
U N I V E R S I T Y OF T A R T U

Faculty of Mathematics and Computer Science

Institute of Computer Science

Liina Kamm

Homological Classification of
Commitment Schemes

Master’s Thesis

Supervisor: Ahto Buldas, PhD

Instructor: Sven Laur, MSc

TARTU 2007

Contents

1 Introduction 5

2 Preliminaries 7
2.1 Elements of Statistics and Probability Theory 7
2.2 Computationally Hard Problems . 8

2.2.1 Hard Problems in Finite Groups 9
2.2.2 Algorithms for the Discrete Logarithm Problem 14
2.2.3 Factoring Problem and RSA Modulus 16
2.2.4 Algorithms for the Factoring Problem 18
2.2.5 Pseudorandom Generators 19
2.2.6 Collision Resistance . 19

2.3 Game Based Security Definitions 21

3 Basic Properties of Commitment Schemes 23
3.1 Simple Commitment Schemes . 24

3.1.1 Simplified Canetti-Fischlin Commitment Scheme 24
3.1.2 Collision-Resistant Hash Function Commitment 28

4 Duality between Encryption and Commitment 30
4.1 Encryption Schemes . 30
4.2 Extractability . 31
4.3 Canonical Correspondence . 33
4.4 IND-CPA Security and Extractability 34
4.5 An Example of Canonical Correspondence 35

4.5.1 ElGamal Encryption Scheme 36
4.5.2 ElGamal Commitment Scheme 36

5 Simulatable Commitments 40
5.1 Equivocability . 40
5.2 Commitments Based on Discrete Logarithm 41

5.2.1 Pedersen Commitment Scheme 41
5.2.2 Fujisaki–Okamoto Commitment Scheme 43

5.3 Trapdoor Discrete Logarithm . 45

6 Commitments and Non-Malleability 47
6.1 Homomorphic Commitment Schemes 51
6.2 IND-CCA2 Security and Non-Malleability 53
6.3 An Example of Non-Malleable Commitment 54

6.3.1 Encryption Scheme . 54
6.3.2 Commitment Scheme . 55

3

6.4 Simulation-Sound Trapdoor Commitments 56

7 Conclusion 58

8 Kinnistusskeemide homoloogiline klassifikatsioon 60

4

1 Introduction

Mankind has always had secrets and with secrets comes the need to hide them
and transfer them to trusted parties without the enemy finding out what is being
sent. The original aim of cryptography was to provide secrecy and various ”un-
breakable” codes were designed already in ancient Greece. During the second half
of the 20th century cryptography matured, as computers started playing a bigger
role in its applications. Secrecy ceased being the only goal and was soon accom-
panied by integrity, fairness and anonymity. Also, a sound theoretical base was
established for cryptography. Contemporary cryptography is based on complexity
theory and most of its protocols rely on the existence of computationally hard
problems. Such an approach allows to make the assumptions very clear, widely
acceptable and testable in practice, e.g., the RSA breaking challenge. Some of
the main primitives of cryptography are encryption and commitment schemes,
zero knowledge proofs, oblivious transfer, authentication, identification and pseu-
dorandom bit generation. In this master’s thesis, we concentrate on commitment
schemes and their relationship with encryption schemes.

Commitment schemes are a means of temporally hiding secret information so
that it is verifiable in spite of the possible bias from the sender or the receiver.
These schemes are an important building block for different cryptographic proto-
cols and are used, for example, in digital timestamping, secret sharing schemes,
zero knowledge proofs, electronic voting and secure multiparty computation.

In a sense, commitment schemes are in a central place in cryptography, as
they form an essential part of several complex protocols. We can informally look
at one of the most common applications of commitment schemes: a fair coin-
flipping [Blu81]. This protocol for sharing random results is the heart of secure
multiparty computation. Together with zero knowledge, essentially any complex
cryptographic protocol needs fair cointosses. Consider the following example: we
have two parties Alice and Bob who wish to determine the winner of a cointoss.
Unfortunately Alice and Bob are at different locations and have to do this without
both of them being able to see the outcome. Alice flips the coin, but Bob cannot
entirely trust that Alice will tell him the right result once he has revealed his choice
of heads or tails. So Alice puts the result in a box, locks it and sends it to Bob.
Now Bob can reveal whether he chose heads or tails. Alice then sends him the key
to the box so he can be sure of the result. This process can be repeated as many
times as necessary to get the needed amount of random values and it has been
widely used in the constructions of many cryptographic protocols [Gol04].

Unfortunately, so far there has been no concise overview of commitment schemes
in widespread cryptographic literature. The objective of this thesis is to system-
atise different properties and examples of commitment schemes. We show how
commitment schemes are in correspondence with encryption schemes and how

5

properties of both notions are related to each other. We give proofs to differ-
ent kinds of properties and relationships, thus, explicitly demonstrating different
proving techniques that are often used in cryptography.

We give a short overview of the different properties of commitment schemes
discussed in this master’s thesis.

• In Chapter 2 we give definitions and descriptions for the notions used later
in the thesis. We talk about computationally hard problems as important
building blocks for constructing cryptographic protocols.

• In Chapter 3 we show which functions are necessary in a commitment scheme
and we describe its two basic properties: hiding and binding. To illustrate
the different combinations of properties, we describe two simple commitment
schemes.

• In Chapter 4 we discuss the duality between encryption and commitment
schemes. We give a definition for extractability—a property that is necessary
for the existence of a canonical correspondence between encryptions and
commitments.

• Chapter 5 deals with simulatable commitments and equivocability—the prop-
erty that is necessary for achieving simulatability of cryptographic protocols.
This property is essential for simple proofs of secure multiparty computation
in the malicious model, where an adversary can deviate from the protocol.
We also describe two commitment schemes that are equivocable.

• Finally, in Chapter 6, we come to the non-malleability property of commit-
ment schemes needed for key-agreement and authentication protocols where
the communication is vulnerable to attacks from malicious parties. We show
how it relates to properties of encryption schemes and we give an example
of a provably non-malleable commitment scheme.

6

2 Preliminaries

2.1 Elements of Statistics and Probability Theory

The probability of an event shows how the number of occurrences of this event
relates to other events. In cryptography, the classical definition of probability
is often sufficient, in particular, if we consider randomised algorithms that throw
coins or choose elements uniformly from sets. By Pr [AB] we denote the probability
that the events A and B will both occur. Conditional probability Pr [A|B] is the
chance that an event A will occur on the condition that the event B has already
taken place and

Pr [A|B] =
Pr [AB]

Pr [B]
.

Let the set of elementary events Ω be divided into disjoint subsets B1, . . . , Bn

such that B1 ∪ . . . ∪ Bn = Ω and Bi ∩ Bj = ∅ for i 6= j. Let A be an event in Ω,
then the probability of the occurrence of A is computed in the following way

Pr [A] =
n∑

i=1

Pr [A|Bi] · Pr [Bi] .

In the same setting, the probability of the event Bj happening given the occurrence
of A can be computed by using the Bayes’ rule

Pr [Bj|A] =
Pr [Bj] · Pr [A|Bj]∑n
i=1 Pr [Bi] · Pr [A|Bi]

.

Statistical difference shows how similar two given probability distributions are.
Let D be a discrete space and let X and Y be probability distributions (or random
variables) on D. The statistical difference between X and Y is

‖X − Y ‖ = max
S⊂D
|Pr [X ∈ S]− Pr [Y ∈ S] | .

No algorithm can distinguish two distributions with an advantage greater than the
statistical difference. We give a lemma that gives an upper bound for statistical
difference between Zu and the set created by taking values from ZT modulo u.
We will need it later in the security proof for the Fujisaki-Okamoto commitment
scheme in Section 5.2.2.

Lemma 2.1. Let T > u be integers and let D = {v : v = w mod u, w ∈ ZT}, then
the statistical difference between D and Zu is u

T
.

7

a

. . . b
u

Figure 1: The relationship between the distributions of Zu and D

Proof. We define two values a and b to simplify our further computations. Let
a = bT

u
c, b = T − au (Figure 1) and let y be an element chosen uniformly from

ZT , we divide the elements of Zu into two sets

T0 = {c ∈ Zu : Pr [y mod u = c]} =
a

T
,

T1 = {c ∈ Zu : Pr [y mod u = c]} =
a + 1

T
.

We notice that

|T0| = u− |T1| = u− b

and

|T1| = T − au = b .

The statistical difference between Zu and D can be expressed as

ε =
|T0|
2
·
(

1

u
− a

T

)
+
|T1|
2
·
(

a + 1

T
− 1

u

)
=

b(u− b)

uT
≤ u

T
.

2.2 Computationally Hard Problems

Many cryptographic protocols, also commitment schemes, depend on different hard
problems that cannot be efficiently solved for an arbitrary input. The security
proofs are given in terms of the hardness of the underlying problem—as long as
it is very difficult to solve the problem, the protocol is secure. This section gives
an overview of the computationally hard problems that are the basis for different
cryptographic protocols.

8

2.2.1 Hard Problems in Finite Groups

Finite groups are often used in cryptography as a source of computationally hard
problems. We take a look at three problems based on the assumption that is is dif-
ficult to compute the discrete logarithm in some groups. This was first mentioned
in the article [DH76] and is one of the main difficult problems that cryptographic
protocols rely on.

Before getting to the three problems, we will look at some properties of finite
groups and their elements. A group G is cyclic if there exists a generator g ∈ G
so that for every element y ∈ G there exists an integer i so that y = gi. The order
of an element y ∈ G is the smallest integer i so that yi = 1. The order of a cyclic
group is the order of its generator and also the number of elements in the group.
Powers of any group element g of order n form a subgroup:

〈g〉 = {gi : 0 6 i 6 n− 1} .

It is easy to see that 〈g〉 is a cyclic subgroup of G of order n, where n is also
the order of g. Every cyclic group Gn = 〈g〉 is isomorphic with Zn. The isomor-
phism translates multiplication into addition, as can be seen in Figure 2. This
isomorphism is realized by the discrete logarithm function log : Gn → Zn, where

log(gi) = i mod n .

Note that log(ab) = log(a) + log(b) . The inverse function is exponentiation exp :
Zn → Gn, where

exp(i) = gi .

One can, of course, define log and exp with respect to different bases. However, in
this thesis we explicitly assume that they are taken with respect to base g. Next,
we give definitions of three problems in the group Gn and then discuss them, and
their relations to each other, less formally.

Definition 2.1. A group Gn is a (t, ε)-Discrete Logarithm group if for any t-time
adversary A:

Pr [x← Zn, y ← gx : A(g, y) = x] 6 ε . (1)

Definition 2.2. A group Gn is a (t, ε)-Computational Diffie-Hellman group if for
any t-time adversary A:

Pr
[
a, b← Zn : A(g, ga, gb) = gab

]
6 ε . (2)

9

G×G ×−−−→ G

log

y log

y exp

x
Zn×Zn

+−−−→ Zn

Figure 2: Isomorphism of G and Zn

G×G CDH−−−→ G

log

y log

y exp

x
Zn×Zn

×−−−→ Zn

Figure 3: CDH problem and DL

Definition 2.3. A group Gn is a (t, ε)-Decisional Diffie-Hellman group if for any
t-time adversary A:∣∣∣∣∣Pr

[
a, b← Zn :

A(g, ga, gb, gab) = 1

]
− Pr

[
a, b, c← Zn :

A(g, ga, gb, gc) = 1

]∣∣∣∣∣ 6 ε . (3)

Less formally, the inequality (1) means that in a (t, ε)-discrete logarithm group
it is difficult for an adversary to efficiently find the smallest non-negative integer
x, 0 6 x 6 n− 1, so that gx = y. Since

gx = y =⇒ x = log y ,

we can simply say that on average it is difficult to find the discrete logarithm of
an arbitrary element of the group.

The CDH problem states that the adversary is given three elements g, ga and
gb from 〈g〉, where a, b ← {0, . . . , n − 1}. In a CDH-group (2) it is infeasible to
compute the value gab. In the DDH problem, the adversary is given four elements
g, ga, gb and y from 〈g〉, where a, b ← {0, . . . , n − 1}. The assumption (3) states
that it is difficult to distinguish whether y is equal to gab or whether it is simply
a random element of the group.

The CDH assumption is related to the discrete logarithm assumption. If com-
puting discrete logarithms in Gn were easy, then the CDH assumption would be
false, because given a tuple (g, ga, gb), the adversary A could find a or b and, thus,
easily compute gab. This is illustrated in Figure 3 that shows how the CDH prob-
lem is related to the multiplication of exponents. However, it is an open problem
to determine whether the discrete logarithm assumption is equivalent to CDH,
though in certain special cases this can be shown to be the case [JN03].

The relationships between the three assumptions are given on Figure 4. The
DDH assumption is related to the discrete logarithm assumption for the same rea-
sons as the CDH assumption. It is believed that the DDH assumption is stronger
than discrete logarithm, because there are groups for which detecting DDH tuples
is easy but computing discrete logarithms is believed to be hard [Bon98]. The
DDH and CDH assumptions are also related to each other. If computing gab from

10

DDHy 6
x

CDHy x?

D L

Figure 4: Relationship between the DL, CDH and DDH assumptions

(g, ga, gb) were easy, it would also be easy to detect DDH tuples. It is believed
that DDH is a stronger assumption than CDH, because there are groups for which
detecting DDH tuples is easy, but solving the CDH problem is believed to be
hard [Bon98].

In the following lemma, we describe the collision extraction property of discrete
logarithm. It is used in many of the algorithms for finding the discrete logarithm
of an element.

Lemma 2.2. In a group Gq = 〈g〉, where q is a prime, it is possible to efficiently
compute the discrete logarithm x of an element y ∈ Gq with respect to base g, if
we know four values m0, m1, r0, r1 ∈ Zq such that gm0yr0 = gm1yr1 and r0 6= r1.

Proof. As y = gx, we can do the following to compute the discrete logarithm of y

gm0gxr0 = gm1gxr1

gx = g
m0−m1
r1−r0

x ≡ m0 −m1

r1 − r0

mod q .

As r0 6= r1 and q is a prime, we know that (r1 − r0)
−1 exists.

Self-Reducibility. The discrete logarithm, CDH and DDH problems are ran-
dom self-reducible. Intuitively, this means that if the adversary is able to efficiently
compute the discrete logarithm on average, he is able to do it for almost all inputs.
More formally, the worst case complexity is close to the average case complexity
since the problem can be re-randomised.

To illustrate the concept of random self-reducibility, we present algorithms for
re-randomising these problems. The basic idea of the algorithms is to construct a
new adversary B that uses the old adversary on a variable input. In the discrete
logarithm case the adversary BDL gets g and y as input and has to output logg y.

11

The adversary re-randomises the element y by uniformly choosing z ← Zn and
giving the values g and ygz as input to the adversary ADL. The discrete logarithm
can be computed from the output x′ of ADL by a simple subtraction logg y = x′−z.
In brief, the reduction algorithm for the self-reducibility of the discrete logarithm
can be written down as follows:

BDL(g, y) z ← Zn

y′ ← ygz

Return ADL(g, y′)− z

It is quite straightforward to see that the algorithm is correct. Let y = gx, then
y′ = ygz = gxgz = gx+z and if the adversary ADL succeeds in computing the
discrete logarithm for y′ then BDL succeeds in computing log y. The reduction also
preserves the advantage of the adversary ADL, as the adversary BDL successfully
outputs log y if ADL correctly computes the log y′:

Pr [B(g, y) = x] = Pr
[
x′ ← Zn, y

′ ← gx′ : ADL(g, y′) = x′
]

= Pr [x← Zn, y ← gx : ADL(g, y) = x] = Adv(A) .

