.

The Malt-XML encoding in Figure 1 represents all dependency relations of
(2) except for the subject relation between soll and wer, which cannot be directly
encoded since multiple dependency heads cannot be expressed in Malt-XML.

For Decca-XML, we eliminate this restriction by replacing the head and dep-
rel attributes with a new element type <head> as a child of <word>. The <head>
element contains attributes for the id of the head and the type of relation (deprel).
Figure 2 exemplifies how this makes it possible to encode the subject wer of exam-
ple (2) as a dependent of two heads.

<sentence id="8017">
<word id="1" form="Wer" postag="PWS">
<head id="3" deprel="sb" />
<head id="6" deprel="sb" />

</word>
. . .
<word id="3" form="soll" postag="VMFIN">
<head id="0" deprel="root" />

</word>
. . .
<word id="6" form="spielen" postag="VVINF">
<head id="3" deprel="oc_inf" />

</word>
. . .

</sentence>

Figure 2: Decca-XML encoding of the multiple heads from example (2)

The second area where Decca-XML departs from the Malt-XML format arises
from the use of abstract and sublexical nodes in the TiGerDB. We add two addi-
tional token types within the sentence, <abstract> and <subword>, to be used for
tokens that do not directly correspond to terminals. For representing the TiGerDB,
<abstract> is used for the coordination nodes and <subword> for the non-head
elements of compound words, comparative/superlative adjectives, and contrac-
tions. Both <abstract> and <subword> can have multiple heads, just like <word>.

Finally, in order to transparently support referring back to the original an-
notation, Decca-XML includes an optional attribute externid for <sentence>,
<word>, <abstract>, and <subword> elements that encodes the corresponding
sentence or token ID from the original annotation.

4 The conversion process

The conversion process aligns the TiGerDB tokens with terminals in the TIGER
Treebank and distinguishes the three types of tokens in the TiGerDB (word, ab-
stract, subword) to create a graph of word-word dependencies for each sentence.

De Smedt, K., Hajič, J. and Kübler, S. (Eds.)
Proceedings of the Sixth International Workshop
on Treebanks and Linguistic Theories (2007)

35



As we saw in section 2, the TiGerDB encodes a combination of binary relations
between tokens (e.g., subject, accusative object) and features for individual tokens
(e.g., case, number, tense). The focus here is on the dependency relations between
pairs of tokens, with the features only being used to guide the conversion.1

4.1 Linguistic issues

4.1.1 Coordination

We start the discussion of linguistic issues arising in the conversion with two coor-
dination examples. Example (3) shows an example including a conjunction (and),
while example (4) does not include one.

(3) Behörde
Authorities

und
and

Begehrlichkeit
Greed

cj(coord~0, Begehrlichkeit~3)
cj(coord~0, Behörde~1)

coord_form(coord~0, und)

(4) Siehe
See

Kommentar
editorials

S.
p.

3,
3,

Berichte
reports

S.
p.

4
4

cj(coord~521, Bericht~6)
cj(coord~521, Kommentar~2)

oa(sehen~0, coord~521)

As mentioned in section 2, in the TiGerDB coordination is analyzed with ab-
stract coord tokens. If a conjunction is present, it is identified in the TiGerDB
annotation by the feature coord_form, as exemplified by the third expression be-
low (3). The relation between the coord token and its head encodes the function
of the coordination as a whole in the sentence, e.g., in example (4), the accusative
object (oa). The conjuncts are dependents of the coord token with the dependency
relation cj, displayed graphically in (5).

(5)
cj cj oa

Siehe Kommentar S. 3, Berichte S. 4 coord

The use of abstract tokens allows all instances of coordination to be anno-
tated in the same manner. The Decca-XML format can in principle represent the
TiGerDB analysis using the <abstract> token type. In order to connect the de-
pendency analysis to the TIGER Treebank terminals as directly as possible, how-
ever, we choose to use the conjunction as the head instead. In instances where there
is no conjunction, there are several different approaches that could be taken.

1The id can be used to locate the morphological information in the TIGER Treebank, and the
externid can be used to associate any additional TiGerDB features with a particular token.

36 ISSN 1736-6305 Vol. 1 
http://dspace.utlib.ee/dspace 

/handle/10062/4476 



One option is to designate one of the conjuncts as the head, as illustrated in
example (6). This is the approach used in for the Constraint Dependency Grammar
analysis of German (Foth 2006). The first conjunct’s dependency relation corre-
sponds to the role of the entire phrase in the sentence and all other conjuncts are
dependents below the first conjunct.

