
Rule-based Logical Forms Extraction

Cenny Wenner
Department of Computer Science, Faculty of Science

Lund University, Sweden
cwenner@gmail.com

http://cennywenner.com

Abstract

In this paper, we present concise but robust
rules for dependency-based logical form
identification with high accuracy. We de-
scribe our approach from an intuitive and
formalized perspective, which we believe
overcomes much of the complexity. In
comparison to previous work, we believe
ours is more compact and involves less
rules and exceptions. We also provide the
reader with a comparison of the respective
impacts of the most essential rules on the
logical form identification task of the 2004
Senseval 3 test set.

1 Introduction

The logical form of a text segment is a first-order
logic (FOL) well-formed formula (wff) represent-
ing the meaning of the segment. Such a represen-
tation is used for a number of problems involving
semantics and inference, for instance question an-
swering (QA) (Moldovan et al., 2003) and tex-
tual entailment (TE) (Bar-Haim et al., 2006; Tatu
et al., 2006). Moldovan and Rus (2001) intro-
duced a simplified representation where the wff
is restricted to a conjunction of predicates and
where functions/functors are not allowed as argu-
ments. The arguments are partitioned into two
sets: events and objects. Conventionally, objects
are called entities and we extend that term to re-
fer to both events and objects. With this represen-
tation, more complicated constructions of natural
language are ignored but these are not crucial to
the previously mentioned problems.

As an example, the representation of John and
the dog ran to his car is

John: n(x1), and(x2, x1, x3), dog: n(x3),
run: v(e1, x2;x4), to(e1, x4), his(x4), car: n(x4),

(1)

where the arguments of the form xi and ei denotes
objects and events respectively. In this particular
example, x1 is John, x3 the dog, x2 John and the
dog as a group, x4 his car, and e1 the event that
they are running. The to predicate expresses a re-
lation between the event run and the car, while the
predicate his expresses a quality of the car alone.
Note that John is not present in the his predicate,
this is a task for a coreference solver. The suf-
fixes : n and : v denote nouns and verbs respec-
tively. For verbs, complements are listed after a
semicolon.

A task for identifying these logical forms was
introduced at the 2004 Senseval 3 conference. 27
teams were registered, although only five submit-
ted sensible results, whereof one involved manual
parsing (Rus, 2004). Our work builds on the re-
sults of these systems and we use the conference’s
annotated and unannotated data sets to evaluate
and verify our approach.

The goal of this article is to present the reader
with a robust rule-based scheme which only relies
on a few exceptions to the simple default search
rules. The transformation takes as input a depen-
dency graph, a sequence of tokens, the tokens’
parts of speech (POS), and morphological base
forms (lemmatised word form). We briefly de-
scribe how to produce the input from raw English
text in Sect. 3. The transformation is done in two
steps. The first step constructs predicates with ar-
gument placeholders, called slots, and we cover
this in Sect. 4. Sect. 5 deals with the second step
where we substitute the placeholders with real ar-
guments. The later step is more complicated and
we devote several subsections to it. We evaluate
the system on the Senseval 3 test set in Sect. 6 and
concludes the paper with a discussion of these re-
sults and potential further work.

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
NODALIDA 2007 Conference Proceedings, pp. 402–409

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14471854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Rule-based Logical Forms Extraction

2 Previous Work

All contemporary systems for logical form iden-
tification rely on a syntactical parser. Constituent
trees appear to be the most frequent approach to-
day, introduced by Rus (2001). Two rivals to
this approach are depedency graphs (Anthony and
Patrick, 2004) and link grammar (Bayer et al.,
2004). However, these systems seems to employ
a large number of rules for only a slight improve-
ment in accuracy. Some systems seems to use over
a hundred rules (Bayer et al., 2004; Ahn et al.,
2004). Unfortunately, descriptions of these sys-
tems only mention a few of the rules and do little
evaluation of their respective impacts. We aim to
give a concise but robust overview that will allow
the readers to replicate the system and compare the
different rules.

Other work on logical form identification in-
cludes Mohammed et al. (2004), Moldovan and
Rus (2001), and van Eijck and Alshawi (1992).