The adversary BCDH for the CDH problem is given g, ga and gb and has to
compute gab. The re-randomising is done in much the same way as with the
discrete logarithm problem. Two elements are uniformly chosen u, v ← Zn and the
adversary ACDH is given g, gagu and gbgv as input. The value gab can be computed
by dividing the output ga′b′ of ACDH with the product (ga)v(gb)uguv. The reduction
algorithm for the self-reducibility of the computational Diffie-Hellman assumption
can compactly be written in the following way:

BCDH(g, ga, gb)

u, v ← Zn

ga′ ← gagu

gb′ ← gbgv

z ← ACDH(g, ga′ , gb′)

Return z(ga)−v(gb)−ug−uv

It is easy to see that the algorithm is correct. We know that ga′ = gagu = ga+u

and gb′ = gbgv = gb+v. Hence, if the adversary A outputs ga′b′ , then

ga′b′ = g(a+u)(b+v) = gab+av+ub+uv = gab(ga)v(gb)uguv .

12

Now, if the adversary ACDH succeeds in computing ga′b′ then BCDH succeeds in
computing gab = ga′b′(ga)−v(gb)−ug−uv. Similarly to the discrete logarithm prob-
lem, the reduction preserves the advantage of the adversary ACDH, meaning that
the adversary BCDH is successful in computing gab if ACDH can compute ga′b′ given
a tuple (g, ga′ , gb′):

Pr
[
B(g, ga, gb) = gab

]
= Pr

[
u, v ← Zn, g

a′ ← gagu, gb′ ← gbgv :

ACDH(g, ga′ , gb′) = ga′b′

]
= Pr

[
a, b← Zn : ACDH(g, ga, gb) = gab

]
= Adv(A) .

Finally, we look at the self-reducibility of the DDH problem. The adversary
BDDH receives the values g, ga, gb and y. The problem lies in distinguishing
whether y is equal to gab or whether it is a uniformly chosen element of Gn. The
adversary outputs a guess i ∈ {0, 1}, where i = 1, if the fourth element in the tuple
is equal to gab, and i = 0 otherwise. The re-randomising algorithm uses some of
the same logic as the CDH one. Two elements are uniformly chosen u, v ← Zn

and the values ga′ ← gagu and gb′ ← gbgv are computed. In addition, we also need
the value y′ = y(ga)v(gb)uguv. The adversary ADDH is given four values g, ga′ , gb′

and y′. The adversary outputs a decision i′ ∈ {0, 1}, indicating whether y′ = ga′b′ .
The adversary BDDH gives this decision as the output. In short, the reduction
algorithm for the self-reducibility of the decisional Diffie-Hellman is the following:

BDDH(g, ga, gb, y)

u, v ← Zn

ga′ ← gagu

gb′ ← gbgv

y′ ← y(ga)v(gb)uguv

Return ADDH(g, ga′ , gb′ , y′)

It is quite simple to show that the algorithm is correct. We know that ga′ = gagu =
ga+u and gb′ = gbgv = gb+v. If y = gab then

y′ = gab(ga)v(gb)uguv = gab+av+ub+uv = g(a+u)(b+v) = ga′b′ .

If y chosen uniformly from Gn, then y′ is also has random distribution over the
same group. Now if the adversary ADDH succeeds in distinguishing ga′b′ and an
arbitrary element of Gn then BDDH succeeds in distinguishing gab from an arbitrary
element of Gn. As before, the reduction preserves the advantage of the adversary
ADDH, meaning that the adversary BDDH is successful if ADDH can distinguish ga′b′

13

from an arbitrary element gc′ of Gn. We know that

Pr

 ga′ ← gagu, gb′ ← gbgv,

ga′b′ ← gab(ga)v(gb)uguv :

ADDH(g, ga′ , gb′ , ga′b′) = 1

 = Pr

[
a, b← Zn :

ADDH(g, ga, gb, gab) = 1

]

and

Pr

 ga′ ← gagu, gb′ ← gbgv,

gc′ ← gc(ga)v(gb)uguv :

ADDH(g, ga′ , gb′ , gc′) = 1

 = Pr

[
a, b, c← Zn :

ADDH(g, ga, gb, gc) = 1

]

hold, hence, the probability that BDDH outputs the right guess is equal to the
probability that ADDH succeeds in outputting the right guess.

2.2.2 Algorithms for the Discrete Logarithm Problem

The most obvious algorithm for finding the discrete logarithm is to compute
g0, g1, g2, . . . until the value y is reached. Let n be the order of g, then this method
takes O(n) multiplications and is very inefficient if n is large.

Shanks’ algorithm. This algorithm, also known as the baby-step giant-step
algorithm, is a time-memory trade-off of the exhaustive search method. Let y = gx

and let n be the order of g, then it is possible to write x = im+j, where m = d
√

ne,
0 6 i, j 6 m. This also means that

gx = gimgj =⇒ y(g−m)i = gj .

The algorithm consists of the following steps:

1. For every j, 0 6 j 6 m− 1, compute gj;

2. Sort the computed pairs (j, gj) according to the second element;

3. z ← y;

4. For every i, 0 6 i 6 m− 1

(a) Check whether z is the second component in some pair ,

(b) If z = gj, return x = im + j,

(c) Otherwise set z ← zg−m.

Shanks’ algorithm is a standard meet-in-the-middle trick that is more effective
than the näıve algorithm. It offers the complexity of O(

√
n) group multiplications

but requires the storage for O(
√

n) group elements and the table takes O(
√

n)
multiplications to construct and O(n log n) comparisons to sort [Sha71].

14

x5

x1
y1

x3 = yd

x4

x2

Figure 5: Pollard’s lambda algorithm

Pollard’s lambda algorithm. Pollard’s lambda algorithm (Figure 5) is mainly
used for finding discrete logarithms that lie in a short interval. This algorithm
works on the collision extraction property of discrete logarithm. It is also known
as the method of tame and wild kangaroos, because the main idea of the algorithm
can be described as random walks of two kangaroos. The tame kangaroo jumps
into the wild, digs a hole and waits for the wild kangaroo to fall into it. Jumping
means exponentiation and if asked to find log y then one kangaroo starts from g
and the other one from y. The algorithm is called the lambda algorithm for the λ
shape of the kangaroos’ paths [BSS99].

Pollard’s rho algorithm. Pollard’s rho (Figure 6) is a randomized algorithm
with the same expected running time as Shanks’ algorithm, but it requires a negli-
gible amount of storage. For this reason, it is preferred when dealing with practical
problems. It is a special case of the lambda algorithm and similarly to the latter,
it works on the collision extraction property of discrete logarithm. The basic idea
is to start walking and searching until a collision is found [MvOV01].

The Pohlig-Hellman algorithm. This algorithm takes advantage of the fac-
torization of the order n of the group Gn. Given the prime factorization of
n = pe1

1 pe2
2 · · · per

r , (e1, . . . , er > 1), the running time of the Pohlig-Hellman algo-
rithm isO(

∑r
i=1 ei(lg n+

√
pi)) group multiplications. Basically, discrete logarithm

of an element is found iteratively for every factor pi. This implies, though that the

15

p

x1

x2

x4

x5

x3 = xk

Figure 6: Pollard’s rho algorithm

Pohlig-Hellman algorithm is efficient only if each prime divisor pi of n is relatively
small. If n is a prime, then the Pohlig-Hellman algorithm is the same as Shanks’
algorithm [MvOV01].

The index-calculus algorithm. The algorithms described above are all generic—
they work in any group. The index-calculus algorithm is the most powerful method
known for computing discrete logarithms. This technique does not apply to all
groups, but when it does, it often gives a subexponential-time algorithm. The
two kinds of groups that this algorithm works on and that are used in practical
applications are Z∗

p and F∗
2m [MvOV01].

2.2.3 Factoring Problem and RSA Modulus

The integer factoring problem is to find for a given positive integer N its prime
factorisation N = pe1

1 pe2
2 . . . pek

k , where pi are pairwise distinct primes and each
ei > 1. Finding out whether an integer is composite or prime is considered to be
easier than the factoring problem. Therefore, when talking about algorithms for
solving this problem, it is assumed that it has already been determined that N
is composite. The efficiency of any factorisation algorithm depends on the size of
the factors, especially the smallest one.

This problem is most difficult to solve, if n = pq, where p and q are large

16

primes. But even this might not be enough, as Pollard’s (p− 1) algorithm works
well, if the factors of (p − 1) are small, hence, it is easier to factorise n if the
Eulerian function ϕ(n) has small factors. A prime P is a safe prime if it is equal
to 2p+1, where p is also a prime. If n is the product of two safe primes P = 2p+1
and Q = 2q + 1, then

ϕ(n) = ϕ(PQ) = (2p + 1− 1)(2q + 1− 1) = 2p2q = 4pq .

It is quite straightforward to see that if P and Q are large then p and q are also
large and ϕ(n) has large factors.

The first cryptoscheme to be built on this problem was the RSA encryption
scheme [RSA78]. The RSA modulus n is a product of two large primes p and q of
approximately the same size. As it is a publicly known value and the secret key is
efficiently computable, if ϕ(n) is known, then factorising n results in breaking the
encryption. Therefore, it is necessary that n be a large value, e.g., 2048 bits long.
More formally, an RSA modulus set RSA-mod(w) is a set that consists of pairs of
safe primes (p, q) that are w bits long. The key generation algorithm Gen of the
RSA scheme uniformly takes a pair (p, q) from the set and computes n = pq. We
say that an RSA set is (t, ε)-secure if any t-time adversary A achieves advantage

Adv(A) = Pr [n← Gen, A(n) = p] ≤ ε .

It is easy to sample an RSA-mod(w) set. It is estimated that a set is secure enough
for all feasible computations if ε = 2−80 and currently 1024 bit safe primes are
considered sufficient.

Another interesting observation is that given the value of a multiple of ϕ(n),
we can also find the factors of n.

Lemma 2.3. Let n be a product of two safe primes P = 2p + 1 and Q = 2q + 1.
Then given tϕ(n), where t ∈ N, it is possible to efficiently find P and Q.

Proof. We know that ϕ(n) = (P − 1)(Q − 1) = 2p2q = 4pq and we can express
tϕ(n) as 2sa, where a ∈ N is odd. We know that 4pq|4a and, hence we can say
that a = pqz, where z ∈ N is odd. Next, we look at an element x to the power of
2a. Let x be an arbitrary element of Zn, on one hand,

x2a = (x2p)qz ≡ 1qz ≡ 1 mod P

and on the other hand,

x2a = (x2q)pz ≡ 1pz ≡ 1 mod Q

then from the Chinese Remainder Theorem

x2a ≡ 1 mod n .

17

We define a group

G = {x ∈ Zn : xa = ±1 mod n} ,

that is a multiplicative group in Z∗
n. As a is odd, then (−1)a = −1a and there

exists an element x0 such that x0 ≡ −1 mod P and x0 ≡ 1 mod Q, and xa
0 6= ±1,

thus, the group G does not coincide with Z∗
n and |G| ≤ |Z∗n|

2
. The element x0 is

from Z∗
n\G and the probability of finding such an element is not less than 1

2
, as

|Z∗
n\G| ≥

|Z∗n|
2

. One factor of n is gcd(xa
0 + 1, n), as xa

0 is equivalent with −1 either
modulo P or Q.

2.2.4 Algorithms for the Factoring Problem

The most obvious way to factor an integer n is by trial division. This algorithm
divides n by all primes up to

√
n and will completely factor the integer. This

procedure takes roughly
√

n divisions in the worst case when n is the product of
two primes of approximately the same size. If all the factors are tested for primality
then completely factoring n with this method takes O(p + lg n) divisions, where
p is the second largest prime factor of n. This method is considered useful for
finding ”small” prime factors quickly.

Some factoring algorithms are meant for factoring integers that have special
properties. Pollard’s rho algorithm, Pollard’s (p− 1) algorithm, the elliptic curve
algorithm, and the special number field sieve are special-purpose algorithms, the
quadratic sieve and the general number field sieve are general-purpose algorithms.
The running times of the general-purpose algorithms, depend on the size of n.

Pollard’s rho algorithm is meant for finding small factors of a composite integer.
The expected time to find a non-trivial factor of n is O(n

1
4) [MvOV01].

Pollard’s (p − 1) factoring algorithm can be used to efficiently find any prime
factor p of n where all the prime factors of (p− 1) are not larger than a relatively
small bound B ∈ N, which is selected according to the amount of time one is willing
to spend on this method before moving on to more general techniques. The value
B is known as the smoothness bound. A number is considered B-smooth, if all
of its prime factors are not larger than B. This, however, means that if p is a
safe prime, this method is not very efficient and, hence, safe primes are usually
required for a secure RSA modulus. The running time for finding this factor p is
O(B ln n/ ln B) modular multiplications [MvOV01].

In Pollard’s (p− 1) algorithm (p− 1) is the order of the group Z∗
p. The elliptic

curve factoring algorithm is a generalisation of Pollard’s (p − 1) algorithm in the
sense that the group Z∗

p is replaced by a random elliptic curve group over Zp. If all
the prime factors of the order of the group chosen are smaller than a pre-selected
bound, the elliptic curve algorithm will find a non-trivial factor of n with high

18

probability. If not, the algorithm will probably fail but can then be repeated with
a different choice of elliptic curve group. This algorithm has an expected running
time of O(exp((

√
2 + o(1))(ln p)

1
2 (ln ln p)

1
2)) [MvOV01].

The random square factoring methods attempt to find integers x and y at
random so that x2 ≡ y2 mod n. With probability at least 1

2
it is the case that

x2 6≡ ±y2 mod n and so computing gcd(x− y, n) will give a non-trivial factor of
n. The number field sieve factoring belongs to this family [MvOV01].

The number field sieve factoring is the fastest known factorisation algorithm.
It has the expected running time of O(exp((c + o(1))(ln n)

1
3 (ln ln n)

2
3)), where

c = (64/9)
1
3 ≈ 1.923, and it applies to all integers [MvOV01].

2.2.5 Pseudorandom Generators

When talking about different cryptographic notions, we often refer to generating
a random value, however, true random is not easy to find in practice. A pseudo-
random bit generator PRG [GGM84] provides a means for expanding a random bit
sequence (the seed a) of length l into a bit sequence of length k. The output is not
true random, because it is computed by PRG, moreover, providing the generator
with the same seed more than once outputs the same value. In this thesis, when
we talk about pseudorandom generators, we refer to pseudorandom bit genera-
tors, as these can also be used to generate uniformly distributed random numbers.
These generators are important because they are fairly easy to construct and it is
possible to build practically any symmetric protocols from them. A secure pseu-
dorandom generator PRG expands the seed so that it is almost impossible to tell
the difference between a real random sequence of k and the output of PRG.