(6)
oa cj

Siehe Kommentar S. 3, Berichte S. 4

A second option is to use a special dependency label for conjuncts that in-
cludes information about the grammatical role and about the status of the phrase
as a conjunct. Shown in example (7), the new label oa_cj is the dependency rela-
tion for both conjuncts. This is similar to the analysis of conjuncts in the Prague
Dependency Treebank (Hajičová et al. 1998).

(7)
oa_cj oa_cj

Siehe Kommentar S. 3, Berichte S. 4

While the Decca-XML format could represent either of these, we choose to
leave the abstract coordination as it stands when no conjunction is present. There
is no TIGER Treebank terminal to associate with the abstract token, so the objective
of aligning all TIGER terminals with nodes in the TiGerDB is satisfied.

For the most part, the conversion of coordination can proceed automatically. If
a conjunction appears more than once in a sentence, the coord_form value in the
TiGerDB does not provide enough information to determine which of the conjuncts
to align with which coordination. In those cases, alignment is done by hand.

Finally, there is an additional TiGerDB feature that is relevant in this context.
The feature precoord_form is used to identify any other token that should be
associated with the conjunction, such as the first part of a composite coordinate
form, as in weder . . . noch (‘neither . . . nor’). In the conversion, we integrate these
TIGER terminals into the annotation as dependencies by making them dependents
of the conjunction with the new relation label precoord.

4.1.2 Auxiliaries

When used as auxiliaries, forms of the verbs haben, sein, and werden are not rep-
resented as tokens in the TiGerDB annotation. Instead, tense and mood features
are used on the non-finite verb to indicate the contribution of the auxiliary. We
choose to make the analysis of auxiliaries parallel to the analysis of modal verbs,
such as the modal verb soll we saw in example (2), where the modal verb is the
head of the non-finite verb and the subject of the clause is both the subject of the
modal verb and of the non-finite verb. In the conversion, the auxiliary becomes the

De Smedt, K., Hajič, J. and Kübler, S. (Eds.)
Proceedings of the Sixth International Workshop
on Treebanks and Linguistic Theories (2007)

37



head of the non-finite verb using the existing dependency relation oc_inf (infinite
clausal object) and the subject of the non-finite verb becomes the subject of both
the non-finite verb and the auxiliary. This generalizes the double head analysis
already used in the TiGerDB (cf. section 3) to the case of auxiliaries (and could
easily be mapped to another representation given arguments for another analysis).

4.2 Data representation issues

4.2.1 Basic alignment with terminals from TIGER Treebank

The TiGerDB token IDs and token forms (e.g., coord) are used to identify the
word tokens, abstract tokens, and sublexical tokens that the annotation refers to.
The word token IDs are used to align the TiGerDB ID with the token in the TIGER
Treebank in order to retrieve the inflected word form, and the associated lemma
and part-of-speech information is taken from the TIGER Treebank for all word
tokens. The root of a TiGerDB dependency graph bears ID 0, so for lexical roots
the feature tiger_id is consulted to determine the associated word position in the
TIGER Treebank.

4.2.2 Indirectly annotated tokens

In the TiGerDB, a few types of words are indirectly included in the annotation but
are not indexed to the corresponding TIGER Treebank terminals. These include
separable prefixes appearing separate from the verb stem and the right-most ele-
ment in a circumposition. Both can be identified by unique parts of speech in the
TIGER Treebank, and the conversion associates them with the appropriate verb
stem or the left-most element of the circumposition, respectively.

4.2.3 Alternate tokenization

The TiGerDB does not always preserve the tokenization from the TIGER Tree-
bank. Certain proper names, such as Den Haag (‘The Hague’) and British Tele-
com, are two tokens in the TIGER Treebank but are combined into a single token in
the TiGerDB. Other sequences, such as telephone numbers containing spaces, are
treated as multiple tokens in the TIGER Treebank but combined in the TiGerDB.
In order to align the TiGerDB annotation with the TIGER Treebank tokens, it is
necessary to segment the combined tokens back into the TIGER Treebank tokens.
In the conversion, proper names are analyzed using the existing dependency rela-
tion name_mod. Other sequences are encoded using the more general relation mod
also used for subword elements in compound nouns, which we now turn to.

4.2.4 Subword tokens

Subword tokens in the TiGerDB include non-head elements of compounds, com-
parative and superlative inflection for adjectives, and contractions such as preposi-

38 ISSN 1736-6305 Vol. 1 
http://dspace.utlib.ee/dspace 

/handle/10062/4476 



tion + definite article contractions (e.g., in + dem→ im, ‘in the’). Because the in-
ternal analysis of compounds is not present in the TIGER Treebank, in our conver-
sion the elements representing the non-head elements of compounds are converted
to <subword> tokens. All subword information from the TiGerDB is preserved in
the conversion, even where the TIGER Treebank already includes part-of-speech
tags and morphological information which encode the adjective inflection infor-
mation and distinguish contractions. For the use of the corpus as a resource for
word-word dependency parsing, subword tokens can simply be ignored.