3 Preprocessing

As mentioned in the introduction, the system’s
transformation from a sentence to a simplified
logical form relies on a dependency graph, an
associated sequence of tokens, the tokens’ parts
of speech, and morphological base forms. Five
modules are used to extract this information: a
sentence splitter, a tokenizer, a POS tagger, a
dependency-graph parser, and a morphological
parser. For the first two modules we use simple
regular expressions. We also check each subse-
quence of tokens and substitute collocations with
a single token. For this, we use a list containing
collocations extracted from WORDNET, that was
supplied for the Senseval 3 task.

We represent the sequence, or list, of lexical to-
kens with W = (w1, . . . , wn), wi = (i, ti) where
i is the position of the token in the sequence and ti
is the string representation. We also define a total
order wi ≺ wj ≡ i < j.

3.1 Part-of-speech tagging

We denote the particular part of speech of a to-
ken with POS(wi). As POS tagger we have
tried the STANFORD LOG-LINEAR POS TAG-
GER (Toutanova and Manning, 2000; Toutanova
et al., 2003), MXPOST (Ratnaparkhi, 1996), and
TREETAGGER (Schmid, 1994). The results we
list in Sect. 5 are for MXPOST.

3.2 Dependency-graph parsing

We consider dependency graphs to be directed
acyclic graphs (DAGs) D = (W,A) where A is
the ordered set of labeled arcs (wi, r, wj), r ∈ R,
r the dependency function,1 and where R in par-
ticular contains the functions subject (SUB), ob-
ject (OBJ), and verb chain (VC). We also use the
notation wi

r−→ wj to denote (wi, r, wj) ∈ A and
rel(wi, wj) = r ⇔ (wi, r, wj) ∈ A. We have
tried MSTPARSER (McDonald et al., 2006) and
Nivre’s MALTPARSER 0.4 ENGSVM (Nivre et
al., 2006). The results in Sect. 5 are for MALT-
PARSER.

3.3 Morphological parsing

For the simplified logical forms, the head of the
predicates should consist of the token’s base form
and a part-of-speech suffix. We use WORDNET

to identify the base forms, performing a call for
each token independent of its neighbours. See for
instance Fellbaum (1998).

4 Predicate Introduction

Tokens are divided into two simple groups based
on the class of supported and ignored parts of
speech. The forms used at Senseval 3 ignores
for instance determiners because they complicate
matters and do not have a great impact for many
inference and semantics tasks. For each token of
a supported part of speech, we create a predicate
with its base form as head and a number of slots
equal to its arity2. Table 1 lists the arities of differ-
ent part-of-speech classes. For the tokens of parts
of speech in the ignored set, we do nothing. The
exceptions to this are noun groups and noun com-
pounds for which an additional predicate is intro-
duced to refer to the group/compound rather than
to the components.

After these steps, our first example (Eqn. 1)
would be equivalent to

John: n(s1,1), and(s2,1, s2,2, s2,3),
dog: n(s3,1), meet: v(s4,1, s4,2, s4,3),

at(s5,1, s5,2), his(s6,1), car: n(s7,1), (2)

where si,j are argument placeholders. We repeat
that we call the placeholders slots.

1Also called the dependency relation and dependency la-
bel.

2The arity of a predicate is the number of parameters it
has.

403



Cenny Wenner

Table 1: Suffixes and arities of our part-of-speech
classes, and the classes equivalences in the PTB.

POS Suf. Arity PTB
Nouns, : n 1 NN, NNS, NP,
regular NPS

Nouns groups 3 (We call this
/compounds NN)

Verbs : v 2-3 V[B]?[DGNPZ]?
Adjectives : a 1 JJ, JJR, JJS
Adverbs : r 1 RB, RBR, RBS,

WRB
Conjunctions 3 CC, UH
Unary mods. 1 POS, PP$, WP$
Binary mods. 2 IN, TO

The dependency graph models relations be-
tween nodes. This is interpreted here as relations
between entities. The entity that is involved in this
kind of relation is the first argument of each pred-
icate. For example, the arguments of the to pred-
icate in our first example (Eqn. 1) are e1 and x4.
These two entities are also the first arguments of
other predicates, x4 is the first argument of the dog
predicate and e1 is the first argument of the event
run. Furthermore, every entity in Eqn. 1 is the first
argument of a verb, noun, or conjunction.

The primary POS tags that we use are listed in
Table 1 along with the equivalent tags in the Penn-
Treebank (Santorini, 1991).

