
Representing Calendar Expressions with Finite-State Transducers that
Bracket Periods of Time on a Hierarchical Timeline

Jyrki Niemi and Kimmo Koskenniemi
University of Helsinki,

Department of General Linguistics,
PO Box 9, FI–00014 University of Helsinki, Finland

{jyrki.niemi, kimmo.koskenniemi}@helsinki.fi

Abstract

This paper proposes representing the se-
mantics of natural-language calendar ex-
pressions as a sequence of compositions of
finite-state transducers (FSTs) that bracket
the denoted periods of time on a finite time-
line of nested calendar periods. In addition
to simple dates and times of the day, the ap-
proach covers more complex calendar ex-
pressions. The paper illustrates the model
by walking through the representation of the
calendar expressionJanuary to March and
May 2007. The representation of the ex-
pressions considered is compositional with
reference to their subexpressions. The pa-
per also outlines possible applications of the
model, based on finding the common peri-
ods of time denoted by two calendar expres-
sions.

1 Introduction

Temporal information is essential in various appli-
cations, for example, in event calendars and ap-
pointment scheduling. A common class of temporal
information are calendar expressions, which range
from simple dates and times of the day to more
complex ones, such asthe second Tuesday follow-
ing Easter. In applications, calendar expressions
and other temporal information should often be both
processed by software and presented for a human to
read.

Numerous approaches and models have been de-
veloped to represent and process temporal informa-
tion in various fields, from temporal databases to

natural-language processing. Temporal information
often contains cycles and repetition, such as the cy-
cle of hours within a day. A natural means to pro-
cess cyclical structures could be provided by finite-
state methods. These methods have a sound theo-
retical basis, and they are easier to control than ad
hoc methods. Finite-state transition networks may
also provide a usable representation for sparse sets
of sets. Despite these advantages, explicitly finite-
state methods and representations seem to have been
relatively little used in temporal representation and
reasoning. (However, see Sect. 4 for previous work.)
Although these methods indeed have their limita-
tions, in particular their restricted numerical calcu-
lation ability, we believe that they would suit well to
representing and processing various kinds of tempo-
ral information.

In this paper, we use finite-state transducers
(FSTs) in representing the semantics of calendar ex-
pressions and in finding the common periods of time
denoted by two or more calendar expressions. We
start from the (intensional) meaning of a natural-
language calendar expression; we do not treat the ex-
traction of the meaning from the original expression.
We use FSTs to mark the denotations of calendar ex-
pressions with brackets on a timeline string. Thus
we call the representation presented here the brack-
eting FST model. We also use the composition op-
eration of FSTs both to construct more complex ex-
pressions from simple ones in a compositional way,
and to find the common periods of time denoted by
several expressions.

Some aspects of the present bracketing FST
model are based our earlier model presented in

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
NODALIDA 2007 Conference Proceedings, pp. 355–362

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/14471845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jyrki Niemi and Kimmo Koskenniemi

Niemi et al. (2006). That temporal model and rep-
resentation of calendar expressions was based on
a string of hierarchical calendar periods, expanded
to finer ones by FSTs as needed. Although the
approach seemed to promise to make reasoning
tractable, it was non-compositional and rather pro-
cedural. In that respect, we regard the present model
as a marked improvement.

The rest of the paper is organized as follows.
Section 2 presents the basic principles of the brack-
eting FST model and illustrates them with examples.
Section 3 describes some possibilities of simple tem-
poral reasoning using the model in such applications
as event calendars and appointment scheduling. Sec-
tion 4 presents some related work in temporal rep-
resentation and reasoning research. Section 5 con-
cludes the paper with discussion and some directions
for further research.

2 Calendar Expressions in Bracketing FST
Model

In this section, we present the basic principles of
the bracketing FST model. We illustrate the prin-
ciples primarily with the representation of a fairly
simple calendar expression,January to March and
May 2007. The expression contains four basic cal-
endar expressions corresponding to specific calendar
periods of the Gregorian calendar, combined with an
interval, a list and a refinement. Before the example,
we briefly discuss the levels of representation of cal-
endar expressions.