Definition 2.4. A pseudorandom generator PRG is a (t, ε)-pseudorandom gener-
ator, if a t-time adversary A achieves advantage

Adv(A) =

∣∣∣∣∣2 · Pr

[
s← {0, 1} , a← {0, 1}l , y1 ← {0, 1}k ,

y0 = PRG(a) : A(ys) = s

]
− 1

∣∣∣∣∣ ≤ ε .

Usually a one-way function, e.g., permutation, is used in the generator for
compiling the output sequence. Among examples of pseudorandom generators are
the Blum Blum Shub generator [BBS86], all stream ciphers (e.g. SNOW2.0 [EJ02])
and any strong block ciphers (e.g. AES [Nat01]) in counter mode.

2.2.6 Collision Resistance

Collision resistance is mainly talked about in the context of hash functions. Hash
functions are among the most important tools for building cryptographic protocols.
The hash function family H ⊆ {h : K ×M→ Y} converts a bit-string m ∈M of

19

arbitrary finite length into a string y ∈ {0, 1}n, using a key k ∈ K. UsuallyM is a
sufficiently large subset of {0, 1}t, so it is possible, in practice, to hash a message
of necessary length. We assume that t > n, thus, the function maps more than one
value from {0, 1}t to an arbitrary element of {0, 1}n and therefore it is inevitable
that collisions exist. This is the reason, why we talk about collision resistant not
collision free hash function families. The unique association between the message
and the hash can be at most computational.

The two main properties of hash functions are compression and ease of com-
putation. In addition to these two properties, we give three more properties that
are considered to be basic hash function properties. Let h be a hash function
with inputs m and m′ and output y. According to [MvOV01], preimage resistance
or one-wayness means that it is computationally infeasible to find any input that
hashes to a given output y for which an input is not yet known. Second preimage
resistance or weak collision resistance implies that given y it is computationally
infeasible to find an input m′ 6= m, so that h(m) = h(m′). And finally, collision
resistance or strong collision resistance means that it is computationally infeasible
to find two inputs m and m′ so that m 6= m′ and h(m) = h(m′).

Collision resistance is an important property of hash function families and it
is essential for usage in cryptographic schemes. The formal definition of collision
resistance together with many other properties is given in [RS04].

Definition 2.5. A hash function family H = {h : K ×M→ Y} is (t, ε)-collision
resistant, if any t-time adversary A has bounded advantage:

AdvColl
H (A) = Pr [k ← K, (m, m′)← A(k) : m 6= m′, hk(m) = hk(m

′)] 6 ε .

It is simple to see that collision resistance implies second preimage resistance.
Let the function family be collision resistant and let us fix the input value m. If the
family does not have second preimage resistance, we are able to find another input
value m′ 6= m so that h(m) = h(m′). But now we have found an input pair that
hashes to the same value, thus contradicting collision resistance. Though collision
resistance does not always imply preimage resistance, it does so for compressing
function families and, thus, for most hash function families arising in practice, it
is also reasonable to assume that it does [MvOV01].

In Section 3.1.2, we need universal hash functions. This property [CW77] is
different from the previous three properties as it is an information theoretical
property, i.e, it can resist unbounded attacks. Let H = {h : K ×M→ Y} be a
hash function family. We say that H is a universal family of hash functions if for

20

m1, m2 ∈M (m1 6= m2) and t1, t2 ∈ Y , the following equations hold

Pr [h ∈ H, h(m1) = t1 ∧ h(m2) = t2] =
1

|Y|2
,

Pr [h ∈ H, h(m1) = t1] =
1

|Y|
,

Pr [h ∈ H, h(m1) = h(m2)] =
1

|Y|
.

For each m1 6= m2, the values output by h(m1) and h(m2) are independent and
of uniform distribution. An example of a universal hash function family is the
following:

H =
{
hA,b : A ∈ {0, 1}nt , b ∈ {0, 1}n

}
,

where hA,b(x) is defined as hA,b(x) = Ax + b [Sti06].

2.3 Game Based Security Definitions

The security of a cryptographic notion is often defined via game-playing—a secu-
rity game between a challenger and an adversary is defined and the adversary has
to win that game in order to succeed. There are different ways for expressing the
advantages of adversaries in cryptographic games. Here we discuss two of them:
comparison based and guessing based. In the comparison based game two worlds
G0 and G1 are defined, the adversary is randomly put into one of these worlds and
he has to output which world he is in. Let GA

i be the result of the game with
adversary A, then the advantage of the adversary is

Advdist(A) =
∣∣Pr

[
GA

1 = 1
]
− Pr

[
GA

0 = 1
]∣∣ .

As there is no easily understandable interpretation for Advdist, it is better to look
at a situation, where the adversary ends up in the world Gi with probability 1

2
and

see how well the adversary can determine which world he is in. Hence, the guessing
based world begins with the challenger flipping a coin and choosing the world based
on the result. The challenger begins playing the game with the adversary A in the
chosen world and A has to guess the result of the cointoss based on the knowledge
he gains during the game. The probability that he succeeds is

Pr
[
i← {0, 1} : GA

i = i
]

.

Since in this case there is always a possibility of 1
2

that the adversary simply flips
a coin and guesses right, then we define the advantage of the adversary A as

Advguess(A) =
∣∣2 · Pr

[
i← {0, 1} : GA

i = i
]
− 1

∣∣ .

21

It is intuitive that these two notions are connected. Consider the following equation

Pr
[
i← {0, 1} : GA

i = i
]

=
1

2
Pr

[
GA

0 = 0
]
+

1

2
Pr

[
GA

1 = 1
]

=
1

2
(1− Pr

[
GA

0 = 1
]
) +

1

2
Pr

[
GA

1 = 1
]

=
1

2
+

1

2
(Pr

[
GA

1 = 1
]
− Pr

[
GA

0 = 1
]
)

=
1

2
+

1

2
Advdist(A) .

It is quite straightforward to see that if Advcomp(A) ≤ ε, then the advantage
Advguess(A) is not greater than ε either. On the other hand, let Advguess(A) ≤ ε′

and consider another equation∣∣Pr
[
GA

1 = 1
]
− Pr

[
GA

0 = 1
]∣∣ =

∣∣Pr
[
GA

1 = 1
]
− (1− Pr

[
GA

0 = 0
]
)
∣∣

= 2 ·
∣∣∣∣12 Pr

[
GA

1 = 1
]
− 1

2
+

1

2
Pr

[
GA

0 = 0
]∣∣∣∣

=
∣∣2 · Pr

[
i← {0, 1} : GA

i = i
]
− 1

∣∣ ≤ 2ε′ .

In this thesis we will use guessing based definitions, since we consider them more
intuitive and easily manipulable. However, both of the choices are obviously equiv-
alent as the same results can be obtained with comparison based definitions.

22

3 Basic Properties of Commitment Schemes

A commitment scheme is a means of showing another party that one knows a
message m without initially revealing m. To think of a simple parallel to a com-
mitment scheme, consider two parties Alice and Bob. Alice puts her message
for Bob into a safe, seals it and sends it to Bob who cannot find out what is in
the safe, but Alice cannot change it either. Later, when Alice is ready to reveal
her secret, she sends the combination for the safe to Bob who can then open the
safe and check the message. Commitment schemes have two essential properties:
hiding and binding. Hiding, in this context, means that by looking at the safe,
Bob cannot learn anything about the message inside, so this property ensures the
safety of Alice. Binding, on the other hand, ensures the safety of Bob and means
that Alice cannot send a false combination that opens a secret compartment in
the safe and reveals the wrong message to Bob.

There are different ways for describing the functions of commitment schemes.
In this thesis we follow the classical formalisation that has also been used in [Nao89,
Cre02, DG03, LAN05]. A commitment scheme consists of three parts: key genera-
tion Gen, commitment Com and opening Open. The key generation algorithm gen-
erates the public parameters pk← Gen and we assume that this function is always
run by a trusted third party. The commitment algorithm Compk :M×R→ C×D
computes the commitment string c of fixed length and a decommitment value d
from the message m ∈ M. Very often d = (m; r), where r ∈ R is the random-
ness used in the commitment. We also use a simplified version of the notation
of the commitment function Compk : M → C × D. Randomness is still used in
the commitment process, even though it is not explicitly specified. The opening
algorithm Openpk : C ×D →M∪{⊥}, given the correct commitment and decom-
mitment values, outputs the message m. If the decommitment value is incorrect,
the algorithm outputs the abort value ⊥ .

Definition 3.1. A commitment scheme is (t, ε)-hiding, if any t-time adversary
A = (A1, A2) achieves advantage

Advhid

Com(A) =

∣∣∣∣∣2 · Pr

[
pk← Gen, s← {0, 1} , (m0, m1, σ)← A1(pk),

(c, d)← Compk(ms) : A2(σ, c) = s

]
− 1

∣∣∣∣∣ 6 ε .

Two special cases of this property are statistical and perfect hiding. Statistical
hiding is also known as ε-hiding, and means that if the adversary has infinite
computing power, he gets information about the message being committed to
with negligible, i.e., very, very small probability. Perfect hiding means that a
commitment to a message reveals no information about the message, even to an
infinitely powerful adversary. We use the term computationally hiding to refer to
the cases where t is not infinite.

23

Definition 3.2. A commitment scheme is (t, ε)-binding, if any t-time adversary
A achieves advantage

Advbind

Com(A) = Pr

[
pk← Gen, (c, d0, d1)← A(pk) :

⊥ 6= Openpk(c, d0) 6= Openpk(c, d1) 6= ⊥

]
6 ε .

Two special cases of this property are statistical and perfect binding. Statistical
binding is also known as ε-binding. This means that even if the adversary has
infinite computing power, he can cheat with negligible probability. Perfect binding
means that even with infinite computing power, the adversary cannot change his
mind after committing to a message. We use the term computationally binding to
refer to the cases where t is not infinite.

Theorem 3.1. A commitment scheme cannot be statistically binding and statisti-
cally hiding at the same time.

Proof. Without loss of generality we fix two messages m0 and m1. It suffices
to show that a statistically binding commitment scheme cannot be statistically
hiding. Let A = (A1, A2) be an adversary that plays the hiding game. We let
A1 output the pair (m0, m1) and the challenger commits to one of the messages,
outputting c. As the scheme is statistically binding, there exists a double opening
for c with probability that is not greater than ε. This means that given enough
time, A2 can check whether c is a commitment of m0 or m1, thus, distinguishing
between commitments of the two messages with probability 1− ε.

This theorem implies that a commitment scheme cannot be perfectly binding
and hiding at the same time either.

3.1 Simple Commitment Schemes

In this section we describe two simple commitment schemes that have no additional
properties besides hiding and binding specified in Definition 3.1 and Definition 3.2.
In that sense they are the simplest possible commitment schemes. In further
sections we consider more common commitment schemes that have addditional
properties.

3.1.1 Simplified Canetti-Fischlin Commitment Scheme

We describe a commitment scheme that is based on the weakest assumption that we
discuss in this thesis—that pseudorandom generators exist. The Canetti-Fischlin
commitment scheme [CF01] is quite complex as it achieves very strong security
objectives. The simplified version we describe is similar to Naor’s bit commitment

24

scheme [Nao89], and provides a nice example of bit commitment using pseudo-
random generators. The construction uses a pseudorandom generator PRG that
expands a bitstring of length k into a bitstring of length n for k < n.

Setup. The key generator algorithm produces a public key pk of length n by
uniformly choosing a string from {0, 1}n.

pk← Gen .

Commitment. The sender uniformly chooses a bitstring d ∈ {0, 1}k that will
also be used as the decommitment value. To commit to a bit m ∈ {0, 1}, he does
the following

Compk(m; r) = (c, d) =

{
(PRG(d), d), if m = 0,

(PRG(d)⊕ pk, d), if m = 1.

Opening. To decommit, the the sender transfers d to the receiver who computes
PRG(d) and checks whether c = PRG(d) or c = PRG(d) ⊕ pk to find out which
value was committed to.

Theorem 3.2. Let PRG be a (t, ε)-pseudorandom generator. Then the simplified
Canetti-Fischlin commitment scheme is (τ, 2ε)-hiding and (22k−n)-binding, where
τ = t−O(1).

Proof. Hiding. It is quite straightforward to see that if an adversary is able to
distinguish PRG(d) and pk ⊕ PRG(d) then he is also able to tell the difference
between PRG(d) and a bitstring chosen uniformly from {0, 1}n because the value
pk ⊕ PRG(d) has uniform distibution over that set. More formally, let A be an
adversary that wins the hiding game Ghid for this scheme

GA
hid

pk← Gen

s← {0, 1}
if s = 0, c← PRG(d)

else c← PRG(d)⊕ pk

if A(c) = s, return 1

else, return 0

with advantage Adv(A). We change the game and substitute the value output by

PRG(d) with a uniformly chosen bitstring r ← {0, 1}n. In this game Ĝhid

25

ĜA
hid

pk← Gen

s← {0, 1}
r ← {0, 1}n

if s = 0, c← r

else c← r ⊕ pk

if A(c) = s, return 1

else, return 0

the distributions of Compk(0) and Compk(1) are both uniform. Hence, the proba-
bility that the adversary A guesses s correctly in the new game is 1

2
, because one

uniform value could appear for commitment values of both of the messages, thus,
making the guess of A independent from the message and rendering it wrong half
of the time. This means that the advantage of the adversary in the game ĜA

hid is 0.
Thus, the advantage Adv(A) must not be greater than 2ε, otherwise A is able to
tell the difference between the value generated by PRG(d) and a uniformly chosen
value. The adversary B can use the adversary A to win the pseudorandomness
game

B(c′)

pk← Gen

s← {0, 1}
if s = 0, c← c′

else c← c′ ⊕ pk

if A(c′) = s, return 1

else, return 0

The probability that A makes a correct guess if c′ is a value from PRG is 1
2
±Adv(A),

and the probability that A guesses right if c′ is from uniform distribution is 1
2

as
established above. Thus, B wins the pseudorandomness game

26

GB
prg

s′ ← {0, 1}
d← {0, 1}k

r ← {0, 1}n

if s′ = 0, c′ ← PRG(d)

if s′ = 1, c′ ← r

if B(c′) = s′, return 1

else, return 0

with probability

Pr [B(c′) = s′] =
1

2
Pr [B(c′) = 1|c′ = r] +

1

2
Pr [B(c′) = 0|c′ = PRG(d)]

=
1

2
Pr [A(c′) = s|c′ = r] +

1

2
(1− Pr [A(c′) = s|c′ = PRG(d)])

=
1

2
± 1

2
Adv(A)

but this contradicts the assumption that PRG is a (t, ε)-pseudorandom generator
if Adv(A) > 2ε, and the claim follows.

Binding. To win the binding game, the adversary A has to output a commit-
ment c and a valid double opening d0, d1 for c. It is quite easy to note that, in this
case, PRG(d0) = PRG(d1)⊕pk which in turn means that pk = PRG(d0)⊕PRG(d1).

We will call these kinds of keys insecure public keys and denote their group by K̂.
There are 22k possibilities to choose a pair (d0, d1) and, thus, there are less than
22k values of insecure public keys. As there are 2n possibilities to choose a public
key, the probability that pk ∈ K̂ and that a double opening even exists, is less
than 22k/2n = 22k−n.