We believe our system can relatively easily be
extended to different arities and with support for
any part of speech. At least as long as inference
is not required in the transformation step. For in-
stance, the meaning of the sentence Do not not
breathe is that one should breathe, with a slightly
different emphasis. This sentence is represented
as

do: v(e1, x1, e2) ∧ not: r(e2, e3)
∧not: r(e3, e4) ∧ breathe: v(e4, x1), (3)

which could be reduced to

do: v(e1, x1, e4) ∧ breathe: v(e4, x1) (4)

(Do breathe). If reductions such as the above are
required, it might not be straightforward to extend
the system.

Let {pi = predi(si,1, . . . , si,arity(pi))} denote
the set of created predicates where w(pi) is the

associated token, POS(pi), its part of speech3,
arity(pi), the predicate’s arity, and si,j , the jth slot
of the ith predicate.

5 Argument identification

So far, the steps have only involved simple rules
directly given by the representation or relying on
existing systems. The last step is less trivial and
consists of identifying the real arguments for the
slots.

5.1 Formalization

We introduce some notation that we use in the lat-
ter sections. We let arg(si,j) be the function that
maps the jth slot of the ith predicate to an entity.
With arg(si,j) ∈ E and arg(si,j) ∈ O we denote
that the argument is an event and object, respec-
tively.

The meaning of Eqn. 1 would be the same if
we replaced all the occurrences of x1 with x5,
since x5 does not appear elsewhere in the formula,
i.e. we merely create an unique entity for it. At
this point, we therefore concentrate on finding out
what slots are mapped to the same arguments and
not so much which specific entity it is. In fact,
once we know which arguments should be same
and which ones should not, it is an easy task to
find a satisfying substitution since there are no re-
strictions on the number of entities we may create.

Aside from identifying which arguments are the
same, we must determine if they are events or ob-
jects. We will handle these two tasks in different
sections even though the problems overlap.

5.2 Simplifications

Each predicate has an associated token and this to-
ken has a node in the dependency graph. We also
said that the first slot of each predicate should be
the entity that participates in the relation that the
dependencies model. We therefore do not always
distinguish between tokens, predicates, nodes, and
entities when talking about argument identifica-
tion.

We define the argument search space of a slot
to be a list of nodes in the DG that will we search
through for a suitable argument. The slot is con-
tained in a predicate and the predicate has an as-
sociated node in the dependency graph. The space
we use is defined as a region in relation this node.

3Also defined for the noun groups/compounds even
though there are no associated tokens.

404



Rule-based Logical Forms Extraction

Note that the space is over nodes in the graph and
not entities.

For a dependency graph, the arguments of a
predicate are usually found in the near vicinity of
its node in the dependency graph. Particularly of-
ten among its children or siblings, and occasion-
ally its parent or grandchildren. It is also not cer-
tain that a suitable argument exists in the sentence.
We therefore restrict our argument search space
to consist of the node’s parent, children, and sib-
lings. If no suitable argument is found among
these, we assume that the slot should contain an
entity that does not appear elsewhere in the for-
mula. To model preferences between nodes, we
order the search space in different ways depend-
ing on the parts of speech. This is covered in Sect.
5.3.

Different parts of speech also put different re-
quirements on their arguments. For instance, ad-
jectives generally only modify objects, not events.
We collect these constraints under a function that
depends on the parts of speech, among other
things. We handle these functions, which we call
argument constraint functions, in Sect. 5.4.

5.3 Argument search spaces
If p is a node in the dependency graph, then let
P (p), C(p), S(p), SL(p), SR(p) be the lists of, re-
spectively; the parents of the node4, the children of
the node, the siblings of the node, the left siblings
of the node, and the right siblings of the node. The
lists should be sorted according to the order of ap-
pearance of the nodes’ respective tokens in the to-
ken sequence.

We use the set notation for operations on or-
dered lists and with this, we implicitly mean that
the elements of the resulting list follow the same
order as the source list. One could see it as picking
elements from left to right from the input list, pro-
cess it, and place the result in the output list from
left to right.

Take these equations as an example:

Y = (x ∈ X|x ∈ Nouns),
X = (saw , cat , yard , in). (5)

We first pick saw and discard it. Next we pick
cat and place it in Y , and yard which we place to
the right of cat. We finally discard in to get the
resulting list: (cat , yard).