2.1 Calendar Expressions and their Levels of
Representation

A calendar expression generally denotes a period
of time that does not depend on the time of use of
the expression, such as25 May 2007. However, the
denotation may be vague or underspecified without
context, as inSeptemberor in the morning. The
denotation may also be ambiguous; for example,a
weekmay denote either a calendar period or a du-
ration. In this paper, we model the disambiguated
meanings of natural-language calendar expressions,
while trying to retain underspecification wherever
possible.

A calendar expression can denote disconnected
periods (non-convex intervals) of time, as well as

connected ones. For example,two Sundaysdenotes
a period consisting of two Sundays without the in-
tervening days.

Calendar expressions can be represented at sev-
eral different levels. We distinguish between the
following levels of representation: (1) a natural-
language calendar expression:January to March
2007; (2) a semi-formalized term representation
of its semantics: intersect(interval(mon(jan),
mon(mar)), year(y2007)); (3) the representation
of this as a regular (relation) expression or a se-
quence of compositions of them; (4) the FST con-
structed from the regular expression; and (5) the
string or set of strings specified by the FST com-
posed with a string representing a timeline. In this
paper, we present natural-language expressions, reg-
ular expressions at the level of macros and com-
posed timeline strings. The parametrized regular re-
lation macros can be regarded as the basic building
blocks of calendar expression FSTs.

Our work does not cover the conversion of a
natural-language calendar expression to the term
representation. Instead, we assume the semantic
term representation as a starting point. The seman-
tic representation is then converted into a regular ex-
pression, which is further compiled into an FST.

The term representation is similar to the calen-
dar XREs (extended regular expressions) of Niemi
and Carlson (2006) in that they are structurally fairly
close to natural language calendar expressions. Thus
it should be relatively simple to generate a natural-
language calendar expression from the term repre-
sentation. It should also be possible to parse a
natural-language calendar expression to a term rep-
resentation.

2.2 FST Expressions and Macros

We represent the denotation of the example expres-
sion January to March and May 2007as the com-
plex term intersect(union(interval(mon(jan),
mon(mar)), mon(may)), year(y2007)). This in
turn translates to the following sequence of compo-
sitions of FSTs. (The parametersin refer to marker
bracket indices, explained below.)

mon(Jan, i1)◦mon(Mar, i2)
◦ interval(i1, i2, i3)
◦mon(May, i4)◦union(i3, i4, i5)
◦year(y2007, i6)◦ intersect(i5, i6, i7)

356

Representing Calendar Expressions with Finite-State Transducers that Bracket Periods of Time on a Hierachical
Timeline

Remarkably, this composition sequence corresponds
directly to a postfix representation of the term ex-
pression.

The denotation of a calendar expression is repre-
sented by indexed marker brackets that delimit the
denoted periods on a timeline. Marker brackets are
added by FSTs corresponding to either basic calen-
dar expressions or operations combining simpler ex-
pressions to more complex ones. Basic expression
FSTs add new marker brackets to each calendar pe-
riod denoted by the expression, whereas operation
FSTs add brackets based on their operands that are
denoted by previously added brackets. A composite
expression is represented as a sequence of composi-
tions of such FSTs.

We present FSTs at the level of simple
parametrized macros, as above. For example,
the FST constructed frommon(Jan, i1) marks
each January with the marker bracketsi1, whereas
intersect(i5, i6, i7) marks with the marker brack-
etsi7 the periods of time that are inside both marker
bracketsi5 and i6. More generally, each operation
FST macro takes as its arguments marker bracket in-
dices corresponding to the subexpressions of a cal-
endar expression.1 The last argument of each macro
indicates the marker bracket index with which the
FST marks the result of the operation.

The representation of a calendar expression is
compositional as each operation operates on the in-
dicated periods marked on the timeline and marks its
own denotation on the timeline.