It is interesting to note that in this scheme a public key pk can be used in
commitments more than once. Canetti and Fischlin require that in their scheme
pk be used only once due to the stricter security requirements they describe.

As an instantiation, AES [Nat01] in counter mode can be used as the pseu-
dorandom generator in the scheme. For an ε-binding commitment scheme, safe
values for n are greater than 2k − log2 ε, because

ε ≥ 22k−n

log2 ε ≥ 2k − n

n ≥ 2k − log2 ε .

27

3.1.2 Collision-Resistant Hash Function Commitment

A commitment from collision-resistant hash functions was proposed by Shai Halevi
and Silvio Micali [HM96]. Let n be the length of the message being committed to
and let k be the length of the security parameter. Let H be a family of collision
resistant hash functions and F be a universal family of hash functions from {0, 1}L
to {0, 1}n, where L = 4k + 2n + 4. A hash function from the universal function
family Fm,r = {f : f(r) = m} can be easily sampled—for a fixed m ∈ {0, 1}n and

r ∈ {0, 1}L, it is easy to find functions f such that f(r) = m and uniformly choose
one of them.

Setup. The generation algorithm takes a random collision-resistant function h :
{0, 1}L → {0, 1}k from H and outputs the public key:

h← Gen .

Commitment. To commit to a message m ∈ {0, 1}n, the sender uniformly
picks a value r ← {0, 1}L and computes y = h(r). Next, the sender uniformly
picks a function f ← Fm,r. The commitment function outputs a commitment-
decommitment pair

Compk(m; r) = ((f, y), (m; r)) .

Opening. To decommit, the sender sends m and r to the receiver. The receiver
now checks whether y = h(r) and computes m = f(r).

Theorem 3.3. Let H be a (t, ε)-collision resistant hash function family. Then the
Halevi-Micali commitment scheme is statistically hiding and (τ, ε)-binding, where
τ = t−O(1).

Proof. Hiding. The proof of the statistical hiding property of this scheme is very
technical and we do not summarise it here. A detailed proof can be found on
pages 211–213 in the article [HM96]. Most of the steps in the proof are quite
straightforward, except for the double counting argument that uses properties of
universal hash function families, especially the pairwise independence property.

Binding. It is quite straightforward to see that if an adversary is able to create
a double opening for a commitment then he is also able to find a collision in the
hash function h that is assumed to be collision resistant.

More formally, let B be an adversary that wins the binding game with ad-
vantage Adv(B). Let the commitment be (f, y) and the double opening be d0 =
(m0; r0) and d1 = (m1; r1). If these decommitments are both valid then h(r0) =

28

h(r1) holds and, thus, the adversary B can find a collision for the hash func-
tion h with advantage Adv(B). Since we assume that h is collision resistant,
Adv(B) ≤ ε.

As an instantiation SHA-256 can be used as the hash function h from the
collision resistant family and f can be chosen from the universal hash function
family:

F =
{
fA,b : A ∈ {0, 1}nt , b ∈ {0, 1}n

}
,

where fA,b(x) is defined as fA,b(x) = Ax + b.

29

4 Duality between Encryption and Commitment

When one looks at commitment and encryption schemes, it is rather easy to spot
the similarities between the two cryptographic primitives. Although their function-
alities are different and they are used for different purposes, they share a similar
structure. Both encryptions and commitments make use of public keys, encryp-
tion schemes have an additional secret key. In both cases the secret hiding and
revealing stages occur, only the way these phases are handled differ. In the case of
an encryption scheme, we use the public key to lock a message and the secret key
to open it again. Commitment schemes also use the public key to lock a message,
but to instead of unlocking, one usually needs to reveal the message in order to
open a commitment.

It is always possible to make a commitment scheme from an encryption scheme.
Making an encryption scheme from a commitment scheme is trickier though, be-
cause there exists no secret key in the simple commitment scheme construction.
In order to make an encryption scheme from a commitment scheme, the latter
needs to be extractable. The trapdoor information that an extractable commit-
ment can reveal is not used in commitment schemes, because it would break their
security. However, extractability often simplifies security proofs of complex two
and multiparty computations such as the cointossing protocol. The idea is to use
the original commitment scheme in the protocol and the modified version in the
security proof, thus making the proofs simpler and allowing the contents of the
commitment to be revealed using the trapdoor.

4.1 Encryption Schemes

First of all, we will describe encryption schemes in general. The structure of a com-
mitment scheme, described in Chapter 3, is very similar to that of an encryption
scheme. The encryption scheme also consists of three functions: key generation
Gen, encryption Enc and decryption Dec. The key generation algorithm generates
the public and secret key (pk, sk)← Gen, revealing only the public key to all par-
ties. The encryption algorithm Encpk : M×R → E computes the cryptotext e
of fixed length from the message m ∈ M and the randomness r ∈ R. Similarly
to the commitment scheme case, we also give the formalisation of the randomised
encryption function without the specified randomness Encpk : M → E . The de-
cryption algorithm Decsk : E →M∪{⊥}, given the encryption value, outputs the
message m. If the encryption value is corrupt, the algorithm outputs the abort
value ⊥ .

We define two properties of encryption schemes. An encryption scheme can
be indistinguishable under chosen plaintext attack (IND-CPA). This property de-
fines the security of the encryption scheme against a time-bounded adversary, who

30

outputs two messages and given the encryption of one of the two, has to decide
which one has been encrypted. We give a more formal definition of the IND-CPA
property [GM82].

Definition 4.1. An encryption scheme is (t, ε)-IND-CPA secure, if a t-time ad-
versary A = (A1, A2) achieves advantage

Advind−cpa(A) =

∣∣∣∣∣∣∣2 · Pr

 (pk, sk)← Gen, s← {0, 1} ,

(m0, m1, σ)← A1(pk),

e← Encpk(ms) : A2(σ, e) = s

− 1

∣∣∣∣∣∣∣ 6 ε .

It is easy to see the similarities between this definition and Definition 3.1 of
the hiding property of commitment schemes.

An encryption schemes can be indistinguishable under adaptive chosen cipher-
text attack (IND-CCA2). This property defines the security of the encryption
scheme against a time-bounded adversary A that works much like the adversary
in Definition 4.1, but in addition it has access to the decryption oracle at two
stages of the game—first, when outputting the message pair, and second, when
trying to determine which of the two messages was encrypted. It is assumed that
A does not ask the oracle to decrypt e. We give a more formal definition of the
IND-CCA2 property [RS91].

Definition 4.2. An encryption scheme is (t, ε)-IND-CCA2 secure, if any t-time
adversary A = (A1, A2) achieves advantage

Advind−cca2(A) =

∣∣∣∣∣∣∣∣2 · Pr

(pk, sk)← Gen, s← {0, 1} ,

(m0, m1, σ)← A
Decsk(·)
1 (pk),

e← Encpk(ms) : A
Decsk(·)
2 (σ, e) = s

− 1

∣∣∣∣∣∣∣∣ 6 ε ,

where Decsk(·) is a decryption oracle and A2 cannot make the oracle query Decsk(e)
to have e decrypted.

4.2 Extractability

The notion of extractable commitments was proposed in the article [SCP00] in
the context of non-interactive zero-knowledge proofs. Extractable commitment
schemes have an additional property to the usual hiding and binding—if a party
knows a certain secret value, they are able to extract the message from the com-
mitment. There is an extra key generation algorithm Gen∗ in an extractable com-
mitment scheme. This algorithm outputs the secret key sk in addition to the
public key pk. Everything else in the scheme works as before only there exists an

31

additional function. The extraction function Extrsk : C → M opens a commit-
ment c ∈ C to the original message m ∈ M. We give the formal definition for
extractability [SCP00, Cre02, LAN05].

Definition 4.3. A commitment scheme is (t, ε)-extractable if any t-time adver-
sary A achieves advantage

Advextr(A) = Pr

[
(sk, pk)← Gen∗, (c, d)← A(pk) :

Extrsk(c) 6= Openpk(c, d) 6= ⊥

]
6 ε , (4)

where the distributions of the public keys pk output by Gen and Gen∗ coincide.

Less formally, there is only a negligible chance that a time-bounded adversary
A can create such a commitment-decommitment pair (c, d) that the function Extrsk
extracts a message m from the commitment, while Openpk(c, d) outputs a different
message m′. The original Gen function is used, when we want to initiate the
commitment scheme. The second generation function Gen∗ is used, when we want
to initiate the scheme that is equivalent to an encryption scheme. The extraction
function can only be used in the second case. It is quite simple to see that as soon
as the receiver knows sk, the commitment scheme is useless, because the receiver
can open it at any time.

Theorem 4.1. For every reasonable time bound t, a (t, ε)-extractable commitment
scheme is only computationally hiding.

Proof. Let Com = (Gen, Gen∗, Com, Open, Extr) be an extractable commitment
scheme then for any t-time adversary A the inequality (4) holds. Let us fix the
adversary as the challenger in the hiding game. For some fixed and valid messages
m0, m1 ∈M, the adversary A will be the following

A(pk) s← {0, 1}
(c, d)← Compk(ms)

Return (c, d)

From the extractability condition and the commitment c that A outputs,

Pr [Extrsk(c) 6= Open(c, d) = mi] ≤ ε . (5)

Now consider an adversary B = (B1, B2) who plays the hiding game, finding the
secret key and, thus, computing Extrsk(c). That adversary achieves advantage

Adv(B) = Pr

[
pk← Gen, s← {0, 1} , (m0, m1, σ)← B1(pk),

c← Compk(ms) : B2(σ, ms) = s

]
> 1− ε .

32

The only problem that remains is how the adversary B can find the secret key.
First, we look at schemes where for any fixed pk there exists exactly one sk. In this
case, B simply runs the Gen∗ function until he finds the secret key corresponding
to the given public key pk. This means that the scheme cannot be statistically
hiding, because given enough time, the adversary finds the message with a very
high probability.

Secondly, we look at schemes, where for each pk there exist one or more sk.
Then for a fixed pk it is possible to choose sk∗ that achieves the best error prob-
ability against A. This probability can be explicitly computed by generating all
possible keys, computing the commitments for m0 and m1, and finding the corre-
sponding probabilities. Obviously the inequality (5) must still hold since sk∗ can
be taken as sk. Hence, the best error probability is not greater than ε. For the
same reasons, these schemes are also only computationally hiding.

Theorem 4.1 implies that the extraction function must be efficient. Since the
scheme is computationally hiding, it can be opened if we have enough time, and
we do not need the secret key at all. So we do not require a separate inefficient
extraction function that needs a secret key. Intuitively we can say that the scheme
must be at least statistically binding. Otherwise there exist double openings for
at least some commitments and the extraction function could not uniquely open
the commitments. Unfortunately, this is not always true [Cre02].

4.3 Canonical Correspondence

We show how to construct an encryption scheme from a commitment scheme and
vice versa. In the following, let Com = (GenCom , Gen∗Com , Com, Open, Extr) be an
extractable commitment scheme and Enc = (GenEnc, Enc, Dec) be an encryption
scheme. Also, let m ∈M be a message and r ∈ R be the used randomness.

First, to construct an encryption scheme from an extractable commitment
scheme, we map the functions of Com to those of Enc. The encryption scheme
needs a key generation, an encryption and a decryption function.

We use the key generation algorithm Gen∗Com of the commitment scheme as the
key generation algorithm GenEnc of the encryption scheme. The GenEnc function
outputs the public and secret key pair (pk, sk) that it gets from Gen∗Com . To show
canonical correspondence between a commitment function and an encryption func-
tion, we also need to specify the randomness r used in both schemes. Therefore,
we use the functions with specified randomness. The Enc(m; r) function uses the
Compk(m; r) function to encrypt the message m, outputting the commitment part
c from the commitment-decommitment pair (c, d) that it gets from Compk(m; r).
The decryption function Dec(c) uses the extraction function Extrsk(c) of the com-
mitment scheme to open the encryption and output the message m. It is straight-

33

forward from the Definition 4.3 that the decryption function succeeds with very
probability (1− ε).

Next, to construct a commitment scheme from an encryption scheme, we map
the functions of Enc to those of Com. An ordinary commitment scheme needs a key
generation, a commitment and an opening function. We also add an extraction
function and a second key generation algorithm that outputs the key pair. This
way the constructed commitment scheme is extractable.

The GenEnc function outputs a key pair (pk, sk). We only need the public key
for the original key generation algorithm GenCom of the commitment scheme. This
algorithm takes pk from the pair and discards the rest, as in the commitment
scheme scenario, the secret key is not known to anyone. The additional key gen-
eration function Gen∗Com , on the other hand, outputs the whole key pair (pk, sk)
that it received from GenEnc. The commitment function Compk(m; r) outputs the
commitment-decommitent pair (c, d), where c is the encryption of the message
m output by Enc(m; r), and d simply contains the message m and the used ran-
domness r. The opening function Open(c, d) recommits to the message m with
randomness r and outputs the message m if the commitment it computed matches
c; otherwise, the function outputs a special character ⊥. The extraction function
has to open the commitment c without the decommitment value. The function
Extrsk(c) outputs the message m output by Dec(c).

The described transformations provide a canonic correspondence between en-
cryption schemes and commitment schemes.

4.4 IND-CPA Security and Extractability

We will show the duality between the IND-CPA security property of encryp-
tion schemes and the computational hiding property of commitment schemes. In
the following, let Enc = (GenEnc, Enc, Dec) be an encryption scheme and Com =
(GenCom , Gen∗Com , Com, Open, Extr) be an extractable commitment scheme.

Theorem 4.2. Let Com and Enc be in canonical correspondence. Then (t, ε)-hiding
implies (t, ε)-IND-CPA security.

Proof. We show that the constructed encryption scheme Enc has the necessary
properties, i.e., it is IND-CPA secure. We show that any time-bounded adversary
that complies to the assumption that Com is computationally hiding, is also subject
to the IND-CPA security property. To do this, we take an adversary A that plays
the hiding game and transform it into an adversary that plays the IND-CPA game.
A time-bounded A = (A1, A2), playing the hiding game, achieves advantage

34

Adv(A) =

∣∣∣∣∣∣∣2 · Pr

 pk← GenCom , s← {0, 1} ,

(m0, m1, σ)← A1(pk),

(c, d)← Compk(ms) : A2(σ, c) = s

− 1

∣∣∣∣∣∣∣ ≤ ε .

Instead of GenCom used above, the challenger can use Gen∗Com , since the distributions
of public keys output by both algorithms coincide, and just discard the generated
secret key from the acquired pair (pk, sk). In that case, and considering that Com
and Enc are in canonical correspondence, we can rewrite the advantage as

Adv(A) =

∣∣∣∣∣∣∣2 · Pr

 (pk, sk)← GenEnc, s← {0, 1} ,

(m0, m1, σ)← A1(pk),

c← Encpk(ms) : A2(σ, c) = s

− 1

∣∣∣∣∣∣∣ ≤ ε .

Hence the corresponding encryption scheme Enc is (t, ε)-IND-CPA secure.

Theorem 4.3. Let Enc and Com be in canonical correspondence. Then (t, ε)-IND-
CPA security implies (t, ε)- hiding.