4N.B. there is only one parent per node in dependency
graphs.

With the described notation, we may formally
define the left- and right-siblings:

SL(p) = (p′ ∈ S(p)|t(p′) ≺ t(p)) (6)

SR(p) = (p′ ∈ S(p)|t(p′) � t(p)) (7)

For our simplified logical forms, we search for
suitable arguments for up to two slots for each
predicate. The slots for which we do not per-
form search we call stable, and the remaining slots
unstable. The stable slots are the first slots of
all noun, verb, and conjunction predicates. Since
the only classes with an arity of three are noun
groups/compounds, verbs, and conjunctions, no
predicate contains more than two unstable slots.

We have noticed that the arguments for the first
and second unstable slots are found in a bit dif-
ferent locations. We therefore separate the argu-
ment search space for the first and second unsta-
ble slot. Note that the spaces contains the same
nodes, we only permute them differently. We call
these A1(p) and A2(p, q), where the latter term is
the argument search space for the second unsta-
ble slot of a node p, given that we have identified
the first argument as q (which is another node in
the graph, recall that the argument spaces consists
of nodes). We first introduce some of our com-
mon spaces that we then use to define the above
mentioned terms with respect to the nodes’ part
of speech. The selection of the proper order is
part linguistics and part understanding or mak-
ing observations about the structure of dependency
graphs. The permutations we describe are those
that we through iterative experiments and analysis
have found work well.

Let XR denote the list X in reverse order, and
let multiplication implicitly denote concatenation
of tuples, we describe the most common permuta-
tions of the search space with

ALcrp(p) = SL(p)R · C(p) · SR(p) · P (p) (8)

ApLcr(p) = P (p) · SL(p)R · C(p) · SR(p) (9)

ArpLc(p) = SR(p) · P (p) · SL(p)R · C(p) (10)

AcrpL(p) = C(p) · SR(p) · P (p) · SL(p)R (11)

Notice how ALcrp(p) is equivalent to a preorder
traversal of the nodes in the argument search
space, except with the left siblings reversed. The
other spaces are also given by shifting terms.

We now define the default search methods for
the first and second arguments. WithADef,1(p) we
denote the default argument search space for the

405



Cenny Wenner

first unstable slot of node p, and with ADef,2(p, q),
the argument space function for the second unsta-
ble argument of node p, given that its first iden-
tified argument is q. We define a shifted order,
AShi,1(p), because it is very similar to the default
and we refer to it later.

ADef,1(p) =

{
ALcrp(p) p, P (p) ∈ Nouns

ApLcr(p) else
(12)

AShi(p) =

{
ArpLc(p) p, P (p) ∈ Nouns

AcrpL(p) else
(13)

ADef,2(p, q) =

{
ADef,1(p) q /∈ SL(p)
AShi(p) q ∈ SL(p)

(14)

The default argument search spaces are used for
nouns (N), conjunctions (C), adjectives (A) and
adverbs (R). If k = 1, 2, then

AN,k = AC,k = AA,k = AR,k = ADef,k (15)

The three exceptions to the default rule are:
verbs (V), for which we prefer subject, object or
verb chain functions, and unary (U) and binary (B)
modifiers, for which we always use the shifted or-
der.

AV,1(p) = (pi|w(p) SUB−−−→ w(pi)) · ADef,1(p)
(16)

AV,2(p, q) = (pi|w(p) r−→ w(pi)) · ADef,2(p, q),
r ∈ {OBJ, V C}

(17)

AU,1(p) = AB,1(p) = AB,2(p, q) = AShi(p)
(18)

We may now define the search space for the first
and secon arguments with respect to their part of
speech as

Ak(p) ≡ APOS(p),k(p) (19)

5.4 Argument constraint functions
The default constraint function, which we call
cDef , merely ensures that the first and second ar-
guments are different, the arity of both is at least
zero and if both belong to the preceding siblings,
then the first argument must not precede the sec-
ond. q and r are here the first and second identified
arguments of the node p.

cDef(p, q, r)⇔ arity(q), arity(r) > 0
∧q 6= r ∧ (q, r ∈ SL(p)⇒ q � r) (20)

As with the argument search space, we define
the constraint function c with respect to its part of
speech,

c(p, q, r) ≡ cPOS(p)(p, q, r) (21)

There are five classes with more specific re-
quirements than the default but at least unary and
binary modifiers are defined as the default con-
straint function and the rest rely on it. Further-
more, during evaluation, we found that the special
constraint functions for conjunctions and adverbs
virtually contribute with nothing over the default.