2.3 The Representation of a Timeline

To illustrate the representation of a calendar expres-
sion, we need a timeline on which to mark the deno-
tation of the expression. We use a simplified time-
line consisting solely of the year 2007 at the level of
months. We begin with the following timeline with-
out marker brackets. (We separate the symbols of a
string with spaces.)

[y y2007 [m Jan m] [m Feb m] [m Mar m]
[m Apr m] [m May m] [m Jun m] . . . [m Dec
m] y]

Largely following Niemi et al. (2006), we rep-
resent a finite timeline as a string consisting of
hierarchical (nested) markings for different calen-

1Macros may also have integer arguments.

dar periods. Each calendar period is delimited by
granularity-specific begin and end markers: for ex-
ample, [y marks the beginning of a year andm]
marks the end of a month. A begin marker is fol-
lowed by a symbol indicating a specific period, such
asy2007 for the year 2007 andJan for a January.
A day is marked for both the day of the month and
the day of the week. The period indicator may be
followed by a sequence of markers for a finer gran-
ularity.

A timeline string can be constructed by a se-
quence of compositions of FSTs that expand the
timeline a granularity at a time to finer granularities,
for example, a year to contain months.2 Granulari-
ties need not be strictly nested, which allows the rep-
resentation of weeks. The level of detail in a time-
line can vary: for example, if hours are not referred
to in the expression, they are not needed in the time-
line.

A calendar expression is represented on a timeline
by enclosing the denoted periods of time in marker
brackets which have an index corresponding to the
expression:{in . . . }in. The indices distinguish be-
tween the denotations of different subexpressions in
a composite expression.

2.4 Basic Calendar Expressions

Basic calendar expressions correspond to the basic
periods of the Gregorian calendar. Basic calendar
periods include both generic periods, such as hour,
day, month and year, and specific ones, such as each
hour, day of the week, day of the month, month and
year. We also assume expressions for seasons and
holidays, such as Easter and Christmas Day.

A basic calendar expression such asJanuary is
represented as an FST that adds marker brackets on
the timeline around each period denoted by the ex-
pression.3 In the present example (see Sect. 2.2),
the first FSTmon(Jan, i1) adds marker brackets
i1 around each month identified by the symbolJan,

2To be able to expand the months of a year and the days of
a month independently of the neighbouring periods, each year
contains symbols indicating its leap-year status and the day of
the week of its first day, and each month, the number of its days
and the day of the week of its first day. However, for clarity, we
omit this information in the examples of this paper.

3Although unqualified natural-language calendar expres-
sions, suchJanuary, typically refer to the nearest past or future
period relevant in the context, in this work we interpret them as
underspecified, for example, referring to any January.

357

Jyrki Niemi and Kimmo Koskenniemi

that is, each January:{i1 [m Jan . . . m] }i1. Sim-
ilarly, mon(Mar, i2) adds i2 around each March.
The timeline is now as follows. (Boldface indicates
brackets added at this stage.)

[y y2007 {i1 [m Jan m] }i1 [m Feb m] {i2
[m Mar m] }i2 [m Apr m] [m May m] . . . [m
Dec m] y]

Basic calendar expressions form the basis for
more complex expressions. The complex example
expressionJanuary to March and May 2007con-
tains three basic constructs used to combine calen-
dar expressions: an interval, a list and a refinement.
We treat each of them in the following subsections.

2.5 Interval

In the example, the subexpressionJanuary to March
denotes an interval which begins from the begin-
ning of a January and ends at the end of the closest
following March. The January and March marked
above are combined to the interval by the FST
interval(i1, i2, i3), which marks withi3 the inter-
vals beginning fromi1 and ending toi2:

[y y2007 {i3 {i1 [m Jan m] }i1 [m Feb m] {i2
[m Mar m] }i2 }i3 [m Apr m] [m May m] . . .
[m Dec m] y]

In general, an interval FST adds a begin marker
bracket for the result at the beginning of each begin
period of the interval and an end marker bracket at
the end of the closest following end period.