Proof. We show that the constructed commitment scheme Com has the necessary
properties, i.e., it is computationally hiding. We show that any time-bounded
adversary that adheres to the assumption that Enc is IND-CPA secure, is also
subject to the computational hiding property. We do this similarly to the proof
of the previous theorem—we take an adversary A that plays the IND-CPA game
and transform it into an adversary that plays the hiding game. A time-bounded
adversary A = (A1, A2), playing the IND-CPA game, achieves advantage

Adv(A) =

∣∣∣∣∣∣∣2 · Pr

 (pk, sk)← GenEnc, s← {0, 1} ,

(m0, m1, σ)← A1(pk), e← Encpk(ms) :

A2(σ, e) = s

− 1

∣∣∣∣∣∣∣ ≤ ε .

Considering the canonical correspondence between Enc and Com, and as the distri-
butions of the public keys output by GenCom and Gen∗Com coincide, we can rewrite
the advantage as

Adv(A) =

∣∣∣∣∣2 · Pr

[
pk← GenCom , s← {0, 1} , (m0, m1, σ)← A1(pk),

(e, d)← Compk(ms) : A2(σ, e) = s

]
− 1

∣∣∣∣∣ ≤ ε .

Hence the corresponding commitment scheme Com is (t, ε)-hiding.

35

4.5 An Example of Canonical Correspondence

As an example to canonical correspondence between encryption and commit-
ment schemes, we talk about the correspondence between the ElGamal encryption
[Gam84] and commitment scheme. The ElGamal scheme is based on the DDH
assumption and is, therefore, more difficult to instantiate as the DDH assumption
is stronger than the discrete logarithm assumption. The instantiation is usually for
certain subgroups of Zp, where p is prime and groups defined over certain elliptic
curves. In the following, we assume that Gn is a public parameter.

4.5.1 ElGamal Encryption Scheme

Setup. A generator g is chosen from Gn. A value x ∈ Zn is chosen and the
generation algorithm Gen produces a public key:

pk = (g, gx) ,

where x is the secret key.

Encryption. To encrypt a message m ∈M, it is first converted into an element
of Gn, the value r is uniformly chosen from Zn and the encryption is computed in
the following way

Encpk(m; r) = (gr, mgxr) .

Decryption. To decrypt the ciphertext (gr, mgxr), the secret key x is used to
compute

Decsk(g
r, mgxr) =

mgxr

(gr)x
= m .

4.5.2 ElGamal Commitment Scheme

We derive the key generation algorithm from that of the encryption scheme using
the canonical correspondence. It is modified so that it only outputs the public key
from the original key pair.

Setup. A generator g is chosen from Gn. The generation algorithm Gen produces
a public key:

pk = (g, gx) ,

where no-one knows the value of x, i.e., the secret key sk is deleted.

36

Commitment. To commit to the message m ∈ Zn, the sender chooses a random
r ∈ Zn and computes

Compk(m; r) = ((gr, gmgxr), (m; r)) .

Opening. To open the commitment, the sender sends m and r. The receiver
can compute the pair (gr, gmgxr) to check whether the commitment is valid.

There is a slight difference between the classical form of the ElGamal encryption
function and the commitment function. The function Enc(m; r) is usually given
as (gr, mgxr), whereas the commitment function outputs c = gr, gmgxr. We note
that the form used in the commitment can also be used as an encryption function.
In that case, there is no need to first convert the message into an element of Gn,
as it can simply be a value from Zn. To find the value of m on decryption, gm

is computed as m was before and an algorithm for finding the discrete logarithm
can be applied to find the value of m. This is useful, if the values of m are
small and, for example, Pollard’s lambda algorithm or a lookup table can be
used. This form of the ElGamal encryption is known as lifted ElGamal and it
has an additional property that can be very useful, namely, it is an additively
homomorphic encryption scheme. We discuss homomorphic schemes in Sec. 6.1.

Theorem 4.4. Let Gn be (t, ε)-DDH group. Then the ElGamal commitment
scheme is (τ, 2ε)-hiding and perfectly binding.

Proof. Hiding. To prove that the scheme is (τ, ε) hiding, we show how to convert
any τ -time adversary A = (A1, A2) against the hiding property to an adversary
B that can solve the decisional Diffie-Hellman problem. Assume that A wins the
hiding game Ghid for this scheme

GA
hid

(g, gx)← Gen

(m0, m1, σ)← A1(g, gx)

s← {0, 1}
r ← Zn

c← (gr, gmsgxr)

if A2(σ, c) = s, return 1

else, return 0

with advantage Adv(A). We change the game and substitute the value of gxr with

a uniformly chosen element z from Gn. In this game Ĝhid

37

ĜA
hid

(g, gx)← Gen

(m0, m1, σ)← A1(g, gx)

s← {0, 1}
r ← Zn

z ← Gn

c← (gr, gmsz)

if A2(σ, c) = s, return 1

else, return 0

the probability that the adversary A guesses s correctly is 1
2

because the guess of A
is independent from the message ms that was committed to. To be more explicit,
c is totally independent from s and, thus, the output of A is independent from
s. This means that the advantage of the adversary in the game Ĝhid is 0. Thus,
the advantage Adv(A) must not be greater than 2ε, otherwise A is able to tell
the difference between a DDH-tuple and a tuple with a uniformly chosen element.
The adversary B can use the adversary A to win the DDH game

B(g, ga, gb, y)
(m0, m1, σ)← A1(g, ga)

s← {0, 1}
c← (gb, gmsy)

if A2(σ, c) = s, return 1

else, return 0

Observe that the working time of B is t = τ + O(1). The probability that A
guesses right if y = gab is 1

2
± Adv(A), and if y is a uniformly chosen value from

Gn, the probability is 1
2

as established above. Thus, B wins the DDH game

GB
DDH

g ← Gen

s′ ← {0, 1}
a, b← Zn

y′ ← Gn

if s′ = 0, y ← gab

if s′ = 1, y ← y′

if B(g, ga, gb, y)← s′, return 1

else, return 0

38

with probability

Pr
[
B(g, ga, gb, y) = s′

]
=

1

2
Pr

[
B(g, ga, gb, y) = 1|y = y′

]
+

1

2
Pr

[
B(g, ga, gb, y) = 0|y = gab

]
=

1

2
Pr

[
A2((g

b, gmsy)) = s|y = y′
]

+
1

2
(1− Pr

[
A((gb, gmsy)) = s|y = gab

]
)

=
1

2
± 1

2
Adv(A)

but this contradicts the assumption that Gn is a (t, ε)-DDH group, if Adv(A) > 2ε.
Binding. Next we prove that the scheme is perfectly binding. Let us assume

that c = (gr, gmgxr) is the commitment of (m; r). As g is part of the public key,
then given enough time, it is possible to find the secret key x of the corresponding
encryption scheme, as x = log gx. It is straightforward to see that as soon as we
know this key, we are able to decrypt the commitment, as if it was an encryption,
by computing gmgxr

(gr)x , and find the uniquely determined value of log gm = m.

39

5 Simulatable Commitments

5.1 Equivocability

Equivocable commitment schemes, as defined in [CIO98, DG03, LAN05], add two
functions—Com∗

sk and Equiv—to the original commitment scheme construction and
they also use the Gen∗ algorithm like extractable schemes. We require that the
distributions of the public keys output by Gen and Gen∗ coincide. Alternatively,
the case, where the two functions do not necessarily output keys with the same
distribution is discussed in the article [DG03]. The assumption we make lets us
write down the definition in a way that is easier to understand and this way
equivocability works for every public key output by Gen.

The function Com∗
sk : ∅ → C × S outputs a fake commitment c ∈ C and

additional information σ ∈ S. The commitment c can be opened to any message
m ∈ M with the help of the function Equivsk : M× C × S → D that outputs a
decommitment value d ∈ D for the fake commitment c ∈ C and a chosen message
m ∈M so that Open(c, Equivsk(m, c, σ)) = m.

Definition 5.1. A commitment scheme is (t, ε)-equivocable, if any t time adver-
sary A achieves advantage

Advequiv(A) =

∣∣∣∣∣Pr

[
(pk, sk)← Gen∗, s← {0, 1} :

AO(·)(pk) = s

]
− 1

2

∣∣∣∣∣ ≤ ε .

The distributions of the public keys output by Gen and Gen∗ coincide. The oracle
O(·) does the following for a given message m:

• if s = 0, then O(·) outputs (c, d)← Compk(m; r),

• if s = 1, then O(·) computes (c, σ)← Com∗
sk and outputs (c, Equivsk(m, c, σ)).

Less formally, there is only a negligible chance that a time-bounded adversary
A can distinguish between real and fake commitment-decommitment pairs queried
adaptively. Similarly to extractability, the original Gen function is used, when we
want to initiate the commitment scheme and the second key generation function
Gen∗ is used, when we want to generate a fake commitment. It is possible to
interchange these two key generation functions as the distributions of the public
keys output by Gen and Gen∗ coincide. It is quite simple to see that as soon as
the sender knows sk, the commitment scheme is useless, because the sender can
generate any decommitment value from a fake commitment.

Similarly to extractable commitment schemes, the trapdoor information that
an equivocable commitment can reveal is not used in commitment schemes because
it would break their security. However, equivocability often simplifies security

40

proofs, so the original commitment scheme is used in the protocol and the modified
version can be used in the security proof. In the public random string model an
equivocable commitment scheme can be constructed from any given commitment
scheme [CIO98].

Theorem 5.1. For every reasonable time bound t, a (t, ε)-equivocable commitment
scheme is only computationally binding.

Proof. Let Com = (Gen, Gen∗, Com, Com∗, Open, Equiv) be an equivocable commit-
ment scheme. Consider an adversary A who plays the binding game. The adversary
is given the commitment value c and it needs to output two decommitment values
d0 and d1 so that they open to different values ⊥ 6= Openpk(c, d0) 6= Openpk(c, d1) 6=
⊥. If the adversary knows the secret key, he can compute these decommitment
values using the equivocability function Equivsk. The equivocability function works
with probability 1, so the probability of A succeeding is also 1, if he knows the
corresponding secret key.

It remains to show how the adversary A can find the secret key. This is eas-
ier than in the proof of Theorem 4.1. For every secret key output by Gen∗, the
adversary tries whether it is possible to construct a double opening for the given
commitment with the secret key sk. We assumed that the functions Gen and Gen∗

give output with the same distribution, hence for every public key there exists at
least one suitable secret key. Given enough time, the adversary is thus able to con-
struct a double opening, making the commitment scheme at most computationally
binding.

5.2 Commitments Based on Discrete Logarithm

In this subsection we give two examples of commitment schemes based on the
assumption that the discrete logarithm problem is hard: the Pedersen commitment
scheme and the Fujisaki-Okamoto commitment scheme. The latter is also based
on the assumption that factoring is hard.

5.2.1 Pedersen Commitment Scheme

The first discrete logarithm commitment scheme we discuss was proposed by Tor-
ben Pryds Pedersen [Ped91]. In the article, Pedersen defines the scheme in a
subgroup of Z∗

p, where the discrete logarithm problem is hard. But in principle,
any group where the discrete logarithm problem is hard, can be used, for example
DL-groups defined by elliptic curves. We give an abstraction of this scheme to an
arbitrary DL-group Gq = 〈g〉 that is publicly known and where q is a prime. All
of the logarithms in this scheme are taken with respect to base g.

41

Setup. Two elements g and y of Gq are chosen such that y 6= 1 and nobody
knows log y. The algorithm Gen outputs the public key

pk = (g, y) .

Commitment. To commit to the message m ∈ Zq, the sender chooses a random
r ∈ Zq and computes

Compk(m; r) = (gmyr, (m; r)) .

Opening. The commitment can only be opened by revealing m and r. The
receiver can then check whether the commitment was indeed made to the value
that the sender claims it to be.

Theorem 5.2. Let Gq be (t, ε)-DL group. Then the Pedersen commitment scheme
is perfectly hiding and (τ, ε)-binding, where τ = t−O(1).

Proof. Hiding. First, we show that the scheme is perfectly hiding. This means
that Compk(m; r) reveals no information about m. This holds, because r is chosen
uniformly from Zq, and, thus gmyr also has uniform distribution over Gq, indepen-
dently of the choice of m.

Binding. To prove that the scheme is computationally binding we show how
to convert a τ -time adversary A against the binding property to an adversary B
that can solve the discrete logarithm problem. Assume that A achieves advantage

Advbind(A) = Pr

[
pk← Gen, (c, d0, d1)← A(pk) :

⊥ 6= Openpk(c, d0) 6= Openpk(c, d1) 6= ⊥

]
≤ ε .

Our task is now to find an adversary B that uses A to find the discrete logarithm
x ∈ Zq of an element. If A outputs a valid double opening then Compk(m0; r0) =
Compk(m1; r1) and, thus, gm0yr0 = gm1yr1 . We note that as m0 6= m1 then r0 6= r1

and, hence, B can use the collision extraction property of discrete logarithm from
Lemma 2.2 to find x = log y. Consider an adversary B that gets the public key
(g, y) as input and forwards the key to the adversary A, who has to output two
message-random pairs, so that the commitments have the same value

B(g, y) (c, (m0; r0), (m1; r1))← A(g, y)

Return x← m0 −m1

r1 − r0

The output of B is always the discrete logarithm of y provided that A outputs a
valid double opening. Hence, Adv(B) = Adv(A). To conclude the proof, observe
that the working time of B is t = τ +O(1).

42

Instantiaton. In the original instantiation proposed by Pedersen, p and q are
large primes such that q divides p− 1, Gq is the unique subgroup of Z∗

p of order q,
and g is a generator of Gq. As any element g 6= 1 in Gq generates the group, the
discrete logarithm with respect to base g is defined.

5.2.2 Fujisaki–Okamoto Commitment Scheme

The Fujisaki-Okamoto commitment scheme [FO97] is an extension of the Pedersen
commitment scheme to the RSA [RSA78] modulus. Let N = PQ be chosen from
RSA-mod(w). Hence, P and Q are two large safe primes and there exist odd primes
p and q such that p = (P − 1)/2, q = (Q − 1)/2 and p 6= q. Let N be a publicly
known value.

Setup. Two random generators gp ← Gp and gq ← Gq are found, so that gp 6=
1 and gq 6= 1. Gp and Gq are subgroups of the order p and q in Z∗

P and Z∗
Q

respectively. Next b0 ∈ Z∗
N is computed using the Chinese Remainder Theorem so

that b0 = gp mod P and b0 = gq mod Q. The computed value b0 is a generator
element of Gpq. Next an element α is uniformly chosen from Z∗

pq and the value b1

is computed b1 = bα
0 mod N . The generator algorithm Gen outputs the following

values as the public key:

pk = (b0, b1) .

Commitment. To commit to a value m ∈ ZN , the sender uniformly chooses
r ← Z2kN and computes

Compk(m; r) = (bm
0 br

1 mod N, (m; r)) .

Opening. To open the commitment, the sender transmits m and r and the
receiver can compute bm

0 br
1 mod N to check whether the received commitment

value is valid.

Theorem 5.3. Let N be chosen uniformly from an RSA-modulus class that is
(t, ε)-hard, then the Fujisaki-Okamoto commitment scheme is (2−k)-hiding and
(τ, ε

8
)-binding, where τ = t−O(1).