- Noun groups/compounds (N): All argu-
ments are restricted to nouns.

- Verbs (V): Except for SUB/OBJ/VC func-
tions, arguments must be nouns, conjunctions
or verbs. These three classes are called stable
and are described in the next section.

- Conjunctions (C): Generally both argu-
ments, and subsequently its first argument,
are either all events or all objects.

- Adjectives (A): Restrict to objects.

- Adverbs (R): We restrict adverbs to only
modify events.

Recall that E is the set of events, O the set of
objects, and with rel(wi, wj), we denote the de-
pendency relation between nodes wi and wj . The
above explanations are formally defined as

cN (p, q, r)⇔POS(q), POS(r) ∈ Nouns

∧cDef(p, q, r) (22)

cV (p, q, r)⇔(POS(q) ∈ Stable ∨ rel(p, q) ∈ (∗))
∧(POS(r) ∈ Stable ∨ rel(p, r) ∈ (∗))
∧cDef(p, q, r) (23)

cC(p, q, r)⇔ (q ∈ E ⇔ r ∈ E)
∧cDef(p, q, r) (24)

cA(p, q, r)⇔ q, r ∈ O

∧cDef(p, q, r) (25)

cR(p, q, r)⇔ q, r ∈ E

∧cDef(p, q, r) (26)

(∗) = {SUB, OBJ, V C}

406



Rule-based Logical Forms Extraction

5.5 Argument introduction
The next step is merely to test each predicate or
pair of predicates in the argument search spaces
for each predicate. The first predicate or pair of
predicates that fulfills the constraint function is the
best candidate as argument(s).

As mentioned earlier, the first slot of each node
represents it in the relations. With potential argu-
ments identified, we may therefore simply intro-
duce equalities to represent these in terms of the
predicates’ slots. If we find that pk is the first pred-
icate in the search space for slot si,j that satisfies
the constraints, then arg(si,j) = arg(sk,1).

Whenever we during search encounter nouns in
the argument search space, we first check any as-
sociated noun groups/compounds and any children
that are conjunctions. This could be formalized as
a function of a node which by default only lists
the node itself and where nouns are the only ex-
ceptions.

The constraint functions are defined with re-
spect to both arguments, but in our system we use
a simplified version; we begin by selecting a first
argument that could fulfill the constraints for some
second argument, we then search for the second
argument. If no satisfying second argument can
be found, we still keep the first:

ĉ(p, q) ≡ ∃rc(p, q, r) (27)

It would be preferable to balance the position of
the first and second argument in the ordered argu-
ment space.

We conclude this step by merely going through
slots and assigning entities. If an equality to an-
other slot with an assigned entity exists, we assign
the same entity to this slot; if none exists, we cre-
ate a new entity.

5.6 Entity partitioning
By default, all entities are considered objects. If it
appears in the first slot of a verb, or in a conjunc-
tion where all the children are events, it is how-
ever considered an event. Because some constraint
functions require knowledge of whether an entity
is an event or not, the argument identification and
entity partitioning decisions cannot be made inde-
pendently. To handle this, our system identifies
equalities like the ones above in two steps: the
first step containing predicates which do not rely
on whether slots refer to events or not, and the sec-
ond containing those that do.

Table 2: Argument and predicate F-score for the
systems of Senseval 3. The values are ±0.001.

Team Argument Predicate
University of Amsterdam 0.709 0.801
LCC 0.776 0.892
MITRE 0.694 0.809
University of Sydney 0.705 0.844
Our system 0.649 0.845

5.7 Verb complements
As mentioned in Table 1 and as seen in Eqn. 1,
verbs may have additional arguments besides their
standard one or two. We have taken a simple ap-
proach for identifying these modifier arguments:
We check every path from the parent that does not
contain another verb node. If a modifier at, by,
for, from, in, of, on or to is encountered, introduce
an equality to its second argument. Preferably one
would want to require the first argument to refer
to be the verb in question but this lowers the accu-
racy of our system. This list needs to be extended
but we have not explored this further.