2.6 List

The next step is to combine the intervalJanuary to
March with May to a list representingJanuary to
March and May. We treat all list expressions as
disjunctive; for example,January and Mayis inter-
preted as “any January or May”.

In the example, the FSTmon(May, i4) marks
May with i4, andunion(i3, i4, i5) addsi5 around
the periods marked withi3 or i4 or both:

[y y2007 {i5 {i3 {i1 [m Jan m] }i1 [m Feb m]
{i2 [m Mar m] }i2 }i3 }i5 [m Apr m] {i5 {i4
[m May m] }i4 }i5 . . . [m Dec m] y]

More generally, we represent a list as the union
(disjunction) of its elements. A (binary) union FST
adds result marker brackets around the periods cov-
ered by at least one of the operands.

2.7 Refinement

Finally, we combine the previous subexpression
with the year 2007 to the final expressionJanuary
to March and May 2007. We call this construct a
refinement, following Niemi et al. (2006), as each
of the subexpressions refines or restricts the denoted
period of time. We implement refinement as an in-
tersection (conjunction). In the example, the FST
year(y2007, i6) marks the year 2007 withi6, and
intersect(i5, i6, i7) marks the denotation of the final
expression withi7:

{i6 [y y2007 {i7 {i5 {i3 {i1 [m Jan m] }i1 [m
Feb m] {i2 [m Mar m] }i2 }i3 }i5 }i7 [m Apr
m] {i7 {i5 {i4 [m May m] }i4 }i5 }i7 . . . [m
Dec m] y] }i6

An intersection FST adds result marker brackets
around periods covered by both the operands.

From this final timeline, we can then remove all
other marker brackets except thei7s that mark the
denotation of the whole expression:

[y y2007 {i7 [m Jan m] [m Feb m] [m Mar
m] }i7 [m Apr m] {i7 [m May m] }i7 . . . [m
Dec m] y]

We now take a brief look inside an FST expres-
sion, followed by an outline of the representation of
a few other calendar expression constructs and dis-
cussion about the interpretation of calendar expres-
sions.

2.8 The Implementation of an FST Expression

The FST expressions used above in representing cal-
endar expressions are rather abstract in that they
use macros which correspond to parametrized regu-
lar relation expressions. For example, the following
macro implements the union operation:

union(i, j, r) =
noijrs
. (ε:{r . ({i∪ {j)

. (noijrs∪ (({i∪ {j) .noijrs. (}i∪ }j)))∗

. (}i∪ }j) . ε:}r .noijrs)∗

Here noijrs is an abbreviation of the expression
(∼({i∪ }i∪ {j∪ }j∪ {r ∪ }r))∗, ε denotes the empty
string,A:B the transduction from symbolA to B, A.B
the concatenation ofA andB, and∼A the symbols
of the alphabet excluding those inA.

In effect, the expression inserts the marker brack-
ets {r . . . }r around each brackets{i . . . }i or {j . . . }j,

358

Representing Calendar Expressions with Finite-State Transducers that Bracket Periods of Time on a Hierachical
Timeline

which may contain or overlap with one or more in-
stances of the other pair of marker brackets. The def-
inition assumes that marker brackets with a certain
index appear neither nested nor overlapping with
themselves. Moreover, this slightly simplified ver-
sion does not consider the special cases that may oc-
cur at the beginning or the end of the timeline, such
as an end marker bracket not preceded by a corre-
sponding begin marker bracket.

2.9 Other Calendar Expression Constructs

In addition to intervals, lists and refinement expres-
sions, it is relatively straightforward to represent in
the bracketing FST model also various more com-
plex types of calendar expressions. They include
constructs presented in Niemi et al. (2006): ex-
ception expressions (8 am, except Mondays 9 am),
various kinds of anchored expressions (the second
Tuesday following Easter) and consecutiveness ex-
pressions (two consecutive Sundays). Furthermore,
the model can represent a number of deictic and
anaphoric temporal expressions. In this subsection,
we outline the representation of these types of ex-
pressions. In several examples below, we present
the corresponding term representation instead of or
in addition to the FST macro representation.