4.2.5 Hand correction

Most of the conversion described above proceeds automatically. A few modifica-
tions must be completed by hand: some token ID numbering errors in the TiGerDB
need to be corrected; when there are multiple occurrences of the same conjunction
in a sentence, each conjunct need to be associated with the correct occurrence in
the sentence; and all tokenization mismatches need to be analyzed individually.
Including all types of tokens, the subsection of the TIGER Treebank annotated in
the TiGerDB includes about 36,000 tokens in 1,867 sentences. Approximately 4%
of the token IDs were corrected, 300 conjunctions aligned, and 170 multi-word
expressions segmented.

4.3 Detailed examples

We illustrate the conversion process with two TiGerDB sentences. Example (8)
shows a sentence with multiple heads due to the analysis of predicative adjectives
along with the sublexical analysis of a compound noun. The relevant relations from
the TiGerDB analysis are shown below the example.

(8) Die
the

Personenführung
guiding of people

ist
is

exzellent.
excellent

‘The way people are guided is excellent.’

pd(sein~0, exzellent~4)
sb(sein~0, Führung~2)
tiger_id(sein~0, 3)

mod(Führung~2, Personen~2001)
sb(exzellent~4, Führung~2)

The verb ist (‘is’, lemma: sein) bears TiGerDB token ID 0 as the root of the sen-
tence. The subword token Personen bears ID 2001. The remaining token IDs
correspond to the original TIGER Treebank terminals. After locating the token po-
sition of the root using the feature tiger_id, the word tokens are aligned with the
original sentence, and the lemmas and part-of-speech tags are extracted from the
TIGER Treebank. The subword token Personen is identified by its token ID and
its binary dependency relations is mapped. The external id pointers (externid)
map each token back to the TiGerDB token ID so that additional features could be
added as needed. The resulting Decca-XML output is shown in Figure 3.

De Smedt, K., Hajič, J. and Kübler, S. (Eds.)
Proceedings of the Sixth International Workshop
on Treebanks and Linguistic Theories (2007)

39



<sentence id="9595" externid="tiger-db-9595.fdsc">
<word id="1" form="Die" lemma="der" postag="ART" externid="1">
<head id="2" deprel="det"/>

</word>
<word id="2" form="Personenführung" lemma="Personenführung"
postag="NN" externid="2">
<head id="3" deprel="sb"/>
<head id="4" deprel="sb"/>

</word>
<word id="3" form="ist" lemma="sein" postag="VAFIN" externid="0">
<head id="0" deprel="ROOT"/>

</word>
<word id="4" form="exzellent" lemma="exzellent" postag="ADJD"
externid="4">
<head id="3" deprel="pd"/>

</word>
<word id="5" form="." lemma="--" postag="$." externid="">
</word>
<subword id="2001" form="Personen" externid="2001">
<head id="2" deprel="mod"/>

</subword>
</sentence>

Figure 3: Decca-XML annotation for example (8)

Example (9) demonstrates the conversion of an abstract coord token when a
conjunction is present. As shown in Figure 4, the abstract coord is replaced by the
overt conjunction.

(9) Verkehrschaos
traffic chaos

durch
through

Eisregen
freezing rain

und
and

Schnee
snow

‘Traffic chaos caused by freezing rain and snow’

mo(Chaos~0, durch~2)
mod(Chaos~0, Verkehrs~1001)
tiger_id(Chaos~0, 1)
obj(durch~2, coord~501)

mod(Regen~3, Eis~3001)
cj(coord~501, Regen~3)
cj(coord~501, Schnee~5)
coord_form(coord~501, und)

5 Conclusion and Outlook

We have shown how we performed a conversion of a dependency resource for Ger-
man, the TiGerDB, into a more readily usable dependency annotation of the surface
string, thus promoting work in parser evaluation. In performing the conversion, we
accounted for abstract nodes, sublexical nodes, and word alignment issues, all of
which makes the treebank more directly connected to the original data. Given the
direct connection of the TiGerDB to the TIGER Treebank, the new resource can
also contribute to a comparison of constituency-based and dependency-based cor-
pus annotation.