6 Results

For the logical forms identification task at Sense-
val 3, evaluation was done on a test set of 300 sen-
tences. Participating teams submitted their out-
puts, which were compared to a gold standard.
To evaluate our system, we have use the anno-
tated test set of the Senseval 3 conference and a
released evaluation script. The evaluation is done
in two parts: F-score on predicates and F-score on
arguments. The systems at Senseval 3 achieved an
argument F-score between 0.694 and 0.776 and a
predicate F-score between 0.801 and 0.892. We
report here an argument F-score of 0.649 and a
predicate F-score of 0.845 on this test set5. Table
2 lists the respective systems and their F-scores.
The values have been calculated from Rus (2004).

We therefore do worse than the systems at Sen-
seval 3 on the argument level but good on the pred-
icate level, placing just below second place. The
evaluation script does not seem to take into con-
sideration all the equalities or inequalities between
arguments or whether they are events or entities
though.

5We have only run the system on the test set for three con-
figurations with minor changes besides the purpose of testing
modifications such as those listed in Table 3. The reported
results are for a scheme selected prior to these tests. Devel-
opment was done on a separate supplied set.

407



Cenny Wenner

Table 3: Impact on the argument precision, re-
call and F-score for different modifications. The
changes are absolute, not relative.

Modification Prec. % Rec. % F-sc. %
No collocations +1.5 −0.1 −0.7
Noun in cases −4.7 −4.8 −5.4
Not noun in cases −1.0 −0.5 −1.3
Parent first −2.0 −2.3 −2.0
Only parent −7.4 −9.8 −8.5
Ak ← ADef,1 −4.0 −3.7 −4.7
Ak ← AShi −9.5 −9.1 −10.7
ADef,2 ← ADef,1 −0.2 −0.4 −0.5
AV,k ← ADef,k −1.2 −1.0 −1.4
AU/B,k ← ADef,k −0.4 −0.3 −0.4
Grandchildren −0.3 +0.4 +0.1
Ignore p � q −0.8 −0.7 −0.8
cN ← cDef −0.4 −0.3 −0.4
cV ← cDef −1.3 −1.6 −0.5
cC ← cDef ±0.0 ±0.0 ±0.0
cA ← cDef −0.2 −0.3 −0.4
cR ← cDef −0.1 −0.3 −0.1
No noun checks +0.7 −3.2 −1.1

The impact on the argument F-score for differ-
ent rules are given in Table 3.

7 Discussion

Observing the mean F-score, our system, the Uni-
versity of Amsterdam, and MITRE are very close
to each other. There is then a large difference with
University of Sydney and even greater with LCC.
We still believe our results are good in comparison
to the other systems if they have larger rule sets.
Our approach is simple, robust, general and un-
cluttered and there is a lot of work that can be done
to improve it further without being constrained by
a complicated or brittle design.

Auxiliary verbs are ignored by the simplified
logical forms but it is not trivial as to what should
be considered auxiliary verbs in specific contexts.
We have difficulties in consistently separating the
cases without introducing rules which are too spe-
cific. Since this appears even in the development
set, we expect it to have a large impact on the test
set.

All argument search spaces we described have
been permutations of the nodes in the subgraph
rooted at a node’s parent, excluding the node itself.
It seems like the argument search space should fre-
quently contain grandchildren or nodes past the

parent, such as the grandparent or uncles. How-
ever, carelessly including these classes in all the
argument search spaces reduces the accuracy. This
is because the search then discovers too many false
equalities.

We notice that a fairly large portion of the errors
originate from the preprocessing step. A mistake
by the POS tagger propagates to the dependency
graph, morphological parser, and the application
of transformation rules. On the development set,
we at one point noticed a difference of 4% in the
logical form identification accuracy caused only
be a 1% improvement in POS tagging (absolute
units). It seems the accuracy would benefit a fair
amount from further improvement of the part-of-
speech and dependency-graph modules in particu-
lar.

Our system assumes that all noun
groups/compounds should consist of compo-
nents of exactly two objects each. In one example
however, a noun group/compound of three objects
was used with an arity of four. A related difficulty
is the nesting of conjunctions in which its not
immediately clear how the dependency-graph
parser deals with them from case to case.