The expression8 am, except Mondays 9 am
(except(h08, mon, h09)) is an exception expres-
sion. Such an expression consists of two or three
parts: a default time, an exception scope and an op-
tional exception time. In the above expression,8 am
is the default time (dt below), Mondaysthe excep-
tion scope (es) and9 amthe exception time (et). Fol-
lowing Carlson (2003), we express the denotation of
an exception expression with union, difference and
intersection as(dt\ es)∪ (es∩ et). The union and
intersection operations are described above, and the
differencedt\escorresponds todt∩¬es. The com-
plement¬es is in turn implemented by the macro
complement(i, r), which precedes each{i with a }r
and follows each}i with a {r. For example, the time-
line with marker brackets. . . {i . . . }i . . . {i . . . }i . . .
becomes{r . . . }r {i . . . }i {r . . . }r {i . . . }i {r . . . }r.

An anchored expression denotes a time rela-
tive to an anchor time. For example,the second
Tuesday following Easter(nth_following(2, tue,
easter)) refers to a time relative to Easter. To
obtain the denotation of the expression, FSTs first

mark each Tuesday and Easter with the respective
marker brackets (wday(Tue, i1)◦easter(i2)). The
FST nth_following(2, i1, i2, i3) then inserts result
marker bracketsi3 around each Tuesday that is pre-
ceded by Easter, with exactly one Tuesday in be-
tween. This condition is fairly simple to express in
regular relation expressions.4

The consecutiveness expressiontwo consecutive
Sundays(consecutive_n(2, sun)) differs from the
other constructs above in that it represents a set of
disconnected periods of time, and thus it should
be interpreted disjunctively (see Sect. 2.10 below).
However, it is simple to implement as an FST that
marks any two Sundays with no Sundays in between
them and leaves the rest of the timeline intact.

Among other calendar expression constructs that
we have represented in the model are parity ex-
pressions (even Tuesdays of the month), ordinal ex-
pressions (every second Monday of the year) and
containment expressions (the months with a Friday
13th). These expressions can be represented in a
manner fairly similar to anchored expressions.

The present model can also be extended fairly
straightforwardly to simple deictic and anaphoric
temporal expressions, such astodayandthe follow-
ing month. Similarly to Carlson (2003), we define
FSTs that mark speech time and the reference time
of an anaphoric expression:now(i) and then(i),
respectively. With their help, we can representto-
day as containing(day, now) (the day containing
the speech time) andthe following monthasfollow-
ing_nth(1, month, then) (the first calendar month
following the reference time).

2.10 Conjunctive and Disjunctive
Interpretations

Many calendar expressions can be interpreted either
conjunctively or disjunctively. For example,Mon-
day and Thursdaymight denote either “a (certain)
Monday and a (certain) Thursday” or “any Mon-
day or Thursday”, depending on the point of view.
The conjunctive interpretation would be feasible for
someone who provides a service on the days in ques-
tion, and the disjunctive one for a client.

4The first argument of the macronth_following is an inte-
gern. In the macro definition it translates to the concatenation
powerRn−1, whereR is the part of the regular expression to be
repeatedn−1 times.

359

Jyrki Niemi and Kimmo Koskenniemi

In the present work, we generally represent the
denotation of a calendar expression conjunctively,
on a single timeline string, whenever possible. Ef-
fectively, the denotation ofMonday and Thursdayis
a single disconnected period of time that comprises
all Mondays and Thursdays.

However, a purely conjunctive representation
would provide an incorrect representation for some
types of expressions. In particular, we need to rep-
resent disjunctively expressions denoting multiple
separate disconnected periods of time and expres-
sions with several possible overlapping denotations.
Both of these properties are true of the expression
(any) two Sundays, for example: if all the possi-
ble combinations of two Sundays were represented
on a single timeline, it would in effect denote all
Sundays. Instead, each possible combination of two
Sundays is represented on its own timeline. This set
of timelines is represented as an FST with many pos-
sible paths, each corresponding to a single timeline.