Proof. Hiding. First we show that the scheme is statistically hiding. For a mo-
ment assume that r is chosen from Zϕ(N), where ϕ(·) is the Eulerian function, then
the scheme is perfectly hiding. The cardinality of the subgroup generated by b0

divides the cardinality of Z∗
N and as |Z∗

N | = ϕ(N), then |〈b0〉| divides ϕ(N). We
know that the order of 〈b0〉 is pq, and that gcd(α, pq) = 1, because α is chosen
from Z∗

pq. Then bα
0 = b1 is a generator of Gp and Gq, hence, the order of b1 is equal

43

to the order of b0, implying that 〈b0〉 = 〈b1〉. This means that |〈b0〉| divides ϕ(N)
and, thus, if r is taken uniformly from Zϕ(N), then br

1 has uniform distribution over
〈b0〉 and, thus, bm

0 br
1 is indistinguishable from a uniformly chosen element of 〈b0〉.

However, when we know ϕ(N), then we can efficiently find the factorisation of
N , hence, we have to take r from a set Z2kN that achieves a similar distribution
as Zϕ(N). We know that N = PQ = (2p + 1)(2q + 1) = 4pq + 2p + 2q + 2 and that
ϕ(N) = ϕ(PQ) = (P −1)(Q−1) = 4pq, so we can say that, although N and ϕ(N)
are fairly similar values, ϕ(N) does not divide 2kN and, thus, the scheme can
achieve at most statistical hiding. It suffices to show that the statistical difference
between Zϕ(N) and the distribution created by taking elements from Z2kN modulo
ϕ(N) is negligible. We use the bound from Lemma 2.1 so that T = 2kN and
u = ϕ(N) and we see that the statistical difference is

ε ≤ ϕ(N)

2kN
=

4pq

2k(4pq + 2p + 2q + 2)
≤ 1

2k
.

This value, however, is negligible if k is sufficiently large and it is almost impossible
to tell the difference between the two distributions, hence, if we substitute ZϕN

with Z2kN , then the initial zero advantage of the adversary increases by at most
2−k.

Binding. To prove that the scheme is computationally binding we show how
to convert a τ -time adversary A against the binding property to an adversary B
that can factorise N . Assume that A achieves advantage

Advbind(A) = Pr

[
pk← Gen, (c, d0, d1)← A(pk) :

⊥ 6= Openpk(c, d0) 6= Openpk(c, d1) 6= ⊥

]
≤ ε .

Our task is now to find an adversary B that uses A to find the the factorisation of
N . If A outputs a valid double opening then Compk(m0; r0) = Compk(m1; r1) then
B computes m = m0 −m1 and r = r0 − r1 and has, thus, found such values that

bm
0 br

1 ≡ 1 mod N . (6)

The adversary B can use these values to find a multiple of ϕ(N) and thus also find
the factorisation of N . From congruence (6), we get

bm
0 bαr

0 ≡ b
ϕ(N)
0 mod N

m + αr ≡ 0 mod ϕ(N)

m + αr = tϕ(N) .

As we know the values of m, r and α, we can compute the value of tϕ(N). From
Lemma 2.3 we see that it is possible to find the factorisation of N given a multiple
of ϕ(N). Now, consider an adversary B that acts as a challenger in the binding
game and uses the adversary A for finding a double opening

44

B(N)

b0 ← ZN \\ to get b0 from Z∗
pq

α← Z2kN \\ to get α from Z∗
pq

b1 ← bα
0

(c, (m0; r0), (m1; r1))← A(b0, b1)

m← m0 −m1

r ← r0 − r1

x← ZN

Return gcd(x, N), if gcd(x, N) 6= 1

if xa = ±1, then halt

else Return gcd(xa + 1, N)

The probability that the order of b0 chosen by B is pq is non-negligible, because

ϕ(pq)

|ZN |
=

(p− 1)(q − 1)

(2p + 1)(2q + 1)
≈ 1

4
.

The algorithm succeeds in factorising N with a probability not less than 1
8
, pro-

vided that A outputs a valid double opening, as there is a chance of not less than
1
2

that he is able to find xa 6= ±1. Hence, the advantage of the adversary B is
approximately 1

8
Adv(A). It should be noted that the adversary can repeat the

search for a suitable b0 and x, until he is able to factorise N and, thus, raise the
probability of success arbitrarily close to Adv(A). To conclude the proof, observe
that the working time of B is t = τ +O(1).

5.3 Trapdoor Discrete Logarithm

We show how to find the trapdoors in the Pedersen and Fujisaki-Okamoto com-
mitments that are both perfectly equivocable trapdoor commitment schemes. The
trapdoor is made up of all the values necessary for altering the decommitment as
the trapdoor.

Theorem 5.4. The Pedersen commitment scheme is equivocable.

Construction. First we run Gen∗ that outputs the public key pk = (g, y) and
the secret key sk = x, x ∈ Zq so that y = gx mod q. The equivocability Equivsk

function creates the double opening to a given commitment c = gm0yr0 . On input
c and a message m1 ∈ Zq so that m1 6= m0, Equivsk computes the new randomness

r1 = r0 + (m0 −m1)x
−1 mod q.

45

and outputs the new decommitment value d1 = (m1; r1).
It remains to show that d1 is a valid decommitment value for the commitment

c. It suffices to show that the commitments of both message-randomness pairs
are equal. We know that in the Pedersen commitment scheme Compk(m1; r1) =
(gm1yr1 , (m1; r1)), now consider the following equation

gm1yr1 = gm1yr0+(m0−m1)x−1

= gm1yr0y(m0−m1)x−1

= gm1yr0(gx)(m0−m1)x−1

= gm1yr0gx(m0−m1)x−1

= gm1yr0gm0−m1 = gm1+m0−m1yr0

= gm0yr0 .

It is straightforward to see that this is equal to the commitment c. In addition,
we can see that r1 has uniform distribution over Zq, because r0 is chosen uni-
formly from that group. This means that the false decommitment has the same
distribution that a real decommitment would have.

Theorem 5.5. The Fujisaki-Okamoto commitment scheme is equivocable.

Construction. First we run Gen∗ that outputs the public key pk = (b0, b1) and
the secret key sk = α, α ∈ Z∗

pq so that b1 = bα
0 mod N . The equivocability Equivsk

function creates the double opening to a given commitment c = bm0
0 br0

1 mod N .
On input c and a new message m1 ∈ Zn so that m1 6= m0, Equivsk computes the
new randomness

r1 = r0 + (m0 −m1)x
−1 mod N.

and outputs the new decommitment value d1 = (m1; r1).
It remains to show that d1 is a valid decommitment value for the commit-

ment c. It suffices to show that the commitments of both message-randomness
pairs are equal. We know that in the Fujisaki-Okamoto commitment scheme
Compk(m1; r1) = (bm1

0 br1
1 , (m1; r1)), now consider the following equation

bm1
0 br1

1 = bm1
0 b

r0+(m0−m1)x−1

1 = bm1
0 br0

1 b
(m0−m1)x−1

1 = bm1
0 br0

1 (bx
0)

(m0−m1)x−1

= bm1
0 br0

1 b
x(m0−m1)x−1

0 = bm1
0 br0

1 bm0−m1
0 = bm1+m0−m1

0 br0
1

= bm0
0 br0

1 .

It is straightforward to see that this is equal to the commitment c. In addition,
we can see that r1 has uniform distribution over ZN , because r0 is chosen uni-
formly from that group. This means that the false decommitment has the same
distribution that a real decommitment would have.

46

6 Commitments and Non-Malleability

Usually, when talking about different protocols, we think about two parties ex-
changing information. But there is always a chance that a malicious party might
listen to or even interfere with the communication—this is known as the man-
in-the-middle attack. The most classical example of this attack concerns ballot
boxes. When the votes have been cast and the malicious party gains access to the
ballot box, it is very easy for him to include his votes in the box, thus altering the
results to his advantage. Note that this does not require the adversary to break
the hiding or binding property, just adding a related message is sufficient. This
kind of attack is a threat to commitment schemes as well—malleability allows an
adversary Ed to alter a commitment received from Alice, in a meaningful way so
that the receiver Bob cannot make sure whether the commitment is original or it
has been tampered with (Figure 7).

Alice
x−−−→ Ed

x+y−−−→ Bob

Figure 7: Man-in-the-middle attack

Non-malleability is a property that prevents an adversary from making mean-
ingful changes to the messages being passed from one party to the other. Non-
malleability with respect to commitment denies the adversary the possibility to
create a new commitment from an existing one, whereas non-malleability with
respect to opening allows the adversary to make a commitment but not open it.
The difference between non-malleability with respect to commitment and with
respect to opening was first defined in the article [FF00]. We give both of the def-
initions here. Although non-malleabiliy w.r.t. commitment is a stronger notion,
non-malleability w.r.t. opening has often been considered enough for all practical
applications [FF00]. In the following, when we talk about non-malleability, we
mean non-malleability w.r.t. commitment, if not specified otherwise.

We give the descriptions of the two non-malleability games in figures. Non-
malleability w.r.t. opening can be seen in Fig. 8 and non-malleability w.r.t.
commitment is given in Fig. 9. In both of the games, the adversary has to decide
which message the commitment was made for. The two games begin similarly—
first the key generation algorithm Gen is run to produce the public key pk and
the A1 part of the adversary outputs two messages m0, m1 and an internal state
σ1. Next the challenger uniformly chooses a bit s and creates a commitment-
decommitment pair for message ms. The commitment value c from this pair is
given along with σ1 to A2 that outputs a tuple of commitments (ĉ1, . . . , ĉn) and
σ2. At this point the two non-malleability games go their separate ways.

47

GA
nm−open

pk← Gen

(m0, m1, σ1)← A1(pk)

s← {0, 1}
(c, d)← Compk(ms)

(ĉ1, . . . , ĉn, σ2)← A2(c, σ1)

(d̂1, . . . , d̂n)← A3(d, σ2)

yi ← Openpk(ĉi, d̂i), i = (1, . . . , n)

halt if c ∈ (ĉ1, . . . , ĉn) ∨ ⊥ ∈ (y1, . . . , yn)

if A4(m1, y1, . . . , yn, σ2) = s, return 1

else return 0

Figure 8: The game for non-malleability w.r.t. opening

Non-malleability w.r.t. opening means that an adversary, given a commitment
is not able to create a correct related commitment that he is able to open himself.
In this case the tuple created by A2 is given along with the decommitment value d
and the state σ2 to A3 that outputs a tuple of decommitment values (d̂1, . . . , d̂n).
The commitments (ĉ1, . . . , ĉn) are opened using the decommitments, and a tuple
(y1, . . . , yn) is received. If the original commitment c is in the tuple (ĉ1, . . . , ĉn) or
any of the opened commitments opened to ⊥, the game is halted, otherwise, the
game outputs the decision made by A4 that is given the message m1, the tuple
(y1, . . . , yn) and the internal value σ2 as input.

Non-malleability with respect to commitment means that given a commitment,
an adversary is not able to create a correct related commitment that can be opened
at all. In this case the tuple created by A2 is given to the extraction oracle Extr
that opens them and receives a tuple (y1, . . . , yn). If the original commitment c
is in the tuple (ĉ1, . . . , ĉn), the game is halted, otherwise, the game outputs the
decision made by A4 that is given the message m1, the tuple (y1, . . . , yn) and the
internal value σ2 as input.

Definition 6.1. A commitment scheme is (t, ε)-non-malleable with respect to
decommitment if any t-time adversary A = (A1, A2, A3, A4) playing the game
Gnm−open achieves advantage

Advnm

Com(A) =
∣∣2 · Pr

[
GA = s

]
− 1

∣∣ ≤ ε .

The following definition [BS99, FF00] is sensible only, if the commitment

48

GA
nm−com

pk← Gen

(m0, m1, σ1)← A1(pk)

s← {0, 1}
(c, d)← Compk(ms)

(ĉ1, . . . , ĉn, σ2)← A2(c, σ1)

(y1, . . . , yn)← Extrsk(ĉ1, . . . , ĉn)

halt if c ∈ (ĉ1, . . . , ĉn)

if A4(m1, y1, . . . , yn, σ2) = s, return 1

else return 0

Figure 9: The game for non-malleability w.r.t. commitment

scheme is either statistically binding or extractable.

Definition 6.2. A commitment scheme is (t, ε)-non-malleable with respect to
commitment if any t-time adversary A = (A1, A2, A4) playing the game Gnm−com

achieves advantage

Advnm

Com(A) =
∣∣2 · Pr

[
GA = s

]
− 1

∣∣ ≤ ε ,

where Extr is a computable function such that Extrpk(c) = x if (c, d)← Compk(x).

If the commitment scheme is extractable, we can use the secret key and the
oracle Extrsk(·) instead of Extrpk(·). It is interesting to note that a commitment that
is non-malleable with respect to commitment is also non-malleable with respect
to opening. When the adversary in the game of non-malleability with respect to
commitment has given the commitments to the challenger, he is no longer able to
attack in any way, even if he gets to know a backdoor or gets infinite computing
power. However, in the case of non-malleability with respect to opening, the
adversary can influence the input of A4 after it has given the commitments to the
challenger. But, as mentioned before, non-malleability w.r.t. opening is usually
enough in practical applications.

Next, we will show that non-malleability implies hiding and binding. It suffices
to show that this is true for the non-malleability property with respect to opening.
Non-malleability with respect to commitment implies non-malleability with respect
to opening, so it also implies hiding and binding because implication is transitive.

Theorem 6.1. A commitment scheme that is (t, ε)-non-malleable with respect to
opening is also (τ, ε)-hiding, where τ = t−O(1).

49

Proof. We use proof by contradiction to show that non-malleability w.r.t. opening
implies hiding. For the sake of contradiction, assume that the τ -time adversary
B = (B1, B2) playing the hiding game, achieves advantage

Advhid

Com(B) =

∣∣∣∣∣2 · Pr

[
pk← Gen, s← {0, 1} , (m0, m1, σ)← B1(pk),

(c, d)← Compk(ms) : B2(σ, c) = s

]
− 1

∣∣∣∣∣ > ε .

Then the adversary A = (A1, A2, A3, A4) can use the adversary B to win the non-
malleability game depicted in Fig. 6.1. At the beginning of the game, A1 uses B1

to output (m0, m1, σ). The commitment c of one of these messages and the inner
state σ are given to A2 that passes them on to B2. Similarly to the hiding game,
B2 now outputs a guess s and succeeds with probability greater than ε. This guess
is put into the state σ2. Everything works as before, except when A4 receives σ2

as part of its input, it no longer needs to output a guess itself, but can simply
use the guess from B2. So the adversary A also succeeds with probability greater
than ε, but this contradicts the assumption that the scheme is non-malleable with
respect to opening.

Theorem 6.2. A commitment scheme that is (t, ε)-non-malleable with respect to
opening is also (τ, ε)-binding, where τ = t−O(1).

Proof. We use proof by contradiction to show that non-malleability w.r.t. opening
implies binding. For the sake of contradiction, assume that the τ -time adversary
B playing the binding game, achieves advantage

Advbind

Com(B) = Pr

[
pk← Gen, (ĉ, d̂0, d̂1)← B(pk) :

⊥ 6= Openpk(ĉ, d̂0) 6= Openpk(ĉ, d̂1) 6= ⊥

]
> ε .