40 ISSN 1736-6305 Vol. 1 
http://dspace.utlib.ee/dspace 

/handle/10062/4476 



<sentence id="8810" externid="tiger-db-8810.fdsc">
<word id="1" form="Verkehrschaos" lemma="Verkehrschaos" postag="NN"

externid="0">
<head id="0" deprel="root" />

</word>
<word id="2" form="durch" lemma="durch" postag="APPR" externid="2">
<head id="1" deprel="mo" />

</word>
<word id="3" form="Eisregen" lemma="Eisregen" postag="NN" externid="3">
<head id="4" deprel="cj" />

</word>
<word id="4" form="und" lemma="und" postag="KON" externid="501">
<head id="2" deprel="obj" />

</word>
<word id="5" form="Schnee" lemma="Schnee" postag="NN" externid="5">
<head id="4" deprel="cj" />

</word>
<subword id="1001" form="Verkehrs" postag="" externid="1001">
<head id="1" deprel="mod" />

</subword>
<subword id="3001" form="Eis" postag="" externid="3001">
<head id="3" deprel="mod" />

</subword>
</sentence>

Figure 4: Decca-XML annotation for example (9)

An interesting opportunity for research and discussion in our opinion also
arises from the fact that in addition to the TiGerDB and the dependency annotation
we have derived from it, there also are two dependency representations which were
directly extracted from the TIGER Treebank, one by Amit Dubey for the CoNLL-
X Shared Task and another by Manuel Kountz and Martin Forst (Kountz 2006),
which are both available in conjunction with the TIGER Treebank. Together with
related work on closely related data (Daum et al. 2004), this should support a de-
tailed exploration of the differences between dependency annotation schemes, both
regarding the different dependency relations assumed and regarding the analysis of
various phenomena, such as coordination, control, or auxiliaries as discussed in
this paper. A discussion of the merits of each choice could also contribute to a
standardization of dependency analysis.

On the practical side, we developed a flexible XML encoding format for de-
pendency treebanks. The Decca-XML Schema Definition is freely available at
http://decca.osu.edu. We will also provide the dependency resource result-
ing from the conversion to the TIGER Project, so that it can be made available in
conjunction with the TIGER Treebank and the TiGerDB.

Acknowledgements This paper is based upon work supported by the National
Science Foundation under Grant No. IIS-0623837. We would also like to thank
Martin Forst for his kind assistance and the anonymous TLT reviewers for their
useful comments.

De Smedt, K., Hajič, J. and Kübler, S. (Eds.)
Proceedings of the Sixth International Workshop
on Treebanks and Linguistic Theories (2007)

41



References

Brants, S., S. Dipper, S. Hansen, W. Lezius and G. Smith (2002). The TIGER
Treebank. In Proceedings of TLT-02. Sozopol, Bulgaria.

Daum, M., K. Foth and W. Menzel (2004). Automatic transformation of phrase
treebanks to dependency trees. In Proceedings LREC-04. Lisbon, Portugal.

Dipper, S. (2003). Implementing and Documenting Large-Scale Grammars — Ger-
man LFG. Ph.D. thesis. IMS, University of Stuttgart. AIMS Vol. 9(1).

Forst, M., N. Bertomeu, B. Crysmann, F. Fouvry, S. Hansen-Schirra and V. Kordoni
(2004). Towards a Dependency-Based Gold Standard for German Parsers. The
TIGER Dependency Bank. In Proceedings of LINC-04. Geneva, Switzerland.

Foth, K. (2006). Eine umfassende Constraint-Dependenz-Grammatik des
Deutschen. Tech. rep., Universität Hamburg.

Hajičová, E., J. Panevova and P. Sgall (1998). Language resources need annotations
to make them reusable: The Prague Dependency Treebank. In Proceedings of
LREC-98. Granada, Spain, pp. 713–718.

King, T. H., R. Crouch, S. Riezler, M. Dalrymple and R. M. Kaplan (2003). The
PARC 700 Dependency Bank. In Proceedings of LINC-03. Budapest, Hungary.

Kountz, M. (2006). Extraktion von Dependenztripeln aus der TIGER-Baumbank.
Studienarbeit Nr. 54, IMS, Universität Stuttgart.

McDonald, R. and F. Pereira (2006). Online learning of approximate dependency
parsing algorithms. In Proceedings of EACL-06. Trento, Italy.

Mel’čuk, I. A. (1988). Dependency syntax: theory and practice. SUNY series in
linguistics. Albany, NY: State University Press of New York.

Nivre, J. and J. Hall (2005). MaltParser: A Language-Independent System for
Data-Driven Dependency Parsing. In Proceedings of TLT-05. Barcelona, Spain.

Rehbein, I. and J. van Genabith (2007). Treebank Annotation Schemes and Parser
Evaluation for German. In Proceedings of EMNLP-CoNLL-07. Prague.

Versley, Y. and H. Zinsmeister (2006). From Surface Dependencies towards Deeper
Semantic Representations. In Proceedings of TLT-06). Prague, Czech Republic.

42 ISSN 1736-6305 Vol. 1 
http://dspace.utlib.ee/dspace 

/handle/10062/4476 