3 Temporal Reasoning Applications

The bracketing FST model could be used in tempo-
ral reasoning. We have mainly considered a form
of reasoning that finds the common periods of time
denoted by two calendar expressions. Such reason-
ing could be used, for instance, in querying an event
database or in appointment scheduling.

A query to an event database could find out, for
example, at what time certain museums are open
on Fridays in May, or which museums are open on
Fridays in May. For both queries, we should com-
pute the common periods of time denoted by both
the query and the target expression. The answer to
the first query would be a representation of the com-
mon periods, and to the second one, the existence
or non-existence of common periods. In our model,
we would mark the denotations of both expressions
on the same timeline and compute their intersection
using the same operation as for a refinement within
a single expression.

Although this kind of reasoning might not be ef-
ficient enough for large-scale on-line processing, it
might be of use in an application in which some in-
formation is generated periodically from a database,
such as a Web page showing events of the week.
Such an application would also need a generation

component that would generate from the term rep-
resentation the corresponding natural-language cal-
endar expressions, possibly in multiple languages,
along the lines of Niemi and Carlson (2006).

In appointment scheduling we should find the
common free periods of time in the calendars of two
or more people or institutions. In addition, the ap-
pointment may have further constraints, such asat
least six hours without interruptions. Finding com-
mon periods of time with intersection could be ap-
plied to appointment scheduling as well.

4 Related Work

Temporal expressions have been widely researched,
including modelling and reasoning with calendar ex-
pressions. However, finite-state methods have sel-
dom been used explicitly. In the following, we very
briefly relate our work to a few other pieces of work
in this area.

Our original inspiration was Carlson’s (2003)
event calculus, which includes modelling calen-
dar expressions as extended regular expressions
(XREs). In Niemi and Carlson (2006) we repre-
sented a number of calendar expression constructs
as XREs; however, the approach generally appeared
computationally intractable.

The Verbmobil project (Wahlster, 2000) had its
own formalism to represent and reason with tempo-
ral expressions in appointment negotiation dialogues
(Endriss, 1998). Its coverage of calendar expres-
sions was similar to our present approach.

The calendar logic of Ohlbach and Gabbay (1998)
and its time term specification language can repre-
sent calendar expressions of various kinds. How-
ever, compared to our term representation, the struc-
ture of calendar logic expressions differs signifi-
cantly more from that of natural-language calendar
expressions.

Han and Lavie (2004) and Han et al. (2006) use
their own formalism in conjunction with reasoning
using temporal constraint propagation. They cover
more types of expressions than we do, including
durations and underspecified and quantified expres-
sions, such asevery week in May.

TimeML (Boguraev et al., 2005) is a markup lan-
guage for marking events and temporal expressions
and their relationships in a text. Compared to our

360

Representing Calendar Expressions with Finite-State Transducers that Bracket Periods of Time on a Hierachical
Timeline

present approach, TimeML covers many more kinds
of temporal expressions, such as temporal relations,
durations and underspecification. However, as Han
et al. (2006) point out, in many cases TimeML ex-
presses only the denotation of the expression, such
as a certain date, whereas our bracketing FST ex-
pressions, as well as and the TCNL representation
of Han et al. (2006), represent the intensional mean-
ing of a calendar expression. Moreover, it is unclear
how TimeML would suit to the kind of reasoning
that we have considered.

Finite-state methods have been explicitly used by
a few people to represent or reason with temporal
information, but the scope of their work is otherwise
mostly rather different from that of ours. Karttunen
et al. (1996) express the syntax of fairly simple dates
as regular expressions to check their validity. Fer-
nando (2004) uses regular expressions to represent
events with optional temporal information, such as
(for) an hour. Focusing on events, his examples
contain only rather simple temporal expressions. Fi-
nally, Dal Lago and Montanari (2001) and Bresolin
et al. (2004) present automata models that are suit-
able in particular for representing infinite granulari-
ties. Their models are based on Büchi automata.