Then the adversary A = (A1, A2, A3, A4) can use the adversary B to win the
non-malleability game from Fig. 6.1. The A1 part of the adversary outputs two
messages m0, m1 and a state σ1. Next, A2 can use B to create a commitment
ĉ and find a double decommitment (d̂0, d̂1) that opens ĉ to either y0 or y1. The
new commitment ĉ and the decommitment pair (d̂0, d̂1) are enclosed in σ2. We
let A2 output ĉ, σ2 when it receives c and σ1. We know that by definition A3 has
access to the original decommitment value d, but the problem is that it cannot
pass on any implicit information to A4 about d or the message that was committed
to. With the help of the adversary B we now have a situation, where A3 knows
which of the two messages the commitment c belongs to, and it is also capable of
forwarding the information about this one bit to A4. To do this, A3 simply chooses
the corresponding decommitment from the pair (d̂0, d̂1)—it chooses d̂0 when the
commitment opens to m0, and d̂1 otherwise.

50

It is quite straightforward to see that when the function Open is run on the
commitment from A2 and decommitment from A3, the result y is either y0 or y1.
This means that y represents the index of the message that the original commit-
ment c was made to. Now, it is simple for A4 to output the correct answer. The
adversary A succeeds with the same probability as B. This probability, however, is
larger than ε and this contradicts the assumption that the scheme is non-malleable
with respect to opening.

6.1 Homomorphic Commitment Schemes

Not all schemes are non-malleable and, to illustrate this, we discuss homomorphic
commitments. Schemes with this property are malleable, i.e., they allow transfor-
mations on the commitment to produce meaningful changes in the message being
committed to. Even though this leaves the commitment vulnerable to man-in-the-
middle attacks, homomorphism is not a bad property and can be used in different
operations connected with commitment schemes.

In the following definition, ◦ denotes any efficiently computable binary opera-
tion on commitment-decommitment pairs. In addition, we require that the value
Compk(m1 +m2) be made from the values c1 and c2, without having seen the corre-
sponding decommitment values d1 and d2, because in practice the decommitment
values are initially not revealed.

Definition 6.3. A commitment scheme is homomorphic, if

Compk(m1; r1) ◦ Compk(m2; r2) = Compk(m1 + m2; r1 + r2)

and the distributions of Compk(m1; r1)◦Compk(m2; r2) and Compk(m1 +m2; r1 +r2)
coincide even if one of the initial commitments is fixed.

We show that the three commitment schemes—Pedersen, Fujisaki-Okamoto
and ElGamal schemes—based on the discrete logarithm problem are all homomor-
phic. For the Pedersen and Fujisaki-Okamoto schemes we define the operand ◦ for
the commitment-decommitment pairs in the following way

(c1, d1) ◦ (c2, d2) = (c1 · c2, d1 + d2) .

Theorem 6.3. The Pedersen commitment scheme is homomorphic.

Proof. In the case of the Pedersen commitment scheme we know that Compk(m; r) =
(gmyr, (m; r)). To show that it is homomorphic we multiply two commitments and
add the corresponding decommitments to each other. Consider the equation

Compk(m1; r1) ◦ Compk(m2; r2) = (gm1yr1gm2yr2 , (m1 + m2; r1 + r2))

= (gm1+m2yr1+r2 , (m1 + m2; r1 + r2))

= Compk(m1 + m2; r1 + r2) .

51

It is clear that this is the commitment to the message m1 + m2.

Theorem 6.4. The Fujisaki-Okamoto commitment scheme is homomorphic.

Proof. We know that in the Fujisaki-Okamoto commitment scheme Compk(m; r) =
(bm

0 br
1, (m; r)). Similarly to the last proof, we multiply two commitments and add

the corresponding decommitments to each other. Consider the following equation

Compk(m1; r1) ◦ Compk(m2; r2) = (bm1
0 br1

1 bm2
0 br2

1 , (m1 + m2; r1 + r2))

= (bm1+m2
0 br1+r2

1 , (m1 + m2; r1 + r2))

= Compk(m1 + m2; r1 + r2) .

It is clear that this is the commitment to the message m1 + m2.

We define the operand ◦ differently for the ElGamal scheme, because the com-
mitment consists of a pair of values. Let us assume that we have two commitment-
decommitment pairs ((c11, c12), d1) and ((c21, c22), d2). Then

((c11, c12), d1) ◦ ((c21, c22), d2) = ((c11 · c21, c12 · c22), d1 + d2) .

Theorem 6.5. The ElGamal commitment scheme is homomorphic.

Proof. We take commitment-decommitment pairs for the messages m1 and m2:
Compk(m1; r1) = ((gr1 , gm1gar1), (m1; r1)), Compk(m2; r2) = ((gr2 , gm2gar2), (m2; r2))
and do the following computations

Compk(m1; r1) ◦ Compk(m2; r2) = ((gr1gr2 , gm1gar1gm2gar2), (m1 + m2; r1 + r2))

= ((gr1+r2 , gm1+m2ga(r1+r2)), (m1 + m2; r1 + r2))

= Compk(m1 + m2; r1 + r2) .

This is the commitment of the message m1 + m2.

Homomorphic commitment can be used to perform different operations with
commitments. An intuitive example is a protocol with n > 2 parties and one
trusted party, where all parties send commitments c1, . . . , cn to messages m1, . . . ,mn

to the trusted party that uses the binary operation denoted by ◦ to compute the
commitment c of the sum m of the messages. The trusted party can publish c
and, if the parties wish to know the sum, they send the decommitments d1, . . . , dn

to the trusted party that computes the common decommitment value d. When
the trusted party publishes this value, all of the parties will know the sum of the
messages, but they will not get any idea about the individual messages of other
parties. This is the underlying idea of many e-voting systems.

52

6.2 IND-CCA2 Security and Non-Malleability

In this subsection, we show that IND-CCA2 security (defined in Section 4.1)
implies non-malleability. As discussed before, the commitment scheme needs
to be extractable to achieve duality with encryption schemes. In the follow-
ing theorems, let Enc = (GenEnc, Enc, Dec) be an encryption scheme and Com =
(GenCom , Gen∗Com , Com, Open, Extr) be a commitment scheme.

Theorem 6.6. Let Enc and Com be in canonical correspondence. Then (t, ε)-IND-
CCA2 security implies (t, ε)-non-malleability with respect to commitment.

Proof. Since Enc and Com are in canonical correspondence, we can unify the ex-
traction and decryption oracles as Extrsk(·). We use proof by contradiction to show
that the constructed commitment scheme Com is non-malleable. For the sake of
contradiction, we assume that, the encryption scheme is IND-CCA2 secure but the
commitment scheme is not non-malleable. Let A = (A1, A2, A4) be a corresponding
adversary that plays the game GA

nm−com from Fig. 9 and achieves advantage

Advnm

Com(A) =
∣∣2 · Pr

[
GA = s

]
− 1

∣∣ > ε .

Now we show that the scheme cannot be IND-CCA2 secure. We use the adversary
A to construct another adversary B = (B1, B2), where B1 is the same as A1

receiving pk and outputting (m0, m1, σ1) and B2 is constructed by uniting parts
A2 and A4 of the adversary A. In the IND-CCA2 game B2 gets the encryption
e and additional information from B1 in the form of σ1. This state contains,
without loss of generality, the messages m0 and m1. By definition, B2 can use the
decryption oracle and ask it to decrypt any encryption he wants except the one
he was given, and then has to output its guess about which of the messages was
encrypted. We can use parts of the adversary A to execute the described actions.
The input for B2 is given to A2 that outputs the tuple of commitments (ĉ1, . . . , ĉn)
that will be given as a query to the extraction oracle Extrsk(·), and an internal
state σ2. As mentioned before, the extraction and decryption oracles coincide
because of the correspondence between Enc and Com and, thus, B2 can submit the
query to Extrsk(·) in the IND-CCA2 game. The oracle outputs the tuple of results
(y1, . . . , yn) that are given as input to A4. Now, the output s′ of A4 is also given
as the output of B2. The algorithm for B2 can compactly be written as

B2(e, σ1) (ĉ1, . . . , ĉn, σ2)← A2(e, σ1)

(y1, . . . , yn)← Extrsk(ĉ1, . . . , ĉn)

Return A4(m1, y1, . . . , yn, σ2)

53

The adversary B plays the IND-CCA2 game. Since B by construction behaves
exactly like A, it achieves advantage

Advind−cca2(B) =

∣∣∣∣∣∣∣2 · Pr

 (pk, sk)← Gen, s← {0, 1} ,

(m0, m1, σ1)← B1(pk),

e← Encpk(ms) : B
Extrsk(·)
2 (σ1, e) = s

− 1

∣∣∣∣∣∣∣ > ε .

But this contradicts the assumption that the encryption scheme is IND-CCA2
secure. Hence, the commitment scheme must be non-malleable.

Unfortunately, non-malleability under chosen plaintext attack (NM-CPA) does
not imply IND-CCA2 security. On the other hand, it has been proved that non-
malleability under chosen ciphertext attack (NM-CCA2) implies IND-CCA2 secu-
rity and vice versa [BS99, DDN91].

It is possible to transform any given equivocable commitment scheme into a
commitment scheme that is non-malleable with respect to decommitment. This
construction is given in the article [CIO98]. Moreover, in [Cre02] Crescenzo shows
that it is possible to construct a commitment scheme that is non-malleable with
respect to commitment from an extractable and equivocable commitment scheme.

6.3 An Example of Non-Malleable Commitment

We look at the Cramer-Shoup encryption scheme [CS98] and construct a non-
malleable commitment scheme from it, using the canonical correspondence between
encryptions and commitment. The Cramer-Shoup cryptosystem is based on the
assumptions that the DDH problem is hard and there exists a collision resistant
hash function. The constructed commitment scheme is provably non-malleable
and it is quite straightforward to see that there exists a way to verify whether the
commitment has been tampered with.

6.3.1 Encryption Scheme

Setup. Let Gq be a group of prime order q and let H be a hash function
that hashes long strings to elements of Zq. Random elements g1, g2 ← Gq and
x1, x2, y1, y2, z1, z2 ← Zq are chosen. Next, three group elements

c = gx1
1 gx2

2 , d = gy1

1 gy2

2 , h = gz1
1 gz2

2

are computed. The values (g1, g2, c, d, h) form a public key, the secret key is
(x1, x2, y1, y2, z1, z2).

54

Encryption. To encrypt a message m ∈ Gq, the encryption algorithm chooses
a random r ← Zq and computes

u1 = gr
1, u2 = gr

2, e = hrm, α = H(u1, u2, e), v = crdrα .

The encryption is

Enc(m; r) = (u1, u2, e, v) = (gr
1, g

r
2, h

rm, crdrα) .

Decryption. Given an encryption (u1, u2, e, v), the decryption algorithm first
computes α = H(u1, u2, e) and tests if

ux1
1 ux2

2 (uy1

1 uy2

2)α = v .

If this condition does not hold, the algorithm rejects the encryption. This is to
make sure that the encryption has not been tampered with. Otherwise it outputs

m = e/(uz1
1 uz2

2) .

Correctness. Correctness means that, if both parties are honest, it is possible
to correctly decrypt the encryption and get the right message. The verification
step in the decryption phase is correct:

ux1
1 ux2

2 (uy1

1 uy2

2)α = grx1
1 grx2

2 (gry1

1 gry2

2)α = (gx1
1 gx2

2)r(gy1

1 gy2

2)rα = crdrα = v .

The decryption itself is also correct:

e/(uz1
1 uz2

2) = e/(grz1
1 grz2

2) = e/(gz1
1 gz2

2)r = (hrm)/hr = m .

Therefore, the test performed by the decryption algorithm passes and the message
will be opened correctly.

6.3.2 Commitment Scheme

We derive a commitment scheme from the given encryption scheme by canonical
correspondence. We need three functions Gen, Com and Open. The key gener-
ation function of the commitment scheme outputs the public key from the key
pair ((g1, g2, c, d, h), (x1, x2, y1, y2, z1, z2)) from the key generation function of the
encryption scheme. Since we do not need the secret key at all, it is simpler to
generate the public key in the following way, as all values g1, g2, c, d and h are
elements with a uniform distribution over Gq.

55

Setup. Let Gq be a group of prime order q and let H be a hash function that
hashes long strings to elements of Zq. Elements g1, g2, c, d, y are uniformly chosen
from Gq. The values g1, g2, c, d, y are published

(g1, g2, c, d, y)← Gen .

The commitment function outputs the encryption of the message as the com-
mitment part and the message-randomness pair as the decommitment part of the
commitment-decommitment pair.

Commitment. To commit to a message m ∈ Gq, the sender chooses a random
r ← Zq and computes

u1 = gr
1, u2 = gr

2, e = yrm, α = H(u1, u2, e), v = crdrα .

The commitment is

Compk(m; r) = ((u1, u2, e, v), (m; r)) = ((gr
1, g

r
2, y

rm, crdrα), (m; r)) .

Opening. The sender sends the message m and the random r to the receiver.
The receiver first computes α = H(u1, u2, e) and tests if

crdrα = v .

If this condition does not hold, the algorithm rejects the commitment. This is to
make sure that the commitment has not been tampered with. Otherwise the re-
ceiver checks whether the commitment is valid by using the commitment algorithm
to compute it.

6.4 Simulation-Sound Trapdoor Commitments

We also briefly discuss simulation-sound trapdoor schemes [GMY03] that can be
used to construct various zero knowledge protocols. These schemes have the
simulation-sound binding property or strong binding property. The equivocability
oracle can be used, but not when playing the binding game. This means that
the commitment made by the adversary is binding even though A can use the
equivocability oracle Equiv(·). The definition uses the alternative key generation
function Gen∗ that outputs a key pair (pk, sk).

Definition 6.4. A commitment scheme is a (t, ε)-simulation-sound trapdoor scheme
if any t-time adversary A achieves advantage

Adv(A) = Pr

[
(pk, sk)← Gen∗, (c, d0, d1)← AEquiv(·)(pk) :

⊥ 6= Openpk(c, d0) 6= Openpk(c, d1) 6= ⊥

]
≤ ε .

56

The distributions of the public keys output by Gen and Gen∗ coincide. The equivo-
cability oracle Equiv(·) consists of two parts O1 and O2 that work in the following
way:

• when asked to commit, Equiv(·) outputs a fake commitment (ĉ, σ) ← Com∗
sk

and stores the pair (ĉ, σ),

• when asked to decommit and given a fake commitment ĉ and a message
m, Equiv(·) finds the stored σ and outputs a decommitment value d̂ ←
Equivsk(m, ĉ, σ).

The adversary can only once ask the oracle to create a decommitment value for the
commitment c being double opened.

Note that the definition of the strong binding property is very similar to the
binding property of commitment schemes with the addition of the Equiv oracle—it
describes a nontrivial attack against binding with the possibility to use the Equiv
oracle. We also note that the IND-CCA2 property is similarly dual with a nontriv-
ial attack against the hiding property with the possibility to use the Extr oracle.
We have already proved that the IND-CCA2 property implies non-malleability
w.r.t. commitment and it is possible to show that the strong binding property
implies non-malleability w.r.t. opening. Moreover, in the article [MY04] the au-
thors show that the strong binding property is equivalent with non-malleability
with respect to opening. Recall that the IND-CCA2 property is equivalent to the
non-malleability w.r.t. commitment property that uses a CCA2 oracle. One can-
not help noticing that non-malleability is closely related to security under CCA2
attacks, i.e., the adversary can ask an oracle to open commitments during the
attack against hiding or binding.