8 Conclusions

It appears as though we can conclude that trans-
forming dependency graphs to the simplified log-
ical forms with high accuracy is possible through
a few simple rules. Formalizing them as search
rules has reduced the complexity particularly and
we believe this scheme should make further im-
provement easy. Previous work in the area (Ahn
et al., 2004) confirms the conclusion that it is rel-
atively straightforward to implement a fair trans-
formation scheme. We would like to add that im-
plementing such a system is anything but complex
or time-consuming, given the modules mentioned
above.

9 Future Work

Systems for inference and semantics tasks involv-
ing logical forms frequently use different certainty
factors for making the right choices. Taking a
more probabilistic approach to logical forms iden-
tification, which does not necessarily need to be
statistical, should both improve the accuracy of
the logical forms identification as be of use for the
reasoning tasks. This is also partly our way to ap-
proach the last paragraph of the discussion.

408



Rule-based Logical Forms Extraction

We have experimented with statistical logical
form identification and believe that the scheme we
have presented here provides a useful basis. There
are however still a variable number of parameters
for the decisions and they might not be as indepen-
dent as preferable. A downside today is the lack of
training data.

We have described three simplifications in our
system: 1) we restrict the search space to nodes at
distance one and two, 2) we greedily select the first
argument before the second even though this is not
warranted, and 3) we process slots which depend
on whether other slots are events or not without
any particular order after those that do not share
this dependency. It would exciting to explore how
to relieve or better handle these simplifications, in
particular without causing an explosion of the ar-
gument search space.

10 Acknowledgment

The work presented here has received much sup-
port and guidance from Pierre Nugues at Lund
university, both on the construction of the system
and in particular on the authoring of this paper. He
would likely have wanted to make many more sug-
gestions on both.

References
David Ahn, Sisay Fissaha, Valentin Jijkoun, and

Maarten De Rijke. 2004. The University of Amster-
dam at Senseval-3: Semantic roles and Logic forms.
In Senseval-3, pages 49–53. Association for Com-
putational Linguistics.

Stephen Anthony and Jon Patrick. 2004. Dependency
based logical form transformations. In Senseval-3,
pages 54–57. Association for Computational Lin-
guistics.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment.

Samuel Bayer, John Burger, John Greiff, and Ben Well-
ner. 2004. The mitre logical form generation sys-
tem. In Senseval-3, pages 69–72. Association for
Computational Linguistics.

Fellbaum. 1998. WordNet: An Electronic Lexical
Database. The MIT Press.

R. McDonald, K. Lerman, and F. Pereira. 2006. Mul-
tilingual dependency analysis with a two-stage dis-
criminative parser.

Altaf Mohammed, Dan Moldovan, and Paul Parker.
2004. Senseval-3 logic forms: A system and pos-
sible improvements. In Senseval-3, pages 163–166.
Association for Computational Linguistics.

Dan I. Moldovan and Vasile Rus. 2001. Logic form
transformation of wordnet and its applicability to
question answering. In ACL ’01, pages 402–409.
Association for Computational Linguistics.

Dan Moldovan, Christine Clark, Sanda Harabagiu, and
Steve Maiorano. 2003. Cogex: a logic prover for
question answering. In NAACL ’03, pages 87–93.
Association for Computational Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. pages 2216–2219.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Vasile Rus. 2001. High precision logic form transfor-
mation. In ICTAI, pages 288–.

Vasile Rus. 2004. A first evaluation of logic form iden-
tification systems. In Senseval-3, pages 37–40. As-
sociation for Computational Linguistics.

Beatrice Santorini. 1991. Part-of-speech tagging
guidelines for the penn treebank project.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In International Con-
ference on New Methods in Language Processing.
unknown.

Marta Tatu, Brandon Iles, John Slavick, Adrian Novis-
chi, and Dan Moldovan. 2006. Cogex at the second
recognizing textual entailment challenge. In Pro-
ceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment.

Kristina Toutanova and Christopher D. Manning.
2000. Enriching the knowledge sources used in
a maximum entropy part-of-speech tagger. In
EMNLP/VLC-2000.

Kristina Toutanova, Dan Klein, and Christopher D.
Manning. 2003. Feature-rich part-of-speech tag-
ging with a cyclic dependency network. In Proceed-
ings of HLT-NAACL 03.

J. van Eijck and H. Alshawi. 1992. Logical forms.
In The Core Language Engine, pages 11–40. MIT
Press.

409