5 Discussion and Further Work

In the following, we discuss some advantages and
disadvantages of the bracketing FST model of cal-
endar expressions presented in this paper. We also
mention some directions for further research.

Compared our earlier FST-based temporal model
(Niemi et al., 2006), the bracketing FST model is
clearly more compositional and less procedural but
less efficient in at least some aspects. For instance,
it is an open question if it is possible to compute the
denotation of an expression a granularity level at a
time, or to expand on the timeline only the periods
of time relevant to the expression, as in the earlier
model. We thus use a pre-expanded timeline, which
may be rather long in practical applications.

The FST compositions for calendar expressions
can quickly result in very large automata unless we
begin the composition sequence from the timeline.
In some applications it might nevertheless be useful
to combine the expression FSTs before composing
them with a timeline, so we also intend to investi-

gate other options for keeping the size of the FSTs
manageable even for complex expressions.

Since we use a different marker bracket index for
each subexpression, the number of different marker
bracket symbols is proportional to the number of
nodes in the expression tree of a term expression.
This number may be fairly large for complex calen-
dar expressions. An alternative could be to reduce
the number of indices by reusing them; for exam-
ple, an operation could use the brackets of one of its
operands to mark the result. However, we probably
should preserve the indices of reoccurring subex-
pressions to avoid having to recompute them.

We found it relatively easy to build FST expres-
sions for the various calendar expression constructs,
even though it might be partly explained by the fact
that only few special cases were treated. To widen
the coverage, we intend to try to represent in the
bracketing FST model all the calendar expression
constructs mentioned in Niemi and Carlson (2006),
and relevant ones probably also from Endriss (1998)
and Han and Lavie (2004). We should also test the
scalability of the representation to longer and more
complex calendar expressions.

Duration expressions are an area still to be inves-
tigated in the bracketing FST model, although they
can be represented with finite-state methods, as seen
in Niemi and Carlson (2006). The representation
of durations in general may be intractable, since a
disconnected duration, such as in40 hours a week,
might be composed of an arbitrary number of arbi-
trarily short periods of time. However, a tractable
subset should suffice in a practical application.

Even though finite-state methods can be used to
represent many different types of calendar expres-
sion constructs, they are unable naturally to rep-
resent fuzzy or inexact expressions, such asabout
8 o’clock, internally anaphoric expressions, such as
9.00 to 17.00, an hour later in winter, fractional ex-
pressions, such asthe second quarter of the year, or
arbitrary repetition expressions, such astwo equally
long periods of time. However, it might be possi-
ble to compile at least some expressions of some of
these types to a finite-state representation.

Furthermore, there are types of temporal expres-
sions that we have not yet considered but that proba-
bly can be represented with finite-state methods. For
example, one might want to find in an event database

361

Jyrki Niemi and Kimmo Koskenniemi

the days on which one could take a boat cruise fol-
lowed by one to two hours before a theatre play.

We have used the Xerox Finite-State Tool (XFST)
(Karttunen et al., 1997) as the main tool for ex-
perimenting with regular relation (FST) expressions.
However, it would be essential to develop an accom-
panying compiler to compile term representations of
calendar expressions into compositions of FST ex-
pressions, instead of translating them by hand.

In summary, although several issues should be
investigated and solved before the bracketing FST
model could be useful in a practical application. we
find it more promising in many respects than that of
Niemi et al. (2006). In general, we consider finite-
state approaches fairly well suited to modelling the
semantics of calendar expressions.

Acknowledgements

This paper represents independent work by the ju-
nior author based on the suggestions of the senior
author. We are grateful to the anonymous reviewers
for their valuable comments. We are also grateful to
Nathan Vaillette (personal communication) for his
original suggestion to use finite-state transducers in
representing calendar expressions.