57

7 Conclusion

This thesis gives a classification of commitment schemes based on their properties.
So far, there has been no such systematisation available in widespread crypto-
graphic literature which is unfortunate because commitment schemes are an inte-
gral part of cryptography. They can have different properties: hiding, binding, ex-
tractability, equivocability, homomorphism, non-malleability. We show how these
relate to each other and to the properties of encryption schemes. To illustrate, we
bring examples of different schemes that are based on different assumptions and
have different sets of properties.

The idea of a commitment scheme is the following: a sender commits to a
message and transfers the commitment to the receiver. When the sender is ready
to open the commitment, he reveals the decommitment value to the receiver, who
can now check whether the commitment was valid. These schemes have two basic
properties: hiding and binding. The hiding property denies the receiver the possi-
bility to distinguish between commitments to different messages, and the binding
property denies the sender the possibility of changing the message in the com-
mitment. We also give the descriptions and security proofs of two commitment
schemes: the simplified Canetti-Fischlin scheme based on pseudorandom gener-
ators, and the Halevi-Micali scheme based on collision resistant hash functions.
These assumptions—the existence of pseudorandom generators and collision resis-
tant hash function families—are among the most basic in cryptography.

Some commitment schemes have special properties in addition to hiding and
binding. One of these properties is extractability that allows a party to extract the
message from the commitment, if it knows a certain secret value. We show that
this property is enough for a canonical correspondence to exist between encryption
and commitment schemes. We also prove that the IND-CPA security property is
equivalent with the computational hiding property of commitment schemes. We
illustrate the concept of canonical correspondence by ElGamal encryption and
commitment and also give security proofs for the latter.

Equivocability is another special property of commitment schemes. This prop-
erty means that there exists a trapdoor so that if the sender knows a certain secret
value, he is able to create a fake commitment and open it to any message he
chooses. We give the descriptions and security proofs of two perfectly equivocable
commitment schemes: the Pedersen scheme and the Fujisaki-Okamoto scheme.
We also give the construction of a trapdoor for both of these schemes.

The last special property discussed in this thesis is non-malleability. This prop-
erty prevents a malicious party from making meaningful changes to the commit-
ment that is being passed between honest parties. There are two forms of the non-
malleability property: w.r.t. opening and w.r.t. commitment. Non-malleability
w.r.t. opening means that given a commitment, the adversary is unable to create a

58

related commitment that he is able to open, whereas non-malleability w.r.t. com-
mitment means that the adversary is not even able to create a related commitment.
The latter property is stronger but the former is considered to be enough in prac-
tical applications. To show that not every scheme is non-malleable, we talk about
homomorphic schemes, where it is fairly easy to create a commitment to a re-
lated message from a given commitment. We also show that IND-CCA2 security
implies non-malleability w.r.t. commitment and we describe the Cramer-Shoup
commitment scheme as an example of a non-malleable scheme.

This thesis is useful for both academic and scientific purposes, as it describes
commitment schemes that are a very important building block of cryptographic
protocols. It gives a concise overview of the topic and is therefore useful for both
students and practicing cryptographers.

59

8 Kinnistusskeemide homoloogiline klassifikatsioon

Magistritöö (40 AP)

Liina Kamm

Sisukokkuvõte

Käesoleva magistritöö eesmärk on süstematiseerida kinnistusskeeme ja nende
omadusi. Töö sisaldab omaduste definitsioone ja nende omavahelisi suhteid ning
näidisskeeme ja nende turvatõestusi. Lisaks kirjeldatakse kinnistusskeemide ja
nende omaduste vastavust krüpteerimisskeemidega.

Kinnistusskeemid on krüptograafia oluline osa, mille tööpõhimõte on järgmine:
saatja kinnistab sõnumi ning edastab selle saajale. Kui saatja on valmis sõnumit
avaldama, edastab ta avamisväärtuse ning saajal on võimalus kontrollida, kas algne
kinnistus oli korrektne. Sellistel skeemidel on kaks põhiomadust: peitvus ja sidu-
vus. Peitvus tagab saatja turvalisuse ega lase saajal aru saada, mis väärtus on kin-
nistuse sees. Siduvus tagab saaja turvalisuse ega lase saatjal muuta sõnumit kin-
nistuse sees. Omaduste illustreerimiseks kirjeldame lihtsustatud Canetti-Fischlini
skeemi, mis põhineb pseudojuhuslikkuse generaatoril, ja Halevi-Micali skeemi, mis
põhineb kollisioonikindlal räsifunktsioonil, ning tõestame nende turvalisuse.

Mõnedel kinnistusskeemidel on lisaks siduvusele ja peitvusele veel eriomadusi,
millest üks lihtsamaid on eraldatavus. See omadus laseb igal osapoolel, kellel on
ligipääs teatud salajasele väärtusele, eraldada sõnum kinnistusest. Me näitame,
et selle omaduse olemasolu on piisav tingimus, et leiduks vastavus krüpteerimis-
ja kinnistusskeemi vahel. Lisaks tõestame, et IND-CPA turvalisus on samaväärne
kinnistusskeemide arvutusliku peitvuse omadusega. Näitena toome ära vastavuse
ElGamali krüpteerimis- ja kinnistusskeemi vahel ning tõestame viimase turvalisuse.

Kui kinnistusskeemil leidub tagauks, mille teadmine annab saatjale võimaluse
väljastada võltskinnistus ning avada see ükskõik milliseks sõnumiks, siis kutsutakse
skeemi mitmetähenduslikuks. Me kirjeldame kaht sellise omadusega kinnistus-
skeemi: Pederseni ja Fujisaki-Okamoto’ skeemi. Esitame ka turvatõestused ning
toome ära tagaukse konstrueerimiseks vajaliku arvutuskäigu.

Viimane eriomadus, mida me käsitleme, on mittedeformeeritavus, mis ei lase
ründajal teha ausate poolte vahel edastatavale kinnistusele sisukaid muudatusi.
Mittedeformeeritavust vaadeldakse avamise ja kinnistamise suhtes. Kui skeem on
mittedeformeeritav avamise suhtes, siis ei ole vastane võimeline looma ausa kinnis-
tusega seotud kinnistust nii, et ta seda hiljem avada suudaks. Sama omadus kinnis-
tuse suhtes tähendab, et vastane ei ole suuteline seotud kinnistust üldse looma. Vii-
mane omadus on ilmselgelt tugevam, aga nõrgemat omadust peetakse praktilistes

60

rakendustes piisavaks. Näitamaks, et iga skeem ei ole mittedeformeeritav, räägime
homomorfsetest skeemidest, mille puhul on suhteliselt lihtne luua etteantud kin-
nistuse põhjal uus sisukas kinnistus. Lisaks tõestame, et IND-CCA2 turvalisusest
järeldub mittedeformeeritavus kinnistuse suhtes, ning kirjeldame Cramer-Shoupi
kinnistusskeemi, mis on mittedeformeeritav.

Käesolevale magistritööle sarnast ülevaadet kinnistusskeemidest ja nende oma-
dustest hetkel teadaolevalt krüptograafia-alases kirjanduses ei leidu. Töö väärtu-
seks on tema sobivus nii akadeemilisteks kui teaduslikeks eesmärkideks, kuna seda
on võimalik kasutada nii õppematerjali kui teatmikuna.

Autor soovib avaldada tänu oma juhendajatele, kelle järjekindlus ja entusiasm
olid väärtuslikuks panuseks käesoleva magistritöö valmimisel.

61

References

[BBS86] Lenore Blum, Manuel Blum, and Mike Shub. A Simple Unpredictable
Pseudo-Random Number Generator. SIAM Journal on Computing,
15(2):364–383, 1986.

[Blu81] Manuel Blum. Coin Flipping by Telephone. In Advances in Cryptology:
A Report on CRYPTO ’81, pages 11–15, 1981.

[Bon98] Dan Boneh. The Decision Diffie-Hellman Problem. In Proceedings of
the Third Algorithmic Number Theory Symposium, Lecture Notes in
Computer Science, volume 1423, pages 48–63, 1998.

[BS99] Mihir Bellare and Amit Sahai. Non-Malleable Encryption: Equivalence
between Two Notions, and an Indistinguishability-Based Characteriza-
tion. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lec-
ture Notes in Computer Science, pages 519–536. Springer, 1999.

[BSS99] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryp-
tography. Number 265 in London Mathematical Society Lecture Note
Series. Cambridge University Press, 1999.

[CF01] Ran Canetti and Marc Fischlin. Universally Composable Commit-
ments. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 19-23, 2001, Proceedings, pages 19–40. Springer,
2001.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-
Interactive and Non-Malleable Commitment. In STOC ’98: Proceed-
ings of the thirtieth annual ACM symposium on Theory of computing,
pages 141–150, New York, NY, USA, 1998. ACM Press.

[Cre02] Giovanni Di Crescenzo. Equivocable and Extractable Commitment
Schemes. In Stelvio Cimato, Clemente Galdi, and Giuseppe Per-
siano, editors, Security in Communication Networks, Third Interna-
tional Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002.
Revised Papers, volume 2576 of Lecture Notes in Computer Science,
pages 74–87. Springer, 2002.

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosys-
tem Provably Secure against Adaptive Chosen Ciphertext Attack. In

62

Advances in Cryptology - CRYPTO ’98, 18th Annual International
Cryptology Conference, pages 13–25, 1998.

[CW77] Larry Carter and Mark N. Wegman. Universal Classes of Hash Func-
tions (Extended Abstract). In Conference Record of the Ninth Annual
ACM Symposium on Theory of Computing, 2-4 May 1977, Boulder,
Colorado, USA, pages 106–112. ACM, 1977.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryp-
tography (Extended Abstract). In Proceedings of the Twenty Third
Annual ACM Symposium on Theory of Computing, 6-8 May 1991,
New Orleans, Louisiana, USA, pages 542–552. ACM, 1991.

[DG03] Ivan Damg̊ard and Jens Groth. Non-Interactive and Reusable Non-
Malleable Commitment Schemes. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, June 9-11, 2003, San
Diego, CA, USA, pages 426–437, New York, NY, USA, 2003. ACM
Press.

[DH76] Whitfield Diffie and Martin Hellman. New Directions in Cryptography.
In IEEE Transactions on Information Theory, number 2(6), pages 644–
654, 1976.

[EJ02] Patrik Ekdahl and Thomas Johansson. A New Version of the Stream
Cipher SNOW. In Kaisa Nyberg and Howard M. Heys, editors, Se-
lected Areas in Cryptography, 9th Annual International Workshop,
SAC 2002, St. John’s, Newfoundland, Canada, August 15-16, 2002.
Revised Papers, volume 2595 of Lecture Notes in Computer Science,
pages 47–61. Springer, 2002.

[FF00] Marc Fischlin and Roger Fischlin. Efficient Non-Malleable Commit-
ment Schemes. In Mihir Bellare, editor, Advances in Cryptology -
CRYPTO 2000, 20th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2000, Proceedings,
pages 413–431, London, UK, 2000. Springer-Verlag.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical Zero Knowledge
Protocols to Prove Modular Polynomial Relations. In Advances in
Cryptology - CRYPTO ’97, 17th Annual International Cryptology Con-
ference, pages 16–30, 1997.

[Gam84] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In CRYPTO, pages 10–18, 1984.

63

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct
Random Functions (Extended Abstract). In 25th Annual Symposium
on Foundations of Computer Science, 24-26 October 1984, Singer Is-
land, Florida, USA, pages 464–479. IEEE, 1984.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption and How
to Play Mental Poker Keeping Secret All Partial Information. In Pro-
ceedings of the Fourteenth Annual ACM Symposium on Theory of Com-
puting, 5-7 May 1982, San Francisco, California, USA, pages 365–377.
ACM, 1982.

[GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening
Zero-Knowledge Protocols Using Signatures. In Eli Biham, editor, Ad-
vances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in
Computer Science, pages 177–194. Springer, 2003.

[Gol04] Oded Goldreich. Foundations of Cryptography - Volume 2, Basic Ap-
plications. Cambridge University Press, 2004.

[HM96] Shai Halevi and Silvio Micali. Practical and Provably-Secure Commit-
ment Schemes from Collision-Free Hashing. In Advances in Cryptol-
ogy - CRYPTO ’96, 16th Annual International Cryptology Conference,
pages 201–215, 1996.

[JN03] Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman
from Computational Diffie-Hellman in Cryptographic Groups. J. Cryp-
tology, 16(4):239–247, 2003.

[LAN05] Sven Laur, N. Asokan, and Kaisa Nyberg. Efficient Mutual Data Au-
thentication Using Manually Authenticated Strings. Cryptology ePrint
Archive, Report 2005/424, 2005.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography, Fifth Edition. CRC Press, 2001.

[MY04] Philip D. MacKenzie and Ke Yang. On Simulation-Sound Trapdoor
Commitments. In Christian Cachin and Jan Camenisch, editors, Ad-
vances in Cryptology - EUROCRYPT 2004, International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 382–400.
Springer, 2004.

64

[Nao89] Moni Naor. Bit Commitment Using Pseudo-Randomness. In Gilles
Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Com-
puter Science, pages 128–136. Springer, 1989.

[Nat01] National Institute of Standards and Technology (NIST). FIPS-
197: The Advanced Encryption Standard. NIST webpage
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, November
2001.

[Ped91] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic
Secure Verifiable Secret Sharing. In Advances in Cryptology - CRYPTO
’91, 11th Annual International Cryptology Conference, pages 129–140,
1991.

[RS91] Charles Rackoff and Daniel R. Simon. Non-Interactive Zero-Knowledge
Proof of Knowledge and Chosen Ciphertext Attack. In Joan Feigen-
baum, editor, Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1991, Proceedings, volume 576 of Lecture Notes in Com-
puter Science, pages 433–444. Springer, 1991.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-
Function Basics: Definitions, Implications, and Separations for Preim-
age Resistance, Second-Preimage Resistance, and Collision Resistance.
In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption,
11th International Workshop, FSE 2004, Delhi, India, February 5-7,
2004, Revised Papers, volume 3017 of Lecture Notes in Computer Sci-
ence, pages 371–388. Springer, 2004.

[RSA78] Ronald Rivest, Adi Shamir, and Leonard Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. In Com-
munications of the ACM 21,2, pages 120–126, 1978.

[SCP00] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Per-
siano. Necessary and Sufficient Assumptions for Non-iterative Zero-
Knowledge Proofs of Knowledge for All NP Relations. In Ugo
Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata,
Languages and Programming, 27th International Colloquium, ICALP
2000, Geneva, Switzerland, July 9-15, 2000, Proceedings, volume 1853
of Lecture Notes in Computer Science, pages 451–462. Springer, 2000.

65

[Sha71] Daniel Shanks. Class Number, a Theory of Factorization, and Genera.
In Proceedings of Symposia in Pure Mathematics, volume 20, pages
415–440, 1971.

[Sti06] Douglas R. Stinson. Cryptography - Theory and Practice, Third Edi-
tion. Chapman & Hall/CRC, 2006.

66