References

Branimir Boguraev, Jose Castaño, Rob Gaizauskas,
Bob Ingria, Graham Katz, Bob Knippen, Jessica
Littman, Inderjeet Mani, James Pustejovsky, Antonio
Sanfilippo, Andrew See, Andrea Setzer, Roser Saurí,
Amber Stubbs, Beth Sundheim, Svetlana Symonenko,
and Marc Verhagen. 2005. TimeML: A formal speci-
fication language for events and temporal expressions.
http://timeml.org/site/publications/timeMLdocs/
timeml_1.2.1.html, October.

Davide Bresolin, Angelo Montanari, and Gabriele Pup-
pis. 2004. Time granularities and ultimately periodic
automata. In José Júlio Alferes and João Leite, ed-
itors, Logics in Artificial Intelligence: 9th European
Conference, JELIA 2004, Lisbon, Portugal, September
27–30, 2004, Proceedings, number 3229 in Lecture
Notes in Computer Science, pages 513–525, Heidel-
berg, September. Springer-Verlag.

Lauri Carlson. 2003. Tense, mood, aspect, diathesis:
Their logic and typology. Unpublished manuscript,
February.

Ugo Dal Lago and Angelo Montanari. 2001. Cal-
endars, time granularities, and automata. In Chris-

tian S. Jensen, Markus Schneider, Bernhard Seeger,
and Vassilis J. Tsotras, editors,Advances in Spatial
and Temporal Databases: 7th International Sympo-
sium, SSTD 2001, Redondo Beach, CA, USA, July
12–15, 2001, Proceedings, number 2121 in Lecture
Notes in Computer Science, pages 279–298, Heidel-
berg, July. Springer-Verlag.

Ulrich Endriss. 1998. Semantik zeitlicher Ausdrücke
in Terminvereinbarungsdialogen. Verbmobil Report
227, Technische Universität Berlin, Fachbereich Infor-
matik, Berlin, August.

Tim Fernando. 2004. A finite-state approach to events
in natural language semantics.Journal of Logic and
Computation, 14(1):79–92.

Benjamin Han and Alon Lavie. 2004. A framework for
resolution of time in natural language.ACM Trans-
actions on Asian Language Information Processing
(TALIP), 3(1):11–32, March.

Benjamin Han, Donna Gates, and Lori Levin. 2006.
From language to time: A temporal expression an-
chorer. In James Pustejovsky and Peter Revesz, edi-
tors,Proceedings of the Thirteenth International Sym-
posium on Temporal Representation and Reasoning
(TIME’06), pages 196–203. IEEE Computer Society.

L[auri] Karttunen, J[ean]-P[ierre] Chanod, G[regory]
Grefenstette, and A[nne] Schiller. 1996. Regular
expressions for language engineering.Natural Lan-
guage Engineering, 2(4):305–328, December.

Lauri Karttunen, Tamás Gaál, and André Kempe. 1997.
Xerox finite-state tool. Technical report, Xerox
Research Centre Europe, Grenoble, France, June.
http://www.xrce.xerox.com/ competencies/content-
analysis/fssoft/docs/fst-97/xfst97.html.

Jyrki Niemi and Lauri Carlson. 2006. Modelling the
semantics of calendar expressions as extended regu-
lar expressions. In Anssi Yli-Jyrä, Lauri Karttunen,
and Juhani Karhumäki, editors,Proceedings of the
FSMNLP 2005, number 4002 in Lecture Notes in Ar-
tificial Intelligence, pages 179–190. Springer.

Jyrki Niemi, Kimmo Koskenniemi, and Lauri Carl-
son. 2006. Finite-state transducers and a variable-
granularity timeline in modelling the semantics of
calendar expressions. In Hans W. Guesgen, Gérard
Ligozat, Jochen Renz, and Rita V. Rodriguez, editors,
ECAI 2006 Workshop. Spatial and Temporal Reason-
ing, pages 56–62, August.

Hans Jürgen Ohlbach and Dov Gabbay. 1998. Calen-
dar logic. Journal of Applied Non-classical Logics,
8(4):291–324.

Wolfgang Wahlster, editor. 2000.Verbmobil: Founda-
tions of Speech-to-Speech Translation. Artificial In-
telligence. Springer, Berlin.

362

